
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2025 1

Federated MADDPG-based Collaborative
Scheduling Strategy in Vehicular Edge Computing

Songxin Lei⇤, Huijun Tang⇤, Member, IEEE, Chuangyi Li, Xueying Zhang, Chenli Xu, and Huaming Wu, Senior
Member, IEEE

Abstract—In Vehicular Edge Computing (VEC), vehicles of-
fload computational tasks to Roadside Units (RSUs) equipped
with edge servers to achieve efficient processing. Considering
that vehicles switch connections between RSUs during high-
speed movement, obtaining the state information of other RSUs
is crucial for achieving global collaborative decision-making.
However, frequent sharing of RSUs’ state data during the
training of scheduling models may result in privacy leakage
risks. To address this issue, we federally train a joint scheduling
model for task offloading and resource allocation without the
need for state sharing among RSUs. We prove that the proposed
task offloading problem influenced by resource allocation is a
strict multi-node non-cooperative potential game problem, and
use the potential function as the reward function for Multi-
Agent Deep Deterministic Policy Gradient (MADDPG). Finally,
we propose the Fed-MADDPG algorithm to find the equilibrium
point of task offloading and apply the gradient descent method
and the Lagrange multiplier method to maximize the average
task completion rate among RSUs under constraints, ensuring
the framework has optimal computational and transmission
performance. We conduct simulation experiments using real-
world datasets, and the results show that this method has superior
performance compared to previous approaches.

Index Terms—Vehicular Edge Computing, Joint Scheduling
Model, Multi-Agent Deep Reinforcement Learning, Federated
Learning

I. INTRODUCTION

THE Internet of Vehicles (IoV), a crucial component
of intelligent transportation systems, connects vehicles,

Roadside Units (RSUs) and the cloud to form a collabora-
tive network that allows intelligent decision-making [1]–[3].
However, the increasing complexity and latency requirements
of IoV applications demand more efficient computational
capabilities. This need has led to the emergence of Vehicular
Edge Computing (VEC), where vehicles offload computational
tasks to RSUs equipped with edge servers, enabling efficient
task processing closer to the source [4]–[6].

Task offloading allows devices to offload computing-
intensive tasks to the edge efficiently. Wu et al. [7] offloaded
computation-intensive and delay-sensitive tasks to minimize
long-term energy consumption in Mobile Edge Computing

S. Lei, C. Li and C. Xu are with the School of Mathematics, Tian-
jin University, Tianjin 300350, China. E-mail: lei songxin@tju.edu.cn,
chuangyi li@tju.edu.cn, xuchenli@tju.edu.cn

H. Tang is with the Department of Engineering, Durham University,
Durham DH1 3LE, UK. E-mail: huijun.tang@durham.ac.uk.

X. Zhang and H. Wu are with the Center for Applied Mathematics,
Tianjin University, Tianjin 300072, China. E-mail: {zhang xueying, wh-
ming}@tju.edu.cn
⇤These authors contributed equally to this work. (Corresponding author:

Huaming Wu)

(MEC) environments of limited battery capacity. Wang et
al. [8] introduced a multiuser non-cooperative computation of-
floading game for MEC environments and defined the vehicle’s
utility functions to capture its actual benefits. In VEC, vehicles
offload tasks to RSUs or volunteer vehicles [9]–[11]. Because
of the limited storage and network bandwidth resources at
edge nodes, several studies explored joint scheduling strate-
gies, aiming to coordinate offloading decisions with resource
allocation to boost overall system efficiency. Sun et al. [12]
proposed a hybrid intelligent optimization algorithm to reduce
task delay and resource consumption in VEC scenarios. Tran et
al. [13] addressed joint task offloading and resource allocation
in multi-cell networks, offering an efficient decomposition
method to improve offloading utility. Joint scheduling of task
offloading and resource allocation enables the efficient utiliza-
tion of limited computational and communication resources in
VEC systems, thereby improving overall system performance.

In VEC environments, different devices can collect het-
erogeneous and complementary information from their local
environments. Effectively leveraging such diverse information
sources enables efficient joint scheduling [14], [15]. Specif-
ically, Jeremiah et al. [16] propose a digital twin-assisted
collaborative training framework in which RSUs coordinate
task offloading and workload sharing to achieve optimal
scheduling. Xue et al. [17] designed a collaborative multi-
agent reinforcement learning framework with inter-RSU task
migration to address the instability of task returns in dynamic
VEC environments. Shinde et al. [18] propose collaborative
Q-learning methods that enable vehicles to share local infor-
mation, thereby improving joint network selection and compu-
tation offloading decisions in heterogeneous multi-service IoV
environments. However, the frequent exchange of sensitive
information to collaboratively train a scheduling model poses
significant privacy and security risks.

Some studies have explored the challenges and solutions
for preserving privacy and security during information sharing
in collaborative training. Onieva et al. [19] surveyed security
vulnerabilities in VEC systems and proposed a layered security
framework combining authentication and intrusion detection
to safeguard information exchange during collaborative oper-
ations. Kang et al. [20] leveraged consortium blockchain and
smart contract technologies to enable secure and efficient data
storage and sharing in VEC, ensuring privacy during collabora-
tive information exchange among vehicles. However, existing
studies have not placed sufficient emphasis on protecting the
privacy of RSU state information [21], while direct sharing of
state information among RSUs is prone to some cyberattacks

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3590747

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on August 19,2025 at 07:24:27 UTC from IEEE Xplore. Restrictions apply.

wu huaming

wu huaming

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2025 2

under heterogeneous communication technologies.
To address the challenge, we propose an innovative joint

optimization method for task offloading and resource alloca-
tion based on federated MADDPG to maintain the highest
possible task completion rate without directly sharing state
information among RSUs. The main contributions of our work
are as follows:

• Federated collaborative VEC scheduling model: To train
a collaborative scheduling model without directly sharing
RSU state information, we propose a federated scheduling
method to maintain the system’s task completion rate,
which jointly optimizes task offloading and resource
allocation. By federated training, the state information of
each RSU remains local to prevent information leakage
caused by the frequent sharing of RSU states.

• Theoretical proof of the task offloading and resource
allocation modules: Based on the proposed federated
collaborative model, We construct the global potential
function to capture the overall payoff dynamics on all
RSUs, prove that the task offloading problem influenced
by resource allocation is a multi-node non-cooperative
potential game, and further prove it has at least one pure-
strategy nash equilibrium, which ensures the convergence
under the federated collaborative training. In addition,
we prove the proposed resource allocation problem is a
convex optimization problem.

• BCD iterative scheduling optimization framework based
on the Fed-MADDPG algorithm and KKT method: Based
on the theoretical proof, we utilize the Gause-Seidel-
type Block Coordinate Descent (BCD) framework that
iteratively solves the resource allocation module-based
Karush-Kuhn-Tucker (KKT) method and federated task
offloading module based on federated MADDPG, which
utilizes the potential function as the reward function.

• Effective performance on real-world data: We conduct
experiments using real-world vehicle trajectory data,
and the results validate the effectiveness of our pro-
posed method, showing significant improvements in joint
scheduling efficiency.

The rest of the paper is organized as follows. Related works
are investigated in Section II. Section III describes the system
model and problem formulation. The proposed Fed-MADDPG
algorithm is in Section IV. Experiments are presented in
Section V, followed by concluding remarks in Section VI.

II. RELATED WORK

A. Task Offloading and Resource Allocation in IoV

Optimization theory has been widely applied in the joint
task offloading and resource allocation problem in IoV sce-
narios. These approaches aim to improve system performance
by addressing challenges such as computational complexity,
vehicle mobility, and resource constraints. Tan et al. [24] de-
composed the joint optimization problem into task offloading
and resource allocation subproblems, using dual decomposi-
tion for decentralized, near-optimal solutions. Zhang et al. [25]
addressed the challenges of high vehicle mobility and dynamic

networks by formulating the problem as a Mixed Integer Non-
Linear Programming (MINLP). A matching-based algorithm
was proposed to optimize system utility related to delay
and computing costs, demonstrating competitive performance
through simulations. Tang et al. [33] focused on optimizing
Deep Neural Network (DNN) partitioning and resource allo-
cation in MEC, proposing an iterative alternating optimization
algorithm that achieves optimal solutions in polynomial time.
Xiao et al. [26] focused on FL within VEC, highlighting the
need to select appropriate vehicles for learning tasks due to
energy constraints and varying data quality. The problem was
modeled as a min-max optimization and solved using a greedy
algorithm and Lagrangian dual method, achieving a balance
between cost and fairness. However, optimization theory-based
methods often struggle to address the interactive nature of IoV
environments. To overcome these limitations, game theory has
emerged as an alternative method for modeling multi-agent
interactions and resource competition in IoV systems.

Game theory has also been extensively applied to the joint
optimization of task offloading and resource allocation in IoV
systems, offering effective solutions for multi-agent interac-
tions and resource competition. Wang et al. [8] proposed
a non-cooperative game for task offloading in Multi-access
Edge Computing networks, where each vehicle independently
adjusts its offloading strategy to maximize its utility. The pro-
posed algorithm converges to a stable equilibrium, optimizing
performance under dynamic network conditions. Fan et al. [32]
addressed load imbalance issues in multi-RSU VEC scenarios
using an Exact Potential Game (EPG). The study introduced
a two-stage iterative algorithm to minimize task processing
delays, enabling cooperation between overloaded and under-
loaded RSUs. Xu et al. [31] modeled the task offloading
process as an exact potential game within a NOMA-based
VEC architecture. The authors proposed a multi-agent deep
reinforcement learning approach to achieve Nash equilibrium,
optimizing service ratios by jointly managing intra- and inter-
edge resources. However, game theory-based methods often
rely on static models, which limit their adaptability to highly
dynamic IoV environments.

Reinforcement learning has emerged as a powerful approach
for dynamic scheduling in VEC. These methods adapt well
to dynamic environments and complex decision-making pro-
cesses. Liu et al. [28] introduced a vehicle-assisted offload-
ing scheme, leveraging Q-learning and Deep Reinforcement
Learning (DRL) to maximize long-term utility in dynamic
VEC networks. The proposed method optimizes task offload-
ing and resource allocation considering stochastic traffic and
varying communication conditions. Ju et al. [27] focused
on secure offloading in multi-user VEC networks, where a
DRL-based SORA scheme was developed to jointly optimize
transmit power, spectrum access, and resource allocation. This
approach improved system delay performance and secured
wireless offloading against eavesdropping, ensuring reliable
Vehicle-to-Vehicle (V2V) communication. Ning et al. [29]
combined DRL with task scheduling in VEC. It used a two-
sided matching scheme and an enhanced DRL algorithm to
optimize task scheduling and resource allocation, maximizing
user Quality of Experience (QoE). However, dynamic inter-

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3590747

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on August 19,2025 at 07:24:27 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2025 3

TABLE I: Comparison of Selected Related Studies in VEC scenarios.

Reference Joint
Scheduling

Dynamic
Decision

Multi-RSU
Collaboration

Federated
Training Method Objective

Zhan et al. [22] 7 3 7 7 PPO Energy + Delay
Li et al. [23] 7 3 7 3 Dueling Double Deep Q-learning Transmit rates
Tan et al. [24] 3 7 7 7 Decentralized Convex Optimization Energy + Delay
Zhang et al. [25] 3 7 7 7 MINLP Cost + Delay
Xiao et al. [26] 3 7 7 3 Nonlinear Programming Cost
Ju et al. [27] 3 3 7 7 Double Deep Q-learning Secrecy + Delay
Liu et al. [28] 3 3 7 7 Q-Learning VEC Network utility
Ning et al. [29] 3 3 7 7 Double Deep Q-Network Experience quality
Zhao et al. [30] 3 3 7 7 Stackelberg Game Vehicle utility
Xu et al. [31] 3 3 3 7 EPG + Convex Optimization Task completion rates
Fan et al. [32] 3 3 3 7 EPG Delay
Ours 3 3 3 3 Fed MADDPG + KKT Task completion rates

actions lead to frequent connection changes among devices,
especially in the training process of the scheduling model,
which requires state information sharing for coordination and
poses risks to privacy.

B. Federated Learning in Vehicular Networks

Federated Learning (FL) has emerged as a transformative
approach in Vehicular Networks (VNs), addressing key chal-
lenges such as data privacy, scalability, and heterogeneity in
the IoV [34]. FL has been applied to domains including traffic
prediction, autonomous driving, and vehicular communication
optimization. For instance, Yuan et al. [35] proposed an FL
framework for traffic state estimation to enhance road plan-
ning decisions while preserving driver privacy. By integrating
LSTM models with DRL, the approach enhances prediction
accuracy while effectively balancing computation and com-
munication costs. Yu et al. [36] introduced a mobility-aware
proactive caching scheme in vehicular networks. Using FL
and an adversarial autoencoder, it predicts content popularity
and dynamically manages edge caching, enhancing cache
performance and reducing communication costs.

However, integrating FL in vehicular networks introduces
unique challenges [37], such as heterogeneous resources, inter-
mittent connectivity and high communication overhead. Xu et
al. [38] addressed the communication overhead in cloud-based
federated learning by proposing a hierarchical FL system. It
optimizes edge aggregation intervals and resource allocation,
reducing training latency and improving learning performance
through iterative optimization. Guo et al. [39] developed a
federated edge learning scheme, featuring a residual feedback
mechanism and V2V communication to maximize gradient uti-
lization. Lyapunov optimization enhances uploading efficiency,
improving learning performance under energy constraints.

C. Comparison of Selected Related Studies

Our work introduces a unified framework that jointly op-
timizes task offloading and resource allocation, effectively
addressing their interdependence. We model task offloading as
a non-cooperative potential game and solve it using the MAD-
DPG algorithm, ensuring decentralized decision-making. The
entire process is dynamic and iterative, with task offloading
decisions feeding into the resource allocation module, which

is optimized via nonlinear convex optimization. Unlike ex-
isting static methods, our approach can dynamically generate
decisions to adapt to the highly dynamic nature of vehicular
networks. At the same time, we introduce federated learning
to enable collaborative training across vehicles, addressing the
data silo problem. Table I provides a detailed comparison of
our study with existing research.

III. SYSTEM MODEL

A. System Architectures

Fig. 1: System model. RSUs operate as clients, while the VEC
POOL functions as a central server coordinating interactions
between all clients.

As depicted in Fig. 1, RSUs embedded with computational
resources serve as critical infrastructure in the VEC frame-
work. Vehicles in motion delegate their computational tasks to
these RSUs through Vehicle-to-Infrastructure (V2I) communi-
cation links. During each iteration, following the completion
of local model training, RSUs transmit their policy network
parameters to the VEC POOL. This central pool aggregates
the received data and redistributes the refined parameters back
to the RSUs, initiating the next training phase. This cycle
repeats iteratively until model convergence is achieved. The

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3590747

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on August 19,2025 at 07:24:27 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2025 4

RSUs are interconnected by a wired network, allowing them
to manage tasks locally or redistribute them to other nodes as
necessary [31].

Within a specified interval, each vehicle offloads tasks
to exactly one RSU, whereas an RSU concurrently pro-
cesses tasks from multiple vehicles if computational capac-
ity permits. Consider a set of discrete time steps denoted
by T = {1, · · · , t, · · · , T} and a set of vehicles V =
{1, · · · , v, · · · , V }. At time t, a computational task requested
by vehicle v is represented by ktv = (dk, ck, tk), where dk,
ck, and tk indicate the data size, CPU cycle requirement, and
deadline of the task, respectively. The set of RSUs is denoted
as E = {1, · · · , e, · · · , E}, with each RSU e characterized by
its computational frequency ce, V2I communication range ue,
and physical location se. The distance between vehicle v and
RSU e at time t is denoted as dtv,e, and the set of vehicles
within RSU e’s communication range at time t is given by
V t
e . Consequently, Kt

e represents the set of tasks uploaded by
vehicles within V t

e . Table II summarizes the key notations.

TABLE II: A list of the main notations

Notations Description

ktv Task requested by vehicle v
qtv,e Whether task ktv needs to be offloaded to RSU e (binary)
ctv,e Computing resources allocated by RSU e to vehicle v
dtv,e Distance between vehicle v and RSU e
ut
v,e Transmission time of training data from vehicle v to RSU e

xt
v,e Execution time of task ktv in RSU e

wt
v,e Wired task transmission time sent from node e

0
to RSU e

nt
v,e Task processing time of task ktv at RSU e
 t
v,e Service time for task ktv at RSU e

T Set of time points
V Set of vehicles
Kv Set of tasks requested by vehicle v
E Set of RSUs
Q Set of task offloading strategies
Qt Set of task offloading strategies at time t
C Set of resource allocation strategies
dk Data size of task k
ck CPU cycle frequency of task k
tk Deadline of task k
ce Computation frequency of RSU e
ue V2I communication range of RSU e
se Location of RSU e
 t
e The task completion rate of RSU e

V t
e Set of vehicles within the coverage area of RSU e

DisV t
e

Set of distance between each vehicle v in V t
e and RSU e;

Kt
e Set of uploaded tasks within the coverage area of RSU e

DKt
e

Set of data size of each task ktv in Kt
e;

TKt
e

Set of deadline of each task ktv in Kt
e.

Kt
qe Set of tasks offloaded to RSU e at time t

CKt
e

Set of CPU cycle frequency;
Bt

e Upload bandwidth of RSU e at time t
Dt

v,e Data size of dk to be transferred from vehicle v to RSU e

B. Task Offloading Model
Given the disparity in computational power between local

devices and RSUs, it is assumed that tasks are by default
processed at RSUs. Let Bt

e represent the upload bandwidth
of RSU e at time t, and Dt

v,e denote the data size of dk
transferred from vehicle v to RSU e, where v 2 V t

e . The
transmission duration is expressed as:

ut
v,e =

Dt
v,e

Bt
e

. (1)

The task offloading decision is indicated by qtv,e, which
reflects whether the task from vehicle v at time t is offloaded to
RSU e. This indicator can take values from the set {0, 1}. Each
task is designated to a single RSU, ensuring

P
e2E q

t
v,e = 1

for all vehicles v. Hence, the collection of tasks offloaded to
RSU e is defined as:

Kt
qe = {ktv | qtv,e = 1, v 2 V t

e }. (2)
The computational resources (CPU clock cycles) allocated

by RSU e for task ktv 2 Kt
qe are denoted by ctv,e. The

total computational resources allocated must not exceed the
processing capacity of RSU e, i.e.,

P
kt
v2Kt

qe
ctv,e 6 ce, where

ce denotes the CPU clock frequency of RSU e. Based on the
model convergence accuracy analysis under the FL framework
in section 3.2.2, the execution duration of task ktv at RSU e
is calculated by:

xt
v,e =

dkck
ctv,e

, (3)

where ck is the CPU cycles for one data unit of task ktv .
Considering task migration over wired connections between

RSUs, wt
v,e represents the wired transmission duration from

RSU e
0

to RSU e. Following the definition in [31] and
supported by the cornerstone references [40] and [41], the
delay is modeled as:

wt
v,e =

8
<

:
0, ktv 2 Kt

e \Kt
qe ,

⇣dkdis
t

e,e
0

z , ktv 2 Kt
e \Kt

q
e
0 ,

(4)

where z denotes the transmission rate, dist
e,e0

is the distance
between RSU e and e

0
, and ⇣ represents a discount factor. The

overall processing time of ktv at RSU e combines execution
and wired transmission times, denoted as nt

v,e, contingent on
the task offloading decision and defined as:

nt
v,e = wt

v,e +
X

e02E

qt
v,e0

xt
v,e0

. (5)

The total service time t
v,e for task ktv 2 Kt

e is the sum of
the upload and processing durations, expressed as:

 t
v,e = ut

v,e + nt
v,e. (6)

C. Problem Formulation
Due to the constrained computational resources available

in vehicles, task offloading to RSUs is maximized within
limited time frames to leverage their computing capabilities.
Offloading tasks to RSUs with different CPU frequencies
results in varying probabilities of meeting deadlines. Conse-
quently, optimizing scheduling strategies is crucial to enhance
the likelihood of tasks being completed on time.

A task is successfully executed if its service time does not
exceed the deadline tk, which is purposefully shorter than the
interval between successive time slots. This design ensures
that external factors, such as network conditions and resource
distribution, remain stable throughout task execution.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3590747

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on August 19,2025 at 07:24:27 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2025 5

The task completion rate at RSU e is defined as the ratio
of successfully completed tasks to the total tasks requested,
expressed as t

e:

 t
e =

P
kt
v2Kt

e

I
�
 t
v,e 6 tk

��Kt

e

��. (7)

where |Kt
e| denotes the total number of tasks within RSU e’s

coverage area, and I
�
 t
v,e 6 tk

is an indicator function.

A solution (Q,C) consists of the task offloading strategy
Q and the computational resource allocation strategy C, for-
mulated as:

(
Q =

�
qtv,e | 8v 2 V t

e , 8e 2 E , 8t 2 T

,

C =
�
ctv,e | 8v 2 V t

e , 8e 2 E , 8t 2 T

.

(8)

The goal is to maximize the cumulative task completion rate
across RSUs by jointly scheduling offloading and resource
allocation strategies. The joint scheduling problem can be
expressed as:

P : max
Q,C

f1 =
X

t2T

X

e2E
 t
e (9)

s.t. C1 :
X

kt
v2Kt

qe

ctv,e 6 ce, 8e 2 E , 8t 2 T , (9a)

C2 : qtv,e 2 {0, 1} , 8v 2 V, 8e 2 E , 8t 2 T , (9b)

C3 :
X

e2E
qtv,e = 1, 8v 2 V, 8t 2 T , (9c)

where constraint C1 ensures that the allocated computational
resources remain within the RSU’s capacity. Constraints C2

and C3 enforce binary task offloading decisions and guarantee
that each task is assigned to exactly one RSU.

Theorem 1. The joint scheduling problem P is NP-hard.

Proof: To prove that problem P is NP-hard, we reduce
a known NP-hard problem, the Knapsack Problem [42], to a
special case of P .

Consider a special case of problem P where: a) There is a
single RSU e, i.e., |E| = 1, and a single time slot, i.e., |T | = 1.
b) The tasks ktv correspond to items in the Knapsack Problem,
each with an associated weight and value. c) The allocated
computational resource ctv,e for each task maps to the weight
wi of item i. d) The task completion rate t

e corresponds to the
total value vi of the selected items. Under a single RSU and
single time slot, t

e becomes a direct sum of the completion
values for tasks chosen to be offloaded. e) The computational
capacity of the RSU ce corresponds to the knapsack capacity
W . Under these conditions, constraints C2 and C3 imply a
0-1 choice of tasks, and P reduces to selecting a subset of
tasks whose total resource usage does not exceed ce, while
maximizing t

e. This is exactly the Knapsack Problem, which
is known to be NP-hard.

Therefore, if there were a polynomial-time algorithm for
solving P , we could apply it to solve this Knapsack Problem,
which is a special case of P , in polynomial time as well. Since
the Knapsack Problem is NP-hard, this implies that P must
also be NP-hard.

This proof demonstrates that the joint scheduling problem
P is computationally intractable, highlighting the necessity of
advanced algorithmic solutions.

IV. PROPOSED SOLUTIONS

We adopt a Gauss-Seidel-type BCD approach to solve
the joint scheduling model, which iteratively optimizes task
offloading and computational resource allocation in an alter-
nating manner. The solution framework is as follows: First,
we model the task offloading problem as a non-cooperative
potential game among RSUs, demonstrating that the dynamic
offloading process over time steps forms a Markov Decision
Process (MDP). Leveraging the MADDPG algorithm, we iter-
atively derive optimal task offloading decisions for each RSU,
which dynamically adapt to the current system state. Second,
within a federated learning framework, we aggregate, validate,
and distribute the policy network parameters of each RSU
to enable the global sharing of heterogeneous data, ensuring
collaborative optimization across RSUs until the global model
converges. Importantly, the task offloading decisions incorpo-
rate variables related to computational resources, which are
treated as dynamic inputs during the iterative optimization.

Following the optimization of task offloading decisions, we
solve the resource allocation problem as a nonlinear convex
optimization, taking the globally optimized task offloading
results as inputs. By applying the Karush-Kuhn-Tucker (KKT)
conditions from the Lagrange multiplier method, we derive
the optimal computational resource allocation strategy based
on the current observed state and propagate these results back
into the system. The entire dynamic iterative process embodies
the principles of the Gauss-Seidel-type BCD approach. The
solution process is illustrated in Fig. 2.

Based on the Gauss-Seidel-type Block Coordinate Descent
iterative optimization approach, we optimize two interdepen-
dent components in an alternating manner. Specifically, at each
time step, the problem is addressed by iteratively solving the
task offloading problem and the resource allocation problem,
ensuring that both are effectively refined within the framework.

A. Potential Game-based Task Offloading
The first component, related to Qt, which refers to the set

of task offloading strategies at time t, involves determining
the task offloading decisions for RSUs. Its formulation can be
expressed as:

P1 : max
Qt

g1 =
X

8e2E
 t
e (10)

s.t. C4 : qtv,e 2 {0, 1} , 8v 2 V, 8e 2 E , (10a)

C5 :
X

e2E
qtv,e = 1, 8v 2 V. (10b)

Then, P1 is modeled as a non-cooperative game among RSUs,
where each RSU independently determines its task offloading
strategy. The game is represented as G = {E ,S, {Ue}e2E},
where: a) E is the set of players (RSUs). b) S = S1 ⇥ S2 ⇥

· · ·⇥SE is the strategy space of the game, with Se being the
set of all possible strategies for RSU e. c) Ue is the utility
function of RSU e.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3590747

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on August 19,2025 at 07:24:27 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2025 6

Fig. 2: The overall architecture of the proposed Fed-MADDPG algorithm. Taking RSU 1 as an example, the offloading decisions
of RSU 1 are input to the resource allocation module, while computational resource allocation dynamically influences the task
offloading environment in the federated task offloading module.

Each strategy profile ⇣ 2 S is a tuple ⇣ = (⇣1, ⇣2, . . . , ⇣E),
which can also be written as ⇣ = (⇣e, ⇣�e), where ⇣�e 2 S�e

represents the combined strategies of all RSUs except e and
S�e = S1 ⇥ . . . Se�1 ⇥ Se+1 · · · ⇥ SE is the strategy space

formed by all RSUs except the RSU e. Ue(⇣) represents the
utility function of RSU e, defined as follows:

Definition 1. Utility function of RSU e It is defined as the
task completion rate of RSU e under strategy ⇣, i.e.,

Ue(⇣) = t
e.

Definition 2. A game G = {E ,S, {Ue}e2E} is a potential
game if there exists a function F : S ! R such that, for all
e 2 E , all ⇣�e 2 S�e, and all ⇣e, ⇣ 0e 2 Se,

Ue(⇣e, ⇣�e)� Ue(⇣
0
e, ⇣�e) = F (⇣e, ⇣�e)� F (⇣ 0e, ⇣�e).

Theorem 2. The game G = {E ,S, {Ue}e2E} is a potential
game with the potential function:

F (⇣) =
X

e2E
 t
e.

Proof: The potential function F (⇣) for the system is defined
as the sum of RSUs’ utility functions (task completion rates):

F (⇣) =
X

e2E
Ue(⇣) =

X

e2E
 t
e.

Thus:

F (⇣) =
X

e2E

P
kt
v2Kt

e
I

⇢
Dk
Bt

e
+ wt

v,e +
P
e02E

qtv,e0x
t
v,e0  tk

�

|Kt
e|

.

Let ⇣ = (⇣e, ⇣�e) represent the initial strategy and ⇣ 0 =
(⇣ 0e, ⇣�e) represent the strategy where only RSU e has changed
strategy from ⇣e to ⇣ 0e. Then, we analyze how changing the
strategy from ⇣e to ⇣ 0e impacts both Ue(⇣) and F (⇣) in various

cases. Specifically, whether task kv meets the deadline at RSU
e or another RSU e0 will determine these changes.

According to the constraint C5, we analyze each possible
scenario for how the indicator function I{ t

v,e  tk} changes
under this strategy change:

• Case 1: Assume that under strategy ⇣e, task kv is
completed within the deadline tk (i.e., t

v,e  tk). If
changing to ⇣ 0e causes t

v,e to exceed tk, the indicator
function changes from 1 to 0, reducing Ue(⇣) and F (⇣).

• Case 2: Assume that under strategy ⇣e, task kv fails to
meet the deadline tk (i.e., t

v,e > tk), so I{ t
v,e  tk} =

0. If strategy ⇣ 0e leads to t
v,e  tk, the indicator changes

from 0 to 1, increasing both Ue(⇣) and F (⇣).

Ue(⇣e, ⇣�e)� Ue(⇣
0
e, ⇣�e) = t

e(⇣e, ⇣�e)�
t
e(⇣

0
e, ⇣�e)

=

P
kt
v2Kt

e
I
n

Dk
Bt

e
+ wt

v,e +
P

e02E q
t
v,e0x

t
v,e0  tk

o

|Kt
e|

�

P
kt
v
02Kt

e
0I
n

Dk
Bt

e
+ wt

v,e
0
+
P

e02E q
t
v,e0x

t
v,e0  tk

o

|Kt
e|

.

Based on the above cases, we can mathematically express the
change in the utility function Ue(⇣) as follows:

• Case 1: Ue(⇣e, ⇣�e)� Ue(⇣ 0e, ⇣�e) = �
1

|Kt
e|
.

• Case 2: Ue(⇣e, ⇣�e)� Ue(⇣ 0e, ⇣�e) =
1

|Kt
e|
.

Similarly, the change takes the same form for the potential
function F (⇣). Since only RSU e’s strategy changes, the
change in F (⇣) is given by:

F (⇣e, ⇣�e)� F (⇣ 0e, ⇣�e) = Ue(⇣e, ⇣�e)� Ue(⇣
0
e, ⇣�e).

Theorem 3. Every finite potential game has at least one pure-
strategy Nash equilibrium.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3590747

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on August 19,2025 at 07:24:27 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2025 7

Proof: Since G is a finite potential game and the potential
function F (⇣) is bounded over the finite strategy space S ,
there exists a strategy profile ⇣⇤ that maximizes F :

⇣⇤ = argmax
⇣2S

F (⇣).

At ⇣⇤, no single RSU e can unilaterally change its strategy
to increase its utility, because such a change would increase
F , contradicting the maximality of F (⇣⇤). Therefore, ⇣⇤ is a
pure-strategy Nash equilibrium.

Our potential game formulation ensures alignment between
the system optimum and the potential function. This im-
plies that decentralized RSU utility maximization inherently
achieves optimality and crucially, and information sharing
introduces no decision bias. Motivated by these properties, we
hypothesize that strategic coordination within a decentralized
framework can enhance offloading. This insight motivates our
integration of FL into the MARL framework, in which RSUs
periodically share their policy network parameters during the
task offloading process while preserving privacy.

B. KKT-based Resource Allocation

Ct involves the allocation of computational resources, and
the resource allocation problem is described as follows:

P2 : min
Ct

g2 =
X

e2E

X

kt
v2Kt

e

nt
v,e (11)

s.t. C6 :
X

kt
v2Kt

qe

ctv,e 6 ce, 8e 2 E . (11a)

The optimization problem can be proved to be an approxi-
mately convex programming problem. P2 can be further de-
composed into multiple simpler subproblems, each associated
with an RSU e, formulated as follows:

P3 : min
Ct

e

ge3 =
X

kt
v2Kt

qe

xt
v,e (12)

s.t. C7 :
X

kt
v2Kt

qe

ctv,e 6 ce, (12a)

where Ct
e represents the variables in Ct related to RSU e.

Then, problem P3 can be proved to be a convex optimization
problem, with the objective function being convex and the
constraints being linear.

Theorem 4. P3 is a convex optimization problem.

Proof: The feasible region for problem P3 is [0, ce],
which is obviously a convex set. Let f be the objective
function, f =

P
kt
v2Kt

qe

Dkck
ctv,e

. Then f 0 = �
P

kt
v2Kt

qe

Dkck
(ctv,e)

2 ,
f 00 =

P
kt
v2Kt

qe

2Dkck
(ctv,e)

3 . On the defined convex set [0, ce], f 00 is
always greater than 0, so the objective function f is a convex
function.

Thus, problem P3 is a convex optimization problem. Due
to the nonlinearity of the objective function, problem P3 is
further a nonlinear convex optimization problem.

The Lagrange multiplier method can be used to solve the
problem. By introducing the Lagrange multiplier, the La-
grange function is constructed. The optimization problem with

constraints is transformed into an unconstrained optimization
problem, which is expressed as:

P4 : min
�t
e,C

t
e

g4 = ge3+�
t
e

0

@
X

kt
v✏K

t
qe

ctv,e � ce

1

A (13)

s.t. C8 : �te > 0. (13a)

The optimal solution is given by the KKT conditions in
the Lagrange multiplier method, which are necessary and
sufficient due to the convexity. By the KKT conditions, we
have:

8
>><

>>:

rCt
e
ge3 + �terCt

e

⇣P
kt
v2Kt

qe
ctv,e � ce

⌘
= 0,

�te

⇣P
kt
v2Kt

qe
ctv,e � ce

⌘
= 0,

�te > 0.

(14)

Solving the system of equations, the optimal resource alloca-
tion strategy for task ktv is:

ctv,e
⇤
=

1/ce ·
p
log dkckP

kt
v2Kt

qe
1/ce ·

p
log dkck

, 8ktv 2 Kt
qe . (15)

C. MADDPG Algorithm

Theorem 5. If the computing task of each vehicle overflows
the computing power of an RSU with a probability of 1

p
and task overflow only affects the next round of decision-
making, then the dynamic unloading process over time steps
is a Markov Decision Process.

The relevant proofs of the theorem are included in AP-
PENDIX A. The proof for special case is provided in AP-
PENDIX A-A, while the proof for general case is provided
in APPENDIX A-B. According to Theorem 5, the dynamic
unloading process is a Markov decision process. To conduct
algorithm design based on it, it is necessary to mathematically
define the state of RSU at time step t.

The state of RSU e at time t is represented as:

ote =
�
e, t,DisV t

e
, DKt

e
, CKt

e
, TKt

e

, (16)

where DisV t
e

represents the set of spatial distance between
vehicle v 2 V t

e and RSU e , DKt
e
, CKt

e
and TKt

e
represent the

set of data size dk, CPU cycle frequency ck, and deadline tk
of task ktv 2 Kt

e. Therefore, the state space of the system at
time t can be represented as ot = {ot1, · · · , o

t
e, · · · , o

t
E}.

The action space of each RSU e consists of the task
offloading decisions requested by v 2 V t

e , represented as:

ate =
n
qt
v,e0

���8e
0
2 E , 8v 2 V t

e

o
, (17)

where qt
v,e0
2 {0, 1} indicates whether the task ktv is offloaded

at the RSU e
0
. The set of actions for RSUs is represented as

at = {ate |8e 2 E }. P
�
ot+1

|ot, at
�
2 (0, 1) denotes the

probability of state transition from the current state ot to the
next state ot+1 obtained by randomly sampling the action of
the policy function.

In the potential game model, our purpose is to offload tasks
to proper RSUs so as to maximize the system’s cumulative

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3590747

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on August 19,2025 at 07:24:27 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2025 8

reward. Therefore, we use the potential function of the system
to represent its reward function at time t, expressed as:

r
�
at
��ot

�
=
X

e2E
Ue(⇣) =

X

e2E
 t
e. (18)

Under the system state ot, the reward function of the system
is used to construct the reward for RSU e with action ate:

rte = r
�
at
��ot

�
� r

�
at�e

��ot
�
, (19)

where r
�
at�e |o

t
�

is the system reward obtained when RSU
e makes no contribution. The reward set of RSUs is rep-
resented as rt = {rt1, · · · , r

t
e, · · · , r

t
E}. In Fed-MADDPG,

the expected return optimized by each e is represented as
Rt

e =
P

i>0 �
irt+i

e , where � is the discount factor.

D. Federated Training

In the federated learning framework, parameter sharing
occurs across all agents’ policy networks while maintaining
the confidentiality of diverse tasks. This method addresses the
restricted observability issue in centralized training and execu-
tion within traditional MADDPG. Consequently, we introduce
the Fed-MADDPG algorithm, which facilitates the potential
game model’s convergence to the Nash equilibrium with
enhanced accuracy, ensuring the privacy of vehicle owners.

At the outset, the policy and value network parameters for
RSUs are randomly initialized locally, represented by ✓e and
!. Simultaneously, the parameters of the target policy and
target value networks in the learner are initialized identically
to the local networks, expressed as ✓�e and !�. A replay buffer
H is initialized with a maximum capacity of |H| to archive
past experiences. The procedural flow of the Fed-MADDPG
training is depicted in Algorithm 1.

During the local training process, the cooperative rela-
tionship among multiple agents adopts a centralized training
and decentralized execution approach. As a result, different
agents have distinct policy networks but share the same value
network. During the initialization and experience collection
stages, each RSU e is regarded as an agent that gains
experience through interactions with the environment and
stores experience in the replay buffer. It is equipped with the
capability for local training based on the DDPG algorithm and
can share its policy network within the FL framework. Thus,
the task offloading action of RSU e at time t is:

ate ⇠ µ
�
·
��ote; ✓e

�
+ "Nt, (20)

where Nt is the exploration noise and " is the exploration
constant. Execute action at and get the reward according to
the reward function. Finally, the state ote, action ate, reward
rte, and the next state ot+1

e are added into the replay buffer H.
The training process continues until the model converges.

During the parameter update phase, from the buffer M , each
mini-batch of decision sequence of length N is selected to
train the local policy and value network, and transformed into�
oi:i+N , ai:i+N�1, ri:i+N�1

�
. First, we compute the TD target

for agent e based on the parameters of the target critic network
and the target policy network:

Algorithm 1: Fed-MADDPG Algorithm
Input : DisV t

e
: Set of distance between each vehicle

v in V t
e and RSU e;

DKt
e
: Set of data size of each task ktv in Kt

e;
CKt

e
: Set of CPU cycle frequency;

TKt
e
: Set of deadline of each task ktv in Kt

e.
Output: Optimized policy network parameters.

1 Randomly initialize local network weights ✓e and !;
2 Copy the local network weights to the target network;
3 Initialize replay buffer H;
4 for ↵=1 to Max-iterations do
5 for t=1 to T do
6 for e=1 to E do
7 Generate the action ate according to

Eq. (20) ;
8 Execute the action ate and obtain ot+1

e and
rte;

9 Store
�
ote, a

t
e, o

t+1
e , rte

�
into replay buffer H;

10 Randomly sample M samples from the
replay buffer of length N ;

11 Compute the TD target Y i
e based on the

samples and Eq. (21);
12 Compute TD error �i based on Eq. (22);
13 Update the parameters of the local value

network based on Eq. (23);
14 Update the parameters of the local policy

network based on Eq. (24);
15 if t = k · ttg, 8k 2 Z then
16 Update target network weights based on

Eq. (25);

17 if ↵ = k · ↵tg, 8k 2 Z then
18 for e=1 to E do
19 Send local policy network parameters ✓↵+1

based on Eq. (26);
20 Aggregate policy network parameters ✓↵+1

based on Eq. (27);
21 Distribute the aggregated parameters to the

policy network of each agent based on
Eq. (28);

22 end

Y i
e =

N�1X

n=0

�
�nri+n

e

�
+ �NQ� �

oi+N
e , µ� �

·
��oi+N

e ; ✓�e
� ��!� �.

(21)
where ai+N =

�
ai+N
1 , · · · , ai+N

e , · · · , ai+N
E

.

Next, we compute the TD error based on the locally
observed Q-value and the TD target:

�i =
1

M

X

i

�
Q
�
oie, a

i
e |!

�
� Y i

e

�2
. (22)

Then, we compute the gradient by pi! =
@Q(oie,ai

e|!)
@! |!=!i ,

and update the local value network by minimizing the TD error
during the backpropagation process:

!i+1 = !i
� ��ipi!. (23)

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3590747

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on August 19,2025 at 07:24:27 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2025 9

Next, we compute the policy gradient of the local policy

network of RSU e by pi✓e = 1
M

P
i

✓
@ log µ(·|oie;✓e)

@✓e

��
✓e=✓i

e

◆
,

and update its parameters using gradient ascent:

✓i+1
e = ✓ie + ⇢Q

⇣
oie, a

i
e |!

i
⌘
pi✓e . (24)

Finally, if ttg | t, the agents update the target network
parameters, with ttg being the target network parameter update
cycle. The update process is as follows:

(
✓�e n✓e + (1� n) ✓�e ,

!�
 n! + (1� n)!�.

(25)

The application of a federated learning framework can be
seen as introducing a global perspective to the model. In
each iteration, after the local model completes its training,
each local model uploads its policy network parameters for
aggregation. The aggregated parameters are then distributed
back to the local models, enhancing the model’s ability to
evaluate decision-making completeness from a global perspec-
tive. ↵tg is used as the aggregation period to control how
often the server aggregates the policy network parameters from
multiple clients in the federated learning framework. Every ↵tg

iterations, after the local model of each agent is well-trained,
the parameters from the local value model are temporarily
stored as they are no longer needed, and the parameters from
the local policy network are sent to the VEC POOL by:

✓↵1 , ✓
↵
2 , · · · , ✓

↵
E ! ⇥, (26)

where ⇥ = {✓↵e |e 2 1, 2, · · · , E } is stored in the VEC POOL
temporarily. Then, the VEC POOL aggregates the parameters
from the clients into new parameters:

✓↵+1

1

E

EX

e=1

✓↵e , ✓
↵
e 2 ⇥. (27)

Finally, the aggregated policy network parameters are dis-
tributed to each agent for training in a new iteration:

✓↵+1
1 , ✓↵+1

2 , · · · , ✓↵+1
E ✓↵+1. (28)

V. PERFORMANCE EVALUATION

A. Experimental Setup

This section describes the experimental configuration, in-
cluding parameter settings, datasets, baselines, and evaluation
metrics, to validate the performance of our algorithm.

The experiments were conducted in a virtual environment
configured using Python 3.9, TensorFlow 2.8.0, CUDA 11.2,
and CuDNN 8.1.1, managed through Conda. To accommodate
the distributed nature of FL, certain dependencies utilized
built-in versions of CUDA and CuDNN, such as ‘nvidia-cuda-
nvrtc-cull==11.7.99’. The simulation model was executed on
an Ubuntu 20.04.1 server equipped with an Intel(R) Xeon(R)
Silver 4214R 12-core processor at 2.40 GHz, five NVIDIA
GeForce RTX 3090 GPUs, and 503 GB of memory.

1) Parameters Setting: The simulation environment was
designed to represent a realistic VEC scenario, with 8 RSUs
evenly distributed along a 3 km road. The computing power of
the RSUs ranged between 3 GHz and 10 GHz, while the V2I
communication range was set to 500 m. Network bandwidth
settings included 54 Mbps (802.11g), 450 Mbps (802.11n),
and 866.7 Mbps (802.11ac wave1), with values selected from
the theoretical maximum data rates in [43].

The parameters used in the Fed-MADDPG algorithm are
based on the configurations in [31], as detailed in Table III.

TABLE III: Simulation Parameters

Parameter Value

Max-iterations 6100
Loss rate � 0.990
Number of training batches M 256
Maximum capacity of experience pool |H| 106

Exploration rate " 0.5
Learning rate for value network 10�4

Learning rate for policy network 10�5

Updating frequency of target network weights ttg 150
Aggregation Period ↵tg 500

2) Datasets: The training data was sourced from the Didi
GAIA Open Data, collected on November 16, 2016. This
dataset includes vehicle trajectory data across a 9 km2 section
in the Qingyang District of Chengdu. For this study, a 3
km-long and 35 m-wide expressway was selected as the
experimental focus area.

To simulate different service scenarios, data from three time
periods (8 am - 8:05 am, 1 pm - 1:05 pm, and 6 pm - 6:05 pm)
was utilized. During the three periods, the vehicle trajectories
are most dense at noon, followed by the morning, with the
evening period being the least dense. Based on the statistical
data, we can calculate the total number of vehicle trajectories
and the number of vehicles passing through each grid per
second in three different scenarios [31]. These metrics will
be used to describe the distribution of vehicles in both the
time and spatial dimensions as environmental information.

As shown in Fig. 3, the original trajectory data had long
collection intervals, which are insufficient for algorithm train-
ing. Missing data points were filled using the mean value to
ensure higher data density. Fig. 3a and Fig. 3b illustrate the
trajectory data before and after filling.

(a) Before Filling (b) After Filling

Fig. 3: Comparison of Trajectories Before and After Filling

3) Baselines: To evaluate the performance of our algorithm,
we conducted comparative experiments with four baselines:

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3590747

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on August 19,2025 at 07:24:27 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2025 10

• Offloading-Request Migration (ORM) [31]: This
method involves task offloading and resource allocation,
with RSUs migrating tasks to other RSUs to balance the
workload.

• Offloading-Request Local (ORL) [44]: RSUs tend to
compute tasks locally without offloading to other nodes,
reducing communication overhead but potentially limit-
ing computational efficiency.

• Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) [31]: Each RSU acts as an independent
agent and implements MADDPG for task offloading
decisions influenced by resource allocation.

• Multi-Agent Soft Actor-Critic (MASAC) [45]: Each
RSU acts as an independent agent and implements
MASAC for task offloading decisions influenced by re-
source allocation.

4) Metrics: To comprehensively evaluate the proposed al-
gorithm, the following metrics were employed:

• Task Completion Rate: The ratio of successfully com-
pleted tasks to the total number of tasks within a given
timeframe, which can be obtained by Eq. (7).

• Cumulative Reward: The total reward accumulated by
the system during the entire scheduling period that re-
flects the overall performance of the system, which can
be obtained by Eq. (18).

• Average Realized Potential: The rewards divided by
RSUs, which is defined as

P
e✏E

P
t✏T r

t
e/E [31], mea-

sures the advantages of constructing the reward function
through the potential function.

B. Experimental Results and Analysis

1) Impact of Traffic Volume: Regarding the impact of traffic
volume on algorithm performance, the results are shown in
Fig. 4. Fig. 4a shows the task completion rate and the error
bars of the five algorithms under different traffic volumes.
The Fed-MADDPG algorithm significantly outperforms other
algorithms. As traffic volume increases, the performance gap
between Fed-MADDPG and the others becomes more pro-
nounced, indicating that Fed-MADDPG is better equipped to
handle heavy traffic conditions. This improvement suggests
that Fed-MADDPG efficiently balances task offloading and
resource allocation, resulting in higher task completion rates.

Fig. 4b shows the average realized potential and the error
bars of the five algorithms under different traffic volumes.
The results indicate that Fed-MADDPG provides significantly
higher realized potential compared to the other algorithms.
This reflects its superior ability to allocate resources effec-
tively and distribute rewards more efficiently among RSUs,
especially as the traffic volume increases.

With increasing traffic volume, all algorithms exhibit im-
provements in task completion rate and average realized po-
tential, yet Fed-MADDPG consistently outperforms the others.
This indicates that although higher traffic levels necessitate
greater resource allocation, Fed-MADDPG demonstrates su-
perior scalability, effectively enhancing task completion and
reward distribution concurrently.

(a) Task Completion Rate under Different Traffic Volumes

(b) Average Realized Potential under Different Traffic Volumes

Fig. 4: Comparison of Algorithm Performance under Different
Traffic Volumes

2) Impact of Aggregation Period ↵tg: Fig. 5a, Fig. 5b,
and Fig. 5c illustrate the relationship between aggregation
period ↵tg and the task completion rate under different traffic
volumes. The x-axis represents the aggregation period, ranging
from 50 to 900, while the y-axis denotes the task completion
rate. The bars show a clear trend: as the aggregation period
increases from 50 to 500, the average task completion rate
improves significantly. However, after reaching an aggregation
period of 500, the improvement slows and plateaus, with only
marginal differences from 500 to 900.

This trend can be attributed to the trade-off between the
global system’s performance and efficiency. A lower aggre-
gation period allows for faster model convergence due to the
frequent aggregation of the policy network parameters, but
fails to capture the global dynamics, resulting in suboptimal
performance. Conversely, a longer aggregation period provides
more time for local updates, which helps in capturing global
relationships but slows down convergence. The trend after
↵tg = 500 suggests that further increasing the aggregation
period has a negligible impact on the model performance, as
the global model has already captured sufficient dynamics.
Therefore, we selected ↵tg = 500 as the aggregation period
for subsequent experiments.

3) Impact of RSU Computational Capabilities ce: Regard-
ing the impact of different RSU computational capabilities
on algorithm performance, the results are presented in Fig. 6.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3590747

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on August 19,2025 at 07:24:27 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2025 11

(a) Scenario 1

(b) Scenario 2

(c) Scenario 3

Fig. 5: Effect of Aggregation Period on Task Completion Rate
under Different Traffic Volumes

As expected, the stronger the computational capability of the
RSUs, the more tasks can be executed within the specified
time, leading to better algorithm performance.

Fig. 6a shows the task completion rate and the error bars
of the five algorithms under different RSU computational ca-
pabilities. As the computational power of the RSUs increases,
all algorithms experience a noticeable improvement. However,
Fed-MADDPG consistently outperforms the other algorithms
across all computational capabilities, demonstrating its supe-
rior ability to handle task offloading and resource management.
The improvement in task completion rate with stronger RSU
computational capabilities reflects the importance of compu-
tational resources in ensuring timely task execution and the
overall effectiveness of the system.

Fig. 6b illustrates the average realized potential and the error
bars of the five algorithms with varying RSU computational
capabilities. This metric reveals that as RSU computational
capabilities increase, the Fed-MADDPG algorithm provides
significantly higher realized potential compared to the other
algorithms. This indicates that Fed-MADDPG is not only
better at handling task offloading but also excels at efficiently
distributing rewards to RSUs. The improvement in realized
potential emphasizes the value of the potential function-based
reward structure, which allows RSUs to contribute to the
system performance more effectively.

In summary, these results highlight the critical role of RSU
computational capabilities in improving both task completion
rates and the efficient distribution of rewards. Based on these
insights, we choose to distribute the RSU computational
capabilities ce evenly across multiple RSUs in the range of
[3, 10]. This distribution ensures that the system has sufficient

(a) Task Completion Rate

(b) Average Realized Potential

Fig. 6: Comparison of Algorithm Performance under Different
RSU Computational Capabilities

capacity for varying traffic scenarios while maintaining the
flexibility to adapt to different computational requirements.

4) Convergence Analysis: Fig. 7 provides a comparative
analysis of the cumulative rewards of the five algorithms
under different traffic scenarios. The figure was generated
by recording the cumulative reward every 10 iterations, vi-
sualizing the entire training process. To enhance clarity, we
applied Gaussian smoothing with a standard deviation of 10,
where larger shaded regions indicate greater variability in
the results. The observed larger variability in Fed-MADDPG
and MADDPG can be attributed to the task heterogeneity
introduced by multi-agent computing.

In terms of performance, the figure highlights several key
observations. For each subfigure, under the current parameter
settings, Fed-MADDPG demonstrates superior performance
compared to the other algorithms. Although it converges at
around 3,000 iterations, which means that its convergence
speed is slightly slower than that of MADDPG, the trade-
off is acceptable given its higher cumulative rewards. On
a broader scale, our algorithm performs consistently well
across all traffic scenarios. Notably, in Scenario 2, which
corresponds to peak traffic conditions during midday, the
denser the traffic, the better the algorithm’s performance. This

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3590747

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on August 19,2025 at 07:24:27 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2025 12

Fig. 7: Comparison of Algorithm Convergence under Different Traffic Conditions

indicates the robustness of our approach to managing diverse
traffic conditions effectively.

VI. CONCLUSION AND FUTURE WORK

In this paper, we federally train a scheduling model that
jointly optimizes task offloading and resource allocation to
maximize task completion rate. We prove that the task of-
floading process influenced by resource allocation is a non-
cooperative potential game and further propose the Fed-
MADDPG algorithm, which uses the potential function as
the reward function. Simulation experiments demonstrate that
Fed-MADDPG exhibits superior performance in terms of
task offloading completion and future offloading completion
trends across various traffic scenarios. In future research, we
consider further expanding the system model to the cloud side
collaborative scene, effectively combining the on-board edge
computing and federated learning in a richer environment, and
completing the training of the collaborative model.

ACKNOWLEDGMENTS

This work is supported by the National Natural Sci-
ence Foundation of China (62401190 and 62071327), the
Zhejiang Provincial Natural Science Foundation of China
(LQN25F020016), and the Engineering and Physical Sciences
Research Council grant (EP/X040518/1 and EP/Y037421/1).

REFERENCES

[1] X. Long, Y. Zhao, H. Wu, and C.-Z. Xu, “Deep reinforcement learning
for integrated sensing and communication in ris-assisted 6g v2x system,”
IEEE Internet of Things Journal, vol. 11, no. 24, pp. 39 834–39 849,
2024.

[2] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of
autonomous driving: Common practices and emerging technologies,”
IEEE access, vol. 8, pp. 58 443–58 469, 2020.

[3] Y. Liang, H. Tang, H. Wu, Y. Wang, and P. Jiao, “Lyapunov-guided
offloading optimization based on soft actor-critic for isac-aided internet
of vehicles,” IEEE Transactions on Mobile Computing, vol. 23, no. 12,
pp. 14 708–14 721, 2024.

[4] H. Tang, H. Wu, G. Qu, and R. Li, “Double deep q-network based
dynamic framing offloading in vehicular edge computing,” IEEE Trans-
actions on Network Science and Engineering, vol. 10, no. 3, pp. 1297–
1310, 2023.

[5] X. Shen, J. Gao, W. Wu, K. Lyu, M. Li, W. Zhuang, X. Li, and J. Rao,
“Ai-assisted network-slicing based next-generation wireless networks,”
IEEE Open Journal of Vehicular Technology, vol. 1, pp. 45–66, 2020.

[6] Y. Liang, H. Tang, H. Wu, Y. Wang, and P. Jiao, “Lyapunov-guided
offloading optimization based on soft actor-critic for isac-aided internet
of vehicles,” IEEE Transactions on Mobile Computing, vol. 23, no. 12,
pp. 14 708–14 721, 2024.

[7] H. Wu, J. Chen, T. N. Nguyen, and H. Tang, “Lyapunov-guided delay-
aware energy efficient offloading in iiot-mec systems,” IEEE Transac-
tions on Industrial Informatics, vol. 19, no. 2, pp. 2117–2128, 2023.

[8] Y. Wang, P. Lang, D. Tian, J. Zhou, X. Duan, Y. Cao, and D. Zhao,
“A game-based computation offloading method in vehicular multiaccess
edge computing networks,” IEEE Internet of Things Journal, vol. 7,
no. 6, pp. 4987–4996, 2020.

[9] J. Yang, K. Yang, X. Dai, Z. Xiao, H. Jiang, F. Zeng, and B. Li, “Service-
aware computation offloading for parallel tasks in vec networks,” IEEE
Internet of Things Journal, vol. 12, no. 3, pp. 2979–2993, 2025.

[10] F. Zeng, Q. Chen, L. Meng, and J. Wu, “Volunteer assisted collaborative
offloading and resource allocation in vehicular edge computing,” IEEE
Transactions on Intelligent Transportation Systems, vol. 22, no. 6, pp.
3247–3257, 2021.

[11] J. Geng, Z. Qin, and S. Jin, “Dynamic resource allocation for cloud-
edge collaboration offloading in vec networks with diverse tasks,” IEEE
Transactions on Intelligent Transportation Systems, vol. 25, no. 12, pp.
21 235–21 251, 2024.

[12] J. Sun, Q. Gu, T. Zheng, P. Dong, A. Valera, and Y. Qin, “Joint
optimization of computation offloading and task scheduling in vehicular
edge computing networks,” IEEE Access, vol. 8, pp. 10 466–10 477,
2020.

[13] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 1, pp. 856–868, 2019.

[14] L. Qian and J. Zhao, “User association and resource allocation in large
language model based mobile edge computing system over 6g wireless
communications,” in 2024 IEEE 99th Vehicular Technology Conference
(VTC2024-Spring), 2024, pp. 1–7.

[15] M. Z. Alam and A. Jamalipour, “Multi-agent drl-based hungarian
algorithm (madrlha) for task offloading in multi-access edge computing
internet of vehicles (iovs),” IEEE Transactions on Wireless Communi-
cations, vol. 21, no. 9, pp. 7641–7652, 2022.

[16] S. R. Jeremiah, L. T. Yang, and J. H. Park, “Digital twin-assisted
resource allocation framework based on edge collaboration for vehicular
edge computing,” Future Generation Computer Systems, vol. 150, pp.
243–254, 2024.

[17] J. Xue, L. Wang, Q. Yu, and P. Mao, “Multi-agent deep reinforcement
learning-based partial offloading and resource allocation in vehicular
edge computing networks,” Computer Communications, vol. 234, p.
108081, 2025.

[18] S. S. Shinde and D. Tarchi, “Collaborative reinforcement learning for
multi-service internet of vehicles,” IEEE Internet of Things Journal,
vol. 10, no. 3, pp. 2589–2602, 2023.

[19] J. A. Onieva, R. Rios, R. Roman, and J. Lopez, “Edge-assisted vehicular
networks security,” IEEE Internet of Things Journal, vol. 6, no. 5, pp.
8038–8045, 2019.

[20] J. Kang, R. Yu, X. Huang, M. Wu, S. Maharjan, S. Xie, and Y. Zhang,
“Blockchain for secure and efficient data sharing in vehicular edge
computing and networks,” IEEE Internet of Things Journal, vol. 6, no. 3,
pp. 4660–4670, 2019.

[21] A. Jolfaei, K. Kant, and H. Shafei, “Secure data streaming to untrusted
road side units in intelligent transportation system,” in 2019 18th IEEE
International Conference On Trust, Security And Privacy In Computing
And Communications/13th IEEE International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE), 2019, pp. 793–798.

[22] W. Zhan, C. Luo, J. Wang, C. Wang, G. Min, H. Duan, and Q. Zhu,
“Deep-reinforcement-learning-based offloading scheduling for vehicular

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3590747

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on August 19,2025 at 07:24:27 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, 2025 13

edge computing,” IEEE Internet of Things Journal, vol. 7, no. 6, pp.
5449–5465, 2020.

[23] X. Li, L. Lu, W. Ni, A. Jamalipour, D. Zhang, and H. Du, “Feder-
ated multi-agent deep reinforcement learning for resource allocation
of vehicle-to-vehicle communications,” IEEE Transactions on Vehicular
Technology, vol. 71, no. 8, pp. 8810–8824, 2022.

[24] K. Tan, L. Feng, G. Dán, and M. Törngren, “Decentralized convex
optimization for joint task offloading and resource allocation of vehicular
edge computing systems,” IEEE Transactions on Vehicular Technology,
vol. 71, no. 12, pp. 13 226–13 241, 2022.

[25] Y. Zhang, X. Qin, and X. Song, “Mobility-aware cooperative task
offloading and resource allocation in vehicular edge computing,” in 2020
IEEE Wireless Communications and Networking Conference Workshops
(WCNCW), 2020, pp. 1–6.

[26] H. Xiao, J. Zhao, Q. Pei, J. Feng, L. Liu, and W. Shi, “Vehicle selection
and resource optimization for federated learning in vehicular edge
computing,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 8, pp. 11 073–11 087, 2022.

[27] Y. Ju, Y. Chen, Z. Cao, L. Liu, Q. Pei, M. Xiao, K. Ota, M. Dong,
and V. C. Leung, “Joint secure offloading and resource allocation for
vehicular edge computing network: A multi-agent deep reinforcement
learning approach,” IEEE Transactions on Intelligent Transportation
Systems, vol. 24, no. 5, pp. 5555–5569, 2023.

[28] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning
for offloading and resource allocation in vehicle edge computing and
networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 11,
pp. 11 158–11 168, 2019.

[29] Z. Ning, P. Dong, X. Wang, J. J. Rodrigues, and F. Xia, “Deep reinforce-
ment learning for vehicular edge computing: An intelligent offloading
system,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 10, no. 6, pp. 1–24, 2019.

[30] L. Zhao, S. Huang, D. Meng, B. Liu, Q. Zuo, and V. C. M. Le-
ung, “Stackelberg-game-based dependency-aware task offloading and
resource pricing in vehicular edge networks,” IEEE Internet of Things
Journal, vol. 11, no. 19, pp. 32 337–32 349, 2024.

[31] X. Xu, K. Liu, P. Dai, F. Jin, H. Ren, C. Zhan, and S. Guo, “Joint
task offloading and resource optimization in noma-based vehicular
edge computing: A game-theoretic drl approach,” Journal of Systems
Architecture, vol. 134, pp. 1383–7621, 2023.

[32] W. Fan, M. Hua, Y. Zhang, Y. Su, X. Li, B. Tang, F. Wu, and Y. Liu,
“Game-based task offloading and resource allocation for vehicular
edge computing with edge-edge cooperation,” IEEE Transactions on
Vehicular Technology, vol. 72, no. 6, pp. 7857–7870, 2023.

[33] X. Tang, X. Chen, L. Zeng, S. Yu, and L. Chen, “Joint multiuser dnn
partitioning and computational resource allocation for collaborative edge
intelligence,” IEEE Internet of Things Journal, vol. 8, no. 12, pp. 9511–
9522, 2021.

[34] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE communications surveys & tutorials,
vol. 22, no. 3, pp. 2031–2063, 2020.

[35] X. Yuan, J. Chen, N. Zhang, C. Zhu, Q. Ye, and X. S. Shen, “Fedtse:
Low-cost federated learning for privacy-preserved traffic state estimation
in iov,” in IEEE INFOCOM 2022 - IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), 2022, pp. 1–6.

[36] Z. Yu, J. Hu, G. Min, Z. Zhao, W. Miao, and M. S. Hossain, “Mobility-
aware proactive edge caching for connected vehicles using federated
learning,” IEEE Transactions on Intelligent Transportation Systems,
vol. 22, no. 8, pp. 5341–5351, 2021.

[37] Q. Xia, W. Ye, Z. Tao, J. Wu, and Q. Li, “A survey of federated learning
for edge computing: Research problems and solutions,” High-Confidence
Computing, vol. 1, no. 1, p. 100008, 2021.

[38] B. Xu, W. Xia, W. Wen, P. Liu, H. Zhao, and H. Zhu, “Adaptive hier-
archical federated learning over wireless networks,” IEEE Transactions
on Vehicular Technology, vol. 71, no. 2, pp. 2070–2083, 2022.

[39] S. Guo and B.-J. Hu, “Energy and gradient aware dynamic scheduling
for v2v aided federated edge learning,” IEEE Communications Letters,
vol. 28, no. 2, pp. 323–327, 2024.

[40] L. L. Peterson and B. S. Davie, Computer networks: a systems approach.
Elsevier, 2007.

[41] W. Stallings, Data and computer communications. Pearson Education
India, 2007.

[42] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algo-
rithms, 6th ed. Berlin, Heidelberg: Springer, 2018.

[43] Intel, “Different Wi-Fi protocols and data rates,” Available:
https://www.intel.com/content/www/us/en/support/articles/000005725.
Last Reviewed: 2021-10-28, Accessed: 2024-11-10.

[44] P. Dai, K. Hu, X. Wu, H. Xing, F. Teng, and Z. Yu, “A probabilistic
approach for cooperative computation offloading in mec-assisted vehicu-
lar networks,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 2, pp. 899–911, 2022.

[45] Y. Pu, S. Wang, R. Yang, X. Yao, and B. Li, “Decomposed soft
actor-critic method for cooperative multi-agent reinforcement learning,”
2021. [Online]. Available: https://arxiv.org/abs/2104.06655

Songxin Lei received the BSc degree from Tianjin
University, China in 2020. He is pursuing the M.S.
degree at Guangzhou Campus, The Hong Kong Uni-
versity of Science and Technology. His research in-
terests include spatio-temporal data mining, mobile
edge computing, and deep reinforcement learning.

Huijun Tang (Member, IEEE) received the BSc
degree from Jinan University, China in 2016 and
the M.S. and Ph.D. degrees from Tianjin University,
China in 2018 and 2022, respectively. She is cur-
rently a post-doctoral research associate at Durham
University, UK. Her research interests include inter-
net of things, mobile edge computing, deep learning
and complex networks.

Chuangyi Li is currently pursuing the BSc degree at
Tianjin University, China. His research interests in-
clude machine learning, deep learning, and efficient
intelligent computing.

Xueying Zhang received the BSc degree from China
University of Petroleum (East China), China in 2024.
She is currently pursuing the M.S. degree at the
Center for Applied Mathematics, Tianjin University,
China. Her research interests include edge comput-
ing, internet of things, and federated learning.

Chenli Xu received the B.Sc. degree from Hunan
University, China, in 2021. She is currently pursu-
ing the Ph.D. degree at Tianjin University, China.
Her research interests include game theory and its
applications, and sparse optimization.

Huaming Wu (Senior Member, IEEE) received the
B.E. and M.S. degrees from Harbin Institute of
Technology, China in 2009 and 2011, respectively,
both in electrical engineering. He received the Ph.D.
degree with the highest honor in computer science
at Freie Universität Berlin, Germany in 2015. He
is currently a Professor at the Center for Applied
Mathematics, Tianjin University, China. His research
interests include mobile cloud computing, edge com-
puting, internet of things, deep learning, complex
networks, and DNA storage.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3590747

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on August 19,2025 at 07:24:27 UTC from IEEE Xplore. Restrictions apply.

