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Abstract A graph is called claw-free if it contains no induced subgraph isomorphic toK1,3. Matthews

and Sumner proved that a 2-connected claw-free graph G is hamiltonian if every vertex of it has degree

at least (|V (G)| − 2)/3. At the workshop C&C (Novy Smokovec, 1993), Broersma conjectured the

degree condition of this result can be restricted only to end-vertices of induced copies of N (the graph

obtained from a triangle by adding three disjoint pendant edges). Fujisawa and Yamashita showed that

the degree condition of Matthews and Sumner can be restricted only to end-vertices of induced copies

of Z1 (the graph obtained from a triangle by adding one pendant edge). Our main result in this paper

is a characterization of all graphs H such that a 2-connected claw-free graph G is hamiltonian if each
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end-vertex of every induced copy of H in G has degree at least |V (G)|/3+ 1. This gives an affirmative

solution of the conjecture of Broersma up to an additive constant.

Keywords Induced subgraph; large degree; end-vertex; claw-free graph; hamiltonian graph

MR(2010) Subject Classification 05B05, 05B25, 20B25

1 Introduction

We use Bondy and Murty [2] for terminology and notation not defined here and consider finite

simple graphs only.

Let G be a graph. For a vertex v ∈ V (G) and a subgraph H of G, we use NH(v) to denote

the set, and dH(v) the number, of neighbors of v in H , respectively. We call dH(v) the degree

of v in H . For x, y ∈ V (G), an (x, y)-path is a path connecting x and y. If x, y ∈ V (H), the

distance between x and y in H , denoted dH(x, y), is the length of a shortest (x, y)-path in H .

When no confusion occurs, we will denote NG(v), dG(v) and dG(x, y) by N(v), d(v) and d(x, y),

respectively.

Let G be a graph and G′ a subgraph of G. If G′ contains all edges xy ∈ E(G) with

x, y ∈ V (G′), then G′ is called an induced subgraph of G (or a subgraph induced by V (G′)). For

a given graph H , we say that G is H-free if G contains no induced copy of H . If G is H-free,

then we call H a forbidden subgraph of G. Note that if H1 is an induced subgraph of a graph

H2, then an H1-free graph is also H2-free.

We first give a fundamental sufficient condition for hamiltonicity of graphs.

Theorem 1.1 (Dirac [6]) Let G be a graph on n ≥ 3 vertices. If every vertex of G has degree

at least n/2, then G is hamiltonian.

The graph K1,3 is called the claw, and its only vertex of degree 3 is called its center. For a

given graph H , we call a vertex v of H an end-vertex of H if dH(v) = 1. Thus a claw has three

end-vertices. In this paper, we use the term claw-free graphs for K1,3-free graphs.

Hamiltonian properties of claw-free graphs have been well studied by many graph theorists.

The lower bound on the degrees in Dirac’s theorem can be lowered to roughly n/3 in the case

of (2-connected) claw-free graphs.

Theorem 1.2 (Matthews and Sumner [8]) Let G be a 2-connected claw-free graph on n ver-

tices. If every vertex of G has degree at least (n− 2)/3, then G is hamiltonian.

Forbidden subgraph conditions for hamiltonicity of graphs also have received much at-

tention. As K2-free graphs are precisely the edgeless graphs, it is natural to assume that,

throughout this paper, all forbidden subgraphs under consideration will have at least three

vertices. We also note that every connected P3-free graph is a complete graph, and then is

trivially hamiltonian if it has at least 3 vertices. It is in fact easy to show that P3 is the only

connected graph R such that every 2-connected R-free graph is hamiltonian.

Bedrossian [1] characterized all the pairs of forbidden subgraphs for hamiltonicity, excluding

P3.

Theorem 1.3 (Bedrossian [1]) Let R and S be connected graphs with R,S 6= P3 and let G be

a 2-connected graph. Then G being R-free and S-free implies G is hamiltonian if and only if

(up to symmetry) R = K1,3 and S = P4, P5, P6, C3, Z1, Z2, B,N or W (see Fig. 1).
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Fig. 1. Graphs Pi, C3, Zi, B,N and W .

Note here that the claw is always one subgraph of each forbidden pairs. Also recall that a

P4-free graph is P5-free, etc., so the relevant graphs for S (in Theorem 1.3) are in fact P6, N

and W . All the other listed graphs are induced subgraphs of P6, N or W .

At the workshop Cycles and Colourings 93 (Slovakia), Broersma [3] proposed the following

conjecture.

Conjecture 1.4 (Broersma [3]) Let G be a 2-connected claw-free graph on n vertices. If every

vertex of G which is an end-vertex of an induced copy of N in G, has degree at least (n− 2)/3,

then G is hamiltonian.

This conjecture is still open. Whereas, Fujisawa and Yamashita [7] obtained a similar result

as follows.

Theorem 1.5 (Fujisawa and Yamashita [7]) Let G be a 2-connected claw-free graph on n

vertices. If every vertex which is an end-vertex of an induced copy of Z1 in G has degree at

least (n− 2)/3, then G is hamiltonian.

Let G be a graph on n vertices and H a given graph. We say that G satisfies Φ(H, k) if for

every vertex v which is an end-vertex of an induced copy of H in G, d(v) ≥ (n+ k)/3.

In any connected graph, a vertex which is not an end-vertex of an induced P3 will be

adjacent to all other vertices. Thus a graph satisfying Φ(P3,−2) implies that every vertex of it

has degree at least (n− 2)/3. By Theorem 1.2, such a graph is hamiltonian if it is 2-connected

and claw-free. Also note that Theorem 1.5 implies that every 2-connected claw-free graph

satisfying Φ(Z1,−2) is hamiltonian. Motivated by Conjecture 1.4 and Theorem 1.5, in this

paper, we consider the following question: For which graphs H , every 2-connected claw-free

graph satisfying Φ(H,−2) is hamiltonian?

First, for a given connected graph H , note that if a graph is H-free, then it naturally

satisfies Φ(H,−2). To guarantee a 2-connected claw-free graph satisfying Φ(H,−2) is hamil-

tonian, by Theorem 1.3, we can get that H must be one of the graphs in {P3, P4, P5, P6,

C3, Z1, Z2, B,N,W} (to avoid the discussion of trivial cases, we assume that H has at least
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three vertices). Note that C3 has no end-vertex, and every graph satisfies Φ(C3,−2) naturally.

Since not every 2-connected claw-free graph is hamiltonian, C3 does not meet our result. An-

other counterexample is Z2. The graph in Fig. 2 is 2-connected claw-free and satisfies Φ(Z2,−2)

but it is not hamiltonian. Thus we have the following result.
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Fig. 2. A graph satisfying Φ(Z2,−2).

Proposition 1.6 Let H be a connected graph on at least 3 vertices and let G be a 2-connected

claw-free graph. If G satisfying Φ(H,−2) implies G is hamiltonian, then H = P3, P4, P5, P6, Z1,

B,N or W .

What about the converse? Is every 2-connected claw-free graph satisfying Φ(H,−2) hamil-

tonian for all the graphs H listed in Proposition 1.6?

Note that if a graph G satisfies Φ(Pi, k), then it also satisfies Φ(Pj , k) for j ≥ i. Also note

that if G satisfies Φ(Z1, k), then it also satisfies Φ(B, k); and if G satisfies Φ(B, k), then it also

satisfies Φ(N, k). (We remark that a graph satisfying Φ(Z2, k) cannot ensure it satisfies Φ(W,k),

although Z2 is an induced subgraph of W .) So, in the following, we just consider the three

graphs P6, N and W . We propose the following problem:

Problem 1.7 Let H = P6, N or W . Is every 2-connected claw-free graph satisfying Φ(H,−2)

hamiltonian?

We believe that the answer to Problem 1.7 is positive, but the proof may need more technical

discussion. However, we can prove a slightly weaker result as follows.

Theorem 1.8 Let H = P6, N or W , and let G be a 2-connected claw-free graph. If G satisfies

Φ(H, 3), then G is hamiltonian.

Note that the graph in Fig. 2 satisfies Φ(Z2, 3) when k ≥ 6. Combining with Proposition

1.6 and Theorem 1.8 yields our main theorem.

Theorem 1.9 Let H be a connected graph on at least 3 vertices and let G be a 2-connected

claw-free graph. Then G satisfying Φ(H, 3) implies G is hamiltonian, if and only if H =

P3, P4, P5, P6, Z1, B,N or W .

Note that the case of H = N in Theorem 1.9 shows that every 2-connected claw-free graph

G is hamiltonian if every vertex of G which is an end-vertex of an induced copy of N , has degree

at least |V (G)|/3 + 1. This gives an affirmative solution of the conjecture of Broersma up to

an additive constant.
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2 Some preliminaries

Two famous conjectures in the field of hamiltonicity of graphs are Thomassen’s conjecture [10]

that every 4-connected line graph is hamiltonian and Matthews and Sumner’s conjecture [8]

that every 4-connected claw-free graph is hamiltonian. Ryjáček proved these two conjectures are

equivalent. One major tool for the proof is his closure theory [9]. Now we introduce Ryjáček’s

closure theory, which we will use in our proof.

Let G be a claw-free graph and x a vertex of G. Following the terminology of Ryjáček [9],

we call x an eligible vertex if N(x) induces a connected graph but is not a clique in G. The

completion of G at x, denoted by G′
x, is the graph obtained from G by adding all missing edges

uv with u, v ∈ N(x).

Note that if a vertex, say v, has a complete neighborhood in G, i.e., G[N(v)] is complete,

then it also has a complete neighborhood in G′
x; also note that if P ′ is an induced path in G′

x,

then there is an induced path P in G with the same end-vertices such that V (P ) ⊂ V (P ′)∪{x}.

Let G be a claw-free graph. The closure of G, denoted by cl(G), is the graph defined by a

sequence of graphs G1, G2, . . . , Gt, and vertices x1, x2, . . . , xt−1 such that

(1) G1 = G, Gt = cl(G);

(2) xi is an eligible vertex of Gi, Gi+1 = (Gi)
′
xi
, 1 ≤ i ≤ t− 1; and

(3) Gt has no eligible vertices.

By c(G) we denote the length of a longest cycle of G.

Theorem 2.1 (Ryjáček [9]) Let G be a claw-free graph. Then

(1) the closure cl(G) is well-defined;

(2) there is a triangle-free graph H such that cl(G) is the line graph of H; and

(3) c(G) = c(cl(G)).

Clearly every vertex has degree in cl(G) no less than that in G. Ryjáček proved that if G

is claw-free, then so is cl(G). A claw-free graph is said to be closed if it has no eligible vertices.

The following properties of a closed claw-free graph are obvious, and we omit the proofs.

Lemma 2.2 Let G be a closed claw-free graph. Then

(1) every vertex is contained in exactly one or two maximal cliques;

(2) two distinct maximal cliques have at most one common vertex;

(3) if two vertices are nonadjacent, then they have at most two common neighbors; and

(4) if a vertex has two neighbors in a maximal clique, then it is contained in the clique.

Now we introduce some new terminology which is useful for our proof. Let G be a claw-free

graph and K a maximal clique of cl(G). We call G[K] a region of G. For a vertex v of G,

we call v an interior vertex if it is contained in only one region, and a frontier vertex if it is

contained in two distinct regions. For two vertices u, v of G, we say that they are associated if

they are in a common region, and dissociated otherwise. We use the notations u ∼ v (u ≁ v) to

express the statement that u and v are associated (dissociated). So two vertices are associated

in G if and only if they are adjacent in cl(G). Now we can reformulate Lemma 2.2 as follows.

Lemma 2.3 Let G be a claw-free graph. Then

(1) every vertex is either an interior vertex of a region, or a frontier vertex of two regions;

(2) every two regions are either disjoint or have only one common vertex;
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(3) every two dissociated vertices have at most two common neighbors; and

(4) if a vertex is associated with two vertices in a common region, then it is also contained

in the region.

We can also get the following

Lemma 2.4 Let G be a claw-free graph. Then

(1) if v is a frontier vertex of two regions R,R′, then NR(v), NR′(v) are cliques;

(2) if R is a region of G, then cl(R) is complete;

(3) if v is a frontier vertex and R is a region containing v, then v has an interior neighbor

in R or R is complete and has no interior vertices; and

(4) if u ∼ v, then there is an induced path from u to v such that all internal vertices are

interior vertices in the region containing u and v.

Proof (1) If there are two neighbors x, x′ of v in R such that xx′ /∈ E(G), then let y be a

neighbor of v in R′. Note that y is nonadjacent to x, x′; otherwise it will be contained in R.

Now the subgraph induced by {v, x, x′, y} is a claw, a contradiction. Thus NR(v), and similarly,

NR′(v), is a clique.

(2) Let K = V (R). Let G1, G2, . . . , Gt be the sequence of graphs, and x1, x2, . . . , xt−1

the sequence of vertices in the definition of cl(G). Note that for every i ≤ t − 1, xi has a

complete neighborhood in Gi+1, and then in cl(G). This implies that xi is an interior vertex.

Thus if xi /∈ K, then the completion of Gi at xi does not change the structure of Gi[K]. Let

xk1
, . . . , xk

t′−1
be the subsequence of x1, . . . , xt−1 containing all vertices xki

∈ K. Note that

NGki
(xki

) ⊂ K. Thus xki
is an eligible vertex of Gki

[K] and (Gki
[K])′xki

= Gki+1[K]. Thus

we have that cl(R) = cl(G)[K] is the complete subgraph of cl(G) corresponding to R.

(3) If R is complete in G, then either v has an interior neighbor in R or R has no interior

vertices. Now we assume that R is not complete. By (2), cl(R) = cl(G)[V(R)] is complete. This

implies that R has at least one eligible vertex, and then, R has at least one interior vertex. If v

is nonadjacent to any interior vertex in R, then the completion of an eligible vertex in R does

not change the neighborhood of v. Thus v will have no interior neighbors in R in the closure

cl(R), a contradiction to that cl(R) is a clique.

(4) LetR be the region ofG containing u and v. We use the notation in the proof of (2). Note

that for an induced path P ′ in Gki+1
[V (R)] connecting u and v, there is also an induced path

P in Gki
[V (R)] connecting u and v such that V (P ) ⊂ V (P ′) ∪ {xki

}. This implies that there

is an induced path P in R connecting u and v such that V (P ) ⊂ {u, v}∪ {xki
: 1 ≤ i ≤ t′ − 1}.

Note that every xki
is an interior vertex of R. The proof is complete. �

In the case that u ∼ v, we use Π [uv] to denote an induced path from u to v such that all

internal vertices are interior vertices in the region containing u and v. For an induced path

P = v0v1v2 · · · vk in cl(G), we denote Π [P ] = Π [v0v1]v1Π [v1v2]v2 · · · vk−1Π [vk−1vk] (note that

Π [P ] is an induced path of G).

Following [4], we denote by P the class of all graphs that are obtained by taking two

disjoint triangles a1a2a3a1, b1b2b3b1, and by joining every pair of vertices {ai, bi} by a path

Pki
= aic

1
i c

2
i · · · c

ki−2

i bi for ki ≥ 3 or by a triangle aibiciai. We denote a graph from P by
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Px1,x2,x3
, where xi = ki if ai, bi are joined by a path Pki

, and xi = T if ai, bi are joined by a

triangle.

Theorem 2.5 (Brousek [4]) Every non-hamiltonian 2-connected claw-free graph contains an

induced subgraph in P.

We list the following result deduced from Brousek et al. [5] to complete this section.

Theorem 2.6 (Brousek et al. [5]) Let G be a claw-free graph. If G is N -free, then cl(G) is

also N -free.

3 Proof of Theorem 1.8

Assume that G is not hamiltonian. By Theorems 2.1 and 2.5, cl(G) contains an induced

subgraph Px1,x2,x3
∈ P . We use the notation ai, bi, ci and cji defined in Section 2. If xi = ki,

then let P i be the path aic
1
i c

2
i · · · c

ki−2

i bi; if xi = T , then let P i = aibi. Let A be the region

of G containing the vertices a1, a2, a3, B be the region of G containing the vertices b1, b2, b3.

Note that A and B are possibly not disjoint. If they are not disjoint, then let c be the common

vertex of A and B. Clearly, ai, bi and c (if exists) are all frontier vertices. If xi = T , then let

a′i be the successor of ai in Π [aici] and b′i be the successor of bi in Π [bici]; if xi = ki, then let

a′i be the successor of ai in Π [aic
1
i ] and b′i be the successor of bi in Π [bic

ki−2

i ].

In this section, we say that a vertex is hefty if it has degree at least n/3 + 1.

Claim 1 Let v1, v2, v3 be three pairwise nonadjacent vertices of G.

(1) If v1 ≁ v2, v1 ≁ v3 and v2, v3 have at most one common neighbor, then one of v1, v2, v3

is not hefty.

(2) If v1 ≁ v2, v1 ≁ v3 and v2 ≁ v3, then one of v1, v2, v3 is not hefty.

Proof (1) By Lemma 2.3 (3), |N(v1) ∩ N(v2)| ≤ 2 and |N(v1) ∩ N(v3)| ≤ 2. Note that

|N(v2) ∩ N(v3)| ≤ 1. If all these three vertices are hefty, i.e., d(vi) ≥ n/3 + 1 for i = 1, 2, 3,

then

n ≥ 3 +
∑

1≤i≤3

d(vi)−
∑

1≤i<j≤3

|N(vi) ∩N(vj)| ≥ 3 + 3
(n

3
+ 1

)

− 5 = n+ 1,

a contradiction.

(2) By (1) and Lemma 2.3 (3), each of {v1, v2}, {v1, v3}, {v2, v3} has exactly two common

neighbors. Let uij and u′
ij be the two common neighbors of vi and vj . By Lemma 2.3 (4),

uij ≁ u′
ij . This implies that all the three vertices v1, v2, v3 are frontier vertices. Moreover, by

applying a similar argument as in (1), we have

n ≥ 3 + d(v1) + d(v2) + d(v3)− 6 ≥ 3 ·
(n

3
+ 1

)

− 3 = n.

This implies that every vertex of G is adjacent to at least one vertex in {v1, v2, v3}. Thus G

consists of the six regions containing v1, v2 and v3, and all the six regions are cliques by Lemma

2.4 (1).

Since u12 ≁ u′
12 and u13 ≁ u′

13 and all the four vertices are adjacent to v1, we have either

u12 ∼ u13 or u12 ∼ u′
13. We assume without loss of generality that u12 ∼ u13, which implies

that u12u13 ∈ E(G). Now we can begin with the cycle C0 = v1u
′
12v2u12u13v3u

′
13v1, and add

other vertices, one by one, to the cycle at the place between two associated vertices, and finally

obtain a Hamilton cycle of G, a contradiction. �
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The case H = P6

Let P = a′1a1Π [a1a2]a2Π [P 2]b2Π [b2b3]b3b
′
3. Note that P is an induced copy of Pl with l ≥ 6.

This implies that a′1, and similarly, a′2, a
′
3, are hefty. Note that a′1, a

′
2 and a′3 are pairwise

dissociated in G, a contradiction to Claim 1.

The case H = N

Claim 2 There are at least two hefty vertices in A (and similarly, in B).

Proof Let G′ = G[V (A) ∪ {a′1, a
′
2, a

′
3}]. From Lemma 2.4 (2), we can see that cl(G′) =

cl(G)[V(G′)]. Note that the subgraph of cl(G)[V(G′)] induced by {a1, a′1, a2, a
′
2, a3, a

′
3} is an N .

By Theorem 2.6, G′ contains an induced N . This implies that V (G′) contains at least three

pairwise nonadjacent hefty vertices. If two of them are not in A, then we assume without loss

of generality that a′1, a
′
2 are hefty. Note that the third hefty vertex is in (V (A)∪{a′3})\{a1, a2}.

This implies that the three hefty vertices are pairwise dissociated, a contradiction to Claim 1.

�

Let b, b′ be two hefty vertices in B. Set

Ni = {v ∈ V (A) : dA(a1, v) = i} and j = max{i : Ni 6= ∅}.

Note that N0 = {a1} and N1 = NA(a1). In addition, we define that N−1 = {a′1}. Note that for

any vertex v ∈ Ni, with 1 ≤ i ≤ j, v has a neighbor in Ni−1. Also note that if v has a neighbor

in Ni+1, 1 ≤ i ≤ j− 1, then by Lemma 2.4 (1), v is an interior vertex, especially, v is not a2, a3

and c.

Claim 3 Ni is a clique for all 1 ≤ i ≤ j.

Proof We use induction on i. By Lemma 2.4 (1), N1 is a clique. Now we assume that

2 ≤ i ≤ j. Note that Ni−1, Ni−2 and Ni−3 are nonempty.

Assume that there are two vertices y, y′ in Ni with yy′ /∈ E(G). If y and y′ have a common

neighbor in Ni−1, then let x be a common neighbor of y and y′ in Ni−1, and w be a neighbor of

x in Ni−2. Then the subgraph induced by {x,w, y, y′} is a claw, a contradiction. This implies

that y and y′ have no common neighbors in Ni−1. Now let x be a neighbor of y in Ni−1 and x′

be a neighbor of y′ in Ni−1. Note that xy′, x′y /∈ E(G). Let w be a neighbor of x in Ni−2 and

let v be a neighbor of w in Ni−3. By the induction hypothesis, xx′ ∈ E(G). If wx′ /∈ E(G), then

the subgraph induced by {x,w, x′, y} is a claw, a contradiction. This implies that wx′ ∈ E(G).

Now the subgraph induced by {w, v, x, y, x′, y′} is an N . Thus the three vertices v, y and y′ are

all hefty.

By Lemma 2.3 (4), v ≁ b or v ≁ b′. We assume without loss of generality that v ≁ b.

Similarly b ≁ y or b ≁ y′, we assume without loss of generality that b ≁ y. Note that b, v, y are

all hefty, b ≁ v, b ≁ y and v, y have no common neighbors. We get a contradiction. �

If both a2 and a3 are in Nj , then let w be a neighbor of a2 in Nj−1, v be a neighbor of w

in Nj−2. By Claim 3 and Lemma 2.4 (1), a2a3, wa3 ∈ E(G). Thus the subgraph induced by

{w, v, a2, a′2, a3, a
′
3} is an N . Thus v, a′2 and a′3 are three hefty vertices. Note that v, a′2 and a′3

are pairwise dissociated, a contradiction. So we assume without loss of generality that a2 /∈ Nj .

Let a2 ∈ Ni, where 1 ≤ i ≤ j−1. Let y be a vertex in Ni+1. Recall that a2 has no neighbors

in Ni+1. Let x be a neighbor of y in Ni, w be a neighbor of a2 in Ni−1 and v be a neighbor
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of w in Ni−2. By Claim 3 and Lemma 2.4 (1), a2x,wx ∈ E(G), and the subgraph induced by

{w, v, x, y, a2, a′2} is an N . Thus v, y and a′2 are three hefty vertices. Note that a′2 ≁ v, a′2 ≁ y,

and v, y have no common neighbors, a contradiction.

The case H = W

Claim 4 For i, j, 1 ≤ i < j ≤ 3, one of the edges in {aiaj, bibj, aibi, ajbj} is not in E(G).

Proof We assume that aiaj , bibj , aibi, ajbj ∈ E(G). By Lemma 2.4 (1), a′ibi, a
′
jbj ∈ E(G).

Let a be the successor of aj in the path Π [ajak], where k 6= i, j. Then the subgraph induced

by {a′j , aj , a, bj, bi, a
′
i} is a W . Thus a, a′i, and similarly a′j , are hefty. Note that a, a′i and a′j

are pairwise dissociated, a contradiction. �

As in the case of N , we set

Ni = {v ∈ V (A) : dA(a1, v) = i} and j = max{i : Ni 6= ∅}.

Note that N0 = {a1}, N1 = NA(a1) and we define additionally N−1 = {a′1}.

Claim 5 There is a hefty vertex in A\{a1, a2, a3, c} (and similarly, in B\{b1, b2, b3, c}).

Proof We assume on the contrary that there are no hefty vertices in A\{a1, a2, a3, c}.

Claim 5.1 Ni is a clique for all 1 ≤ i ≤ j.

Proof We use induction on i. By Lemma 2.4 (1), N1 is a clique. Now we assume that

2 ≤ i ≤ j. Note that Ni−1, Ni−2 and Ni−3 are nonempty.

Assume that there are two vertices y, y′ in Ni with yy′ /∈ E(G). Note that y and y′ have no

common neighbors in Ni−1. Let x be a neighbor of y in Ni−1, x
′ be a neighbor of y′ in Ni−1,

w be a neighbor of x in Ni−2 and v be a neighbor of w in Ni−3. By the induction hypothesis,

xx′ ∈ E(G). Note that wx′ ∈ E(G); otherwise the subgraph induced by {x,w, x′, y} is a claw.

If y = a2, then the subgraph induced by {x′, w, v, x, a2, a
′
2} and the subgraph induced by

{w, x′, y′, x, a2, a
′
2} are W ’s. Thus v, y′ and a′2 are three hefty vertices. Note that a′2 ≁ v

a′2 ≁ y′, and v, y′ have no common neighbors, a contradiction. So we assume that y 6= a2, and

similarly, y 6= a3, y
′ 6= a2, y

′ 6= a3. This implies that either y or y′ is in A\{a1, a2, a3, c}.

We assume without loss of generality that y ∈ A\{a1, a2, a3, c}. Let P ′ be a shortest path

from w to a1 (note that P ′ consists of the vertex a1 if w = a1). Let w, v and u be the first three

vertices in the path P = P ′a1Π [P 1]b1Π [b1b2]. Then the subgraph induced by {x′, x, y, w, v, u}

is a W . Thus y is a hefty vertex, a contradiction. �

If both a2 and a3 are in Nj , then let w be a neighbor of a2 in Nj−1, v be a neighbor

of w in Nj−2. By Claim 5.1 and Lemma 2.4 (1), a2a3, wa3 ∈ E(G). Let a2, y and z be

the first three vertices in the path P = Π [P 2]b2Π [b2b3]. By Claim 4, a3z /∈ E(G). Then

the subgraph induced by {a3, w, v, a2, y, z} is a W . Let a3, y
′, z′ be the first three vertices in

the path P = Π [P 2]b2Π [b2b1]. By Claim 4, wz′ /∈ E(G). Then the subgraph induced by

{w, a2, a′2, a3, y
′, z′} is a W . Thus v, a′2, and similarly, a′3, are hefty. Note that v, a′2 and a′3 are

pairwise dissociated, a contradiction. So we assume without loss of generality that a2 /∈ Nj.

Let a2 ∈ Ni, where 1 ≤ i ≤ j−1. Let y be a vertex in Ni+1. Recall that a2 has no neighbors

in Ni+1. Let x be a neighbor of y in Ni, w be a neighbor of a2 in Ni−1 and v be a neighbor of

w in Ni−2. Note that a2x,wx ∈ E(G).
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If y = a3, then let z = a′3; and if y = c, then let z be the successor of c in Π [cb3]. Then

the subgraph induced by {a2, w, v, x, y, z} and the subgraph induced by {w, a2, a′2, x, y, z} are

W ’s. Thus v, a′2 and z are hefty. Note that v, a′2 and z are pairwise dissociated, a contradiction.

Now we assume that y 6= c, a3. Let a2, y
′, z′ be the first three vertices in the path P =

Π [P 2]b2Π [b2b3]. Then the subgraph induced by {w, x, y, a2, y′, z′} is a W . This implies that y

is hefty, a contradiction. �

Now let a and b be two hefty vertices in A\{a1, a2, a3, c} and B\{b1, b2, b3, c}, respectively.

Since a, b and a′i are pairwise dissociated, a′i is not hefty.

By Lemma 2.4 (3), a1 has an interior neighbor in A or a1a ∈ E(G). In any case, a1 has

a neighbor in A\{a2, a3, c}. If a1a2 ∈ E(G), then let v be a neighbor of a1 in A\{a2, a3, c}.

By Lemma 2.4, a2v ∈ E(G). Let a2, x and y be the first three vertices in the path P =

Π [P 2]b2Π [b2b3]. Then the subgraph induced by {v, a1, a′1, a2, x, y} is a W . Thus a′1 is hefty, a

contradiction. This implies that a1a2, and similarly, a1a3, a2a3, is not in E(G).

Claim 6 Ni is a clique for all 1 ≤ i ≤ j.

Proof We use induction on i. By Lemma 2.4 (1), N1 is a clique.

We first consider the case i = 2. Recall that a1a2 /∈ E(G), which implies that a2 /∈ N1. If

a2 ∈ N2, then let z = a′2, y = a2; and if a2 /∈ N2, then (j ≥ 3 and) let z be a vertex in N3, and

y be a neighbor of z in N2.

We claim that y is adjacent to every vertex in N2\{y}. Assume that yy′ /∈ E(G) for

y′ ∈ N2\{y}. Then y and y′ have no common neighbors in N1. Let x be a neighbor of y in

N1 and x′ be a neighbor of y′ in N1. Then xy′, x′y /∈ E(G). Since xx′ ∈ E(G), the subgraph

induced by {x′, a1, a
′
1, x, y, z} is a W , and this implies that a′1 is hefty, a contradiction. Thus, as

we claimed, y is adjacent to every vertex in N2\{y}. Now let y′, y′′ be two vertices in N2\{y}.

We claim that y′y′′ ∈ E(G). If y′z ∈ E(G), then (z 6= a′2 and) similarly as the case of y, we

can see that y′ is adjacent to every vertex in N2\{y′}, including y′′. So we assume that y′z,

and similarly, y′′z, is not in E(G). Then the subgraph induced by {y, y′, y′′, z} is a claw, a

contradiction. Thus, as we claimed, N2 is a clique.

Now we assume that 3 ≤ i ≤ j. Note that Ni−1, Ni−2, Ni−3 and Ni−4 are nonempty.

Assume that there are two vertices z and z′ in Ni with zz′ /∈ E(G). Note that z and z′

have no common neighbors in Ni−1. Let y be a neighbor of z in Ni−1 and y′ be a neighbor

of z′ in Ni−1. Then yz′, y′z /∈ E(G). Let x be a neighbor of y in Ni−2, w be a neighbor of x

in Ni−3 and v be a neighbor of w in Ni−4. Then yy′, xy′ ∈ E(G). Now the subgraph induced

by {y′, y, z, x, w, v} is a W . Thus v and z are hefty. Note that b ≁ v, b ≁ z, and v, z have no

common neighbors, a contradiction. �

Recall that a2a3 /∈ E(G), which implies that either a2 or a3 /∈ Nj . Also recall that a2, a3 /∈

N1. We assume without loss of generality that a2 ∈ Ni, where 2 ≤ i ≤ j − 1. Let z be a vertex

in Ni+1, y be a neighbor of z in Ni, x be a neighbor of a2 in Ni−1, w be a neighbor of x in Ni−2

and v be a neighbor of w in Ni−3. By Claim 6 and Lemma 2.4 (1), a2y, xy ∈ E(G). Then the

subgraph induced by {y, a2, a′2, x, w, v} is a W . This implies that a′2 is hefty, a contradiction.

The proof is complete. �
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