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Abstract In 1694, Gregory and Newton proposed the problem to determine the kissing

number of a rigid material ball. This problem and its higher dimensional generalization have

been studied by many mathematicians, including Minkowski, van der Waerden, Hadwiger,

Swinnerton-Dyer, Watson, Levenshtein, Odlyzko, Sloane and Musin. In this paper, we intro-

duce and study a further generalization of the kissing numbers for convex bodies and obtain

some exact results, in particular for balls in dimensions three, four and eight.
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1 Introduction

In 1694, Gregory and Newton discussed the following problem: Can a rigid material ball

be brought into contact with thirteen other such balls of the same size? Gregory believed

“yes”, while Newton thought “no”. The solution of this problem has a complicated history!

Several authors claimed proofs that the largest number of nonoverlapping unit balls which can

be brought into contact with a fixed one is twelve (see Hoppe [7], Günter [4], Schütte and

van der Waerden [16] and Leech [8]). However, only Schütte and van der Waerden’s proof is

complete!

Let K be an n-dimensional convex body and let C be an n-dimensional centrally symmetric

convex body centered at the origin of En. Let κ(K) and κ∗(K) denote the translative kissing

number and the lattice kissing number of K, respectively. In other words, κ(K) is the maximum

number of nonoverlapping translates K + x that can touch K at its boundary, and κ∗(K) is

defined similarly, with the restriction that the translates are members of a lattice packing of

K. It is easy to see that κ∗(K) ≤ κ(K) holds for every convex body K.
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In 1904, Minkowski [10] defined

D(K) = {x− y : x ∈ K, y ∈ K}

and proved that

κ∗(K) = κ∗(D(K))

and

κ(K) = κ(D(K)).

Clearly, D(K) is always centrally symmetric and centered at the origin of En. Three years

later, Minkowski [11] proved that

κ∗(K) ≤ 3n − 1

holds for every n-dimensional convex body K. In 1957, Hadwiger [5] improved Minkowski’s

upper bound to

κ(K) ≤ 3n − 1.

Let Bn denote the n-dimensional unit ball centered at the origin of En. The kissing numbers

κ∗(Bn) and κ(Bn) have been studied by many authors (see [1, 9, 12–14, 18]). The known exact

results are summarized in the following Table 1.

Table 1

n 2 3 4 5 6 7 8 9 24

κ∗(Bn) 6 12 24 40 72 126 240 272 196560

κ(Bn) 6 12 24 ?? ?? ?? 240 ?? 196560

It is well-known that each centrally symmetric convex body C centered at the origin defines

a metric ‖ · ‖C on Rn by

‖x,y‖C = ‖x− y‖C = min{r : r > 0, x− y ∈ rC}.

Especially, we use || · || to denote the metric defined by Bn.

Clearly, the kissing numbers κ(C) and κ∗(C) only consider the closest neighbours of C in

translative packings and lattice packings, respectively. In fact, in many physic situations the

neighbours in a larger region also have effect on C. For example, in some potential energy

models. Therefore, it is reasonable to make following generalizations: For α ≥ 0, we define

κα(C) to be the maximum number of translates C + x which can be packed into the region

(3 + α)C \ int(C) and define κ∗α(C) to be the maximum number of translates C + x which can

be packed into the region (3 + α)C \ int(C) where all the translative vectors simultaneously

belong to a lattice, where int(C) denotes the interior of C.

In this paper, among other things, we will prove the following results:

Theorem 1 In E2, we have

κ∗α(B2) =


6, 0 ≤ α < 2

√
2− 2,

8, 2
√

2− 2 ≤ α < 2
√

3− 2,

12, α = 2
√

3− 2.
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Theorem 2 In E3, we have

κ∗α(B3) =


12, 0 ≤ α < 4

3

√
3− 2,

14,
4

3

√
3− 2 ≤ α < 2

√
2− 2,

20, α = 2
√

2− 2.

Theorem 3 In E4, we have

κ∗α(B4) =

 30,
√

6− 2 ≤ α < 2
√

2− 2,

50, α = 2
√

2− 2.

Theorem 4 In E8, when α = 2
√

2− 2 we have κ∗α(B8) = 2400.

2 Some Basic Lemmas

In 1907, Minkowski [11] studied the lattice kissing number of an n-dimensional convex body

and proved the following result.

Lemma 2.1 If K is an n-dimensional convex body, then κ∗(K) ≤ 3n − 1, where the

equality holds if and only if K is a parallelepiped. If C is an n-dimensional centrally symmetric

strictly convex body centered at o, then κ∗(C) ≤ 2(2n − 1).

For a non-negative number α and a packing lattice Λ of Bn, we define

X(α,Λ) = {v : 2 ≤ ||v|| ≤ 2 + α, v ∈ Λ}.

Next we introduce two technical results which will be frequently used in this paper.

Lemma 2.2 When 0 ≤ α < 2
√

2− 2, we have

κ∗α(Bn) ≤ 2(2n − 1).

Proof On the contrary, suppose that there is such a positive α which is less than 2
√

2−2

and a suitable lattice Λ satisfying

card{X(α,Λ)} ≥ 2n+1.

For convenience, we assume that a1,a2, · · · ,an is a basis of Λ and say two lattice vectors

v = z1a1 + z2a2 + · · ·+ znan

and

v′ = z′1a1 + z′2a2 + · · ·+ z′nan

are equivalent if zi−z′i ≡ 0 (mod 2) for all i = 1, 2, · · · , n. In other words, v and v′ are equivalent

if and only if 1
2 (v − v′) ∈ Λ. Clearly, this relation divides the points of Λ into 2n classes.

Since X(α,Λ) is centrally symmetric and card{X(α,Λ)} ≥ 2n+1, it contains 2n lattice

points v1,v2, · · · ,v2n satisfying

vi 6= ±vj , i 6= j.

If one of the 2n points, say v1, is equivalent to o, then we get 1
2v1 ∈ Λ and 1 ≤ || 12v1|| <

√
2 < 2,

which contradicts the assumption that Bn + Λ is a packing.
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Since all o, v1, v2, · · · , v2n belong to at most 2n classes, two of them must belong to the

same class. Without loss of generality, we may assume that v1 and v2 are equivalent. Then,

we have

2 ≤ ||vi|| < 2
√

2, i = 1, 2 (2.1)

and

|| 12 (v1 ± v2)|| ≥ 2. (2.2)

By (2.1), we get

||v1||2 + ||v2||2 < 16. (2.3)

By (2.2), we get

||v1||2 + ||v2||2 − 2〈v1,v2〉 ≥ 16 (2.4)

and

||v1||2 + ||v2||2 + 2〈v1,v2〉 ≥ 16, (2.5)

where 〈v1,v2〉 denotes the inner product of v1 and v2. Then, by (2.4) and (2.5) we obtain

||v1||2 + ||v2||2 ≥ 16,

which contradicts (2.3). Therefore, for 0 ≤ α < 2
√

2− 2, we have

κ∗α(Bn) ≤ 2(2n − 1).

Lemma 2.2 is proved. �

Remark 2.1 Writing

X = {v : 2 ≤ ||v|| ≤ 2
√

2, v ∈ Λ}

and repeating the calculations (2.1)–(2.5) one can deduce that two lattice points v1,v2 ∈ X
satisfying v1 6= ±v2 belong to the same equivalent class if and only if

||v1|| = 2
√

2, ||v2|| = 2
√

2 and 〈v1,v2〉 = 0.

Lemma 2.3 When α < 2
√

3− 2, the set X(α,Λ) contains no four collinear points.

Proof On the contrary, suppose X(α,Λ) has four collinear points v1,v2,v3 and v4.

Without loss of generality, we may assume that n = 2 and all v1,v2,v3 and v4 have the

same x-coordinates, namely v1 = (x0, y1), v2 = (x0, y2), v3 = (x0, y3) and v4 = (x0, y4).

Furthermore, we may also assume that x0 ≥ 0 and

y1 − y2 = y2 − y3 = y3 − y4 ≥ 2, (2.6)

since B2 + Λ is a packing.

If x0 ≥
√

3, we get

y1 − y4 ≤ 2
√

(α+ 2)2 − x2
0 < 2

√
(2
√

3)2 − 3 = 6 (2.7)

and therefore

y1 − y2 = y2 − y3 = y3 − y4 < 2,

which contradicts (2.6).
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If x0 <
√

3, we get

y2 − y3 ≥ 2
√

4− x2
0 (2.8)

since both v2 and v3 belong to Λ. On the other hand, since both v1 and v4 belong to

int(2
√

3B2), we get

y1 − y4 < 2
√

12− x2
0. (2.9)

By (2.8) and (2.9) one can easily deduce

y1 − y4 < 2
√

12− x2
0 < 6

√
4− x2

0 ≤ 3(y2 − y3), (2.10)

which contradicts (2.6).

As a conclusion of the two cases, Lemma 2.3 is proved. �

Remark 2.2 Writing

X =
{
v : 2 ≤ ||v|| ≤ 2

√
3, v ∈ Λ

}
and repeating the calculations (2.6)-(2.10) one can deduce that X has four collinear points

v1,v2,v3 and v4 if and only if, up to some rotation,

v1 = (
√

3, 3), v2 = (
√

3, 1), v3 = (
√

3,−1) and v4 = (
√

3,−3).

3 Proof of Theorem 1

Theorem 1 In E2, we have

κ∗α(B2) =


6, 0 ≤ α < 2

√
2− 2,

8, 2
√

2− 2 ≤ α < 2
√

3− 2,

12, α = 2
√

3− 2.

Proof When 0 ≤ α < 2
√

2 − 2, by Lemma 2.2 we have κ∗α(B2) ≤ 6. Combining with

κ∗α(B2) ≥ κ∗(B2) = 6, for 0 ≤ α < 2
√

2− 2 we get

κ∗α(B2) = 6. (3.1)

By Remark 2.1, when α = 2
√

2− 2 one can deduce that

κ∗α(B2) = 8, (3.2)

where the equality holds when the corresponding lattice Λ is generated by a1 = (2, 0), a2 =

(0, 2). In fact, the optimal lattice is unique up to some rotation.

When 2
√

2−2 ≤ α < 2
√

3−2, we assume that B2 +Λ is a lattice packing attaining κ∗α(B2).

Then we have

card{X(α,Λ)} ≥ 8.

Without loss of generality, by a routine argument we may assume that {a1,a2} is a basis of Λ,

‖a1‖ = 2 and {a1,a2} ⊂ X(α,Λ).

For an arbitrary vector v ∈ X(α,Λ) which is not ±a1, the lattice Λ′ generated by {a1,v}
is a sublattice of Λ. Therefore, let det(Λ) denote the determinant of the lattice Λ, we have

det(Λ′) = g det(Λ),
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where g is a positive integer. It is easy to see that

det(Λ′) ≤ ||a1|| · ||v|| < 2 · 2
√

3 = 4
√

3 (3.3)

and

det(Λ) ≥ ω(B2)

δ∗(B2)
= 2
√

3, (3.4)

where ω(B2) denotes the area of B2 and δ∗(B2) = π/
√

12 is the density of the densest lattice

packing of B2. By (3.3) and (3.4) one can easily deduce that g = 1. Consequently, if

v = z1a1 + z2a2,

then we must have

z2 = ±g = ±1. (3.5)

Since ±a2 ∈ X(α,Λ), by Lemma 2.3 one can deduce that |z1| ≤ 2, which means that

v = ±a2, ±(a1 + a2), ±(a1 − a2), ±(2a1 + a2) or ± (2a1 − a2).

If both (a1 + a2) and (a1 − a2) belong to X(α,Λ), since 2a1 + a2, a1 + a2, a2, −a1 + a2 are

collinear, (2a1 +a2) can not belong to X(α,Λ). Similarly, since 2a1−a2, a1−a2, −a2, −a1−a2

are collinear, (2a1 − a2) /∈ X(α,Λ). On the other hand, if both (2a1 + a2) and (2a1 − a2)

belong to X(α,Λ), by convexity one can deduce that 2a1 ∈ X(α,Λ), which contradicts to

X(α,Λ) ⊂ int(2
√

3B2). As a conclusion of these two cases, we get

card{X(α,Λ)} ≤ 8.

Combining with (3.2), for 2
√

2− 2 ≤ α < 2
√

3− 2 we get

κ∗α(B2) = 8. (3.6)

Finally, we deal with the case α = 2
√

3 − 2. If X(α,Λ) contains no four collinear points

and (3.5) holds, by previous arguments we still obtain

card{X(α,Λ)} ≤ 8.

Therefore, the necessary condition for card{X(α,Λ)} ≥ 10 is either X(α,Λ) contains four

collinear points or (3.5) does not hold.

If X(α,Λ) has four collinear vectors v1,v2,v3 and v4, by Remark 2.2 we may assume that

v1 = (
√

3, 3), v2 = (
√

3, 1), v3 = (
√

3,−1), v4 = (
√

3,−3).

In this case, it is easy to verify that Λ is generated by a1 = (
√

3, 1), a2 = (
√

3,−1) and

card{X(α,Λ)} = 12.

If there is a point v = z1a1 + z2a2 ∈ X(α,Λ) with z2 = ±2, by repeating (3.3) and (3.4)

we get

det(Λ) =
ω(B2)

δ∗(B2)
= 2
√

3.

In this case, Λ is the densest packing lattice of B2 and therefore

card{X(α,Λ)} = 12.
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As a conclusion of the two cases, for α = 2
√

3− 2 we have

κ∗α(B2) = 12, (3.7)

and the corresponding lattice Λ is generated by a1 = (
√

3, 1) and a2 = (
√

3,−1), up to some

rotation.

The theorem follows from (3.1), (3.6) and (3.7). �

In 2003, Zong [23] proved the following result.

Lemma 3.1 For every two-dimensional centrally symmetric convex domain C there is a

parallelogram with vertices o, v1, v2 and v1 + v2 such that

||o,v1||C = ||o,v2||C = 2

and

2 ≤ ||v1,v2||C = ||o,v1 + v2||C ≤ 2
√

2.

This result has the following corollary.

Corollary 3.1 When α = 2
√

2− 2, κ∗α(C) ≥ 8 holds for every two-dimensional centrally

symmetric convex domain C.

4 Proof of Theorem 2

Lemma 4.1 When 4
3

√
3− 2 ≤ α < 2

√
2− 2, we have κ∗α(B3) = 14.

Proof Let Λ be the lattice generated by a1 = (− 2
3

√
6, 2

3

√
3, 0), a2 = ( 2

3

√
6, 2

3

√
3, 0) and

a3 = (0, 2
3

√
3, 2

3

√
6). When α = 4

3

√
3− 2, one can verify that card{X(α,Λ)} = 14. Combining

with Lemma 2.2, for 4
3

√
3− 2 ≤ α < 2

√
2− 2 we have κ∗α(B3) = 14. Lemma 4.1 is proved. �

Lemma 4.2 Let v1,v2,v3 be three linearly independent vectors of X(α,Λ) and let Λ′

denote the lattice generated by them. If 0 ≤ α < 4
3

√
3− 2, then det(Λ′)/det(Λ) ≤ 2.

Proof Since α < 4
3

√
3− 2, we have

det(Λ′) ≤ ||v1|| · ||v2|| · ||v3|| < (
4

3

√
3)3.

On the other hand, let δ∗(B3) denote the density of the densest three-dimensional lattice sphere

packing which is π/
√

18, we have

det(Λ) ≥ vol(B3)

δ∗(B3)
=

4
3π
π√
18

= 4
√

2.

Therefore, we get

det(Λ′)/det(Λ) <
(4

3

√
3
)3

/4
√

2 < 3.

In other words, det(Λ′)/det(Λ) only can take two values, one or two. Lemma 4.2 is proved. �

Lemma 4.3 If α < 4
3

√
3 − 2 and card{X(α,Λ)} = 14, then Λ has a basis {a1,a2,a3}

such that

X(α,Λ) = {±a1, ±a2, ±a3, ±(a1 + a2), ±(a1 + a3), ±(a2 + a3), ±(a1 + a2 + a3)}.

Proof Suppose

X(α,Λ) = {±v1, ±v2, ±v3, ±v4, ±v5, ±v6, ±v7}.
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By Remark 2.1, vi cannot be equivalent to ±vj for i 6= j, since α < 4
3

√
3 − 2. Therefore,

for a basis {a1,a2,a3} of Λ, we may assume v1, v2, v3, v4, v5, v6, v7 are equivalent to

a1, a2, a3, a1 + a2, a1 + a3, a2 + a3, a1 + a2 + a3, respectively.

It is easy to verify that, we can expand to a basis of Λ based on {v1,v2}. Without loss of

generality, we assume v1 = ±a1, v2 = ±a2. By Lemma 4.2, we have v3 = z1a1 + z2a2 ± a3,

where z1, z2 are even. Since {a1, a2, z1a1 +z2a2±a3} is also a basis of Λ, we assume v3 = ±a3

without loss of generality.

Therefore, for v = z1a1 +z2a2 +z3a3 belonging to X(α,Λ), we have ||zi|| ≤ 2 for i = 1, 2, 3,

by Lemma 4.2. Thus, we have

v4 = ±a1 ± a2 + za3, z = 0 or ± 2,

v5 = ±a1 + z′a2 ± a3, z′ = 0 or ± 2,

v6 = z′′a1 ± a2 ± a3, z′′ = 0 or ± 2,

and v7 = ±a1 ± a2 ± a3.

Suppose one of z, z′, z′′ is ±2, without loss of generality, say z = ±2. Furthermore, we may

assume v4 = ±(a1 + a2 + 2a3), since the sign of a1, a2, a3 does not change ±v1, ±v2, ±v3.

It is easy to verify that

det(a1 − a3, a2, a1 + a2 + 2a3) =

∣∣∣∣∣∣∣∣
1 0 −1

0 1 0

1 1 2

∣∣∣∣∣∣∣∣det(a1,a2,a3) = 3 det(Λ),

det(a1, a1 + 2a2 + a3, a1 + a2 + 2a3) =

∣∣∣∣∣∣∣∣
1 0 0

1 2 1

1 1 2

∣∣∣∣∣∣∣∣det(a1,a2,a3) = 3 det(Λ),

det(a1, a1 + 2a2 − a3, a1 + a2 + 2a3) =

∣∣∣∣∣∣∣∣
1 0 0

1 2 −1

1 1 2

∣∣∣∣∣∣∣∣det(a1,a2,a3) = 5 det(Λ),

det(a1, −a1 + 2a2 + a3, a1 + a2 + 2a3) =

∣∣∣∣∣∣∣∣
1 0 0

−1 2 1

1 1 2

∣∣∣∣∣∣∣∣ det(a1,a2,a3) = 3 det(Λ),

det(a1, −a1 + 2a2 − a3, a1 + a2 + 2a3) =

∣∣∣∣∣∣∣∣
1 0 0

−1 2 −1

1 1 2

∣∣∣∣∣∣∣∣ det(a1,a2,a3) = 5 det(Λ),

where det(b1,b2,b3) denotes the determinant of the lattice which is generated by {b1,b2,b3}.
By Lemma 4.2, v5 cannot be ±(a1 − a3), ±(a1 + 2a2 + a3), ±(a1 + 2a2 − a3), ±(−a1 +

2a2 + a3), ±(−a1 + 2a2 − a3). Therefore, v5 = ±(a1 + a3). By the same deduction, we have

v6 = ±(a2 + a3).
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For v7, since

det(a1, a1 + a2 − a3, a1 + a2 + 2a3) =

∣∣∣∣∣∣∣∣
1 0 0

1 1 −1

1 1 2

∣∣∣∣∣∣∣∣det(a1,a2,a3) = 3 det(Λ),

det(−a1, a1 − a2 + a3, a1 + a2 + 2a3) =

∣∣∣∣∣∣∣∣
−1 0 0

1 −1 1

1 1 2

∣∣∣∣∣∣∣∣det(a1,a2,a3) = 3 det(Λ),

det(−a2, a1 − a2 − a3, a1 + a2 + 2a3) =

∣∣∣∣∣∣∣∣
0 −1 0

1 −1 −1

1 1 2

∣∣∣∣∣∣∣∣ det(a1,a2,a3) = 3 det(Λ),

v7 cannot be ±(a1 + a2 − a3), ±(a1 − a2 + a3), ±(a1 − a2 − a3), by Lemma 4.2. Therefore,

v7 = ±(a1 + a2 + a3), which means that

X(α,Λ) = {±a1,±a2,±a3,±(a1 + a2 + 2a3),±(a1 + a3),±(a2 + a3),±(a1 + a2 + a3)}.

By choose a′1 = −(a1 + a3), a′2 = a3, a′3 = a1 + a2 + a3, one can verify that Lemma 4.3 holds

in this case.

On the other hand, if z = z′ = z′′ = 0, we have

v4 = ±(a1 + a2) or ± (a1 − a2),

v5 = ±(a1 + a3) or ± (a1 − a3),

v6 = ±(a2 + a3) or ± (a2 − a3).

Since the sign of a2 does not change ±v1, ±v2, ±v3, we assume v4 = ±(a1 + a2), without loss

of generality. Furthermore, since the sign of a3 does not change ±v1, ±v2, ±v3, ±v4, we may

assume

v5 = ±(a1 + a3), v6 = ±(a2 + a3)

or

v5 = ±(a1 + a3), v6 = ±(a2 − a3).

Combining with

v7 = ±(a1 + a2 + a3), ±(a1 + a2 − a3), ±(a1 − a2 + a3) or ± (a1 − a2 − a3),

we obtain that in this case, X(α,Λ) is one of the following sets:

(1) {±a1,±a2,±a3,±(a1 + a2),±(a1 + a3),±(a2 + a3),±(a1 + a2 + a3)};
(2) {±a1,±a2,±a3,±(a1 + a2),±(a1 + a3),±(a2 + a3),±(a1 + a2 − a3)};
(3) {±a1,±a2,±a3,±(a1 + a2),±(a1 + a3),±(a2 + a3),±(a1 − a2 + a3)};
(4) {±a1,±a2,±a3,±(a1 + a2),±(a1 + a3),±(a2 + a3),±(a1 − a2 − a3)};
(5) {±a1,±a2,±a3,±(a1 + a2),±(a1 + a3),±(a2 − a3),±(a1 + a2 + a3)};
(6) {±a1,±a2,±a3,±(a1 + a2),±(a1 + a3),±(a2 − a3),±(a1 + a2 − a3)};
(7) {±a1,±a2,±a3,±(a1 + a2),±(a1 + a3),±(a2 − a3),±(a1 − a2 + a3)};
(8) {±a1,±a2,±a3,±(a1 + a2),±(a1 + a3),±(a2 − a3),±(a1 − a2 − a3)}.
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Since

det(a1 + a3, a2 + a3, −(a1 + a2 − a3)) =

∣∣∣∣∣∣∣∣
1 0 1

0 1 1

−1 −1 1

∣∣∣∣∣∣∣∣det(a1,a2,a3) = 3 det(Λ),

det(a1 + a2, a2 + a3, a1 − a2 + a3) =

∣∣∣∣∣∣∣∣
1 1 0

0 1 1

1 −1 1

∣∣∣∣∣∣∣∣det(a1,a2,a3) = 3 det(Λ),

det(a1 + a2, a1 + a3, a1 − a2 − a3) =

∣∣∣∣∣∣∣∣
1 1 0

1 0 1

1 −1 −1

∣∣∣∣∣∣∣∣ det(a1,a2,a3) = 3 det(Λ),

det(a2 − a3, a1 + a3, a1 − a2 − a3) =

∣∣∣∣∣∣∣∣
0 1 −1

1 0 1

1 −1 −1

∣∣∣∣∣∣∣∣ det(a1,a2,a3) = 3 det(Λ),

by Lemma 4.2, X(α,Λ) cannot be the sets (2), (3), (4), (8).

For set (1), Lemma 4.3 already holds; For set (5), by choosing a′1 = a1+a2, a′2 = −a2, a′3 =

a3, it can be verified that Lemma 4.3 holds; For set (6), by choosing a′1 = a1, a′2 = a2−a3, a′3 =

a3, it can be verified that Lemma 4.3 holds; For set (7), by choosing a′1 = a1, a′2 = a2, a′3 =

−(a1 + a3), it can be verified that Lemma 4.3 holds.

As a conclusion of two cases, Lemma 4.3 is proved. �

Lemma 4.4 When 0 ≤ α < 4
3

√
3− 2, we have κ∗α(B3) = 12.

Proof On the contrary, suppose there exists a packing lattice Λ of B3 and 0 ≤ α <
4
3

√
3− 2 satisfies card{X(α,Λ)} = 14. By Lemma 4.3, there exist a basis {a1,a2,a3} of Λ such

that

X(α,Λ) = {±a1, ±a2, ±a3, ±(a1 + a2), ±(a1 + a3), ±(a2 + a3), ±(a1 + a2 + a3)}.

Without loss of generality, we suppose that a1, a2, a1 + a2 lie in the plane

{(v1, v2, v3) : v3 = 0}

and

a1 + a2 = (0, c, 0), a1 = (−a, b, 0), a2 = (a, c− b, 0).

Then we have:
16

3
> ||a1 + a2||2 = c2 ≥ 4, (4.1)

16

3
> ||a1||2 = a2 + b2 ≥ 4, (4.2)

16

3
> ||a2||2 = a2 + b2 + c2 − 2bc ≥ 4. (4.3)

Let a3 = (v1, v2, v3) and denote ||a3||2 = D1, ||a1 + a2 + a3||2 = D2, then we have

16

3
> D1 = v2

1 + v2
2 + v2

3 ≥ 4, (4.4)
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16

3
> D2 = v2

1 + v2
2 + v2

3 + c2 + 2cv2 ≥ 4. (4.5)

By (4.4) and (4.5), we have

v2 =
D2 −D1 − c2

2c
. (4.6)

By (4.4) and (4.6), we have

16

3
> ||a1 + a3||2 = (v1 − a)2 + (v2 + b)2 + v2

3

= D1 + a2 + b2 − 2av1 + 2bv2

and

16

3
> ||a2 + a3||2 = (v1 + a)2 + (v2 + c− b)2 + v2

3

= D1 + a2 + 2av1 + 2v2(c− 2b) + 2bv2 + b2 + c2 − 2bc

= D1 + a2 + b2 + 2av1 + 2bv2 + (2v2 + c)(c− 2b)

= D1 + a2 + b2 + 2av1 + 2bv2 +
D2 −D1

c
(c− 2b).

Using (4.6) again, we obtain

16

3
>
||a1 + a3||2 + ||a2 + a3||2

2

= D1 + a2 + b2 + 2bv2 +
D2 −D1

2c
(c− 2b)

= D1 + a2 + b2 +
b

c
(D2 −D1)− bc+

D2 −D1

2
− b

c
(D2 −D1)

=
D1 +D2

2
+ a2 + b2 − bc. (4.7)

On the other hand, by (4.2) and (4.3), we have 2(a2 + b2− bc) + c2 ≥ 8. Therefore, by (4.1),

we get

a2 + b2 − bc ≥ 4− c2

2
>

4

3
, (4.8)

together with (4.4) and (4.5), we have

D1 +D2

2
+ a2 + b2 − bc > 4 +

4

3
=

16

3
,

which contradicts (4.7).

Therefore, when 0 ≤ α < 4
3

√
3 − 2, we have κ∗α(B3) ≤ 12. Combining with κ∗α(B3) ≥

κ∗(B3) = 12, for 0 ≤ α < 4
3

√
3− 2 we have κ∗α(B3) = 12. Lemma 4.4 is proved. �

Remark 4.1 For α = 4
3

√
3− 2, by repeating (4.1)–(4.8) one can deduce that

card{X(α,Λ)} = 14

if and only if the lattice Λ is generated by a1 = (− 2
3

√
6, 2

3

√
3, 0), a2 = ( 2

3

√
6, 2

3

√
3, 0) and

a3 = (0, 2
3

√
3, 2

3

√
6), up to some rotation.

Lemma 4.5 When α = 2
√

2− 2, we have κ∗α(B3) = 20.

Proof Let Λ be the lattice generated by a1 = (2, 0, 0),a2 = (0, 2, 0) and a3 = (1, 0,
√

3).

When α = 2
√

2− 2, one can verify that

card{X(α,Λ)} = 20.
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By Remark 2.1, for a packing lattice Λ of B3 and α = 2
√

2− 2, to let card{X(α,Λ)} ≥ 20,

a necessary condition is there exist a1,a2 ∈ Λ such that

||a1|| = ||a2|| = 2, ||a1 + a2|| = ||a1 − a2|| = 2
√

2.

Without loss of generality, we suppose a1 = (2, 0, 0), a2 = (0, 2, 0). It is obvious to see that we

can expand a basis of Λ based on {a1,a2}.
Suppose a1,a2 and a3 = (v1, v2, v3) is a basis of Λ. We assume v3 > 0, without loss of

generality. Since

det(Λ) ≥ vol(B3)

δ∗(B3)
=

4
3π
π√
18

= 4
√

2,

we have v3 ≥
√

2 and the equality holds if and only if Λ is the densest packing lattice of B3.

In this case one can verify that card{X(α,Λ)} = 18 < 20. Therefore, we have v3 >
√

2. Which

means that, for

v = z1a1 + z2a2 + z3a3 ∈ X(α,Λ),

we have z3 = 0 or ± 1.

Since

card{v : v = z1a1 + z2a2 ∈ X(α,Λ)} = 8

and X(α,Λ) is centrally symmetric, to let card{X(α,Λ)} ≥ 20, we have

card{v : v = z1a1 + z2a2 + a3 ∈ X(α,Λ)} ≥ 6.

Therefore, there exist two of them which are equivalent. Replace a3 by the mid-point of them,

we may further assume ||a3||2 = v2
1 + v2

2 + v2
3 = 4, by Remark 2.1.

Without loss of generality, we suppose v1, v2 ≥ 0. Since ||a3 − a1|| ≥ 2, ||a3 − a2|| ≥ 2,

by routine computation we have 0 ≤ v1 ≤ 1, 0 ≤ v2 ≤ 1.

For a lattice vector

v = z1a1 + z2a2 + a3 ∈ X(α,Λ),

we have

||v||2 = 4z2
1 + 4z1v1 + 4z2

2 + 4z2v2 + v2
1 + v2

2 + v2
3 ≤ (2

√
2)2,

which means

z2
1 + z1v1 + z2

2 + z2v2 ≤ 1. (4.9)

By routine computation, a necessary condition for (4.9) is |z1| ≤ 1, |z2| ≤ 1. For (z1, z2) =

(1, 0): a1 + a3 ∈ X(α,Λ) if and only if

v1 = 0. (4.9.1)

For (z1, z2) = (1,−1): a1 − a2 + a3 ∈ X(α,Λ) if and only if

1 + v1 − v2 ≤ 0. (4.9.2)

For (z1, z2) = (0, 1): a2 + a3 ∈ X(α,Λ) if and only if

v2 = 0. (4.9.3)

For (z1, z2) = (−1, 1): −a1 + a2 + a3 ∈ X(α,Λ) if and only if

1− v1 + v2 ≤ 0. (4.9.4)
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For (z1, z2) = (−1,−1): −a1 − a2 + a3 ∈ X(α,Λ) if and only if

1− v1 − v2 ≤ 0. (4.9.5)

For (z1, z2) = (1, 1), since 1 + v1 + 1 + v2 > 1, we have

a1 + a2 + a3 /∈ X(α,Λ). (4.9.6)

Obviously, (4.9.1) and (4.9.4) cannot hold simultaneously, (4.9.2) and (4.9.3) cannot hold

simultaneously. Combining with (4.9.6), we have

card{v : v = z1a1 + z2a2 + a3 ∈ X(α,Λ)} ≤ 6.

Therefore, for α = 2
√

2− 2 we get card{X(α,Λ)} ≤ 20.

To let card{X(α,Λ)} = 20, we must have: one of (4.9.1) and (4.9.4) holds, one of (4.9.2)

and (4.9.3) holds, and (4.9.5) holds. By routine computation one can deduce that a3 =

(0, 1,
√

3) or (1, 0,
√

3). Therefore, when α = 2
√

2− 2, we have κ∗α(B3) = 20, and the equality

holds if and only if the corresponding lattice Λ is generated by a1 = (2, 0, 0), a2 = (0, 2, 0) and

a3 = (1, 0,
√

3), up to some rotation. Lemma 4.5 is proved. �

Lemma 4.1, Lemma 4.4 and Lemma 4.5 together yields the following theorem.

Theorem 2 In E3, we have

κ∗α(B3) =


12, 0 ≤ α < 4

3

√
3− 2,

14,
4

3

√
3− 2 ≤ α < 2

√
2− 2,

20, α = 2
√

2− 2.

Remark 4.2 In fact, by repeating the calculations (4.9.1)–(4.9.6), one can deduce that

for α = 2
√

2−2, card{X(α,Λ)} = 18 if and only if Λ is generated by a1 = (2, 0, 0), a2 = (0, 2, 0)

and a3 = (1, 1,
√

2), or a1 = (2, 0, 0), a2 = (0, 2, 0) and a3 = (0, 0, 2), up to some rotation.

We end this section by a problem as following.

Problem 4.1 When α = 4
3

√
3 − 2, is it true that κ∗α(C) ≥ 14 holds for every three-

dimensional centrally symmetric convex body C?

5 Kissing Numbers of Convex Bodies

Although the concept of κ∗α(B3) itself is interesting, it can also lead to determine the

lattice kissing numbers of convex bodies which were geometrically similar to B3. To this end,

we present the following theorem:

Theorem 5.1 For a 3-dimensional centrally symmetric convex body C centered at o, if

B3 ⊂ C ⊂ int( 2
3

√
3B3) holds, then we have κ∗(C) = 12.

Proof Let C + Λ be a lattice packing attaining κ∗(C) and

X = {v1, · · · ,vκ∗(C)} = ∂(2C) ∩ Λ,

where ∂(2C) denotes the boundary of 2C. Since 2B3 ⊂ 2C ⊂ int( 4
3

√
3B3), we have 2 ≤ ||vi|| <

4
3

√
3 holds for all i = 1, 2, · · · , κ∗(C). Since Λ is also a packing lattice of B3, by Lemma 4.3 we

get

κ∗(C) = cardX ≤ 12.
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On the other hand, since κ∗(C) ≥ 12 holds for all 3-dimensional centrally symmetric convex

body C (see [17]), we have κ∗(C) = 12.

Theorem 5.1 is proved. �

We now give several convex bodies as examples which lattice kissing numbers can be de-

termined by Theorem 5.1.

Example 5.1 We take τ =
√

5+1
2 and define

Pd = {(v1, v2, v3) : |τv1|+ |v2| ≤ 1, |τv2|+ |v3| ≤ 1, |τv3|+ |v1| ≤ 1},

Pi =
{

(v1, v2, v3) : |v1|+ |v2|+ |v3| ≤ 1, |τv1|+ | 1τ v3| ≤ 1, |τv2|+ | 1τ v1| ≤ 1,

|τv3|+ | 1τ v2| ≤ 1
}
.

Usually, Pd and Pi are called a dodecahedron and an icosahedron, respectively. Define

Ptri = (1 + τ)Pi ∩ (4/3 + τ)Pd.

Usually, Ptri is called a truncated icosahedron.

Figure 1 Truncated icosahedron Ptri

By routine computation, we have ||v1||B3 ⊂ Ptri ⊂ ||v′1||B3, where v1 = ( 3+
√

5
6 , 3+

√
5

6 , 3+
√

5
6 ),

v′1 = ( 1
3 , 0,

1+
√

5
2 ), see Figure 1. Since

B3 ⊂ 1

||v1||
Ptri ⊂

||v′1||
||v1||

B3 = 1.0929 · · ·B3 ⊂ int
(4

3

√
3B3

)
,

by Theorem 5.1 we have

κ∗(Ptri) = κ∗
( 1

||v1||
Ptri

)
= 12.

Example 5.2 We define

Prtc =
{

(v1, v2, v3) : |τv1| ≤ 1, |τv2| ≤ 1, |τv3| ≤ 1, |1
2
v1|+ |

τ

2
v2|+ |

τ + 1

2
v3| ≤ 1,

|τ
2
v1|+ |

τ + 1

2
v2|+ |

1

2
v3| ≤ 1, |τ + 1

2
v1|+ |

1

2
v2|+ |

τ

2
v3| ≤ 1

}
.

Usually, Prtc is called a rhombic triacontahedron. Define

Prid = (3τ + 2)Prtc ∩ (4τ + 1)Pi ∩ (3(1 + τ))Pd,

Ptrid = (5τ + 4)Prtc ∩ (6τ + 3)Pi ∩ (5(1 + τ))Pd.
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Usually, Prid and Ptrid are called a rhombic icosidodecahedron and a truncated icosidodecahe-

dron, respectively.

Figure 2 Rhombic icosidodecahedron Prid and truncated icosidodecahedron Ptrid

By routine computation, we have

||v2||B3 ⊂ Prid ⊂ ||v′2||B3,

where v2 = ( 15+3
√

5
10 , 0, 15+9

√
5

10 ), v′2 = (1, 1, 2 +
√

5), see Figure 2. Since

B3 ⊂ 1

||v2||
Prid ⊂

||v′2||
||v2||

B3 = 1.0815 · · ·B3 ⊂ int
(4

3

√
3B3

)
,

by Theorem 5.1 we have

κ∗(Prid) = κ∗
( 1

||v2||
Prid

)
= 12.

By routine computation, we have

||v3||B3 ⊂ Ptrid ⊂ ||v′3||B3,

where v3 = ( 5+
√

5
2 , 0, 5+3

√
5

2 ), v′3 = (1, 1, 2
√

5 + 3), see Figure 2. Since

B3 ⊂ 1

||v3||
Ptrid ⊂

||v′3||
||v3||

B3 = 1.1050 · · ·B3 ⊂ int
(4

3

√
3B3

)
,

by Theorem 5.1 we have

κ∗(Ptrid) = κ∗
( 1

||v3||
Ptrid

)
= 12.



No.1 Y.M. Li & C.M. Zong: ON GENERALIZED KISSING NUMBERS OF CONVEX BODIES 87

Example 5.3 We use the configuration of snub dodecahedron given by Henk [6], denote

it by Psd. By routine computation, we have

||v4||B3 ⊂ Psd ⊂ ||v′4||B3,

where

v4 = (−0.9661 · · · , 0, 1.5632 · · · ), v′4 = (−0.3477 · · · ,−0.3069 · · · , 1.9454 · · · ),

see Figure 3. Since

B3 ⊂ 1

||v4||
Psd ⊂

||v′4||
||v4||

B3 = 1.0883 · · ·B3 ⊂ int
(4

3

√
3B3

)
,

by Theorem 5.1 we have

κ∗(Psd) = κ∗
( 1

||v4||
Psd

)
= 12.

Figure 3 Snub dodecahedron Psd

Example 5.4 Define

B3
p =

{
(v1, v2, v3) : |v1|p + |v2|p + |v3|p ≤ 1

}
.

Usually, B3
p is called a Lp unit ball in 3-dimension. When p1 ≤ p2, it is well known that

B3
p1 ⊂ B

3
p2 .

For p ≥ 2 and a point v = (v1, v2, v3) ∈ B3
p where v1, v2, v3 ≥ 0, we have

vp1 + vp2 + vp3 ≤ 1.

According to Power-Mean Inequality, we have

v2
1 + v2

2 + v2
3 ≤

((1

3

) 1
p
)2

× 3 =
(1

3

) 2
p × 3.

Therefore we have

B3 ⊂ B3
p ⊂
√

3×
(1

3

) 1
p

B3.

By routine computation, when 2 ≤ p < ln 3
ln 3−ln 2 we get κ∗(B3

p) = 12 by Theorem 5.1.

For p < 2, by the same deduction we obtain

√
3×

(1

3

) 1
p

B3 ⊂ B3
p ⊂ B3,
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which means

B3 ⊂ 1
√

3×
(

1
3

) 1
p

B3
p ⊂

1
√

3×
(

1
3

) 1
p

B3.

By routine computation, when 2 > p > ln 3
ln 2 we get κ∗(B3

p) = 12 by Theorem 5.1.

As a conclusion of the two cases, when ln 3
ln 3−ln 2 > p > ln 3

ln 2 , we have κ∗(B3
p) = 12.

Remark 5.1 Let Λ be the lattice generated by a1 = (2, 0, 0),a2 = (0, 2, 0) and a3 =

(1, 1, 1), then one can verify that: when p = ln 3
ln 2 , Λ is a packing lattice of B3

p and

card
{
∂(2B3

p) ∩ Λ
}

= 14.

On the other hand, since B3
p is a strictly convex body when 1 < p <∞, combining with Lemma

2.2, when p = ln 3
ln 2 we have κ∗(B3

p) = 14.

6 Proof of Theorem 4

For α = 2
√

2− 2 and a packing lattice Λ of Bn, we have the following lemma.

Lemma 6.1 One equivalent class of Λ can contain at most n pairs of vectors of X(α,Λ).

Proof Suppose

±v1, · · · ,±vi ∈ X(α,Λ)

belong to the same equivalent class, i ≥ 2. By Remark 2.1, we have ||vi|| = 2
√

2 holds for all i

and 〈vi,vj〉 = 0 holds for all i 6= j. Therefore, one equivalent class of Λ can contain at most n

pairs of vectors of X(α,Λ).

Lemma 6.1 is proved. �

Denote the numbers of equivalent classes of Λ which contain exactly i pairs of vectors of

X(α,Λ) by mi. We define a collection of sets

C(X(α,Λ)) =
{
A = {v1,v2,v3} : v2 =

1

2
(v1 + v3) and v1, v2, v3 ∈ X(α,Λ)

}
.

By estimate card{C(X(α,Λ))} in two different ways, we prove the following lemma.

Lemma 6.2
n∑
i=2

2i(i− 1)mi ≤ κ∗(Bn−1) ·m1.

Proof For a set {v1,v2,v3} ∈ C(X(α,Λ)), by Remark 2.1, we have

||v2|| = 2, ||v1 − v2|| = ||v3 − v2|| = 2, ||v1|| = ||v3|| = 2
√

2.

We assume v2 = (0, 0, · · · , 0, 2), without loss of generality. Then one can easily deduce that v1

and v3 must lie in the (n− 1)-dimensional hyperplane

π0 :
{

(v1, v2, · · · , vn−1, vn) : vn = 2
}
.

It is obvious that

card{v : ||v − v2|| = 2, v ∈ X(α,Λ) ∩ π0} ≤ κ∗(Bn−1),

which means

card{A ∈ C(X(α,Λ)) : v2 ∈ A} ≤ κ∗(Bn−1)/2.
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For a vector v ∈ X(α,Λ) of length 2, by Remark 2.1, v cannot be equivalent to any vector

of X(α,Λ), besides ±v. Therefore, we have

card{v : ||v|| = 2, v ∈ X(α,Λ)} ≤ 2m1.

Consequently, we get

card{C(X(α,Λ))} ≤ κ∗(Bn−1) ·m1. (6.1)

On the other hand, by the definition of C(X(α,Λ)), a set {v1,v2,v3} belongs to it if and

only if v1,v3 ∈ X(α,Λ) are equivalent and v1 6= ±v3. For an equivalent class which contains

i ≥ 2 pairs of vectors of X(α,Λ), denote it by Xi1. By enumeration we have

card
{
{v1,v3} : {v1,v3} ⊂ Xi1, v1 6= ±v3

}
= 2i(i− 1).

Therefore, we get

card{C(X(α,Λ))} =

n∑
i=2

2i(i− 1)mi. (6.2)

By (6.1) and (6.2), Lemma 6.2 is proved. �

Theorem 4 In E8, when α = 2
√

2− 2 we have κ∗α(B8) = 2400.

Proof For α = 2
√

2− 2, it is well known (see [2]) that

card
{
X(α,

√
2E8)

}
= 240 + 2160 = 2400,

where

E8 =
{

(v1, v2, · · · , v8) : 2vi ∈ Z; vi − vj ∈ Z;
∑

vi ∈ 2Z
}
.

Suppose that there is a suitable lattice Λ satisfying card{X(α,Λ)} ≥ 2400, which means

8m8 + 7m7 + · · ·+ 2m2 +m1 ≥ 1200. (6.3)

Since there are at most 28−1 = 255 equivalent classes which can contain the vectors of X(α,Λ),

we have

m8 +m7 + · · ·+m1 ≤ 255. (6.4)

For n = 8 case, we restate Lemma 6.2 as

112m8 + 84m7 + 60m6 + 40m5 + 24m4 + 12m3 + 4m2 ≤ 126m1 (6.5)

by substituting κ∗(B7) = 126.

By (6.3) and (6.4), we have 7m8 + 6m7 + · · · + m2 ≥ 945, multiply both sides by 34, we

have

238m8 + 204m7 + 170m6 + 136m5 + 102m4 + 68m3 + 34m2 ≥ 32130. (6.6)

By (6.4) and (6.5), one can deduce that

238m8 + 210m7 + 186m6 + 166m5 + 150m4 + 138m3 + 130m2 ≤ 32130. (6.7)

By (6.6) and (6.7), we obtain m7 = m6 = · · · = m2 = 0. Combining with (6.3), (6.4) and (6.5),

we have 
8m8 +m1 ≥ 1200,

m8 +m1 ≤ 255,

112m8 ≤ 126m1.
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By routine computation, one can easily deduce that m1 = 120, m8 = 135. Furthermore, in

this case the equality in (6.1) holds, which means that

card{v : ||v|| = 2, v ∈ X(α,Λ)} = 2m1 = 240.

Since κ∗(B8) = 240 and the corresponding lattice must be
√

2E8, up to some rotation (see

[21]), for α = 2
√

2− 2 we have κ∗α(B8) = 2400, and the equality can be attained if and only if

the corresponding lattice Λ =
√

2E8, up to rotation and reflection.

Theorem 4 is proved. �

Based on this proof, we may make the following conjecture.

Conjecture 6.1 In E8, when α = 2
√

2− 2 we have κα(B8) = 2400.

Let Λ24 denote the Leech lattice (see [2]). When α = 2
√

2− 2, we have

card
{
X(α,Λ24)

}
= 196560 + 16773120 + 398034000 = 415003680.

This observation supports the following conjecture.

Conjecture 6.2 In E24, when α = 2
√

2− 2 we have κ∗α(B24) = 415003680.

7 Proof of Theorem 3

Theorem 3 In E4, we have

κ∗α(B4) =

{
30,
√

6− 2 ≤ α < 2
√

2− 2,

50, α = 2
√

2− 2.

Proof As usual, we write

An =
{

(v0, v1, v2, · · · , vn) : vi ∈ Z;
∑

vi = 0
}
,

Dn =
{

(v1, v2, · · · , vn) : vi ∈ Z;
∑

vi ∈ 2Z
}
.

Furthermore, we denote the dual lattice of An by A∗n, namely

A∗n =
{
v : 〈v,u〉 ∈ Z for all u ∈ An

}
.

When α =
√

6 − 2, one can verify that card
{
X(α,

√
5A∗4)

}
= 30. Combining with Lemma

2.2, for
√

6− 2 ≤ α < 2
√

2− 2 we have κ∗α(B4) = 30.

For α = 2
√

2 − 2, let Λ be the lattice generated by a1 = (2, 0, 0, 0), a2 = (0, 2, 0, 0),

a3 = (1, 0,
√

3, 0), a4 = (0, 1, 2
3

√
3,
√

5√
3
). One can verify that

card{X(α,Λ)} = 50. (7.1)

Suppose that there exists a packing lattice Λ of B4 satisfying card{X(α,Λ)} ≥ 52. We still

denote the numbers of equivalent classes of Λ which contain exactly i pairs of vectors of X(α,Λ)

by mi.

If m4 6= 0, by Remark 2.1, we may assume

v1 = (2
√

2, 0, 0, 0), v2 = (0, 2
√

2, 0, 0), v3 = (0, 0, 2
√

2, 0), v4 = (0, 0, 0, 2
√

2)

belong to X(α,Λ) and 1
2 (vi ± vj), i 6= j belong to X(α,Λ), without loss of generality. In this

case, lattice Λ is generated by

a1 = (
√

2,
√

2, 0, 0), a2 = (
√

2,−
√

2, 0, 0), a3 = (
√

2, 0,
√

2, 0), a4 = (
√

2, 0, 0,
√

2),
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which means Λ =
√

2D4. One can verify that

card
{
X(α,

√
2D4)

}
= 24 + 24 = 48 < 52,

therefore m4 = 0. Since
√

2D4 is the unique densest packing lattice for B4, up to rotation and

reflection (see [21]), from now on we suppose

det(Λ) > 8. (7.2)

If m3 = 0 and for every vector v ∈ X(α,Λ) which length is 2 we have

card{A ∈ C(X(α,Λ)) : v ∈ A} < κ∗(B3)/2 = 6,

by restate (6.1), (6.2), (6.3) and (6.4) for n = 4, we obtain
4m2 ≤ 10m1,

2m2 +m1 ≥ 26,

m2 +m1 ≤ 15,

which admits no solution. Therefore, we have m3 6= 0 or there exist a vector v ∈ X(α,Λ) which

length is 2 satisfy

card{A ∈ C(X(α,Λ)) : v ∈ A} = κ∗(B3)/2 = 6.

If m3 6= 0, by Remark 2.1, we assume

v1 = (2,−2, 0, 0), v2 = (2, 2, 0, 0), v3 = (0, 0, 2
√

2, 0)

belong to X(α,Λ) and 1
2 (vi±vj), i 6= j belong to X(α,Λ), without loss of generality. There-

fore, the basis of lattice Λ can be expanded by

a1 = (2, 0, 0, 0), a2 = (0, 2, 0, 0), a3 = (1, 1,
√

2, 0).

On the other hand, if there exist a vector v ∈ X(α,Λ) which length is 2 satisfy

card{A ∈ C(X(α,Λ)) : v ∈ A} = κ∗(B3)/2 = 6,

then there exist a three-dimensional subspace H0 satisfy

card{v : v ∈ H0 ∩ Λ, ||v|| = 2} = κ∗(B3) = 12.

Therefore, we may suppose H0 = {(v1, v2, v3, v4) : v4 = 0} and the three-dimensional lattice

H0 ∩ Λ is generated by

a1 = (2, 0, 0, 0), a2 = (0, 2, 0, 0), a3 = (1, 1,
√

2, 0),

without loss of generality.

As a conclusion of two cases above, we set a basis of lattice Λ by

a1 = (2, 0, 0, 0), a2 = (0, 2, 0, 0), a3 = (1, 1,
√

2, 0), a4 = (v1, v2, v3, v4)

and v1 ≥ 0, v2 ≥ 0, v3 ≥ 0, v4 ≥ 0 without loss of generality. Furthermore, by (7.2) we have

v4 >
√

2. Therefore, for a vector

v = z1a1 + z2a2 + z3a3 + z4a4 ∈ X(α,Λ),

we have z4 = 0 or ± 1.
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By Remark 4.2,

card{v : v = z1a1 + z2a2 + z3a3 ∈ X(α,Λ)} = 18.

Since X(α,Λ) is centrally symmetric, we have

card{v : v = z1a1 + z2a2 + z3a3 + a4 ∈ X(α,Λ)} ≥ 17,

which means that there exist two of them is equivalent. Replace a4 by the mid-point of them,

we may further assume

||a4||2 = v2
1 + v2

2 + v2
3 + v2

4 = 4,

by Remark 2.1.

By routine computation, besides z1a1 + z2a2 + z3a3, vector which belong to X(α,Λ) must

be one of the following form:

z1a1 + z2a2 ± a4, z1a1 + z2a2 ± (a3 + a4),

z1a1 + z2a2 ± (a3 − a4), z1a1 + z2a2 ± (2a3 − a4).

To let card{X(α,Λ)} ≥ 52, there exist one form above have at least ten vectors which belongs

to X(α,Λ). Without loss of generality, we suppose

card{v : v = z1a1 + z2a2 ± a4 ∈ X(α,Λ)} ≥ 10.

Combining with

card{v : v = z1a1 + z2a2 ∈ X(α,Λ)} = 8,

by Lemma 4.4 and Remark 4.2, we may assume

v1 = 0, v2 = 0, v2
3 + v2

4 = 4

or

v1 = 0, v2 = 1, v2
3 + v2

4 = 3

without loss of generality.

For case v1 = 0, v2 = 0, v2
3 + v2

4 = 4, by routine computation we have:

card{v : v = z1a1 + z2a2 ± a4 ∈ X(α,Λ)} = 10,

card{v : v = z1a1 + z2a2 ± (a3 + a4) ∈ X(α,Λ)} =

{
8, v3 = 0,

0, v3 6= 0,

card{v : v = z1a1 + z2a2 ± (a3 − a4) ∈ X(α,Λ)} = 8,

card{v : v = z1a1 + z2a2 ± (2a3 − a4) ∈ X(α,Λ)} =

{
2, v3 ≥ 1/

√
2,

0, v3 = 0.

Therefore, in this case we have card{X(α,Λ)} ≤ 44.

For case v1 = 0, v2 = 1, v2
3 + v2

4 = 3, since ||a3 − a4|| ≥ 2, we have v3 ≤ 1/
√

2. By routine

computation we have:

card{v : v = z1a1 + z2a2 ± a4 ∈ X(α,Λ)} = 12,

card{v : v = z1a1 + z2a2 ± (a3 + a4) ∈ X(α,Λ)} = 4,
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card{v : v = z1a1 + z2a2 ± (a3 − a4) ∈ X(α,Λ)} =

{
12, v3 = 1/

√
2,

4, v3 < 1/
√

2,

card{v : v = z1a1 + z2a2 ± (2a3 − a4) ∈ X(α,Λ)} =

{
4, v3 = 1/

√
2,

0, v3 < 1/
√

2.

Therefore, in this case we have card{X(α,Λ)} ≤ 50.

As a conclusion of these two cases and (7.1), for α = 2
√

2 − 2 we have κ∗α(B4) = 50.

Theorem 3 is proved. �

Remark 7.1 It is interesting to see that the
√

2D4 lattice is not the optimal lattice in

this case. Let Λ be the lattice generated by a1 = (2, 0, 0, 0), a2 = (0, 2, 0, 0), a3 = (1, 0,
√

3, 0)

and a4 = (0, 1, 0,
√

3). It is easy to show that, when α = 2
√

2− 2,

card{X(α,Λ)} = card
{
X(α,

√
2D4)

}
= 48.

8 A Link Between κ∗α(B
n) and γ∗(Bn)

In 1964, Erdös and Rogers [3] studied the star number of the lattice covering for a convex

body and proved the following result.

Theorem 8.1 Let C be an o-symmetric strictly convex body and Λ a covering lattice of

C in En. Then the star number of the covering {C + v : v ∈ Λ} is at least 2n+1 − 1, where

the star number is the numbers of the translates of C by lattice vectors, including C, which

intersect the body C.

Let γ∗(Bn) be the lattice packing-covering constant of Bn, namely

γ∗(Bn) = min
Λ
{r : rBn + Λ is a covering of En},

where Λ is a lattice such that Bn + Λ is a packing in En. For more details about γ∗(Bn), we

refer to [22].

There exist a strong relation between κ∗α(Bn) and γ∗(Bn):

Theorem 8.2 For a given dimension n0, suppose γ∗(Bn0) =
√

2−β for a positive number

β. Then for α ∈
[
2
√

2− 2β − 2, 2
√

2− 2
)

we have κ∗α(Bn0) = 2n0+1 − 2. Which means that, if

κ∗α(Bn0) < 2n0+1 − 2 holds for α < 2
√

2− 2, then we have γ∗(Bn0) ≥
√

2.

Proof We assume that Bn0 + Λ is a lattice packing attaining γ∗(Bn0) =
√

2 − β for a

positive β. For convenience, let

X =
{
v : 2 ≤ ||v|| ≤ 2

√
2− 2β, v ∈ Λ

}
.

It is easy to see that the star number of the covering configuration (
√

2 − β)Bn0 + Λ is

cardX + 1. By Theorem 8.1 we have cardX ≥ 2n0+1 − 2. Combining with Lemma 2.2, we get

cardX = 2n0+1 − 2.

Therefore, for α ∈
[
2
√

2 − 2β − 2, 2
√

2 − 2
)
, we have κ∗α(Bn0) = 2n0+1 − 2. Theorem 8.2

is proved. �

Remark 8.1 Notice that γ∗(B5) >
√

2, see [22]. However, when α = 2
√

9/5−2, one can

verify that

card
{
X(α,

√
24/5A∗5)

}
= 62.

Combining with Lemma 2.2, when α ∈
[
2
√

9/5− 2, 2
√

2− 2
)

we have κ∗α(B5) = 62.
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Corollary 8.1 In [15], Schürmann and Vallentin improved the former best known result

(see [22]) γ∗(B6) ≤
√

2 to

γ∗(B6) ≤ 2

√
2
√

798− 56 = 1.411081242 · · · .

Therefore, by Theorem 8.2, for α ∈
[
0.8222, 2

√
2− 2

)
we have κ∗α(B6) = 126.

For a packing lattice Λ of Bn and an α < 2
√

2 − 2, the sufficient and necessary condition

for

card{X(α,Λ)} = 2n+1 − 2

is each equivalent class of Λ, except the class which contain o, must contain a pair of vectors of

X(α,Λ). It is reasonable to imagine that, this condition is hard to satisfy in high dimensions.

If so, the following conjecture make sense.

Conjecture 8.1 There are infinity numbers of dimension n such that, when α < 2
√

2−2

we have κ∗α(Bn) < 2n+1 − 2. Especially, when α < 2
√

2 − 2 we have κ∗α(B8) < 510 and

κ∗α(B24) < 33554430.

Remark 8.2 If Conjecture 8.1 is true, by Theorem 8.2, we have γ∗(B8) =
√

2 and

γ∗(B24) =
√

2, which give an affirmative answer for Zong’s Conjecture 3.1 in [22].

We write

E7 =
{

v : v ∈ E8;
∑

vi = 0
}

and

E6 =
{

v : v ∈ E8;
∑

vi = v7 + v8 = 0
}
.

When α = 2
√

2− 2, we have (see [2]) that

card
{
X(α,

√
2D5)

}
= 130,

card
{
X(α,

√
2E6)

}
= 342

and

card
{
X(α,

√
2E7)

}
= 882.

To end this article, we list some known results of κ∗α(Bn) as the following Table 2.

Table 2

n κ∗α(Bn) for α < 2
√

2− 2 κ∗α(Bn) for α = 2
√

2− 2

2 ≤ 6 (can be attained) = 8

3 ≤ 14 (can be attained) = 20

4 ≤ 30 (can be attained) = 50

5 ≤ 62 (can be attained) ≥ 130

6 ≤ 126 (can be attained) ≥ 342

7 ≤ 254 (??) ≥ 882

8 ≤ 510 (??) = 2400

24 ≤ 33554430 (??) ≥ 415003680
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