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Deoxyribonucleic acid (DNA) data storage is expected to become a key
medium for large-scale data. Biomedical dataimages typically require
substantial storage space over extended periods, making themideal

candidates for DNA data storage. However, existing DNA data storage
models are primarily designed for generic files and lack a comprehensive

retrieval system for biomedical images. Here, to address this, we propose
HELIX, aDNA-based storage system for biomedical images. HELIX
introduces animage-compression algorithm tailored to the characteristics
of biomedicalimages, achieving high compression rates and robust error
tolerance. In addition, HELIX incorporates an error-correcting encoding
algorithm that eliminates the need for indexing, enhancing storage
density and decoding speed. We utilize a deep learning-based image repair
algorithm for the predictive restoration of partially missing image blocks.
Inourinvitro experiments, we successfully stored two spatiotemporal
genomics images. This sequencing process achieved 97.20% image quality

atadepth of 7x coverage.

DNA datastorage is an emerging method that utilizes DNA molecules
to store digital information. This technique offers extremely high
storage density, with the potential to store up to 455 EB of informa-
tioninjust1gof DNA'. In addition, DNA molecules have aremarkably
long storage lifespan and require no power for preservation. Research
has demonstrated that DNA molecules can recover information even
after 10,000 years of storage at room temperature”. These unique
advantages make DNA data storage a promising candidate for the
next-generation of storage medium, particularly for large-scale data
management®>,

Owingtotheinvolvement of biochemical reaction processes, DNA
datastorage has arelatively slower write-read bandwidth. As aresult,
itis better suited to serving as large-scale cold data storage intended
for less frequent usage. One potential application domain could be
biomedical data images, encompassing genomics pictures, medical
images and similar datatypes. Theseimages typically exhibit high reso-
lution, have long-term storage requirements and are accessed infre-
quently. However, current DNA data storage models are mainly focused
onerror-correction codes®° and bioinformatic algorithms” ™, which
present certain drawbacks when applied to the storage of biomedical

data images. Traditional computer-based image-compression algo-
rithms are not suitable for DNA data storage. For high-resolution bio-
medical dataimages, the use of losslessimage compression requires a
large amount of storage, which poses a challenge given the current high
cost of DNA data storage. In addition, traditional image-compression
algorithms cannot correct synchronization errors that may occur in
DNA data storage, which can result in minor errors that render the
entireimage unrecoverable.

Although someimage-compression algorithms for DNA data stor-
age have been developed'®'*'°, they typically rely on error-correcting
codesthat canfail, leading to theloss of the entireimageif not all errors
are corrected. Toaddress the unique characteristics of biomedical data
images and the current limitations of DNA datastorage, it is essential to
develop acomprehensive system that integrates image compression
and error correction.

Inthis paper, weintroduce a DNA data storage system tailored for
biomedical dataimages, called HELIX. The system comprises three key
components: image compression, error correction and image resto-
ration. For the large size of biomedical images, image-compression
modules enable high compression rates while ensuring that most of
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Table 1| Comparison between HELIX and existing image-compression algorithms for DNA data storage

Reference Multi-image Image Content-aware Fault tolerance Error correction Image repair
storage compression optimization
DNA-QLC* X v X X v X
HL-DNA®** X v %4 v X X
Franzese et al.*® v v X v X X
Wu et al.*® X v X v X X
Rasool et al.”® v v v X X X
Dimopoulou et al.*’ X v X v X X
Pan et al.”’ v v X X Partial v
Bhaya et al.*® X v v X X X
HELIX v v v v v v

the image content can be recovered even in the presence of a small
number of errors. Table Lillustrates the differences between HELIX
and current image-compression algorithms for DNA data storage. By
integrating the error-correction module with theimage-compression
module, we enable direct access to image information within the
sequence duringerror-correction decoding, eliminating the need for
indexing during the error-correction coding process. This approach
substantially enhances information storage density. Meanwhile, our
error-correction coding shows an exceptionally high decoding speed,
capable of processing approximately 200,000 sequences per second.
In addition, we introduce a deep learning-based image-restoration
scheme that performs specificimage restoration toimprove the quality
of image restoration when the decoded image contains error blocks.
Inabiomedical experimentinvolving the storage of two images total-
ing 60 MB, the results show that most of the image information canbe
recovered even at a sequencing depth of 7x, validating the reliability
of the model.

Results
General principle and features of HELIX
The modeling framework of HELIX, illustrated in Fig. 1, comprises three
key modules: image compression, error correction and image resto-
ration. The image-compression module is responsible for compress-
ing the image and segmenting it into sequences of information. The
error-correctionmodule handles DNA synthesis and sequencing errors.
The image-restoration module is responsible for restoring any error
blocks that may exist after the image decoding process. Users have the
flexibility to decide whether to utilize the image-restoration module.
We designed animage-compression module specifically for DNA
storage and biomedical dataimages to compress and encode images
into base sequences. Compared with traditional image-compression
algorithms, we consider the possibility of errors during DNA storage
and use achunking approach to ensure that no error will cause a chain
reaction. In addition, we introduce a base mapping mechanism to
reduce the homopolymer length of the base sequences. To improve
the encoding rate of uniform background biomedical data images,
we used a mechanism that does not record consecutive repetitive
chunks of information. This mechanism is shown in Fig. 1d. Only the
first block in each row is recorded in regions with the same color,
thus greatly improving the image-compression efficiency. During
decoding, if a block index is missing, it is assumed to be the same as
the previous block. After the image is encoded, the sequence will be
encoded forerror correction so that the error can be corrected during
the decoding process. HELIX employs a cascading coding scheme:
additional sequences are first encoded using longitudinal outer cod-
ing, followed by inner coding for each sequence. During decoding,
theinner codeis decodedfirstto correct within-sequence errors, and
then the longitudinal outer code is decoded to resolve sequence loss.
HELIX performs error-correction coding without adding indexes to

thesequencebecause the error-correction module canrecognize the
headerinformation of theimage-compression module during decod-
ing, whichimproves the coderate.

For potentially corrupted blocks in the decoded image, we intro-
duce a deep learning-based image-restoration algorithm. This algo-
rithm can predict and repair erroneous blocks. Owing to the strict
content requirements of some medical images, we provide users the
optionto enable or disable this feature. If the image-restoration algo-
rithm is activated, a1 B cyclic redundancy check (CRC) check bit is
appendedtothe end of eachsequence. Eachsequenceisthen decoded
and the check digit is verified. Blocks that fail the check are flagged,
identifying the locations of the erroneous image blocks. Figure 1c
illustrates the network structure used for theimage-restoration model,
which employs a loss-function mechanism combined with genera-
tive adversarial networks". Unlike traditional image-restoration algo-
rithms, our method addresses the high resolution of biomedical data
images by focusing on local restoration. Instead of processing the
entireimage, the algorithm predicts the information of the damaged
block by analyzing the context around the erroneous area.

HELIX ensures that stored images are robust and maintain high
bit rates by utilizing the three modules described above. In addi-
tion, homopolymer constraints can reduce errors generated dur-
ing synthesis'®*°, We achieve this by controlling the block size of the
error-correction code, ensuring that the homopolymer length s typi-
cally less than five. Next, we verify the effectiveness and advantages
of HELIX through both simulations and in vitro storage experiments.

Effectiveness evaluation of HELIX in simulation experiments
We selected three biomedical datasets for our simulation experiments:
spatiotemporal histology slices”, human knee X-ray images* and
human lung computed tomography images®’. From these datasets,
we randomly chose a subset of images for our experiments. To verify
the effectiveness of ourimage-compression algorithm, we compared
it against several common image-compression schemes, including
JPEG, BMP and GIF.

Figure 2 shows the impact of different image formats and the
number of bases required when a small number of errors occur. The
images suffer from the same 0.1% probability of deletion, substitu-
tion and insertion errors. To evaluate the effectiveness of HELIX’s
image-compression algorithm, this experiment did not include the
error-correction function. BMP and HELIX show the best tolerance
for errors, retaining most of the image information despite errors.
GIF, while having a high code rate for binary images, fails to recover the
imageinformation due to damage to key parts.JPEG suffers from color
errors caused by its differential coding method. BMP error regions are
more finely grained compared with HELIX because HELIX chunks the
image. However, the number of bases required for BMP is substantially
higher, increasing the cost of DNA digital storage. The number of bases
encoded by JPEG and HELIX are similar and relatively low. Although
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Fig.1| The overall modeling framework of HELIX. a, Image-compression
algorithm. First, the image is divided into 16 x 16 image blocks and compressed.
The compressed image information will be converted into sequences and header
information willbe added to each sequence. Here RGB represents the color space
composed of red, green and blue, and YUV represents the color space based on
luminance and chrominance. b, Error-correction algorithm. This algorithmisa
cascade code that combinesinner code and outer code. The inner code combines
Levenshtein and Marker (LM) coding, and the outer code uses Reed-Solomon
(RS) coding. ¢, Image-restoration algorithm. In case of image block corruption,

asmallsurrounding area of the image is selected for prediction. The prediction
results are then used to repair the corrupted block. d, Special mechanisms of the
image-compression algorithm. On the left side, the base mapping mechanism is
illustrated. Here, the image-coded sequence is divided into multiple segments.
The algorithm counts the frequency of each segment and maps those with higher
occurrences to base combinations with superior biochemical properties. On
theright side, a unique de-duplication mechanismis depicted. Only the first
block of each repeating sequence is recorded when the image-encoding process
encounters consecutive repeating blocks of information.

JPEG has a higher compression ratio, it ismore prone to overall errors
whenminor errors occur in theimage. In conclusion, HELIX shows high
error tolerance and effective image compression, making it well suited
for DNA data storage.

We used structural similarity index measure (SSIM), peak
signal-to-noise ratio (PSNR), mean squared error (MSE), feature simi-
larity index (FSIM), multi-scale structural similarity index measure
(MS-SSIM) and universal quality index (UQI) as metrics to evaluate the
quality ofimage restoration. Figure 3aillustrates the changesin these

metrics atdifferent error rates. The horizontal axis represents the error
rate,increasing by 0.3% at each step (with equal probabilities for inser-
tion, deletion and substitution errors), and the number of sequence
copies is 10. In the initial stage, the metrics remain relatively stable,
indicating that the error-correcting code efficiently corrects all errors
during this period. However, once the error rate exceeds the upper
limit of the error-correction capability, the metrics begin to fluctuate.
The slower fluctuation of the metricsis attributed to the robustness of
the HELIX image-compression algorithm, which mitigates the overall
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Fig. 2| Fault-tolerance performance of different image-compression
algorithms. The performance of differentimage-compression algorithms when
0.1% error occurs. The images used for the assessment include spatiotemporal
histology slices” (top row), human lung computed tomography images® (middle
row) and human knee X-ray images? (bottom row). It can be seen that the HELIX
and BMP formats can still show a lot of the original information. Inaddition, the
number of coding bases needed for HELIX and JPEG is much smaller than that for
the other formats.

damage to the image. In addition, HELIX performs better for spati-
otemporal histology (STH) images, which is mainly due to the high
resolution of STH images. HELIX deterministically segments images
into fixed 16 x 16 pixel blocks. Thus, for high-resolutionimages, block
damage has asmaller effect on the overallimage quality.

To evaluate the effectiveness of the HELIX image-compression
algorithm, we selected several representative image-compression
algorithms as benchmark algorithms'***", where HELIX without
the error-correction module (HELIX_WEC) shows the effect of the
image-compression algorithm. Figure 3¢ shows the number of bases
required to store an X-ray image. It can be seen that QLC"* and HELIX
have the least bases and show a very high compression rate. EDS"
requires the most number of bases as it is lossless compression.
Figure 3d shows the image recovery under different error rates. EDS
and 2DDNA'® can not recover the image at 0.1% error rate because they
donothaveerror resilience, and QLC can not recover the image at 0.3%
error rate even though it has an error-correction algorithm. HELIX,
which uses only the image-compression algorithm, not only has the
highest SSIM value under lossy compression but also has an SSIM value
thatdecreases slowly as the error grows. The above experiments prove
that the image-compression algorithm of HELIX has the characteristics
of high compression and high error tolerance. We also compare the
error-correction module of HELIX with other existing DNA storage
error-correction algorithms in Supplementary Table 3.

Figure 3b shows the changes in image metrics after restoration,
with the horizontal axis representing the error rate and the verti-
cal axis representing the image-quality metrics. It can be seen that
the image-restoration algorithm improves image quality, although
the improvement is modest as erroneous blocks are relatively few.
Nonetheless, the algorithm effectively enhances the overall appear-
ance of the image. In addition, Fig. 3f shows the actual results of
the image-restoration algorithm at an error rate of 6% error rate.

It can be seen that the image-restoration algorithm substantially
enhances the readability of the image and reduces the number of
consecutive erroneous image blocks. In addition, zooming in shows
that the image-restoration algorithm can substantially reduce some
colorerrors.

To evaluate the effectiveness of HELIX in optimizing biomedical
images, we encoded various types of dataset. Figure 3e compares
the optimization rate of HELIX for biomedical images against other
common datasets. The optimization rate is defined as the ratio of
information omitted by the de-duplication mechanism to the total
information, with a higher ratio indicating better compression. The
results show that HELIX achieves a substantially better compression
effect on biomedical images compared with common datasets. This
indicates that HELIX is effectively optimized for coding based on the
specific characteristics of biomedical images.

Experimental validation of HELIX in vitro storage

To further validate the effectiveness of HELIX, we conducted in vitro
experiments by storing 2 images, totaling 60 MB, of spatiotempo-
ral genomics slices. After encoding, approximately 140,000 DNA
sequences were generated, each with alength of 183 nucleotides (nt).
Figure 4 shows the coding structure of the sequences. The netinforma-
tiondensity (the number of information bits/the encoded nucleotides)
is 26.22 bits per nt, and the code rate of the error-correction code is
0.7918 bits per nt. The detailed calculation process is provided in Sup-
plementary Section 1.

Through PCR and sequencing technology, we obtained the
sequenced DNA sequences. Details of the biomedical treatment are
providedin Methods. For the post-sequencing sequences, we tried two
different ways of processing the data. First, we sorted the sequences by
their frequency of occurrence, selecting them from highest to lowest
frequency. Figure 4 illustrates the decoding results after selection. As
the number of sequencesincreases, theimage quality improves rapidly,
with the bestrestorationachieved ataround 800,000 sequences. This
balance is crucial: too few sequences result in substantial data loss,
while too many introduce numerous erroneous sequences. In addi-
tion, we attempted random sequence selection. Using this method,
the SSIM value reached 97.20% when reading 1 million sequences. At
this point, the decoded image was nearly identical to the original. This
experiment confirms the reliability of HELIX for practical DNA data
storage applications.

Discussion

HELIX is a DNA-based data storage solution specifically designed for
biomedical images, offering a broad range of potential applications.
In the domain of long-term archiving and back-up, HELIX empowers
medical data centers and bioinformatics fields to store vast quanti-
ties of biomedical images in a cost-effective and stable manner. This
ensuresreliable, long-term data preservation, providing aninvaluable
resource for advancing medical research. Compared with existing
DNA data storage solutions'>*", HELIX incorporates a fault-tolerant
mechanism that addresses potential decoding failures in long-term
storage. This ensures that partialimage recovery is possible even when
errors occur, mitigating the risk of complete dataloss during prolonged
storage. Moreover, HELIX tackles the critical need for rapid data access
inbiomedicalimaging. With animpressive decoding speed 0f100,000
entries per second, it greatly enhances read bandwidth, overcominga
key limitation of existing DNA storage technologies.

To enhance the readability of images after errors, we have intro-
duced animage-restoration algorithm that predicts missing informa-
tion to some extent. However, for rigorous biomedical images, the
content predicted by the restoration algorithm may not always be
reliable, posing achallenge in preserving the parameters of the neural
network over time. In addition, HELIX employs lossy compression
for image coding, which results in some loss of stored image details.
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Fig. 3| Evaluation of the effectiveness of the HELIX simulation experiment.
We repeated the experiment three times with different random seeds. Foraand
b, we selected different random seeds and repeated the experiment three times.
Data are presented as mean values + s.e.m. a, Plot of changes inimage recovery
metrics for HELIX with increasing error rates. b, Impact of image-restoration
algorithms on image recovery with increasing error rate. CT, computed
tomography. ¢, Comparison of the amount of bases in HELIX with other
image-compression algorithms when storing the same image. d, Image recovery

of HELIX with other image-compression algorithms as the error rate varies.

e, Optimization rate of HELIX image-compression algorithm with different
datasets. We used three widely recognized generic datasets: ImageNet, Common
Objects in Context (COCO) and Visual Object Classes (VOC). The experimental
dataare based on the compression of three randomly selected images.

f, Effectiveness of HELIX image-restoration algorithm on partially corrupted
image blocks.

Nature Computational Science | Volume 5 | May 2025 | 397-404

401


http://www.nature.com/natcomputsci

Article

https://doi.org/10.1038/s43588-025-00793-x

((4Bheader ) M Binformation | 1B CRC |

lEncode each byte

0 2 4

Decoded images

6 8

Data readout (in 200,000)

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
! I HELIX DNA
: : (20 nt primers_J [ [ 142 nt | [ )( 21 nt primers ||
1 1 encoding T synthesis
1 1 i -
: I (2b maker)(_8 b data )(1b parity)3 b split)(4 b remainder]

1
1 1 137,537 sequences : !
: 1 of length 183 nt | :

1
1 ) 1 : !
1 Stored images | X 1
1 1 !
___________________ 1

' |
! I

1 \ 1 |
1 | 1 |
1 1 SSIM trend plot with data readings 1 |
1 | 1
1 1 ! :
I | =" HELIX I Oligo pool |
1 1 0.95 ! 1
1 | e e e e e e e e e e - - -
1 1
! I 5.8-fold copy 0.90
| ! number = Decoding 94,688,836 PCR
| X ? o085 sequenced
| . sequence sequences sequencing
: : decoding 080
! 1
! 1
! 1
! 1
1 1

Fig. 4 |Flowchart of in vitro experiments. The storage content is 2
spatiotemporal histological images totaling 60 MB. HELIX encoding divides it
into 125,000 chunks, each of which contains an 11 B information section,a4 B
index sectionand alB checksum section. After that, each byte of each block was
sequentially encoded for error correction, and after encoding, a total of 137,537
sequences were generated with alength of 183 nt. We synthesized and sequenced

atotal of 8,468,836 sequences that were read. The sequences were sorted by
frequency of occurrence after data cleaning and decoding were attempted for
different read volumes. In the end, the image we attempted to decode after
reading only 800,000 sequences (at asequencing depth of 5.8x) recovered most
of theinformation from the original image.

While these details are typically imperceptible to the human eye, the
information loss caused by lossy compression could prevent HELIX
from storing highly detailed or complex images. Given the current
high cost of DNA storage technology, adopting a high-bit-rate DNA
storage scheme is crucial for the practical application of DNA data
storage. Therefore, the combination of lossy compression and image
restoration remains a promising approach for efficiently storing image
datain DNA, despite these challenges.

The HELIX encoding did not exclude potentially risky DNA
sequences, although constraints such ashomopolymers were takeninto
account. Future studies will focus on avoiding specific DNA fragments
to minimize biological risks associated with synthetic DNA***. HELIX is
aDNAstorage solution dedicated to biomedical images, which may be
difficult toapply for general-purpose data. In follow-up studies, we will
explore the use of HELIX to store images with similar background purity
such as microscope images and satellite images, which will further
enhance the versatility of HELIX. Inaddition, HELIX verifies that a dedi-
cated coding scheme for a certain type of data can have better results
thanageneral-purpose storage scheme, interms of both code rate and
robustness. Designing specialized storage solutions for large-scale stor-
age needs, such as point cloud data and video data, is expected tobe a
key direction in advancing DNA data storage technology.

Methods

Image-compression module

Theimage-compression module compresses and encodes the original
image, generating aset of quadratic sequences that facilitate the inclu-
sion of subsequent error-correction codes. Furthermore, it employsa
chunked coding method to safeguard against the impact ofindel errors
(insertions and deletions). When such an error occurs, its influence is

confined to the specific block and does not affect the entireimage. The
detailed encoding process is outlined in the following section.

Image compression. For the original image, we first split it into
16 x 16 pixel blocks and converted each block into the YUV color space.
This step leverages the human eye’s greater sensitivity to luminance
and relative insensitivity to chromaticity. Next, we apply a discrete
cosine transform (to the Y, Uand V components of each block, followed
by quantizing the discrete cosine transform coefficients to reduce
datasize. Unlike theJPEG compression algorithm®, we do not perform
Huffman or arithmetic coding, as these operations would decrease the
image’s fault tolerance.

Data segmentation and header integration. After theimage compres-
sion, the information of the image block will be divided into sequences
of specified length, and the header will be added to the sequences.
The information of an image block can be represented by one or more
sequences, and each sequence contains information of only oneimage
block. This method can effectively reduce the transmission of errors.
Specifically, each sequence consists of anindex part and aninformation
part. The information part records the data of the image block and its
lengthis determined by the synthesis technique. The index partis usually
3 Blong and is used to identify the position of the sequence and track
changes intheimage. It consists of five componentsin order,namely, the
image numberindex, theimageblockindex, the cycle count, the termina-
torand the CRC. Therole of each component is explained in detail below.

« Image number index: this index serves to record the image num-
ber when storing multiple images. Given the current high cost of
DNA data storage, approximately $3,000 or more for synthesiz-
ing 1 MB (ref. 28), we currently allocate 2 b for this index area by
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default. As the cost of DNA synthesis decreases, there is poten-
tial to expand the image numbering index area further.

» Image block index: this index is designated for numbering
the image blocks within animage. For images segmented into
16 x 16 pixel blocks, the sorting is conducted from top to bot-
tom and left to right. The assigned location for recording this
information is currently configured with 17 b, providing ample
support for images containing up to 33,554,432 pixels.

» Cyclicnumber: the order of sequences will be completely dis-
rupted after DNA sequencing, and some sequences may be lost.
To address this, we incorporate an innovative cycle count mecha-
nisminto the index part. The cyclic number increments with
each sequence as the image is encoded and resets to zero after
reaching a specified threshold. Through the cycle count mecha-
nism, on the one hand, multiple sequences within the same
image block can be sorted and, on the other hand, it can facilitate
the design of subsequent error-correction codes. Currently, the
cycle counting areais set to 5 b, ensuring proper functionality as
long as no more than 32 consecutive sequences are lost.

» CRC:CRCisawidely used error-checking code designed to
verify the occurrence of errors®. Recognizing the critical
impact of errors in the index part, CRC is incorporated into this
section for validation. Sequences failing the checksum after
sequencing and decoding are promptly discarded. Currently,
this region is configured with a 4 b setting.

Base mapping. For the sequence after image encoding, we use four
bases as a unit block and calculate the frequency of occurrence of
each unit block. The unit block with high frequency is mapped to a
base unit block of the same length with good biochemical properties
(for example, ATGC), and the unit block with low frequency ismapped
to abase unit block of the same length with poor biochemical proper-
ties (for example, AAAA). This mapping is bijective and minimizes
homopolymer formation and improves GC equilibrium. We give amore
detailed description in Supplementary Fig. 10, and characterize the
coding sequences from statistical in vitro experiments to exemplify
the effectiveness of HELIX for biochemical constraints.

Error-correction module

Outer-code coding. Asthe outer code deals solely with erasure errors,
such as the loss of column information due to missing sequences, we
adopt the well-established Reed-Solomon (RS) coding scheme®.
RS coding generates redundancy check codes by treating the data
to be transmitted as the coefficients of a polynomial, enabling
error-correcting decoding. As the index part of the sequence does
not have a continuous index area, each RS block is divided based on
the number of cycles. By default, every 7-cycle unit constitutes one
RS-coded information block, which includes redundancy, totaling
255 entries. During decoding, the sequenceis first sorted based on the
image index and block index, then RS blocks are divided according to
the number of cycles and, finally, each RS block is decoded.

Inner-code coding. Our inner code uses a combination of Leven-
shtein and Marker coding (LM coding), known for its high code rate
anderror-correction capabilities™. The encoding process for each code
word segment is divided into five parts: a marker bit, an information
bit, a check bit, a separator bit and a syndrome bit. The marker bit is
responsible for synchronization within the sequence. Theinformation
bit contains the original information. The check bit is responsible for
checkingwhether an error has occurred or not. The split bit is respon-
sible for splitting the check bit with the remainder bit. The remainder
bits are responsible for error correction of the information bits. As
thelength of the information siteis four bases and is usually different
from the front and back positions, this mechanism ensures that the
homopolymerlength of the encoded sequenceis usually less than five.

Unlike the original LM encoding method, we omitan extraindexineach
sequence. Instead, we use the image index and image block index from
theindexregionforsorting, conserving space.In addition, by chunking
the information sequence, we effectively reduce the homopolymer
length, ensuring that it remains under five in the strictest scenarios.

Invitro experiment

Figure 4 illustrates the entire process of DNA data storage in vitro.
Thesselection of DNA oligo poolsis from Dynegene Technologies. The
three pairs of primers, namely, OF/OR, 1F/IR and 2FU/2R (1-4), were all
synthesized by Dynegene Company.

The process began with centrifuging the dry DNA oligo pools at
4°C and 14,000 rpm. The oligos were quantified using a Nanodrop
single-stranded DNA measurement, then diluted to 5 ng pl™. For the
initial amplification, aPCR mix was prepared with the following condi-
tions: 10 pl PCR mix, 0.5 pM of OF/OR primers, 0.25 ng pul™ DNA oligo
pools, in a total volume of 20 pl, run for 7 cycles. After amplification,
the PCR products were purified using 2.8x QuarAcces Hyper Pure Beads
and quantified with Qubit double-stranded DNA. The purified PCR
product was diluted to 0.1 ng pl™ for asecond PCR amplification, with
the conditions: 10 pl PCR mix, 0.5 uM of 1F/1R primers, 0.005 ng pl™
PCR product, inatotal volume of 20 pl, runfor 10 cycles. Following this,
the PCR products were again purified using 2.8x QuarAcces Hyper Pure
Beads and quantified with Qubit double-stranded DNA.

The PCR products from the second amplification were dilutedtoa
concentration of 1 ng pl™ for the third PCR step. The reaction conditions
were as follows: 10 pl PCR mix, 0.5 pM of 2F/2R primers, 0.05 ng pl™ of
second PCR products, in a total system volume of 20 pl, with 6 cycles
performed. After this final PCR step, the products were purified and
quantified using Qubit double-stranded DNA. Fragment analysis was
carried out using an Agilent 2100 Bioanalyzer following three cycles of
PCR. Theresulting fragments were then subjected to next-generation
sequencing and the quality of the sequencing data was assessed.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Sequencing datafromin vitro experiments can be found at https://doi.
org/10.6084/m9.figshare.25957606.v1 (ref. 32). The images used in
the HELIX test are all from publicly available datasets. The spatiotem-
poralomics image dataset is from ref. 21. The computed tomography
image datasetis from https://doi.org/10.7937/K9/TCIA.2016.J GNIHEPS
(ref. 23). The X-ray image dataset is from https://doi.org/10.17632/
t9ndx37v5h.1 (ref. 22).

Code availability
HELIX includes both Go and Python versions. The code can be found
at https://doi.org/10.5281/zen0d0.14699789 (ref. 33).
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