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Abstract—Traditional crowd sensing based indoor localization
methods rely on large scale pre-collected fingerprint data to
construct a radio map with cumbersome prior preparation.
However, when they lack floor plan information or only have a
little of data is willing to share, the tracking accuracy degrades
significantly. In this paper, we propose a singular value decompo-
sition (SVD) track matching scheme to obtain an effective radio
map based on small scale crowd sensing data, which is a non-
learning based system (SVD-CSP). SVD-CSP fuses received signal
strength indicator (RSSI), inertial measurement unit (IMU), and
magnetic field strength to label surrounding WiFi access points as
marker points. The proposed scheme uses SVD method to directly
compute the rotation matrix and displacement vector among the
crowd sensing trajectories and attain the reliable tracks. The
radio map is constructed and users are tracked according to our
developed bidirectional Bayesian filter, which contains forward
filter and reverse filter. The density-based spatial clustering
of applications with noise (DBSCAN) is embedded within the
forward filter to improve the radio map quality. Meanwhile,
the reverse filter fuses pedestrian dead reckoning (PDR) and
radio map-based localization to track users. Experimental results
demonstrate that SVD-CSP can achieve robust localization using
extremely sparse crowd trajectories (e.g., 4 trajectories in a 648
m2 scenario, 30 trajectories in a 2856 m2 scenario) without deep
learning training or infrastructure knowledge.

Index Terms—Indoor localization, Crowd sensing, Track
matching, SVD.

I. INTRODUCTION

W ITH the rapid development of mobile Internet and
location services, indoor positioning technology has

been available for commercial applications. Among many
indoor positioning techniques, WiFi fingerprinting is favored
for its high accuracy and wide applicability [1]. This method
requires collecting WiFi received signal strength indicator
(RSSI) data at different locations within the target area via
mobile devices (e.g., smartphones). In addition, the collected
RSSI data will be associated with geographic locations to form
a radio map. Then, the user’s current query signal is compared
with the pre-stored RSSI values by matching algorithms such
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as K-nearest neighbor (KNN) to determine the user’s location.
However, fingerprinting is a laborious and time-consuming
process to construct these radio maps in order to perform
adequate data collection in different locations in large and
complex buildings. The preliminary work of mapping can be
reduced to some extent by walking surveys or building sparse
fingerprints [2], [3]. However, this still requires site surveys
by professionals, which limits the scalability and coverage of
location-based services [4], [5].

To overcome the limitations of traditional WiFi fingerprint-
ing localization techniques in constructing radio maps, crowd
sensing positioning (CSP) technology has emerged [6]. CSP
is a method that utilizes data generated by ordinary users in
their daily lives to automatically construct radio maps through
crowdsourcing [7]. Thus, the reliance of on-site investigations
by professionals has been reduced. The core idea lies in
crowdsourcing to collect sensor data from multiple users,
such as WiFi signals, inertial sensor data, etc., without users
specifying the starting or ending locations [8]. By processing
the large amount of data, location-related information and
features are extracted. On one hand, the mobile tracks of
different users are automatically generated based on inertial
sensors. On the other hand, multiple location-related sensor
features are fused to match a large amount of track data
to record RSS. Then, CSP can automatically generate and
update radio maps required for indoor localization. In this way,
CSP not only improves the coverage of positioning services,
but also dynamically adapts to changes in the environment,
providing users with more flexible and real-time positioning
services.

A. Motivations

Although CSP system can collect data from many users,
the amount of shared data is still limited in practice, which
brings several challenges. Firstly, compare with the profes-
sional operator who collects the sensing data for a certain
time based on a pre-defined trajectory, the user trajectories are
rather random and unreliable. In this case, the collected data
may be noisy, incomplete, or inaccurate due to the diversity
of user devices [9]. In addition, user trajectories are solely
generated by PDR estimation. Without the help of floor plans
and special landmarks, PDR tracks collected individually by
crowdsourcing participants only have the relative movement
and orientation of the user. Hence, these trajectories lack
the actual information (e.g., references such as latitude and
longitude) that can be applied for direct fusion. In some
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CSP methods, floor plans of the environment and sufficient
landmarks (e.g., stairs, doorways, etc.) are used to assist in tra-
jectory matching [10], [11]. Even in the face of crowdsourced
data containing noise, these systems work well to construct
radio maps with the help of landmarks and floor plans in the
environments [12]. However, they cannot be used flexibly in
indoor buildings that lack the true location information and
floor plan constraints. Secondly, for privacy reasons, many
users may not want to share their tracks to the cloud. Consid-
ering a new building which lacks the layout information, only
a few users share their data for training. Thus, such data is
insufficient for machine learning based algorithm, and specific
method should be developed. Thirdly, collecting sufficient data
of CSP requires time, which may last for years. When the
radio map is initially constructed, the new crowd sensed data
is used to update the radio map. In this case, the system should
consider the scalability of the trained model. For deep learning
based model, the computational complexity is too high for both
training and updating. In some CSP research without landmark
assistance, many trajectory matching algorithms have high
computational complexity [13], [14]. These methods require
a large amount of trajectory data for map construction, which
occupies more computational resources and cannot locate the
target in real-time.Thus, non-machine learning or lightweight
learning algorithms are preferred. Finally, the CSP system
should consider the dynamic environments, where AP location
changes or building structure updates sometimes [15]. In this
case, the professional operators cannot sense that case in
time, but the system should gradually update the map through
continuous sensed data.

B. Contributions

In this paper, we propose the singular value decomposition
crowd sensing positioning (SVD-CSP) framework without
site survey and landmark assistance. The framework achieves
track matching by calculating rotation matrices and translation
vectors of the same marker points on different trajectories.
The core of the approach lies in matching the walking tracks
of different users (with different starting points) and recon-
structing radio maps based on the matched tracks. The main
contributions are summarised as follows:

• First, we implement track matching based on SVD with
location-dependent markers on the tracks. To avoid fea-
ture point alterations due to fluctuations in RSSI, we fuse
magnetic field strength as the matching threshold to assist
track markers determination. Then, SVD is applied to
match markers on different tracks to obtain the rotation
matrix and translation vector.

• Secondly, we employ DBSCAN to fuse radio maps of
multiple trajectories. Due to the noise in RSSI data
collected while moving, the positions of the same APs
change after track matching. DBSCAN eliminates the
outliers of APs and clusters similar AP positions to
improve the quality of radio maps.

• Thirdly, we use bidirectional Bayesian filter to provide
localization services for the target. We first calculate
initial AP position information based on the forward

Bayesian filter and the fused crowd sensing trajectories.
Then, the target location is attained by fusing the PDR
and the initial localization information through the reverse
Bayesian filter.

SVD-CSP improves the coverage and accuracy of radio
maps by fusing location dependent data collected by multiple
users while walking. It does not rely on the prior knowledge
of the environment floor plan or the manual initial calibration
of the movement trajectories. Radio maps can be efficiently
constructed and users can be localized in small datasets and
simple scenarios. Note that the definition of ”small scale data”
in this paper does not imply a limitation on the amount of data.
Instead, our system aims to efficiently utilize even the smallest
initial crowdsourced data (e.g., data from early participants) to
guide the construction of radio maps. Meanwhile, incremental
updates are supported as more data become available. Thus,
the requirement for expert operator is avoided, which is partic-
ularly beneficial in dynamic environments where infrastructure
or AP deployments may change over time.

We conduct extensive experiments in several indoor envi-
ronments. Especially for the trajectory matching process that
focuses on the path of the leader (service target), radio maps
can be constructed using only a few data samples. Compared
to existing methods, SVD-CSP is approaching the actual path
when using only 4 tracks for matching in an environment of
648 m2. Moreover, we can achieve an average localization
error of 1.38 m using only 30 trajectories for matching in the
region covering 2856 m2. In terms of computational efficiency,
the computation time of the SVD track matching method
increases by only 0.1 s when the number of tracks increases
by 40.

II. RELATED WORK

A. Pedestrian Dead Reckoning (PDR)

The PDR algorithm consists of three key steps, including
walking motion detection [16], step length estimation [17], and
heading estimation [18]. However, differences in smartphone
hardware configurations and drifts caused by temperature are
intrinsic factors that limit the accuracy of PDR. Besides,
the unknown position and attitude of the phone can affect
the PDR estimation performance, and the magnetometer can
be distorted by magnetic field interference from building
structures and electronic devices. Although the quaternion-
based Kalman filtering algorithm [19] and the hidden Markov
model [20] have reduced the heading errors caused by mag-
netic field interference and equipment heterogeneity, there are
still limitations in long time trajectory estimation. On the
one hand, the high frequency (above 100 Hz) IMU used to
maintain trajectory accuracy imposes a huge energy cost on
the smartphone. On the other hand, even the use of low-
frequency PDR estimation methods such as setting attitude
sensing threshold [21] or training neural network based gravity
prediction models [22] will lead to the growth of cumulative
error over time. In this case, SVD-CSP reduces the dependence
on high-frequency IMU data streams by integrating sparse
WiFi (0.2 Hz), IMU, and magnetic field features (25 Hz). In
addition, the PDR traces collected through crowdsourcing are
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all within 1 minute, which can effectively reduce the impact
of cumulative errors.

B. WiFi Fingerprint Localization

The WiFi fingerprint matching localization method is robust
to the non-line-of-sight (NLOS) of the environment and does
not require additional equipment deployment. The fingerprint
database will be constructed by selecting different access
points (APs) with large differences in RSS in the offline phase,
and K-nearest neighbor (KNN) is used to estimate the target
location in the online phase [1]. However, APs are deployed
irregularly in indoor environments with a large number of
redundant nodes, leading to additional computational time
and space overheads. In this case, fingerprint libraries are
constructed by calculating the signal loss rate and stability
to select APs with relatively continuous signal sources and
less fluctuating RSSI [23]. Zhang et al. [24] used an isolated
forest outlier detection algorithm to reject abnormal RSS
outliers that are disturbed by the environment, and corrected
the neighbour temporal RSS weighted filtering to provide
high-quality fingerprint data. In addition, Kullback-Leibler
divergence is introduced to measure the difference between
two RSS probability distributions to enhance the distinction
of fingerprint data in complex environments [25]. Meanwhile,
the WiFi signals received in the online localization phase also
suffer from signal interference and loss, posing a challenge to
the performance of KNN with a fixed K value. Luo et al. [26]
used the Gaussian mixture model to divide the fingerprint data
into multiple sub-regions, then dynamically select the K value
according to the distance thresholds designed for different sub-
regions, which reduces the amount of computation. SVD-CSP
system does not rely on sub-area segmentation and dynamic
K value selection, which allows more flexible response to dif-
ferent indoor environments by optimizing radio maps through
DBSCAN.

Compared to the KNN method based on distance compar-
ison, the neural network that maps the relationship between
WiFi signals and location through a nonlinear function is
adapted to complex and dynamic indoor environments. The
RSSI data is decomposed into low and high frequency parts
with Haar wavelet and these two parts are used as input
features to the 1D CNN to obtain the localization results
[27]. For dealing with the problem of fingerprint drift and
feature disappearance, Deng et al. [28] fuse RSSI, signal
strength difference and RSSI kurtosis to construct a radio
image fingerprint and use a deep residual network to train
the model for location estimation. Moreover, the zero-shot
fingerprint enhancement scheme can effectively reduce the
number of reference points in the offline phase [29]. Then,
the map is reconstructed using a neural network to learn the
difference between downsampled interpolated reconstructed
maps and sparse maps to construct the offline fingerprint li-
brary sample data. However, the above methods still have high
complexity and rely on large data set for training. In contrast,
SVD-CSP system has better lightweight characteristics, and
does not require large scale data training, which enables fast
localization on resource-constrained devices.

C. CSI Based Indoor Localization

In recent years, channel state information (CSI) based
localization techniques have gained attention for their ability
to achieve sub-meter accuracy using fine-grained physical
layer channel characteristics such as phase, amplitude, and
frequency diversity. The pioneering work of Kotaru et al.
[30] introduced SpotFi, which utilized angle-of-arrival (AoA)
estimation of commodity WiFi hardware to achieve a median
error of 40 cm. Expanding on this work, SPRING+ [31]
combined CSI with fine time measurement (FTM) to localize
smartphones with a single AP, achieving an accuracy of 1-
1.8 meters. Single AP positioning systems additionally include
M3 [32] and SiFi [33]. The former exploits angular diversity
of multipath signals and frequency hopping to separate direct
and reflected paths via SVD and achieve a median error of
71 cm in complex indoor environments. The latter focuses
on single channel scenarios and utilizes the frequency-locked
multi-antenna array feature to reach a single channel accuracy
of 0.93 m. Moreover, in recent deep learning approaches such
as MFFALoc [34] and OpenPose-inspired models [35], the CSI
based localization is further enhanced by fusing multi-featured
fingerprints or reducing the computational complexity through
innovative neural architectures.

However, if only a single AP is used for localization, the
coverage of the system is limited. For the infrastructure based
localization technique, prior knowledge of the in-building en-
vironment is also required. In addition, these methods rely on
specialized hardware (e.g., Intel 5300 NICs or multi-antenna
access points) and complex pre-processing (e.g., amplitude
calibration) that require significant computational overhead,
limiting real-time applicability. The phase and amplitude of
CSI will fluctuate dramatically with human movement and
layout changes. In contrast, SVD-CSP circumvents these chal-
lenges by relying on ubiquitous RSSI and inertial/magnetic
sensors, which ensures scalability in cost-sensitive or resource-
constrained environments.

D. Crowd Sensing Positioning

CSP primarily crowdsources the sensor data from ordinary
users’ walks or movements to simplify the process of building
radio maps. Zee used the smartphone’s inertial sensors to
track the user and scanned the WiFi simultaneously [10].
The user’s location is inferred based on the user’s walk-
ing trajectory and floor plan (including paths/corridors and
obstacles). HiMLoc used inertial sensors on mobile devices
for location tracking and activity recognition, combined with
WiFi fingerprints collected at specific locations (stairs, lifts,
corners and entrances, etc.) for localization [9]. GROPING
built maps using user contributed sensor data and semantic
tags (i.e. semantic information and landmarks) and obtained
online localization with geomagnetic fingerprints [12]. RCILS
utilized crowdsourcing data collected by smartphones to ab-
stract indoor maps into semantic graphs (where edges are
possible user paths and vertices are locations where users
may perform particular activities) [11]. According to the
semantic graph and the sequence of activities, crowdsourcing
trajectories can be localized and radio maps can be constructed
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automatically. However, in the above study, when the floor
plan and landmarks are missing, the localization accuracy of
the whole system decreases or even fails to operate properly.

Crowdsourcing radio map construction and localization
systems without the aid of any a priori information or us-
er specific knowledge have been proposed in several types
of research. APFiLoc proposed a distance constraint based
clustering method to generate magnetic landmarks (magnetic
field anomalies) and directional landmarks in an unsupervised
manner [36]. The map information and landmarks are used
to eliminate invalid particles (i.e., particles that pass through
walls or other obstacles) and to correct the cumulative error
of the PDR. PiLoc merged the segments of the walk labeled
with user displacement and signal strength information to
produce a map of the walking path labeled with radio signal
strength [13]. MapGENIE filtered and revised the trajectories
using the exterior information of the buildings and encoded
the trajectories and the structural information of the buildings
in conjunction with the indoor syntax to obtain floor plans
[37]. Walkie-Markie determined the correct location of the
WiFi access point on each trace based on the maximum RSSI
as a marker for the trace, and then used the Arturia spring
network to reconstruct the path [14]. WiFi-RITA formulated
the trace merging problem as an optimization problem in
which each trace is translated and rotated to minimize the
distance constraints between the traces defined by the WiFi
access points [15].

By comparison, SVD-CSP does not depend on prior in-
formation such as floor plans and landmarks. The trajectory
data is efficiently processed by SVD and DBSCAN, avoiding
complex iterative solving and semantic information. It im-
proves the operation efficiency of the system while ensuring
the positioning accuracy.

III. CROWD SENSING POSITIONING FRAMEWORK

The general crowd sensing based positioning framework is
depicted in Fig. 1. Considering that there are NA APs in
this environment and Nu users involved in data collection.
First, each user carries a smartphone equipped with multiple
sensors to walk in the same environment and collects data,
including the WiFi RSSI, MAC address, IMU data (accelerom-
eter and gyroscope), and magnetometer data. Note that, the
sampling period of the WiFi data is different from IMU and
magnetometer. Due to Android’s hardware limitations (e.g.,
minimum WiFi scanning interval limitation), we set the WiFi
RSSI scanning rate to 5 seconds and the sampling frequency
of IMU and magnetometer to 25 Hz in our implementation.
Therefore, we use tw to represent the sampling period of WiFi
data and ts to represent the sampling period of IMU and
magnetometer. The track points generated by the PDR are
based on tw. For user nu, the integrated sensor data packet
collected at sample point ts is as follows:

Snu(ts) =
(
Anu(ts) Ωnu(ts) Bnu(ts)

)
(1)

where Anu(ts) = (anu
x (ts), a

nu
y (ts), a

nu
z (ts)) is the acceler-

ation, Ωnu(ts) = (ωnu
x (ts), ω

nu
y (ts), ω

nu
z (ts)) indicates the

gyroscope, and Bnu(ts) = (Bnu
x (ts), B

nu
y (ts), B

nu
z (ts)) rep-

resents the magnetometer. Table I presents some of the WiFi

TABLE I
WIFI DATA PACKET

MAC RSSI (dbm)
06:70:ab:4c:25:3e -90
0a:70:ab:4c:3a:2d -56

. . . . . .
42:b4:bc:3e:3b:57 -63
d4:da:21:70:bf:d0 -45

packets collected during a typical cycle. And we denote the
collected RSSI by snu(tw).

Second, the system captures the user’s movement track
in real-time via the smartphone’s IMU sensor. Since user
p motion state (e.g., position, pace, direction) follows the
Markov chain process, the state (position) of each step is
directly computed from the previous state through (2).

p̂nu(tw + 1) = p̂nu(tw) + Lnu(tw) · ∠ψnu(tw) (2)

where Lnu(tw) is the step length at tw, ·∠ indicates the
transformation from angle and length into physical positions,
and p̂nu(tw) = [p̂nu

x (tw), p̂
nu
y (tw)]

T is the estimated track
coordinates at tw. In this case, Kalman filter smoothes the
high frequency noise of the IMU data by combining the motion
model predictions with the observations. Finally, the track X̂nu

generated by user nu is as follows:

X̂nu = [p̂nu(1), · · · , p̂nu(tw), · · · , p̂nu(T
nu
w )] (3)

where Tnu
w is the time of the last sample of user nu.

IV. PROBLEM STATEMENT

With each estimated track, we can construct the radio maps
for fingerprinting. However, we obtain multiple independent
radio maps based on each independent track, which are
presented as 2D heat maps in Fig. 1. In the absence of the
ground truth position of each user, the interference in the
WiFi signals makes it difficult to obtain an accurate map of
the whole area from the direct fusion of these independent
radio maps. Thus, our main goal is to extract the features
of crowd sensing tracks and develop an effective clustering
scheme which can form accurate radio maps. There are two
challenges in this work. The first one is the absence of the prior
information about the building, which makes the ground truth
map unavailable. The second challenge is the small scale data
set for crowd sensing tracks. When the building environment
is unknown to the system, only a few users can share their
data to the system. In this case, we can only use less than 10
tracks to form the radio map. Traditional machine learning or
deep learning methods require large data for training, which
makes the estimation inaccurate with such a small data set.
However, the AP positions are relatively fixed even in the
unknown environment. Thus, the feasible solution is to locate
the APs and form a virtual radio map without using any prior
building information. Then, our work can be divided into three
parts. Firstly, we need to calibrate the collected tracks and
attain the similar features. Secondly, we mark the APs to form
a virtual radio map based on the calibrated tracks. Finally, we
can use the map to track the users.
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Fig. 1. CSP framework.

A. Track Calibration

Consider we have a set of real tracks {Xnu}
Nu
nu=1 and an

estimated tracks {X̂nu}
Nu
nu=1 obtained by PDR localization.

Our goal is to optimize the estimated track {X̂nu}
Nu
nu=1 so that

the estimated track is as similar as possible to the real track.
Here, we use Euclidean distance as a measure of similarity.

P1 : min
{X̂nu}Nu

nu=1

Nu∑
nu=1

∥∥∥X̂nu −Xnu

∥∥∥2
= min

{X̂nu}Nu
nu=1

Nu∑
nu=1

Tnu
w∑

tw=1

∥p̂nu(tw)− pnu(tw)∥
2

(4)

where p̂nu(tw) and pnu(tw) denote the estimated and true
positions of user nu at tw respectively. PDR relies on inertial
sensors in smartphones to estimate the user’s movement track.
Without the assistance of floor plans and special landmarks,
the PDR trajectories collected individually by the crowd-
sourced participants suffer severe cumulative shifts. Conse-
quently, the absolute position of PDR generated trajectories
cannot be directly fused.

In order to correlate the WiFi signals and magnetic field
signals with locations, the track movement patterns should be
extracted. We introduce rotation angle error function Re(·)
and track center translation error function Te(·) as the main
error metrics.

Re(X̂nu ,Rnu ,Xnu) =
∣∣∣Θ(RnuX̂nu)−Θ(Xnu)

∣∣∣ (5)

Te(X̂nu ,Rnu ,dnu ,Xnu) =
∣∣∣F(RnuX̂nu + dnu)−F(Xnu)

∣∣∣
(6)

where Re(·) measures the error between the transformed and
actual track heading angles; Te(·) evaluates the deviation from
the centroid of the two tracks; Θ(·) is a function used to
compute the angle of the track; F(·) is a function used to
calculate the center of the track; Rnu is the rotation matrix of
the estimated track and dnu is the corresponding displacement
vector. In the absence of absolute position, X̂nu is rotated by
Rnu to more closely approximate the heading angle of the true
track. Then, dnu is used to compensate for the deviation from
the center of the track. We define the overall track estimation
error E as follows:

E =

Nu∑
nu=1

(Re(X̂nu ,Rnu ,Xnu) + Te(X̂nu ,Rnu ,dnu ,Xnu))

(7)
Thus, P1 is transformed into P2:

P2 : min
{Rnu ,dnu}Nu

nu=1

E

s.t. v ≤ vm

kc ≤ kcm

(8)

where v denotes the walking speed, vm is the maximum
walking speed, kc is the kurtosis of curvature, and kcm is the
maximum kurtosis value. Here, we filter some of the invalid
or noisy tracks based on vm and kcm. Therefore, the main
task of this paper is to find the optimal rotation matrix and
displacement vector to make the transformed track closer to
the real value.

Based on P2, the CSP system still has some problems. First,
we need to solve the problem of IMU data discrepancy caused
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by heterogeneity such as variations in user devices and behav-
iors. Second, the trajectories generated by PDR lack ground
truth position information and cannot be directly employed
for trajectory matching. This requires us to select specific
trajectory features for the sampled data. Finally, considering
real-time localization, we would like to obtain the solution of
P2 by one-time solving method. Thus, track clustering and
SVD based track matching methods are developed to solve
P2.

B. Radio Map Construction

Then, the radio map is constructed from the optimized
tracks. For the nA AP, let pA(nA) denote the true position in
the environment and p̂A(nA) be the estimated position. Our
goal is to minimize the total error between the AP positions
in the constructed map and the AP positions in the real
environment.

P3 : min
{p̂A(nA)}NA

nA=1

NA∑
nA=1

∥p̂A(nA)− pA(nA)∥2 (9)

where NA is the total number of APs. For P3, a radio map
is generated for each track. However, the estimated positions
of the same AP will not overlap due to noise interference.
In this work, we optimize the accuracy of the radio maps by
excluding outlier AP positions through DBSCAN.

C. Localization

Finally, we focus on minimizing the error between the
predicted and true positions of the localization system during
the localization phase.

P4 : min
p̂U

∥p̂U − pU∥2 (10)

where pU denotes the user’s true position and p̂U denotes the
user’s predicted position. In this work, we use a bidirectional
Bayesian filter to fuse PDR and RSSI based localization
methods to further improve the localization accuracy.

V. TRACK CLUSTER

A. System Overview

The main parts of our CSP-SVD system is presented in Fig.
2. In the first part, we develop an Android App to collect
sensor data to generate trajectories and cluster them. The
sampling frequency of the IMU sensor is 25 Hz. WiFi RSSI
and MAC addresses are scanned and stored in every 5 seconds
when the user is moving. All sensor data are accompanied by
the system time for synchronization and offline processing.
When a new track is acquired, it is compared to the database to
distinguish if the new track belongs to an area in the database.
The second part is to locate the RSSI peak point markers on
the trajectory. These markers are mainly used to mark the
same information or features on different tracks. In the third
part, we use the SVD to iteratively merge user trajectories by
rotation and translation. In the fourth part, we use bidirectional
Bayesian filter to provide localization services for target users.
For a single matched track, the target equation between the AP
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Fig. 2. Crowd sensing track matching and positioning system.

signal and the anchors is established. The target equation is
solved by forward Bayesian filtering to obtain an independent
radio map for each track. However, the heterogeneity of user
devices and behaviors results in locating the same AP on
different positions. Therefore, we use DBSCAN to further
aggregate the same anchors for map construction. Finally,
we introduce reverse Bayesian filter to fuse PDR and map
positioning to obtain optimized positioning results.

B. Track Generation

To obtain the crowdsourced user’s movement trajectory,
we design a PDR algorithm using the collected IMU sensor
data which includes step detection, step length estimation and
heading estimation. To avoid the indoor magnetic interference
on heading, the user trajectory is estimated only based on the
relative heading direction of the Kalman filtered gyroscope
and accelerometer in the sensor coordinate system.

1) Step Detection: As illustrated in Fig 3, the acceleration
in each direction in the same cycle represents the regularity
of alternating peaks and valleys during walking. We calculate
the joint acceleration of the three-axis acceleration at each
sampling point according to the following equation:

anu(ts) =

√
anu
x (ts)

2
+ anu

y (ts)
2
+ anu

z (ts)
2−gnu(ts) (11)

where anu(ts) is the integrated acceleration of user nu at
sampling point ts; anu

x (ts),anu
y (ts),anu

z (ts) are the accelera-
tion at ts in the X ,Y ,Z axes of the carrier coordinate system;
gnu(ts) is the gravitational acceleration. Then, the gait cycle
of the pedestrian is determined by detecting the extreme points
(i.e. peaks and valleys) of the acceleration signal and setting
a reasonable threshold.

2) Step Length Estimation: We use the nonlinear model
proposed by Kim et al. [38] to estimate the step length.

Lnu(tw) = b
3

√∑tw
ts=tw−1|anu(ts)|

nw
(12)
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where nw is the number of samples in a walking step between
tw−1 and tw, anu(ts) is the ts acceleration value in the current
step, and b is a constant, which is taken as 0.98 in this paper.

3) Heading Estimation: The quadratic method is used to
obtain the gyroscope posture angle and hence the heading es-
timation [39]. The quaternion representing the posture solution
is calculated as follows:

qnu(tw) = Re{q0}+ Im{q1, q2, q3} (13)

where q0 is the angle of rotation; q1, q2, and q3 three-
dimensional vectors are used as the axes of rotation to convert
the quaternion from the body system (b-system) to the naviga-
tion system (n-system). The rotation matrix Cn

b is as follows:

Cn
b =q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23


(14)

The posture angles calculated from the rotation matrix are
illustrated in (15).

θnu(tw) = arctan
−2 (q1q3 − q0q2)

q20 − q21 − q22 + q23
φnu(tw) = arcsin (−2 (q2q3 + q0q1))

ψnu(tw) = arctan
2 (q1q2 − q0q3)

q20 − q21 + q22 − q23

(15)

where θnu(tw) is the pitch angle, φnu(tw) is the roll angle
and ψnu(tw) is the yaw angle. Then, we can derive the user
trajectory based on the step length and yaw angle.

C. Cohesive Hierarchical Track Clustering

In order to reduce the cumulative error on the PDR trajecto-
ries, the crowdsourced trajectories are segmented, where each
segment trajectory is within 1 minute. Due to the errors caused
by arm sway and other factors, we eliminate some abnormal
trajectories from two aspects according to the empirical values
from a large number of experiments. First, we prefer to
consider tracks formed by normal walking rather than running
to reduce the sensor noise. Second, we want stable and regular
tracks, i.e., walking without excessive round trips or spins.
Therefore, we filter some of the anomalous trajectories with

maximum walking speed and maximum curvature kurtosis,
where v ≤ vm and kc ≤ kcm.

For data in different indoor environments, we partition
the tracks into various regions with a cohesive hierarchical
clustering approach of Alg. 1 to extend the coverage and
application scenarios for building fingerprint libraries. Before
database construction, we treat each track as a separate cluster
Cnu = {X̂nu , Inu , snu}, which contains the coordinates of
the track generated by PDR, the MAC identifier of WiFi
Inu = {MACnA

}N
nu
A

nA=1 and the corresponding RSSI, where
Nnu

A is the number of signals detected by the user nu.
The similarity of the two clusters is measured according to
the Jaccard similarity in Eq. (16). Assume that user data is
received from Nr different regions and the mac identifier of
a Nnr

A signal in region Gnr is IGnr
= {MACnr}

Nnr
A

nr=1. As
long as one of the signals in the region is detected when the
track is moving, J(·) > 0. The opposite indicates that the
track belongs to another region or a new region. According
to this method, different regions of the track are distinguished
as Gnr = {Ci}

NGnr
i=1 , where NGnr

is the number of tracks
belonging to Gnr .

J(Cnu , Gnr ) =
|ICnu

∩ IGnr
|

|ICnu
∪ IGnr

|

{
> 0, Cnu ∈ Gnr ,

= 0, Cnu → new region
(16)

Algorithm 1 Cohesive Hierarchical Track Clustering
Input: Signals detected per track: Inu ;

Total number of tracks: Nu;
Output: Divided region: G

1: Initializing partition G1 = {C1}, G = {G1} and nr = 1;
2: for nu = 2, 3, · · · , Nu do
3: for Gnr in G do
4: Calculating Jaccard similarity J(Cnu , Gnr );
5: if J(Cnu , Gnr ) > 0 then
6: Cnu ∈ Gnr , IGnr

= ICnu
∪ IGnr

;
7: else if J(Cnu , Gnr ) = 0 then
8: nr = nr + 1, Cnr belongs to Gnr ;
9: Add Gnr in G;

10: end if
11: end for
12: end for
13: Return division of regions G = {G1, · · · , Gnr}

VI. SINGULAR VALUE DECOMPOSITION BASED TRACK
MATCHING

A. Magnetic based AP Marker Localization

In indoor positioning systems, WiFi APs are ideal signal
markers due to their ubiquity and high coverage. These mark-
ers are achieved by estimating the location of WiFi APs, which
are spread throughout the indoor environment, hence the name
WiFi markers. These markers are essential for determining the
precise location of a device indoors as they provide a stable
source of signals that can be detected and tracked multiple
times by the device. The RSSI of each AP can be detected
by multiple devices and signals from the same AP can be
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detected by different tracks and multiple locations. Therefore,
we first need to determine which of the large number of WiFi
APs can be used as WiFi markers and how these markers
should be located on each track. In previous research, WiFi
markers were identified as the location with the largest RSSI
in the track or the center of the track covered by WiFi signals
[14], [15]. However, these WiFi markers are easily affected
by multipath propagation. The RSSI profiles of the three APs
while the track is moving are illustrated in Fig. 4. Using only
the location of the peaks as markers is usually inaccurate and
unstable due to multipath effects and signal interference issues
that generate multiple peak points. Similarly, we cannot ensure
that the coverage of the APs is credible.

Our goal is to define markers that are stable and robust
on tracks for use as track matching. Therefore, we propose
to use the indoor magnetic field strength to assist RSSI peak
points to distinguish the effects of multiple peaks as the track
feature points to be selected. In Fig. 5, we choose the two
sides at 1.5 m apart from the router as the test points. From
the RSSI curves, the amplitudes of the two test points are the
same when the RSSI measurements are stable. Therefore, it is
difficult to distinguish two points which are close only relying
on RSSI as a feature. From the magnetic strength curve, the
fluctuation of the same test point will not exceed 0.8 µT , and
the difference between the two points is more than 2.5 µT . In
this case, even if the two test points are only 3 m apart, we
can easily distinguish between the two different test points by
the magnetic strength.

Specifically in the implementation process, we need to filter
the magnetometer data first to reduce the noise interference.
Secondly, the three-axis components of the magnetic field
vary with different postures and are less stable, but the total
magnetic field intensity is more stable compared to the three-
axis components. Therefore the total magnetic field strength
Bnu is used as an aid in this work.

Note that, the WiFi markers estimated on the tracks only
represent the spatial distribution of the AP’s location at the
time of the pedestrian carrying the device, and not its absolute
coordinates in the building coordinate system. Consider two
trajectories that detect the same WiFi marker (RSSI peak
point), i.e., they both detect a strong signal from this AP in the
vicinity of this point, thus indicating that the trajectories are
close to each other at this location. For the normal RSSI peak
points, we can directly treat them as markers on the track.

(a)
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Fig. 5. Measurement of RSSI and magnetic field strength at two locations. (a)
Specific measurement position. (b) RSSI and magnetic field strength curves
at different positions.

There are two main types of anomalies due to multipath and
signal fading, the first is discrete RSSI peaks and the second
is continuous RSSI peaks. In the former case, the magnetic
field strength of each discrete peak is saved directly, and in
the latter case, we tend to mark the middle point of multiple
peaks as markers. Due to the step length inconsistency between
sampling points, we use linear interpolation to ensure that the
markers are on the track. In addition, in order to effectively
rotate and translate the tracks, the APs corresponding to our
rotated markers should be sensed on at least 3 tracks.

B. SVD based Track Matching

Since we lack ground truth to directly solve the P2 problem,
we propose the SVD-based track matching method to obtain
the optimal rotation matrix Rnu and displacement vector dnu .
First, we consider the collected Nu tracks as rigid bodies with
constant shape and size. Theoretically, the positions of the
corresponding markers of the same AP on different tracks are
close. Therefore, the matching of trajectories can be achieved
by calculating Rnu and dnu of the same marked points
between two tracks. We assume that a total of NA APs are
detected on these Nu trajectories, which are expressed as
X̂nu . Due to the signal interference, or the moving distance is
beyond the AP coverage range, the actual detected signals on
on each track will generally be smaller than NA. Before per-
forming the trajectory transformation, the information matrix
D corresponding to the trajectories needs to be prepared as in
Eq. (17).

D =


M1,1 · · · M1,Nu

M2,1 · · · M2,Nu

...
. . .

...
MNA,1 · · · MNA,Nu

 (17)
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where MnA,nu = {(xnA,nu , ynA,nu), snA,nu , BnA,nu} is the
marker of the AP nA on the track nu, containing the marker’s
position on the track, RSSI, and magnetic strength. If AP nA
is not detected on the track nu, MnA,nu is set to 0.

In the absence of a leader (reference) trajectory, we select
one of these Nu tracks as a reference. In this case, the track
that carries more amount of information is more likely to
realize the matching of other tracks. Therefore, we introduce
the Hamming distance to measure the AP similarity between
the trajectories:

hi,j =

NA∑
nA=1

DnA,i ⊕ DnA,j (18)

where h is a Nu×Nu matrix. Then, we extract the maximum
Hamming distance hmax = max{hi,j} and calculate the
average similarity Snu of the track nu:

Snu
=

Nu∑
i=1

1− hi,j/hmax

Nu(Nu − 1)
(19)

According to the Snu sorting, we match the remaining tracks
sequentially by the amount of information. In our track match-
ing method, it is essentially a transformation based on the
markers on the tracks. We denote the markers on the reference
track r as Mr = [(x1,r, y1,r)

T , · · · , (xNA,r, yNA,r)
T ], and

the markers on the track nu to be matched as Mnu =
[(x1,nu , y1,nu)

T , · · · , (xNA,nu , yNA,nu)
T ]. Before construct-

ing the covariance matrix, the markers need to be centered
to eliminate the offset of the data. Considering that markers
with larger RSSI are more reliable, we weight the average
according to the RSSI corresponding to the marker points.

Wnu =

NA∑
nA=1

(xnA,nu , ynA,nu)
T exp(−0.01 |snA,nu |)

exp(−0.01 |snA,nu |)
(20)

From the centered markers, we construct the covariance
matrix Hr

nu
, which contains the rotation matrix between the

two marker vectors.

Hr
nu

= (Mnu −Wnu)
T (Mr −Wr) (21)

Then, SVD is performed on the covariance matrix:

Hr
nu

= Ur
nu

Σr
nu
V r
nu

T (22)

where Ur
nu

and V r
nu

are orthogonal matrices which respective-
ly contains the left and right singular vectors of the covariance
matrix Hr

nu
; Σr

nu
is a diagonal matrix which contains the

singular values. According to SVD, we construct the rotation
matrix as follows:

Rr
nu

= V r
nu
Ur
nu

T (23)

where Rr
nu

represents the optimal rotation matrix for rotating
the signal markers on track nu to the reference track r. Here,
Rr

nu
represents a reflection matrix if the determinant of Hr

nu

is negative. To solve this problem, the last column of V r
nu

is
multiplied by -1 to ensure that det(Rr

nu
) = 1. Thus, we obtain

the translation vector:

drnu
= (Mnu −Wnu)

T −Rr
nu

(Mr −Wr) (24)

Combining Rr
nu

and dr
nu

, we match the remaining tracks by
the reference track.

Xnu = (Rr
nu

X̂nu + drnu
)T (25)

Algorithm 2 SVD-based Track Matching.

Input: Information matrix: D; Nu tracks: X̂1, X̂2, · · · , X̂Nu ;
Output: Matched tracks: X1,X2, · · · ,XNu

1: for i = 1, 2, · · · , Nu − 1 do
2: for j = 2, 3, · · · , Nu do
3: Calculate Hamming Distance hi,j ;
4: end for
5: end for
6: Calculate average similarity S = [S1,S2, · · · ,SNu ];
7: Find reference track X̂r and [M1,r, · · · ,MNA,r]

T with
max{S};

8: Remaining Nu − 1 tracks are sorted by S;
9: Set magnetic field threshold BTh = 1.5;

10: for nu = 1, 2, · · · , r − 1, r + 1, · · · , Nu do
11: for nA = 1, 2, · · · , NA do
12: if Number of RSSI peak points in MnA,nu > 1 then
13: Find marker points by |BnA,nu −BnA,r| < BTh;
14: end if
15: end for
16: Weighting marker points Wr and Wnu ;
17: Construct the covariance matrix Hr

nu
;

18: SVD solves the singular matrices Ur
nu

and V r
nu

;
19: Compute rotation matrix Rr

nu
and translation vector

drnu
;

20: Transform track Xnu = (Rr
nu

X̂nu + dr
nu

)T ;
21: end for
22: Return matched tracks X1,X2, · · · ,XNu

The specific algorithmic flow for implementing trajectory
matching based on SVD is shown in Algorithm 2. First, we
rank the tracks in terms of the amount of information they
carry. The track with the highest information is used as the
reference and the other tracks will be matched sequentially.
Second, we set the magnetic threshold based on empirical
values to distinguish multiple peaks and record the effective
marker locations of special markers. With the assistance of
magnetic field, multiple tracks with the same RSSI peak-
s detected at different locations are strongly distinguished.
When centering the tracks, we consider the problem that
the RSSI fluctuations at the peak points are not necessarily
the same, and use the natural exponential function weights
to compensate. In terms of track matching, we construct a
feature matrix containing the rotation matrix Rr

nu
. The rotation

matrix and translation vector are obtained by calculating the
singular matrix of the feature matrix, so as to realize the track
transformation.

VII. POSITIONING WITH BIDIRECTIONAL BAYESIAN
FILTER

A. Map Construction with Forward Bayesian Filter

After merging the tracks based on the labeling information,
we estimate the relative positions of APs combining the
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information of multiple sampling points on each track. To
avoid the sudden appearance or disappearance of some mobile
WiFi APs, we only locate the APs that appear at each sampling
point on the track. For these tracks, we can divide the long
track into multiple tracks to estimate the AP’s position. Here,
we take the APs on track nu and the corresponding RSSI data
as an instance.

The RSSI value uses the log-normal attenuation model
to indicate the distance dnA

U (tw) between the target and the
anchor:

dnA

U (tw) = 10


∣∣snA

nu
(tw)− s0

∣∣
10β


+N0 (26)

where s0 is the RSSI at 1 m, β is the attenuation coefficient,
tw is the WiFi sampling point, snA

nu
(tw) is the RSSI of AP nA

detected by the user nu at tw, and N0 is the noise following a
zero-mean Gaussian distribution. We adopt pnu

A (nA) to denote
the real position of AP nA in the environment detected by user
nu. Due to the lack of actual AP locations, P3 can be obtained
by solving the following objective equation:

min
pnu

A (nA)

Tnu
w∑

tw=1

(dnA

U (tw)− ∥pnu

A (nA)−Xnu(tw)∥)2 (27)

where Xnu(tw) is the coordinate of the matched track nu at
the sampling point tw. We combine multiple sampling points
to localize the same AP. Due to NLOS and multipath effects,
we introduce a set of initial particles {pnu

nf
(nA)}

Nf

nf=1 repre-
senting the possible locations of AP nA. Thus, the weight of
each AP position is obtained from the conditional probability
of the observations.

wnf
∝ p(dnA

U (tw) | pnu
nf

(nA)) (28)

where p(dnA

U (tw) | pnu
nf

(nA)) is the probability of pnu
nf

(nA)
occurring for a given observation dnA

U (tw). Then, the position
of this AP is obtained based on the weights.

p̂nu

A (nA) =

Nf∑
nf=1

wnf
pnu
nf

(nA)) (29)

Thus, we get the position of the AP from multiple tracks
estimation.

B. Map Update with DBSCAN

However, some of the APs on the track are caused to deviate
from the actual position by factors such as signal interference
or track matching errors. Therefore, when fusing the same
APs on different tracks, we apply DBSACN [40] to cluster
the APs so as to eliminate the map construction errors caused
by outliers. DBSCAN is a widely used clustering algorithm
that identifies clusters in a dataset based on the concept
of density. Compared to methods like K-means, DBSCAN
recognizes clusters of arbitrary shapes and does not require
the number of clusters to be specified in advance. Especially
for constructing maps, it is suitable for handling data with
complex and unknown structures and is robust to noise and
outliers.

For a given AP nA coordinate p̂nu

A (nA) and radius ε,
define its set of neighborhood points to be all points whose
distance from p̂nu

A (nA) is less than or equal to ε, denoted
N (p̂nu

A (nA), ε).

N (p̂nu

A (nA), ε) = {o1 ∈ D|f(p̂nu

A (nA), o1) ≤ ε} (30)

where f(p̂nu

A (nA), o1) represents the distance between
p̂nu

A (nA) and point o1. According to N (p̂nu

A (nA), ε), we
can define the core point with at least l other points in its
neighborhood.

Q(p̂nu

A (nA), ε, l) = {N (p̂nu

A (nA), ε) ≥ l} (31)

A point o2 is called directly density reachability from
p̂nu

A (nA), if point o2 is in the ε neighborhood of p̂nu

A (nA).
Furthermore, if point o2 does not satisfy Q(p̂nu

A (nA), ε, l),
it is a boundary point. These core points are the centers of
the clusters and they are connected by density reachability to
form clusters. In contrast, those points that are neither core
nor boundary points are considered as outliers or noise points,
and they are usually regarded as outliers and do not belong to
any clusters.

The clustering process of the DBSCAN is iterative, as
described in Algorithm 3. Our goal is to find the effective
clustering U of different tracks on the same AP by DBSCAN.
Taking the example of multiple tracks all detected AP nA,
each track can estimate a coordinate p̂nu

A (nA) corresponding
to this AP according to Eq. (29). Due to the noise introduced
by mobile sampling, these coordinates do not overlap to a
single location. Therefore, DBSCAN is used to eliminate
the outliers among them to improve the reliability of the
map. The algorithm starts with an arbitrarily chosen unvisited
point in the dataset and then finds all the points within its ε
neighborhood. If it is a core point, then all points within its
ε neighborhood are considered part of the same cluster. Next,
we examine each point in the cluster and add all points with
a reachable density to the cluster. This process will continue
until all points have been visited.

Algorithm 3 DBSCAN
Input: Coordinates of the AP nu on different tracks:

p̂nu

A (nA), nu ∈ (1, Nu); Neighborhood radius: ε; Mini-
mum Neighborhood Number: l

Output: Effective APs cluster: U ; Outliers: O
1: for nu = 1, 2, · · · , Nu do
2: if p̂nu

A (nA) is not visited then
3: Mark p̂nu

A (nA) as visited;
4: Calculate neighborhood points N (p̂nu

A (nA), ε);
5: if N (p̂nu

A (nA), ε) < l then
6: Add p̂nu

A (nA) in O;
7: else
8: Add p̂nu

A (nA) to effective cluster U ;
9: Add N (p̂nu

A (nA), ε) to cluster U ;
10: end if
11: end if
12: end for
13: Return effective APs cluster U and outliers O
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After filtering outlier AP points using DBSCAN, the AP
position pA(nA) is determined as the average of the effective
AP clusters U . Finally, the generated radio map RM is:

RM = {pA(1), · · · ,pA(nA), · · · ,pA(NA)} (32)

C. Fusing Map-based Positioning and PDR with Reverse
Bayesian Filter

On map-based localization, we estimate the location of the
target based on forward Bayesian filtering by using WiFi data.
First, a random selection of Ns points {pw(ns)}Ns

ns=1 in the
region simulates the location of the user in the online phase.
The weight of each simulated position is then proportional to
the likelihood of the observation:

wns =

NA∑
nA=1

p(dnA

U |pw(ns)) (33)

where p(dnA

U |pw(ns)) indicates the probability with a give ob-
servation dnA

U conditioned on pw(ns). The probability density
function for p(dnA

U |pw(ns)) is the zero-mean Gaussian dis-
tribution function. Then, we choose 10% of simulated points
with the largest weights and form a new set {pw(ns)}Ns

ns=1.
We normalize these weights:

wns =
wns∑Ns

ns=1 wns

(34)

When the iteration condition is satisfied, the estimated user
coordinates are weighted average locations:

p̂w =

Ns∑
ns=1

wnspw(ns) (35)

The constructed maps are not accurate because they are
estimated based on crowd sensing tracks. To further improve
the localization accuracy, we use the reverse Bayesian filter
fusion method to fuse the PDR with the map localization to
obtain the final location of the user. Here, we use recursive
dynamic estimation. First, we define the state vector p̂U (tw) =
[p̂xU (tw), p̂

y
U (tw)]

T , which denotes the user U position at time
tw.

The step length LU (tw) and heading ψU (tw) estimated from
the PDR algorithm at the current moment are used as the state
equations:[
p̂xU (tw)
p̂yU (tw)

]
=

[
p̂xU (tw − 1)
p̂yU (tw − 1)

]
+

[
LU (tw) cosψU (tw)
LU (tw) sinψU (tw)

]
+

[
nx(tw)
ny(tw)

]
(36)

where [nx(tw), ny(tw)]
T is the noise generated by the motion

process. The prior probability of the distribution of the position
state p̂U (tw) at moment tw − 1 is:

p (p̂U (tw) | p̂U (tw − 1)) =
1√

(2π)2|Qn|

× exp

(
−1

2
µTQ−1

n µ

) (37)

where Qn is the process noise covariance matrix, µ =
p̂U (tw) − ∆p̂U (tw) and ∆p̂U (tw) = p̂U (tw − 1) +
[LU (tw) cos(ψU (tw)), LU (tw) sin(ψU (tw))]

T .

According to Bayes’ theorem, Bayesian filtering corrects
the predicted state when new observations are acquired. The
previous section provides the WiFi observations p̂w(tw) based
on map-based localization. We assume that the error of WiFi
localization obeys a Gaussian distribution, and the observation
model is:

p(p̂w(tw)|p̂U (tw)) =
1√

(2π)2 |Rn|

× exp

(
−1

2
νTR−1

n ν

) (38)

where Rn is the observation noise covariance, which repre-
sents the error of WiFi localization, ν = p̂w(tw)−h(p̂U (tw))
and h(p̂U (tw)) is the observation function obtained from the
WiFi system; .

The posterior distribution is obtained by combining the prior
distribution with the observation information:

p(p̂U (tw)|p̂w(tw)) ∝ p(p̂w(tw)|p̂U (tw))p(p̂U (tw)|p̂U (tw−1))
(39)

Finally, we use Bayesian filter posterior distribution for lo-
cation estimation. This posterior distribution can be used to
obtain the most probable user location by maximizing the
posterior probability.

VIII. EXPERIMENTAL EVALUATION

We have extensively evaluated the proposed SVD-CSP in
real experiments and simulations. We conduct the experiments
in two indoor scenarios respectively. Figure 6a illustrates a
section of the test scene in a teaching building, covering
an area of 648 m2 . In addition, Figure 6b illustrates the
interior of a public laboratory building, covering an area of
2856 m2. In Scenario 1 we use only a few tracks for small-
scale track matching and a fine-grained comparison with the
matching method based on ensemble analysis in WiFi-RITA
[15]. Scenario 2 is used for large-scale track matching, radio
map construction and target localization testing. In order to
reduce the influence of cumulative error on PDR, we control
the sampling time of each track within 1 minute. In each
scenario, no information such as landmarks is set, and it only
relies on the shared IMU and detected WiFi. For limited length
trajectories (sampling time less than 30 s), shorter trajectories
may contain fewer marker points due to the limited walking
distance. At the initial stage of building radio maps, this
may cause some fluctuation in the accuracy of localization.
However, our system does not depend on the absolute length
of trajectories. As crowdsourced data continue to accumulate,
data from numerous short trajectories can complement each
other.

To evaluate the accuracy of track matching and tracking
more precisely, we place landmarks in the environment to
obtain ground truth positions. Specifically, volunteers walk
along these pre-set markers and are sampled so that we know
exactly the actual path the volunteer is moving. In the track
matching experiment, the volunteer takes the Redmi Note10
to move according to the four different tracks in Scenario
1, in order to test the effectiveness of SVD to find the
rotation matrix to realize the track matching. In Scenario 2,
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Fig. 6. Experimental Scenarios. (a) Scenario 1 walking paths. (b) Scenario 2 walking paths.
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Fig. 7. Comparison of different track matching methods in Scenario 1.
Compared to the bottom figure, track 3 and track 4 in the top figure are
closer to the real trajectories.

the volunteer moves according to the test paths, in which the
time of each track is within 1 minute. The initial point of
each track is unknown, and the magnetometer and gyroscope
are combined to generate the initial heading to distinguish the
different tracks.

For user localization, the user walks at a constant speed
on the walking path defined in Scenario 2 to obtain multiple
tracks. In this case, all the WiFi RSSI data are timestamped
and the distribution of APs is obtained based on the merged
user tracks. Radio maps are formed based on DBSCAN
filtering. Then the users are localized and tracked.

A. Track Matching Evaluation

Figure 7 illustrates the effect of different methods on fusing
the four walking paths in Scenario 1. In this experiment, a
total of 160 WiFi APs are detected in the environment. After
fusing RSSI peaks and magnetic field strength thresholds, 94
of these APs are identified as valid markers that could be used
for trajectory matching. The color of each track is the same
as in Fig. 6a. The blue Track1 is used as the base track
in SVD, the matching of other tracks is realized sequentially,
meanwhile the marker points information is updated after each
track matching. Compared with the ground truth in Fig. 6a,

Fig. 8. Same AP filtering on multiple tracks. The red triangles are the rejected
outliers, and the mean of the valid values is used as the location of this AP
clustering.

the heading directions are correct for all the tracks, and look
similar to the real tracks. However, the estimated track 3 and
track 4 are not correct based on WiFi-RITA. Although SVD
has some rotational errors and positional offsets for small scale
track matching, it is still desirable in the absence of actual
marker assistance.

B. Positioning Accuracy

After track matching, we use the DBSCAN method to filter
the estimated anomalous AP anchors on the tracks. As shown
in Fig. 8, we set a threshold of 95% for the confidence interval
to filter outliers in terms of Mahalanobis distance for each
point. Note that, 7 outlier points are removed. Finally, the
average value of all valid APs is taken as the virtual position
of the current AP to obtain a radio map of the signal coverage.

In the absence of environmental absolute position land-
marks, we evaluate the error between the relative distance of
the two targets in Scenario 2 and the radio map localization
results. From the perspective of the target visible distance,
10 m away is needed to achieve fast localization by position
information, so we evaluate the localization performance at
a separation distance of 10-20 m. Figure 9 demonstrates the
CDF of the localization error at a distance of 20 m using
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Fig. 9. Localization error ECDF with 30 tracks at 20m.
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Fig. 10. Localization error ECDF for different number of tracks at 20m.

only 30 trajectories containing more information to construct
the radio map. On one hand, the localization error of the
SVD method at 20 m is basically within 4 m, which has
better localization performance compared to WiRi-RITA. On
the other hand, compared with the pre-filtering, the elimination
of outlier APs makes the average localization error of SVD
decreased by 0.35 m, and the average localization error of
WiRi-RITA is decreased by 1.26 m. Therefore, the elimination
of calibrated anomalous APs in independent trajectories using
DBSCAN can effectively improve the localization accuracy in
real scenarios.

Second, the problem of different numbers of tracks carrying
different amounts of information as well as having errors of
their own can have an impact on map construction as well
as target localization. The CDF plots for target localization
at a distance of 20 m with different numbers of tracks are
presented in Fig. 10. The increase in the number of tracks only
slightly improves the localization error of the SVD method
when the targets are 20 m apart. On the contrary, for WiFi-
RITA, adding only 10 tracks to build the map decreases the
average localization error by 1.17 m. This demonstrates that
our method achieves more stable localization with small data
scales.

Figure 11 draws the average localization error for different
number of tracks under 10 m to 20 m. Each method uses
radio maps filtered by DBSCAN for localization. As the
number of tracks increases, the localization error of WiFi-
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Fig. 11. Mean error at different distance.

0 2 4 6 8 10 12 14 16 18 20

Error(m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
C
D
F

SVD
RITA
WKNN
KNN
WLS
GPR+KNN
ResNet50
GAN

Fig. 12. Comparison of positioning errors of different methods at 20 m.

RITA at different distances is basically stabilized at about 3
m, with a relative improvement of 66.53%. While the average
localization error of the SVD method is 1.38 m, with a relative
improvement of 17.45%.

Figure 12 illustrates the probability distribution of different
algorithms over 20 m localization error, including six different
algorithms: SVD, WiFi-RITA, WKNN, KNN, Weighted Least
Squares (WLS) [41], a combination of Gaussian Process
Regression with KNN (GPR+KNN) [42], Residual Network
50 (ResNet50) [28] and generative adversarial network (GAN)
[43]. Among them, for the fingerprint matching method, we
use the calibrated sampling points in the mobile sampling as
the database, so the error of localization is relatively large.
Whereas, GPR can simulate the fingerprint expansion from
nearby locations, so the localization error is smaller than the
traditional fingerprint localization methods. In addition, sparse
data leads to poor localization performance of deep learn-
ing methods. Compared with these methods, our localization
method is more accurate.

Figure 13a demonstrates the performance of the Bayesian
filter localization in Scenario 1. The ground truth (the true
track) is represented by a blue line and the points estimated by
the Bayesian filter are represented by cyan dots. The Bayesian
filter is able to track the real track better, although there are
some deviations. These deviations may be due to noise in
the environment. In most areas of the x-axis and y-axis, the
Bayesian filter estimated points are consistent with the true
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Fig. 13. Estimated points based on reverse bayesian filter localization. (a)
Scenario 1 positioning results. (b) Scenario 2 positioning results.

track, which indicates that the algorithm has high accuracy
when dealing with simple scenes. Figure 13b displays the
localization results of Scenario 2, which is a more complex
environment containing more obstacles and possible sources
of signal interference. In this environment, the Bayesian filter
still performs satisfactorily, although the deviation between
the estimated points and the true track is increased compared
to Scenario 1. Especially near obstacles, the distribution of
Bayesian filter estimated points shows the robustness of the
algorithm in dealing with complex environments. However,
we also observe an increase in the dispersion of the estimated
points in some regions, which is due to the multipath effect
of the WiFi signal and the cumulative error of the PDR data.

C. Parameter Analysis

Since the number of APs in the real environment is uncon-
trollable, in order to explore the impact of the number of APs
on the overall performance of the system, we evaluate it by
using random selected APs in Scenario 2. For this purpose, we
select 30 tracks to explore the impact of the variation of AP
numbers on the overall performance of the system. A total
of 196 APs are detected on these 30 trajectories, however,
only 103 APs can be used for track matching. Therefore we
randomly choose a subset of APs among these 103 APs.

Figure 14a illustrates the localization performance with the
total used APs covering the whole scenario. When the number

of APs increases from 20 to 60, the average error decreases
from 14 m to 8 m. Note that track matching presupposes that
the WiFi Marker attached to it has at least 3 different locations.
When the number of APs is fewer, a part of the tracks fails
to participate in the matching to build the radio map, so the
localization error will be larger at this time. However, when
the number of APs exceeds 60, the decrease in error starts to
slow down, especially after the number of APs reaches 80, the
decrease in error becomes low. In this case, all the trajectories
can participate in the map construction normally. Therefore,
to fully express the complete map information (especially the
area of 2856 m2) in the actual environment, at least 80 APs
are needed to achieve the accuracy of 6 m. However, the
distribution of APs in the actual environment is not ideally
uniformly dispersed, instead several APs are distributed in an
area. Therefore, to achieve an accuracy of about 2 m at least
90 APs should be involved.

Considering that there are only 90 APs distributed in the
environment, the actual number of APs involved in target
localization averages 13 for each position. Thus, we further
explore the effect of different number of APs on each location,
and the localization accuracy is illustrated in Fig. 14b. As
the number of APs involved in localization increases, i.e., the
amount of effective information increases, the mean localiza-
tion error gradually decreases. Only 12 APs are required to
participate in localization to achieve 2 m localization accuracy.
Since the AP distribution and density are uncertain in the real
environment, if more than 13 effective APs are detected around
the target, an accuracy of 1.5 m can be attained.

We randomly resampled 70 tracks to obtain the localization
errors in Fig. 14c. Note that, most of the tracks are short in
length, i.e., the sampling time is 50 seconds or less. With only
10 trajectories, the resampled trajectories are mostly scattered
all over the place. In this case, it is hard to construct radio
maps due to the lack of wifi markers for track matching,
and that’s why there are no values for trajectories below 10.
Furthermore, when the number of trajectories increases from
15 to 30, the radio map can be constructed accurately, so
the localization error decreases rapidly. As the number of
trajectories further increases to 50 and above, the localization
error reaches 5 m and the decreasing trend slows down. It
means that after a certain number of tracks, the system’s
perception of the environment has stabilized. After that, the
newly added trajectories are more useful for optimizing the
radio map.

Figure 15 presents the error heatmap of DBSCAN with
different parameter values. The horizontal coordinate repre-
sents the minimum neighborhood number in DBSCAN, the
vertical coordinate is the neighborhood radius, and the color
shades indicate the localization error under different parameter
combinations. When the minimum neighbor number is less
than 4, some normal points are misjudged as noise points,
resulting in the loss of some valid information, which makes
the localization error larger. When the neighborhood radius is
less than 1.5, it fails to form effective clusters, resulting in the
creation of blank spaces in the figure. The profile coefficients
are higher when the minimum number of neighbors is from 4
to 6 and the neighborhood radius is from 1.5 to 4, indicating
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Fig. 14. System performance analysis. (a) Average localization errors for different number of APs in Scenario 2. (b) Mean localization error at different
number of APs in the localization phase. (c) Average localization error at different number of tracks.

Fig. 15. Heatmap of DBSCAN parameter optimization.

better clustering under the combination of these parameters.

D. Complexity Evaluation

Figure 16 demonstrates the end-to-end time from data
preprocessing to radio map construction for SVD and WiFi-
RITA. Both systems are written in MATLAB and run on a
standard desktop computer with an Intel Core i7-11700H CPU
and 32 GB of RAM. When the number of tracks increases
from 15 to 70, the running time of SVD increases by only 0.47
s, which provides high computational efficiency and stability.
In contrast, when the number of trajectories reaches 40 or
more, the runtime of WiFi-RITA is more than 5 times that of
SVD. This indicates that SVD is not only able to complete
track matching quickly but also has lower time complexity
in the case of a small number of tracks, which is especially
important for application scenarios that require fast response.
The run times for each phase are listed in Table II. First, the
data pre-processing phase involves the calibration of the PDR
and WiFi markers on the tracks. Although the pre-processing
time increases slightly as the number of tracks increases, it
generally stays low. The difference between the two methods
is the marker selection. Second, the processing time for SVD
track matching is relatively short and does not change much as
the number of tracks increases. However, WiFi-RITA in track
matching adopts an iterative approach in solving the optimal
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Fig. 16. End-to-end time for map construction.

value, which has a longer processing time, and the increase in
the number of tracks leads to an increase in the computational
complexity. Finally, the time for map construction depends on
the environment complexity, and the difference between the
two methods is not significant.

For complexity comparison, one advantage of our SVD-CSP
is the less used training tracks than deep learning model. Take
Scenario 2 for instance, the sampled data of only 30 tracks is
not enough for the deep learning model. In addition, we take
ResNet50 [28] as an instance to discuss the computational
complexity. The model takes RSSI, signal strength difference
and kurtosis value constituting a 3D feature map as input.
For 30 tracks with a sampling time of less than 1 minute,
the average number of sampling points is considered to be
8. In our scenario, there are a total of 103 APs involved,
while about 1/4 can be used as WiFi markers on each
track. Therefore, the computational complexity of ResNet50 is
OResNet(50×3×1033×30×8) = OResNet(3.95×1010). The
computational complexity of our system is mainly composed
of SVD, DBSCAN and Bayesian filtering, i.e., OSVD−CSP =
OSVD(30×253)+ODBSCAN(103×log(103))+OBayesian(2

3×
100) = OSVD−CSP(4.7×105). Thus, OSVD−CSP ≪ OResNet.
We also depict the overall runtime of ResNet50 for different
number of trajectories in Table II. Furthermore, we analyze the
memory footprints of the two and show that SVD-CSP occu-
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TABLE II
COMPARISON OF RUNTIMES FOR DIFFERENT NUMBER OF TRACKS.

Track number Pre-processing time (s) Track matching time (s) Map construction time (s) End-to-end time (s)
SVD WiFi-RITA SVD WiFi-RITA SVD WiFi-RITA SVD WiFi-RITA ResNet50

15 0.044 0.056 0.004 3.093 0.899 0.547 1.798 3.697 25.114
25 0.106 0.198 0.008 5.376 0.970 0.798 1.940 6.373 33.251
35 0.158 0.301 0.011 7.428 0.974 0.877 1.949 8.606 41.315
45 0.259 0.438 0.020 9.499 0.977 0.882 1.954 10.819 49.232
55 0.339 0.536 0.027 12.061 0.988 1.049 1.977 13.647 56.897
65 0.449 0.664 0.032 15.914 1.116 1.214 2.231 17.792 65.178
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Fig. 17. Effect of particle number on localization performance.

pies about 0.02 MB while ResNet50 occupies about 18.25 MB.
This significant difference further emphasizes the applicability
of SVD-CSP in resource-constrained environments, especially
its feature of not requiring GPU support.

Finally, Fig. 17 exhibits the impact of the number of parti-
cles in the localization phase on the error and time. When the
number of particles increases, the overall localization accuracy
decreases. Particularly, when the particle number reaches 300,
the average localization error can reach 2 m. It is stabi-
lized with 350 particles. Correspondingly, the computational
complexity increases, leading to an increase in the average
localization time. When the number of particles exceeds 400,
the localization phase will take more than 2 s. Therefore, in
order to balance the localization accuracy and time, the number
of particles can be set between 300 and 400.

E. Heterogeneity Analysis

We construct a new experiment for heterogeneous device
evaluation. We employs more mobile phones in this experi-
ment, which are Meizu 20 Pro, Redmi Note 10, Huawei DUB-
AL00a, and iPhone 16 Plus. The operating systems cover iOS
and Android. Considering the RSSI sampling frequency, the
maximum allowed WiFi sampling rate of Android devices is
0.2 Hz. Thus, we set the WiFi sampling rate as 0.2 Hz for
fairness. In addition, due to the privacy protection scheme
of iOS, iPhone does not support access to real-time data of
WiFi. Thus, another Android phone is used to collect WiFi
data simultaneously with iPhone during the track, which is
used as the emulation WiFi data for iPhone. However, this
introduces some offset for data fusion.

The overall comparison results are illustrated in Fig. 18,
where we use four phones for comparison. Among them, the
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error of the Android phones can approach within 3 m with
high probability. However, the error of the iPhone 16 Plus
is higher than the other phones. This due to the the offset
of WiFi data timestamps, making the localization error large.
In addition, the Meizu 20 pro offers a sensor module with
better performance, resulting in a better overall positioning
performance.

Figure 19 illustrates the effect of three different ways of
carrying the cell phone on the positioning error. Among them,
pocket means that the phone is placed in a shirt or pants
pocket, swing arm indicates that the hand which holds the
phone swings naturally with walking, and flat hold is the way
of carrying the phone with the screen facing up. The accuracy
of swing arm and hold flat is similar, which outperforms the
pocket. This dues to the severe drift of the IMU and the RSSI
error of WiFi which is introduced by the pocket.
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IX. CONCLUSION

In summary, we propose a crowd sensing radio map con-
struction and localization system. In this system, the proposed
SVD algorithm transforms the track matching into a problem
of rotating and translating the tracks. Based on track matching,
outliers with the same AP on multiple tracks are eliminated
by the DBSACN method and the radio map is constructed.
Finally, a localization method based on bidirectional Bayesian
filter fusion of PDR and WiFi is developed. We evaluate the
system in two different indoor scenarios. On the one hand,
our proposed method has less error in track matching with
smaller data scale. On the other hand, the average localization
error of the target relying on only 30 tracks is in the range
of 1.38 m. Thus, SVD-CSP has high localization accuracy,
efficiency and stable performance relying only on small scale
crowdsourced tracks, which outperforms the machine learning
or deep learning based fingerprinting methods. In this paper,
we only consider using the already crowd source data instead
of continuing collecting the sensing data. Thus, the mainte-
nance of the radio map is ignored. In the future work, we will
focus on lightweight update scheme of the radio map and the
fusion scheme with camera or barometers for 3D localization.
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