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Abstract: This paper proves that the simultaneous lattice packing-covering constant of an octahedron is 7/6. In
other words, 7/6 is the smallest positive number r such that for every octahedron O centered at the origin there
is a lattice Λ such that O + Λ is a packing in 𝔼3 and rO + Λ is a covering of 𝔼3.

Keywords: Lattice, packing-covering, octahedron.

2010 Mathematics Subject Classification: 52C17, 11H31


Communicated by: F. Santos

1 Introduction

In 1950, C. A. Rogers [15] introduced and studied two simultaneous packing-covering constants γ(C) and γ∗(C)
for an n-dimensional centrally symmetric convex body C centered at the origin of 𝔼n , namely

γ(C) = min
X
{r : rC + X is a covering of 𝔼n}

where X is an arbitrary discrete point set such that C + X is a packing in 𝔼n , and

γ∗(C) = min
Λ
{r : rC + Λ is a covering of 𝔼n}

where Λ is a lattice such that C + Λ is a packing in 𝔼n . By an inductive method, he proved that

γ(C) ≤ γ∗(C) ≤ 3
holds for all n-dimensional centrally symmetric convex bodies. In 1972, via mean value techniques developed
by C. A. Rogers [16] and C. L. Siegel [17], G. L. Butler [4] proved that

γ∗(C) ≤ 2 + o(1)
holds for all n-dimensional centrally symmetric convex bodies.

In the 1970s, L. Fejes Tóth [6; 18] introduced and investigated two deep hole constants ρ(C) and ρ∗(C) for
an n-dimensional centrally symmetric convex body C centered at the origin of 𝔼n , where ρ(C) is the largest
positive number r such that one can put a translate of rC into every translative packing C + X, and ρ∗(C) is the
largest positive number r∗ such that one can put a translate of r∗C into every lattice packing C + Λ. Clearly, we
have

γ(C) = ρ(C) + 1

and
γ∗(C) = ρ∗(C) + 1.

Let Bn denote the n-dimensional unit ball centered at the origin. Like the packing density problem and the
covering density problem, to determine the values of γ(Bn) and γ∗(Bn) is important and interesting. The known
exact results are listed in the following table:
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n 2 3 4 5

γ∗(Bn) 2/√3 √5/3 √2√3(√3 − 1) √3/2 + √13/6
γ(Bn) 2/√3 √5/3 ?? ??

Authors Trivial Böröczky [2] Horváth [10] Horváth [11]

In 1995, for the ball case, Rogers’ reductive method was modified and his upper bound was improved by
M. Henk [8] to

γ∗(Bn) ≤ √21/2 = 2.29128 ⋅ ⋅ ⋅ .
Clearly, this upper bound is not as good as Butler’s upper bound. However, Rogers’ approach has applications in
lattice cryptography; seeMicciancio [13]. On onehand, γ∗(Bn) is a bridge connecting the shortest vector problem
(SVP) and the closest vector problem (CVP), both fundamental in lattice cryptography. On the other hand, the
reductive argument can lead to an algorithm.

In the plane, C. Zong [21; 23] proved that

γ(C) = γ∗(C) ≤ 2(2 − √2)
holds for all centrally symmetric convex domains and that the second equality holds if and only if C is an affinely
regular octagon. It is remarkable and interesting that the maximum is not attained by circular discs! In 𝔼3,
C. Zong [22] proved that

γ∗(C) ≤ 1.75
holds for all centrally symmetric convex bodies. It is interesting to compare with

γ(B3) = γ∗(B3) = √5/3 = 1.29099 ⋅ ⋅ ⋅ .
LetO denote the regular octahedronwith vertices (1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 0, 0), (0, −1, 0) and (0, 0, −1).

In 1904, Minkowski [14] proved that the lattice Λ generated by a1 = (− 23 , 1,
1
3 ), a2 = (

1
3 , −

2
3 , 1), a3 = (1,

1
3 , −

2
3 )

gives the optimal lattice packing density 18/19. In fact, it is easy to see thatMinkowski’s result shows γ∗(O) ≤ 7/6
and that all the uncovered spaces are regular tetrahedra, see Figure 1.

Figure 1: The optimal lattice packing configuration for O.

By studying these tetrahedral holes and all its variations, this article will prove the following theorem:

Theorem 1. We have γ∗(O) = 7/6.
In Section 4we also investigate the simultaneous packing-covering constants of someother polytopes. Based

on those examples, we propose the following problem:

Problem 1. Is it true that γ(C) = γ∗(C) ≤ √5/3 for every centrally symmetric convex body C in 𝔼3 ?
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2 Technical lemmas

Let T be the regular tetrahedronwith vertices (0,0,1), ( 13 , 0,
2
3 ), (0,

1
3 ,

2
3 ) and (

1
3 ,

1
3 , 1). Denote the distance function

defined by O as ||x||1 (also known as L1 measure) and denote the distance between x and y in L1-space as

||x, y||1 = ||x − y||1 .

As usual, for two vector sets A and B, define the minus set and the Minkowski sum by

A \ B = {x : x ∈ A and x ∉ B}

and
A + B = {x + y : x ∈ A and y ∈ B},

respectively. We say a vector set A is positively homothetic to B with factor r, if A = rB + x with r > 0. We
use int K, rint K, cl K and conv K to denote the interior of K, the relative interior of K, the closure of K and the
convex hull of K as usual, and xy denotes the segment with the vertices x and y. We say that γ(C, X) = r, if C+X
is a packing and r is the minimum positive value such that rC + X is a covering.

Let e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) and denote the faces

conv{e1 , e2 , e3}, conv{e1 , −e2 , e3}, conv{−e1 , −e2 , e3}, conv{−e1 , e2 , e3},
conv{e1 , e2 , −e3}, conv{e1 , −e2 , −e3}, conv{−e1 , −e2 , −e3}, conv{−e1 , e2 , −e3}

of O by F(1) , F(2) , F(3) , F(4) , F(1󸀠) , F(2󸀠) , F(3󸀠) and F(4󸀠), respectively.
Observation. It is well known that, combining the regular tetrahedron with vertices e1, e2, e3, e1 + e2 + e3, the
regular tetrahedron with vertices −e1, −e2, −e3, −e1 − e2 − e3 and O, we obtain a parallelepiped. Therefore, the
sum of the dihedral angles of a regular octahedron and a regular tetrahedron is π.

On the other hand, since a regular octahedron is defined by four pairs of parallel faces, we can observe the
following: if the intersections of each two of four regular octahedra O, O+x1, O+x2, O+x3 are two-dimensional,
then the hole surrounded by them is a regular tetrahedron.

It is natural to prove the following conclusion:

Lemma 1. If F(1) ⊃ O ∩ (T + a1) ̸= 0, then the center of gravity g of T + a1 satisfies ||g||1 ≥ 7/6.
Proof. Define

X = {g : g is the center of gravity of T + a1 , which satisfies F(1) ⊃ O ∩ (T + a1) ̸= 0}.
It is easy to see that

X ⊂ {(x, y, z) : x + y + z = m}, for a constant m.

The center of gravity of T is ( 16 ,
1
6 ,

5
6 ), therefore m =

7
6 . Since ||o, x||1 ≥

7
6 for all x ∈ {(x, y, z) : x + y + z =

7
6 },

Lemma 1 is proved. 2

Corollary 1. Let O + X be a packing such that there is a regular tetrahedron T1 satisfying the following two con-
ditions:

(1) int T1 ∩ (O + X) = 0,
(2) T1 is positively homothetic to T with dilation factor r ≥ 1.

Then we have γ(O, X) ≥ 7/6.

Proof. Denote the center of gravity of T1 by g1. By Lemma 1, we have

||g1 , x||1 ≥ 7/6 for all x ∈ X.

Therefore g1 ∉ int( 76O) + X, which means that γ(O, X) ≥ 7/6. 2
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Suppose that a0 = (x0 , y0 , z0) ∈ conv{(0, 1, 1), (0, 43 ,
2
3 ), (

1
3 , 1,

2
3 ), (

1
3 ,

4
3 , 1)}. In other words, suppose that

x0 + y0 + z0 ≥ 2,
−x0 + y0 + z0 ≤ 2,
x0 − y0 + z0 ≤ 0,

x0 + y0 − z0 ≤
2
3
. (1)

For two convex bodies C1 and C2, we say that C1 is obstructed by C2 if C2 ∩ int(C1) ̸= 0. We will prove that, for
a packing O + X containing O and O + a0, we have γ(O, X) ≥ 7/6. To this end, we show that no matter how to
obstruct the unpacked place by the translative ofO, theremust exist a regular tetrahedron positively homothetic
to T with factor r ≥ 1 which is not obstructed by O + X.

Define T󸀠 = conv{y1 , y2 , y3 , y4} where
y1 = (1 −

−x0 + y0 + z0
2

, y0 − 1, 1 −
x0 + y0 − z0

2
),

y2 = (1 −
−x0 + y0 + z0

2
, −x0 + y0 + z0

2
, 0),

y3 = (2 − y0 , y0 − 1, 0),

y4 = (2 − y0 ,
−x0 + y0 + z0

2
, 1 − x0 + y0 − z0

2
).

In other words, T󸀠 is a regular tetrahedron positively homothetic to T with factor r0, formed by all the points
(x, y, z) which satisfy

x + y + z ≥ 1,
−x + y + z ≤ −x0 + y0 + z0 − 1,

x − y + z ≤ 3 − 2y0 ,
x + y − z ≤ 1. (2)

Since 1 − x0+y0−z0
2 ≥

2
3 by (1), we have

r0 ≥ 2. (3)

It is easy to see that T󸀠 contacts both O and O + a0 at its boundary.

Lemma 2. If a regular octahedron O + a1 satisfies O + a1 ∩ int(O ∪ O + a0) = 0, then the following two statements
are equivalent:

(1) O + a1 ∩ intT󸀠 ̸= 0.
(2) a1 ∈ T󸀠󸀠 + (1, 0, 0) where T󸀠󸀠 = T󸀠 \ (conv{y1 , y3 , y4} ∪ conv{y2 , y3 , y4}).

Proof. Define Y = {a1 : (O + a1) ∩ intT󸀠 ̸= 0}. By routine computation we obtain
Y = int(conv{y1 + (0, 0, 1), y4 + (0, 0, 1), y1 + (0, −1, 0), y1 + (−1, 0, 0), y4 + (1, 0, 0), y4 + (0, 1, 0),

y3 + (0, 1, 0), y3 + (−1, 0, 0), y2 + (1, 0, 0), y2 + (0, −1, 0), y2 + (0, 0, −1), y3 + (0, 0, −1)}).

With the definition
Y 󸀠 = Y \ {a1 : O + a1 ∩ int(O ∪ O + a0) ̸= 0},

Lemma 2 holds if and only if Y 󸀠 = T󸀠󸀠 + (1, 0, 0).
On the one hand, we have

Y 󸀠 = Y \ (int(2O) ∪ int(2O + a0)).
Since y1 , y2 , y3 ∈ O and 2O is convex, the convex hull

conv{y1 + (0, 0, 1), y1 + (−1, 0, 0), y1 + (0, −1, 0), y2 + (−1, 0, 0), y2 + (0, 1, 0),
y2 + (0, 0, −1), y3 + (1, 0, 0), y3 + (0, −1, 0), y3 + (0, 0, −1)}
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is a subset of 2O; denote this convex hull by Y1. Also, by routine computation, we have

y1 + (1, 0, 0), y1 + (0, 0, 1), y2 + (1, 0, 0), y2 + (0, 1, 0), y4 + (1, 0, 0), y4 + (0, 1, 0), y4 + (0, 0, 1) ∈ 2O + a0 .

For example,

||y4 + (0, 0, 1) − a0||1 = |2 − x0 − y0| +
󵄨󵄨󵄨󵄨󵄨󵄨
−x0 − y0 + z0

2
󵄨󵄨󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨󵄨2 −

x0 + y0 + z0
2
󵄨󵄨󵄨󵄨󵄨󵄨

= 2 − x0 − y0 −
−x0 − y0 + z0

2
+ 2 − x0 + y0 + z0

2
= 4 − x0 − y0 − z0 ≤ 2,

by (1). Therefore, the convex hull

conv{y1 + (1, 0, 0), y1 + (0, 0, 1), y2 + (1, 0, 0), y2 + (0, 1, 0), y4 + (1, 0, 0), y4 + (0, 1, 0), y4 + (0, 0, 1)}

is a subset of 2O + a0; denote this convex hull by Y2. It is easy to see that

Y ⊂ int Y1 ∪ int Y2 ∪ (T󸀠󸀠 + (1, 0, 0)).
Therefore, we have

Y 󸀠 ⊂ T󸀠󸀠 + (1, 0, 0). (4)

On the other hand, for every vector w = (w1 , w2 , w3) ∈ T󸀠󸀠, by (1) and (2) we have
w1 , w2 , w3 ≥ 0, w1 + w2 + w3 ≥ 1.

Thus, we have
||w + (1, 0, 0), o||1 = w1 + 1 + w2 + w3 ≥ 2,

which means
O +w + (1, 0, 0) ∩ intO = 0.

Since a0 = (x0 , y0 , z0) is on the plane −x + y + z = −x0 + y0 + z0, andw + (1, 0, 0) is in the half space −x + y + z ≤
−x0 + y0 + z0 − 2, by (2), we have

O +w + (1, 0, 0) ∩ int(O + a0) = 0.

We argue as follows:

Case 1. w ∈ int T󸀠󸀠. Combining withw ∈ intT󸀠 ∩ (O +w+ (1, 0, 0)) ̸= 0, by the definition of Y 󸀠 we obviously have
w + (1, 0, 0) ∈ Y 󸀠 .

Case 2. w ∈ (conv{y1 , y2 , y4} ∪ conv{y1 , y2 , y3}) \ (y1y3 ∪ y1y4 ∪ y2y3 ∪ y2y4).
Obviously the set conv{w,w + (1, −1, 0),w + (2, 0, 0),w + (1, 1, 0)}, a cross section of O + w + (1, 0, 0) intersects
int T󸀠, which means w + (1, 0, 0) ∈ Y 󸀠.

Therefore Y 󸀠 ⊃ T󸀠󸀠 + (1, 0, 0). In view of (4), we have Y 󸀠 = T󸀠󸀠 + (1, 0, 0), and Lemma 2 is proved. 2

Lemma 3. Suppose that a regular octahedron O +a1 satisfies O +a1 ∩ int (O ∪ O +a0) = 0 and O +a1 ∩ int T󸀠 ̸= 0.
Then for an arbitrary regular octahedron O + a2, the following two conditions cannot both hold:

(a): O + a2 ∩ int(O ∪ (O + a0) ∪ (O + a1)) = 0,
(b): O + a2 ∩ intT󸀠 ̸= 0.

Proof. By Lemma 2, we have a1 ∈ T󸀠󸀠 + (1, 0, 0). If (a) and (b) hold simultaneously, then a2 ∈ T󸀠󸀠 + (1, 0, 0) by
Lemma 2. But for arbitrary points x, y ∈ T󸀠󸀠 we have ||x, y||1 < 2 by (1) and (2). Therefore O+a2 ∩ int(O+a1) ̸= 0,
which contradicts (a). Lemma 3 is proved. 2

Corollary 2. For a packing O + X containing O and O + a0 we have γ(O, X) ≥ 7/6.

Proof. If int T󸀠 ∩ (O + X) = 0, since T󸀠 is positively homothetic to T with factor r0 ≥ 2 by (3), the condition of
Corollary 1 is satisfied.

Otherwise, if there exists a1 ∈ X with int T󸀠 ∩ (O + a1) ̸= 0, then by Lemma 3, O + a1 is the only regular
octahedron in O + X which intersects int T󸀠. In this case, there exist a regular tetrahedron T󸀠󸀠󸀠 ⊂ T󸀠 \ (O + a1)
is positively homothetic to T with factor r0/2 ≥ 1 and int T󸀠󸀠 ∩ (O + X) = 0, which satisfies the condition of
Corollary 1. 2
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3 Proof of the theorem

Define

T(1)1 = T, T(1)2 = T + (0, 13 , −13), T(1)3 = T + (13 , 0, −13),
T(1)4 = T + (0, 23 , −23), T(1)5 = T + (13 , 13 , −23), T(1)6 = T + (23 , 0, −23)

It is easy to see that T(1)i ∩ O ⊂ F(1) for i ∈ {1, . . . , 6}. Rotate T(1)i anticlockwise around the z-axis by π/2 degree,
π degree, 3π/2 degree, and denote the results by T(2)i , T(3)i , T(4)i , respectively. Define

T(1󸀠)i = −T
(3)
i , T(2󸀠)i = −T

(4)
i , T(3󸀠)i = −T

(1)
i , T(4󸀠)i = −T

(2)
i .

Similarly, we have T(k)i ∩ O ⊂ F(k) for i ∈ {1, . . . , 6} and k ∈ {1, 2, 3, 4, 1󸀠 , 2󸀠 , 3󸀠 , 4󸀠}.
To generalize, we define T(k+1)i by rotating T(k)i anticlockwise around the z-axis by π/2 degree. By the ro-

tation, if k1 ≡ k2mod4 then T(k1)i = T
(k2)
i . In the centrally symmetric condition, we suppose that 1󸀠 , 2󸀠 , 3󸀠 , 4󸀠 is

equivalent to 3, 4, 1, 2, respectively.
Nowwe consider whether or not T(k)i can be obstructed by a packing O+X, for all i, k. To this end, we define

P(k)i = {x : O + x ∩ int T(k)i ̸= 0 and O + x ∩ intO = 0} for all i, k.

In fact, P(k)i = int(T(k)i + O) \ int(2O) for all i, k. By routine computation, we have
P(1)1 = int(conv{(0, 0, 2), (0, 43 , 23), (43 , 0, 23), (13 , 13 , 2), (13 , 43 , 1), (43 , 13 , 1)})
∪ int(conv{(0, 0, 2), (0,

4
3
, 2
3
), (

4
3
, 0, 2

3
)}),

P(1)2 = P(1)1 + (0, 13 , −13), P(1)3 = P(1)1 + (13 , 0, −13),
P(1)4 = P(1)1 + (0, 23 , −23), P(1)5 = P(1)1 + (13 , 13 , −23), P(1)6 = P(1)1 + (23 , 0, −23).

Define M(k) = P(k)1 ∪ P(k)2 ∪ P(k)3 ∪ P(k)4 ∪ P(k)5 ∪ P(k)6 for all k. It is easy to see that M(k1) ∩ M(k2) = 0 for k1 ̸= k2.
We dissect M(k) into nineteen pieces as follows:

Q(k)1 = {x : x ∈ P(k)1 , x ∉ (P(k)2 ∪ P(k)3 ∪ P(k)4 ∪ P(k)5 ∪ P(k)6 )},
Q(k)2 = {x : x ∈ (P(k)1 ∩ P(k)2 ), x ∉ (P(k)3 ∪ P(k)4 ∪ P(k)5 ∪ P(k)6 )},
Q(k)3 = {x : x ∈ (P(k)1 ∩ P(k)3 ), x ∉ (P(k)2 ∪ P(k)4 ∪ P(k)5 ∪ P(k)6 )},
Q(k)4 = {x : x ∈ (P(k)1 ∩ P(k)2 ∩ P(k)3 ∩ P(k)5 ), x ∉ (P(k)4 ∪ P(k)6 )},
Q(k)5 = {x : x ∈ (P(k)1 ∩ P(k)2 ∩ P(k)4 ), x ∉ (P(k)3 ∪ P(k)5 ∪ P(k)6 )},
Q(k)6 = {x : x ∈ (P(k)1 ∩ P(k)2 ∩ P(k)3 ∩ P(k)4 ∩ P(k)5 ), x ∉ P(k)6 },
Q(k)7 = {x : x ∈ (P(k)1 ∩ P(k)3 ∩ P(k)6 ), x ∉ (P(k)2 ∪ P(k)4 ∪ P(k)5 )},
Q(k)8 = {x : x ∈ (P(k)1 ∩ P(k)2 ∩ P(k)3 ∩ P(k)5 ∩ P(k)6 ), x ∉ P(k)4 },
Q(k)9 = {x : x ∈ P(k)4 , x ∉ (P(k)1 ∪ P(k)2 ∪ P(k)3 ∪ P(k)5 ∪ P(k)6 )},
Q(k)10 = {x : x ∈ (P(k)2 ∩ P(k)4 ), x ∉ (P(k)1 ∪ P(k)3 ∪ P(k)5 ∪ P(k)6 )},
Q(k)11 = {x : x ∈ (P(k)4 ∩ P(k)5 ), x ∉ (P(k)1 ∪ P(k)2 ∪ P(k)3 ∪ P(k)6 )},
Q(k)12 = {x : x ∈ (P(k)2 ∩ P(k)3 ∩ P(k)4 ∩ P(k)5 ), x ∉ (P(k)1 ∪ P(k)6 )},
Q(k)13 = {x : x ∈ (P(k)4 ∩ P(k)5 ∩ P(k)6 ), x ∉ (P(k)1 ∪ P(k)2 ∪ P(k)3 )},
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Figure 2: Dissect M(1) into Q(1)i .

Q(k)14 = {x : x ∈ (P(k)2 ∩ P(k)3 ∩ P(k)4 ∩ P(k)5 ∩ P(k)6 ), x ∉ P(k)1 },
Q(k)15 = {x : x ∈ P(k)6 , x ∉ (P(k)1 ∪ P(k)2 ∪ P(k)3 ∪ P(k)4 ∪ P(k)5 )},
Q(k)16 = {x : x ∈ (P(k)3 ∩ P(k)6 ), x ∉ (P(k)1 ∪ P(k)2 ∪ P(k)4 ∪ P(k)5 )},
Q(k)17 = {x : x ∈ (P(k)5 ∩ P(k)6 ), x ∉ (P(k)1 ∪ P(k)2 ∪ P(k)3 ∪ P(k)4 )},
Q(k)18 = {x : x ∈ (P(k)2 ∩ P(k)3 ∩ P(k)5 ∩ P(k)6 ), x ∉ (P(k)1 ∪ P(k)4 )},
Q(k)19 = {x : x ∈ (P(k)2 ∩ P(k)3 ∩ P(k)5 ), x ∉ (P(k)1 ∪ P(k)4 ∪ P(k)6 )},

for all k. It is easy to see that Q(k)i1 ∩ Q(k)i2 = 0 for i1 ̸= i2, see Figure 2. To show this decomposition more clearly,
we give the following Figure 3.

Figure 3: The intersection of M(1) with the planes {x + y + z = 8/3} (left) and {x + y + z = 2} (right).
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We have

clQ(1)1 = conv{(0, 0, 2), (0, 13 , 53), (13 , 13 , 43), (13 , 0, 53), (13 , 13 , 2), (13 , 23 , 53), (23 , 23 , 43), (23 , 13 , 53)},
clQ(1)2 = clQ(1)1 + (0, 13 , −13), clQ(1)3 = clQ(1)1 + (13 , 0, −13),
clQ(1)4 = conv{(13 , 13 , 43), (13 , 23 , 1), (23 , 13 , 1), (23 , 23 , 23), (23 , 23 , 43), (23 , 1, 1), (1, 23 , 1)},
clQ(1)5 = conv{(0, 23 , 43), (13 , 1, 43), (13 , 23 , 1), (23 , 1, 1), (0, 43 , 23), (13 , 43 , 1), (13 , 1, 23)},
clQ(1)6 = conv{(13 , 23 , 1), (23 , 1, 1), (13 , 1, 23), (23 , 23 , 23)},
clQ(1)7 = conv{(23 , 0, 43), (1, 13 , 43), (23 , 13 , 1), (1, 23 , 1), (43 , 13 , 1), (1, 13 , 23), (43 , 0, 23)},
clQ(1)8 = conv{(23 , 13 , 1), (1, 23 , 1), (1, 13 , 23), (23 , 23 , 23)},
clQ(1)9 = conv{(0, 2, 0), (13 , 53 , 0), (13 , 2, 13), (23 , 53 , 13), (0, 53 , 13), (13 , 43 , 13), (13 , 53 , 23), (23 , 43 , 23)},
clQ(1)10 = clQ(1)9 + (0, −13 , 13), clQ(1)11 = clQ(1)9 + (13 , −13 , 0),
clQ(1)12 = conv{(13 , 1, 23), (23 , 23 , 23), (13 , 43 , 13), (23 , 1, 13), (23 , 1, 1), (23 , 43 , 23), (1, 1, 23)},
clQ(1)13 = conv{(23 , 1, 13), (1, 23 , 13), (23 , 43 , 0), (43 , 23 , 0), (1, 1, 23), (1, 43 , 13), (43 , 1, 13)},
clQ(1)14 = conv{(23 , 23 , 23), (23 , 1, 13), (1, 23 , 13), (1, 1, 23)},
clQ(1)15 = conv{(43 , 13 , 13), (53 , 0, 13), (53 , 13 , 0), (2, 0, 0), (43 , 23 , 23), (53 , 13 , 23), (53 , 23 , 13), (2, 13 , 13)},
clQ(1)16 = clQ(1)15 + (−13 , 0, 13), clQ(1)17 = clQ(1)15 + (−13 , 13 , 0),
clQ(1)18 = conv{(23 , 23 , 23), (1, 13 , 23), (1, 23 , 13), (43 , 13 , 13), (1, 23 , 1), (1, 1, 23), (43 , 23 , 23)},
clQ(1)19 = conv{(23 , 23 , 23), (23 , 1, 1), (1, 23 , 1), (1, 1, 23)}.

Theorem 1. We have γ∗(O) = 7/6.
Proof. Suppose that O + Λ is a lattice packing and γ(O, Λ) < 7/6. By Corollary 1 we have

(O + Λ) ∩ int T(k)i ̸= 0 for all i, k.
By the definition of P(k)i we have

Λ ∩ P(k)i ̸= 0 for all i, k. (5)

Obviously, we have

P(k)1 = Q(k)1 ∪ Q(k)2 ∪ Q(k)3 ∪ Q(k)4 ∪ Q(k)5 ∪ Q(k)6 ∪ Q(k)7 ∪ Q(k)8 , (6)

P(k)2 = Q(k)2 ∪ Q(k)4 ∪ Q(k)5 ∪ Q(k)6 ∪ Q(k)8 ∪ Q(k)10 ∪ Q(k)12 ∪ Q(k)14 ∪ Q(k)18 ∪ Q(k)19 , (7)

P(k)3 = Q(k)3 ∪ Q(k)4 ∪ Q(k)6 ∪ Q(k)7 ∪ Q(k)8 ∪ Q(k)12 ∪ Q(k)14 ∪ Q(k)16 ∪ Q(k)18 ∪ Q(k)19 , (8)

P(k)4 = Q(k)5 ∪ Q(k)6 ∪ Q(k)9 ∪ Q(k)10 ∪ Q(k)11 ∪ Q(k)12 ∪ Q(k)13 ∪ Q(k)14 , (9)

P(k)5 = Q(k)4 ∪ Q(k)6 ∪ Q(k)8 ∪ Q(k)11 ∪ Q(k)12 ∪ Q(k)13 ∪ Q(k)14 ∪ Q(k)17 ∪ Q(k)18 ∪ Q(k)19 , (10)

P(k)6 = Q(k)7 ∪ Q(k)8 ∪ Q(k)13 ∪ Q(k)14 ∪ Q(k)15 ∪ Q(k)16 ∪ Q(k)17 ∪ Q(k)18 . (11)

Since O + Λ is a lattice packing, by dilating the lattice a little we can achieve that γ(O, Λ) < 7/6 still holds and
||x, y||1 > 2 for all x, y ∈ Λ with x ̸= y. In other words,

y ∉ (2O + x) for all x, y ∈ Λ with x ̸= y.
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We put Q1 = {1, 9, 15}, Q2 = {2, 3, 10, 11, 16, 17}, Q3 = {5, 7, 13, 19}, Q4 = {4, 12, 18}, Q5 = {6, 8, 14}; this
entails that if m ∈ Qj , then Q(k)m is completely inside exactly j of the P(k)i . We write Λ(k) = {i1 , i2 , . . . , in} if

Λ ∩ Q(k)i ̸= 0 for i ∈ {i1 , i2 , . . . , in} and Λ ∩ Q(k)i = 0 for i ∉ {i1 , i2 , . . . , in}.
3.1 All the possible Λ(k) for a given k
To enumerate all the possible Λ(k) which satisfy (5) for a given k, we list some restricting conditions as follows:

For an arbitrary point x ∈ Q(k)2 , we have

(2O + x) ⊃ (Q(k)3 ∪ Q(k)4 ∪ Q(k)5 ∪ Q(k)6 ∪ Q(k)8 ).
Therefore, if 2 ∈ Λ(k), we must have

Λ(k) ∩ {3, 4, 5, 6, 8} = 0. (12)

By symmetry, we have

if 3 ∈ Λ(k) , then Λ(k) ∩ {2, 4, 6, 7, 8} = 0, (13)
if 10 ∈ Λ(k) , then Λ(k) ∩ {5, 6, 11, 12, 14} = 0, (14)
if 11 ∈ Λ(k) , then Λ(k) ∩ {6, 10, 12, 13, 14} = 0, (15)
if 16 ∈ Λ(k) , then Λ(k) ∩ {7, 8, 14, 17, 18} = 0, (16)
if 17 ∈ Λ(k) , then Λ(k) ∩ {8, 13, 14, 16, 18} = 0. (17)

For an arbitrary point x ∈ Q(k)4 , we have

(2O + x) ⊃ (Q(k)2 ∪ Q(k)3 ∪ Q(k)5 ∪ Q(k)6 ∪ Q(k)7 ∪ Q(k)8 ∪ Q(k)12 ∪ Q(k)14 ∪ Q(k)18 ∪ Q(k)19 ).
Therefore, if 4 ∈ Λ(k), we must have

Λ(k) ∩ {2, 3, 5, 6, 7, 8, 12, 14, 18, 19} = 0. (18)

By symmetry, we have

if 12 ∈ Λ(k) , then Λ(k) ∩ {4, 5, 6, 8, 10, 11, 13, 14, 18, 19} = 0, (19)
if 18 ∈ Λ(k) , then Λ(k) ∩ {4, 6, 7, 8, 12, 13, 14, 16, 17, 19} = 0. (20)

For an arbitrary point x ∈ Q(k)5 , we have

(2O + x) ⊃ (Q(k)2 ∪ Q(k)4 ∪ Q(k)6 ∪ Q(k)8 ∪ Q(k)10 ∪ Q(k)12 ∪ Q(k)14 ∪ Q(k)19 ).
Therefore, if 5 ∈ Λ(k), we must have

Λ(k) ∩ {2, 4, 6, 8, 10, 12, 14, 19} = 0. (21)

By symmetry, we have

if 7 ∈ Λ(k) , then Λ(k) ∩ {3, 4, 6, 8, 14, 16, 18, 19} = 0, (22)
if 13 ∈ Λ(k) , then Λ(k) ∩ {6, 8, 11, 12, 14, 17, 18, 19} = 0. (23)

For an arbitrary point x ∈ Q(k)6 , we have

(2O + x) ⊃ (Q(k)2 ∪ Q(k)3 ∪ Q(k)4 ∪ Q(k)5 ∪ Q(k)7 ∪ Q(k)8 ∪ Q(k)10 ∪ Q(k)11 ∪ Q(k)12 ∪ Q(k)13 ∪ Q(k)14 ∪ Q(k)18 ∪ Q(k)19 ).
Therefore, if 6 ∈ Λ(k), we must have

Λ(k) ∩ {2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 18, 19} = 0. (24)
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By symmetry, we have

if 8 ∈ Λ(k) , then Λ(k) ∩ {2, 3, 4, 5, 6, 7, 12, 13, 14, 16, 17, 18, 19} = 0, (25)
if 14 ∈ Λ(k) , then Λ(k) ∩ {4, 5, 6, 7, 8, 10, 11, 12, 13, 16, 17, 18, 19} = 0. (26)

For an arbitrary point x ∈ Q(1)3 , we have

(2O + x) ⊃ conv{(1
3
, 2
3
, 1), (0,

2
3
, 4
3
), (0, 1, 1), (

1
3
, 1, 2

3
), (

1
3
, 1, 4

3
), (

1
3
, 4
3
, 1), (

2
3
, 1, 1)}.

Combining with Corollary 2, we have:

if Λ ∩ Q(1)3 ̸= 0, then Λ ∩ Q(1)5 = 0.
For an arbitrary point

x ∈ conv{(1, 1
3
, 2
3
), (

2
3
, 0, 4

3
), (1, 0, 1), (

2
3
, 1
3
, 1), (1,

1
3
, 4
3
), (

4
3
, 1
3
, 1), (1,

2
3
, 1)},

we have

(2O + x) ⊃ conv{(1
3
, 2
3
, 1), (0,

2
3
, 4
3
), (0, 1, 1), (

1
3
, 1, 2

3
), (

1
3
, 1, 4

3
), (

1
3
, 4
3
, 1), (

2
3
, 1, 1)}.

By the symmetry of 2O and M(1), combining with Corollary 2, we have:
if Λ ∩ Q(1)7 ̸= 0, then Λ ∩ Q(1)5 = 0.

By symmetry, we have

if 5 ∈ Λ(k) , then Λ(k) ∩ {3, 7, 11, 13} = 0, (27)
if 7 ∈ Λ(k) , then Λ(k) ∩ {2, 5, 13, 17} = 0, (28)
if 13 ∈ Λ(k) , then Λ(k) ∩ {5, 7, 10, 16} = 0. (29)

Without loss of generality, if two different lattices Λ1 and Λ2 satisfy (5) and Λ(k)1 ⊂ Λ(k)2 , then we consider
only Λ(k)1 instead of both. Suppose that

i1 ∈ Qj1 , i2 ∈ Qj2 , . . . , in ∈ Qjn ;

to satisfy (5), a necessary condition is
j1 + j2 + ⋅ ⋅ ⋅ + jn ≥ 6.

Combining with Conditions (5)–(29), we categorize all the possible Λ(k) for a given k as follows:
Category 1. n = 2 and i1 ∈ Q5, i2 ∈ Q1.

For instance, let i1 = 6. By (5), (11) and (24), we have i2 = 15. Therefore

Λ(k) = {14, 1}, {6, 15}, {8, 9}
by the symmetry of 2O and M(k).
Category 2. n = 2 and i1 ∈ Q5, i2 ∈ Q2.

For instance, let i1 = 6. By (5), (11) and (24), we have i2 = 16 or 17. Therefore,

Λ(k) = {14, 2}, {14, 3}, {8, 10}, {8, 11}, {6, 16}, {6, 17},
by the symmetry of 2O and M(k).
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Category 3. n = 2 and i1 ∈ Q4, i2 ∈ Q3.
For instance, let i1 = 4. By (5), (9), (11) and (18), we have i2 = 13. Therefore,

Λ(k) = {4, 13}, {18, 5}, {12, 7},
by the symmetry of 2O and M(k).
Category 4. n = 3 and i1 ∈ Q4, i2 , i3 ∈ Q1.

For instance, let i1 = 4. By (5), (9), (11) and (18), we have i2 = 9, i3 = 15. Therefore,

Λ(k) = {1, 9, 18}, {1, 12, 15}, {4, 9, 15},
by the symmetry of 2O and M(k).
Category 5. n = 3 and i1 ∈ Q4, i2 ∈ Q2 satisfy clQ(k)ij1 ∩ clQ(k)ij2 ̸= 0.

For instance, let i1 = 4, i2 = 10. By (5), (11), (14) and (18), we have i3 = 15 or16 or 17. Therefore,

Λ(k) = {4, 10, 15}, {4, 10, 16}, {4, 10, 17}, {4, 16, 9}, {4, 16, 11},
{12, 2, 15}, {12, 2, 16}, {12, 2, 17}, {12, 17, 1}, {12, 17, 3},
{18, 11, 1}, {18, 11, 2}, {18, 11, 3}, {18, 3, 10}, {18, 3, 9},

by the symmetry of 2O and M(k).
Category 6. n = 3 and i1 ∈ Q4, i2 ∈ Q2, satisfies clQ(k)i1 ∩ (clQ(k)i2 ∪ clQ(k)i3 ) = 0.

For instance, let i1 = 4, i2 = 11. By (5), (11), (15) and (18), we have i3 = 15 or 17. Therefore,

Λ(k) = {4, 11, 15}, {4, 11, 17}, {4, 17, 9}, {12, 3, 15}, {12, 3, 16}, {12, 16, 1}, {18, 10, 2}, {18, 10, 1}, {18, 2, 9},
by the symmetry of 2O and M(k).
Category 7. n = 3 and i1 , i2 , i3 ∈ Q2. By (5)–(17), it is easy to deduce that Λ(k) = {2, 11, 16}, {3, 10, 17}.
Category 8. n = 4 and i1 = 19, i2 ∈ Q2.

For instance, let i2 = 2. By (5), (9), (11) and (12), we have i3 = 9 or 10 or 11 and i4 = 15 or 16 or 17. Therefore,

Λ(k) = {19, 2, 9, 15}, {19, 2, 9, 16}, {19, 2, 9, 17}, {19, 2, 10, 15}, {19, 2, 10, 16},
{19, 2, 10, 17}, {19, 2, 11, 15}, {19, 2, 11, 17}, {19, 3, 9, 15}, {19, 3, 9, 16},
{19, 3, 9, 17}, {19, 3, 10, 15}, {19, 3, 10, 16}, {19, 3, 11, 15}, {19, 3, 11, 16},
{19, 3, 11, 17}, {19, 16, 9, 1}, {19, 16, 10, 1}, {19, 16, 11, 1}, {19, 17, 9, 1},
{19, 17, 10, 1}, {19, 17, 11, 1}, {19, 11, 15, 1}, {19, 10, 15, 1},

by the symmetry of 2O and M(k).
Category 9. n = 4 and i1 = 19, i2 , i3 , i4 ∈ Q1. Then Λ(k) = {1, 9, 15, 19}, obviously.
3.2 The restriction between Λ(k1) and Λ(k2) for k1 ≠ k2
By routine computation, we obtain some restricting conditions between different faces as follows:

For an arbitrary point x ∈ Q(k)1 , we have

(2O + x) ⊃ (Q(k+1)1 ∪ Q
(k+3)
1 ).

Therefore, if 1 ∈ Λ(k), we must have
1 ∉ Λ(k+1) , 1 ∉ Λ(k+3) . (30)
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For an arbitrary point x ∈ Q(k)2 , we have

(2O + x) ⊃ (Q(k+3)3 ∪ Q
(k+3)
4 ∪ Q

(k+3)
7 ∪ Q

(k+3)
8 ).

Therefore, if 2 ∈ Λ(k), we must have
Λ(k+3) ∩ {3, 4, 7, 8} = 0. (31)

For an arbitrary point x ∈ Q(k)4 , we have

(2O + x) ⊃ (Q(k+1)2 ∪ Q
(k+1)
4 ∪ Q

(k+1)
5 ∪ Q

(k+1)
6 ∪ Q

(k+3)
3 ∪ Q

(k+3)
4 ∪ Q

(k+3)
7 ∪ Q

(k+3)
8 ).

Therefore, if 4 ∈ Λ(k), we must have
Λ(k+1) ∩ {2, 4, 5, 6} = 0, Λ(k+3) ∩ {3, 4, 7, 8} = 0. (32)

For an arbitrary point x ∈ (Q(k)5 ∪ Q(k)6 ), we have
(2O + x) ⊃ (Q(k+3)3 ∪ Q

(k+3)
4 ∪ Q

(k+3)
7 ∪ Q

(k+3)
8 ∪ Q

(k+3)
16 ∪ Q

(k+3)
18 ∪ Q

(k+3)
19 ).

Therefore, if Λ(k) ∩ {5, 6} ̸= 0, we must have
Λ(k+3) ∩ {3, 4, 7, 8, 16, 18, 19} = 0. (33)

For an arbitrary point x ∈ Q(k)19 , we have
(2O + x) ⊃ (Q(k+1)5 ∪ Q

(k+1)
6 ∪ Q

(k󸀠)
13 ∪ Q

(k󸀠)
14 ∪ Q

(k+3)
7 ∪ Q

(k+3)
8 ).

Therefore, if 19 ∈ Λ(k), we must have
Λ(k+1) ∩ {5, 6} = 0, Λ(k+2) ∩ {13, 14} = 0, Λ(k+3) ∩ {7, 8} = 0. (34)

By symmetry, we have

if 3 ∈ Λ(k) , then Λ(k+1) ∩ {2, 4, 5, 6} = 0, (35)
if Λ(k) ∩ {7, 8} ̸= 0, then Λ(k+1) ∩ {2, 4, 5, 6, 10, 12, 19} = 0, (36)
if 9 ∈ Λ(k) , then 9 ∉ Λ(k+2) , 15 ∉ Λ(k+3) , (37)
if 10 ∈ Λ(k) , then Λ(k+3) ∩ {7, 8, 16, 18} = 0, (38)
if 11 ∈ Λ(k) , then Λ(k+2) ∩ {11, 12, 13, 14} = 0, (39)
if 12 ∈ Λ(k) , then Λ(k+2) ∩ {11, 12, 13, 14} = 0, Λ(k+3) ∩ {7, 8, 16, 18} = 0, (40)
if Λ(k) ∩ {13, 14} ̸= 0, then Λ(k+2) ∩ {11, 12, 13, 14, 17, 18, 19} = 0, (41)
if 15 ∈ Λ(k) , then 9 ∉ Λ(k+1) , 15 ∉ Λ(k+2) , (42)
if 16 ∈ Λ(k) , then Λ(k+1) ∩ {5, 6, 10, 12} = 0, (43)
if 17 ∈ Λ(k) , then Λ(k+2) ∩ {13, 14, 17, 18} = 0, (44)
if 18 ∈ Λ(k) , then Λ(k+1) ∩ {5, 6, 10, 12} = 0, Λ(k+2) ∩ {13, 14, 17, 18} = 0. (45)

For an arbitrary point x ∈ (Q(1)4 ∪ Q(1)6 ∪ Q(1)19 ), we have
(2O + x) ⊃ conv{(1, 1

3
, 2
3
), (

4
3
, 0, 2

3
), (

4
3
, 1
3
, 1
3
), (1,

2
3
, 1), (

4
3
, 1
3
, 1), (

4
3
, 2
3
, 2
3
), (

5
3
, 1
3
, 2
3
)}.

For an arbitrary point

y ∈ (Q(1)16 \ conv{(1, 13 , 23), (43 , 0, 23), (43 , 13 , 13), (1, 23 , 1), (43 , 13 , 1), (43 , 23 , 23), (53 , 13 , 23)}),
we have

(2O + y) ⊃ (Q(2)9 ∪ Q(2)11 ∪ Q(1󸀠)15 ).
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Therefore, if Λ(1) ∩ {4, 6, 19} ̸= 0 and 16 ∈ Λ(1), we must have
Λ(2) ∩ {9, 11} = 0, 15 ∉ Λ(3) .

By symmetry, we have

if Λ(k) ∩ {4, 6, 19} ̸= 0 and 16 ∈ Λ(k) , then Λ(k+1) ∩ {9, 11} = 0, 15 ∉ Λ(k+2) , (46)
if Λ(k) ∩ {6, 12, 19} ̸= 0 and 17 ∈ Λ(k) , then Λ(k+2) ∩ {15, 16} = 0, 9 ∉ Λ(k+1) , (47)
if Λ(k) ∩ {8, 18, 19} ̸= 0 and 11 ∈ Λ(k) , then Λ(k+2) ∩ {9, 10} = 0, 15 ∉ Λ(k+3) , (48)
if Λ(k) ∩ {12, 14, 19} ̸= 0 and 2 ∈ Λ(k) , then Λ(k+3) ∩ {1, 2} = 0, 1 ∉ Λ(k+1) , (49)
if Λ(k) ∩ {14, 18, 19} ̸= 0 and 3 ∈ Λ(k) , then Λ(k+1) ∩ {1, 3} = 0, 1 ∉ Λ(k+3) , (50)
if Λ(k) ∩ {4, 8, 19} ̸= 0 and 10 ∈ Λ(k) , then Λ(k+3) ∩ {15, 17} = 0, 9 ∉ Λ(k+2) . (51)

For an arbitrary point x ∈ Q(1)13 , we have
(2O + x) ⊃ conv{(1

3
, 2
3
, 1), (

2
3
, 1
3
, 1), (

2
3
, 2
3
, 2
3
), (

2
3
, 2
3
, 4
3
), (

2
3
, 1, 1), (1,

2
3
, 1)}.

For an arbitrary point

y ∈ (Q(1)4 \ conv{(13 , 23 , 1), (23 , 13 , 1), (23 , 23 , 23), (23 , 23 , 43), (23 , 1, 1), (1, 23 , 1)}),
we have

(2O + y) ⊃ (Q(2)1 ∪ Q(2)3 ∪ Q(4)1 ∪ Q(4)2 ).
Therefore, if {4, 13} ⊂ Λ(1), we must have

Λ(2) ∩ {1, 3} = 0, Λ(4) ∩ {1, 2} = 0.
By symmetry, we have

if {4, 13} ⊂ Λ(k) , then Λ(k+1) ∩ {1, 3} = 0, Λ(k+3) ∩ {1, 2} = 0, (52)
if {7, 12} ⊂ Λ(k) , then Λ(k+2) ∩ {9, 10} = 0, Λ(k+3) ∩ {15, 17} = 0, (53)
if {5, 18} ⊂ Λ(k) , then Λ(k+1) ∩ {9, 11} = 0, Λ(k+2) ∩ {15, 16} = 0. (54)

For an arbitrary point x ∈ (Q(2)1 ∪ Q(4)1 ), we have
(2O + x) ⊃ conv{(0, 1

3
, 5
3
), (1

3
, 0, 5

3
), (0, 2

3
, 4
3
), (2

3
, 0, 4

3
), (1

3
, 2
3
, 1),

(
2
3
, 1
3
, 1), (1

3
, 2
3
, 5
3
), (2

3
, 1
3
, 5
3
), (1

3
, 1, 4

3
), (1, 1

3
, 4
3
)}.

For an arbitrary point y ∈ (Q(4)15 ∪ Q(1󸀠)9 ), we have

(2O + y) ⊃ conv{(1
3
, 5
3
, 0), (0,

5
3
, 1
3
), (2

3
, 4
3
, 0), (0,

4
3
, 2
3
), (2

3
, 1, 1

3
),

(
1
3
, 1, 2

3
), (

2
3
, 5
3
, 1
3
), (

1
3
, 5
3
, 2
3
), (1,

4
3
, 1
3
), (

1
3
, 4
3
, 1)}.

For an arbitrary point

z ∈ (Q(1)10 ∪ Q(1)11 ∪ Q(1)12 ) \ conv{(13 , 53 , 0), (0, 53 , 13), (23 , 43 , 0), (0, 43 , 23), (23 , 1, 13),
(
1
3
, 1, 2

3
), (

2
3
, 5
3
, 1
3
), (

1
3
, 5
3
, 2
3
), (1,

4
3
, 1
3
), (

1
3
, 4
3
, 1)},
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we have

(2O + z) ⊃ (Q(1)2 ∪ Q(1)3 ∪ Q(1)4 ) \ conv{(0, 13 , 53), (13 , 0, 53), (0, 23 , 43), (23 , 0, 43), (13 , 23 , 1),
(
2
3
, 1
3
, 1), (

1
3
, 2
3
, 5
3
), (

2
3
, 1
3
, 5
3
), (

1
3
, 1, 4

3
), (1,

1
3
, 4
3
)}.

Therefore, if 1 ∈ Λ(2) or 1 ∈ Λ(4), and 9 ∈ Λ(3) or 15 ∈ Λ(4), combining with (12)–(15), we have
card{Λ(1) ∩ {2, 3, 4, 10, 11, 12}} ≤ 1.

By symmetry, we have:
If 1 ∈ Λ(k+1) or 1 ∈ Λ(k+3), and 9 ∈ Λ(k+2) or 15 ∈ Λ(k+3), then

card{Λ(k) ∩ {2, 3, 4, 10, 11, 12}} ≤ 1. (55)

If 1 ∈ Λ(k+1) or 1 ∈ Λ(k+3), and 9 ∈ Λ(k+1) or 15 ∈ Λ(k+2), then
card{Λ(k) ∩ {2, 3, 4, 16, 17, 18}} ≤ 1. (56)

If 9 ∈ Λ(k+1) or 15 ∈ Λ(k+2), and 9 ∈ Λ(k+2) or 15 ∈ Λ(k+3), then
card{Λ(k) ∩ {10, 11, 12, 16, 17, 18}} ≤ 1. (57)

For an arbitrary point x ∈ conv{( 13 ,
1
3 ,

4
3 ), (

1
3 ,

2
3 , 1), (

2
3 ,

1
3 , 1), (

2
3 ,

2
3 ,

4
3 )}, we have

(2O + x) ⊃ (Q(2)1 ∪ Q(2)3 ∪ Q(4)1 ∪ Q(4)2 ).
For an arbitrary point y ∈ conv{( 43 ,

1
3 ,

1
3 ), (

5
3 ,

2
3 ,

1
3 ), (

4
3 ,

2
3 , 0), (

5
3 ,

1
3 , 0)}, we have

(2O + y) ⊃ (Q(2)9 ∪ Q(1󸀠)15 ∪ Q
(1󸀠)
16 ).

For an arbitrary point z ∈ (Q(1)4 \ conv{( 13 , 13 , 43 ), ( 13 , 23 , 1), ( 23 , 13 , 1), ( 23 , 23 , 43 )}), we have
(2O + z) ⊃ (Q(1)17 \ conv{(43 , 13 , 13), (53 , 23 , 13), (43 , 23 , 0), (53 , 13 , 0)}).

Therefore, if {4, 17} ⊂ Λ(1), we have
Λ(2) ∩ {1, 3} = 0, Λ(4) ∩ {1, 2} = 0,

or
9 ∉ Λ(2) , Λ(3) ∩ {15, 16} = 0. (58)

By symmetry, we have: If {4, 11} ⊂ Λ(1), then
Λ(2) ∩ {1, 3} = 0, Λ(4) ∩ {1, 2} = 0,

or
15 ∉ Λ(4) , Λ(3) ∩ {9, 10} = 0. (59)

Now we show that a combination of Λ(k), with k = 1, 2, 3, 4 as categorized before, cannot satisfy Condi-
tions (30)–(59).

Case 1. Category 3 is used. Without loss of generality, we suppose

Λ(1) = {4, 13}. (1.1)

Since Λ ∩ P(2)1 ̸= 0 and Λ ∩ P(4)1 ̸= 0, by (5), combining (1.1) with (6), (32) and (52), we have
Λ(2) ∩ {7, 8} ̸= 0 (1.2)
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and
Λ(4) ∩ {5, 6} ̸= 0. (1.3)

Combining (1.1), (1.2), (1.3) with (7), (33), (36) and (41), we have Λ ∩ P(3)2 = 0, which contradicts (5). Therefore,
Category 3 cannot be used, and

Λ(k) ∩ {5, 7, 13} = 0
holds for all k.

Case 2. Category 5 is used. Without loss of generality, we suppose

Λ(1) ⊃ {4, 16}, Λ(1) ∩ {9, 10, 11} ̸= 0. (2.1)

Since Λ ∩ P(2)4 ̸= 0 by (5), combining (2.1) with (9), (43), (46) and the conclusion of Case 1, we have
14 ∈ Λ(2) (2.2)

and
Λ(2) ∩ {1, 2, 3} ̸= 0, (2.3)

by the categorization before.
Since Λ ∩ P(4)5 ̸= 0 by (5), combining (2.1), (2.2) with (10), (32) and (41), we have

6 ∈ Λ(4) (2.4)

and
Λ(4) ∩ {15, 16} ̸= 0, (2.5)

by the categorization before.
Suppose

16 ∈ Λ(4) , (2.5.1)

combining with (2.4), (43) and (46), we have Λ(1) ∩ {9, 10, 11} = 0, which contradicts (2.1). Therefore, we have
15 ∈ Λ(4) , (2.5.2)

combining with (2.1) and (42), we have
Λ(1) ∩ {10, 11} ̸= 0. (2.6)

If
1 ∈ Λ(2) , (2.3.1)

combining with (2.5.2) and (55), we have card{Λ(1) ∩ {4, 10, 11}} ≤ 1, which contradicts (2.1) and (2.6).
If

2 ∈ Λ(2) , (2.3.2)

by (31), we have 4 ∉ Λ(1), which contradicts (2.1). Therefore, we have
3 ∈ Λ(2) . (2.3.3)

By (2.3.3), (2.2), (6), (35), (50) and the conclusion of Case 1, we have 8 ∈ Λ(3), which contradicts (2.4) and (33).
Therefore, Category 5 cannot be used.

Case 3. Category 6 is used. Without loss of generality, we suppose

Λ(1) ⊃ {4, 17}, Λ(1) ∩ {9, 11} ̸= 0. (3.1)

Suppose
Λ(2) ∩ {1, 3} = 0, Λ(4) ∩ {1, 2} = 0. (3.2.1)
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Since Λ ∩ P(2)1 ̸= 0 and Λ ∩ P(4)1 ̸= 0 by (5), combining with (3.1), (6), (32) and the conclusion of Case 1, we have
8 ∈ Λ(2) (3.2.1.1)

and
6 ∈ Λ(4) . (3.2.1.2)

Since Λ ∩ P(3)2 ̸= 0 by (5), combining with (7), (3.2.1.1), (3.2.1.2), (33) and (36), we have
14 ∈ Λ(3) . (3.2.1.3)

By (41), we have 17 ∉ Λ(1), which contradicts (3.1).
Suppose that (3.2.1) does not hold, then by (3.1) and (58) we have

9 ∉ Λ(2) , Λ(3) ∩ {15, 16} = 0. (3.2.2)

Since Λ ∩ P(3)6 ̸= 0 by (5), combining with (3.1), (11), (44) and the conclusion of Case 1, we have
8 ∈ Λ(3) (3.2.2.1)

and
Λ(3) ∩ {9, 10, 11} ̸= 0, (3.2.2.2)

by the categorization before. By (3.2.2.1), (3.2.2.2), (37), (48) and (51), we have

9 ∉ Λ(1) , (3.2.2.3)

combining with (3.1), we have
11 ∈ Λ(1) . (3.2.2.4)

By (3.1), (3.2.2.4), (39) and (59), we have Λ(3) ∩ {9, 10, 11} = 0, which contradicts (3.2.2.2). Therefore, Category 6
cannot be used.

Case 4. Category 2 is used. Without loss of generality, we suppose

Λ(1) = {6, 16}. (4.1)

Since Λ ∩ P(2)4 ̸= 0 by (5), combining with (4.1), (9), (43), (46) and the conclusion of Case 1, we have
14 ∈ Λ(2) (4.2)

and
Λ(2) ∩ {1, 2, 3} ̸= 0, (4.3)

by the categorization before.
By (4.2), (4.3), (30), (49) and (50), we have

1 ∉ Λ(3) . (4.4)

Since Λ ∩ P(4)3 ̸= 0 by (5), combining with (4.1), (4.2), (8), (33) and (41), we have
6 ∈ Λ(4) . (4.5)

Since Λ ∩ P(3)1 ̸= 0 by (5), combining with (4.4), (4.5), (6), (33) and the conclusion of Case 1, we have
Λ(3) ∩ {2, 6} ̸= 0. (4.6)

If
2 ∈ Λ(3) , (4.6.1)
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since Λ ∩ P(3)3 ̸= 0 by (5), combining with (4.5), (8), (12) and (33), we have Λ(3) ∩ {12, 14} ̸= 0. By the conclusion
of Case 2, we have 12 ∉ Λ(3). Therefore, we have 14 ∈ Λ(3). Combining with (4.6.1), (31) and (49), we have
Λ(2) ∩ {1, 2, 3} = 0, which contradicts (4.3).

If
6 ∈ Λ(3) , (4.6.2)

then we have
Λ(3) ∩ {15, 16, 17} ̸= 0, (4.6.2.1)

by the categorization before. Combining with (4.1), (4.5), (33) and (46), we have

17 ∈ Λ(3) , (4.6.2.2)

combining with (4.6.2) and (47), we have 16 ∉ Λ(1), which contradicts (4.1). Therefore, Category 2 cannot be
used.

Case 5. Category 8 is used. Without loss of generality, we suppose

Λ(1) ⊃ {16, 19}, Λ(1) ∩ {1, 2, 3} ̸= 0, Λ(1) ∩ {9, 10, 11} ̸= 0. (5.1)

Since Λ ∩ P(2)4 ̸= 0, combining with (5.1), (9), (43), (46) and the conclusion of Case 1, we have
14 ∈ Λ(2) (5.2)

and
Λ(2) ∩ {1, 2, 3} ̸= 0, (5.3)

by the categorization before. By (5.2), (5.3), (30), (49) and (50), we have

1 ∉ Λ(1) . (5.4)

Suppose that
3 ∈ Λ(1); (5.1.1)

combining with (5.1), (35) and (50), we have Λ(2) ∩ {1, 2, 3} = 0, which contradicts (5.3). Therefore, we have
3 ∉ Λ(1) , (5.1.2)

and combining with (5.1) and (5.4) we have
2 ∈ Λ(1) . (5.5)

Since Λ ∩ P(4)1 ̸= 0 by (5), combining with (5.1), (5.5), (6), (31), (49) and the conclusion of Case 1, we have
6 ∈ Λ(4) (5.6)

and
Λ(4) ∩ {15, 16, 17} ̸= 0, (5.7)

by the categorization before. By (5.1), (37), (48) and (51), we have

15 ∉ Λ(4) . (5.8)

If
16 ∈ Λ(4) , (5.9)

combining with (5.6), (43) and (46), we have Λ(1) ∩ {9, 10, 11} = 0, which contradicts (5.1). Therefore 16 ∉ Λ(4).
Combining with (5.7) and (5.8), we have

17 ∈ Λ(4) . (5.10)

By (5.10) and (44), we have 14 ∉ Λ(2), which contradicts (5.2). Therefore, Category 8 cannot be used.
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Case 6. Category 9 is used. Without loss of generality, we suppose

Λ(1) = {1, 9, 15, 19}. (6.1)

By (6.1), (30), (34) and (42), we have
Λ(2) ∩ {1, 5, 6, 9} = 0. (6.2)

Therefore, Λ(2) cannot use Category 1, 4 and 9, Λ(2)must use Category 7. In this case, card{Λ(2)∩ {2, 3, 10, 11}} ≥ 2,
which contradicts (6.1) and (55). Therefore, Category 9 cannot be used.

Case 7. Category 7 is used. Without loss of generality, we suppose

Λ(1) = {2, 11, 16}. (7.1)

Since Λ ∩ P(2)4 ̸= 0 by (5), combining with (7.1), (9), (43) and the conclusion of Case 1, we have
Λ(2) ∩ {9, 11, 14} ̸= 0. (7.2)

Case 7.1.

9 ∈ Λ(2) . (7.2.1)

Since only Category 1, 4 and 7 is still available, we have only three options for F(2):
Case 7.1.1. If

Λ(2) = {8, 9}, (7.2.1.1)

since Λ ∩ P(3)4 ̸= 0 by (5), combining with (7.1), (9), (36) and (39) we have 9 ∈ Λ(3). Combining with (7.2.1) and
(57), we have card{Λ(1) ∩ {10, 11, 12, 16, 17, 18}} ≤ 1, which contradicts (7.1).
Case 7.1.2. If

Λ(2) = {1, 9, 18}, (7.2.1.2)

by (56) we have card{Λ(1) ∩ {2, 3, 4, 16, 17, 18}} ≤ 1, which contradicts (7.1).
Case 7.1.3. If

Λ(2) = {4, 9, 15}, (7.2.1.3)

since Λ ∩ P(3)4 ̸= 0 by (5), combining with (9), (7.1), (32), (39) and (42) we have 10 ∈ Λ(3). Since only Category
1, 4 and 7 is still available, by the categorization before we have Λ(3) = {3, 10, 17}. Since Λ ∩ P(4)1 ̸= 0 by (5),
combining with (6), (7.1), (31) and (35), we have 1 ∈ Λ(4). Combining with (7.2.1.3) and (56), we have card{Λ(1) ∩
{2, 3, 4, 16, 17, 18}} ≤ 1, which contradicts (7.1).

Case 7.2.
11 ∈ Λ(2) . (7.2.2)

Since only Category 1, 4 and 7 is still available, by the categorization before, we have

Λ(2) = {2, 11, 16}. (7.2.2.1)

Since Λ ∩ P(3)4 ̸= 0 by (5), combining with (7.1), (9), (39) and (43) we have 9 ∈ Λ(3), which is the same as Case 7.1,
up to symmetry.

Case 7.3.
14 ∈ Λ(2) . (7.2.3)

In this case, we have
Λ(2) = {1, 14}, (7.2.3.1)

by the categorization before. Since Λ ∩ P(4)5 ̸= 0 by (5), combining with (7.1), (7.2.3), (10), (31) and (41) we have
6 ∈ Λ(4). Therefore, we have

Λ(4) = {6, 15}, (7.2.3.2)
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by the categorization before. By (7.2.3.1), (7.2.3.2) and (55), we have card{Λ(1) ∩ {2, 3, 4, 10, 11, 12}} ≤ 1, which
contradicts (7.1).

As a conclusion, Category 7 cannot be used.

Case 8. Category 4 is used. Without loss of generality, we suppose

Λ(1) = {1, 9, 18}. (8.1)

Since only Category 1 and 4 is still available, combining with (8.1), (30) and (37), we have

Λ(4) = {8, 9}. (8.2)

By (8.1), (8.2) and (37), we have
Λ(3) = {1, 14}. (8.3)

By (8.3) and (41), we have 18 ∉ Λ(1), which contradicts (8.1). Therefore, Category 4 cannot be used.
Case 9. Category 1 is used by all the faces. Without loss of generality, we suppose

Λ(1) = {1, 14}. (9.1)

Since Λ ∩ P(3)5 ̸= 0 by (5), combining with (9.1), (10) and (41), we have
Λ(3) ∩ {6, 8} ̸= 0. (9.2)

Without loss of generality, we suppose
Λ(3) = {6, 15}. (9.3)

By (9.1), (9.3), (30) and (33), we have Λ(2) ∩ {1, 8} = 0. Therefore, we have
Λ(2) = {6, 15}, (9.4)

by the categorization before. By (9.1), (9.3), (9.4), (30) and (42), we have Λ(4) ∩ {1, 9, 15} = 0, which is a contradic-
tion, since Category 1 cannot be used in Λ(4).

As a conclusion, for lattice packings O + Λ the condition (5) cannot hold, which means that γ(O, Λ) ≥ 7/6
holds for all lattice packings. In particular, since the lattice Λ generated by a1 = (− 23 , 1,

1
3 ), a2 = (

1
3 , −

2
3 , 1),

a3 = (1, 13 , −
2
3 ) given in [14], see also [1], can be easily verified to satisfy γ(O, Λ) = 7/6, we obtain

γ∗(O) = 7/6,
and Theorem 1 is proved. 2

4 Several examples about Problem 1

In𝔼2, it is known that the density of the densest lattice packing of a smoothed octagon is smaller than the density
of the densest packing of a circular disk (see [7]) and the simultaneous packing-covering constant of a regular
octagon is bigger than the simultaneous packing-covering constant of a circular disk (see [21; 23]). However, in
𝔼3, some evidence supports Ulam’s conjecture (see [5]) which claims that the density of the densest packing of
a convex body attains its minimum at balls. In this section, we present some examples about the simultaneous
packing-covering analogy of Ulam’s conjecture.

Suppose that C is a centrally symmetric convex body in 𝔼3. Let Λ be a lattice generated by {a1 , a2 , a3}, let V
denote the set {o, a1 , a2 , a1 + a2 , a3 , a3 − a2}, and let P denote the convex hull of V . Then we have the following
criterion:

Lemma 4 (Zong [22]). If P ⊂ C + V, then C + Λ is a lattice covering.
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In 2000, Betke and Henk [1] discovered an algorithm by which one can determine the density of the densest
lattice packing of any given three-dimensional convex polytope. As an application they calculated densest lattice
packings of all regular and Archimedean polytopes. Applying this criterion to Betke and Henk’s discoveries, we
obtain the following examples:

Example 1. Let C1 be the octahedron defined by {(x1 , x2 , x3) : |x1| + |x2| + |x3| ≤ 1} and let Λ1 denote the lattice
with the basis a1 = (2/3, 1, 1/3), a2 = (−1/3, −2/3, 1) and a3 = (−1, 1/3, −2/3). One can prove that C1 + Λ1 is a
packing in 𝔼3 and that 7

6C1 + Λ1 is a covering of 𝔼
3. Therefore we have

γ∗(C1) ≤ 76 < √5/3 = γ∗(B3).
Example 2. We take τ = 1

2 (√5 + 1) and define

C2 = {(x1 , x2 , x3) : |τx1| + |x2| ≤ 1, |τx2| + |x3| ≤ 1, |τx3| + |x1| ≤ 1},

C5 = {(x1 , x2 , x3) : |x1| + |x2| + |x3| ≤ 1, |τx1| +
󵄨󵄨󵄨󵄨󵄨󵄨
1
τ
x3
󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 1, |τx2| +

󵄨󵄨󵄨󵄨󵄨󵄨
1
τ
x1
󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 1, |τx3| +

󵄨󵄨󵄨󵄨󵄨󵄨
1
τ
x2
󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 1},

C3 = C2 ∩ C5 , and

C4 = C2 ∩ (
7 + 12τ
(3 + 4τ)(1 + τ)

C5).

Usually, C2, C5, C3 and C4 are called a dodecahedron, an icosahedron, an icosidodecahedron and a truncated
dodecahedron. Let Λ2 = Λ3 = Λ4 be the lattice with the basis a1 = (0, 2

1+τ , 2
1+τ ), a2 = ( 21+τ , 0, 2

1+τ ) and a3 =
( 21+τ , 2

1+τ , 0). One can prove that Ci + Λi is a packing in 𝔼3 and (√5 − 1)Ci + Λi is a covering of 𝔼3 for i = 2, 3, 4.
Therefore we have

γ∗(Ci) ≤ √5 − 1 < √5/3 = γ∗(B3) for i = 2, 3, 4.

Example 3. We continue to use the notation of Example 2 and define

C6 = C5 ∩ (
4
3 + τ
1 + τ

C2).

Usually, C6 is called a truncated icosahedron. Let Λ5 = Λ6 be the lattice with the basis a1 = ( 43 , 0, 0), a2 = (0,
4
3 , 0)

and a3 = ( 23 ,
2
3 ,

2
3 ). One can prove that Ci + Λi is a packing in 𝔼

3 and √5/3Ci + Λi is a covering of 𝔼3 for i = 5
and 6. Therefore we have

γ∗(Ci) ≤ √5/3 = γ∗(B3) for i = 5, 6.

Remark 1. It is interesting that for an icosahedron the optimal lattices for the packing density are no longer
optimal for the simultaneous packing-covering constant. It is well-known (see [5; 20]) that for the unit ball B3,
the optimal lattices for the packing density are different from the optimal lattices for the covering density which
are identical with the optimal lattices for the simultaneous packing-covering constant.

Example 4. Let C0 denote the cube {(x1 , x2 , x3) : |x1|, |x2|, |x3| ≤ 1}. We define

C7 = C0 ∩ (2C1).

Usually C7 is called a cubeoctahedron. Let Λ7 denote the lattice with the basis a1 = (2, − 13 , −
1
3 ), a2 = (−

1
3 , 2, −

1
3 )

and a3 = (− 13 , −
1
3 , 2). One can prove that C7 + Λ7 is a packing in 𝔼

3 and 7
6C7 + Λ7 is a covering of 𝔼

3. Therefore
we have

γ∗(C7) ≤ 76 < √5/3 = γ∗(B3).
Example 5. We define

C8 = {(x1 , x2 , x3) : |x1| + |x2| ≤ 2 + 3√2, |x1| + |x3| ≤ 2 + 3√2, |x2| + |x3| ≤ 2 + 3√2} ∩ (2√2 + 1)C0 ∩ (3√2 + 3)C1 .

Usually C8 is called a truncated cubeoctahedron. Let Λ8 denote the lattice with a basis a1 = (7.6568 ⋅ ⋅ ⋅ ,
−2.0339 ⋅ ⋅ ⋅ , 2.0339 ⋅ ⋅ ⋅ ), a2 = (1.5185 ⋅ ⋅ ⋅ , 0.6901 ⋅ ⋅ ⋅ , 7.6568 ⋅ ⋅ ⋅ ) and a3 = (6.1383 ⋅ ⋅ ⋅ , 5.6228 ⋅ ⋅ ⋅ , 2.7241 ⋅ ⋅ ⋅ ).
One can prove that C8 + Λ8 is a packing in 𝔼3 and√5/3C8 + Λ8 is a covering of 𝔼3. Therefore we have

γ∗(C8) ≤ √5/3 = γ∗(B3).
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Example 6. We define

C9 = {(x1 , x2 , x3) : |x1| + |x2| ≤ 2, |x1| + |x3| ≤ 2, |x2| + |x3| ≤ 2} ∩ √2C0 ∩ (4 − √2)C1 .

Usually C9 is called a rhombic cubeoctahedron. Let Λ9 denote the lattice generated by a1 = (0, 2, 2), a2 = (2, 0, 2)
and a3 = (2, 2, 0). It was shown in [1] that the density of the densest lattice packing of C9 is attained at C9 + Λ9.
However, the simultaneous packing-covering constant of C9 + Λ9 is√2, which is much bigger than√5/3. On the
other hand, let Λ∗9 denote the body cubic center lattice generated by a1 = ( 4(4−√2)3 , 0, 0), a2 = (0, 4(4−√2)3 , 0) and
a3 = ( 2(4−√2)3 , 2(4−√2)3 , 2(4−√2)3 ). It can be verified that the simultaneous packing-covering constant of C9 + Λ

∗
9 is

between√5/3 and√2.
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