
Disturbance-based Discretization, Differentiable IDS Channel,
and an IDS-Correcting Code for DNA-based Storage

Alan J.X. Guo1,2*, Mengyi Wei1, Yufan Dai1, Yali Wei1, Pengchen Zhang1

1Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
2State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China

{jiaxiang.guo, mengyi.wei, daiyufan, yaliwei222 , zhangpengchen}@tju.edu.cn

Abstract

With recent advancements in next-generation data storage,
especially in biological molecule-based storage, insertion,
deletion, and substitution (IDS) error-correcting codes have
garnered increased attention. However, a universal method
for designing tailored IDS-correcting codes across vary-
ing channel settings remains underexplored. We present
an autoencoder-based approach, THEA-code, aimed at ef-
ficiently generating IDS-correcting codes for complex IDS
channels. In the work, a disturbance-based discretization is
proposed to discretize the features of the autoencoder, and
a simulated differentiable IDS channel is developed as a
differentiable alternative for IDS operations. These innova-
tions facilitate the successful convergence of the autoen-
coder, producing channel-customized IDS-correcting codes
that demonstrate commendable performance across complex
IDS channels, particularly in realistic DNA-based storage
channels.

1 Introduction
Biological molecule-based storage, a method that uses the
synthesis and sequencing of biological molecules for in-
formation storage and retrieval, has attracted significant at-
tention (Church, Gao, and Kosuri 2012; Goldman et al.
2013; Grass et al. 2015; Erlich and Zielinski 2017; Organick
et al. 2018; Dong et al. 2020; Chen et al. 2021; El-Shaikh
et al. 2022; Welzel et al. 2023). Currently, most applica-
tions in this field are focused on DNA-based information
storage (Meiser et al. 2022).

Due to the involvement of biochemical procedures, the
storage pipeline can be viewed as an insertions, deletions, or
substitutions (IDS) channel (Blawat et al. 2016) over 4-ary
sequences with the alphabet {A,T,G,C}. Consequently, an
IDS-correcting encoding/decoding method plays a key role
in biological molecule-based storage.

However, despite the existence of excellent combinato-
rial IDS-correcting codes (Varshamov and Tenenholtz 1965;
Levenshtein 1965; Sloane 2000; Mitzenmacher 2009; Cai
et al. 2021; Gabrys et al. 2023; Bar-Lev, Etzion, and Yaakobi
2023), applying them in DNA-based storage remains chal-
lenging. The biochemical channel in DNA-based storage is

*Corresponding author.
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

more complex than those studied in previous works, with
factors such as inhomogeneous error probabilities across er-
ror types, base indices, and even sequence patterns (Hirao
et al. 1992; Press et al. 2020; Blawat et al. 2016; Cai et al.
2021; Hamoum et al. 2021). Additionally, most of the afore-
mentioned combinatorial codes focus on correcting either a
single error or a burst of errors, whereas multiple indepen-
dent errors within the same DNA sequence are common in
DNA-based storage. To address this, an outer code is usu-
ally employed to correct residual errors that are beyond the
capability of the inner IDS code.

Given the complexity of the IDS channel, we leverage
the universality of deep learning methods by employing an
autoencoder (Baldi 2012) as the foundation for an end-to-
end IDS-correcting code. This approach enables researchers
to train customized codes tailored to various IDS channels
through a unified training procedure, rather than manually
designing specific combinatorial codes for each IDS chan-
nel setting, many of which remain unexplored.

To realize this approach, two novel techniques are devel-
oped, which we believe offer greater contributions to the
communities than the code itself.

Firstly, the discretization effect of applying disturbance
in a non-generative model is investigated in this work. It is
observed that introducing disturbance to the logistic feature
forces the non-generative model to reduce the disturbance
caused indeterminacy by producing more confident logits,
thereby achieving discretization. This aligns with the dis-
crete codewords of an error-correcting code (ECC) in this
work, and provides an alternative approach for bridging the
gap between continuous models and discrete applications.

Secondly, a differentiable IDS channel using a
Transformer-based model (Vaswani et al. 2017) is de-
veloped. The non-differentiable nature of IDS operations
presents a key challenge for deploying deep learning
models that rely on gradient descent training. To tackle
this, a model is trained in advance to mimic the IDS
operations according to a given error profile. It can serve as
a plug-in module for the IDS channel and is backpropagable
within the network. This differentiable IDS channel has the
potential to act as a general module for addressing IDS or
DNA-related problems using deep learning methods. For
instance, researchers could build generative models on this
module to simulate the biochemical processes involved in

manipulating biosequences.
Overall, this work implements a heuristic end-to-end au-

toencoder as an IDS-correcting code, referred to as THEA-
Code. The encoder maps the source DNA sequence into a
longer codeword sequence. After introducing IDS errors to
the codeword, a decoder network is employed to reconstruct
the original source sequence from the codeword. During the
training of this autoencoder, disturbance-based discretiza-
tion is applied to the codeword sequence to produce one-
hot-like vectors, and the differentiable IDS channel serves
as a substitute for conventional IDS channel, enabling gra-
dient backpropagation.

To the best of our knowledge, this work presents the
first end-to-end autoencoder solution for an IDS-correcting
code. It introduces the disturbance-based discretization, and
proposes the first differentiable IDS channel. It is also the
first universal method for designing tailored IDS-correcting
codes across varying channel settings. Experiments across
multiple complex IDS channels, particularly in the realistic
DNA-based storage channel, demonstrate the effectiveness
of the proposed THEA-Code.

2 Related Works
Many established IDS-correcting codes are rooted in the
Varshamov-Tenengolts (VT) code (Varshamov and Tenen-
holtz 1965; Levenshtein 1965), including (Calabi and Hart-
nett 1969; Tanaka and Kasai 1976; Sloane 2000; Cai et al.
2021; Gabrys et al. 2023). These codes often rely on rig-
orous mathematical deduction and provide firm proofs for
their coding schemes. However, the stringent hypotheses
they use tend to restrict their practical applications. Heuris-
tic IDS-correcting codes for DNA-based storage, such as
those proposed in (Pfister and Tal 2021; Yan, Liang, and
Wu 2022; Maarouf et al. 2022; Welzel et al. 2023), usually
incorporate synchronization markers (Sellers 1962; Srini-
vasavaradhan et al. 2021; Haeupler and Shahrasbi 2021),
watermarks (Davey and Mackay 2001), or positional in-
formation (Press et al. 2020) within their encoded se-
quences. Recently, directly correcting errors in retrieved
DNA reads without sequence reconstruction has been inves-
tigated, demonstrating promising performance (Welter et al.
2024).

In recent years, deep learning methods have found in-
creasing applications in coding theory (Ibnkahla 2000;
Simeone 2018; Akrout et al. 2023; Park et al. 2025). Sev-
eral architectures have been employed as decoders or sub-
modules of conventional codes on the additive white Gaus-
sian noise (AWGN) channel. In (Cammerer et al. 2017), the
authors applied neural networks to replace sub-blocks in the
conventional iterative decoding algorithm for polar codes.
Recurrent neural networks (RNN) were used for decod-
ing convolutional and turbo codes (Kim et al. 2018). Both
RNNs and Transformer-based models have served as be-
lief propagation decoders for linear codes (Nachmani et al.
2018; Choukroun and Wolf 2022, 2023, 2024a,b,c). Hy-
pergraph networks were also utilized as decoders for block
codes in (Nachmani and Wolf 2019). Despite these advance-
ments, end-to-end deep learning solutions remain relatively
less explored. As mentioned in (Jiang et al. 2019), direct

applications of multi-layer perceptron (MLP) and convolu-
tional neural network (CNN) are not comparable to con-
ventional methods. To address this, the authors in (Jiang
et al. 2019) used deep models to replace sub-modules of
a turbo code skeleton, and trained an end-to-end encoder-
decoder model. Similarly, in (Makkuva et al. 2021), neu-
ral networks were employed to replace the Plotkin map-
ping for the Reed-Muller code. Both of these works inherit
frameworks from conventional codes and utilize neural net-
works as replacements for key modules. In (Balevi and An-
drews 2020), researchers proposed an autoencoder-based in-
ner code with one-bit quantization for the AWGN channel.
Confronting challenges arising from quantization, they uti-
lized interleaved training on the encoder and decoder.

3 Disturbance-based Discretization
In this work, it is observed that introducing disturbance
to the categorical distribution feature produced by a non-
generative model causes the feature to resemble a one-hot
vector.

Intuitively, the non-generative model may attempt to re-
duce the indeterminacy introduced by the disturbance by
generating more confident logits. When a logit x is per-
turbed by a noise term ϵ before producing the categorical
distribution, a fully converged model, aiming to generate
outputs with high certainty, have to produce logits x with
significantly larger magnitudes to diminishing the relative
proportion of the disturbance ϵ. From this perspective, the
logit x becomes more confident, producing probabilities that
are closer to one-hot vectors and exhibit lower entropy. This
effect is confirmed by monitoring the entropy of the cat-
egorical distribution in the experiments presented in Ap-
pendix C.1.

Let x be the logits that produce the probabilities π =
{π1, π2, . . . , πk} via the softmax function,

πi =
expxi∑k
j=1 expxj

, i = 1, 2, . . . , k. (1)

In this work, the non-generative disturbance is introduced
to π by sampling from the Gumbel distribution (Gumbel
1935). It follows the same formula as the Gumbel-Softmax,
which has been widely used in generative models for gener-
ating samples (Jang, Gu, and Poole 2017; Maddison, Mnih,
and Teh 2017). Specifically, the non-generative disturbance
is applied to x using the following formula:

GS(x)i =
exp ((xi + gi)/τ)∑k
j=1 exp ((xj + gj)/τ)

, i = 1, 2, . . . , k,

(2)
where g1, g2, . . . , gk are i.i.d. samples drawn from the Gum-
bel distributionG(0, 1) and τ is the temperature that controls
the entropy.

Applying GS(x) in a non-generative model is found to
induce the model to produce more confident logits x and,
consequently, probabilities π that resemble one-hot vectors,
as stated in Proposition 3.1.
Proposition 3.1. By introducing disturbance to a non-
generative autoencoder’s feature logits x via GS(x), the au-

toencoder, upon non-trivial convergence, produces confident
logits x, resulting in one-hot-like probabilities π.

Brief proof:. Consider the binary case with temperature τ =
1, and let x = (x1, x2) be the logits from the upstream
model, with Gumbel noise added to compute y = GS(x).
At convergence, the gradient of the loss L = f(y) with re-
spect to x approaches zero. By computing ∂L/∂x1, we find
that it depends on y1y2 and the derivatives of f , implying
that either the output probabilities yi are near 0/1, or f(y) is
insensitive to its inputs. The former leads to low-entropy,
one-hot-like distributions in y. In the latter case, since y
varies due to the Gumbel noise, an f(y) that is insensitive
to its inputs implies that the model has converged to a triv-
ial solution, contradicting the hypothesis. Further, the log-
its x are bounded by the probability that y deviates from
a one-hot-like distributions, indicating that the model pro-
duces confident logits to suppress the effect of the Gumbel
noise.

A full version of the proof is provided in Appendix A.
Based on this, a converged model that applies the distur-
bance in Equation (2) to its feature logits x will be con-
strained to produce one-hot-like probability vectors when
Equation (2) is replaced with the softmax during inference.

4 Differentiable IDS Channel
on 3-Simplex ∆3

It is evident that the operations of insertion and deletion are
not differentiable. Consequently, a conventional IDS chan-
nel, which modifies a sequence by directly applying IDS op-
erations, hinders gradient propagation and cannot be seam-
lessly integrated into deep learning-based methods.

Leveraging the logical capabilities inherent in
Transformer-based models, a sequence-to-sequence model
is employed to simulate the conventional IDS channel.
Built on deep models, this simulated IDS channel is differ-
entiable. In the following discussion, we use the notation
CIDS(·, ·) to represent the Conventional IDS channel, and
DIDS(·, ·; θ) for the simulated Differentiable IDS channel.
The simulated channel is trained independently before being
integrated into the autoencoder, whose learned parameters
remain fixed during the optimization of the autoencoder.

As the model utilizes probability vectors rather than dis-
crete letters, we need to promote conventional IDS opera-
tions onto the 3-simplex ∆3, where ∆3 is defined as the col-
lection 4-dimentional probability vectors

∆3 = {π|πi ≥ 0,

4∑
i=1

πi = 1, i = 1, 2, 3, 4}. (3)

For a sequence of probability vectors C =
(π1,π2, . . . ,πk), where each πi is an element from
the simplex ∆3, the IDS operations are promoted as
follows.

Insertion at index i involves adding a one-hot vec-
tor representing the inserted symbol from the alphabet
{A,T,G,C} before index i. Deletion at index i simply re-
moves the vector πi from C. For substitution, the proba-
bility vector πi is rolled by corresponding offsets for the

C

p

differentiable
DIDS(·, ·; θ)

conventional
CIDS(·, ·)

ĈDIDS

ĈCIDS

Figure 1: The differentiable IDS channel. The ĈDIDS and
ĈCIDS are generated by the differentiable and conventional
IDS channels, respectively. Optimizing the difference be-
tween ĈDIDS and ĈCIDS trains the differentiable channel.

three types of substitutions, which correspond to substitute
#1,#2, and #3 in Figure 12 from Appendix F. For exam-
ple, applying a type-#1 substitution at index i rolls the orig-
inal vector πi = (πi1, πi2, πi3, πi4) into (πi4, πi1, πi2, πi3).
It is straightforward to verify that the promoted IDS opera-
tions degenerate to standard IDS operations when the prob-
ability vectors are constrained to a one-hot representation.

As illustrated in Figure 1, both the conventional IDS chan-
nel CIDS and the simulated IDS channel DIDS take the se-
quence C of probability vectors and an error profile p as
their inputs. The error profile consists of a sequence of letters
that record the types of errors encountered while processing
C. Complicated IDS channels can be deduced by specify-
ing the rules for generating error profiles. The probability
sequence C is expected to be modified by the simulated IDS
channel to ĈDIDS = DIDS(C,p; θ) according to the error
profile p in the upper stream of Figure 1. In the lower stream,
the sequence C is modified as ĈCIDS = CIDS(C,p) with
respect to the error profile p using the previously defined
promoted IDS operations.

To train the model DIDS(·, ·; θ), the Kullback–Leibler di-
vergence (Kullback 1997) of ĈDIDS from ĈCIDS can be uti-
lized as the optimization target

LKLD(ĈDIDS, ĈCIDS) =
1

k

∑
i

π̂TiCIDS log
π̂iCIDS

π̂iDIDS
. (4)

By optimizing Equation (4) on randomly generated proba-
bility vector sequences C and error profiles p, the param-
eters θ of the differentiable IDS channel are trained to θ̂.
Following this, the model DIDS(·, ·; θ̂) simulates the con-
ventional IDS channel CIDS(·, ·). The significance of such
an IDS channel lies in its differentiability. Once optimized
independently, the parameters of the IDS channel are fixed
for downstream applications. In the following text, we use
DIDS(·, ·) to refer to the trained IDS channel for simplicity.

In practice, the differentiable IDS channel is imple-
mented as a sequence-to-sequence model, employing one-
layer Transformers for both its encoder and decoder.1 The

1Here, the encoder and decoder refer specifically to the mod-
ules of the sequence-to-sequence model, not the modules of the
autoencoder. We trust that readers will be able to distinguish be-
tween them based on the context.

model takes a padded vector sequence and error profile,
whose embeddings are concatenated along the feature di-
mension as its input. To generate the output, that represents
the sequence with errors, learnable position embedding vec-
tors are utilized as the queries (omitted from Figure 1).

5 THEA-Code
5.1 Framework
The flowchart of the proposed code is illustrated in Figure 2.
Based on the principles of DNA-based storage, which syn-
thesizes DNA molecules of fixed length, the proposed model
is designed to handle source sequences and codewords of
constant lengths. Essentially, the proposed method encodes
source sequences into codewords; the IDS channel intro-
duces IDS errors to these codewords; and a decoder is em-
ployed to reconstruct the recovered sequences according to
the corrupted codewords.

Let fen(·;ϕ) denote the encoder, where ϕ represents the
encoder’s parameters. The source sequence s is first encoded
into the codeword c = fen(s;ϕ) by the encoder,2 where the
codeword c is obtained using Equation (2) during the train-
ing phase and argmax during the testing phase. Next, a ran-
dom error profile p is generated, which records the positions
and types of errors that will occur on codeword c. Given
the error profile p, the codeword c is transformed into the
corrupted codeword ĉ = DIDS(c,p; θ̂) by the simulated
differentiable IDS channel, implemented as a sequence-to-
sequence model with trained parameters θ̂. Finally, a de-
coder fde(·;ψ) with parameters ψ decodes the corrupted
codeword ĉ back into the recovered sequence ŝ = fde(ĉ;ψ).

Following this pipeline, a natural optimization target is
the cross-entropy loss

LCE(ŝ, s) = −
∑
i

∑
j

1j=si log ŝij , (5)

which evaluates the reconstruction disparity of the source
sequence s (in its label representation) by the recovered se-
quence ŝ (in its one-hot probability distribution).

However, merely optimizing such a loss function will not
yield the desired outcomes. While the encoder and decoder
of an autoencoder typically collaborate on a unified task in
most applications, in this work, we expect them to follow
distinct underlying logic. Particularly, when imposing con-
straints to enforce greater discreteness in the codeword, the
joint training of the encoder and decoder becomes challeng-
ing, where the optimization of each relies on the other during
the training phase.

5.2 Auxiliary reconstruction of source sequence
by the encoder

To address the aforementioned issue, we introduce a sup-
plementary task exclusively for the encoder, aimed at ini-
tializing it with some foundational logical capabilities. In-
spired by the systematic code which embed the input mes-

2For simplicity, we do not distinguish between notations for se-
quences represented as letters, one-hot vectors, or probability vec-
tors in the following text.

sage within the codeword, a straightforward task for the en-
coder is to replicate the input sequence at the output, ensur-
ing that the model preserves all information from its input
without reduction. With this in mind, we incorporate a re-
construction task into the encoder’s training process.

In practice, the encoder is designed to output a longer se-
quence, which is subsequently split into two parts: the code-
word representation c and an auxiliary reconstruction r of
the input source sequence, as shown in Figure 2. The auxil-
iary reconstruction loss is calculated using the cross-entropy
loss as

LAux(r, s) = −
∑
i

∑
j

1j=si log rij , (6)

which quantifies the difference between the reconstruction
r (in its one-hot probability distribution) and the input se-
quence s (in its label representation).

Considering that the auxiliary loss may not have negative
effects on the encoder for its simple logic, we don’t use a
separate training stage for optimizing the LAux. The aux-
iliary loss defined in Equation (6) is incorporated into the
overall loss function and applied consistently throughout the
entire training phase.

5.3 The encoder and decoder
In this approach, both the encoder and decoder are im-
plemented using Transformer-based sequence-to-sequence
models. Each consists of (3+3)-layer Transformers with si-
nusoidal positional encoding. The embedding of the DNA
bases is implemented through a fully connected layer with-
out bias to ensure compatibility with probability vectors.
Learnable position index embeddings are employed to query
the outputs.

5.4 Training phase
The training process is divided into two phases. Firstly, the
differentiable IDS channel is fully trained by optimizing

θ̂ = argmin
θ

LKLD(ĈDIDS, ĈCIDS) (7)

on randomly generated codewords c and profiles p. Once
the differentiable IDS channel is trained, its parameters are
fixed. The remaining components of the autoencoder are
then trained by optimizing a weighted sum of Equation (5)
and Equation (6),

ϕ̂, ψ̂ = argmin
ϕ,ψ

LCE(ŝ, s) + µLAux(r, s), (8)

where µ is a hyperparameter representing the weight of the
auxiliary reconstruction loss. The autoencoder is trained on
randomly generated input sequences s and profiles p.

5.5 Testing phase
In the testing phase, the differentiable IDS channel is re-
placed with the conventional IDS channel. The process be-
gins with the encoder mapping the source sequence s to the
codeword c in the form of probability vectors. An argmax
function is then applied to convert c into a discrete letter

s

source
information

Encoder

r

auxiliary reconstruction

c

codeword

GS
p

random error profile

Differentiable
IDS

Channel

ĉ

corrupted
codeword

Decoder
ŝ

recovered
information

Figure 2: The flowchart of THEA-Code, including the encoder, the pretrained IDS channel, and the decoder. All of these
modules are implemented using Transformer-based models. The “GS” is where the disturbance based discretization applied in
the pipeline.

sequence, removing any extra information from the prob-
ability vectors. Next, the conventional IDS operations are
performed on ĉ = CIDS(c,p) according to a randomly
generated error profile p. The one-hot representation of ĉ is
then passed into the decoder, which reconstructs the recov-
ered sequence ŝ. Finally, metrics are computed to measure
the differences between the original source sequence s and
the reconstructed sequence ŝ, providing an evaluation of the
method’s performance.

Since the sequences are randomly generated from an enor-
mous pool of possible terms, the training and testing sets are
separated using different random seeds. For example, in the
context of this work, the source sequence is a 100-long 4-ary
sequence, providing 1.6 × 1060 possible sequences. Given
this vast space, sets of randomly generated sequences using
different seeds are unlikely to overlap.

6 Experiments on the Differentiable IDS
Channel

6.1 Accuracy of the channel
The differentiable IDS channel is expected to faithfully
modify the input sequence according to the given profiles.
To explicitly demonstrate the performance, accuracy is eval-
uated under various profile settings.

The results is illustrated in Figure 3. It is suggested that
the differentiable IDS channel edits the input sequence faith-
fully according to the profile when the total channel error
rate is no more than 20%. When the error rate exceeds 20%,
the accuracy of the differentiable IDS channel declines as
the channel error rate increases. It is worth noting that re-
alistic DNA-based storage channels typically do not exhibit
error rates above 20%.

7 Experiments on the IDS-Correcting Code
Commonly used methods for synthesizing DNA molecules
in DNA-based storage pipelines typically yield sequences of
lengths ranging from 100 to 200 (Welter et al. 2024). In this
study, we choose the number 150 as the codeword length,
aligning with these established practices. Unless explicitly
stated otherwise, all the following experiments adhere to the
default setting: source sequence length ℓs = 100, codeword
length ℓc = 150, auxiliary loss weight µ = 1, and the error
profile is generated with a 1% probability of errors occurring

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
channel error rate (%)

20
30
40
50
60
70
80
90

100

ac
cu

ra
cy

 (%
)

10
0.0

99
.6
99

.5
99

.4
99

.2
99

.1
99

.0
98

.6
97

.9
96

.6
94

.3
90

.4
86

.2
79

.8
73

.2
66

.7
60

.0
54

.7
49

.6
45

.2
41

.7
38

.6
36

.3
34

.3
32

.9
31

.7

Figure 3: The accuracy of the differentiable IDS channel un-
der various channel error rates. Accuracy is calculated by
comparing the outputs of the differentiable IDS channel with
those of the conventional IDS channel.

at each position, with insertion, deletion, and substitution
errors equally likely.

To evaluate performance, the nucleobase error rate (NER)
is employed as a metric, analogous to the bit error rate
(BER), but replacing bits with nucleobases. For a DNA se-
quence s and its decoded counterpart ŝ, the NER is defined
as

NER(s, ŝ) =
#{si ̸= ŝi}

#{si}
. (9)

The NER represents the proportion of nucleobase errors
corresponding to base substitutions in the source DNA se-
quence. It’s worth noting that these errors can be post-
corrected using a mature conventional outer code.

The source code is uploaded at https://github.com/
aalennku/THEA-Code.

7.1 Performance with different channel settings
The code rate is the proportion of non-redundant data in the
codeword, calculated by dividing the source length ℓs by the
codeword length ℓc. We explored variable source lengths ℓs
while keeping the codeword length ℓc = 150 fixed. The re-
sults in Table 1 reveal a trend that the NER increases from
0.09% to 2.81% as the code rate increases from 0.33 to 0.83.

By applying an outer conventional ECC to address the re-
maining NER, which is a common technique in DNA-based
storage (Press et al. 2020; Pfister and Tal 2021; Yan, Liang,
and Wu 2022; Welzel et al. 2023), a complete solution for
DNA-based storage is achieved. Here, the IDS-correcting
code is focused.

ℓs 50 75 100 125
code rate 0.33 0.50 0.67 0.83

NER(%) 0.12 ± 0.03 0.51 ± 0.03 1.15 ± 0.08 3.71 ± 0.59

Table 1: The testing NER for different source lengths ℓs,
with the codeword length fixed at ℓc = 150. The code rate is
calculated as ℓs/ℓc, ranging from 0.33 to 0.83.

By controlling the generation process of the error profile
p for different channel settings, we can evaluate whether
THEA-Code learns channels’ attributes and produces cus-
tomized codes based on the models’ performance.

Results on IDS channels with position related er-
rors. Along with the default setting, where error rates
are position-insensitive (denoted as Hom), two other IDS
channels parameterized by ascending (Asc) and descending
(Des) error rates along the sequence are considered.3 The
Asc channel has error rates increasing from 0% to 2% along
the sequence, with the average error rate matching that of
the default setting Hom. The Des channel follows a similar
pattern but has decreasing error rates along the sequence.

To verify that the proposed method customizes codes
for different channels, cross-channel testing was conducted,
with the results shown in Table 2. The numbers in the matrix
represent the NER of a model trained with the channel of the
row and tested on the channel of the column.

The diagonal of Table 2 shows the results of the model
trained and tested with a consistent channel, suggesting that
the learned THEA-Code exhibits varying performance de-
pending on the specific channel configuration. The columns
of Table 2 suggest that, for each testing channel, models
trained with the channel configuration consistently achieve
the best performance among the three channel settings. Con-
sidering the Hom channel is a midway setting between Asc
and Des, the first and third columns (and rows) show that
the more dissimilar the training and testing channels are, the
worse the model’s performance becomes, even though the
overall error rates are the same across the three channels.
These findings verify that the deep learning-based method
effectively customizes codes for specific channels, which
could advance IDS-correcting code design into a more fine-
grained area.

Results on IDS channels with various IDS error rates.
IDS channels with larger error probabilities were also tested.
The experiments were extended to include channels with er-
ror probabilities in {0.5%, 1%, 2%, 4%, 8%, 16%}, with re-
sults listed in Table 3.

It is suggested that models trained on channels with higher
error probabilities exhibit compatibility with channels with
lower error probabilities. In most cases, models trained and
tested on similar channels achieve better performance.

Results on realistic IDS channels. We also conducted
experiments using IDS channels that more closely resem-

3These settings simplify DNA-based storage channels, as a
DNA sequence is marked with a 3’ end and a 5’ end. Some re-
searchers believe that the error rate accumulates towards the se-
quence end during synthesis (Meiser et al. 2020).

NER(%) Asc Hom Des

Asc 0.90 ± 0.09 1.46 ± 0.08 2.09 ± 0.44
Hom 1.03 ± 0.20 1.15 ± 0.08 1.30 ± 0.03
Des 1.72 ± 0.12 1.32 ± 0.07 1.01 ± 0.05

Table 2: The testing NER across different channels. Each
entry is the NER of a model trained (resp. tested) with the
row (resp. column) header channel.

NER(%) 0.5% 1% 2% 4% 8% 16%

0.5% 0.68 1.59 4.26 11.67 26.87 45.61
1% 0.52 1.15 2.90 8.12 21.19 41.03
2% 0.67 1.43 3.16 7.79 18.7 36.89
4% 1.25 1.76 2.88 5.53 12.39 28.31
8% 2.74 3.24 4.30 6.62 12.2 25.41

16% 11.57 11.93 12.61 14.4 17.22 25.51

Table 3: The testing NER across different IDS error proba-
bilities. The row and column headers correspond to channels
configured with respective probabilities of errors. Each en-
try represents the NER of a model trained (resp. tested) on
the channel specified by the row (resp. column) header.

code rate 0.33 0.50 0.6 0.67 0.75 0.83

Cai 0.44 1.00 - 2.53 - 8.65
DNA-LM 0.55 1.03 - 2.29 - 7.43
HEDGES 0.28 0.25 0.65 - 3.43 -

THEA-Code 0.09 0.46 1.00 1.06 2.03 2.81

Table 4: The testing error rates compared with different es-
tablished codes, through the default 1% IDS channel.

ble realistic IDS channels in DNA-based storage. A mem-
ory channel was proposed in (Hamoum et al. 2021), relying
on statistical data obtained via a realistic storage pipeline. It
models the IDS errors based on the k-mers of sequences and
adjacent edits. In this work, we utilize the publicly released
trained memory channel from (Hamoum et al. 2021), fil-
tering out apparent outlier sequences with Levenshtein dis-
tance greater than 20. This simulated channel is referred to
as MemSim.

In practice, a DNA sequence c is input into MemSim to
produce the output sequence ĉ from the channel. By compar-
ing c and ĉ, an error profile p is inferred. Using the sequence
c and the error profile p in the procedure depicted in Fig-
ure 2, an IDS-correcting code for MemSim is customized.

For comparison, two simple channels, partially aligned
with MemSim, were also considered. The overall IDS er-
ror rate for MemSim is 10.36%, with the proportions of in-
sertion, deletion, and substitution being 1.66%, 5.31%, and
3.38%, respectively. We refer to the context-free channel
with these specific error proportions as channel C253. Chan-
nel C111 is defined as having the same overall IDS error rate
10.36%, but with equal proportions of insertion, deletion,
and substitution. It is evident that MemSim is the closest ap-
proximation to a realistic channel, followed by C253, while

r = 0.33 r = 0.50 r = 0.67

NER(%) C111 C253 MemSim C111 C253 MemSim C111 C253 MemSim

C111 2.28 3.02 15.9 7.60 8.77 24.85 15.19 16.96 34.46
C253 2.73 2.93 17.3 9.15 9.13 25.09 16.87 16.90 32.86

MemSim 5.60 6.64 1.55 14.78 16.62 6.11 24.89 25.91 12.02

Table 5: The testing NER across different channels including C111, C253, and MemSim, under varying code rates. Each entry
represents the NER of a model trained (resp. tested) on the channel specified by the row (resp. column) header.

r = 0.33 r = 0.50 r = 0.67

C111 C253 MemSim C111 C253 MemSim C111 C253 MemSim

Cai 17.01 17.52 72.74 29.00 29.57 74.40 40.12 42.62 73.90
DNA-LM 32.24 37.33 60.13 45.32 51.13 64.27 56.34 60.22 68.72
HEDGES 3.21 4.56 29.42 27.22 27.79 99.56 54.35 55.66 99.62

THEA-Code 2.28 2.93 1.55 7.60 9.13 6.11 15.19 16.90 12.02

Table 6: The testing error rates compared with established code through channels including C111, C253, and MemSim, under
varying code rates.

C111 deviates the most from a realistic channel, despite all
having the same overall IDS error rate.

The results across channels, including C111, C253, and
MemSim, are presented in Table 5. The results suggest that
THEA-Code performs better when the model is trained on
the same channel used for testing. Specifically, for the re-
alistic channel, codes trained on the simpler channels C253
and C111 fail to deliver satisfactory results. Overall, THEA-
Code trained and tested with MemSim achieves the best re-
sults, demonstrating that the proposed model significantly
benefits from customizing the code for the realistic channel.

7.2 Comparison experiments
Comparison experiments were conducted against prior
works include: the combinatorial code from (Cai et al.
2021), the segmented code method DNA-LM from (Yan,
Liang, and Wu 2022), and the efficient heuristic method
HEDGES from (Press et al. 2020).

Such methods are typically designed to operate under dis-
crete, fixed configurations, making it challenging to align
them within the same setting. We made every effort to align
these methods, and present a subset of the comparison re-
sults in Table 4, which is tested through the default 1% error
channel. Detailed configurations and results across multiple
channels are provided in Appendix B.

Table 4 demonstrates the effectiveness of the proposed
method. The performance of THEA-Code and HEDGES
outperform the other methods by a large margin. At lower
code rates, THEA-Code achieves a comparable error rate to
HEDGES. At higher code rates, the proposed method out-
performs HEDGES, achieving much lower error rates.

Comparison through the realistic channel. We also
compared these codes across the channels C111, C253, and
MemSim introduced in Section 7.1, all of which have an
overall channel error rate of 10.36%. Specifically, MemSim
simulates the IDS channel from a realistic storage pipeline.

The results are illustrated in Table 6. It can be observed

that high-error-rate channels severely degrade the perfor-
mance of compared codes, while the proposed THEA-Code
outperforms them by a significant margin. Moreover, the
compared codes, lacking the ability to adapt to specific chan-
nels, show a noticeable decline in performance as the chan-
nel transitions from the simpler C111/C253 to the more
realistic MemSim. In contrast, THEA-Code leverages cus-
tomized channel-specific designs, achieving the best perfor-
mance on MemSim across all three channels.

8 More Experiments in the Appendices
In this work, the disturbance-based discretization, the differ-
entiable IDS channel, and the auxiliary reconstruction loss
are newly proposed. Comprehensive experiments on these
modules are presented in the Appendices provided in https:
//arxiv.org/abs/2407.18929. Following is a brief overview.

The full proof of Proposition 3.1 is given in Appendix A.
Details of the comparison experiments discussed in Sec-
tion 7.2 are provided in Appendix B.

Disturbance-based discretization. The ablation studies
and hyperparameter optimization for the disturbance-based
discretization, including the discretization effect compared
to vanilla softmax, the optimization of temperature τ , and
the results of potential alternative, are in Appendix C.

Differentiable IDS channel. Experiments on the differ-
entiable IDS channel, including the gradient trace under spe-
cific error profiles, and the gradients with respect to the error
profile through an identity channel, are in Appendix D.

Auxiliary reconstruction loss. For the auxiliary recon-
struction loss, ablation studies, weight optimization of the
loss term µ, and experiments on different auxiliary patterns
are provided in Appendix E.

Dataset and model. The construction of datasets and the
definition of error profiles are detailed in Appendix F. A
brief introduction to the Transformer model, as well as com-
plexity analysis and time consumption, is presented in Ap-
pendix G.

Acknowledgements
This work was supported by the National Key Re-
search and Development Program of China under Grant
2020YFA0712100 and 2025YFC3409900, the National
Natural Science Foundation of China, and the Emerging
Frontiers Cultivation Program of Tianjin University Inter-
disciplinary Center.

References
Akrout, M.; Feriani, A.; Bellili, F.; Mezghani, A.; and Hos-
sain, E. 2023. Domain Generalization in Machine Learning
Models for Wireless Communications: Concepts, State-of-
the-Art, and Open Issues. IEEE Communications Surveys &
Tutorials.
Baldi, P. 2012. Autoencoders, unsupervised learning, and
deep architectures. In Proceedings of ICML workshop on
unsupervised and transfer learning, 37–49. JMLR Work-
shop and Conference Proceedings.
Balevi, E.; and Andrews, J. G. 2020. Autoencoder-Based
Error Correction Coding for One-Bit Quantization. IEEE
Transactions on Communications, 68(6): 3440–3451.
Bar-Lev, D.; Etzion, T.; and Yaakobi, E. 2023. On the Size
of Balls and Anticodes of Small Diameter Under the Fixed-
Length Levenshtein Metric. IEEE Transactions on Informa-
tion Theory, 69(4): 2324–2340.
Blawat, M.; Gaedke, K.; Huetter, I.; Chen, X.-M.; Turczyk,
B.; Inverso, S.; Pruitt, B. W.; and Church, G. M. 2016. For-
ward error correction for DNA data storage. Procedia Com-
puter Science, 80: 1011–1022.
Cai, K.; Chee, Y. M.; Gabrys, R.; Kiah, H. M.; and Nguyen,
T. T. 2021. Correcting a single indel/edit for DNA-based
data storage: Linear-time encoders and order-optimality.
IEEE Transactions on Information Theory, 67(6): 3438–
3451.
Calabi, L.; and Hartnett, W. 1969. A family of codes for the
correction of substitution and synchronization errors. IEEE
Transactions on Information Theory, 15(1): 102–106.
Cammerer, S.; Gruber, T.; Hoydis, J.; and Ten Brink, S.
2017. Scaling deep learning-based decoding of polar codes
via partitioning. In GLOBECOM 2017-2017 IEEE Global
Communications Conference, 1–6. IEEE.
Chen, W.; Han, M.; Zhou, J.; Ge, Q.; Wang, P.; Zhang, X.;
Zhu, S.; Song, L.; and Yuan, Y. 2021. An artificial chro-
mosome for data storage. National Science Review, 8(5):
nwab028.
Choukroun, Y.; and Wolf, L. 2022. Error Correction Code
Transformer. In Koyejo, S.; Mohamed, S.; Agarwal, A.; Bel-
grave, D.; Cho, K.; and Oh, A., eds., Advances in Neural
Information Processing Systems, volume 35, 38695–38705.
Curran Associates, Inc.
Choukroun, Y.; and Wolf, L. 2023. Denoising Diffusion Er-
ror Correction Codes. In The Eleventh International Con-
ference on Learning Representations.
Choukroun, Y.; and Wolf, L. 2024a. Deep quantum error
correction. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 38, 64–72.

Choukroun, Y.; and Wolf, L. 2024b. A Foundation Model
for Error Correction Codes. In The Twelfth International
Conference on Learning Representations.
Choukroun, Y.; and Wolf, L. 2024c. Learning Linear Block
Error Correction Codes. In International Conference on Ma-
chine Learning, 8801–8814. PMLR.
Church, G. M.; Gao, Y.; and Kosuri, S. 2012. Next-
generation digital information storage in DNA. Science,
337(6102): 1628–1628.
Davey, M.; and Mackay, D. 2001. Reliable communication
over channels with insertions, deletions, and substitutions.
IEEE Transactions on Information Theory, 47(2): 687–698.
Dong, Y.; Sun, F.; Ping, Z.; Ouyang, Q.; and Qian, L. 2020.
DNA storage: research landscape and future prospects. Na-
tional Science Review, 7(6): 1092–1107.
El-Shaikh, A.; Welzel, M.; Heider, D.; and Seeger, B. 2022.
High-scale random access on DNA storage systems. NAR
Genomics and Bioinformatics, 4(1): lqab126.
Erlich, Y.; and Zielinski, D. 2017. DNA Fountain en-
ables a robust and efficient storage architecture. Science,
355(6328): 950–954.
Gabrys, R.; Guruswami, V.; Ribeiro, J.; and Wu, K. 2023.
Beyond Single-Deletion Correcting Codes: Substitutions
and Transpositions. IEEE Transactions on Information The-
ory, 69(1): 169–186.
Goldman, N.; Bertone, P.; Chen, S.; Dessimoz, C.; LeProust,
E. M.; Sipos, B.; and Birney, E. 2013. Towards practical,
high-capacity, low-maintenance information storage in syn-
thesized DNA. Nature, 494(7435): 77–80.
Grass, R. N.; Heckel, R.; Puddu, M.; Paunescu, D.; and
Stark, W. J. 2015. Robust chemical preservation of digital
information on DNA in silica with error-correcting codes.
Angewandte Chemie International Edition, 54(8): 2552–
2555.
Gumbel, E. J. 1935. Les valeurs extrêmes des distributions
statistiques. In Annales de l’institut Henri Poincaré, vol-
ume 5, 115–158.
Haeupler, B.; and Shahrasbi, A. 2021. Synchronization
strings and codes for insertions and deletions—A survey.
IEEE Transactions on Information Theory, 67(6): 3190–
3206.
Hamoum, B.; Dupraz, E.; Conde-Canencia, L.; and Lave-
nier, D. 2021. Channel model with memory for DNA data
storage with nanopore sequencing. In 2021 11th Interna-
tional Symposium on Topics in Coding (ISTC), 1–5. IEEE.
Hirao, I.; Nishimura, Y.; Tagawa, Y.-i.; Watanabe, K.; and
Miura, K.-i. 1992. Extraordinarily stable mini-hairpins:
Electrophoretical and thermal properties of the various se-
quence variants of d (GCFAAAGC) and their effect on DNA
sequencing. Nucleic acids research, 20(15): 3891–3896.
Ibnkahla, M. 2000. Applications of neural networks to dig-
ital communications–a survey. Signal Processing, 80(7):
1185–1215.
Jang, E.; Gu, S.; and Poole, B. 2017. Categorical Reparam-
eterization with Gumbel-Softmax. In International Confer-
ence on Learning Representations.

Jiang, Y.; Kim, H.; Asnani, H.; Kannan, S.; Oh, S.; and
Viswanath, P. 2019. Turbo Autoencoder: Deep learn-
ing based channel codes for point-to-point communication
channels. In Advances in Neural Information Processing
Systems, 2754–2764.
Kim, H.; Jiang, Y.; Rana, R. B.; Kannan, S.; Oh, S.; and
Viswanath, P. 2018. Communication Algorithms via Deep
Learning. In International Conference on Learning Repre-
sentations.
Kossentini, F.; Smith, M. J.; and Barnes, C. F. 1993.
Entropy-constrained residual vector quantization. In 1993
IEEE International Conference on Acoustics, Speech, and
Signal Processing, volume 5, 598–601. IEEE.
Kullback, S. 1997. Information theory and statistics.
Courier Corporation.
Levenshtein, V. I. 1965. Binary codes capable of correcting
deletions, insertions, and reversals. Soviet Physics. Doklady,
10: 707–710.
Maarouf, I.; Lenz, A.; Welter, L.; Wachter-Zeh, A.; Rosnes,
E.; and i Amat, A. G. 2022. Concatenated codes for multiple
reads of a DNA sequence. IEEE Transactions on Informa-
tion Theory, 69(2): 910–927.
Maddison, C. J.; Mnih, A.; and Teh, Y. W. 2017. The
Concrete Distribution: A Continuous Relaxation of Discrete
Random Variables. In International Conference on Learning
Representations.
Makkuva, A. V.; Liu, X.; Jamali, M. V.; Mahdavifar, H.; Oh,
S.; and Viswanath, P. 2021. Ko codes: inventing nonlinear
encoding and decoding for reliable wireless communication
via deep-learning. In International Conference on Machine
Learning, 7368–7378. PMLR.
Meiser, L. C.; Koch, J.; Antkowiak, P. L.; Stark, W. J.;
Heckel, R.; and Grass, R. N. 2020. DNA synthesis for true
random number generation. Nature communications, 11(1):
5869.
Meiser, L. C.; Nguyen, B. H.; Chen, Y.-J.; Nivala, J.; Strauss,
K.; Ceze, L.; and Grass, R. N. 2022. Synthetic DNA appli-
cations in information technology. Nature communications,
13(1): 352.
Mitzenmacher, M. 2009. A survey of results for deletion
channels and related synchronization channels. Probability
Surveys, 6(none): 1 – 33.
Nachmani, E.; Marciano, E.; Lugosch, L.; Gross, W. J.; Bur-
shtein, D.; and Be’ery, Y. 2018. Deep Learning Methods for
Improved Decoding of Linear Codes. IEEE Journal of Se-
lected Topics in Signal Processing, 12(1): 119–131.
Nachmani, E.; and Wolf, L. 2019. Hyper-Graph-Network
Decoders for Block Codes. In Wallach, H.; Larochelle, H.;
Beygelzimer, A.; d'Alché-Buc, F.; Fox, E.; and Garnett, R.,
eds., Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.
Organick, L.; Ang, S. D.; Chen, Y.-J.; Lopez, R.; Yekhanin,
S.; Makarychev, K.; Racz, M. Z.; Kamath, G.; Gopalan, P.;
Nguyen, B.; et al. 2018. Random access in large-scale DNA
data storage. Nature Biotechnology, 36(3): 242–248.

Park, S.-J.; Kwak, H.-Y.; Kim, S.-H.; Kim, Y.; and No, J.-S.
2025. CrossMPT: Cross-attention Message-passing Trans-
former for Error Correcting Codes. In The Thirteenth Inter-
national Conference on Learning Representations.
Pfister, H. D.; and Tal, I. 2021. Polar Codes for Channels
with Insertions, Deletions, and Substitutions. In 2021 IEEE
International Symposium on Information Theory (ISIT),
2554–2559.
Press, W. H.; Hawkins, J. A.; Jones, S. K.; Schaub, J. M.;
and Finkelstein, I. J. 2020. HEDGES error-correcting code
for DNA storage corrects indels and allows sequence con-
straints. Proceedings of the National Academy of Sciences,
117(31): 18489–18496.
Sellers, F. 1962. Bit loss and gain correction code. IRE
Transactions on Information Theory, 8(1): 35–38.
Shannon, C. E. 1948. A mathematical theory of communi-
cation. The Bell System Technical Journal, 27(3): 379–423.
Simeone, O. 2018. A very brief introduction to machine
learning with applications to communication systems. IEEE
Transactions on Cognitive Communications and Network-
ing, 4(4): 648–664.
Sloane, N. J. 2000. On single-deletion-correcting codes.
Codes and designs, 10: 273–291.
Srinivasavaradhan, S. R.; Gopi, S.; Pfister, H. D.; and
Yekhanin, S. 2021. Trellis BMA: Coded trace reconstruc-
tion on IDS channels for DNA storage. In 2021 IEEE Inter-
national Symposium on Information Theory (ISIT), 2453–
2458. IEEE.
Tanaka, E.; and Kasai, T. 1976. Synchronization and sub-
stitution error-correcting codes for the Levenshtein metric.
IEEE Transactions on Information Theory, 22(2): 156–162.
Varshamov, R. R.; and Tenenholtz, G. 1965. A code for
correcting a single asymmetric error. Automatica i Tele-
mekhanika, 26(2): 288–292.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in neural information pro-
cessing systems, 30.
Welter, L.; Sokolovskii, R.; Heinis, T.; Wachter-Zeh, A.;
Rosnes, E.; et al. 2024. An End-to-End Coding Scheme
for DNA-Based Data Storage With Nanopore-Sequenced
Reads. arXiv preprint arXiv:2406.12955.
Welzel, M.; Schwarz, P. M.; Löchel, H. F.; Kabdullayeva,
T.; Clemens, S.; Becker, A.; Freisleben, B.; and Heider, D.
2023. DNA-Aeon provides flexible arithmetic coding for
constraint adherence and error correction in DNA storage.
Nature Communications, 14(1): 628.
Yan, Z.; Liang, C.; and Wu, H. 2022. A Segmented-Edit
Error-Correcting Code With Re-Synchronization Function
for DNA-Based Storage Systems. IEEE Transactions on
Emerging Topics in Computing, 1–13.

A Detailed Proof of Proposition 3.1
Let x = (x1, x2, . . . , xn) denote the logits output by the
upstream model, and let y = (y1, y2, . . . , yn) = GS(x)
represent the Gumbel-Softmax of x

yi =
exp ((xi + gi)/τ)∑n
j=1 exp ((xj + gj)/τ)

, i = 1, 2, . . . , n, (10)

where the gi are i.i.d. samples drawn from the Gumbel distri-
bution G(0, 1), and τ is the temperature parameter control-
ling the entropy. Let L = f(y1, y2, . . . , yn) be the optimiza-
tion target, which is the composite function of the down-
stream model and the loss function.

Without loss of generality, consider the partial derivative
of L with respect to x1, which is

∂L
∂x1

=

n∑
i=1

∂f

∂yi

∂yi
∂x1

(11)

=
1

τ

∂f

∂y1

exp ((x1 + g1)/τ)
∑
j ̸=1 exp ((xj + gj)/τ)

(
∑
i exp ((xi + gi)/τ))2

(12)

− 1

τ

∑
j ̸=1

∂f

∂yj

exp ((x1 + g1)/τ) exp ((xj + gj)/τ)

(
∑
i exp ((xi + gi)/τ))2

(13)

=
1

τ
y1

∑
j ̸=1

yj

(
∂f

∂y1
− ∂f

∂yj

) . (14)

At convergence, the model reaches a (local) minimum where
gradients vanish. Therefore, according to Equation (14), ei-
ther y1 or the term

(∑
j ̸=1 yj

(
∂f
∂y1

− ∂f
∂yj

))
should be zero.

(1). Consider the case that
(∑

j ̸=1 yj

(
∂f
∂y1

− ∂f
∂yj

))
= 0.

Since y1 = 1−
∑
j ̸=1 yj , we can express L as a function of

y2, . . . , yn:

L(y2, . . . , yn) = f(1−
∑
j ̸=1

yj , y2, . . . , yn). (15)

Then the dot product of the gradient of L with the vector
(y2, . . . , yn)

′ becomes

∇L · (y2, . . . , yn)′ (16)

=−
(
∂f

∂y1
− ∂f

∂y2
, . . . ,

∂f

∂y1
− ∂f

∂yn

)
· (y2, . . . , yn)′ (17)

=−

∑
j ̸=1

yj

(
∂f

∂y1
− ∂f

∂yj

) = 0. (18)

Now consider two subcases:
• If (y2, . . . , yn) = 0, then y1 = 1, meaning that the output

is exactly one-hot even under the randomness of Gumbel
noise.

• If (y2, . . . , yn) ̸= 0 and y1 ̸= 1, then due to the ran-
domness introduced by the Gumbel noise, the condi-
tion in Equation (16) holds for varying yi values. Let

ϕ(t) = L(ty2, . . . , tyn), by the mean value theorem for
multivariable functions, we have

ϕ(t)− ϕ(0) = ϕ′(τ) · t (19)

=t∇L(τy2, . . . , τyn) · (y2, . . . , yn)′ (20)

=
t

τ
∇L(τy2, . . . , τyn) · (τy2, . . . , τyn)′, τ ∈ [0, t].

(21)

According to Equation (16), the dot product is zero, so
ϕ(t) − ϕ(0) = 0, and thus ϕ(t) is constant with regard
to t. Since this reasoning holds for all such directions un-
der the Gumbel-softmax distribution, it follows that L is
constant, which means the downstream network and loss
function degenerates into a trivial model, contradicted to
the Proposition hypothesis of non-trivial convergence.

(2). Consider the case that y1 = 0. Since the previous
derivation was made without loss of generality for x1 and
y1, the same reasoning applies to any xi and yi. Therefore, it
follows that there should be some index i0 such that yi0 = 1
and yj = 0 for all j ̸= i0.

Now it can be inferred that one of y1, . . . , yn is close to
1, while the others are close to 0. Without loss of generality,
assume yi < ϵ1 for all i ̸= 1, it can be calculated that

1

yi
= 1 +

∑
j ̸=i

exp ((xj − xi + gj − gi)/τ) >
1

ϵ1
. (22)

From this inequality, there must exist some j ̸= i such that

exp ((xj − xi + gj − gi)/τ) >
1

nϵ1
. (23)

Let M1 = (1
nϵ1

)τ , then we have

gj − gi > ln
M1

exp (xj − xi)
. (24)

Note that the gis are i.i.d. samples from the Gumbel distribu-
tion G(0, 1), so gi − gj follows a Logistic(0, 1) distribution
with CDF

FLogistic(0,1)(x) =
1

1 + exp (−x)
. (25)

The probability that gj − gi > ln M1

exp (xj−xi)
is

P

(
gj − gi > ln

M1

exp (xj − xi)

)
(26)

=1− M1

M1 + exp (xj − xi)
. (27)

Requiring this probability to be greater than 1−ϵ2, we obtain

M1

M1 + exp (xj − xi)
< ϵ2, (28)

which is equivalent to

exp (xj − xi) > M1

(
1

ϵ2
− 1

)
, i ̸= j. (29)

Under this condition, applying the softmax function to x
yields

πi =
expxi∑
k expxk

<
expxi
expxj

(30)

<
1

M1(1/ϵ2 − 1)
=

(nϵ1)
τ ϵ2

1− ϵ2
(31)

< (nϵ1)
τ ϵ2, (32)

which indicates that πi is minimum. And the autoencoder,
under the Gumbel-Softmax disturbance, produces more con-
fident and hence more discretized logits x and the corre-
sponding categorical distribution π.

B Comparison Experiments
To evaluate the effectiveness of the proposed methods,
we conducted comparison experiments against three prior
works, which are:

• a combinatorial code that can correct single IDS errors
over a 4-ary alphabet from Cai (Cai et al. 2021);

• a segmented method for correcting multiple IDS errors,
called DNA-LM from (Yan, Liang, and Wu 2022);

• a well-known, efficient heuristic method, called
HEDGES, from a DNA-based storage research (Press
et al. 2020).

These methods typically offer only a few discrete, fixed
configurations. We made efforts to align their settings as
closely as possible. For Cai’s combinatorial code, the code
rates are fixed based on the code lengths. In our experiments
on Cai, only the code rates are matched, with the code length
determined according to the code rate.4 For DNA-LM, we
maintained the codeword length around 150, adjusting the
number of segments to match code rates. For HEDGES,
only binary library is publicly available, and it supports fixed
code rates in {0.75, 0.6, 0.5, 1/3, 0.25, 1/6}. HEDGES’ in-
ner code was tested independently for comparison. We list
all the source lengths ℓs, codeword lengths ℓc, and code rate
r used in the experiments in Table 7.

The experiments were conducted on the default IDS chan-
nel with 1% error probability, as well as its variations, Asc
and Des, introduced in Section 7.1. The results is illustrated
in Figure 4. The experiments handled failed corrections by
directly using the corrupted codeword as the decoded mes-
sage.

The results for Cai’s method indicate that directly apply-
ing classical combinatorial codes to a 1% IDS error proba-
bility channel with a codeword length of 150 is impractical.
The observed error rates are high, even though these val-
ues were obtained with shorter code lengths than 150. The
segmented method with sync markers in DNA-LM supports
a codeword length of 150 and can correct multiple errors
across different segments. However, it also exhibits a high

4It is important to note that code length plays a critical role
in these experiments, as longer codewords are more likely to en-
counter multiple errors that cannot be corrected. Thus, Cai’s perfor-
mance here is just a baseline statistic of multi-errors with respect
to the length, and performance may degrade with increased length.

Figure 4: The error rates of the comparison experiments.
Results for Cai, DNA-LM, HEDGES, and THEA-Code are
shown across Hom, Asc, and Des channels, with respect to
their code rates.

error rate, indicating a nonnegligible likelihood of multi-
errors occurring within the same segment. For HEDGES,
while the results are commendable, the code rate is restricted
to a limited set of fixed values. The results of THEA-Code
demonstrate the effectiveness of the proposed method. At
lower code rates, THEA-Code achieves a comparable er-
ror rate to HEDGES. At higher code rates, the proposed
method outperforms HEDGES, achieving a lower error rate
at a higher code rate, specifically 2.81% error rate at 0.83
code rate for THEA-Code v.s. 3.43% error rate at 0.75 code
rate for HEDGES.

C Ablation Study on the Disturbance-Based
Discretization

C.1 Effects of the disturbance-based
discretization

The ablation study on utilizing the disturbance-based dis-
cretization was conducted analyzing the discreteness of the
codewords. During training, the entropy (Shannon 1948) of
the codewords

H(π) = −
k∑
i=1

πi log πi (33)

was recorded. This entropy measures the level of discrete-
ness in the codewords. Lower entropy implies a distribution
that is closer to a one-hot style probability vector, which in-
dicates greater discreteness. In addition to entropy, two other
metrics were also recorded, as they are the reconstruction
loss LCE and the NER. The results, plotted in Figure 5,
compare the default disturbance setting (Gumbel-Softmax)
against a vanilla softmax approach.

The first column of Figure 5 indicates that using dis-
turbance marginally increases the reconstruction loss LCE

in the continuous mode, which is expected since Gumbel-
Softmax introduces additional noise into the system. When
comparing the average entropy H of the learned codeword,
applying disturbance-based discretization significantly re-
duces the entropy, suggesting that the codewords behave

r1 = ℓs1/ℓc1 r2 = ℓs2/ℓc2 r3 = ℓs3/ℓc3 r4 = ℓs4/ℓc4

Cai 0.33=7/21 0.50=16/32 0.67=32/48 0.83=85/102
DNA-LM 0.34=50/148 0.51=77/152 0.68=96/142 0.84=124/148
HEDGES 0.34=52/155 0.50=76/152 0.60=92/153 0.75=115/155

THEA-Code 0.33=50/150 0.50=75/150 0.67=100/150 0.83=125/150

Table 7: The testing configurations for the comparison experiments. Each cell includes the code rate, message length, and code
length. The settings are tried to be aligned, except the Cai configuration has a code length that does not align with 150, and
HEDGES uses fixed code rates of 0.60 and 0.75, which are not aligned.

(a) Gumbel-Softmax

(b) vanilla softmax

Figure 5: The reconstruction loss, codeword entropy, and validation NER comparing the Gumbel-Softmax setting against a
vanilla softmax approach. 5 runs were recorded.

more like one-hot vectors. The NER is calculated in the dis-
crete mode by replacing the softmax with an argmax opera-
tion on the codewords. The third column clearly shows that
when codewords are closer to a one-hot style, the model is
more consistent between the continuous and discrete modes,
leading to better performance during the testing phase.

C.2 Optimization of hyperparameter
temperature τ in the Gumbel-Softmax
formula

To examine the impact of different temperature values τ in
Equation (2), experiments were conducted with various set-
tings of τ ∈ {0.25, 0.5, 1, 2, 4, 8}. Since the disturbance-
based discretization is designed to encourage greater dis-
cretization of the codeword, the codeword entropy H, as de-
fined in Equation (33), and the validation NER were tracked
throughout the training phase

As shown in Figure 6, lower temperature (τ = 0.25)
has an effect in discretization, but result in unstable and

poor model performance, while higher temperatures (τ ∈
{2, 4, 8}) lead to both poor discretization and high NER.

C.3 Potential alternative: plain entropy
constraint

We explore applying the entropy constraint (Kossentini,
Smith, and Barnes 1993) on the codeword c in the form
of a probability vector. This constraint penalizes probabil-
ity vectors deviating from the one-hot style. The Shannon
entropy (Shannon 1948) in Equation (33) of a discrete dis-
tribution P (x) represents the average level of “information”
associated with the possible outputs of the variable x. It is
easy to verify that Equation (33) is non-negative and equals
zero only when the random variable produces a certain out-
put. Considering this, the entropy constraint is defined on
the codeword c = (c1, c2, . . . , ck) as follows

LEN(c) = −
∑
i

∑
j

cij log cij . (34)

(a) τ = 0.25 (b) τ = 0.5 (c) τ = 1

(d) τ = 2 (e) τ = 4 (f) τ = 8

Figure 6: The codeword entropy H and the validation NER for various choices of τ ∈ {0.25, 0.5, 1, 2, 4, 8}. Each curve in the
subfigures represents one of the 3 runs conducted in the experiment and is plotted against the training epochs.

In the following experiments, the Equation (34) is inte-
grated into the overall optimization objective with a weight-
ing parameter λ, and the disturbance-based discretization is
removed from the framework.

Imposing the entropy constraint on the codewords com-
pels them to adopt a one-hot style from a probability vector
style, which is a double-edged sword. This approach, com-
pared to plain quantization, preserves the capability of gradi-
ent propagation. Moreover, codewords that closely resemble

a one-hot representation mitigate the domain difference be-
tween the decoder’s input during the training and the testing
phases.

However, the drawback is also non-negligible. If the en-
tropy constraint is overapplied and dominates the model
training before the autoencoder is effectively tuned to its in-
tended function, the entropy constraint may tend to produce
a gradient opposite to the loss-propagated gradient, leading
the model towards a local minimum convergence point. As

(a) λ = 0 (b) λ = 0.001 (c) λ = 0.01 (d) λ = 0.1 (e) λ = 1

Figure 7: The entropy constraint LEN, the reconstruction loss LCE, and the validation NER for various choices of λ ∈
{0, 0.001, 0.01, 0.1, 1}. Each curve in the subfigures represents one of the 5 runs conducted in the experiment and is plot-
ted against the training epochs.

a thought experiment, consider a letter ci = (0, 0, 0.1, 0.9)
from a codeword c where the letter is not aligned with the
IDS-correcting aim. The optimization on the reconstruction
loss LCE of (5) may propagate a gradient decreasing the
fourth dimension ci4 = 0.9. However, the entropy constraint
on ci will faithfully produce an opposite gradient, attempt-
ing to increase ci4 = 0.9 to achieve low entropy, potentially
hindering the optimization process.

Therefore careful tuning of the entropy constraint weight
is needed. Experiments were conducted with different
choices of weight λ in {0, 0.001, 0.01, 0.1, 1}, and the re-
sults are presented in Figure 7. Each column in this figure
corresponds to a specific λ value, and the rows depict the
entropy LEN, the reconstruction LCE loss between ŝ and s,
and the validation NER, from top to bottom.

The first row suggests that the entropy LEN is controlled
by enlarging the constraint weight, while the second row
shows that the reconstruction loss LCE diverges with an
overapplied entropy constraint. The third row of NER indi-
cates that the performance is improved by introducing the
entropy constraint and worsened by further enlarging the
constraint weight.

Column-wise, when using λ = 0 and λ = 0.001, the
reconstruction LCE converges well, indicating that the au-
toencoder is well-trained. However, the entropy on the code-
word remains relatively high during the training phase, sug-
gesting that the codewords are diverse from one-hot style.
The curves of validation NERs also support this specula-
tion. Although the autoencoder is well-trained, the quanti-
zation of the codeword with high entropy alters the input
domain for the decoder, and fails the testing phase. Regard-

ing the columns corresponding to λ = 0.1 and λ = 1 in
Figure 7, we observe that the entropy drops to a low level
fast in the first few epochs, and the reconstruction loss LCE

does not decline to an appropriate interval during the train-
ing phase. This verifies our conjecture that an overapplied
entropy constraint will lead the model to a local minimum
convergence point. Overall, the λ = 0.01 is a proper choice
for the constraint weight in our experiments. The model con-
verges well, the entropy maintains at a low level, and the de-
coder keeps its performance with the quantized codewords.

Based on the above analysis, while applying a plain en-
tropy constraint may serve a similar purpose as disturbance-
based discretization, it is less robust and requires careful tun-
ing.

D Experiments on the Differentiable IDS
Channel

D.1 Gradients to the differentiable IDS channel
To investigate whether the simulated IDS channel back-
propagates the gradient reasonably, the channel output ĉ =
DIDS(c) is modified by altering one base to produce ĉ′. The
absolute values of the gradients of L(ĉ, ĉ′) with respect to
the input c after back-propagation are presented in Figure 8.
For instance, subfigure del(+3) indicates that the IDS chan-
nel modifies c to ĉ by performing a deletion at index 0. The
output ĉ is then manually modified by applying a substitu-
tion at position +3. The gradients of L(ĉ, ĉ′) with respect to
c are plotted over the window [−2,+6].

It is suggested in Figure 8 that the proposed differentiable
IDS channel back-propagates gradients reasonably. The gra-

Figure 8: The averaged absolute gradients with respect to the input c over 100 runs. The corresponding IDS operations were
performed at an aligned index = 0 by the simulated differentiable IDS channel, the gradients were back-propagated from
position +k of the channel output ĉ. It is suggested that the gradients identify their corresponding position in the input: +k− 1
for insertion, +k for substitution, and +k + 1 for deletion.

dients shift by one base to the left (resp. right) when the IDS
channel performs an insertion (resp. deletion) on c. When
the IDS channel operates c with a substitution, the gradients
stay at the same index. This behavior demonstrates that the
channel is able to trace the gradients through the IDS opera-
tions. Specifically, in the case ins(+0), the channel-inserted
base in ĉ at idx is manually modified. As a result, no spe-
cific base in c has a connection to the manually modified
base, leading to a diminished gradient in this scenario.

D.2 More on the gradients to differentiable IDS
channel

Above, we illustrated that the differentiable IDS channel can
effectively trace gradients through the IDS operations. In
this section, we focus on evaluating the channel’s capability
to recover the error profile through gradient-based optimiza-
tion.

Given a codeword c, an empty profile p0 which defines
the identity transformation of the IDS channel such that
ĉ = c = DIDS(c,p0), and a modified codeword ĉ′ which
is produced by manually modifying c through an insertion,
deletion, or substitution at position idx, the gradients of
L(ĉ, ĉ′) are computed with respect to both the input code-
word c and the empty profile p0. The average gradients, cal-
culated over 100 runs, are plotted in Figure 9 with position
idx aligned to 0.

In Figure 9, it is suggested that, when performing an inser-
tion or deletion, the gradients with respect to the codeword
are distributed after the error position idx. This aligns with
the fact that synchronization errors (insertions or deletions)
can be interpreted as successive substitutions starting from
the error position, especially when the actual error profile
is unknown. When performing a substitution, the gradients
naturally concentrate at the error position idx.

Regarding the empty profile, p0 = 0, the gradients also
exhibit meaningful patterns. For an insertion, the substitu-
tion area after idx is lighted by the gradients, supporting the
view that an insertion can be seen as a sequence of substitu-
tions if error constraints are absent. Additionally, the inser-
tion area of the profile is also lighted, which makes sense
since an insertion may also be interpreted as a series of
substitutions followed by an ending insertion. For deletion
errors, similar patterns are observed: the gradients are dis-
tributed in the areas of substitutions and deletions after the
error position idx, since the deletion can also be viewed as
a series of substitutions, or as several substitutions and an
ending deletion. For substitution errors, the gradients again
concentrate at the error position idx, as substitutions do not
cause sequence mismatches.

Utilizing energy constraints on the profile may be helpful
for specific profile applications. In this work, only the gra-
dients with respect to the codeword participate in the train-
ing phase, the existing version of the simulated differentiable
IDS channel is assumed to be adequate.

E Ablation Study on the Auxiliary
Reconstruction Loss

E.1 Effects of the auxiliary reconstruction loss
Experiments with different choices of the hyperparameter µ
were conducted, which are µ = 0 indicating the absence of
the auxiliary reconstruction loss, and µ ∈ {0.5, 1, 1.5} for
different weights for the auxiliary loss. The validation NER
and the reconstruction loss between source and recovered
sequences are plotted against the training epochs.

The first column of Figure 10 indicates that without the
auxiliary loss, all 5 runs of the training fail, producing ran-
dom output. By comparing the first column with the other
three, the effectiveness of introducing the auxiliary loss

(a) insertion (b) deletion (c) substitution

Figure 9: The gradient distribution with respect to the input codeword and the empty profile, when the output codeword is man-
ually modified. The figures display the averaged gradients over 100 runs, visualizing how the gradients were back-propagated
in different cases of insertions, deletions, and substitutions in the output codeword.

can be inferred. In the subfigures corresponding to µ ∈
{0.5, 1, 1.5}, all the models converge well, and the NERs
also exhibit a similar convergence. This suggests the appli-
cation of the auxiliary loss is essential, but the weight of this
loss has minimum influence on the final performance.

E.2 Auxiliary loss on patterns beyond sequence
reconstruction

In Appendix E.1, the necessity of introducing a auxiliary re-
construction task to the encoder is verified. After these ex-
periments, a natural question arises: How about imparting
the encoder with higher initial logical ability through a more
complicated task rather than replication. Motivated by this,
we adopted commonly used operations from existing IDS-
correcting codes and attempted to recover the sequence from
these operations using the encoder. In practice, we employed
the forward difference Diff(s), where

Diff(s)i = si − si+1 mod 4, (35)
the position information-encoded sequence Pos(s), where

Pos(s)i = si + i mod 4, (36)

and their combinations as the reconstructed sequences.
The evaluation NERs against training epochs are plotted

in Figure 11 under different combinations of the identity
mapping I, Diff , and Pos. It is clear that the reconstruction
of the identity mapping I outperforms Diff and Pos. Intro-
ducing the identity mapping I to Diff and Pos helps improv-
ing the convergence of the model, but final results have il-
lustrated that they are still worse than simple applying the
identify mapping I as the auxiliary task. These variations
may be attributed to the capabilities of the Transformers in
our setting or the disordered implicit timings during training.

F Preparation of the Datasets
This work focuses on DNA-based storage, which involves
storing and retrieving information from synthesized DNA
molecules in vitro, typically composed of four bases:
{A,T,G,C}. Although genomes also use DNA molecules
in vivo to store the information necessary for an organism,
DNA-based information storage in this context is largely un-
related to genetic data.

(a) µ = 0 (b) µ = 0.5 (c) µ = 1 (d) µ = 1.5

Figure 10: The reconstruction loss LCE between the source and recovered sequences, and the validation NER for various
choices of µ ∈ {0, 0.5, 1, 1.5}. Each curve in the subfigures represents one of the 5 runs conducted in the experiment and is
plotted against the training epochs.

(a) I (b) Diff (c) Pos

(d) I + Diff (e) I + Pos

Figure 11: The validation NER against the training epochs with different choices of auxiliary reconstruction. The reconstructed
sequences are produced by combinations of the identity mapping I, Diff , and Pos, where + denotes sequence concatenating.

DNA-based information storage is a generic storage
method, capable of storing arbitrary information. The source
information is randomly generated with equal probabilities
over the set {A,T,G,C}, which is in a trivial bijection with
binary sequences.

The error profile records the difference between the in-
put and output of the IDS channel. An error profile is a

sequence of symbols in the range 0 to 8. In practice, two
pointers are used for the DNA sequence and the profile se-
quence, respectively. When p = 0, both pointers advance
to the next position, appending the DNA letter in the out-
put. When p = 1, 2, 3, both pointers also advance, but the
DNA letter is substituted by one of the other three bases in
the output, corresponding to the rolling operation described

Default (Hom) total error: 1%, Ins : Del : Subs = 1 : 1 : 1, position-insensitive
Asc total error: 1%, Ins : Del : Subs = 1 : 1 : 1, position-sensitive: start: 0%- end: 2%
Des total error: 1%, Ins : Del : Subs = 1 : 1 : 1, position-sensitive: start: 2%- end: 0%

k% error channel total error: k%, Ins : Del : Subs = 1 : 1 : 1, position-insensitive
C111 total error: 10.36%, Ins : Del : Subs = 1 : 1 : 1, position-insensitive
C253 total error: 10.36%, Ins : Del : Subs = 1.66 : 5.31 : 3.38, position-insensitive

MemSim total error: 10.36%.
For each codeword c, it is passed through the released MemSim software (Hamoum et al. 2021)
to generate the output sequence ĉ from the channel. The error profile p is then
inferred by comparing c with ĉ.

Table 8: Details of all employed channel configurations, including the specific parameters for generating the error profiles.

𝑝 =
5: insert T

𝑝 = 4: insert A

𝑝
=
6:
in
se
rt
G

𝑝 =
7:
ins
ert
C

𝒄()*𝒄(
𝑝 = 8: deletion

𝑝 = 0: identity map

𝑝 = 1: substitute #1

𝑝 = 2: substitute #2

𝑝 = 3: substitute #3

Figure 12: The transmission of a single symbol in the IDS
channel involves errors of types #1-#8, which correspond
to three types of substitutions, four types of insertions, and
deletions.

in Section 4. When p = 4, 5, 6, 7, the profile pointer moves
to the next while the DNA pointer keeps stationary, insert-
ing one base in the output sequence according to p. When
p = 8, both pointers advance to the next position, but noth-
ing is appended in the output, which is a deletion. One step
of this operation is illustrated in Figure 12. This is a com-
mon strategy as in (Davey and Mackay 2001; Yan, Liang,
and Wu 2022).

In the experiments, for each channel, the source se-
quence is generated with equal probabilities over the set
{A,T,G,C}, and the corresponding error profiles are gen-
erated as shown in Table 8.

G Transformer, Complexity, and Time
Consumption

Transformers (Vaswani et al. 2017), well-known deep learn-
ing architectures, rely on the attention mechanism. Each
head of a Transformer model processes features according
to the following formula:

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V. (37)

In this work, each layer comprises 16 attention heads with
an embedding dimension 512, and a total of 3 + 3 attention
layers are used for the sequence-to-sequence model. Both
the encoder and decoder are implemented as such sequence-
to-sequence models. For the differentiable IDS channel, a
1 + 1 layered sequence-to-sequence model is employed.

Since attention is calculated globally over the sequence in
Equation (37), it has a complexity of O(n2). Without delv-
ing into the many efficient Transformer architectures, the
time consumption was measured by decoding 1, 280, 000
codewords using an RTX3090. The encoder, which shares
the same structure, exhibits similar performance. The results
are acceptable and are presented in Table 9.

ℓs = 50 ℓs = 75 ℓs = 100 ℓs = 125

time (s) 521.94 573.87 623.92 687.76

Table 9: Time consumption of decoding 1, 280, 000 code-
words for each source length ℓs by an RTX3090.

