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Abstract—Reconfigurable intelligent Surfaces (RIS) and half-
duplex decoded and forwarded (DF) relays can collaborate to
optimize wireless signal propagation in communication systems.
Users typically have different rate demands and are clustered
into groups in practice based on their requirements, where the
former results in the trade-off between maximizing the rate
and satisfying fine-grained rate demands, while the latter causes
a trade-off between inter-group competition and intra-group
cooperation when maximizing the sum rate. However, traditional
approaches often overlook the joint optimization encompassing
both of these trade-offs, disregarding potential optimal solutions
and leaving some users even consistently at low date rates. To
address this issue, we propose a novel joint optimization model
for a RIS- and DF-assisted multiple-input single-output (MISO)
system where a base station (BS) is with multiple antennas
transmits data by multiple RISs and DF relays to serve grouped
users with fine-grained rate demands. We design a new loss
function to not only optimize the sum rate of all groups but
also adjust the satisfaction ratio of fine-grained rate demands
by modifying the penalty parameter. We further propose a
two-phase graph neural network (GNN) based approach that
inputs channel state information (CSI) to simultaneously and
autonomously learn efficient phase shifts, beamforming, and relay
selection. The experimental results demonstrate that the proposed
method significantly improves system performance.

Index Terms—reconfigurable intelligent surface, decoded and
forwarding relay, graph neural network, fine-grained rate de-
mands

I. INTRODUCTION

He exponential growth of wireless data traffic, which

is driven by the proliferation of smart devices and the
advent of the Internet of Things (IoT), has posed substantial
challenges to existing communication infrastructures [1]-[4].
Traditional methods to address these challenges, such as de-
ploying additional base stations and leveraging more spectrum,
have often entailed high costs and increased energy con-
sumption. [5]-[7]. Reconfigurable intelligent Surfaces (RIS),
which intelligently reconfigures the propagation environment
through passive, low-power, and controllable surfaces, has
gained significant attention as a compelling alternative in
wireless communication research.
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Fig. 1. Classify device rate demands into three granularities: coarse-grained,
group-grained, and fine-grained.

An RIS comprises a set of low-cost and reflecting elements
capable of manipulating electromagnetic waves incident upon
them, thereby controlling, amplifying, or attenuating elec-
tromagnetic waves. These reflective components, controllable
and configurable, provide superior communication objectives
compared to conventional wireless systems [8]-[12]. Simul-
taneously, the relay decodes, remodulates, and retransmits
signals, thereby mitigating error propagation and enhancing
signal reliability. Additionally, deploying a relay also for
flexible network expansion to maintain stable connectivity
across all areas [13]-[15]. Consequently, in 6G communica-
tions, the hybridization of RIS and relays has swiftly garnered
attention, with the objective of enhancing wireless network
coverage and signal integrity through their integration. By
dynamically adjusting the reflection coefficients of the RIS
and the amplification factor of the relay, a more flexible and
efficient communication link has been realized in [16]. The
researchers conducted an in-depth analysis of the performance
of the relay-assisted reflection intelligent surface network. The
research focused on evaluating the effectiveness of RIS under
different relay strategies, including amplified forwarded (AF)
and decoded and forwarded (DF) relays. The results show that
a well-configured RIS enhances signal quality and mitigates
system complexity. This technology leverages the synergies of
RIS and relays, offering extended coverage and active relay
signal processing, along with the energy efficiency and cost
benefits inherent to RIS [17], [18].

Optimizing both the RISs and relays can enhance the cov-
erage and data transmission rate of the communication system
by leveraging the signal amplification characteristics of RISs’
beamforming and relaying to overcome signal attenuation and
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TABLE I
THE QUALITATIVE COMPARISON OF THE CURRENT LITERATURE. THE SYMBOL ’v'> MEANS THAT THE FACTOR IS TAKEN INTO ACCOUNT, AND THE
SYMBOL X’ MEANS NOT TAKING THIS FACTOR INTO ACCOUNT

Approaches BS beam- RIS phase Multiple Relay Relay Fine-grained rate Method
forming shifts RISs beamforming selection demands
Zaid et al. [17] X X v v v X SDP! PSO?
Zaid et al. [18] X v X v X X EPAJ OPA*
Ahn er al. [25] v v X X X X DNN?
Xu et al. [26] X v v X X X LSTM®
Yang et al. [27] v v X X X X DRL
Asmaa et al. [28] v v X X X X DRL
Xu et al. [29] v v X X X X DRL’
Tao et al. [30] v v X X X X GNN3
Chen et al. [31] v v X v X X GNN?
Wang et al. [32] v v X X X X FP? SDRISROCR™
Ma et al. [33] v v X X X X FP’
Huang et al. [34] v v X X v X DRL’
Ours v v v v v v GNN8

ISDP: semidefinite programming, 2PSO: particle swarm optimization, SEPA: equal power allocation, *OPA: optimal power allocation, SDNN: deep
neural network,°LSTM: long short-term memory,’DRL: deep reinforcement learning,GNN: graph neural network, FP: fractional programming,
10SPR: semidefinite relaxation, ! SROCR: sequential rank-one constraint relaxation.

transmission distance limitations. This approach is applicable
to various communication scenarios, such as indoor/outdoor
environments and mobile/fixed communication setups. Tran
et al. [19] utilized multi-RISs with a relay to enhance the
performance of a low-power wide-area network. Nguyen et
al. [20] explored how reflective smart surfaces can be inte-
grated with relays to adapt to complex wireless environments.
Therefore, research in joint optimization for both the RISs and
relays is of paramount importance as it significantly enhances
communication system performance and user experience [21],
[22]. To unleash the potential of RIS and relay-assisted multi-
antenna systems in supporting high data rates, beamforming
has been optimized through various works. For instance, Guo
et al. [23] proposed an algorithm grounded in block coordinate
descent (BCD) that aims to simultaneously optimize both
transmit beamforming and RIS phase shifts, thereby achieving
the highest possible sum rate for RIS-assisted communication
systems. Hu et al. [24] addressed the challenge of maximizing
the weighted sum rate in non-convex scenarios by employing
a combination of fractional programming (FP) and alternating
optimization (AQO) techniques.

However, these prior works overlook user aggregation and
spatial distribution, which are crucial for the optimization of
the RIS-relay integration, since beamforming techniques rely
on the positions of users to adjust the phases and magnitudes
of antennas to ensure that the signals precisely target the
intended user locations. In practice, users and devices are often
clustered in various geographic areas such as office buildings,
factories, and residential apartments. As shown in Fig. 1, we
categorize various locations into distinct groups and classify
device date rate demands into three granularities: coarse-
grained, group-grained, and fine-grained. Prior works have fo-
cused on coarse-grained optimization, but they often overlook
the impact of geographical distribution on beamforming. The
group granularity takes geographical distribution into account.
In particular, if one particular group’s total rate demand is
high, the decision-making process will prioritize that group,
which is called intra-group cooperation. Conversely, differing
geographical locations among groups lead to rate demand-

induced resource competition, termed inter-group competition.
These groups exhibit diverse characteristics, leading to varying
data rate demands among different devices.

For instance, industrial IoT devices in factories may require
highly reliable low-latency connections, whereas consumer
electronics in residential areas may demand a high data
throughput for their such as streaming and gaming. In the
current 6G communication scenario, the spatial distribution of
user devices is highly heterogeneous. For example, sensors in
industrial IoT are densely distributed in factory areas, requiring
low-latency and highly reliable connections; while streaming
media devices in residential areas require high throughput.
Traditional optimization methods treat users as uniformly
distributed individuals, ignoring their grouping characteristics
and geographic correlation, resulting in inefficient resource
allocation. In addition, although existing deep neural network
(DNN) based methods can handle high-dimensional channel
state information (CSI), it is difficult to capture the topological
dependencies among users, RISs, and relays, especially when
multiple groups of users are competing for resources, and
DNNss are not globally-aware enough and are prone to fall into
a local optimum. This heterogeneity in spatial distribution and
service requirements necessitates sophisticated network man-
agement strategies, while group-grained granularity neglects
individual device requirements.

Considering the impact of the heterogeneity in spatial
distribution and rate demands, we propose the joint opti-
mization with fine-grained demands (JOFD) method, aiming
to maximize the sum rate while simultaneously meeting the
specific needs of each device, which can prevent users from
monopolizing excessive resources and enable accurate and
fine-grained management of network resources. The main
contributions of this paper are summarized as follows:

o Inter- and Intra-group sum rate joint optimization: This
paper proposes an innovative optimization model for RIS-
and DF-assisted MISO systems to achieve optimal strat-
egy in sum rate after making a trade-off between inter-
group competition and intra-group cooperation. Due to
clustering, optimization outcomes within the same group
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tend to confusing, while the between positions fosters
competition among different groups. To our knowledge,
this is the first study addressing joint sum rate optimiza-
tion that incorporates both inter-group rivalry and intra-
group collaboration.

o Fine-grained rate demands gratification: We propose a
device-grained demands guarantee algorithm to satisfy
the different rate demands of devices, which affords
a more comprehensive exploration of the optimization
space than coarse granularity. To achieve this, we design
a novel loss function with a penalty term to optimize the
sum rate and ensure fine-grained rate demands, where
the satisfaction ratio of fine-grained rate demands can be
tuned by modifying the penalty parameter.

e Model and Algorithm Design: We innovatively model
the RIS- and DF-assisted MISO system as a graph and
introduce a two-phase GNN to solve the optimal strategy
for the active beamforming at the base station (BS)
and DF relays, the passive beamforming at the RIS and
the selection of the relays.Simulation data indicates that
the proposed GNN-based joint optimization approach
surpasses conventional methods, and the accuracy and
robustness of the network are verified by the test data
set. Furthermore, the proposed GNN exhibits strong gen-
eralization capabilities across varying numbers of users.

The remainder of the paper are organized as follows: Section
I reviews the related work, Section III details the system
model and the problem formulation, Section IV describes
the proposed GNN-based architecture, Section V presents the
simulation results for the proposed approach, and Section VI
concludes the paper.

II. RELATED WORK

In recent years, the optimization of sum rate and energy
efficiency in RIS-aided communication systems has garnered
significant attention. Traditional methods primarily focus on
leveraging mathematical optimization techniques to enhance
system performance. For example, convex optimization and
iterative algorithms are extensively studied to maximize the
sum rate by optimizing the phase shifts of RIS elements [23],
[24]. An efficient channel estimation method is designed using
the sparsity and correlation of the channel, and combined with
a discrete phase offset passive beamforming strategy [35], or
by reducing pilot overhead, the transmission performance of
the system is improved, which is suitable for high-frequency
band scenarios such as millimeter wave communications [36].
However, the numerical algorithm of traditional methods still
results in high computational complexity.

Machine learning (ML) techniques have become prominent
for tackling optimization issues in RIS-assisted systems, pre-
senting reduced complexity in contrast to model-driven meth-
ods. Supervised learning techniques, in particular, have shown
promise in predicting the optimal configuration of RIS ele-
ments. Ahn et al. [25] proposed a deep neural networks model
that jointly optimizes beamforming and RIS phase shifts. This
approach utilizes neural networks to determine optimal vectors
and matrices, enhancing signal reception quality. Xu et al.
[26] proposed a three-phase joint channel decomposition and

prediction framework based on deep learning by optimizing
the phase offset and channel state information acquisition of
RIS, which solves the problems of channel estimation accuracy
as well as channel decomposition in RIS-assisted MU-MISO
networks. Ni et al. [37] presented a federated learning model
designed to tackle the concurrent optimization challenges of
beamforming and RIS phase reflection. This method enables
parallel model training across multiple terminal devices and
aggregates learned update information into a global model,
enhancing data privacy protection and system optimization ef-
ficiency, which is particularly suitable for large-scale wireless
networks. Moreover, He et al. [38] proposed a convolutional
neural networks (CNN) based framework to solve beam-
forming and RIS phase optimization problems in large-scale
communication systems. By learning the spatial features of
the wireless environment, CNN models can accurately predict
optimal beamforming vectors and RIS phase configurations,
significantly improving communication efficiency and quality.
Traditional DNNs and CNNs have limitations in handling
non-Euclidean data. In contrast, GNN directly models the
interactions of nodes among users, RISs, and relays through
the message passing mechanism, and can dynamically adapt
to channel changes and user grouping structure. For example,
in a RIS-assisted multiuser MISO system, the GNN can map
base stations, RISs, and relays as nodes in the graph, and the
channel states are modeled as edge weights to jointly optimize
beamforming and phase offset. This graph structure learning
not only improves the fine-grained resource allocation, but
also reduces the computational complexity through local in-
formation aggregation and overcomes the high computational
overhead problem of traditional convex optimization methods.

Unsupervised learning methods have also been explored due
to their potential to optimize RIS-aided systems without the
need for labeled data [30]. These methods are particularly
useful in scenarios where obtaining accurate CSI is challeng-
ing [32], [39], [40]. For instance, Song et al. [39] designed
an unsupervised learning framework to jointly optimize beam-
forming and reflection phases in RIS-assisted communication
systems has been introduced. By utilizing CSI as inputs,
this method can learn optimal beamforming strategies and
RIS configurations without the need for explicit supervision
signals. The concept has been extended to multi-user en-
vironments by integrating active and passive beamforming
strategies within a dual-layer neural network framework [32].
Comparable methodologies leveraging CSI as inputs have
been tailored to diverse scenarios with distinct model con-
figurations [33]. Additionally, reinforcement learning (RL)
has emerged as a potent approach for optimizing sum rate
and energy efficiency in RIS-assisted wireless communication
systems. The dynamic nature of RL makes it well-suited for
addressing the complex and time-varying characteristics of
wireless channels. Abdallah ef al. [28] crafted a multi-agent
deep reinforcement learning model designed to concurrently
optimize active beamforming at the base station and reflected
beamforming by the RIS, utilizing solely received power
measurements for this purpose. Xu et al. [29] solved the
beamforming problem in RIS-assisted millimeter-wave MIMO
systems by optimizing the relevant parameters in the beam-
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TABLE 11
NOTATIONS AND THEIR DEFINITIONS.
Notations | Definitions Notations | Definitions

M Number of antennas at the BS N Number of RIS elements

L Number of antennas at the DF K Number of users

J Number of DF 1 Number of groups

P Transmit power 'yf)th The threshold of DF

Ji Additive white Gaussian-noise of users a% Additive white Gaussian-noise of DF

G; The channel from the BS to the RIS; HJB The channel from the BS to the DF};
H in The directed channel from the BS to user & of Group; H iRk The channel from the RIS; to user k

hi,j The channel between the RIS; and the DF; h; & The channel from the DF} to user k

Yk The BS transmits to user k H; The cascaded channel between BS and user k& by RIS;
0* The reflection coefficient at R1.S; T The transmit signal

gk BS beamforming vector Sk The source signal
Yik The SINR for user k of Group; D The update layers

YR The relay decodes signal of each user & R; ; The cascaded channel between BS and DF; by RIS;
'yJR The SINR corresponding to user k after filtering by DF; ag The combining filter for user k£ at the relay

TR The relay conveys signal T Relay beamforming vector
C]Z', b The cascaded channel between DF; and user k by RIS; R The sum rate of Group;
Rf},‘c The minimum rate threshold for user k of Group; th The minimum rate threshold for each Group;

forming design and using location-aware mimicry environment
and deep reinforcement learning (DRL) algorithms. Wang et
al. [41] proposed an algorithm based on deep Q-network
(DQN). By discretization of trajectories, RIS can be used to
assist unmanned aerial vehicle (UAV) communication systems
to improve the communication quality between UAVs and UE.
Yang et al. [27] employed reinforcement learning algorithms to
attain concurrent optimization of beamforming and RIS phase
tuning. By designing a reward function to quantify communi-
cation performance, this algorithm autonomously learns how
to adjust beamforming and phase configurations to enhance
overall system performance.

However, existing works predominantly focus on optimizing
the deployment and configuration of RISs without considering
the diverse spatial distribution of users and their varying data
rate demands, limiting the effectiveness of RIS optimization
strategies in practical scenarios where users are distributed
non-uniformly across the coverage area and exhibit varying
communication needs. To address these issues, we propose an
RIS- and DF-assisted MISO system with grouped users and
fine-grained rate demands and introduce a two-phase GNN to
facilitate the exchange and update of relational data within the
graph-based model of a conjunct RIS- and DF-assisted multi-
user MISO system, thereby acquiring efficient joint beamform-
ing strategies through channel information extraction.

III. PROBLEM FORMULATION

In this paper, we consider a multiple RIS- and relay-assisted
MISO system with multiple grouped users in the context of a
large communication environment, as shown in Fig. 2. Each
user group is equipped with one RIS, and multiple user groups
share a set of relays. By associating the RIS reflector with spe-
cific user groups, interference can be reduced and customized
services can be achieved. This approach also enhances system
flexibility by allowing for configurable relationships between
RIS reflectors and user groups based on different communica-
tion scenarios and network topologies. Additionally, the shared
use of relays optimizes resource utilization, avoids redundant

deployment, improves system performance, and reduces con-
struction and operation costs [42], [43]. We also consider
different user groups with significant differences in geographic
distribution. Groupl is densely populated with users requiring
low latency, while Group2 has dispersed users requiring high
throughput. The GNN models intra-group collaboration and
inter-group competition through a graph structure, user nodes
within a group share RIS reflection resources to achieve
collaboration, while inter-group competition is dynamically
balanced through relay selection. This topology-based learning
mechanism enables the GNN to adaptively adjust beamform-
ing strategies while meeting fine-grained rate requirements.
The major notations used in this paper are defined in Table II.
Lower case letters represent scalars. Lower case bold-faced
letters represent column vectors. Upper case bold-faced letters
represent matrices. The transpose and Hermitian transpose of
matrices are denoted by ()7 and (-)¥, respectively. CN(-, )
stands for a complex Gaussian distribution.

A. System Model

As shown in Fig. 2, we examine a two-phase multi-RIS-
supported cooperative network, which includes a BS equipped
with M antennas, I user groups with K single-antenna users
per group, each group being served by an RIS comprising
N elements, and J semi-duplex DF relays, each featuring
L antennas. In half duplex mode, beamforming and phase
offset strategies are designed according to the relayed frame
protocol to maximize the throughput of the system and meet
the user’s rate requirements. Assuming full-duplex limited sce-
nario, users need to transmit simultaneously to meet real-time
requirements. Each RIS is equipped with a controller capable
of adjusting the phases of array elements to reflect the incident
signal in the desired direction. Furthermore, we assume that
the channels from the BS to DF, BS to users, and DF to users
are characterized as NLoS Rayleigh fading channels, while on
the other hand, channels to and from the RIS are presumed to
have LoS components modeled by Rician fading [44]-[46]. In
addition to the channels mentioned above, the DF relays play
a crucial role in enhancing the communication between the
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Fig. 2. The proposed downlink communication for RIS-DF assisted MISO systems with multiple user groups, in which a group communicates through an

RIS and a set of relays. Lines with different colors represent different paths.

BS and the users, which decode the signals received from
the BS, re-encode and retransmit them to the users. This
process helps in mitigating the effects of signal attenuation and
improving the overall signal quality. The channels between the
DF relays and the users are also modeled as NLoS Rayleigh
fading channels, which are characterized by the presence of
multipath propagation and significant signal scattering. The DF
relays are strategically positioned to ensure effective coverage
and reliable communication with the users, especially in areas
where direct communication with the BS may be challenging
due to obstacles or long distances. Hence, we denote the
channel coefficient h,; between nodes a and b as:

has, Rayleigh,
hab = 2 (1)

oot ..
nab+1Hab +4/% thab7 Rician,

where kg, represents the Rician factor between nodes x and
y. In a NLoS Rayleigh fading channel, h,, = gabd;b&/ 2,
x,y € {BS,DF,U},x # y, where g,;, is modeled through
zero-mean and unit-variance complex Gaussian small-scale
fading, d,; represents the distance between nodes x and y, @
denotes the path loss exponent for the NLoS Rayleigh fading
channel, and it is assumed that all channels remain constant
without any change during the two phases On the other hand,
in the LoS Rician fading channel, hab = gabdab &/2 , where
& denotes the path loss exponent for the LoS (Line-of-Sight)
Rician fading channel, and g,; can be represented as:

gab =V ﬁo[lve_jWSinwaba .., €

where y is the path loss at the reference distance dy = 1m,
1qp 18 the angle of departure (AoD) or angle of arrival (AoA)
of the signal between nodes a and b [46].

—jm(M—-1) SinT,ZJab]T7 (2)

We denote the downlink channel matrix from the BS to the
i-th RIS as G; € CM*Ni_denote the downlink channel matrix
from the BS to the j-th DF as Hf € CM*L; denote the
directed downlink channel vectors from the BS to user £ of a
different group as HP, € C*>1, denote the downlink channel
vectors from the i- th RIS to the matched group’s user k as
HE, € CN*!, denote the downlink channel matrix between
the i-th RIS and the j-th DF as h; ; € CYi*Li, and denote
the downlink channel vectors from the j-th DF to user k of a
different group as h , € CE*!, The communication process
is divided into two phases. Initially, the BS sends signals to
the users, with the signal received by user k£ expressed as:

yV = (Gydiag(0))HE, + (HZ)T) x +n"
= (6] + (HP)T)"x + n{", 3)

where H, = G;diag(H;

between the BS and user k& through a RIS;, and n,(f) ~
CN(0,0%) represents the additive white Gaussian noise
(AWGN). 0% = [011,...,01.n]" represents the reflection
coefficient at RIS; in the initial phase, the BS transmits the
signal x, which is a sum of the source signals s; and the
beamforming vectors g, for each user k. This can be expressed

) represents the cascaded channel

as x = Gs, where G = [g1,...,8k] is the matrix of
beamforming vectors and s = [s1,...,sx]T is the vector of
source signals with E[ss'!] = I. The signal-to-interference-

plus-noise ratio (SINR) for user k is:

) 2
[(ELO} + (HE,) g

Z]I‘il,j;&k ’(H 07 + (H

Yr =

B “)
50|
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In the subsequent stage, the relay transmits the decoded sig-
nals from the initial stage to users, assuming perfect decoding
for each user k signal received in the first phase [44].

YR = (hfjdiag(ﬂi)(}i + Hf)x +np
= (R0} + HY)x + ng, 5)
where R;; = h¥ ;diag(G;) represents the cascaded chan-
nel between the BS and jth relay through an RIS;, and

ng ~ CN(0,03), considering the SINR for user k after the
application of matched filter combining at the relay, i.e.,

ok [*

K )
Zj:l,j;ﬁk agaja?ak + ogllax|?

Vi = (6)

The SINR for user k exceeds the threshold 7'2 when using
matched filter combining at the relay. The combining filter
for user k is given by ay = (h dlag(QZ)G + HB)gk The

relay then forwards the signal xp = Zk:l fi.sr = F's, where

F = [fi,...,fx] represents the relay beamforming matrix,
and s = [s; ,sk]T is the vector of source signals with
E[ss ] I. The signal received by user k is:

07 xg+ 0

P xg 4+, (7)

%
( ”dzag 92 sz:+(
= (Cjxb5 +

where C’ ; = h; diag(ka) represents the cascaded channel

between DF; and user k£ through a RIS;, and n,(f)
CN(0,02). 05 = [021,...,02 n]7 represents the reflection
coefficient at RIS; in the second phase. The SINR for user k
in the next stage is expressed as:

2
o |(Ci 85+ (0, D)8
ik = X — ‘ 5 )
Do i1tk ‘(C;’,k% + (h;‘,k)T)fj’

Following the dual-phase transmission, the received signal
at each user k is processed using maximum ratio combining
(MRC), resulting in an overall SINR, i.e., v; ; = fyflk) + v (2)
Thus, the sum rate from the BS to the user £ is as follows.

R =logo(1 +7vik)- )

B. Fine-grained Demands

We design an MISO system with grouped users where each
user has a minimum rate threshold RZ };» Which is termed
the fine-grained rate demand. By sat1sfy1ng a minimum rate
threshold, we can ensure that each user can obtain at least
enough data rates to meet their basic communication needs.
This is critical to maintaining the user experience and meeting
the underlying quality of service requirements. By personal-
izing rate settings for different users, network resources can
be allocated more accurately, improving the overall network
efficiency and resource utilization.

C. Problem Formulation

The primary goal is to utilize the adopted GNN model to
optimize the BS beamforming matrix, reflection coefficients
phase shifts, and DF beamforming matrix. The optimization
problem can be described as:

6
Pr: max Ri (10
{gr},{fx},07.05 ;;
s.t. Oy E[| x ||)] = tr(GGM) < P, (10a)
J J
Cot B[Y  [Ixg, 7] = tr (F,Fj') < Pg*, (10b)
j=1 j=1
Cg'v?k >l Vk=1,2,... K, (10¢)
Cyi Rip > R R Wk =1,2,.. K, (10d)
Cs: 08,05 € oV, (10e)
where C; and C: represent the BS and relay trans-

mission power constraints, respectively. C5 ensures that
the relay decoding is without issues. C4 is the condi-
tion for group granularity and fine granularity require-
ments, and the user rate needs to exceed a minimum
threshold. C5 represents the RIS phase constraints, where
O = {7y, € {0, 2B,,.,’%}} , the finite resolu-
tion is B bits.

IV. JOINT OPTIMIZATION WITH FINE-GRAINED DEMANDS
BASED ON TWO-PHASE GNN

We introduce a GNN-driven approach for the communica-
tion system, where nodes represent network entities and pos-
sess features that encapsulate relational information. The GNN
layers enhance data exchange and node updates, facilitating the
simultaneous optimization of the base station’s beamforming
matrix G, the relay’s beamforming matrix F', and the RIS
phase shifts matrix 6. This methodology is designed for two-
stage transmissions within hybrid RIS and relay networks, with
each stage utilizing a comparable GNN framework but with
unique input data and graph configurations.

A. The First Phase

During the first phase, a fully connected graph is estab-
lished, comprising K + 1 nodes, which lacks edge weights
and is undirected. It consists of one node dedicated to the
RIS for acquiring the phase shifts #%, along with K nodes
assigned to the users for the acquisition of their respective BS
beamforming, i.e., gx,k=1,..., K.

1) Initial Layer: The input encompasses the channel infor-
mation related to the first-phase transmission from the BS to
the relay and the uesr in the initial layer, as described in (3)
and (5), respectively. Particularly, the inputs are denoted as:

H" 2 H, (HZ) ), k=1,...,K, (1)
Hr £ [R;;,H?], (12)

lI>

We establish the initial feature vector r(°) for the RIS nodes
by leveraging the aggregated channel data between the users
and the relay, encapsulated in Hg) and Hgr. The feature
extraction function f(0) . R2Nxix1 y Ra/2X1 " capturing
data from Hg), where ¢ is a tunable parameter. Similarly,
fl(;)) s REMLxjx1, y @a/2x1 extracting data from Hg. Ini-

ke.m> which is m-th column of H,(Cl).
Subsequently, the mean operation over elements between k

tially, £(© is applied to H\")
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and m is employed to ensure permutation invariance in the
GNN, denoted as @mean(*)-

= FO(REL,)", SE)TTT) € RV vm,
(13)
r= meean({rk m}k 1,....Km=1,..., ) S ]Rq/2><1 (14)

where R and < represent the real part and the imaginary part
respectively. The initial features of RIS nodes are are acquired
through combining the features extracted from H,(Cl) using f(©)

and from Hg using f(o), ie.,

r© — [rT, £ ([R(vee(HR)), (vec(HR))])T}T e RI¥1,

15)
The initial feature set for the k-th user node u,(cog is

derived from H,(fl)

R2M (N xi+1)

, using the extraction function f(o)
— R4/2x1 e

ul® = f50>([m(vec(H;1>),%(vec(H;”))}T) e R, (16)

2) Node Update Layers: Within the update layers, node
features are updated through information aggregation and
combination with neighbor nodes. The parameter D, which
signifies the number of update layers, is adjustable and can be
configured as needed. During the d-th layer (d = 1,...,D),
the RIS node features are updated according to:

r(@ — {f(d)([r(d’”,samean ({ul® 1)}k:17".7K)])7r(d71):|
c Rq(d+1)x17 (17)

where f(@ : R%4d4x1  RIX1 j5 a node update function at
the dth layer. Utilizing an element-wise averaging mechanism,
each RIS node is allocated an equivalent volume of data from
all user node. Moreover, to preserve the information from the
preceding layer, the features are merged via concatenation. At
the same time, the k-th user node features are modified by:

d d— = - -
ol = [l e (8 ey -,
e RU(a+1)x1 (18)

At each layer, the node update function fi¥ : R3iadx1
R?*!, and the element-wise max function (. (-) is applied.
This function ensures permutation invariance and enables each
user node to identify maximum interference. The features
extracted from the previous layer are incorporated to maintain
historical data.

3) Readout Layer: Following the layers of node updates,
the concluding features of the RIS and the user k nodes are
processed through the readout layer to determine the RIS phase
shifts 0 and the BS beamforming gx, k = 1,..., K. We refer
the readout layer as layer D + 1 for ease of notation. In the
case of the RIS node, the output undergoes a linear function:

p(D+1) _ [(DFD) 7,(D+1)]T _ [+ (D)) ¢ RN X1.

(19)
where f(P+1 . Ra(P+1x1 _, R2Nx1 The RIS phase shifts
01 = [01.n]n=1,... .~ are achieved from r(P+1) by initially
calculating the continuous-phase 61 s ie.,

~ 1
el,n = (

D+1 D+1
VP a2

yeosTon

,r,ngJrl) o ](VD_:;,l)) (20)

Followed by the quantization of §Zln to the closest discrete
phase in ©. It should be emphasized that the continuous phase
is utilized during training to enable backpropagation.

Similarly, final features of user nodes are processed by the
readout layer to generate:

(D+1)

e uGED ] = P

u,gD)) € R2Mx1
2D
where f(D+1) Re(DP+)x1, R2MX1 The BS beamforming
for user k is contained as gr , = u,(CDH) + EC?JBW
which is normalized to satisfy the constraint of power in (10a).

(D+1) _ D+1
uy = [Ui(m )

B. The Second Phase

In the subsequent phase of the GNN, the methodology is
akin to the initial phase. Specifically, during this phase, the RIS
node determines the phase shifts 9%, and each of the K user
nodes calculates the relay beamforming f for k=1,... K.
The node features established in the first phase of the GNN
serve as the basis for this subsequent phase.

1) Initial Layer: The initial features of RIS node incorpo-
rate the channel information for the transmission phase from
the DF to the user, as specified (7). The corresponding input
is referred to as:

A i
Hi(f) = [ g,k (h

i)' k=1,... K. (22)

The initial features of RIS node s(°) incorporate the aggre-
gated channel information regarding the users and the relay,
as encapsulated in H,(f). Define feature extraction function
g0 R2Nxix1 _, Rax1 o extract information from H,(f),
where ¢ is a tunable parameter. Firstly, ¢(©) is utilized on
each column of H,(f), which is expressed as Hfé Next is the
average operation of elements between £ and / to maintain the

permutation invariance of the GNN, expressed as ©mean(*)-

ske =g (REC)T, SHZ)TT) e R Ve,  (23)
S = Omean ({Sk.eth=1,. Ko=1,..1) € RTL 24)

Additionally, in the second phase, the initial features of the
RIS node are represented as:

T T
s — [ST,(I'(D)) ] e RUP+DX1, 25)

(0)

The initial features for the k-th user node v, ’ are de-

rived from H( Z using the feature extraction function g( )
RQLX](N“)XI + R9%!, in conjunction with the final node

features obtained from the initial phase of the GNN, i.e.,
T
vi? = [90 ([Reveem(™)), S(vec®[))] ), uf”|
€ RUP+2XT, (26)

2) Node Update Layers: At layer d (d = 1,...,D), the
features for both the RIS node and user nodes are updated
accordingly through:

o= [o O b

)]).s7)|

€ RI(D+d+2)x1 (7)
w2 = [0l (I s (05 ) 0] )i
c RQ(D+d+2)X1 (28)
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Fig. 3. (a) The graph neural network architecture in different phases. Aggregation and combination operations of the dth layer for (b) the IRS node, and (c)

the user nodes.

3) Readout Layer: Consistent with the function of the read-
out layer during the first phase, the relay beamforming f}, is de-
rived from v,(CDH) = gvDH)(v,(CD)) € R2X1 E=1,... K,
and the RIS phase shifts A, are derived from s(Pt1 =
g Pt (s(P)) ¢ R2Vx1 Both are obtained by applying
normalization and quantization to meet the conditions outlined
in equations (10b) and (10c). g(P+1) : R2a(D+1x1 _, R2Nx1
and g,(,DH) s R2a(P+1)x1 R2LXT are the layer functions.

The proposed framework is trained offline in an unsu-
pervised manner, using diverse channel instances as training
samples. We design loss function based on the objective in
equation (10), including an extra penalty term to address the
constraint detailed in equation (10d) as follows:

I K J K
—ZZRM —ﬁZZmin (0
i=1 k=1 j=1k=1
where the weighting factor [ is ascertained based on empir-
ical observation. The constraints in (10a)-(10d) are satisfied
through the processes of normalization and quantization.

The fine-grained division of group and user level allows
for the selection of appropriate levels based on different
environments. The group granularity involves establishing a
minimum threshold rate for each group to ensure satisfying
its total demand. The loss function is formulated as follows:

—ZZRi,k—ﬁZZmin(O,

ek =) (29)

’Y?,k - %l;)
i=1 k=1 j=1k=1
I K
= A> Y min(0,R; x — RY), (30)
i=1 k=1

where p is the weight coefficient of the penalty term, R is
the minimum group rate we set. In this manner, a penalty

term can be incorporated into the loss function to impose a
higher penalty for failing to satisfy group granularity demands,
thereby catering to the fine-grained rate demands of different
groups. This approach allows for the flexible setting of fairness
objectives and weights, balancing the rates based on different
application scenarios.

Meanwhile, the fine granularity involves establishing a
minimum threshold rate for each user to ensure satisfying
users’ fine-grained demands. The loss function is formulated
as follows:

I K J K
- Z Ri — Z Z ’Y?,k - %11{1)
1=1 k=1 j=1k=1
I K
—AD) min(0, R; x — RY), (31)
1=1 k=1

where \ is the weight coefficient of the penalty term, R,
is the minimum user rate we set. Through a combination of
normalization in the readout layer, penalty terms in the loss
functions, and quantization operations, the constraints in P
are effectively satisfied during the training and optimization
process of the proposed two phase GNN based method.

V. PERFORMANCE EVALUATION
A. Simulation Setting

This section provides a numerical examination of the sug-
gested algorithm. We focus on a multi-user MISO wireless
communication setup, which is supported by two RISs, and
two shared relays. The simulation parameters used for the
analysis are shown in Table III. Following the setup described
n [34], [31], we adopt the Adam optimizer to update the
weights for network training, and set the initial learning rate
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Algorithm 1 Joint Optimization with Fine-grained Demands
based on Two-phase GNN(JOFD-TG) Algorithm

TABLE III
SIMULATION PARAMETERS

Require: Initialize the parameters for First phase Hl((l), Hg, Eilztl:r; B——— T Va;ue
Rg,hk; Second phas_e H](cZ); ) Number of DF, J 2
Ensure: First phase 07, G; Second phase 65, F; Number of antennas at the DF, L 2
1: Initial: 7(©) Hkl)a Hg; U;(CO) — HS)’ Rm? Number of RIS elements, N 50
2: for episode =1 to T do Number of Groups, 2
3: Small batch training samples are used; Number of Users, K 4
4 Initialize »(©) and u;co); Transmit power, P5&™ = PRax 20mW
5: for d=1to D do Additive white Gaussian-noise, oz = 01% 2*10-5
6: r@ « COMB(AGG(u\"  k € N'(k)), ¢~ 1); Threshold of DF, 747 0.1
7 w(d COMB(AGG(Ujd_l),Vj £k, 7«(01*1))7 u,(gd_l)); User rate threshold, R;f}g 1bps/Hz
8 end for | Phase Shifts Parameter, B 2
9: Initialize s(® and U]go); Number of node update layers, D 3
0: Initial2: s© « HZ r@); o0  H® P, Weng‘?“g F"C“’r’ f 1838
11: ford=1to D do weighting factor,
12: S(d) (_ COMB(AGG(’U(d), ke ./\/(]43)), S(d_l)); Afﬂj}lstable parameter, g 128
13: @ OOMB(AGG(v]Ed_l),Vj £k, Rictan factor Fas 0
14: S(dil))’vl(cd 1))3 ¢ JOGD-TG: the optimization of RIS and relay is per-
15: end for

16: According to (29)-(31), calculating the loss £ of batch
samples, updating parameters using gradient descent. Se-
lect the appropriate relay to calculate the sum rate;

17: end for

18: Readoutl: 0} « r(P+) G (P,

19: Readout2: 0} < s(PT1 F « ’UIEDJFI);

to 0.001, with a learning rate decay coefficient to le — 6, the
batch size to 512, and the number of hidden layer neurons to
128 [30], [31]. The Rician factor ., between nodes is set to
10 for LoS channels, consistent with typical urban micro-cell
environments [38]. The system features a BS equipped with
8 antennas. Additionally, it includes four single-antenna users
in each of the two considered groups, whose positions are
randomly assigned within a circular area and are determined
by the center of the circle [44]. We model the following
topology with different node distances (units are meters): the
BS, RISy, RISy, DF; and DF; are positioned at coordinates
(0,0), (50,100), (50, —80), (100, —10), (80, 25), respectively.
Groupl users are scattered randomly within a circle of radius
10 centered at coordinates (200, 75), while Group2 users are
distributed within a circle of the same radius centered at
(200,10). The minimum user rate threshold R{", = 1bps/Hz
is uniformly applied to all users to ensure fine-grained rate
demands.

The channels for RIS-assisted and non-RIS-assisted sys-
tems are respectively characterized as quasi-static Rician and
Rayleigh flat-fading models, as referenced in [44] and [34].
The functions fl(%o), fl, féd), ¢? and ggd) are realized using
multi-layer perceptrons (MLP) with two suitable hidden layers
for layers d = 0,1, ..., D, and serve as linear transformations
in the final layer d = D + 1.

In the testing phase, our simulation refers to the proposed
neural network model [25], [30], [31] and the adopted bench-
marking schemes are listed as follows:

formed jointly based on two-phase GNN, considering the
threshold setting of groups, and maximizing the sum rate
with group granularity.

¢ JOCD-TG: the optimization of RIS and relay is per-
formed jointly based on two-phase GNN, regardless of
the threshold setting, and aims to maximize the sum rate
with coarse granularity.

o JOFD-DNN: the optimization of RIS and relay is per-
formed jointly based on DNN, considering the threshold
setting of users, and maximizing the sum rate with fine
granularity.

¢ JOFD-PSO: a joint optimization scheme based on par-
ticle swarm optimization (PSO) searches for optimal
beamforming and phase offset by iteratively updating
the particle positions, and we uses pySwarms [47] to
implement the JOFD-PSO.

« JOFD-Random: random 6% and 6} without performing
relay selection. Range reference Eqs. (10e) for randomly
generating 0% and 6.

B. Experimental Results

1) Effect of the 0%, 0% and relay selection: Fig. 4 depicts the
comparison of the sum rate performance. In the mixed setup,
the proposed JOCD-TG method, utilizing both 6% and 63,
demonstrates superior performance compared to its simplified
counterparts, and the performance of JOCD-TG surpasses that
of JOCD-DNN. The variants employing only €% or 6% exhibit
slight performance degradation compared to the combined
JOCD-TG scheme, highlighting the increased flexibility of
JOCD-TG (/% and 63) in designing RIS phase shifts. The
performance of JOFD-PSO in this scenario is slightly inferior
to that of DNN, confirming its insufficient adaptability to high-
dimensional optimization problems. In addition, GNN-based
relay selection optimization is better than the case with a single
relay. The appropriate relay can be selected for forwarding
to enhance the final sum rate. Through joint optimization
of RIS and relays, the impact of relay selection on system
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Fig. 4. The sum rate of different designs with or without 0, 05 and DFs

performance may be more significant than that of RIS phase
tuning, attributing to the direct influence of relay positions and
configurations on relay paths and attenuation, thus playing a
more direct and prominent role in signal transmission. In con-
trast, the effect of RIS primarily manifests in signal reflection
and phase adjustment, which have a relatively indirect impact
on the signal. Therefore, in certain scenarios, relay selection
may have a more direct influence on system performance
compared to RIS phase tuning.

50

= OFDTG
JOGD-TG
JocpTe
JOFD-DNN

JOFD-PSO
W= JOFD-Random

40

30

Sum rate (bps/Hz)

10

Locl Loc2 Loc3 Loc4
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Fig. 5. The sum rate of different locations of RIS, relays and users

2) Effect of the location of RISs and DFs: Fig. 5 sets four
different locations of the RIS, RIS,, DF;, DF> and the center
of Groupl and Group2 with a radius of 10. We denote Locl
to represents the positions set includes (50, 100), (50, —80),
(100,—10), (80,25), (200,75), and (200,10), while the
Loc2 set includes (75, 100), (75, —80), (100, —10), (80,25),

(200,75), (200,10), the Loc3 set includes (150,100),
(150, —80), (300,—10), (240,25), (600,75), (600,10), and
the Loc4 set includes (225,100), (225,—80), (300,—10),
(240,25), (600,75), (600,10). When comparing different
deployment locations, it was observed that RISs perform more
effectively when located in proximity to the base station and
relays are positioned closer to the user base. The proximity of
RISs to the base station enables more efficient manipulation
of the wireless signal, leading to optimized transmission to
the user base. This closeness enables finer control over signal
reflection, absorption, and redirection, resulting in improved
signal quality and coverage. Additionally, reduced distance
minimizes path losses and enhances the SINR, thereby en-
hancing overall system performance. Similarly, positioning
the relays closer to the user base facilitates more efficient
amplification and relay of signals with less attenuation. Prox-
imity reduces transmission distance, path loss, and signal
attenuation, resulting in a stronger received signal at the
user terminal. Furthermore, the relays can operate at lower
transmit power levels, reducing interference and improving
signal clarity. JOFD-PSO is slightly worse and JOFG-Random
performs the worst, highlighting the limitations of traditional
heuristic algorithms and random strategies in multi-variable
collaborative optimization scenarios.

As depicted in Fig. 5, GNN consistently outperforms tradi-
tional algorithms when different sets of RIS, relay, and user
groups are placed at various locations. The message-passing
mechanism enables GNN to capture the dynamic topolog-
ical information of local node neighborhoods, endowing it
with strong generalization capabilities that allow for better
adaptation to diverse environmental conditions compared to
traditional algorithms.

3) Effect of the number of BS antennas and relay antennas:
Fig. 6a shows the correlation between the sum rate and the
quantity of base station antennas. It is observed that, across
all assessed schemes, the effect of increasing M on the sum
rate ranges from moderate to negligible. This is attributed to
the topology of the network where the sum rate is primarily
constrained by the second-stage transmission, characterized by
a weak direct link. Consequently, enhancements in M slightly
improve the SINR for the first-stage end-user, yielding only
marginal gains.

Fig. 6b explores the correlation between the relay antenna
count and the sum rate. The results indicate that as L increases,
the sum rate for all schemes shows an enhancement. This
improvement stems from the increased degrees of freedom
available during the second stage, allowing for more precise
tuning of the relaying beamforming vector, which optimally
supports the relay-assisted second-stage transmission to the
end-user across auxiliary and direct joint channels. JOFD-TG,
which incorporates intra-group cooperation via group-level
rate thresholds, outperforms JOCD-TG by 15% in sum rate,
highlighting the significance of intra-group resource balancing.
JOFD-PSO still performs slightly worse in this case. Because
it is limited by the heuristic search mechanism, its sum rate
remains lower, which verifies the limitations of traditional
optimization algorithms in complex interaction case.
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TABLE IV
SUM RATE VS. TRAINING (ROW) AND TESTING (COLUMN)
USER COUNTS K

Sum rate (bps/Hz) K =20 K =25 K =30
Same K as testing 19.34 19.25 19.08
K =10 18.27(94.5%) | 17.98(93.4%) | 17.76(93.1%)
K =15 18.62(96.3%) | 18.33(95.2%) | 18.06(94.7%)
K =20 19.25(99.5%) | 19.17(99.1%) | 18.79(98.5%)

4) Effect of the number of users: Table IV evaluates the
proposed GNN model’s ability to generalize across different
user counts. It shows that the model, trained with a smaller
K, maintains acceptable performance when evaluated with a
larger K. This resilience is attributed to the user-independent
feature extraction and permutation invariance of the model.
Nonetheless, performance degrades as the discrepancy be-

tween training and testing K values grows. The GNN’s
permutation-invariant design, as validated in Table IV, ensures
robust generalization across varying user counts by extracting
user-independent features. The offline unsupervised training,
validated cross-K performance by Table IV, avoids the need
for labeled data by directly optimizing system objectives. This
aligns with practical scenarios where labeled data is scarce.

Previous experiments have focused on addressing the chal-
lenge of the rate maximization. As mentioned in Section III-B,
we divided the user fine granularity and each user has a
minimum rate threshold. As depicted in Fig. 7, the sum rate
of fine-grained granularity is superior to that of coarse-grained
granularity, and the sum rate at the user level is better than
at the group level. Fine-grained granularity excels primarily
because it offers greater flexibility and precision, allowing
for more detailed and personalized resource management and
service customization. Our approach to designing thresholds
for different users enhances adaptability and improves both
the specificity and efficiency of services. In the meantime, our
approach offers several advantages over alternative methods.

5) Convergence Performance: Fig. 8 demonstrates the con-
vergence of all models after numerous epochs. The con-
vergence of the iterative optimization process signifies that
further iterations do not yield significant changes in the
output, indicating that the model has effectively learned and
adapted to the training data, achieving a stable and satisfactory
level of performance. with the JOFD-TG model consistently
outperforming others in terms of maximum sum rate and
satisfaction rate. In addition to JOFG-Random, it is noteworthy
that the loss function value for JOFD-TG is the highest among
all models, primarily due to the user’s rate exceeding the
threshold, resulting in negligible penalty term loss and a
predominant influence from maximum user and rate.

6) Effect of the weight coefficient \: In Fig. 9a, we use
varying minimum rate thresholds for different numbers of
groups and individual users, and can observe the effects by
adjusting the weight coefficient A. After the weight coefficient
exceeds 1000, the maximum sum rate of several models and
the satisfaction rate of coarse-grained and fine-grained tend
to stabilize. Then, when the weight coefficient is 2000, the
satisfaction rate of JOFD-TG tends to be 100%. It is notewor-
thy that JOFD-TG consistently outperforms other models in
terms of the maximum sum rate of users and the percentage
of users surpassing the threshold. Meanwhile, user-level fine
granularity enables personalized resource allocations tailored
to individual requests and usage patterns, whereas group-level
granularity determines resource allocation based on average or
collective needs. This user-level granularity facilitates rapid re-
sponse to fluctuations in individual user needs, while fineness
at the group level may exhibit limitations in responding to
sudden changes due to considerations of resource allocation
and balance across the entire group, potentially resulting in
reduced overall performance.

In Fig. 9b, it is evident that as the weight coefficient of
the penalty term increases, the satisfaction rate also increases
in all models. Ultimately, the satisfaction rate based on the
fine-grained model was close to 100 %. This demonstrates
the viability of our proposed fine-grained partitioning based
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on minimum thresholds in ensuring that model outputs ad-
here to threshold constraints. Furthermore, it provides further
evidence for the adaptability and flexibility of the model
to accommodate different performance requirements through
parameter adjustments, thus showcasing its robustness. The
experimental results validate that neglecting either inter-group
competition or intra-group cooperation leads to suboptimal
performance. JOCD-TG achieves lower satisfaction rate than
JOFD-TG, while JOFD-DNN fails to generalize across diverse
node deployments.

Regarding the experimental analysis of Fig. 9b, it further
supports the effectiveness of our method, showing the changes
in the total system rate and user rate requirement satisfaction
rate under different weight coefficients A\. As A\ increases,

(b) Satisfaction rate

-16000 +—

200 300 400 500

Epoch

(c) Loss

100
Epoch

the satisfaction rate gradually increases, which shows that by
adjusting A, we can effectively control the degree of constraint
satisfaction. When A reaches 2000, the satisfaction rate of
the JOFD-TG method approaches 100%, which means that
almost all user rate requirements are met. This proves that our
loss function design can effectively ensure the satisfaction of
constraints under appropriate parameter settings.

VI. CONCLUSION

In this paper, we proposed a novel joint optimization
method for multiple RISs- and DFs-assisted MISO systems
that serves to maximize the sum rate while meeting grouped
user fine-grained demands. We designed a new loss function
to accommodate the diverse demands of user groups by
incorporating minimum thresholds. The proposed GNN model
can be tailored to autonomously learn efficient phase shifts and
beamforming directly from input CSI, while also performing
simultaneous relay selection. Simulation results demonstrated
the superior performance of this approach, as well as its
scalability across varying numbers of users.

In the future work, we will explore the development of
systems based on Stacked Intelligent Metasurfaces (SIM),
incorporating one SIM at the transmitter and another at the
receiver. Unlike conventional architectures, SIM enables direct
precoding during transmission and merging during reception
within the electromagnetic wave propagation process. Tradi-
tional communication systems necessitate a substantial number
of RF links, while SIM technology facilitates signal processing
directly in the electromagnetic domain, thereby substantially
reducing the reliance on RF links [48].
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