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Abstract In 1694, Gregory and Newton proposed the problem to determine the kissing
number of a rigid material ball. This problem and its higher dimensional generalization have
been studied by many mathematicians, including Minkowski, van der Waerden, Hadwiger,
Swinnerton-Dyer, Watson, Levenshtein, Odlyzko, Sloane and Musin. In this paper, we intro-
duce and study a further generalization of the kissing numbers for convex bodies and obtain
some exact results, in particular for balls in dimensions three, four and eight.
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1 Introduction

In 1694, Gregory and Newton discussed the following problem: Can a rigid material ball
be brought into contact with thirteen other such balls of the same size? Gregory believed
“yes”, while Newton thought “no”. The solution of this problem has a complicated history!
Several authors claimed proofs that the largest number of nonoverlapping unit balls which can
be brought into contact with a fixed one is twelve (see Hoppe [7], Giinter [4], Schiitte and
van der Waerden [16] and Leech [8]). However, only Schiitte and van der Waerden’s proof is
complete!

Let K be an n-dimensional convex body and let C' be an n-dimensional centrally symmetric
convex body centered at the origin of E”. Let x(K) and x*(K) denote the translative kissing
number and the lattice kissing number of K, respectively. In other words, x(K) is the maximum
number of nonoverlapping translates K + x that can touch K at its boundary, and x*(K) is
defined similarly, with the restriction that the translates are members of a lattice packing of
K. Tt is easy to see that k*(K) < k(K) holds for every convex body K.
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In 1904, Minkowski [10] defined
DK)={x—-y: x€K, ye K}

and proved that
k" (K) = k" (D(K))

and
k(K) = k(D(K)).

Clearly, D(K) is always centrally symmetric and centered at the origin of E®. Three years
later, Minkowski [11] proved that
K*(K)<3" -1

holds for every n-dimensional convex body K. In 1957, Hadwiger [5] improved Minkowski’s
upper bound to
K(K) <3"—1.

Let B™ denote the n-dimensional unit ball centered at the origin of E”. The kissing numbers
k*(B™) and x(B"™) have been studied by many authors (see [1, 9, 12-14, 18]). The known exact

results are summarized in the following Table 1.

Table 1
n 2 3 4 5 6 7 8 9 24

K*(B™) | 6 12 24 40 72 126 240 272 196560

K(B™) | 6 12 24 7?7?7240 7?7 196560

It is well-known that each centrally symmetric convex body C' centered at the origin defines

a metric || - || on R™ by
Ix,¥lc =llx—y|lc =min{r: r >0, x—y erC}.

Especially, we use || - || to denote the metric defined by B™.

Clearly, the kissing numbers £(C) and £*(C) only consider the closest neighbours of C' in
translative packings and lattice packings, respectively. In fact, in many physic situations the
neighbours in a larger region also have effect on C. For example, in some potential energy
models. Therefore, it is reasonable to make following generalizations: For o > 0, we define
ka(C) to be the maximum number of translates C' + x which can be packed into the region
(34 a)C \ int(C) and define £ (C) to be the maximum number of translates C' 4+ x which can
be packed into the region (3 + a)C'\ int(C) where all the translative vectors simultaneously
belong to a lattice, where int(C') denotes the interior of C.

In this paper, among other things, we will prove the following results:

Theorem 1 In E2, we have
6, 0<a<2V2-2,
KL(BY) =148, 2v/2-2<a<2V3-2,
12, a=2V3-2.
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Theorem 2 In E3, we have
4
12, 0§a<§\/§—2,

* 3\ 4
Ra(B”) =4 14, JV3-2<a<2va-2,
20, a=2v2-2.
Theorem 3 In E?*, we have

30, V6—-2<a<2v2-2,
ko (BY) =

50, a=2v2-2.
Theorem 4 In E®, when a = 2v/2 — 2 we have x%(B®) = 2400.

2 Some Basic Lemmas

In 1907, Minkowski [11] studied the lattice kissing number of an n-dimensional convex body

and proved the following result.

Lemma 2.1 If K is an n-dimensional convex body, then «*(K) < 3" — 1, where the
equality holds if and only if K is a parallelepiped. If C' is an n-dimensional centrally symmetric
strictly convex body centered at o, then x*(C) < 2(2" —1).

For a non-negative number « and a packing lattice A of B™, we define
X(a,A)={v: 2<||v[]|<2+a, veA}
Next we introduce two technical results which will be frequently used in this paper.
Lemma 2.2 When 0 < o < 2v/2 — 2, we have
Kkr(B™) <2(2" - 1).

Proof On the contrary, suppose that there is such a positive o which is less than 2v/2 — 2
and a suitable lattice A satisfying

card{ X (a,A)} > 2",
For convenience, we assume that a;, as,--- ,a, is a basis of A and say two lattice vectors
V = z1a1 + 2089 + -+ zpa,
and
r_ ’ ’
V' = zia1 + 2%a3 + -+ za,

are equivalent if z;—z; = 0 (mod 2) for all i = 1,2, - ,n. In other words, v and v’ are equivalent
if and only if £(v —v’) € A. Clearly, this relation divides the points of A into 2" classes.
Since X (a, A) is centrally symmetric and card{X (a,A)} > 27! it contains 2" lattice
points vq,va, -, von satisfying
vi #Ev;, 1#7].
If one of the 2™ points, say v1, is equivalent to o, then we get %vl eAand1l < Hévlﬂ <V2<2
which contradicts the assumption that B™ + A is a packing.
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Since all o, vy, vo, - -+, von belong to at most 2™ classes, two of them must belong to the

same class. Without loss of generality, we may assume that v; and vy are equivalent. Then,

we have
2 < ||vil| <2v2, i=1,2 (2.1)
and
l3(vi £ v2)l[ > 2. (2.2)
By (2.1), we get
[IvVal? + [[va|* < 16. (2.3)
By (2.2), we get
Vil + [[val[? = 2(v1, v2) > 16 (2.4)
and
Vil +[[val[? + 2(v1, v2) > 16, (2.5)

where (v, vz) denotes the inner product of vy and vy. Then, by (2.4) and (2.5) we obtain
a2 + [[va P > 16,
which contradicts (2.3). Therefore, for 0 < a < 2v/2 — 2, we have
Ko (B™) <2(2" —1).
Lemma 2.2 is proved. O
Remark 2.1 Writing
X={v:2<||v|][<2V2, veA}

and repeating the calculations (2.1)—(2.5) one can deduce that two lattice points vq,vy € X

satisfying v; # +vs belong to the same equivalent class if and only if

I[vil] = 2v2, [[va]|=2V2 and (vi,vs) =0.

Lemma 2.3 When o < 2v/3 — 2, the set X (a, A) contains no four collinear points.

Proof On the contrary, suppose X («,A) has four collinear points vi,ve,vs and vy.
Without loss of generality, we may assume that n = 2 and all vi,vo,vs and v4 have the
same x-coordinates, namely vi = (xg,y1), Vo = (%0,%2), v3 = (zo,y3) and v4 = (o, y4).

Furthermore, we may also assume that ¢y > 0 and

Y1 —Y2=Y2— Y3 =Y3 —Ys = 2, (2.6)

since B2 + A is a packing.
If g > \/§7 we get,

- <2/(a+22 -2t <2/(2v3? —3=¢6 (2.7)
and therefore
Y1 —Y2=Y2— Y3 =Y3 —Ys < 2,
which contradicts (2.6).
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Y2 — Yz > 24/4 — 3 (2.8)

since both v, and vs belong to A. On the other hand, since both v; and vy belong to

int(2v/3B?%), we get
Y1 — ys < 24/12 — 23, (2.9)
By (2.8) and (2.9) one can easily deduce

yl—y4<2\/12—1:%<6\/47x(2)§3(y27y3), (2.10)

which contradicts (2.6).

As a conclusion of the two cases, Lemma 2.3 is proved. O

Remark 2.2 Writing

If zg < \/g7 we get,

X={v: 2§||V||§2\/§,V€A}

and repeating the calculations (2.6)-(2.10) one can deduce that X has four collinear points

v1, Vs, vy and vy if and only if, up to some rotation,

V] = (\/5,3), Vo = (\/g, 1), vz= (\/§7 —1) and wvy4= (\f,—?)).

3 Proof of Theorem 1

Theorem 1 In E?, we have
6, 0<a<2vV2-2
Ki(B*)=(8,  2V2-2<a<2V3-2
12, a=2V3-2.
Proof When 0 < a < 2v/2 — 2, by Lemma 2.2 we have ' (B?) < 6. Combining with
k5 (B?) > k*(B%) =6, for 0 < a < 2v/2 — 2 we get
K5 (B?) = 6. (3.1)
By Remark 2.1, when a = 24/2 — 2 one can deduce that
kL (B?) =8, (3.2)

where the equality holds when the corresponding lattice A is generated by a; = (2,0), ay =
(0,2). In fact, the optimal lattice is unique up to some rotation.
When 2v/2 -2 < a < 2v/3—2, we assume that B2+ A is a lattice packing attaining 7 (B?).
Then we have
card{X (a,A)} > 8.

Without loss of generality, by a routine argument we may assume that {a;,as} is a basis of A,
lai|| = 2 and {a;,as} C X(a, A).
For an arbitrary vector v € X («, A) which is not +a;, the lattice A’ generated by {a;, v}
is a sublattice of A. Therefore, let det(A) denote the determinant of the lattice A, we have
det(A') = gdet(A),
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where g is a positive integer. It is easy to see that

det(A) < [Jag]| - [Iv]] < 2-2v3 = 4v/3 (3.3)
and )
det(A) > ;((ZQ)) =2V3, (3.4)

where w(B?) denotes the area of B? and 6*(B?) = m/v/12 is the density of the densest lattice
packing of B2. By (3.3) and (3.4) one can easily deduce that g = 1. Consequently, if

vV = z1a; + 2222,
then we must have
29 = +g = +1. (3.5)
Since tas € X (a, A), by Lemma 2.3 one can deduce that |z;| < 2, which means that
v = tay, +(a; +az), £(a; —az), +(2a; +az) or + (2a; — ay).

If both (a; 4+ a3) and (a; — az) belong to X (a, A), since 2a; + a, a; + ag, az, —aj + ag are
collinear, (2a; +ag) can not belong to X («, A). Similarly, since 2a; —ag, a; —az, —as, —a; —as
are collinear, (2a; — az) ¢ X(a,A). On the other hand, if both (2a; + a3) and (2a; — ag)
belong to X (a, A), by convexity one can deduce that 2a; € X(a,A), which contradicts to
X (a, A) C int(2v/3B2). As a conclusion of these two cases, we get

card{X (a, A)} < 8.
Combining with (3.2), for 2v/2 — 2 < a < 2v/3 — 2 we get
K5 (B?) = 8. (3.6)

Finally, we deal with the case o = 2v/3 — 2. If X(a, A) contains no four collinear points

and (3.5) holds, by previous arguments we still obtain
card{X (a, A)} < 8.

Therefore, the necessary condition for card{X (o, A)} > 10 is either X(a,A) contains four
collinear points or (3.5) does not hold.

If X(a, A) has four collinear vectors vi,va, v and vy, by Remark 2.2 we may assume that
vi=(33), va=(V3,1), vi=(V3,-1), vi=(V3-3).
In this case, it is easy to verify that A is generated by a; = (v/3,1), as = (v/3,—1) and
card{X (a, A)} = 12.

If there is a point v = z1a; + 2082 € X (o, A) with z5 = 2, by repeating (3.3) and (3.4)
we get
w(B?)

5(5) — 2V/3.

det(A) =

In this case, A is the densest packing lattice of B2 and therefore

card{ X (a, A)} = 12.
@ Springer
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As a conclusion of the two cases, for a = 2¢/3 — 2 we have

k5 (B?) =12, (3.7)
and the corresponding lattice A is generated by a; = (v/3,1) and a = (v/3,—1), up to some
rotation.

The theorem follows from (3.1), (3.6) and (3.7). O

In 2003, Zong [23] proved the following result.
Lemma 3.1 For every two-dimensional centrally symmetric convex domain C' there is a

parallelogram with vertices o, vi, vo and vy + vo such that
llo, ville = [lo, va|lc = 2

and
2 < ||lvi,valle = [lo,vi + valc < 2V/2.

This result has the following corollary.
Corollary 3.1 When a = 2v/2 — 2, x%(C) > 8 holds for every two-dimensional centrally

symmetric convex domain C.

4 Proof of Theorem 2

Lemma 4.1 When 3v3 -2 < a < 2v2 — 2, we have },(B®) = 14.

Proof Let A be the lattice generated by a; = (—%\/6, %\/g, 0), as = (%\/{3, %\/3, 0) and
ag = (0,2V/3,2v6). When o = 5/3 — 2, one can verify that card{X (a,A)} = 14. Combining
with Lemma 2.2, for 3v/3 — 2 < a < 2y/2 — 2 we have x7,(B®) = 14. Lemma 4.1 is proved. [

Lemma 4.2 Let vy, va,vs be three linearly independent vectors of X («, A) and let A’
denote the lattice generated by them. If 0 < a < 2v/3 — 2, then det(A’)/det(A) < 2.

Proof Since o < %\/g — 2, we have

4
det(A") < [[vall - [[vall - [lvs]l < (5V3)*.
On the other hand, let §*(B?) denote the density of the densest three-dimensional lattice sphere
packing which is 7/+/18, we have
vol(B?)

det(A) > 5 (5% =

Therefore, we get
4 3
det(A')/det(A) < (gx/§) /4V2 < 3.

In other words, det(A’)/det(A) only can take two values, one or two. Lemma 4.2 is proved. O

Lemma 4.3 If o < V3 — 2 and card{X(a,A)} = 14, then A has a basis {a;,as,a3}
such that

X(a,A) = {£a;, +ag, +az, +(a; +as), £(a; +a3), +(as + az), (a; +as + az)}.
Proof Suppose

X(a,A) = {£vy, L£va, £vs3, £vy, +vs5, £vg, Lvr}
@Springer
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By Remark 2.1, v; cannot be equivalent to v, for ¢ i, since & < %+/3 — 2. Therefore
y ) J ) 3 )
for a basis {a;,as,a3} of A, we may assume vy, vo, V3, V4, V5, Vg, V7 are equivalent to
) b b ) b b b ? b

ai, as, az, a; +as, a; +as, as + as, a; + as + ag, respectively.

It is easy to verify that, we can expand to a basis of A based on {vy,vy}. Without loss of
generality, we assume v, = +aj;, vo = Fas. By Lemma 4.2, we have vy = z1a; + 20a5 + ag,
where 21, z9 are even. Since {a;, az, 2181 + 2283 £ as} is also a basis of A, we assume v3 = t+ag

without loss of generality.

Therefore, for v = z1a; + zea2 + z3a3 belonging to X (o, A), we have ||z;|| < 2 fori=1,2,3,
by Lemma 4.2. Thus, we have

vy = ta; + as + zas, z=0or +2,
vy = +a; +2ay a3, 2 =0or £2,

ve = 2’a; +ay £ as, 2/ =0or +2,

and v; = *a; + as + as.

Suppose one of z, 2’, 2z is £2, without loss of generality, say 2 = +2. Furthermore, we may

assume v4 = £(a; + ag + 2a3), since the sign of a;, as, az does not change +vq, +vy, +vs.

It is easy to verify that

10 -1
det(a; — a3, az, a; +az +2a3)=[01 0 |det(a;,az,as) = 3det(A),
11 2
100
det(a;, a; + 2as + ag, a; +as + 2a3) = |12 1|det(as,as,as) = 3det(A),
112
100
det(a;, a; +2a; —ag, a; +as + 2a3) = |12 —1|det(a, as,a3) = 5det(A),
11 2
1 00
det(a;, —a; +2as + a3, a; +as +2a3) = | —1 2 1|det(a, as,a;3) = 3det(A),
112
100
det(a;, —aj +2as —ag, a; +as +2a3) = |—12 —1|det(a, az,a3z) = 5det(A),
112

where det(by, ba, bs) denotes the determinant of the lattice which is generated by {bj, b, bs}.
By Lemma 4.2, vs cannot be +(a; — ag), +(a; + 2as + a3), £(a; + 2a; — az), £(—a; +
2as + ag), =(—aj + 2ay — a3). Therefore, vs = +(a; + a3). By the same deduction, we have
ve = t(as + as).
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For v, since

10 0
det(a;, a; +as — a3, a; +as+2a3) = |11 —1|det(a,az,a3z) = 3det(A),
11 2
-100
det(—a;, a; —ag + a3, a; +as+2a3)=| 1 —11|det(a;,as,a3) = 3det(A),
1 12
0-10
det(—ag, a; —ag — a3, a; +ax+2a3) = |1 —1 —1|det(a,as,a3) = 3det(A),
11 2

vy cannot be +(a; + as — a3), £(a; — az + as), £(a; — as — a3), by Lemma 4.2. Therefore,

vy = £(a; + az + a3), which means that
X(a, A) = {£ay, +ay, +a3, +(a; + as + 2a3), £(a; + a3), =(as + az), +(a; + a2 + az)}.

By choose aj = —(a; + a3), a, = a3, a5 = a; + az + ag, one can verify that Lemma 4.3 holds
in this case.

On the other hand, if z = 2’ = 2" = 0, we have
vy =+(a; +az) or + (a; —ag),
vs = £(a; +a3) or + (a; — as),
ve = =(az + a3) or + (as — ag).

Since the sign of as does not change £vy, +vy, +v3, we assume v4 = +(a; +ay), without loss
of generality. Furthermore, since the sign of a3 does not change +v, +vy, +v3, +v4, we may
assume

vy = +(a; + a3), vg = +(as + a3)

or

vs = (a1 +a3), ve = £(az — az).
Combining with
V7 = :I:(a1 —|—a2 + ag), :I:(a1 + ags — a3), :I:(al — a9 —+ 33) or :t (a1 — ag — ag),

we obtain that in this case, X (a, A) is one of the following sets:

(1) {£a1, taqg, a3, (a1 + az), £(a1 + az), £(as + a3), £(a; + az + az)};
(2) {*a;, tas, taz, £(a; + az), =(a; + a3), =(ag + az), +(a; + as —az) };
(3) {*a;, +as, taz, £(a; + as), =(a; + az), =(ag + az), +(a; —as +az)};
(4) {*a;, +as, taz, £(a; + az), =(a; + az), =(ag + a3), +(a; —as —az) };
(5) {£a1, taq, +as, +(a; + az), =(a; + a3), £(as — a3), £(a; + az + az)};
(6) {£a1, taq, +as, +(a; + az), =(a; + a3), t(as — a3), £(a; + ag — az)};
(7) {£a1, taqg, a3, +(a; + az), =(a; + a3), £(ag — a3), £(a; — az + az)};
(8) {*a;,tay, tas, £(a; + az),+(a; + az), t(az —az), £(a; —az —asz)}
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Since
1 01
det(a; +as, az +a3, —(a1+ax—a3))=| 0 1 1|det(a;,as, az)=3det(A),
—-1-11
110
det(a; + ag, az + a3, ay —ag+as) =|0 1 1|det(as,as, a3) =3det(A),
1-11
11 0
det(al +ag, a; +ag, a; —ag — 3.3) =10 1 det(al,ag,ag) = 3det(A),
1-1-1
01 -1
det(ag — a3, a; +as, aj —ag—az)=|1 0 1 |det(a;,as, a3)=3det(A),
1-1-1

by Lemma 4.2, X («, A) cannot be the sets (2), (3), (4), (8).

For set (1), Lemma 4.3 already holds; For set (5), by choosing aj = a; +as, aj = —ag, aj =
ag, it can be verified that Lemma 4.3 holds; For set (6), by choosing aj = a;, a5 = as—ag, aj =
ag, it can be verified that Lemma 4.3 holds; For set (7), by choosing aj = a;, a, = ay, aj =
—(a; + a3), it can be verified that Lemma 4.3 holds.

As a conclusion of two cases, Lemma 4.3 is proved. 0

Lemma 4.4 When 0 < a < $v/3 — 2, we have ,(B?) = 12.

Proof On the contrary, suppose there exists a packing lattice A of B® and 0 < a <
3V/3 — 2 satisfies card{X (a, A)} = 14. By Lemma 4.3, there exist a basis {a1,as,a3} of A such
that

X(O{,A) = {:I:al, ﬂ:ag, :I:a3, :I:(a1 —|— ag), :i:(al —+ 33)7 :t(ag —|— a3), :I:(al + ao —+ 33)}.
Without loss of generality, we suppose that a;, as, a; + as lie in the plane
{(U1,7)2,’l}3) I V3 = 0}

and
a1+a2:(07070)7 ai :(70’51)70)7 aQZ(CLaC*b’O)'

Then we have:

s bl =>4 (11
§>||"1‘1||2 a* +b° > 4, (4.2)
?>Haz\|2:a2+b2+0272b024. (4.3)

Let a3 = (v1,v2,v3) and denote ||ag||* = Dy, |Ja; + az + a3||> = Do, then we have
§>D1:vf+v§+v§24, (4.4)

@ Springer



82 ACTA MATHEMATICA SCIENTIA Vol.45 Ser.B

1
§6>D2:’U%+’U%+’U§+62+26’0224. (4.5)
By (4.4) and (4.5), we have
DQ — D1 — 02
- 4.6
v2 %0 (4.6)

By (4.4) and (4.6), we have

16
3 >l +ag||” = (v1 —a)® + (v2 + b)* + 03

= Dy +a® + b% — 2avy + 2bvs
and

16
3> llaz + a3||* = (v1 +a)® + (v + ¢ — b)* + 03

= Dq +a® + 2av; + 2vg(c — 2b) + 2bvgy + b2 + % — 2be

= Dy + a® + b% + 2av1 + 2bvy + (2vg + ¢)(c — 2b)
Dy — Dy

:D1—|—a2+b2+2avl+2bvg+27(c—2b).
c
Using (4.6) again, we obtain
16 _ |la1 +as|” + ||as + as]|?
- >
3 2
Dy —D
= Dy +a® + b + 2bvy + ——(c — 2b)
b Dy —D b
=Di+a® + 02+~ (Dy = Di) —be+ —— — ~(Dy — D)
D+ D
= %Jra%rb?—bc. (4.7)

On the other hand, by (4.2) and (4.3), we have 2(a? +b? — bc) +c? > 8. Therefore, by (4.1),
we get

2402 —be>4 ¢ >4 (4.8)
¢ ‘=t an 7w '
together with (4.4) and (4.5), we have
Dl + D2 2 2 4 16
] B —be>4+o=—
B +a” + c >4+ 3 3

which contradicts (4.7).
Therefore, when 0 < a < %\/3 — 2, we have k%(B%) < 12. Combining with s} (B3) >
K*(B%) =12, for 0 < o < $v/3 — 2 we have £, (B?) = 12. Lemma 4.4 is proved. O

Remark 4.1 For o = 51/3 — 2, by repeating (4.1)—(4.8) one can deduce that

card{X (o, A)} = 14

if and only if the lattice A is generated by a; = (—2v/6,%/3,0), a; = (3v/6,2v/3,0) and
as = (0, % 3, % 6), up to some rotation.

Lemma 4.5 When o = 2v/2 — 2, we have x%(B?) = 20.

Proof Let A be the lattice generated by a; = (2,0,0),a; = (0,2,0) and az = (1,0,/3).

When a = 2v/2 — 2, one can verify that

card{X (a, A)} = 20.
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By Remark 2.1, for a packing lattice A of B3 and o = 2v/2 — 2, to let card{X (a, A)} > 20,

a necessary condition is there exist a;,as € A such that
laa|| = llazl| = 2, [la1 + az|| = [la1 —asf| = 2V2.

Without loss of generality, we suppose a; = (2,0,0), az = (0,2,0). It is obvious to see that we
can expand a basis of A based on {a;,as}.
Suppose aj,az and az = (v1,v2,v3) is a basis of A. We assume vz > 0, without loss of

generality. Since

vol(B?) i
V18

we have v3 > /2 and the equality holds if and only if A is the densest packing lattice of B3.
In this case one can verify that card{ X (o, A)} = 18 < 20. Therefore, we have vz > +/2. Which
means that, for

vV = z1a; + 2082 + 2383 € X(a, A),

we have z3 =0 or £ 1.
Since
card{v: v = z1a; + z2a3 € X(a,A)} =8

and X (o, A) is centrally symmetric, to let card{X (a, A)} > 20, we have
card{v : V=z1a; + 20a9 + a3 € X(Oé,A)} > 6.

Therefore, there exist two of them which are equivalent. Replace ag by the mid-point of them,
we may further assume ||ag||? = v} + v3 + v3 = 4, by Remark 2.1.
Without loss of generality, we suppose vi,v2 > 0. Since ||ag — a;|| > 2, |lag —az|| > 2,
by routine computation we have 0 <v; <1, 0<wvy < 1.
For a lattice vector
V = z1Q1 + 20a9 + a3 € X(Oé,A),

we have
[V[|? = 422 + 42101 + 422 + 42900 + 02 + 02 4 02 < (2V2)2,

which means
Z% + z1v1 + Z% + 22v2 § 1. (49)

By routine computation, a necessary condition for (4.9) is |z1] <1, |za]| < 1. For (21, 22) =
(1,0): a3 +as € X(o, A) if and only if
v = 0. (491)

For (z1,22) = (1,—-1): a1 —az + a3 € X(«a, A) if and only if
1+v —vy <0. (4.9.2)
For (z1,22) = (0,1): ag + a3 € X(«, A) if and only if
vy = 0. (4.9.3)
For (z1,22) = (—1,1): —a; + az + ag € X(«, A) if and only if

1—wv +vy <0. (4.9.4)
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For (z1,22) = (—1,—1): —a; —ay + a3 € X(a, A) if and only if
1—v —vy <0. (4.9.5)
For (z1,22) = (1,1), since 1 +v; + 1 + v2 > 1, we have
a; +azx+asz ¢ X(a,A). (4.9.6)

Obviously, (4.9.1) and (4.9.4) cannot hold simultaneously, (4.9.2) and (4.9.3) cannot hold

simultaneously. Combining with (4.9.6), we have
card{v: v =zja; + z0a3 + a3 € X(a, A)} <6.

Therefore, for a = 2v/2 — 2 we get card{X (a, A)} < 20.

To let card{X (o, A)} = 20, we must have: one of (4.9.1) and (4.9.4) holds, one of (4.9.2)
and (4.9.3) holds, and (4.9.5) holds. By routine computation one can deduce that az =
(0,1,4/3) or (1,0,4/3). Therefore, when a = 2v/2 — 2, we have &% (B?) = 20, and the equality
holds if and only if the corresponding lattice A is generated by a; = (2,0,0), a; = (0,2,0) and
az = (1,0, \/g), up to some rotation. Lemma 4.5 is proved. O

Lemma 4.1, Lemma 4.4 and Lemma 4.5 together yields the following theorem.

Theorem 2 In E2, we have
4
12, O§a<§\/572,

* 3\ 4
Ra(B%) =4 14, gV3-2<a<2v2-2
20, a=2v2-2.

Remark 4.2 In fact, by repeating the calculations (4.9.1)—(4.9.6), one can deduce that
for a = 21/2—2, card{ X (a, A)} = 18 if and only if A is generated by a; = (2,0,0), ay = (0,2,0)
and a3z = (1,1,v/2), or a; = (2,0,0), a = (0,2,0) and az = (0,0,2), up to some rotation.

We end this section by a problem as following.

Problem 4.1 When a = %\/3 — 2, is it true that k%(C) > 14 holds for every three-
dimensional centrally symmetric convex body C'?

5 Kissing Numbers of Convex Bodies

Although the concept of x(B3?) itself is interesting, it can also lead to determine the
lattice kissing numbers of convex bodies which were geometrically similar to B3. To this end,
we present the following theorem:

Theorem 5.1 For a 3-dimensional centrally symmetric convex body C centered at o, if
B? C C C int(3v/3B?) holds, then we have x*(C) = 12.

Proof Let C + A be a lattice packing attaining x*(C) and

X = {V1,~-- 7Vn*(C)} = 8(20) NA,

where 9(2C) denotes the boundary of 2C. Since 2B* C 2C C int(3v/3B?), we have 2 < ||v;|| <
%\/3 holds for all i = 1,2,--- ,x*(C). Since A is also a packing lattice of B®, by Lemma 4.3 we
get

K*(C) = cardX < 12.
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On the other hand, since £*(C) > 12 holds for all 3-dimensional centrally symmetric convex
body C (see [17]), we have x*(C) = 12.
Theorem 5.1 is proved. 0
We now give several convex bodies as examples which lattice kissing numbers can be de-
termined by Theorem 5.1.

Example 5.1 We take 7 = ‘/5;1 and define

Pa={(v1,v2,v3) : [Tva] + [va| <1, |7v2| + |vg| <1, |7ws| + |va| < 1},
P = {(v1,v2,03) ¢ [o1] + [vo| + |vs] < 1, |rv1] + |2vs] < 1, |7ve] + [201] < 1,
|Tvs| + |%v2| < 1}.
Usually, P; and P; are called a dodecahedron and an icosahedron, respectively. Define
Pyi=01+71)P,N(4/34 7)P;.

Usually, P;; is called a truncated icosahedron.

Figure 1 Truncated icosahedron Pi;

By routine computation, we have ||v1||B* C Py C ||[v}||B3, where vi = (3+6\/3, 3+6‘/5, 3+6‘/5)

v = (%,0, 1"’2‘/5)7 see Figure 1. Since
1 4 ) ) 4 )
Posc Ml gs 4 0999, g7 int<f\/§B3),
[[val| [[val] 3

by Theorem 5.1 we have

?

B c

1
K (Pyni) = H*(—Pri) —12.
Fors) = "o P

Example 5.2 We define

T4+ 1
2

1
o] + |=va| + | Zvg) < 1L
2 2

1 T
PT‘tC = {(UMUZJ)B) : |TU1| S 1) |TUQ| S 17 ‘TIU?)‘ S 17 |§U1| + |§’U2| +|

T4+ 1
2

U3| S 1,

T T+ 1 1
|§Ul| + |T7f2| + |§U3| <1

Usually, P, is called a rhombic triacontahedron. Define
Prig= (37 +2)Puec N (47 + 1) PN (3(1 + 7)) Py,

Piig = (57 +4)Prye N (67 +3)P; N (5(1+ 7)) Pa.
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Usually, P,.;q and P.;q are called a rhombic icosidodecahedron and a truncated icosidodecahe-

dron, respectively.

L =(1,1,2+/5)

15430 15495
(15435 g 154845)

Figure 2 Rhombic icosidodecahedron P,;q and truncated icosidodecahedron Pi,;q
By routine computation, we have
|[V2||B® C Pria C |[v4]|B?,

where vy = (15”53‘/5,07 15Jgg‘/5), vh = (1,1,2 + v/5), see Figure 2. Since

1 ! 4
B C poacVallps _ og15.. g3 int(f\/gB?’),
[[vall [[val| 3

by Theorem 5.1 we have

K" (Pria) = /‘0*(” ! Pm‘d) = 12.

va|

By routine computation, we have

[Ivsl| B® C Peria C [Iv4]|B?,

where v3 = (5+‘@,07 5+3‘@), v = (1,1,2v/5 + 3), see Figure 2. Since

v

1 ! 4
B>C ——Pia C 3”33 =1.1050--- B> C int<f\/§B3),
||V3|\ |\V3|| 3

by Theorem 5.1 we have

1
K (Ptrid) = K" (7Ptrid) =12.
[vsl|
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Example 5.3 We use the configuration of snub dodecahedron given by Henk [6], denote
it by Psq. By routine computation, we have

|lval| B® C Pog C [|V4]| B,
where
vy = (-0.9661---,0,1.5632---), v = (—=0.3477--- ,—0.3069 - - - ,1.9454 - - -),

see Figure 3. Since

B3

1 / 4
c Py Vil gs 1 0sss.. B3 int(ﬂ/éB?'),
[[vall [[vall 3

by Theorem 5.1 we have

v} = (—0.3477..., —0.3069...,1.9454...)

vy = (—0.9661...,0, 1.5632...)

Figure 3 Snub dodecahedron Psq

Example 5.4 Define
B3 = {(v1,v2,v3) ¢ [v1]” + |va|” + |ugP < 1}.
Usually, Bg is called a L, unit ball in 3-dimension. When p; < p», it is well known that
B} CB;.
For p > 2 and a point v = (v1,va,v3) € Bf,’ where v1, v9, vz > 0, we have
A

According to Power-Mean Inequality, we have

1\ 22 1\ 2
vf+v§+v§§((f>p) x3:<7>p><3.
3 3
Therefore we have

N
B B} V3x ()" B

By routine computation, when 2 < p < ;’njﬂ we get Ii*(Bg) = 12 by Theorem 5.1.

For p < 2, by the same deduction we obtain
1 1
V3 x (§>’)B3 C B} C B,
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which means
1 1

a ) ()

By routine computation, when 2 > p > 13 we get K;*(Bg) = 12 by Theorem 5.1.

In2
As a conclusion of the two cases, when m;ﬁﬁ >p> L%)’ we have x* (BS) =12.

Remark 5.1 Let A be the lattice generated by a; = (2,0,0),a; = (0,2,0) and ag =

: . _ In3
(1,1,1), then one can verify that: when p = {35,

B3 c B3.

3
B®C 3

D=
D=

A is a packing lattice of B;j and
card{0(2B;) N A} = 14.

On the other hand, since B;’ is a strictly convex body when 1 < p < oo, combining with Lemma

2.2, when p = 123 we have K*(B3) = 14.

6 Proof of Theorem 4

For a = 2v/2 — 2 and a packing lattice A of B™, we have the following lemma.
Lemma 6.1 One equivalent class of A can contain at most n pairs of vectors of X (a, A).
Proof Suppose

tvy, oo, E2v; € X(a,A)

belong to the same equivalent class, i > 2. By Remark 2.1, we have ||v;|| = 2v/2 holds for all i
and (v;, v;) = 0 holds for all i # j. Therefore, one equivalent class of A can contain at most n
pairs of vectors of X (a, A).

Lemma 6.1 is proved. O

Denote the numbers of equivalent classes of A which contain exactly 4 pairs of vectors of
X (a, A) by m;. We define a collection of sets

1
C(X(a,N)) = {A ={vy,va,v3}: vo = §(V1 +v3) and vy, vy, vz € X(a,A)}.

By estimate card{C (X («,A))} in two different ways, we prove the following lemma.

Lemma 6.2

> 2i(i — 1)ym; < &5 (B"7Y) -my.
=2

Proof For a set {vi,va,v3} € C(X(a, A)), by Remark 2.1, we have
Ivall = 2, [Ivi = va|| = [[vs = vall = 2, [[vi]| = ||vs]| = 2v2.

We assume vo = (0,0,---,0,2), without loss of generality. Then one can easily deduce that vy

and v3 must lie in the (n — 1)-dimensional hyperplane
o : {(U17v2,--~ JUn—1,Upn) @ Up = 2}.
It is obvious that
card{v: |[v—vs||=2, vE X(a,A\) N} < k*(B™1),

which means
card{A € C(X(a,A)) : vo € A} < w*(B"71)/2.
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For a vector v € X (a, A) of length 2, by Remark 2.1, v cannot be equivalent to any vector
of X(a, A), besides +v. Therefore, we have

card{v: ||v|]|=2, ve X(a,A)} < 2m;.

Consequently, we get
card{C(X(a,A))} < k*(B"™1) - my. (6.1)

On the other hand, by the definition of C'(X («a, A)), a set {v1, va, vs} belongs to it if and
only if vi,vs € X (o, A) are equivalent and vq # +vs. For an equivalent class which contains

i > 2 pairs of vectors of X (a, A), denote it by X;;. By enumeration we have
card{{vl,V3} : {vy,v3} C Xip, v # :I:V3} =2i(i —1).
Therefore, we get

card{C(X (a,A))} = 221'(1' — 1)m,. (6.2)

By (6.1) and (6.2), Lemma 6.2 is proved. O

Theorem 4 In E®, when a = 2v/2 — 2 we have x%(B®) = 2400.
Proof For a = 2v/2 — 2, it is well known (see [2]) that

card{ X (a, V2Es) } = 240 + 2160 = 2400,
where
FEg = {(vl,v2,~- ,U8) 1 20 € Z5 v — vy € Z; Zvi € 2Z}.
Suppose that there is a suitable lattice A satisfying card{X («, A)} > 2400, which means
8mg + Tmy + -+ + 2mg + my > 1200. (6.3)

Since there are at most 28 —1 = 255 equivalent classes which can contain the vectors of X (a, A),
we have
mg +my +---+mq < 255. (6.4)

For n = 8 case, we restate Lemma 6.2 as
112mg + 84m~7 + 60mg + 40ms + 24my + 12ms + 4mo < 126my (65)

by substituting x*(B7) = 126.
By (6.3) and (6.4), we have Tmg + 6my7 + - - - + mg > 945, multiply both sides by 34, we
have
238mg + 204my + 170mg + 136ms + 102my4 + 68ms + 34mo > 32130. (6.6)

By (6.4) and (6.5), one can deduce that
238mg + 210my 4 186mg + 166ms + 150my + 138ms + 130my < 32130. (6.7)

By (6.6) and (6.7), we obtain m7 = mg = - - - = mg = 0. Combining with (6.3), (6.4) and (6.5),
we have
8mg + mq > 1200,

mg +mq < 255,
112mg < 126m;.
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By routine computation, one can easily deduce that m; = 120, mg = 135. Furthermore, in

this case the equality in (6.1) holds, which means that
card{v: ||v|]|=2, v € X(a,A)} = 2m; = 240.

Since x*(B®) = 240 and the corresponding lattice must be v/2Eg, up to some rotation (see
[21]), for a = 2v/2 — 2 we have &% (B®) = 2400, and the equality can be attained if and only if
the corresponding lattice A = v/2Eg, up to rotation and reflection.

Theorem 4 is proved. O

Based on this proof, we may make the following conjecture.
Conjecture 6.1 In E® when a = 2v/2 — 2 we have r,(B%) = 2400.
Let Aoy denote the Leech lattice (see [2]). When a = 21/2 — 2, we have

card{ X (@, Aas) } = 196560 -+ 16773120 + 398034000 = 415003680.

This observation supports the following conjecture.
Conjecture 6.2 In E**, when a = 2v/2 — 2 we have &’ (B?*) = 415003680.

7 Proof of Theorem 3

Theorem 3 In E*, we have
. 30, V6—2<a<2v2-—2,
ko (B%) =

50, a=2v2-2.

Proof As usual, we write
Ap = {(00701,02,“- ) v € Z; Z”i :0},

D, = {(1)17’02,"' ,Un) @ v € Z; Zvi e QZ}.
Furthermore, we denote the dual lattice of A,, by A}, namely
A ={v: (v,uye Zforallue A,}.

When o = v/6 — 2, one can verify that card{X(a, \/3AZ)} = 30. Combining with Lemma
2.2, for V6 — 2 < a < 2v/2 — 2 we have k: (B*) = 30.

For a = 2v/2 — 2, let A be the lattice generated by a; = (2,0,0,0), ay = (0,2,0,0),
az = (1,0,/3,0), as = (0,1, 2V/3, %) One can verify that

card{X (a, A)} = 50. (7.1)

Suppose that there exists a packing lattice A of B* satisfying card{ X (a, A)} > 52. We still
denote the numbers of equivalent classes of A which contain exactly ¢ pairs of vectors of X (a, A)
by m;.

If my # 0, by Remark 2.1, we may assume

vi = (2v/2,0,0,0), v =(0,2v2,0,0), vs=(0,0,2v/2,0), vy =(0,0,0,2v2)

belong to X (a,A) and 3(v; +v;),i # j belong to X (a, A), without loss of generality. In this
case, lattice A is generated by

ay = (\/57 \/57070)3 ag = (\/53 —\/5,0,0), az = (\/5707 \/57 0); ay = (\/530;07 \/i)»
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which means A = v/2D4. One can verify that
card{ X (a, V2Dy4)} = 24 + 24 = 48 < 52,

therefore my = 0. Since v/2D, is the unique densest packing lattice for B*, up to rotation and

reflection (see [21]), from now on we suppose
det(A) > 8. (7.2)
If m3 = 0 and for every vector v € X (a, A) which length is 2 we have
card{A € C(X(a,A)): v € A} < k*(B*)/2 =6,
by restate (6.1), (6.2), (6.3) and (6.4) for n = 4, we obtain

4m2 S 10m1,
2m2 +mq > 26,
mg +my < 15,

which admits no solution. Therefore, we have mg # 0 or there exist a vector v € X (o, A) which
length is 2 satisfy
card{A € C(X(a,A)): v € A}y =x*(B*)/2=6.

If m3 # 0, by Remark 2.1, we assume
Vi = (23 727070)3 V2 = (2327070)7 V3 = (07032\[27 0)

belong to X («a, A) and %(vl +v;), 1i# jbelongto X(a,A), without loss of generality. There-
fore, the basis of lattice A can be expanded by

a; = (2,0,0,0), ay=(0,2,0,0), as=(1,1,v2,0).
On the other hand, if there exist a vector v € X («, A) which length is 2 satisfy
card{A € C(X(a,A)): v € A} =r*(B*)/2 =6,
then there exist a three-dimensional subspace Hy satisfy
card{v: v € HyNA, ||v|]| =2} = x*(B?) =12.

Therefore, we may suppose Hy = {(v1,v2,v3,v4) : vg = 0} and the three-dimensional lattice
Hy N A is generated by

a; = (2,0,0,0), as=(0,2,0,0), az=(1,1,v2,0),

without loss of generality.

As a conclusion of two cases above, we set a basis of lattice A by
a) = (25 07 07 O)a ag = (07 27 07 0)7 az = (17 17 \/57 O)a ay = (Ula V2, U3, U4)

and v > 0,9 > 0,v3 > 0,v4 > 0 without loss of generality. Furthermore, by (7.2) we have
vg > V2. Therefore, for a vector

v = z1a1 + 2089 + 2z3a3 + z4a4 € X (o, A),

we have z4 =0 or £ 1.
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By Remark 4.2,
card{v: v = z1a; + 2083 + z3a3 € X(a, A)} = 18.
Since X (v, A) is centrally symmetric, we have
card{v: v = z1a; + 2083 + z3a3 + a4 € X(o,A)} > 17,

which means that there exist two of them is equivalent. Replace a4 by the mid-point of them,
we may further assume

lag||® = vf +v3 + v +v] =4,

by Remark 2.1.
By routine computation, besides z1a; + 2089 + z3as, vector which belong to X (a, A) must

be one of the following form:
z1a;1 + z2ag  ay, 7181 + 2089 + (ag + a4),
z1a1 + 2089 (a3 — 34), z1a1 + z0a9 (233 — a4).

To let card{X (e, A)} > 52, there exist one form above have at least ten vectors which belongs
to X (a, A). Without loss of generality, we suppose
card{v: v = z1a; + z0a; + a4 € X (o, A)} > 10.
Combining with
card{v: v = zja; + zas € X(a,A)} =8,
by Lemma 4.4 and Remark 4.2, we may assume
vy =0, wva=0, v3+vi=4
or
v =0, vo=1, vi+ovi=3
without loss of generality.
For case v1 =0, v, =0, v% + UZ = 4, by routine computation we have:
card{v: v =zja; + z0as t a4 € X(a,A)} = 10,
87 U3 = 07
card{v: v = zja; + z0as £+ (ag + a4) € X(a,A)} =
Oa U3 7£ Oa
card{v: v = z1a; + 208y £ (a3 — a4) € X(a,A)} =8,
27 v3 > 1 \/57
card{v DV = z1a1 + 22a2 + (233 — a4) € X(a, A)} = { /
0, V3 = 0.

Therefore, in this case we have card{X (a, A)} < 44.
For case v; = 0, vo = 1, v2 +v? = 3, since ||az — a4| > 2, we have v3 < 1/4/2. By routine
computation we have:
card{v: v =zja; + zas t a4 € X(a,A)} = 12,
card{v: v = z1a; + 2080 + (a3 + a4) € X(a,A)} =4,
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12, vy = 1/V2,
4, v3 < 1/V2,
4, vy =1/v2,
0, vy <1/V2.

card{v: v =zja; + 208y £+ (a3 —a4) € X(a,A)} = {

card{v: v = z1a; + zpa3 £ (2a3 —a4) € X(a, A)} = {

Therefore, in this case we have card{X (o, A)} < 50.
As a conclusion of these two cases and (7.1), for & = 2v/2 — 2 we have &% (B*) = 50.
Theorem 3 is proved. O
Remark 7.1 It is interesting to see that the V2D, lattice is not the optimal lattice in
this case. Let A be the lattice generated by a; = (2,0,0,0), a; = (0,2,0,0), az = (1,0,/3,0)
and as = (0,1,0,+/3). It is easy to show that, when a = 2v/2 — 2,

card{X (a, A)} = card{ X (a, \/§D4)} = 48.

8 A Link Between x}(B") and v*(B")

In 1964, Erdés and Rogers [3] studied the star number of the lattice covering for a convex
body and proved the following result.

Theorem 8.1 Let C be an o-symmetric strictly convex body and A a covering lattice of
C in E". Then the star number of the covering {C + v : v € A} is at least 2T — 1, where
the star number is the numbers of the translates of C' by lattice vectors, including C', which
intersect the body C.

Let v*(B™) be the lattice packing-covering constant of B™, namely

~*(B") = mAin{r : rB™ + A is a covering of E"},

where A is a lattice such that B™ + A is a packing in E™. For more details about v*(B"™), we
refer to [22].

There exist a strong relation between % (B™) and v*(B"):

Theorem 8.2 For a given dimension ng, suppose v*(B™) = y/2— 3 for a positive number
B. Then for a € [2\/57 28 -2, 22— 2) we have k7 (B™) = 2"+l — 2. Which means that, if
K5 (B™) < 2mtl — 2 holds for a < 2v/2 — 2, then we have v*(B™) > /2.

Proof We assume that B™ + A is a lattice packing attaining v*(B™) = /2 — 3 for a
positive 5. For convenience, let

X={v:2<|v]|<2v2-28, veA}.

It is easy to see that the star number of the covering configuration (v2 — 3)B™ + A is
cardX + 1. By Theorem 8.1 we have cardX > 270+! — 2. Combining with Lemma 2.2, we get
cardX = 2notl _ 9,

Therefore, for o € [2v/2 — 28 — 2, 2v/2 — 2), we have k},(B™) = 2"0F! — 2. Theorem 8.2
is proved. O

Remark 8.1 Notice that v*(B°) > /2, see [22]. However, when a = 2,/9/5 — 2, one can
verify that

card{ X (a, \/MA?))} = 62.
Combining with Lemma 2.2, when a € [2\/% —2, 2v2 —2) we have x},(B®) = 62.
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Corollary 8.1 In [15], Schiirmann and Vallentin improved the former best known result

(see [22]) v*(B%) < V2 to

v*(B%) < 21/2v/798 — 56 = 1.411081242-- - .

Therefore, by Theorem 8.2, for a € [0.8222, 2V2 — 2) we have x* (B%) = 126.
For a packing lattice A of B” and an o < 2v/2 — 2, the sufficient and necessary condition

for
card{ X (a, A)} = 2" — 2

is each equivalent class of A, except the class which contain o, must contain a pair of vectors of
X(a,A). It is reasonable to imagine that, this condition is hard to satisfy in high dimensions.

If so, the following conjecture make sense.
Conjecture 8.1 There are infinity numbers of dimension n such that, when o < 21/2 —2

we have k¥ (B") < 2"t — 2. Especially, when a < 2v/2 — 2 we have x’(B%) < 510 and

kY (B*) < 33554430.
Remark 8.2 If Conjecture 8.1 is true, by Theorem 8.2, we have v*(B®) = /2 and

v*(B?**) = v/2, which give an affirmative answer for Zong’s Conjecture 3.1 in [22].
E7:{v: v € Eg; Z%‘:O}

EG:{V: v € Fg; ZWZU?—FW:O}-

We write
and

When o = 2v/2 — 2, we have (see [2]) that
card{ X (o, v2D5) } = 130,
card{ X (a, \/§E6)} = 342

and
card{ X (a, \/§E7)} = 882.

To end this article, we list some known results of x}(B") as the following Table 2.

Table 2
n  KkL(B") fora<2v2-2 k5 (B") fora=2/2-2

2 < 6 (can be attained) =8

3 < 14 (can be attained) =20

4 < 30 (can be attained) =50

5 < 62 (can be attained) > 130

6 < 126 (can be attained) > 342

7 < 254 (77) > 882

8 <510 (?7) = 2400
24 < 33554430 (77) > 415003680
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