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Abstract: This paper proves that the simultaneous lattice packing-covering constant of an octahedron is 7/6. In
other words, 7/6 is the smallest positive number r such that for every octahedron O centered at the origin there
is a lattice A such that O + A is a packing in IE* and rO + A is a covering of IE3.
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1 Introduction

In 1950, C. A. Rogers [15] introduced and studied two simultaneous packing-covering constants y(C) and y*(C)
for an n-dimensional centrally symmetric convex body C centered at the origin of E", namely

y(C) = m)}n{r : rC + X is a covering of [E"}
where X is an arbitrary discrete point set such that C + X is a packing in E", and
Y (C) = mAin{r :rC + A is a covering of E"}
where A is a lattice such that C + A is a packing in E". By an inductive method, he proved that
y(€) <y*(€) <3

holds for all n-dimensional centrally symmetric convex bodies. In 1972, via mean value techniques developed
by C. A. Rogers [16] and C. L. Siegel [17], G. L. Butler [4] proved that

Y (C)<2+0(1)

holds for all n-dimensional centrally symmetric convex bodies.

In the 1970s, L. Fejes Tdth [6; 18] introduced and investigated two deep hole constants p(C) and p*(C) for
an n-dimensional centrally symmetric convex body C centered at the origin of E", where p(C) is the largest
positive number r such that one can put a translate of rC into every translative packing C + X, and p*(C) is the
largest positive number r* such that one can put a translate of r*C into every lattice packing C + A. Clearly, we
have

y(€) = p(0) +1
and
y*(C) = p*(C) +1.

Let B" denote the n-dimensional unit ball centered at the origin. Like the packing density problem and the
covering density problem, to determine the values of y(B™) and y*(B") is important and interesting. The known
exact results are listed in the following table:
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n 2 3 4 5

y 8" 2/V3 \5/3 \V2V3(V3-1) 3/2 + V13/6
y(B")  2/3 5/3 7 ”

Authors  Trivial ~ Boroczky [2] Horvath [10] Horvéth [11]

In 1995, for the ball case, Rogers’ reductive method was modified and his upper bound was improved by
M. Henk [8] to
y*(BM) < V21/2 = 2.29128 -- - .

Clearly, this upper bound is not as good as Butler’s upper bound. However, Rogers’ approach has applications in
lattice cryptography; see Micciancio [13]. On one hand, y* (B") is a bridge connecting the shortest vector problem
(SVP) and the closest vector problem (CVP), both fundamental in lattice cryptography. On the other hand, the
reductive argument can lead to an algorithm.

In the plane, C. Zong [21; 23] proved that

p(C) = y*(C) < 2(2 - V2)

holds for all centrally symmetric convex domains and that the second equality holds if and only if C is an affinely
regular octagon. It is remarkable and interesting that the maximum is not attained by circular discs! In E?,
C. Zong [22] proved that

y*(C) <1.75

holds for all centrally symmetric convex bodies. It is interesting to compare with
y(B%) = y*(B®) = v/5/3 = 1.29099 - - - .

Let O denote the regular octahedron with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1), (-1, 0, 0), (0, -1, 0) and (0, 0, -1).
In 1904, Minkowski [14] proved that the lattice A generated by a; = (-3,1,1),a; = (},-3,1), a3 = (1, 3,-%)
gives the optimal lattice packing density 18/19. In fact, it is easy to see that Minkowski’s result shows y*(0) < 7/6
and that all the uncovered spaces are regular tetrahedra, see Figure 1.

Figure 1: The optimal lattice packing configuration for O.

By studying these tetrahedral holes and all its variations, this article will prove the following theorem:
Theorem 1. We have y*(0) = 7/6.

In Section 4 we also investigate the simultaneous packing-covering constants of some other polytopes. Based
on those examples, we propose the following problem:

Problem 1. Is it true that y(C) = y*(C) < +/5/3 for every centrally symmetric convex body C in E3 ?
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2 Technical lemmas

Let T be the regular tetrahedron with vertices (0,0,1), (3,0, %), (0, 3, ) and (3, 1, 1). Denote the distance function
defined by O as ||x|[; (also known as L; measure) and denote the distance between x and y in Lj-space as

1%, yll1 = [Ix -yl
As usual, for two vector sets A and B, define the minus set and the Minkowski sum by
A\B={x:xeAandx ¢ B}
and
A+B={x+y:XxeAandy € B},

respectively. We say a vector set A is positively homothetic to B with factor r, if A = rB + x with r > 0. We
use int K, rint K, cl K and conv K to denote the interior of K, the relative interior of K, the closure of K and the
convex hull of K as usual, and Xy denotes the segment with the vertices x and y. We say that y(C, X) = r,if C+X
is a packing and r is the minimum positive value such that rC + X is a covering.

Let e, = (1,0,0), e, = (0,1,0), e3 = (0,0, 1) and denote the faces

convieq, ez, e3}, conv{er,—ey, es}, conv{-ej,—ey, es}, conv{-ey,ey,es},
conv{er, ez, —e3}, conv{e;,—ey, —e3}, conv{—e;,—ey,—e3}, convi{-er,ey, —e3}
of 0 by F, F@ F®) & FA) FC) FG) and F), respectively.

Observation. It is well known that, combining the regular tetrahedron with vertices es, ey, e3, e; + €; + es, the
regular tetrahedron with vertices —eq, —e;, —e3, —e; — e — e3 and O, we obtain a parallelepiped. Therefore, the
sum of the dihedral angles of a regular octahedron and a regular tetrahedron is 7.

On the other hand, since a regular octahedron is defined by four pairs of parallel faces, we can observe the
following: if the intersections of each two of four regular octahedra O, O +x;, 0 +Xy, O + X3 are two-dimensional,
then the hole surrounded by them is a regular tetrahedron.

It is natural to prove the following conclusion:
Lemma1. If FV 5> 0N (T + a;) # 0, then the center of gravity g of T + a; satisfies ||g||; > 7/6.

Proof. Define
X = {g : g is the center of gravity of T + a;, which satisfies FY50n (T +aq) # 0}.

It is easy to see that
X c{(x,y,2): x+y+z=m}, for aconstant m.

The center of gravity of T is (%, %, 2), therefore m = £. Since ||0,x||; > £ forallx € {(x,y,2) : X +y +z =},

Lemma 1 is proved. O

Corollary 1. Let O + X be a packing such that there is a regular tetrahedron T satisfying the following two con-
ditions:

(1) intT1n(0+X) =0,
(2) T is positively homothetic to T with dilation factor r > 1.

Then we have y(0, X) > 7/6.
Proof. Denote the center of gravity of T; by g;. By Lemma 1, we have
llg1, x|l > 7/6 for all x € X.

Therefore g; ¢ int(%O) + X, which means that y(0, X) > 7/6. m|
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Suppose that ag = (Xo, Yo, Zo) € conv{(0,1,1),(0, 3, %), (3,1, %), (3, 3, 1)}. In other words, suppose that

Xo+y()+2022,
—Xo + Yo +Zo <2,

Xo—Yo+20<0,
2
X0 + Yo — Zp < 3 1

For two convex bodies C; and Cy, we say that C; is obstructed by C; if C, nint(C;) # 0. We will prove that, for
a packing O + X containing O and O + ap, we have y(0, X) > 7/6. To this end, we show that no matter how to
obstruct the unpacked place by the translative of O, there must exist a regular tetrahedron positively homothetic
to T with factor r > 1 which is not obstructed by O + X.

Define T’ = conv{yy, y2, 3, ya} where

(1. TXotYotzo L XotYo-Zo
yl - (1 2 ,yO 1) 1 2 ))
_(q_ “XotYo+Zo —Xo+Yo+Zo
y2 = (1 L, ),
y3 = (2-Y0,Y0-1,0),
(o9 _ . —XotYot+Zo . Xo+Yo-—Zo
V4 = (2 Yo, 5 1 5 )

In other words, T' is a regular tetrahedron positively homothetic to T with factor ro, formed by all the points
(x,y, z) which satisfy

X+y+z21,

“X+Y+Z<-Xo+Yo+29-1,
X-y+z<3-2yo,

xX+y-z<1l (2)

Since 1 — X20=% > Z by (1), we have
ro > 2. 3

It is easy to see that T’ contacts both O and O + ay at its boundary.

Lemma 2. Ifaregular octahedron O + a; satisfies O +a; Nint(O U O + ag) = 0, then the following two statements
are equivalent:

() O+aynintT’ +#0.
(2) a; € T" +(1,0,0) where T" = T' \ (conv{yy, y3, ya} U conv{yz, y3, ya}).
Proof. Define Y = {a; : (O + a;) nintT’ # 0}. By routine computation we obtain
Y= int(conv{)h +(0,0,1),y4+(0,0,1),y1 +(0,-1,0),y1 + (-1,0,0),ys + (1,0,0),y4 + (0, 1, 0),
y3+(0,1,0),y3 +(-1,0,0),y2 + (1,0,0),y2 + (0,-1,0),y2 + (0,0, -1),y3 + (0,0, —1)}).

With the definition
Y =Y\{a;:0+a;nint(OU O + ag) + 0},

Lemma 2 holds if and only if Y/ = T"" + (1, 0, 0).
On the one hand, we have
Y' = Y\ (int(20) U int(20 + ay)).

Since y1,y¥2,y3 € O and 20 is convex, the convex hull

COHV{Yl + (O) 0) 1)’ Yl + (_1, 0’ 0)) Yl + (0, _11 0), YZ + (_1) 0; O), YZ + (0) 1: O),
YZ + (0; 01 _1); Y3 + (15 0; 0); Y3 + (05 _1: 0): Y3 + (0) 0: _1)}
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is a subset of 20; denote this convex hull by ¥;. Also, by routine computation, we have
y1+(1,0,0),y1 +(0,0,1),y2 +(1,0,0),y2 +(0,1,0),y4 + (1,0,0),y4 + (0,1,0),y4 + (0,0,1) € 20 + ay.

For example,

Iya +(0,0,1) = aolls = 2= Xo - ol + | 520 4 ]o - HERTL

-Xo—-Yo+2 Xo+Yo+2Z
0-Yot2o o _Xo+tYotZo

> 2 =4-Xo-Yo~- 20 <2,

=2-Xo—-Yo—
by (1). Therefore, the convex hull
conv{y; + (1,0,0),y1 +(0,0,1),y2 + (1,0,0),y2 + (0,1,0),y4 + (1,0,0),y4 + (0,1, 0), ya + (0,0, 1)}
is a subset of 20 + ap; denote this convex hull by Y5. It is easy to see that
Y cintY; uint Y, u(T" +(1,0,0)).
Therefore, we have
Y cT"+(1,0,0). 4)
On the other hand, for every vector w = (wq, wy, w3) € T, by (1) and (2) we have
wi, W, ws =0, wi+wy+wsg>1.
Thus, we have
[lw+(1,0,0),0ll1 = w1 + 1+ wy + w3 > 2,

which means
O0+w+(1,0,0)nint O = 0.

Since ap = (Xo, Yo, Zo) is on the plane —x +y +z = —Xo + Yo + Zo, and w + (1, 0, 0) is in the half space -x +y + z <
—-Xo + Yo + Zo — 2, by (2), we have
0+w+(1,0,0) nint(O + ag) = 0.

We argue as follows:
Case 1. w ¢ int T". Combining with w € intT' n (0 +w + (1, 0, 0)) # 0, by the definition of Y’ we obviously have
w+(1,0,0) e Y.

Case 2. w ¢ (conv{ys, Y2, ya} U conviys, y2,¥s}) \ (Y1¥3 U ¥1Y4 U ¥2y3 U Y2Ya).
Obviously the set conv{w, w + (1, -1,0),w + (2,0, 0), w + (1, 1, 0)}, a cross section of O + w + (1, 0, 0) intersects
int T/, which means w + (1,0,0) € Y'.

Therefore Y’ > T" + (1,0, 0). In view of (4), we have Y' = T" + (1,0, 0), and Lemma 2 is proved. O

Lemma 3. Suppose that a regular octahedron O + a; satisfies O +a; Nint (OU O +ag) = 0 and O +a; Nint T' # .
Then for an arbitrary regular octahedron O + ay, the following two conditions cannot both hold:

(@): O+axNnint(OU (0 +ag)uU (0 +ay)) =0,
(b): 0 +aynintT’ # 0.

Proof. By Lemma 2, we have a; € T" + (1,0, 0). If (a) and (b) hold simultaneously, then a; € T" + (1,0, 0) by
Lemma 2. But for arbitrary points X,y € T"' we have ||x, y||1 < 2by (1) and (2). Therefore O+a;nint(O+ay) # 0,
which contradicts (a). Lemma 3 is proved. i

Corollary 2. For a packing O + X containing O and O + ap we have y(0, X) > 7/6.

Proof. Ifint T n (O + X) = 0, since T' is positively homothetic to T with factor ro > 2 by (3), the condition of
Corollary 1 is satisfied.

Otherwise, if there exists a; € X with int T’ n (O + a;) # 0, then by Lemma 3, O + a; is the only regular
octahedron in O + X which intersects int T’. In this case, there exist a regular tetrahedron T""" ¢ T’ \ (O + a;)
is positively homothetic to T with factor ro/2 > 1 and int T"" n (O + X) = @, which satisfies the condition of
Corollary 1. O
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3 Proof of the theorem

Define
-1, TV -T+ (0, %—%) TV =T+ (%,0,—%),
) =7+ (0, %-%) TV =T+ (% %—%) TV =T+ (g,o,—g)

It is easy to see that Tgl) nocFYforie{l,...,6} Rotate Tgl) anticlockwise around the z-axis by /2 degree,
7 degree, 371/2 degree, and denote the results by @ 19 7@ respectively. Define

il

! ! ! !
YRR S R SR (S ST S

i i i

similarly, we have T'° n 0 ¢ F® fori e {1,...,6} and k € {1,2,3,4,1',2/,3',4'}.

To generalize, we define T§k+1) by rotating Tl.(k) anticlockwise around the z-axis by /2 degree. By the ro-
tation, if k; = kymod4 then T?kl) = T§k2). In the centrally symmetric condition, we suppose that 1/,2',3',4' is
equivalent to 3, 4, 1, 2, respectively.

Now we consider whether or not T§k) can be obstructed by a packing O+ X, for all i, k. To this end, we define

ng)={x:0+xnintTi(k)#@and0+xnint0=0} for all i, k.

In fact, ng) = int(Ti(k) + 0) \ int(20) for all i, k. By routine computation, we have

P = int(conv{(0,0,2), (0 : 2),(4 0,%),(1 . 2),(1 : 1),(4-1 ; 1)})

33\ 03\ )\
oimeonvf0.0.2.(0.5.5). (5.0.5)})

o -2 (0.5,-5) 2 -p 4 (50-3)

pf’=P§”+(0,§,—§)’ pg1)=P§”+(%,%,—§), Pél)=P§1)+(§’0’_§)'

Define M® = Py PF U P U P U P U P for all k. It is easy to see that M*) 0 MK = ¢ for ky # ky.

We dissect M¥ into nineteen pieces as follows:

01 = x:x e P x ¢ (P UPYO UPL U PP UPY)),
0 = {x:x e (P nPY),x ¢ (PO U P U P UP)),
0y = {x:x e (P nP{),x ¢ (PO U P U P UPY)),
P =xixe @ n PP n P np{),x ¢ P U P,
= xixe @ n PP np{),x ¢ P up{uPP),
0 = (x:x e P nPY? n P nP{ nPY),x ¢ PV},
P =xixe @ nPP np{),x ¢ Py uP{uPP),
0y = x:x e (P n P n P n P n YY), x ¢ P},
gk) ={x:xe¢ Pflk), X ¢ (ng) U Pék) U ng) U Pék) U Pék))},
& = x:xe (PP nPl),x¢ PP uPy upuPP),

k K K K K Kk Kk
O x:xe (PP npPP),x ¢ (PP uPP upl up{y,

k K K k K Kk K
O x:xe PP nPY 0Pl npl) x¢ P up{,

k k k k k k k
B = xixe P n PP p),x ¢ (PP U PP U PP,
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gl) .” R/

= Za /‘ \L— gn
1 V D, o
8 O\ Y o
% z @’

ot A
VA ‘\ ol

e

1 1 1
QP QY @) @ oF P

Figure 2: Dissect M into Qf“.

i = xixe @ n PP n P n P n pY), x ¢ P},
O =mixer{ xe @ up{upr{ur{upr,

Qi = x:x e (P nP{),x ¢ (P u Py u P u P,
0% = x:x e (PP nPW), x ¢ (P U PP U PP U PR,
Qi = x:xe ) n PP n ¥ n P, x ¢ (P U P,
O = x:x e (B n P n ) x ¢ (P17 U PP U P,

(k) n Q(k)

for all k. It is easy to see that Q; ¢ for iy + iy, see Figure 2. To show this decomposition more clearly,

we give the following Figure 3.

(532

(1) (1) (1 Q(l)\ (n\
Ql)/ (IAQ‘7\ QY /Q /QA
v / " / o / " \ Qu,\ Qu,\

~
ol
Lol

(0,2,0)

Figure 3: The intersection of M with the planes {x + y + z = 8/3} (left) and {x + y + z = 2} (right).
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We have

5 114 1
(53350

1
3

- ) cl le) =cl le) +(
1

1

3
114 2 21 2
(333330 GE)Gs

2 2 4 2
10§ = conv] §)( 3 §),(5 1,1),(1,5,1)}
2 1 12 2 2 1 1.2
Ao’ = eonv{(0.5,5). (5:2.5). (35 (521 (053 (539 (5.2.5)
12 2 1 2 2 2 2
agy’ =convi(3.3.1).(501).(315) (533}
2 4 14 21 2 4 1 12 4 2
Cle: :COHV{(E’:@)'(LE 3) §i§é1> (21 25’;)’(5’5 1).(13.3)(393)}
cl Qg :conv{(§,§,1>, (1,§ 1) (1 §,§),<§ §,§)},
15 1 1 251 51 141 1
10y’ = conv(©20)(5.3.0)(3:23) (5330 *33) (533) (333
cl Q%) =cl Qél) + (0, —%, %) cl Qﬁ) =cl le) + (%—%0)
1 2 2 2 2 141 2 1 2 2 4 2 2
dQyy = conv{(3.1.5). (5530 (3330 (5:23) (511 (5:3.3) (L L3
2 .1 2 1 2 4 4 2 2 41 4 1
Qg = conv{(3.1.3).(1.5:3).(5:3:0) (3:5:0(11.5).(1.3.5). (3. 1.3)}
2 2 2 2 1 21 2
ay =conv{(3.3.3).(515) (L 53) (113))
411 5 1 51 4 2 2 512 521
A0k =convi(3,3.3)(3.03) (330 @00.(33:3) (3330535 3)
Aol =caoll +(—% 0 %) ol =cIQ§15)+(—%,%,0),
2 2 2 12 21 11 2 2 2 2
A0y =eomf(5 5.5 (13:3) (0 55) (333 (03 0.015) (53:39))
ol = conv{(g, g g) (%,1,1),(1, §,1), (1,1, %)}

Theorem 1. We have y*(0) = 7/6.
Proof. Suppose that O + A is a lattice packing and y(0, A) < 7/6. By Corollary 1 we have
(0+A)nint T # o forall i, k.
By the definition of ng) we have
AnPY +oforall i k.
Obviously, we have
PP =017 U0y’ U u e u e u e u e u ey,
Py = 0,° U@’ U Qs u Qs Uy Uy L QL L QY U U,
Py = 05" U@’ U Qs U QY Uy UL U QL U QI U U,
P =057 QU Qs U ey U U QY U QLY QLY.
P = Q)% U@ U Qs u Qi U LR U QL L QT U U,
)

(k) (k) (k) (k) (k) (k (k) (k) (k)
P’ =07 UQg UQy3 UQyy UQy5 UQg UQy7 UQgg.

DE GRUYTER

6)]

(6)
(N
(8
9
(10)
(11

Since O + A is a lattice packing, by dilating the lattice a little we can achieve that y(0, A) < 7/6 still holds and

[IX,yll1 > 2 for all X,y € A with X # y. In other words,

y¢ (20 +x)forallx,y e Awithx #y.
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We put Q; = {1,9,15}, 9, = {2,3,10,11,16,17}, Q3 = {5,7,13,19}, Q4 = {4,12,18}, Qs = {6, 8, 14}; this
entails that if m € Q;, then Qﬁ,’f) is completely inside exactly j of the ng). We write A® = {iy, iy, ..., ip} if

AnQY #oforie i iy... i} andAn QY =oforig¢ fit, iz, ..., in).

3.1 All the possible A for a given k

To enumerate all the possible AX) which satisfy (5) for a given k, we list some restricting conditions as follows:
For an arbitrary point x € (_);k), we have

k k k k k
20 +%) 5 (0% UM U QW U QP U o).

Therefore, if 2 € A®), we must have

A% N(3,4,5,6,8} =0. (12)
By symmetry, we have
if 3 € A® thenA® n{2,4,6,7,8} =0, (13)
if 10 € A®, then A% n {5,6,11,12,14} = 0, (14)
if 11 € A% then A% n {6, 10, 12, 13, 14} = 0, (15)
if 16 € A® then A% n{7,8,14,17,18} = 0, (16)
if 17 € A®, then A% n (8,13, 14, 16, 18} = 0. (17)

For an arbitrary point x € Qflk), we have
(k) (k) (k) (k) (k) (k) (k) (k) (k) (k)
(20+%)>(Q,"UQ3"UQs UQg UQ7" UQg UQyy UQyy UQg UQyy).

Therefore, if 4 € A%, we must have

A% N {2,3,5,6,7,8,12, 14, 18,19} = 0. (18)

By symmetry, we have
if12 € A% then A® n{4,5,6,8,10,11,13,14, 18,19} = 0, (19)
if 18 € A® then A% n {4,6,7,8,12,13, 14, 16,17,19} = 0. (20)

For an arbitrary point x € Qf;k), we have
k k k k k k k k
20+%) > (@ U Ul Ul Uk uolk Uk uek).

Therefore, if 5 € A®), we must have

AP 02 4,6,8,10,12,14,19} = 0. 21

By symmetry, we have
if7 e A%, then A% n{3,4,6,8,14,16,18,19} = 0, (22)
if13 € A®, then A% n {6, 8, 11,12, 14, 17, 18,19} = 0. (23)

For an arbitrary point x € Qék), we have
(k) (k) (k) (k) (k) (k) (k) (k) (k) (k) (k) (k) (k)
(20+X%)2>(Q7UQ57UQ, UQs UQ; UQg UQy5 UQyy UQyy UQy3 UQyy UQqg UQg).
Therefore, if 6 € A%, we must have

A% N {2,3,4,5,7,8,10,11,12,13, 14, 18,19} = 0. (24)
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By symmetry, we have
if8 € A, thenA® n{2,3,4,5,6,7,12,13, 14, 16,17,18,19} = 0, (25)
if 14 € A, then A% n {4,5,6,7,8,10,11,12, 13,16, 17,18, 19} = 0. (26)

For an arbitrary point X € le), we have

12 2 4 12\ /1 4\ /1 4 2
(20 +x%) > conv{<§, §,1), (0, 3 §), 0,1,1), (5,1, §), (5,1, §), (g’ §,1), (5,1,1)}.

Combining with Corollary 2, we have:
ifAn QY +0, thenan @l = 0.
For an arbitrary point
12,2 4 21 14\ /41 2
xeconv{(1,3,3).(5.03) @0 (5. 3.1). (L3.5) (5 3.1 (L5 1))

we have

12 2 4 1.2y (1 4y /14 2
20 +%) > conv{(3, 5.1).(0.5.5). 0.1 0.(3.1.5).(5.1.5)- (5. 31)- (5.2 1)}-

By the symmetry of 20 and M, combining with Corollary 2, we have:
ifAnQ +0, thenan Q" =o.

By symmetry, we have

if5e¢A® thena® n{3,7,11,13} = 9, 27)
if7eA® thenA® n{2,5,13,17} = 0, (28)
if13 € A, then A% n {5, 7,10, 16} = 0. (29)

Without loss of generality, if two different lattices A; and A, satisfy (5) and Agk) C Agk), then we consider

only Agk) instead of both. Suppose that
i1€Qj, reQ,..., Ine€Q;

to satisfy (5), a necessary condition is
Ji+ja+--+jn=26.

Combining with Conditions (5)-(29), we categorize all the possible A% for a given k as follows:

Category1.n=2and iy € Os, i € Q;.
For instance, let i1 = 6. By (5), (11) and (24), we have i, = 15. Therefore

A = 114,13, {6, 15}, {8, 9}

by the symmetry of 20 and M.

Category2.n =2and ij € Qs, iy € Q).
For instance, let i; = 6. By (5), (11) and (24), we have iy = 16 or 17. Therefore,

AW = (14,2}, {14, 3}, {8, 10}, {8, 11}, {6, 16}, {6, 17},

by the symmetry of 20 and M.
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Category3.n =2and iy € Q4,1 € Q3.
For instance, let i; = 4. By (5), (9), (11) and (18), we have i, = 13. Therefore,

AW = 4,13}, {18, 5}, {12, 7},

by the symmetry of 20 and M®

Category4.n =3 and iy € Qu, iy, i3 € Q.
For instance, let i; = 4. By (5), (9), (11) and (18), we have iy = 9, i3 = 15. Therefore,

0 =11,9,18},{1,12,15}, {4,9, 15},

by the symmetry of 20 and M.

Category 5.n = 3 and iy € Qq, iy € Qy satisfy le n le
For instance, let i1 = 4, i» = 10. By (5), (11), (14) and (18) we have i3 = 15 or16 or 17. Therefore,

A% = 4,10, 15}, {4, 10, 16}, {4, 10, 17}, {4, 16, 9}, {4, 16, 11},
{12, 2,15}, {12, 2, 16}, {12, 2,17}, {12, 17,1}, {12, 17, 3},
{18,11, 1}, {18,11, 2}, {18, 11, 3}, {18, 3, 10}, {18, 3, 9},
by the symmetry of 20 and M

Category 6. n = 3 and iy € Qq, iy € Qy, satisfies cl lek) N (cl QZ{) ucl Qg{)) =0
For instance, let i = 4, iy = 11. By (5), (11), (15) and (18), we have i3 = 15 or 17. Therefore,

AR = 411,15}, {4,11,17}, {4,17, 9}, {12, 3, 15}, {12, 3, 16}, {12, 16, 1}, {18, 10, 2}, {18, 10, 1}, {18, 2, 9},
by the symmetry of 20 and M.
Category 7. n = 3 and iy, iy, i3 € Qy. By (5)-(17), it is easy to deduce that AX) = {2,11, 16}, {3, 10, 17}.

Category8.n=4and i; =19, i» € Q.
For instance, let iy = 2. By (5), (9), (11) and (12), we have i3 = 9 or 10 or 11 and iy = 15 or 16 or 17. Therefore,

AP = ={19, 2,9, 15}, {19, 2,9, 16}, {19, 2,9, 17}, {19, 2, 10, 15}, {19, 2, 10, 16},
(19,2,10,17}, {19, 2,11, 15}, {19, 2, 11, 17}, {19, 3, 9, 15}, {19, 3, 9, 16},
{19,3,9,17}, {19, 3,10, 15}, {19, 3, 10, 16}, {19, 3, 11, 15}, {19, 3, 11, 16},
{19, 3,11,17}, {19, 16, 9, 1}, {19, 16, 10, 1}, {19, 16, 11, 1}, {19, 17,9, 1},
{19,17,10, 1}, {19,17,11, 1}, {19, 11, 15, 1}, {19, 10, 15, 1},
by the symmetry of 20 and M

Category 9.n = 4and iy = 19, iy, i3, is € Q1. Then A% = {1,9, 15, 19}, obviously.

3.2 The restriction between A% and A2 for k, # k;

By routine computation, we obtain some restricting conditions between different faces as follows:
For an arbitrary point x € ng), we have

(20 +%) > ( (kD) Q(k+3))

Therefore, if 1 € A%, we must have
1¢ A% g AR+, (30)
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For an arbitrary point X € ng), we have
(20 +%) > (Q(k+3) Q (k+3) nga) Q(k+3))

Therefore, if 2 € A, we must have
AR n(34781 =0

For an arbitrary point X € Q(k), we have
20 +x) > (@Y u
Therefore, if 4 € A%, we must have

Ak+D) {2,4,5,6} = 0, AK+3) {3,4,7,8} =

For an arbitrary point x € ( by Q(k)) we have

(20 n X) 5 (Q (k+3) U Q(k+3) U Q(k+3) U Q(k+3) U Q(k+3 U Q(k+3 U Q(k+3 )

Therefore, if A% n {5, 6} + 0, we must have
A*3) 0(3/4,7,8,16,18,19} =
For an arbitrary point X € 019 , we have
(20 + ) > (0" (k+1) Q(k+1 Q%’) U Qg Q(k+3) Q(k+3))
Therefore, if 19 € A%®, we must have
A D 56 =0, AKX 13,14 =0, A N{7,8} =
By symmetry, we have

if 3 A%, then A%V n{2,4,5,6} =0,

if A® 0 (7,8} # 0, then A%V 0 {2,4,5,6,10,12,19} = 0
if9 € AW, then 9 ¢ A%+, 15 ¢ A*+3)

if 10 € A®, then A**¥ 1 (7,8, 16,18} = 0,

if11 € AP, then A% 0 {11,12,13,14} =

if12 € A®, then A% n{11,12,13,14} =0, A% 1 {7,8,16,18} =

if A® N {13,14} # 0, then A®*? 1 {11,12,13,14,17, 18,19} = 0,
if15 € A® then9 ¢ AKD 15 ¢ AKk+2),

if 16 € A®, then A**D n {5,6,10,12} =

if 17 € A®, then A% 0 {13, 14,17,18} =

if 18 € A®, then A%V 0 {5,6,10,12} = 0, A% 1 {13,14,17,18} =

For an arbitrary point x € ( Q(l) Q(D) we have

12,4 2y,411 2 41 4 2 2 1
@0 +x)>comv(1,3.5).(5.05) (3330 (03) (3320 (353 (533

For an arbitrary point
12 2 11 2
ve (o veom{(15.5).(505) (533 (L51)

20 +y) > (0 U ® U L)),

we have

(ki) AktD) | k1) | AKkE3) | AKH3) | A(kd) | (k)
Qe U™ U Qi U ™Y U QI U I U QFY).

DE GRUYTER

(1)

(32)

(33)

(34)

(35)
(36)
(37
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
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Therefore, if AV 0 {4, 6,19} + 0 and 16 € AD, we must have
AP 09,11} =0, 15¢ 49,
By symmetry, we have

if A% 1 {4,6,19) # 0 and 16 € A©, then A%V ({9, 11} = g, 15 ¢ AK+D),
if A9 1 {6,12,19} # 0 and 17 € A%, then A*+? 0 15,16} = 0, 9 ¢ A+,
if 100 ((8,18,19) # 0 and 11 € AKX, then A%+2) 1 {9,10} = 0, 15 ¢ AK+),
if A% 1 {12,14,19) £ 0and 2 € AX), then AK* (1,2} = 0, 1 ¢ AKHD,
if A0 1 {14,18,19) # 0 and 3 € 4D, then A®D 0 (1,3} =0, 1 ¢ A%+,
if A% 1 {4,8,19) # 0 and 10 € A®, then A% (15,17} = 0, 9 ¢ A*+2),

For an arbitrary point x € Q%), we have

12 21 22 2\ /2 2 4\ /2 2
(20 + %) > conv{(g, §,1), (g’ §,1), (5, B> §), (g’ 5 5)’ (5,1,1), (1, §,1)}.

For an arbitrary point
12 21 222\ /224
ye (0 \eonvi(3,51).(3.31) (5:53:3) (5:33) (5

20+y) 5 QP ue? u UM,

Therefore, if {4, 13} ¢ A®, we must have

we have

AP n{1,3}=0, AP n{1,2} = 0.
By symmetry, we have

if {4,13} c AP, then A%V 0 {1,3} =0, A& (1,2} =0,
if {7,12} ¢ AP, then A% 0 {9,10} = 9, A%+3 1 {15,17} = 0,
if {5,18} ¢ A®, then A%V n{9,11} = 0, A%+ 1 (15,16} = 0.

For an arbitrary point x € (ng) v Qfl)), we have

15 1 5 2 4 2 4 12
20+x)> conv{(O, 3’ §)’ (5,0, 5), (0, 3’ §), (5,0, 5), (§, §,1),
21 125 215
330G 330533

!
For an arbitrary point y € (Q'2 u @), we have

15 51 2 4 4 2 2 1
(20 +Y) bl COHV{(g: g: 0)) (01 §a §>) <§’ g: 0)) (01 §1 §>a (5: 1: §))
2\ /2 2
(%)1y §);(§:g)%>x(%) gr §);(1:§)%)1(%) %)1)}'
For an arbitrary point

1 1 1
z e ( go) uou ng)) \ conv{(

(46)
(47
(48)
(49)
(50)
(51)

(52)
(53)
(59)
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we have
o> @ veflvonenfoL ) (L0202 ). God) (4 2.
2 1 125y,,215 1 4
<§’§ 1) (3 3’ 3> <3 3’ 3)( '> ’§’§)}‘

Therefore, if 1 € A® or1 e A®,and 9 € A® or 15 € A®, combining with (12)—(15), we have
card{A® n{2,3,4,10,11,12}} < 1.

By symmetry, we have:
If1e A% or1 e A®*3) and 9 € A%+ or 15 € AK+3) then

card{A® n{2,3,4,10,11,12}} < 1. (55)
If1e A% or1 e A®+D) and 9 € AK+D or 15 € AK+2) then
card{A® n{2,3,4,16,17,18}} < 1. (56)
If9 € A*+D or 15 € A®+2) and 9 € AK*+2) or 15 € AK+3) | then
card{A n {10,11,12,16,17,18}} < 1. (57)

For an arbitrary point x € conv{(

WIH
[OSIP
~—
—
W=
wIn
—_
~
—
wlno
Wl
—_
~
—
wlno
wino
ol
~
<
@
=
=t}
<
(¢}

1
3
(20 + %) D( 2 Q(Z) Q Q(4))

For an arbitrary point y € conv{(3,

wl-lk

11.6,41).(3.30),(3,1,0), we have
20+y)> (P U Ul

For an arbitrary point z € (Q{" \ conv{(}, 3, 4), (1, 2,1),(%,1,1),(4, 2, 4)}), we have

411 521 4 2 51
(20+z)3(Q(l)\conv{(§,§,§) (3 3’ 3) (§ 5,0),(§,§,0)}).
Therefore, if {4, 17} ¢ AD, we have

ADn{,3 =0, A¥Wn{1,2) =

or
9¢A®, A® {1516} = 0. (58)
By symmetry, we have: If {4, 11} ¢ A, then
A9 n{1,31=0, AYn{1,2}=0,
or

15¢ 4@, A® n{9,10} = 0. (59)

Now we show that a combination of A®, with k = 1,2,3,4 as categorized before, cannot satisfy Condi-
tions (30)—(59).

Case 1. Category 3 is used. Without loss of generality, we suppose
AW = (4,13}, (1.1)
Since A N sz) +@and AN P§4) # 0, by (5), combining (1.1) with (6), (32) and (52), we have

ADNn{7,8 +0 (1.2)
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and
A® N (5,6} 0. (1.3)

Combining (1.1), (1.2), (1.3) with (7), (33), (36) and (41), we have A n P = g, which contradicts (5). Therefore,
Category 3 cannot be used, and
AR N {5,7,13} =0

holds for all k.
Case 2. Category 5 is used. Without loss of generality, we suppose
AV 5416}, AP n{9,10,11} + 0. (2.1)
Since A N Pff) # 0 by (5), combining (2.1) with (9), (43), (46) and the conclusion of Case 1, we have
14 ¢ A® (2.2)

and
ADN{1,2,3} +0, (2.3)

by the categorization before.
Since A N P§4) # 0 by (5), combining (2.1), (2.2) with (10), (32) and (41), we have

6eA® (2.4)
and
AW N (15,16} # 0, (2.5)
by the categorization before.
Suppose
16 € AW, (2.5.1)

combining with (2.4), (43) and (46), we have AD A {9, 10, 11} = @, which contradicts (2.1). Therefore, we have

15 € A®, (2.5.2)
combining with (2.1) and (42), we have
AD N {10,11} # 0. (2.6)
If
1e4?, (2.3.1)

combining with (2.5.2) and (55), we have card{A™ n {4, 10, 11}} < 1, which contradicts (2.1) and (2.6).
If
2eA?), (2.3.2)

by (31), we have 4 ¢ A, which contradicts (2.1). Therefore, we have
3e4?, (2.3.3)

By (2.3.3), (2.2), (6), (35), (50) and the conclusion of Case 1, we have 8 € A®) which contradicts (2.4) and (33).
Therefore, Category 5 cannot be used.

Case 3. Category 6 is used. Without loss of generality, we suppose
AW 54,17y, AV n{9,11} # 0. (3.1)

Suppose
AP n{1,3}=0, A®n{1,2}=0. (3.2.1)
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Since A N sz) +0and AN P§4) # 0 by (5), combining with (3.1), (6), (32) and the conclusion of Case 1, we have
8eA® (3.2.1.1)

and
6eA®, (3.2.1.2)

since A n P # @ by (5), combining with (7), (3.2.1.1), (3.2.1.2), (33) and (36), we have
14 € A®), (3.2.1.3)

By (41), we have 17 ¢ A, which contradicts (3.1).
Suppose that (3.2.1) does not hold, then by (3.1) and (58) we have

9¢A?,  A®Nn{15,16} = 0. (3.2.2)
Since A N Pés) # 0 by (5), combining with (3.1), (11), (44) and the conclusion of Case 1, we have
8eA® (3.2.2.1)

and
A® N {9,10,11} # 0, (3.2.2.2)

by the categorization before. By (3.2.2.1), (3.2.2.2), (37), (48) and (51), we have
9¢AD, (3.2.2.3)

combining with (3.1), we have
11 € AW, (3.2.2.4)

By (3.1), (3.2.2.4), (39) and (59), we have A® n {9, 10, 11} = @, which contradicts (3.2.2.2). Therefore, Category 6
cannot be used.

Case 4. Category 2 is used. Without loss of generality, we suppose
AW = {6, 16}. (4.1)

Since A N Pff) # 0 by (5), combining with (4.1), (9), (43), (46) and the conclusion of Case 1, we have

14 € A® (4.2)
and
AP n{1,2,31#0, (4.3)
by the categorization before.
By (4.2), (4.3), (30), (49) and (50), we have
1¢40, (4.4)

since A n P{” # 0 by (5), combining with (4.1), (4.2), (8), (33) and (41), we have
6eA®, (4.5)
Since A N Pf) # 0 by (5), combining with (4.4), (4.5), (6), (33) and the conclusion of Case 1, we have
A® N (2,6} 0. (4.6)

If
2¢eA®, (4.6.1)
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since A n P # 0 by (5), combining with (4.5), (8), (12) and (33), we have A®) n {12, 14} # 0. By the conclusion
of Case 2, we have 12 ¢ A®. Therefore, we have 14 € A®. Combining with (4.6.1), (31) and (49), we have
A® N {1, 2,3} =6, which contradicts (4.3).
If
6eA®, (4.6.2)

then we have
A® N {15,16,17} # 0, (4.6.2.1)

by the categorization before. Combining with (4.1), (4.5), (33) and (46), we have
17 € AY, (4.6.2.2)

combining with (4.6.2) and (47), we have 16 ¢ AD which contradicts (4.1). Therefore, Category 2 cannot be
used.

Case 5. Category 8 is used. Without loss of generality, we suppose
AW 516,19, AYn{1,2,31 20, ADn{9,10,11} 0. (5.1)
Since A N Pflz) # 0, combining with (5.1), (9), (43), (46) and the conclusion of Case 1, we have
14 € A® (5.2)

and
ADN{1,2,3} #0, (5.3)

by the categorization before. By (5.2), (5.3), (30), (49) and (50), we have
1¢ AW, (5.4)

Suppose that
3eAW; (5.1.1)

combining with (5.1), (35) and (50), we have A® n {1, 2, 3} = 0, which contradicts (5.3). Therefore, we have
3¢, (5.1.2)

and combining with (5.1) and (5.4) we have
2eAW, (5.5)

Since A N P(14) # 0 by (5), combining with (5.1), (5.5), (6), (31), (49) and the conclusion of Case 1, we have
6ecA® (5.6)

and
A® N {15,16,17} + 0, (5.7)

by the categorization before. By (5.1), (37), (48) and (51), we have
15 ¢ A®, (5.8)

If
16 € A®, (5.9)

combining with (5.6), (43) and (46), we have A n {9, 10, 11} = @, which contradicts (5.1). Therefore 16 ¢ A®.
Combining with (5.7) and (5.8), we have
17 € A®, (5.10)

By (5.10) and (44), we have 14 ¢ A®, which contradicts (5.2). Therefore, Category 8 cannot be used.
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Case 6. Category 9 is used. Without loss of generality, we suppose
AW ={1,9,15,19}. (6.1)

By (6.1), (30), (34) and (42), we have
AP n{1,5,6,9} = 0. (6.2)

Therefore, A®) cannot use Category 1,4 and 9, A®) must use Category 7. In this case, card{A® n{2, 3, 10, 11}} > 2,
which contradicts (6.1) and (55). Therefore, Category 9 cannot be used.

Case 7. Category 7 is used. Without loss of generality, we suppose
AW = (2,11, 16}. (7.1)
Since A N Pff) # 0 by (5), combining with (7.1), (9), (43) and the conclusion of Case 1, we have
AP n{9,11,14} + 0. (7.2)
Case 7.1.
9¢A®, (7.2.1)
Since only Category 1, 4 and 7 is still available, we have only three options for F®):

Case7.1.1.1If
AP = (8 9}, (7.2.1.1)

since A N Pff) # 0 by (5), combining with (7.1), (9), (36) and (39) we have 9 € A®). Combining with (7.2.1) and
(57), we have card{A® n {10, 11, 12, 16, 17, 18}} < 1, which contradicts (7.1).

Case7.1.2. If
A® ={1,9,18}, (7.2.1.2)
by (56) we have card{A) n {2, 3, 4, 16,17, 18}} < 1, which contradicts (7.1).

Case7.1.3.If
A® = {4,915}, (7.2.1.3)

since A n P # 0 by (5), combining with (9), (7.1), (32), (39) and (42) we have 10 € A®. Since only Category
1, 4 and 7 is still available, by the categorization before we have A® = {3,10,17}. Since A N PYD + 0 by (5),
combining with (6), (7.1), (31) and (35), we have 1 € A®. Combining with (7.2.1.3) and (56), we have card{A® n
{2,3,4,16,17,18}} < 1, which contradicts (7.1).

Case 7.2.
11 € A®, (7.2.2)

Since only Category 1, 4 and 7 is still available, by the categorization before, we have

A@ ={2,11,16}. (7.2.2.1)
Since A N Pff) # 0 by (5), combining with (7.1), (9), (39) and (43) we have 9 € A®, which is the same as Case 7.1,
up to symmetry.

Case 7.3.
14 € AP, (7.2.3)

In this case, we have

AP = (1,14}, (7.2.3.1)

by the categorization before. Since A N P{Y # 0 by (5), combining with (7.1), (7.2.3), (10), (31) and (41) we have
6 € AW, Therefore, we have
A® = (6,15}, (7.2.3.2)
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by the categorization before. By (7.2.3.1), (7.2.3.2) and (55), we have card{A® n {2,3,4,10,11,12}} < 1, which
contradicts (7.1).
As a conclusion, Category 7 cannot be used.

Case 8. Category 4 is used. Without loss of generality, we suppose
AW ={1,9,18}. (8.1)
Since only Category 1 and 4 is still available, combining with (8.1), (30) and (37), we have
AW = (8,9}, (8.2)

By (8.1), (8.2) and (37), we have
A® = 1,14}, (8.3)

By (8.3) and (41), we have 18 ¢ A", which contradicts (8.1). Therefore, Category 4 cannot be used.
Case 9. Category 1 is used by all the faces. Without loss of generality, we suppose

AW = (1,14} (9.1)
Since A N Pég) # 0 by (5), combining with (9.1), (10) and (41), we have

A% N {6,8} # 0. 9.2)

Without loss of generality, we suppose

A® = {6,15}. (9.3)
By (9.1), (9.3), (30) and (33), we have A® n {1, 8} = 0. Therefore, we have

AP = (6,15}, (9.4)

by the categorization before. By (9.1), (9.3), (9.4), (30) and (42), we have A n {1, 9, 15} = 6, which is a contradic-
tion, since Category 1 cannot be used in A®.

As a conclusion, for lattice packings O + A the condition (5) cannot hold, which means that y(0,A) > 7/6
holds for all lattice packings. In particular, since the lattice A generated by a; = (-3,1,1), a, = (},-3,1),
az = (1, % —%) given in [14], see also [1], can be easily verified to satisfy y(0, A) = 7/6, we obtain

y*(0) =17/6,

and Theorem 1 is proved. O

4 Several examples about Problem 1

In [E2, it is known that the density of the densest lattice packing of a smoothed octagon is smaller than the density
of the densest packing of a circular disk (see [7]) and the simultaneous packing-covering constant of a regular
octagon is bigger than the simultaneous packing-covering constant of a circular disk (see [21; 23]). However, in
IE3, some evidence supports Ulam’s conjecture (see [5]) which claims that the density of the densest packing of
a convex body attains its minimum at bhalls. In this section, we present some examples about the simultaneous
packing-covering analogy of Ulam’s conjecture.

Suppose that C is a centrally symmetric convex body in IE3. Let A be a lattice generated by {ay, az, a3}, let V
denote the set {0, a1, as, a; + ay, a3, as — ay}, and let P denote the convex hull of V. Then we have the following
criterion:

Lemma 4 (Zong [22]). IfP c C + V, then C + A is a lattice covering.
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In 2000, Betke and Henk [1] discovered an algorithm by which one can determine the density of the densest
lattice packing of any given three-dimensional convex polytope. As an application they calculated densest lattice
packings of all regular and Archimedean polytopes. Applying this criterion to Betke and Henk’s discoveries, we
obtain the following examples:

Example 1. Let C; be the octahedron defined by {(x1, X2, X3) : |x1] + [X2| + |x3] < 1} and let A1 denote the lattice
with the basis a; = (2/3,1,1/3), a, = (-1/3,-2/3,1) and ag = (-1,1/3,-2/3). One can prove that C1 + A is a
packing in E3 and that %Cl + A4 is a covering of IE3. Therefore we have

* 7 *
V(€< g<V53=y (B).
Example 2. We take 7 = (/5 + 1) and define

Co = {(x1, X2, X3) : |TX1| + |X2| < 1, || + [x3] < 1, |TX3] + [x1] < 1},

1 1 1
Cs = {(xl,Xz,X3) Slxal + Xl + X3l < 1, [T ] + |—X3| <1, |Txo| + |—X1‘ <1, |Txs] + |—Xz\ < 1},

T T T
C3=CynCs, and

C4=C20( 7+ 127 ) 5)

B+4(1+1

Usually, Cy, Cs, C3 and C, are called a dodecahedron, an icosahedron, an icosidodecahedron and a truncated
dodecahedron Let A, = A3 = Ay be the lattice with the basis a; = (0, = Tos 1+T) a = (1+T, s 1+T) and az =
(1”, 147, 0). One can prove that C; + A; is a packing in E3 and (V5 -1)C; + A;is a covering of E3 for i = 2,3, 4.
Therefore we have

p*(C) <V5-1<+5/3=p*B%  fori=23,4.

Example 3. We continue to use the notation of Example 2 and define

T
)

Usually, Cg is called a truncated icosahedron. Let A5 = Ag be the lattice with the basisa; = (%,0,0),a; = (0, 2 3,0)
and as = (3, D 3). One can prove that C; + A; is a packing in E3 and +/5/3C; + A; is a covering of E3 for i = 5
and 6. Therefore we have

iy
C6=C5ﬂ(
1+7

y*(Ci) < V/5/3 = y*(B®) fori=>5,6.

Remark 1. It is interesting that for an icosahedron the optimal lattices for the packing density are no longer
optimal for the simultaneous packing-covering constant. It is well-known (see [5; 20]) that for the unit ball B3,
the optimal lattices for the packing density are different from the optimal lattices for the covering density which
are identical with the optimal lattices for the simultaneous packing-covering constant.

Example 4. Let Cy denote the cube {(x1, X2, x3) : [X1], [X2l, |x3] < 1}. We define
C7=Con(2Cy).

Usually C7 is called a cubeoctahedron. Let A; denote the lattice with the basis a; = (2, - 3, 3) a; = (-1 3,2, %)
and a3 = (-1 5o~ 3, 2). One can prove that C; + A7 is a packing in E3 and 1 §C7 + A7 is a covering of IE3. Therefore
we have

p*(Cr) < = < \V5/3 = y*(B®).
Example 5. We define
Cs = {(x1, X2, X3) & [x1] + |X2] < 2+ 3V2, |x1] + X3 < 2+ 3V2, |X2| + |x3] <2 +3V2}n (2V2 +1)Co N (3V2 +3)Cy

Usually Cg is called a truncated cubeoctahedron. Let Ag denote the lattice with a basis a; = (7.6568---,
-2.0339---,2.0339---), a = (1.5185---,0.6901---,7.6568---) and as = (6.1383---,5.6228---,2.7241---).
One can prove that Cg + Ag is a packing in E? and /5/3Cg + Agisa covering of IE3. Therefore we have

P*(Cs) < V5/3 = y*(B).
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Example 6. We define
Co = {(x1, X2, X3) : Ix1] + X2l < 2, [X1| + Ix3] < 2, [Xa| + Ix3] < 2} N V2Co N (4~ V2)Cy.

Usually Cy is called a rhombic cubeoctahedron. Let A9 denote the lattice generated by a; = (0, 2, 2), a; = (2,0, 2)
and a3 = (2, 2, 0). It was shown in [1] that the density of the densest lattice packing of Cy is attained at Cg + Aq.
However, the simultaneous packing-covering constant of Cy + Ag is V2, which is much bigger than +/5/3. On the
other hand, let A; denote the body cubic center lattice generated by a; = (‘W‘"T\@, 0,0), az = (0, @, 0) and

az = (2(4’3‘/2), 2(4’3\/2), 2(4;\@ ). It can be verified that the simultaneous packing-covering constant of Cy + Ag is
between /5/3 and V2.
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