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Abstract

With the emergence of new storage and communication methods, the insertion,
deletion, and substitution (IDS) channel has attracted considerable attention. How-
ever, many topics on the IDS channel and the associated Levenshtein distance
remain open, making the invention of a novel IDS-correcting code a hard task.
Furthermore, current studies on single-IDS-correcting code misalign with the re-
quirements of applications which necessitates the correcting of multiple errors.
Compromise solutions have involved shortening codewords to reduce the chance
of multiple errors. However, the code rates of existing codes are poor at short
lengths, diminishing the overall storage density. In this study, a novel method is
introduced for designing high-code-rate single-IDS-correcting codewords through
deep Levenshtein distance embedding. A deep learning model is utilized to project
the sequences into embedding vectors that preserve the Levenshtein distances
between the original sequences. This embedding space serves as a proxy for the
complex Levenshtein domain, within which algorithms for codeword search and
segment correcting is developed. While the concept underpinning this approach is
straightforward, it bypasses the mathematical challenges typically encountered in
code design. The proposed method results in a code rate that outperforms existing
combinatorial solutions, particularly for designing short-length codewords.

1 Introduction

With the emergence of new storage and communication methods [1, 2, 3, 4, 5], insertion, deletion, and
substitution (IDS) channels over non-binary symbols have attracted significant attention. However,
applying existing IDS-correcting codes to practical applications is not straightforward and faces
challenges such as a low overall code rate and limited multiple error-correcting capabilities.

Most of the current IDS-correcting codes focus on correcting a single error [6, 7, 8, 9, 10] or a burst
of errors [11, 12, 13], with an emphasis on achieving asymptotic optimality in code rate. These codes
are typically varieties of the Varshamov-Tenengolts (VT) code [6, 14, 15, 16]. Codebook generation
has recently gained attention in specific tasks, such as the p-substitution-k-deletion code [17].

However, in most applications, the ability to correct multiple IDS errors is crucial. This is because
IDS errors may occur simultaneously at different positions along the codeword, and the likelihood
of insertion, deletion, and substitution can vary due to channel properties, making them unequal in
occurrence [18, 19].

To address the challenge of correcting multiple errors, a compromise approach is to employ segmented
error-correcting code, as proposed in previous studies [20, 21, 22, 23, 24, 19]. The sequence is
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implicitly segmented into disjoint segments, each capable of correcting one single IDS error. This
segmentation enables the sequence to rectify multiple errors to some extent. However, the possibility
remains that multiple errors may occur within the same segment. Researchers can employ an outer
error-correcting code (ECC) to address such failures.

Unfortunately, the segmented error-correcting codes usually have low code rate, since these codes
use the same code rate as their underlying single-IDS-correcting code within each segment, and
current IDS-correcting codes have low code rate for small codeword lengths. For example, an
order-optimal code of length n over the 4-ary alphabet using log n+O(log log n) redundancy bits
is introduced in [9]. The state-of-the-art code rate till now is proposed in [10] with redundancy
bits of log n + log log n + 7 + o(1), which reduces the redundancy by 6 bits compared to the
original code in [9]. Although such codes are efficient when n is large, the constant term in the
number of redundancy bits limits their code rate when n is small. Given this, there is potential to
enhance the code rate of segmented error-correcting codes, because the segments usually use shorter
codewords [23].

This work focus on constructing a 4-ary code that uses fewer redundancy bits than the existing order-
optimal code offered by the mathematicians [9, 10] at the end of short-length codewords. Namely,
following the bounded distance decoder (BDD) which is one of the basics of classical codes [25],
the novel DoDo-Code is proposed by leveraging the deep embedding of the Levenshtein distance.
The embedding space is utilized as a proxy for the intricate Levenshtein domain, facilitating high
code rate codebook design and fast IDS-correcting. The proposed DoDo-Code uses a comprehensive
approach that includes the following key procedures: deep embedding of the Levenshtein domain,
deep embedding-based greedy search of codewords, and deep embedding-based segment correcting.

As a result, the proposed DoDo-Code offers a solution for IDS-correcting code when code length is
short, excelling in the following aspects:

• The proposed DoDo-Code achieves a code rate that surpasses the state-of-the-art and shows
characteristics of “optimality” when code length n is small.

• With one edit operation corrupted codewords can be firmly corrected, the computational
complexity is effectively reduced to O(n) of the decoder to correct IDS errors.

To the best of our knowledge, the proposed DoDo-Code is the first IDS-correcting code designed by
deep learning methods and the first IDS-correcting code that shows characteristics of “optimality”
when the code length is small.

2 Related works

While neural channel codes [26, 27, 28, 29, 30, 31] have recently gained attention and achieved
state-of-the-art performance in several settings, they offer little help in addressing the aforementioned
issue. This is because they primarily target the additive white Gaussian noise (AWGN) channel and
handle flip or erasure errors, rather than IDS errors. Moreover, being neural network-based, these
solutions typically fail to generate the static, explicit codebooks for downstream applications.

3 Bounded Distance Decoder

The proposed code employs a quite fundamental approach called the BDD; let’s revisit the basics of
classical codes [25].

Given a code C, which is a collection of codewords, its minimum distance is defined as follows:

d(C) = min{d(ci, cj) : ci, cj ∈ C, i ̸= j}. (1)

Once a code C with a minimum distance of d is constructed, a BDD can be deployed with a decoding
radius r = ⌊d−1

2 ⌋ by correcting a corrupted word ĉ to the corresponding codeword c such that
d(ĉ, c) ≤ r.

In the context of correcting IDS errors, the Levenshtein distance [7] plays a pivotal role. It is defined
as the minimum number of insertions, deletions, and substitutions required to transform one sequence
into another. According to the principles of BDD, to correct a single IDS error, the decoding radius
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in terms of Levenshtein distance is r = ⌊d−1
2 ⌋ = 1, meaning the minimum distance of the code must

be at least d = 3. Therefore, constructing a code C(n) for a fixed code length n, whose elements
have mutual Levenshtein distances greater than 3, is considered.

However, the construction of such a code faces three significant challenges. Firstly, the sizes
of Levenshtein balls, representing the set of a sequence and its neighboring sequences within a
Levenshtein distance of r, exhibit a lack of homogeneity [32, 33]. Researchers want to select
sequences with small Levenshtein balls as the codewords to enhance the code rate, but a clear
depiction of Levenshtein balls is still absent [32, 33]. An algorithm surpassing random codeword
selecting has not yet been published to the best of our knowledge. Secondly, the computational
complexity of the Levenshtein distance-based BDD is substantial. The complexity of computing
the Levenshtein distance is at least O(n2−ϵ),∀ϵ > 0 [34, 35], unless the strong exponential time
hypothesis is false. Additionally, most existing neighbor searching algorithms, which are keys to
the BDD process, are primarily designed for conventional distance [36] and inapplicable to the
Levenshtein distance.

4 DoDo-Code

4.1 Deep embedding of Levenshtein distance

Considering the complexity of calculating the Levenshtein distance, researchers have explored
mapping sequences into embedding vectors, using a conventional distance between these vectors
to approximate the Levenshtein distance [37, 38]. Recently, deep learning techniques have been
employed for Levenshtein distance embedding and achieved remarkable performance across various
works [39, 40, 41, 42, 43, 44].

From a broader perspective, it is found that these embeddings not only accelerate the Levenshtein
distance estimation, but also offer a way to analyze the properties and structures of the Levenshtein
distance. The embedding aims to create a vector space where the squared Euclidean distance between
vectors serves as a proxy for the Levenshtein distance between the original sequences. This allows us
to leverage the geometric structure of the embedding space to reason about the complex combinatorial
properties of the Levenshtein domain. For example, in the vector space, the embedding vectors of
sequences within a Levenshtein ball should naturally exhibit a tight clustering. The embedding model
from [44] is modified to focus more on the Levenshtein neighbor relations between the sequences in
our work.

Let s and t denote two sequences of length n on the alphabet {0, 1, 2, 3}, and let d = ∆L(s, t)
represent the groundtruth Levenshtein distance between them. Our task is to identify an embedding
function f(·), such that the mapped embedding vectors u = f(s) and v = f(t) have a conventional
distance d̂ = ∆(u,v) approximates to the groundtruth Levenshtein distance d = ∆L(s, t). Let
the embedding function f(·; θ) be a deep embedding model with learnable parameters θ, which is
implemented as a model with 10 1D-CNN [45] layers and one final batch normalization [46] in this
study. The training of f(·; θ) can be expressed as an optimization of:

θ̂ = argmin
θ

∑
L(d, d̂; θ) (2)

= argmin
θ

∑
L(d,∆(f(s; θ), f(t; θ))), (3)

where the function L(·, ·) is a predefined loss function that measures the disparity between the
predicted distance and the groundtruth distance. By optimizing (2), the parameters of the embedding
model are learned and denoted as θ̂, and the optimized deep embedding model f(·; θ̂) is capable of
mapping sequences to their corresponding embedding vectors. This model configuration is often
referred to as a Siamese neural network [47]. A brief illustration of the utilized Siamese neural
network is presented in Figure 1.

The squared Euclidean distance between the embedding vectors is employed as the approximation of
the groundtruth Levenshtein distance. It is defined as:

d̂ = ∆(u,v) =
∑
i

(ui − vi)
2. (4)
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Although the squared Euclidean distance is not a true distance metric, its effectiveness has been
validated in [43]. Moreover, since it is simply the square of the Euclidean distance, it remains
compatible with most neighbor searching algorithms in Euclidean space.
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d̂ = ∆(u,v)

Figure 1: Siamese neural network. Given two
sequences s, t, mapped to respective embedding
vectors u,v. The approximated distance is calcu-
lated as a conventional distance between u and v.

The negative log-likelihood loss with the Pois-
son distribution (PNLL) [44], which is formu-
lated as:

L(d, d̂) = PNLL(d̂; d) = d̂− d ln d̂, (5)

has been proposed to provide a global approxi-
mation of the Levenshtein distance. In this work,
the code’s construction is dependent on local
structures within the Levenshtein distance do-
main, namely sequences at a distance of 1 or
2. Consequently, from the perspective of the
greedy search algorithm, there is no functional
difference between using the complete Leven-
shtein distance and a truncated version. How-
ever, this distinction is raised for training the
embedding model, relaxing the optimization ob-
jective to a truncated Levenshtein distance is an easier learning task for the model than approximating
the global Levenshtein distance metric precisely. In view of this, the loss function is revised to
emphasize the approximations between sequence pairs within the Levenshtein balls of radius 2.
Specifically, the model is trained to provide a precise prediction for Levenshtein distance 1 and to
ensure that the predicted distance is greater than 2 when the groundtruth distance is greater or equal
to 2. The revised loss function is defined as follows:

L̃(d, d̂) =

{
L(d, d̂) if d = 1;

1d̂<2 · L(2, d̂) if d ≥ 2,
(6)

where 1d̂<2 is the indicator function that evaluates to 1 when d̂ < 2.

For the sake of brevity, f(·) will be used to represent the learned embedding function f(·; θ̂) in the
subsequent discussion.

4.2 Deep embedding-based greedy search of codewords

As previously mentioned, single-IDS-correcting codes with large code lengths n are ineffective, as the
longer the codeword, the higher the likelihood of multiple errors occurring within the same segment.
Moreover, existing combinatorial codes have already achieved order optimal code rates, which are
nearly optimal when n is large.

In view of this, the single-IDS-correcting codes with small code lengths n and aim to achieve higher
code rates are focused. By concentrating on smaller code lengths, the random search for a codebook
becomes feasible.

A random search-based approach of constructing the code C(n) is repeating the following procedure:
randomly selecting a sequence from a candidate set (initially consists of all possible sequences
A(n) = {0, 1, 2, 3}n), and then filtering out the neighboring sequences of the chosen one from this
set.

To outperform the random codeword selecting algorithm in terms of code rate, a selecting criterion
for choosing codewords from the candidate set is crucial in the greedy search procedure. Finding
a method to select more codewords is equivalent to enhancing the overall code rate. In a greedy
search approach, codewords with fewer neighbors should be selected in advance. However, it
remains an open problem to accurately depict the neighbor density of each sequence, as only the
minimum, maximum, and average sizes of Levenshtein balls with radius 1 have been studied in
existing works [32, 33].

Fortunately, the deep embedding of Levenshtein distance establishes a connection between the
structural characteristics of Levenshtein distances and the distribution properties of the embedding
vectors. This deep embedding allows for a rough estimation of the neighboring sequences associated
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with a given sequence s through the Euclidean ball centered at the embedding vector u = f(s). By
employing a final batch normalization, the embedding model outputs vectors that follow a multivariate
normal distribution N(0,Σ) with a mean vector 0 and a covariance matrix Σ. This probability
density function (PDF) of the embedding vectors can then be leveraged to evaluate the density of
neighbors around the codewords. Namely, low-density vectors correspond to sequences that have
fewer Levenshtein neighbors. By selecting these sequences first, the greedy search makes the efficient
choice at each step, leaving maximal room for future codewords and thus maximizing the final
codebook size.

Let m denote the dimension of the random vector, the PDF of N(0,Σ) is formulated as

p(x) = (2π)−
m
2 |Σ|− 1

2 exp

(
−1

2
xTΣ−1x

)
. (7)

The covariance matrix Σ is easy to estimate with all of the embedding vectors f(A(n)). Having
the estimated covariance matrix Σ̂ in hand, the PDF of N(0, Σ̂) for each embedding vector can be
calculated using (7). To achieve the goal of selecting codewords with fewer neighbors, an effective
selecting criterion can be expressed in the embedding space as the sequence whose embedding vector
has the lowest PDF value should be chosen as the codeword in each iteration. A step further, by
making some simplifications to (7), an embedding vector u and its corresponding sequence should
be selected if uTΣ−1u is the maximum over the candidate set.

Algorithm 1 Deep embedding-based greedy search of codewords

Input: Codeword length n; the 4-ary alphabet Σ4; a pre-trained embedding model f(·).
Output: A codebook C(n) where the minimum distance between any two codewords is at least 3.

1: Create the candidate set A← A(n) containing all 4n sequences of length n.
2: Initialize an empty codebook C ← ∅.
3: Compute the embedding vectors: U = {f(s)|s ∈ A(n)}.
4: Estimate the covariance matrix Σ̂ of the embedding vectors U .
5: while A ̸= ∅ do
6: Select s from A that f(s) have the lowest PDF value: s = argmaxs∈A f(s)T Σ̂−1f(s).
7: Add s to the codebook: C ← C ∪ {s}.
8: Remove neighboring sequences: A← A\B(s, 2), where B(s, 2) = {s′ ∈ A|∆L(s, s

′) ≤
2}.

9: end while
10: return C(n) = C.

The entire procedure for the greedy selecting of codewords is illustrated in Algorithm 1. Firstly, the
statistical distribution N(0, Σ̂) is estimated on the embedding vectors f(A(n)). Subsequently, the
sequence from the candidate set whose embedding vector possesses the lowest PDF value is chosen
as a codeword. Finally, the candidate set is updated by filtering out the Levenshtein ball, and this
selecting iteration is repeated until the candidate set becomes empty.

Once the codebook is generated, users can encode information by choosing codewords according to
indices from a predefined order.

4.3 Deep embedding-based segment correcting

Refer a corrupted codeword as a segment. In the Levenshtein domain, only brute-force methods are
applicable for segment correcting to the best of our knowledge. This segment correcting method in
BDD involves calculating the Levenshtein distance between the segment and all the codewords, and
then selecting the codeword with the minimal distance as the correction. However, this brute-force
approach incurs significant computational complexity, scaling up to O(n2|C(n)|). It is worth noting
that the cardinality of the code |C(n)| grows fast with an increasing n in the experiments. While
this method can undoubtedly be optimized through techniques like early stopping when calculating
Levenshtein distances, its complexity remains at least O(|C(n)|).
In this work, the deep embedding vectors and their distances are leveraged to correct errors without
using the Levenshtein domain. The segment correcting procedure is outlined in Figure 2. To be
precise, a K-dimension tree (K-d tree) [48] is constructed from the embedding vectors f(C(n))
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corresponding to the codewords C(n). Subsequently, the embedding vector v̂ = f(ĉ) of a corrupted
segment ĉ is utilized to query its nearest neighbors v = f(c) within this K-d tree, thereby confirming
the nearest codeword c to this segment. Significantly, the construction of the K-d tree incurs a
one-time complexity cost, while the average complexity of querying operations from the K-d tree
is O(log |C(n)|) [49], representing a considerable improvement over the previously mentioned
brute-force search method.
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Figure 2: Flowchart for the deep embedding-based
segment correcting. A K-d tree is constructed us-
ing the embedding vectors f(C(n)) of all the code-
words. The embedding vector of a segment is used
to query the K-d tree for its neighboring sequences.

It is important to recognize that this neighbor-
searching procedure is conducted within the em-
bedding space, and is based on an approximation
rather than the exact Levenshtein distance. As
a result, the query results from the K-d tree may
not always accurately represent the true mini-
mum Levenshtein distances. To mitigate this,
multiple nearest neighbors can be queried, and
the Levenshtein distances between the segment
and the queried neighboring codewords can be
double-checked to improve the reliability of the
results.

5 Experiments and Results

5.1 Codewords in the embedding space

To demonstrate the effectiveness of the proposed deep embedding-based greedy search of codewords
and the reasonability of using an estimated distribution to evaluate the density of the sequences, the
embedding vectors for all the candidate sequences and the selected codewords are visualized and
presented in Figure 3.

(a) deep embedding-based search (b) random search (c) VT code

Figure 3: The relationships between the codewords and their neighboring sequences in the embedding
space under three different scenarios: (a) results from the proposed deep embedding-based codeword
search; (b) results from a random codeword search; (c) results using codewords from the VT code. In
each subplot, the diamond markers represent the codewords, and the solid lines connect the codewords
to their distance 1 neighbors. In (a) and (b), the color indicates the order in which the codewords
were selected, with darker colors signifying codeword selected earlier. In (c), the red triangle markers
identify sequences that are neither codewords nor within a distance of 2 to any codeword.

To enhance the readability, Figure 3 is generated from experiments with a simplified setting: the
codeword length is set to N = 10, the code is reduced from a 4-ary alphabet to a binary alphabet,
and the embedding dimension is reduced to 8. To visualize the embedding vectors effectively, the
t-SNE [50] is employed to project the high-dimensional embedding vectors into R2. The Figure 3a,
Figure 3b, and Figure 3c are plotted by the codewords/vectors obtained from the proposed deep
embedding-based codeword search, a random codeword search, and the VT code, respectively. In
each subfigure, the diamond markers denote the codewords/vectors, and the solid lines connect these
to their distance-1 neighbors.

In Figure 3a and Figure 3b, the color scheme indicates the order in which the codewords were selected,
with darker colors representing codewords selected earlier in the search procedure. A comparison of
these two subfigures, which represent the projections of the embedding vectors, shows that the deep
embedding-based search tends to select codewords closer to the periphery of the estimated distribution
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of embedding vectors, while the random search selects codewords without any specific pattern. This
observation aligns with that the embedding vectors follow a multivariate normal distribution, and the
vectors that deviate from the mean should be selected earlier in Figure 3a due to their lower PDF in
the estimated distribution.

In Figure 3c, the combinatorially constructed codewords from the VT code are plotted over the em-
bedding vectors. The red triangle markers identify the isolated sequences that are neither codewords
nor within a distance of 2 from any codeword, which isolated sequences would be eliminated during
the greedy codeword search in the first two subfigures. The presence of these isolated sequences
suggests that the Levenshtein balls with a radius 2, centered on the VT codewords, cannot make a
complete coverage on the Levenshtein domain. This indicates that a modification of the VT code,
which considers these isolated sequences, could achieve a larger code rate. Additionally, it is also
observed in Figure 3c that the VT codewords have a biased distribution in the embedding space used
in this experiment, with the codewords tending to be located in the North-West, while the isolated
sequences are more likely found in the South-East of the plane.

5.2 Code rate and optimality

To illustrate the utilization of the deep embedding-based greedy search yields an augmented count of
codewords, thereby promoting the overall code rate. Comparisons are made between the proposed
code and the state-of-the-art combinatorial codes.

Given that the codebook, once generated, is relatively independent of the deep learning model, the
code with the maximum cardinality from among 10 runs of the computational experiments is selected.
The corresponding code rates are calculated using the formula

r(n) =
log4 |C(n)|

n
. (8)

5.2.1 DoDo-Code outperforms the combinatorial codes.

The resulting code rates are visualized against the code length in Figure 4. For comparison, the
code rates of the combinatorial code introduced in [9] which is order-optimal with redundancy of
log n + O(log log n) bits, as well as the state-of-the-art code rates from [10] which is also order-
optimal using log n+ log log n+ 7 + o(1) redundancy bits, are presented. Additionally, the code
rates corresponding to the imaginary redundancies of log n+ log log n+1, log n+ log log n+ log 3,
and log n+ log log n+ 2 in Figure 4 are also drawn. It’s worth noting that for small code lengths n,
no existing 4-ary code achieves these levels of redundancies.

Figure 4: The code rate of code searched by
deep embedding-based greedy search strategy, re-
ported as the best in 10 runs. Comparison meth-
ods are the state-of-the-art approaches of Cai and
Garbys. The code rates corresponding to order-
optimal redundancies of log n + log log n + 1,
log n+log log n+log 3, and log n+log log n+2
are also plotted. These levels of redundancies are
not achieved by any codes before this work.

Focusing solely on the proposed code, Figure 4
clearly shows a trend of increasing code rates
with longer codeword lengths n. Notably, for
n = 11, the code rate reaches 68.9%. Compared
to existing state-of-the-art works [9, 10], the
DoDo-Code achieves a significantly higher code
rate. This improvement is attributed to the fact
that, although these established combinatorial
codes are order optimal, the constant terms in
their redundancies dominate when n is small,
thereby reducing the code rates.

5.2.2 DoDo-Code may represent
the minimal redundancy achievable.

Furthermore, when compared to the imag-
inary redundancies of log n + log log n +
{log 2, log 3, log 4} the code rate curve of
DoDo-Code lies between log n+ log log n+ 1
and log n+log log n+2 and overlaps the curve
of log n + log log n + log 3 exactly. It may be
claimed that the proposed DoDo-Code is ap-
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proximately optimal using log n+ log log n+ log 3 redundancy bits. However, this assertion lacks
theoretical proof in this study.

It’s worth noting that log n+ log log n+ log 3 can be reformulated as log 3n+ log log n, which is
nearly the best code rate for a single-IDS-correcting code. It is known that correcting a one-bit flip
in N bits requires at least logN redundancy bits for information to identify the error position. In
the context of a 4-ary code, correcting a substitution in n bases requires information on both the
error position and the substituted letter, which could be any of the other three letters. As a result, a
minimum of log 3n redundancy bits is required. Given this, the redundancy log 3n+ log log n is very
close to its lower bound and possibly represents the minimal redundancy achievable. Mathematicians
might explore this topic further by leveraging combinatorial or probabilistic methods.

5.3 Ablation study on embedding space searching and revised PNLL loss

To illustrate the effectiveness of searching for codewords in the embedding space, the comparison is
made between the proposed embedding space search and the random codeword selecting, which is
also introduced for the first time to the best of our knowledge. The cardinalities of the codebooks
were compared, both in terms of average and maximum results across 10 runs, with the findings
presented in Table 1. The results clearly indicate that using the PDF of the distribution of embedding
vectors as the selecting criterion in the greedy search yields larger codebooks. Furthermore, it is
observed that the increase in codeword count becomes more pronounced as the codeword length n
increases. For instance, when n = 11, the deep embedding-based greedy search identifies 16.8%
more codewords compared to the random codeword selecting approach.

For an ablation study on using the revised PNLL loss in Equation (6) as the optimization target for
the Levenshtein distance embedding network, experiments were also conducted engaging the original
PNLL loss from Equation (5), with the results presented in the row labeled DEGS* in Table 1. The
results suggest that employing the revised PNLL loss slightly increased the number of searched
codewords.

Table 1: The cardinality of constructed codebook. The results are reported as the mean value and
maximum value over 10 runs of the experiments. The method “Rand” stands for random codeword
selecting method, the method “DEGS” (resp. “DEGS*”) stands for the proposed deep embedding-
based greedy search with the revised PNLL loss (resp. original PNLL loss), and the “∆” stands for
the differences.

Method n = 7 n = 8 n = 9 n = 10 n = 11

avg.

Rand 251.5 ± 5.1 813.2 ± 3.7 2694.0 ± 15.2 9091.7 ± 18.8 31071.9 ± 40.5
DEGS* 264.5 ± 3.3 873.3 ± 8.5 2963.5 ± 18.4 10199.4 ± 57.6 35720.4 ± 297.7
DEGS 267.5 ± 4.7 884.8 ± 15.3 3001.6 ± 8.5 10325.4 ± 48.6 35973.1 ± 157.8
∆ +6.4% +8.8% +11.4% +13.6% +15.8%

max.

Rand 259 820 2717 9124 31142
DEGS* 270 887 2983 10283 36191
DEGS 275 900 3011 10414 36368
∆ +6.2% +9.8% +10.8% +14.1% +16.8%

5.4 Success rate and experimental time complexity of segment correcting

The proposed deep embedding-based segment correcting is proposed as an alternative to the neigh-
boring search procedure of BDD. Experiments were conducted to demonstrate that the proposed
method is both reliable and efficient.

It is worth noting that the searched codewords maintain a minimum mutual Levenshtein distance
of 3, ensuring that a single error in a codeword can be confidently corrected by the BDD. However,
the deep embedding of the Levenshtein distance introduces approximation error, which can affect
the reliability of the nearest neighbors identified through the tree search in the embedding space. A
compromise solution is to increase the number k of searched neighbors, and then perform a double
confirmation using the Levenshtein distances to these k neighbors. Experiments with different values
of k were conduceted, and the number of failed corrections out of 108 attempts is presented in Table 2.
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As indicated in Table 2, the ratio of failed corrections ranges from 0.3% to 0.9% along with different
code length, when only one embedding vector (k = 1) is queried. When the search is expanded to
k = 2 neighbors, the number of failed corrections decreases significantly. Further increasing the
searched neighbors to k = 4, the number of failed corrections is 0 out of correcting 108 modified
codewords.

Table 2: Number of failed segment correctings in 108 tries by using tree search. The segments are
obtained by randomly one edit modification on the codewords. k is the number of neighbors queried
in the tree search.

n = 7 n = 8 n = 9 n = 10 n = 11

k = 1 328,142 398,439 465,080 740,468 828,885
k = 2 0 4,411 2,330 7,060 10,869
k = 3 0 0 754 0 121
k = 4 0 0 0 0 0
k = 5 0 0 0 0 0

The proposed deep embedding-based segment correcting utilizes a K-d tree search in Euclidean
space, which theoretically offers a lower average complexity of O(log |C(n)|). To demonstrate the
efficiency of this method, experiments varying the number k of searched neighbors were performed,
compared with the brute-force search method, which corrects segments by identifying the codeword
with the minimal Levenshtein distance. As shown in Figure 5, the proposed method in Euclidean
space significantly reduces time complexity by orders of magnitude compared to the brute-force
approach. Moreover, the extra burden of raising k from 1 to 5 is minimal, as indicated in Figure 5.

5.5 Complexity

Figure 5: The time used to correct 105 segments.
The segments are obtained by randomly one edit
modification on the codewords. k is the number
of neighbors in the tree search. The brute-force
search calculates the Levenshtein distances until
the finding of a 1-distance codeword. The y-axis
is in log scale.

When the complexity of copying a codeword
is disregarded, the encoder of the DoDo-Code
operates with negligible complexity, since the
codebook is pre-generated, and encoding simply
consists of selecting a codeword by its index.

The embedding model, which is implemented
by a CNN architecture, maps the sequences to
their embedding vectors with a complexity of
O(n). Without considering the one-time cost of
building the K-d tree by the embedding vectors
of the codebook, the segment correcting process
incurs a time complexity of at most O(n) when
querying k = 1 neighboring sequence. The
set A(n) containing all sequences of length n
over the 4-ary alphabet has a cardinality 4n, and
the code C(n) is a subset of A(n). The theo-
retical expected query time for the K-d tree is
O(log |C(n)|), which simplifies to O(n), con-
sidering |C(n)| < 4n. When querying k > 1
neighbors, the double-check on Levenshtein dis-
tance increases the time complexity to O(n2).

The memory complexity to store the K-d tree is O(m|C(n)|), where m is the dimension of the
embedding vectors and |C(n)| is the cardinality of the codebook. Since the tree can be generated on-
the-fly from the codebook each time the decoder is initialized, and the codebook is deterministically
generated using a given embedding model and random seed, the only persistent storage needed is for
the embedding model itself.

5.6 Dataset, source code, and model setting

All the sequences used for training and testing are generated randomly. The groundtruth Levenshtein
distance is obtained by a Python module called Levenshtein. Therefore, the experiments run inde-
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pendently of any specific dataset and generate the data on their own. The source code is available in
https://github.com/aalennku/DoDo-Code. Unless otherwise specified, the embedding model
utilizes an architecture of stacking 10 1D-CNNs, with the embedding vector dimension set to 64.

6 Conclusion and Limitations

To address the code rate issue from the segmented error-correcting codes, the DoDo-Code, which
boasts an “optimal” code rate at the short code lengths for 4-ary IDS correcting code, was proposed.
By leveraging the deep embedding space as a proxy for the complex Levenshtein domain, the
mathematically unexplored field is bypassed in the code design. The fundamental concept of BDD
forms the backbone of the proposed code. In the embedding space, an efficient codeword searching
algorithm was introduced to maximize the codebook. Later, the decoding or correcting algorithm was
integrated into the Euclidean embedding space by a K-d tree, reducing the computational complexity.
Experiments illustrated the proposed DoDo-Code outperforms the state-of-the-art combinatorial
codes in code rate when the code length is small.

Limitations. The DoDo-Code did not provide explicit mathematical rules for description, necessitat-
ing a deeper understanding of combinatorial underlying principles. The codeword searching relies
on a greedy search strategy, which can lead to significant complexity when attempting to construct
the codebook for large code lengths. We hope that future research by mathematicians will uncover
the underlying principles governing codewords and lead to the invention of mathematically defined
codes.
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