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DNA data storage for biomedical images 
using HELIX
 

Guanjin Qu1, Zihui Yan2,3, Xin Chen1,3 & Huaming Wu    1,3 

Deoxyribonucleic acid (DNA) data storage is expected to become a key 
medium for large-scale data. Biomedical data images typically require 
substantial storage space over extended periods, making them ideal 
candidates for DNA data storage. However, existing DNA data storage 
models are primarily designed for generic files and lack a comprehensive 
retrieval system for biomedical images. Here, to address this, we propose 
HELIX, a DNA-based storage system for biomedical images. HELIX 
introduces an image-compression algorithm tailored to the characteristics 
of biomedical images, achieving high compression rates and robust error 
tolerance. In addition, HELIX incorporates an error-correcting encoding 
algorithm that eliminates the need for indexing, enhancing storage 
density and decoding speed. We utilize a deep learning-based image repair 
algorithm for the predictive restoration of partially missing image blocks. 
In our in vitro experiments, we successfully stored two spatiotemporal 
genomics images. This sequencing process achieved 97.20% image quality  
at a depth of 7× coverage.

DNA data storage is an emerging method that utilizes DNA molecules 
to store digital information. This technique offers extremely high 
storage density, with the potential to store up to 455 EB of informa-
tion in just 1 g of DNA1. In addition, DNA molecules have a remarkably 
long storage lifespan and require no power for preservation. Research 
has demonstrated that DNA molecules can recover information even 
after 10,000 years of storage at room temperature2. These unique 
advantages make DNA data storage a promising candidate for the 
next-generation of storage medium, particularly for large-scale data 
management3–5.

Owing to the involvement of biochemical reaction processes, DNA 
data storage has a relatively slower write–read bandwidth. As a result, 
it is better suited to serving as large-scale cold data storage intended 
for less frequent usage. One potential application domain could be 
biomedical data images, encompassing genomics pictures, medical 
images and similar data types. These images typically exhibit high reso-
lution, have long-term storage requirements and are accessed infre-
quently. However, current DNA data storage models are mainly focused 
on error-correction codes6–10 and bioinformatic algorithms11–13, which 
present certain drawbacks when applied to the storage of biomedical 

data images. Traditional computer-based image-compression algo-
rithms are not suitable for DNA data storage. For high-resolution bio-
medical data images, the use of lossless image compression requires a 
large amount of storage, which poses a challenge given the current high 
cost of DNA data storage. In addition, traditional image-compression 
algorithms cannot correct synchronization errors that may occur in 
DNA data storage, which can result in minor errors that render the 
entire image unrecoverable.

Although some image-compression algorithms for DNA data stor-
age have been developed10,14–16, they typically rely on error-correcting 
codes that can fail, leading to the loss of the entire image if not all errors 
are corrected. To address the unique characteristics of biomedical data 
images and the current limitations of DNA data storage, it is essential to 
develop a comprehensive system that integrates image compression 
and error correction.

In this paper, we introduce a DNA data storage system tailored for 
biomedical data images, called HELIX. The system comprises three key 
components: image compression, error correction and image resto-
ration. For the large size of biomedical images, image-compression 
modules enable high compression rates while ensuring that most of 
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the sequence because the error-correction module can recognize the 
header information of the image-compression module during decod-
ing, which improves the code rate.

For potentially corrupted blocks in the decoded image, we intro-
duce a deep learning-based image-restoration algorithm. This algo-
rithm can predict and repair erroneous blocks. Owing to the strict 
content requirements of some medical images, we provide users the 
option to enable or disable this feature. If the image-restoration algo-
rithm is activated, a 1 B cyclic redundancy check (CRC) check bit is 
appended to the end of each sequence. Each sequence is then decoded 
and the check digit is verified. Blocks that fail the check are flagged, 
identifying the locations of the erroneous image blocks. Figure 1c 
illustrates the network structure used for the image-restoration model, 
which employs a loss-function mechanism combined with genera-
tive adversarial networks17. Unlike traditional image-restoration algo-
rithms, our method addresses the high resolution of biomedical data 
images by focusing on local restoration. Instead of processing the 
entire image, the algorithm predicts the information of the damaged 
block by analyzing the context around the erroneous area.

HELIX ensures that stored images are robust and maintain high 
bit rates by utilizing the three modules described above. In addi-
tion, homopolymer constraints can reduce errors generated dur-
ing synthesis18–20. We achieve this by controlling the block size of the 
error-correction code, ensuring that the homopolymer length is typi-
cally less than five. Next, we verify the effectiveness and advantages 
of HELIX through both simulations and in vitro storage experiments.

Effectiveness evaluation of HELIX in simulation experiments
We selected three biomedical datasets for our simulation experiments: 
spatiotemporal histology slices21, human knee X-ray images22 and 
human lung computed tomography images23. From these datasets, 
we randomly chose a subset of images for our experiments. To verify 
the effectiveness of our image-compression algorithm, we compared 
it against several common image-compression schemes, including 
JPEG, BMP and GIF.

Figure 2 shows the impact of different image formats and the 
number of bases required when a small number of errors occur. The 
images suffer from the same 0.1% probability of deletion, substitu-
tion and insertion errors. To evaluate the effectiveness of HELIX’s 
image-compression algorithm, this experiment did not include the 
error-correction function. BMP and HELIX show the best tolerance 
for errors, retaining most of the image information despite errors. 
GIF, while having a high code rate for binary images, fails to recover the 
image information due to damage to key parts. JPEG suffers from color 
errors caused by its differential coding method. BMP error regions are 
more finely grained compared with HELIX because HELIX chunks the 
image. However, the number of bases required for BMP is substantially 
higher, increasing the cost of DNA digital storage. The number of bases 
encoded by JPEG and HELIX are similar and relatively low. Although 

the image content can be recovered even in the presence of a small 
number of errors. Table 1 illustrates the differences between HELIX 
and current image-compression algorithms for DNA data storage. By 
integrating the error-correction module with the image-compression 
module, we enable direct access to image information within the 
sequence during error-correction decoding, eliminating the need for 
indexing during the error-correction coding process. This approach 
substantially enhances information storage density. Meanwhile, our 
error-correction coding shows an exceptionally high decoding speed, 
capable of processing approximately 200,000 sequences per second. 
In addition, we introduce a deep learning-based image-restoration 
scheme that performs specific image restoration to improve the quality 
of image restoration when the decoded image contains error blocks. 
In a biomedical experiment involving the storage of two images total-
ing 60 MB, the results show that most of the image information can be 
recovered even at a sequencing depth of 7×, validating the reliability 
of the model.

Results
General principle and features of HELIX
The modeling framework of HELIX, illustrated in Fig. 1, comprises three 
key modules: image compression, error correction and image resto-
ration. The image-compression module is responsible for compress-
ing the image and segmenting it into sequences of information. The 
error-correction module handles DNA synthesis and sequencing errors. 
The image-restoration module is responsible for restoring any error 
blocks that may exist after the image decoding process. Users have the 
flexibility to decide whether to utilize the image-restoration module.

We designed an image-compression module specifically for DNA 
storage and biomedical data images to compress and encode images 
into base sequences. Compared with traditional image-compression 
algorithms, we consider the possibility of errors during DNA storage 
and use a chunking approach to ensure that no error will cause a chain 
reaction. In addition, we introduce a base mapping mechanism to 
reduce the homopolymer length of the base sequences. To improve 
the encoding rate of uniform background biomedical data images, 
we used a mechanism that does not record consecutive repetitive 
chunks of information. This mechanism is shown in Fig. 1d. Only the 
first block in each row is recorded in regions with the same color, 
thus greatly improving the image-compression efficiency. During 
decoding, if a block index is missing, it is assumed to be the same as 
the previous block. After the image is encoded, the sequence will be 
encoded for error correction so that the error can be corrected during 
the decoding process. HELIX employs a cascading coding scheme: 
additional sequences are first encoded using longitudinal outer cod-
ing, followed by inner coding for each sequence. During decoding, 
the inner code is decoded first to correct within-sequence errors, and 
then the longitudinal outer code is decoded to resolve sequence loss. 
HELIX performs error-correction coding without adding indexes to 

Table 1 | Comparison between HELIX and existing image-compression algorithms for DNA data storage

Reference Multi-image 
storage

Image 
compression

Content-aware 
optimization

Fault tolerance Error correction Image repair

DNA-QLC14 ✗ ✓ ✗ ✗ ✓ ✗

HL-DNA34 ✗ ✓ ✓ ✓ ✗ ✗

Franzese et al.35 ✓ ✓ ✗ ✓ ✗ ✗

Wu et al.36 ✗ ✓ ✗ ✓ ✗ ✗

Rasool et al.15 ✓ ✓ ✓ ✗ ✗ ✗

Dimopoulou et al.37 ✗ ✓ ✗ ✓ ✗ ✗

Pan et al.10 ✓ ✓ ✗ ✗ Partial ✓

Bhaya et al.38 ✗ ✓ ✓ ✗ ✗ ✗

HELIX ✓ ✓ ✓ ✓ ✓ ✓
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JPEG has a higher compression ratio, it is more prone to overall errors 
when minor errors occur in the image. In conclusion, HELIX shows high 
error tolerance and effective image compression, making it well suited 
for DNA data storage.

We used structural similarity index measure (SSIM), peak 
signal-to-noise ratio (PSNR), mean squared error (MSE), feature simi-
larity index (FSIM), multi-scale structural similarity index measure 
(MS-SSIM) and universal quality index (UQI) as metrics to evaluate the 
quality of image restoration. Figure 3a illustrates the changes in these 

metrics at different error rates. The horizontal axis represents the error 
rate, increasing by 0.3% at each step (with equal probabilities for inser-
tion, deletion and substitution errors), and the number of sequence 
copies is 10. In the initial stage, the metrics remain relatively stable, 
indicating that the error-correcting code efficiently corrects all errors 
during this period. However, once the error rate exceeds the upper 
limit of the error-correction capability, the metrics begin to fluctuate. 
The slower fluctuation of the metrics is attributed to the robustness of 
the HELIX image-compression algorithm, which mitigates the overall 
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Fig. 1 | The overall modeling framework of HELIX. a, Image-compression 
algorithm. First, the image is divided into 16 × 16 image blocks and compressed. 
The compressed image information will be converted into sequences and header 
information will be added to each sequence. Here RGB represents the color space 
composed of red, green and blue, and YUV represents the color space based on 
luminance and chrominance. b, Error-correction algorithm. This algorithm is a 
cascade code that combines inner code and outer code. The inner code combines 
Levenshtein and Marker (LM) coding, and the outer code uses Reed–Solomon 
(RS) coding. c, Image-restoration algorithm. In case of image block corruption, 

a small surrounding area of the image is selected for prediction. The prediction 
results are then used to repair the corrupted block. d, Special mechanisms of the 
image-compression algorithm. On the left side, the base mapping mechanism is 
illustrated. Here, the image-coded sequence is divided into multiple segments. 
The algorithm counts the frequency of each segment and maps those with higher 
occurrences to base combinations with superior biochemical properties. On 
the right side, a unique de-duplication mechanism is depicted. Only the first 
block of each repeating sequence is recorded when the image-encoding process 
encounters consecutive repeating blocks of information.
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damage to the image. In addition, HELIX performs better for spati-
otemporal histology (STH) images, which is mainly due to the high 
resolution of STH images. HELIX deterministically segments images 
into fixed 16 × 16 pixel blocks. Thus, for high-resolution images, block 
damage has a smaller effect on the overall image quality.

To evaluate the effectiveness of the HELIX image-compression 
algorithm, we selected several representative image-compression 
algorithms as benchmark algorithms10,14,15, where HELIX without 
the error-correction module (HELIX_WEC) shows the effect of the 
image-compression algorithm. Figure 3c shows the number of bases 
required to store an X-ray image. It can be seen that QLC14 and HELIX 
have the least bases and show a very high compression rate. EDS15 
requires the most number of bases as it is lossless compression. 
Figure 3d shows the image recovery under different error rates. EDS 
and 2DDNA10 can not recover the image at 0.1% error rate because they 
do not have error resilience, and QLC can not recover the image at 0.3% 
error rate even though it has an error-correction algorithm. HELIX, 
which uses only the image-compression algorithm, not only has the 
highest SSIM value under lossy compression but also has an SSIM value 
that decreases slowly as the error grows. The above experiments prove 
that the image-compression algorithm of HELIX has the characteristics 
of high compression and high error tolerance. We also compare the 
error-correction module of HELIX with other existing DNA storage 
error-correction algorithms in Supplementary Table 3.

Figure 3b shows the changes in image metrics after restoration, 
with the horizontal axis representing the error rate and the verti-
cal axis representing the image-quality metrics. It can be seen that 
the image-restoration algorithm improves image quality, although 
the improvement is modest as erroneous blocks are relatively few. 
Nonetheless, the algorithm effectively enhances the overall appear-
ance of the image. In addition, Fig. 3f shows the actual results of 
the image-restoration algorithm at an error rate of 6% error rate. 

It can be seen that the image-restoration algorithm substantially 
enhances the readability of the image and reduces the number of 
consecutive erroneous image blocks. In addition, zooming in shows 
that the image-restoration algorithm can substantially reduce some  
color errors.

To evaluate the effectiveness of HELIX in optimizing biomedical 
images, we encoded various types of dataset. Figure 3e compares 
the optimization rate of HELIX for biomedical images against other 
common datasets. The optimization rate is defined as the ratio of 
information omitted by the de-duplication mechanism to the total 
information, with a higher ratio indicating better compression. The 
results show that HELIX achieves a substantially better compression 
effect on biomedical images compared with common datasets. This 
indicates that HELIX is effectively optimized for coding based on the 
specific characteristics of biomedical images.

Experimental validation of HELIX in vitro storage
To further validate the effectiveness of HELIX, we conducted in vitro 
experiments by storing 2 images, totaling 60 MB, of spatiotempo-
ral genomics slices. After encoding, approximately 140,000 DNA 
sequences were generated, each with a length of 183 nucleotides (nt). 
Figure 4 shows the coding structure of the sequences. The net informa-
tion density (the number of information bits/the encoded nucleotides) 
is 26.22 bits per nt, and the code rate of the error-correction code is 
0.7918 bits per nt. The detailed calculation process is provided in Sup-
plementary Section 1.

Through PCR and sequencing technology, we obtained the 
sequenced DNA sequences. Details of the biomedical treatment are 
provided in Methods. For the post-sequencing sequences, we tried two 
different ways of processing the data. First, we sorted the sequences by 
their frequency of occurrence, selecting them from highest to lowest 
frequency. Figure 4 illustrates the decoding results after selection. As 
the number of sequences increases, the image quality improves rapidly, 
with the best restoration achieved at around 800,000 sequences. This 
balance is crucial: too few sequences result in substantial data loss, 
while too many introduce numerous erroneous sequences. In addi-
tion, we attempted random sequence selection. Using this method, 
the SSIM value reached 97.20% when reading 1 million sequences. At 
this point, the decoded image was nearly identical to the original. This 
experiment confirms the reliability of HELIX for practical DNA data 
storage applications.

Discussion
HELIX is a DNA-based data storage solution specifically designed for 
biomedical images, offering a broad range of potential applications. 
In the domain of long-term archiving and back-up, HELIX empowers 
medical data centers and bioinformatics fields to store vast quanti-
ties of biomedical images in a cost-effective and stable manner. This 
ensures reliable, long-term data preservation, providing an invaluable 
resource for advancing medical research. Compared with existing 
DNA data storage solutions10,14,15, HELIX incorporates a fault-tolerant 
mechanism that addresses potential decoding failures in long-term 
storage. This ensures that partial image recovery is possible even when 
errors occur, mitigating the risk of complete data loss during prolonged 
storage. Moreover, HELIX tackles the critical need for rapid data access 
in biomedical imaging. With an impressive decoding speed of 100,000 
entries per second, it greatly enhances read bandwidth, overcoming a 
key limitation of existing DNA storage technologies.

To enhance the readability of images after errors, we have intro-
duced an image-restoration algorithm that predicts missing informa-
tion to some extent. However, for rigorous biomedical images, the 
content predicted by the restoration algorithm may not always be 
reliable, posing a challenge in preserving the parameters of the neural 
network over time. In addition, HELIX employs lossy compression 
for image coding, which results in some loss of stored image details. 
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Fig. 2 | Fault-tolerance performance of different image-compression 
algorithms. The performance of different image-compression algorithms when 
0.1% error occurs. The images used for the assessment include spatiotemporal 
histology slices21 (top row), human lung computed tomography images23 (middle 
row) and human knee X-ray images22 (bottom row). It can be seen that the HELIX 
and BMP formats can still show a lot of the original information. In addition, the 
number of coding bases needed for HELIX and JPEG is much smaller than that for 
the other formats.
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Fig. 3 | Evaluation of the effectiveness of the HELIX simulation experiment.  
We repeated the experiment three times with different random seeds. For a and 
b, we selected different random seeds and repeated the experiment three times. 
Data are presented as mean values ± s.e.m. a, Plot of changes in image recovery 
metrics for HELIX with increasing error rates. b, Impact of image-restoration 
algorithms on image recovery with increasing error rate. CT, computed 
tomography. c, Comparison of the amount of bases in HELIX with other  
image-compression algorithms when storing the same image. d, Image recovery 

of HELIX with other image-compression algorithms as the error rate varies. 
e, Optimization rate of HELIX image-compression algorithm with different 
datasets. We used three widely recognized generic datasets: ImageNet, Common 
Objects in Context (COCO) and Visual Object Classes (VOC). The experimental 
data are based on the compression of three randomly selected images.  
f, Effectiveness of HELIX image-restoration algorithm on partially corrupted 
image blocks.
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While these details are typically imperceptible to the human eye, the 
information loss caused by lossy compression could prevent HELIX 
from storing highly detailed or complex images. Given the current 
high cost of DNA storage technology, adopting a high-bit-rate DNA 
storage scheme is crucial for the practical application of DNA data 
storage. Therefore, the combination of lossy compression and image 
restoration remains a promising approach for efficiently storing image 
data in DNA, despite these challenges.

The HELIX encoding did not exclude potentially risky DNA 
sequences, although constraints such as homopolymers were taken into 
account. Future studies will focus on avoiding specific DNA fragments 
to minimize biological risks associated with synthetic DNA24,25. HELIX is 
a DNA storage solution dedicated to biomedical images, which may be 
difficult to apply for general-purpose data. In follow-up studies, we will 
explore the use of HELIX to store images with similar background purity 
such as microscope images and satellite images, which will further 
enhance the versatility of HELIX. In addition, HELIX verifies that a dedi-
cated coding scheme for a certain type of data can have better results 
than a general-purpose storage scheme, in terms of both code rate and 
robustness. Designing specialized storage solutions for large-scale stor-
age needs, such as point cloud data and video data, is expected to be a 
key direction in advancing DNA data storage technology.

Methods
Image-compression module
The image-compression module compresses and encodes the original 
image, generating a set of quadratic sequences that facilitate the inclu-
sion of subsequent error-correction codes. Furthermore, it employs a 
chunked coding method to safeguard against the impact of indel errors 
(insertions and deletions). When such an error occurs, its influence is 

confined to the specific block and does not affect the entire image. The 
detailed encoding process is outlined in the following section.

Image compression. For the original image, we first split it into 
16 × 16 pixel blocks and converted each block into the YUV color space. 
This step leverages the human eye’s greater sensitivity to luminance 
and relative insensitivity to chromaticity. Next, we apply a discrete 
cosine transform (to the Y, U and V components of each block, followed 
by quantizing the discrete cosine transform coefficients26 to reduce 
data size. Unlike the JPEG compression algorithm27, we do not perform 
Huffman or arithmetic coding, as these operations would decrease the 
image’s fault tolerance.

Data segmentation and header integration. After the image compres-
sion, the information of the image block will be divided into sequences 
of specified length, and the header will be added to the sequences. 
The information of an image block can be represented by one or more 
sequences, and each sequence contains information of only one image 
block. This method can effectively reduce the transmission of errors. 
Specifically, each sequence consists of an index part and an information 
part. The information part records the data of the image block and its 
length is determined by the synthesis technique. The index part is usually 
3 B long and is used to identify the position of the sequence and track 
changes in the image. It consists of five components in order, namely, the 
image number index, the image block index, the cycle count, the termina-
tor and the CRC. The role of each component is explained in detail below.

•	 Image number index: this index serves to record the image num-
ber when storing multiple images. Given the current high cost of 
DNA data storage, approximately $3,000 or more for synthesiz-
ing 1 MB (ref. 28), we currently allocate 2 b for this index area by 
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Fig. 4 | Flowchart of in vitro experiments. The storage content is 2 
spatiotemporal histological images totaling 60 MB. HELIX encoding divides it 
into 125,000 chunks, each of which contains an 11 B information section, a 4 B 
index section and a 1 B checksum section. After that, each byte of each block was 
sequentially encoded for error correction, and after encoding, a total of 137,537 
sequences were generated with a length of 183 nt. We synthesized and sequenced 

a total of 8,468,836 sequences that were read. The sequences were sorted by 
frequency of occurrence after data cleaning and decoding were attempted for 
different read volumes. In the end, the image we attempted to decode after 
reading only 800,000 sequences (at a sequencing depth of 5.8×) recovered most 
of the information from the original image.
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default. As the cost of DNA synthesis decreases, there is poten-
tial to expand the image numbering index area further.

•	 Image block index: this index is designated for numbering 
the image blocks within an image. For images segmented into 
16 × 16 pixel blocks, the sorting is conducted from top to bot-
tom and left to right. The assigned location for recording this 
information is currently configured with 17 b, providing ample 
support for images containing up to 33,554,432 pixels.

•	 Cyclic number: the order of sequences will be completely dis-
rupted after DNA sequencing, and some sequences may be lost. 
To address this, we incorporate an innovative cycle count mecha-
nism into the index part. The cyclic number increments with 
each sequence as the image is encoded and resets to zero after 
reaching a specified threshold. Through the cycle count mecha-
nism, on the one hand, multiple sequences within the same 
image block can be sorted and, on the other hand, it can facilitate 
the design of subsequent error-correction codes. Currently, the 
cycle counting area is set to 5 b, ensuring proper functionality as 
long as no more than 32 consecutive sequences are lost.

•	 CRC: CRC is a widely used error-checking code designed to 
verify the occurrence of errors29. Recognizing the critical 
impact of errors in the index part, CRC is incorporated into this 
section for validation. Sequences failing the checksum after 
sequencing and decoding are promptly discarded. Currently, 
this region is configured with a 4 b setting.

Base mapping. For the sequence after image encoding, we use four 
bases as a unit block and calculate the frequency of occurrence of 
each unit block. The unit block with high frequency is mapped to a 
base unit block of the same length with good biochemical properties 
(for example, ATGC), and the unit block with low frequency is mapped 
to a base unit block of the same length with poor biochemical proper-
ties (for example, AAAA). This mapping is bijective and minimizes 
homopolymer formation and improves GC equilibrium. We give a more 
detailed description in Supplementary Fig. 10, and characterize the 
coding sequences from statistical in vitro experiments to exemplify 
the effectiveness of HELIX for biochemical constraints.

Error-correction module
Outer-code coding. As the outer code deals solely with erasure errors, 
such as the loss of column information due to missing sequences, we 
adopt the well-established Reed–Solomon (RS) coding scheme30. 
RS coding generates redundancy check codes by treating the data 
to be transmitted as the coefficients of a polynomial, enabling 
error-correcting decoding. As the index part of the sequence does 
not have a continuous index area, each RS block is divided based on 
the number of cycles. By default, every 7-cycle unit constitutes one 
RS-coded information block, which includes redundancy, totaling 
255 entries. During decoding, the sequence is first sorted based on the 
image index and block index, then RS blocks are divided according to 
the number of cycles and, finally, each RS block is decoded.

Inner-code coding. Our inner code uses a combination of Leven-
shtein and Marker coding (LM coding), known for its high code rate 
and error-correction capabilities31. The encoding process for each code 
word segment is divided into five parts: a marker bit, an information 
bit, a check bit, a separator bit and a syndrome bit. The marker bit is 
responsible for synchronization within the sequence. The information 
bit contains the original information. The check bit is responsible for 
checking whether an error has occurred or not. The split bit is respon-
sible for splitting the check bit with the remainder bit. The remainder 
bits are responsible for error correction of the information bits. As 
the length of the information site is four bases and is usually different 
from the front and back positions, this mechanism ensures that the 
homopolymer length of the encoded sequence is usually less than five. 

Unlike the original LM encoding method, we omit an extra index in each 
sequence. Instead, we use the image index and image block index from 
the index region for sorting, conserving space. In addition, by chunking 
the information sequence, we effectively reduce the homopolymer 
length, ensuring that it remains under five in the strictest scenarios.

In vitro experiment
Figure 4 illustrates the entire process of DNA data storage in vitro. 
The selection of DNA oligo pools is from Dynegene Technologies. The 
three pairs of primers, namely, 0F/0R, 1F/1R and 2FU/2R (1-4), were all 
synthesized by Dynegene Company.

The process began with centrifuging the dry DNA oligo pools at 
4 °C and 14,000 rpm. The oligos were quantified using a Nanodrop 
single-stranded DNA measurement, then diluted to 5 ng μl−1. For the 
initial amplification, a PCR mix was prepared with the following condi-
tions: 10 μl PCR mix, 0.5 μM of 0F/0R primers, 0.25 ng μl−1 DNA oligo 
pools, in a total volume of 20 μl, run for 7 cycles. After amplification, 
the PCR products were purified using 2.8× QuarAcces Hyper Pure Beads 
and quantified with Qubit double-stranded DNA. The purified PCR 
product was diluted to 0.1 ng μl−1 for a second PCR amplification, with 
the conditions: 10 μl PCR mix, 0.5 μM of 1F/1R primers, 0.005 ng μl−1 
PCR product, in a total volume of 20 μl, run for 10 cycles. Following this, 
the PCR products were again purified using 2.8× QuarAcces Hyper Pure 
Beads and quantified with Qubit double-stranded DNA.

The PCR products from the second amplification were diluted to a 
concentration of 1 ng μl−1 for the third PCR step. The reaction conditions 
were as follows: 10 μl PCR mix, 0.5 μM of 2F/2R primers, 0.05 ng μl−1 of 
second PCR products, in a total system volume of 20 μl, with 6 cycles 
performed. After this final PCR step, the products were purified and 
quantified using Qubit double-stranded DNA. Fragment analysis was 
carried out using an Agilent 2100 Bioanalyzer following three cycles of 
PCR. The resulting fragments were then subjected to next-generation 
sequencing and the quality of the sequencing data was assessed.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Sequencing data from in vitro experiments can be found at https://doi.
org/10.6084/m9.figshare.25957606.v1 (ref. 32). The images used in 
the HELIX test are all from publicly available datasets. The spatiotem-
poralomics image dataset is from ref. 21. The computed tomography 
image dataset is from https://doi.org/10.7937/K9/TCIA.2016.JGNIHEP5 
(ref. 23). The X-ray image dataset is from https://doi.org/10.17632/
t9ndx37v5h.1 (ref. 22).

Code availability
HELIX includes both Go and Python versions. The code can be found 
at https://doi.org/10.5281/zenodo.14699789 (ref. 33).
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