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In 1994, P. Shor discovered quantum algorithms that can break both the RSA cryptosystem and the ElGamal 
cryptosystem. In 2007, a Canadian company D-Wave demonstrated the first quantum computer. These events 
and quick further developments have brought a crisis to secret communication. In 2022, the National Institute 
of Standards and Technology (NIST) announced 4 candidates—CRYSTALS-Kyber, CRYSTALS-Dilithium, 
Falcon, and Sphincs+—for post-quantum cryptography standards. The first 3 are based on lattice theory and 
the last on Hash functions. In 2024, NIST announced 3 standards: FIPS 203 based on CRYSTALS-Kyber, FIPS 
204 based on CRYSTALS-Dilithium, and FIPS 205 based on Sphincs+. The fourth standard based on Falcon 
is on the way. It is well known that the security of the lattice-based cryptosystems relies on the hardness of 
the shortest vector problem (SVP), the closest vector problem (CVP), and their generalizations. In fact, the 
SVP is a ball packing problem and the CVP is a ball covering problem. Furthermore, both SVP and CVP are 
equivalent to arithmetic problems for positive definite quadratic forms. There are several books and survey 
papers dealing with the computational complexity of the lattice-based cryptography for classical computers. 
However, there is no review article to demonstrate the mathematical foundation of the complexity theory. 
This paper will briefly introduce post-quantum cryptography and demonstrate its mathematical roots in ball 
packing, ball covering, and positive definite quadratic forms.

Mathematical Cryptography
   In 1976, W. Diffie and M. E. Hellman [  1 ] proposed the principle 
of public key cryptography. One year later, the first public key 
cryptosystem RSA was invented by R. L. Rivest, A. Shamir, and 
L. Adleman [  2 ]. These events not only inaugurated a new era 
in secret communication but also marked the birth of mathe-
matical cryptography (see [  3 ,  4 ]), the public key cryptography 
based on mathematical theories. Since then, several other 
mathematical cryptosystems have been discovered, including 
the discrete logarithm cryptosystem invented by T. ElGamal 
[  5 ] in 1985, the elliptic curve cryptosystem ECC designed by 
V. S. Miller [  6 ] in 1985 and by N. Koblitz [  7 ] in 1987, respec-
tively, and the lattice-based cryptosystems AD discovered 
by M. Ajtai and C. Dwork [  8 ] in 1997, GGH invented by 
O. Goldreich, S. Goldwasser and S. Halevi [  9 ] in 1997, NTRU 
designed by J. Hoffstein, J. Pipher, and J. H. Silverman [  10 ] in 
1998, LWE discovered by O. Regev [  11 ] in 2005, and FHE 
invented by C. Gentry [  12 ] in 2009. In the past half century, 
mathematical cryptography has played a crucial role in the 
modern technology of computers and the internet. At the same 
time, it has been developed into an active interdisciplinary 
research field between mathematics and cryptography.

   Before Diffie-Hellman, both the enciphering process and 
the deciphering process of any secret communication used the 
same secret key. Ciphers of this sort are known as symmetric 
ciphers. If Bob wants to send a secret message  m    to Alice, they 
have to share a secret key  k   . Bob first scrambles his message  m    
by the key  k    to a ciphertext  c    and then sends it through some 

channel to Alice. When Alice receives the ciphertext  c   , she uses 
the secret key  k    to unscramble it and reconstitute  m   . During 
this process, if the communication channel is not secure, their 
adversary Eve can intercept not only the ciphertext  c    but also 
the secret key  k    and then reconstitute their secret message  m   .

   In the 1970s, when computers and networks were becoming 
part of daily life, symmetric ciphers were no longer efficient 
enough for key distribution, key management, and digital sig-
natures. In Diffie and Hellman’s ideal public key cryptosystem, 
enciphering and deciphering are governed by distinct keys,  ke    
and  kd   , such that computing the decryption key (the private 
key)  kd    from the encryption key (the public key)  ke    is compu-
tationally infeasible. All users of a network place their encryp-
tion keys in a public directory. Then, the users can encrypt their 
messages using the receivers’ public keys and decrypt the 
received messages using their own private keys. We now intro-
duce RSA, NTRU, and LWE as examples, since RSA is the first 
functioning public key cryptosystem and both NTRU and LWE 
are crucial for post-quantum cryptography.  

The RSA cryptosystem
   First, Alice chooses 2 large primes p and q, keeps them secret, 
defines  N = pq    implying
﻿﻿  

where  �(N)    is Euler’s totient function, and chooses an encipher-
ing exponent e satisfying

(1)�(N) =
(
p−1

)(
q−1

)
,
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﻿﻿  

In other words, e and  �(N)    have no common divisor. Then, she 
chooses  (N , e)    as the public key and publishes it. Of course, 
both Bob and Eve can get it. Second, Bob enciphers his plaintext 
﻿m    by Alice’s public key to the following ciphertext
﻿﻿  

and sends it to Alice. Third, since Alice knows  �(N) =
(
p−1

)
    

﻿
(
q−1

)
   , she can compute d satisfying

﻿﻿  

and decipher Bob’s message as
﻿﻿  

based on Euler’s formula
﻿﻿   

   In the RSA cryptosystem, besides Euler’s formula, 2 other 
mathematical results are also crucial. First, when p and q 
are known, it is relatively easy to compute the deciphering 
key d. For example, the Euclidean algorithm takes at most 
﻿2log2(�(N)) + 2    iterations to compute  gcd(e,�(N))    and it takes 
only a small multiple of  log2(�(N))    steps to compute d. On the 
other hand, without knowledge of p and q, to factorize the large 
integer N is hard. There are many electronic computer algo-
rithms to factorize large integers. However, none of them are 
efficient enough to break the RSA cryptosystem. The compu-
tational hardness of integer factorization is the security guar-
antee of the RSA cryptosystem.   

The NTRU cryptosystem
   Let N, p, q,  d1   , and  d2    be suitable integers. Let  ℤq    be the ring of 
integers modulo q, let     ,  p   , and  q    be 3 polynomial rings 
defined by
﻿﻿  

and let  T(d1, d2)    denote the set of all polynomials in      that has 
﻿d1    coefficients equal to 1,  d2    coefficients equal to −1, and all 
other coefficients equal to 0.

   First, Alice and Bob choose a group of public parameters 
﻿(N , p, q, d)    such that both N and p prime,

﻿﻿   

   and  q > (6d+1, )p   . Second, Alice chooses  k1 ∈ T(d + 1, d)    and 
﻿k2 ∈ T(d, d)    as private keys, where  k1    is invertible in both  p    
and  q   , computes the inverse  gp    of  k1    in  p    and the inverse ﻿gq    
of  k1    in  q   , computes

﻿﻿   

   and publishes  h    as the public key. Third, Bob chooses a random 
﻿r ∈ T(d, d)   , encrypts his plaintext  m ∈p    to

﻿﻿  

and sends the ciphertext  c    to Alice. Finally, when Alice receives 
﻿c   , she computes
﻿﻿  

lifts it to  m∙ ∈   , and decrypts as
﻿﻿   

   More precisely, we have
﻿﻿   

   Since  k1   ,  k2   ,  r   , and  m    are polynomials of small coefficients, 
﻿pk2r + k1m    has coefficients within  ( − q∕2, q∕2)    for proper 
parameters. This means that

﻿﻿      

The LWE cryptosystem
   Let n, m,  �   , t, r, and q be suitable integers and let  �    be a positive 
real number. Let  ℤn

q    denote the set of vectors  (a1, a2, . . . , an)    
with  ai ∈ ℤq   , and let  ℤn× �

q     denote the set of  n × �    matrices with 
entries  aij ∈ ℤq   . Furthermore, let  Ψ�    denote the distribution 
on  ℤq    obtained by sampling a normal variable with mean 0 and 
standard deviation  �q∕

√
2�   , rounding the result to the nearest 

integer, and reducing it modulo q, let f be the function that 
maps the message space  ℤ �

t     to  ℤ �
q    by multiplying each coordi-

nate by  q∕ t    and rounding to the nearest integer, and let  f −1    
denote the inverse of f.

   First, Alice and Bob choose a group of public parameters 
﻿
(
n,m, �, t, r, q, �

)
   . Second, Alice chooses  S ∈ ℤ

n× �
q     uniformly at 

random as the private key, takes  A ∈ ℤ
m×n
q     uniformly at random, 

takes  E ∈ ℤ
m× �
q     by choosing each entry according to  Ψ�   , and 

chooses  (A,P)    as the public key, where
﻿﻿  

Third, Bob chooses  a ∈ ℤ
m
t     uniformly at random and encrypts 

a message  v ∈ ℤ
�

t     to  (u, c)   , where  u = A�a    and
﻿﻿   

   Finally, when Alice receives  (u, c)   , she decrypts it by her secret 
key S as

﻿﻿   

   Lattice is a mathematical concept introduced by Gauss at 
the beginning of the 19th century and further developed by 
Minkowski and many others (see [  13 ,  14 ]). Let  a1, a2, … , an    be 
﻿n linearly independent vectors in the n-dimensional Euclidean 
space  �n   . We call

﻿﻿  

 an n-dimensional lattice and call  {a1, a2, . . . , an}    a basis of the 
lattice  Λ   .

   At the first glance, both NTRU and LWE have nothing to 
do with lattice. In fact, both of them can be reformulated in 

(2)gcd(e,�(N)) = 1.

(3)c ≡me (mod N)

(4)ed ≡1 (mod �(N))

(5)cd ≡med≡m (mod N),

(6)m�(N)≡1 (mod N) .

(7)

 = ℤ[x]∕
(
xN −1

)
,

p = ℤp[x]∕
(
xN −1

)
,

q = ℤq[x]∕
(
xN −1

)
,

(8)gcd(p, q) = gcd(N , q) = 1,

(9)h = gqk2,

(10)c≡prh+m
(
mod q

)
,

(11)m◦≡k1c
(
mod q

)
,

(12)m≡gpm
∙
(
mod p

)
.

(13)
m◦=k1c≡pk1gqk2r+k1m≡pk2r+k1m

(
mod q

)
.

(14)m∙ = pk2r + k1m.

(15)P = AS + E.

(16)c = P�a + f (v).

(17)v = f −1
(
c−S�u

)
.

(18)Λ =
{
z1a1+z2a2+ … +znan: zi∈ℤ

}
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lattice and their security depends on the computational com-
plexity of some lattice problems (see [  15 ]).    

Post-Quantum Cryptography
   The classical computer is based on the laws of electronics. Its 
fundamental unit of information is the binary digit (bit) 0 or 1. 
Sequences of bits are manipulated by Boolean logic gates, and 
a succession of gates yields a computation.  

Quantum Turing machine
   At the beginning of the 1980s, Y. I. Manin, P. Benioff, R. Feynman, 
and D. Deutsch started investigating the possibility of creating a 
computer based on the laws of quantum mechanics (see [  16 ]). 
In particular, Deutsch introduced the quantum Turing machine 
and quantum circuits in 1985.

   A quantum computer operates on quantum bits (or qubits). 
The state of a qubit can be represented as

﻿﻿   

   where  �0⟩    is its ground state,  �1⟩    is its excited state, and  �i    are 
complex numbers satisfying  ||�1||2 + ||�2||2 = 1.    In a system of n 
qubits, let  ��si⟩ = ���si1si2… sin

�
    denote the  2n    basis states with 

﻿si
j
∈ {0, 1}   , the superposition of states can be represented as
﻿﻿   

   where  �i    are complex numbers satisfying  
∑���i��2 = 1   , and ﻿||�i||2    

represents the possibility of the system yield state  ��si⟩   . The quan-
tum computer manipulates qubits via quantum logic gates to 
process computations. A quantum logic gate will change one 
superposition of states to one other superposition of states by 
a unitary transformation, where unitary means that the conju-
gate transpose of the transformation matrix is equal to its 
inverse. For example, suppose a quantum computer of 3 qubits 
is in the superposition of states

﻿﻿   

   and the logic gate changes the last 2 qubits of the state by
﻿﻿   

   Then, the computer will go to the superposition of states
﻿﻿   

   Since the state of the output of a quantum computer can be 
a coherent superposition of states corresponding to different 
solutions of a problem, it may allow many computations to be 
done simultaneously and quickly (see [  17 ]).   

Quantum computing
   In the early 1990s, when the quantum computer was not yet 
born, Deutsch, R. Jozsa, Shor, and L. Grover started to explore 
quantum computing (see [ 16 ]). First, Deutsch and Jozsa [  18 ] 
presented a problem that can be solved by a quantum computer 
with certainty in polynomial time, which is exponentially less 
time than any classical deterministic computer, and less than 
the expected time of any classical stochastic computer.

   Almost at the same time, Shor [  19 ] discovered polyno-
mial time quantum algorithms to deal with the discrete 
logarithm problem and the factorization problem. Assume 
that  0 ≤     a < q    and

﻿﻿   

   is the binary representation of a. Then, he defines the state 
﻿�a⟩ = ���k−1�k−2⋯ �0⟩    and introduces the following unitary 
transformation:

﻿﻿   

   This transformation, as a quantum logic gate, plays a key 
role in his algorithms. A decade later, J. Proos and C. Zalka [  20 ] 
succeeded in modifying Shor’s discrete logarithm quantum 
algorithm for elliptic curves. It follows that once there is a func-
tioning quantum computer, Shor’s algorithms could break the 
RSA cryptosystem, the ElGamal cryptosystem, and the ECC 
cryptosystem. Over the years, several improvements to Shor’s 
algorithms have been discovered. For example, the one was 
announced by Regev [  21 ] in 2023.   

Quantum computer
   In 1998, the first quantum computer models appeared at Oxford 
University, IBM’s Almaden Research Center, and Los Alamos. In 
2007, a Canadian company D-Wave demonstrated the Orion sys-
tem, a 16-qubit quantum annealing processor, running 3 different 
applications at the Computer History Museum in Mountain View, 
California. This marked the first public demonstration of a quan-
tum computer. In 2011, D-Wave announced D-Wave One, operat-
ing on a 128-qubit chipset using quantum annealing to solve 
optimization problems. In the following years, several companies 
developed gate model quantum machines, including Google, IBM, 
Intel, and Rigetti. Gate model quantum computers use gates simi-
lar in concept to classical computers but with vastly different logic 
and architecture. By 2020, there were about a hundred working 
quantum computers worldwide.

   In 2001, a group of researchers at IBM successfully applied 
Shor’s algorithm to factorize 15, using nuclear magnetic reso-
nance. In 2019, the numbers 15, 21, and 35 were factorized by 
applying Shor’s algorithm on a 6-qubit IBM quantum processor 
(see [  22 ]).   

Post-quantum cryptography
   As larger and larger quantum computers are built, crypto
systems such as RSA, ElGamal, and ECC will no longer be 
secure, so post-quantum cryptography will be critical for the 
future of secret communication.

   In 2006, the first international workshop on post-quantum 
cryptography took place at the Katholieke Universiteit Leuven. 

(19)�1�0⟩ + �2�1⟩,

(20)
2n�
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��si⟩,
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Since then, post-quantum cryptography has gradually become 
an important research branch of cryptography. In particular, it 
has become a focus topic of CRYPTO, EUROCRYPT, and 
ASIACRYPT.

   In 2016, the National Institute of Standards and Technology 
(NIST) launched a global project to solicit and select a handful 
of encryption algorithms with the ability to resist quantum 
computer attacks. On 2022 July 5, after 3 rounds of competition 
and selection, NIST announced 4 algorithms that will underpin 
its future cryptography standards. They include one algorithm 
(CRYSTALS-Kyber) for general encryption and key establish-
ment purposes and 3 (CRYSTALS-Dilithium, Falcon, and 
Sphincs+) for digital signatures (see [  23 –  25 ]). On 2024 August 13, 
the agency announced 3 post-quantum cryptography stan-
dards: FIPS 203 based on CRYSTALS-Kyber, FIPS 204 based 
on CRYSTALS-Dilithium, and FIPS 205 based on Sphincs+. 
The fourth standard based on Falcon is on the way. On 
2024 November 12, NIST published the guideline “Transition 
to post-quantum cryptography standards”, which lists detailed 
route and time table. In fact, many high-tech companies and 
institutions have already completed the transition.

   It is well known that both CRYSTALS-Kyber and CRYSTALS-
Dilithium are based on LWE, Falcon is based on NTRU, and 
Sphincs+ is based on Hash functions. Both NTRU and LWE 
are lattice-based cryptosystems. Lattice-based cryptography 
was born more or less at the same time of Shor’s quantum algo-
rithms for the discrete logarithm problem and the factorization 
problem (see [  26 –  28 ]). It has been explored as a key candidate 
for post-quantum cryptography ever since.    

The Shortest Vector Problem and the Closest 
Vector Problem
   No one can predict the future of the post-quantum cryptogra-
phy. Currently, a decisive role is played by lattice-based cryp-
tosystems. No matter how different in form, the security of all 
known lattice-based cryptosystems and algorithms relies on 
the computational complexity of the following 2 problems and 
their variations:

   The shortest vector problem (SVP): Find a shortest non-
zero vector in an n-dimensional lattice  Λ   , i.e., find a nonzero 
vector  v ∈ Λ    that minimizes the Euclidean norm  ‖v‖   .

   The closest vector problem (CVP): Given a vector  x ∈ �
n    

that is not in  Λ   , find a vector  v ∈ Λ    that is closest to  x   , i.e., find 
a vector  v ∈ Λ    that minimizes the Euclidean norm  ‖v−x‖   .

   In fact, the security of all AD , NTRU, and LWE depends on 
the complexity of SVP and its variations, and the security of 
GGH and NTRU is based on the complexity of CVP and its 
approximation (see [ 15 ,  27 ]).  

Complexity theory of classical computer
   A Turing machine      runs in time t(n) if, for every input string 
﻿s    of length n over some fixed input alphabet,  (s)    halts after 
at most t(n) steps. Efficient computation with a Turing machine 
means that it halts in polynomial time in the size of the input, 
i.e., the Turing machine runs in time  t(n) = a + nb    for some 
constants a and b independent of n.

   A decision problem consists of deciding whether the input 
string satisfies some specified property or not. The class of deci-
sion problems that can be solved by a deterministic Turing 
machine in polynomial time is called     . The class of decision 

problem that can be solved by a nondeterministic Turing 
machine in polynomial time is called     . Clearly, we have 
﻿ ⊆   . It is widely believed that   ≠   , i.e., there are      
problems that cannot be solved in deterministic polynomial 
time. In fact, to prove or disprove   =    is a fundamental 
problem in both mathematics and computer science.

   Let  P1    and  P2    be 2 decision problems consisting of strings 
of alphabet. A reduction from  P1    to  P2    is a polynomial time 
computable function f such that  s ∈ P1    if and only if  f (s) ∈ P2   . 
Clearly, if  P1    reduces to  P2    and  P2    can be solved in polynomial 
time, then  P1    can also be solved in polynomial time. A decision 
problem P is     -hard if any other      problem Q reduces to 
﻿P. If P is also in     , then P is     -complete. Evidently, if a 
problem P is     -hard, then P cannot be solved in polynomial 
time unless   =   .   

The complexity of SVP for the classical computer
   First, a lattice may have many shortest vectors. It is easy to see 
that the integer lattice  ℤn    has 2n shortest vectors. It is known 
that the 8-dimensional  E8    lattice has 240 shortest vectors and 
the 24-dimensional Leech lattice has  196,560    shortest lattice 
vectors. In general, an n-dimensional lattice  Λ    has at most
﻿﻿   

   shortest vectors (see [ 14 ]). However, lattice-based cryptography 
uses random lattices rather than a particular one, so the fol-
lowing result is pertinent.

   Theorem 3.1 (Södergren [  29 ]). In  �n   ,  n ≥ 2   , a random lat-
tice has exactly one pair  (±v)    of shortest nonzero vectors, i.e., 
if we randomly pick a lattice, the probability of it having only 
one pair of shortest lattice vectors is one.

   It is interesting to notice that Theorem 3.1 was proved only 
in 2010, much later than it was applied in lattice-based cryptog-
raphy. Obviously, it has been taken for granted by cryptogra-
phers. Nevertheless, if Theorem 3.1 were not true, the SVP-based 
cryptosystems would be impossible.

   Usually, lattices are given by their bases. One may intuitively 
believe that the bases should contain some short lattice vector. 
In fact, this is far from the truth. For example, let  Λ    be the 
integer lattice  ℤ2   , let m be a large integer, and define 
﻿a1 = (1,m+1)    and  a2 = −(1,m)   . It can be verified that  

{
a1,a2

}
    

is a basis of  Λ    and
﻿﻿  

In other words, both vectors of a basis of  Λ    can be arbitrarily 
long. Nevertheless, the length of the shortest vectors of a lattice 
﻿Λ    can be bounded in terms of its determinant  det(Λ)   . In 1891, 
Minkowski obtained the following fundamental result about 
the length of the shortest lattice vector.

   Theorem 3.2. Every lattice  Λ    of dimension n contains a 
nonzero vector  v    satisfying

﻿﻿   

   This result tells us the approximate range of the shortest 
lattice vectors. It can be regarded as the first cornerstone of the 
lattice-based cryptography.

   At the beginning of the 1980s, about 2 decades before lattice-
based cryptography was born, people started to study the 

(26)20.401n(1+o(1))

(27)��a1�� ≥ ��a2�� =
√
1 +m2.

(28)‖v‖ ≤
�√

2∕�e+o(1)
�

n
√
det(Λ)

√
n.
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computational complexity of lattices. In 1981, P. van Emde Boas 
[  30 ] made the following conjecture.

   Conjecture 3.1. The SVP is     -hard.
   In the same paper, he proved that the SVP in the  L∞    norm 

is indeed     -hard. However, 40 years later, the Euclidean case 
is still open today. Meanwhile, research has turned toward ran-
domized reduction and approximation. Unlike deterministic 
reduction, randomized reduction allows the mapping function 
to be computable in polynomial time by a probabilistic algo-
rithm. (A probabilistic Turing machine is a nondeterministic 
Turing machine that chooses between the available transitions 
at each point according to some probability. A quantum com-
puter is another model of computation that is inherently proba-
bilistic.) Therefore, the output of the reduction is only required 
to be correct with sufficiently high probability. In 1997, Ajtai 
[  31 ] proved the following theorem.

   Theorem 3.3. The SVP is     -hard under randomized 
reduction.

   In fact, even approximating the shortest vector is not easy. 
In 1998, D. Micciancio improved Ajtai’s theorem, showing that 
approximating the shortest vector within a factor  

√
2    under 

randomized reduction is     -hard. In 2005, S. Khot [  32 ] 
proved the following theorem.

   Theorem 3.4. To approximate the shortest vector of an 
﻿n-dimensional lattice within any constant factor c under ran-
domized reduction is     -hard.

   All Ajtai, Micciancio, and Khot’s works deal with general  Lp    
norms. For simplicity, we only concentrate on the Euclidean 
case. Theorem 3.4 has been further extended by I. Haviv, Regev, 
and others.

   In 2004, Ajtai [  33 ] introduced a new problem, called the short 
integer solution (SIS) problem, over random q-ary lattices. He 
proved that, under certain hypotheses, solving SIS over a lattice 
chosen randomly from an easily samplable distribution is at least 
as hard as approximating the SVP for any lattice.   

The complexity of CVP for the classical computer
   In 1981, when he proposed Conjecture 3.1, van Emde Boas 
proved that CVP is     -hard. On the other hand, it can be shown 
that CVP is in     . Thus, we have the following theorem.

   Theorem 3.5. The CVP is     -complete.
   As with the SVP, there are many complexity results about 

approximating the CVP. We cite one of them here as an example.
   Theorem 3.6 (Dinur, Kindler, Raz and Safra [  34 ]). To 

approximate the closest vector of an n-dimensional lattice to a 
given point of  �n    within a factor  nc∕loglogn   , where c is some abso-
lute constant, is     -hard.

   It was conjectured by L. Babai in 1986 that the SVP is not 
harder than the CVP. In 1999, this conjecture was proved by 
Goldreich et al. [  35 ]. On the other hand, in practice, a CVP in 
dimension n can usually be transformed into solving an SVP 
in dimension  n + 1   ; so, for cryptographic purposes, they tend 
to be of roughly equal difficulty.

   Theorem 3.7. There is an approximation-preserving poly-
nomial time reduction from the SVP to the CVP.   

The Lenstra–Lenstra–Lovász algorithm
   Since every pair of bases of a lattice is connected by a unimodular 
matrix, when the initial basis of the lattice is not very good (for 
example, from the perspective of orthogonality), one may hope 

to reduce it to a good one. It is easy to show that, if  v1    is one of 
the shortest vectors of the lattice, it has a basis with  v1    as one of 
the n generators. Many great mathematicians have made contri-
butions in reduction theory, including Lagrange, Gauss, Hermite, 
Minkowski, Voronoi, Korkin, and Zolotarov (see [ 14 ,  36 ]). 
Nevertheless, in higher dimensions, finding or even approximat-
ing the shortest vector turns out to be extremely hard. In 1982, 
A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász [  37 ] proposed an 
algorithm (known as the LLL algorithm), which can not only 
efficiently approximate the shortest vector of a lattice but also 
approximate the closest vector.

   Theorem 3.8. Let  Λ    be an n-dimensional integer lattice, i.e., 
﻿Λ ⊆ ℤ

n   , and let  �(Λ)    denote the length of the shortest nonzero 
vector of  Λ   . The LLL algorithm can find a nonzero lattice vector 
﻿v ∈ Λ    in polynomial time satisfying

﻿﻿   

   Theorem 3.9 (Babai [  38 ]). There are polynomial time algo-

rithms that solve the CVP within a factor  2
�
2∕

√
3
�n

   . In other 
words, for any  x ∈ �

n    one can find a lattice vector  v ∈ Λ    
satisfying

﻿﻿   

   In both Theorem 3.8 and Theorem 3.9, the approximation 
factors are exponential in the dimensions. Over the years, many 
efforts have been made to improve the approximation factors, 
such as the BKZ algorithm proposed in 1987 by C.-P. Schnorr 
and R. Kannan (see [  39 ]). Nevertheless, no real progress has 
been achieved. Essentially, all these algorithms are based on 
various types of basis reductions, which will be introduced in 
the last section. 

   SVP and CVP have several variants and generalizations that 
are useful in lattice-based cryptosystems as well, such as SVPγ, 
CVP γ , GapSVP, GapCVP, the shortest basis problem (SBP), the 
quasi-orthogonal basis problem (QOBP), the successive min-
ima problem (SMP), the shortest independent vector problem 
(SIVP), the shortest diagonal problem (SDP), and the densest 
sublattice problem (DSP) (see [ 13 , 15 , 27 , 28 ,  40 ]). For example, 
let  Λ    be an n-dimensional lattice and let k be a given positive 
number, the GapSVP with approximation factor  γ(n)    asks to 
decide whether  �(Λ) ≤ k    or  �(Λ) > γ(n)k   .   

The complexity of SVP and CVP for the  
quantum computer
   Since the birth of Shor’s quantum algorithms for discrete loga-
rithms and factoring in 1994, in particular since the NIST initi-
ated the post-quantum cryptography competition in 2016, 
people have tried hard to search for efficient quantum comput-
ing algorithms for the SVP and the CVP, or tried to prove that 
there is no such algorithm. Up to now, none of this effort has 
succeeded. This failure led to the following conjectures.

   Conjecture 3.2. There is no polynomial time quantum algo-
rithm that can approximate the SVP within a polynomial factor.

   Conjecture 3.3. There is no polynomial time quantum algo-
rithm that can approximate the CVP within a polynomial factor.

   If Conjectures 3.2 and 3.3 are correct, they will provide evi-
dence for the security of lattice-based cryptosystems in the 
quantum computing era. For the updated computational results, 
we refer the readers to [  41 ].    

(29)‖v‖ ≤
�
2∕

√
3
�n

�(Λ).

(30)‖x−v‖ ≤ 2
�
2∕

√
3
�n

d(x,Λ).
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Ball Packing and Ball Covering
   Let  Bn    denote the n-dimensional unit ball  

�
x:

∑
x2
i
≤1

�
    in  �n    

and let X denote a discrete set of points in  �n   . We call 
﻿Bn + X =

{

Bn+xi : xi∈X
}

    a ball packing (in discrete geometry, 
it is called sphere packing rather than ball packing) if the inte-
riors of the balls are disjoint. In particular, we call it a lattice 
ball packing if X is a lattice. Let  �(Bn)    denote the density of the 
densest ball packings in  �n    and let  �∗(Bn)    denote the density of 
the densest lattice ball packings. Clearly, we have
﻿﻿   

   Assume that  Λ    is an n-dimensional lattice in  �n   . Let  �(Λ)    
denote the length of the shortest nonzero vectors of  Λ    and take 
﻿r = �(Λ)∕2   . It is easy to see that  rBn + Λ    is a lattice ball packing 
in  �n    (see Fig.  1 ). Then, the SVP can be reformulated in terms 
of ball packing.        

   SVP in ball packing.  For a given n-dimensional lattice  Λ   , 
find the largest number r such that  rBn + Λ    is a ball packing 
and the corresponding balls that touch  rBn    at its boundary.

   In fact, based on the previous discussion, one can deduce 
the following connection between the length  �(Λ)    of the short-
est nonzero vector of a lattice  Λ    and the ball packing densities 
﻿�∗(Bn)    and  �(Bn)   .

   Theorem 4.1. Let  Λ    be an n-dimensional lattice and let  �n    
denote the volume of  Bn   . We have

﻿﻿   

   Ball packing, including the study of  �(Bn)    and  �∗(Bn)   , is a 
classic subject in mathematics. It has been studied by many 
prominent mathematicians including Kepler, Newton, Gauss, 
and Minkowski (see [ 14 ]). However, our knowledge in this field 
is still very limited.

   In 1594, T. Harriot discovered the face-centered cubic 
lattice ball packing in  �3    and determined that its density is 
﻿�∕

√
18 = 0.74 ⋯   . However, he was not able to prove that the 

density is the maximum. Then, he told his discovery to Kepler. 
In 1611, Kepler made the following conjecture: The density of 
the densest ball packing in  �3    is  �∕

√
18   . In other words,

﻿﻿  

In 1694, Newton and D. Gregory discussed the following prob-
lem: Can 13 unit balls in  �3    be brought into contact with a fixed 
one? These 2 natural and simple sounding problems initiated 
ball packing as a field of mathematical research. Some key 
results about  �∗(Bn)    and  �(Bn)    are summarized in Table  1  (see 
[ 14 ,  42 ,  43 ]).﻿

   Besides Theorem 4.1, reduction methods to determine the 
values of  �∗(Bn)    are useful in algorithms for SVP and CVP. For 
example, the Korkin–Zolotarov reduction is employed in the 
block Korkin–Zolotarov algorithm developed by Schnorr [ 39 ] 
in 1987.

   In general dimensions, we have
﻿﻿   

   for a suitable positive constant c, where a weaker lower 
bound was first proved by Minkowski in 1905, then improved 
and generalized by E. Hlawka, C. L. Siegel, H. Davenport, 
C. A. Rogers, W. M. Schmidt, B. Klartag, and others (see [  44 ]), 
and the upper bound was proved by G. A. Kabatjanski and 
V. I. Levenštein in 1978 (see [ 14 ]). Clearly, the upper bound 
and Theorem 4.1 have the following corollary, which is an 
improvement of Theorem 3.2.

   Corollary 4.1. Every lattice  Λ    of dimension n contains a 
nonzero vector  v    satisfying

﻿﻿   

   There are hundreds of papers on ball packing, employing 
methods and tools from various fields of mathematics. As well, 
there are many fascinating open problems on ball packing. 
Here, we list 2 of them as examples.

(31)�∗
(
Bn

)
≤ �

(
Bn

)
.

(32)𝓁(Λ) ≤ 2 n

�
det(Λ) ⋅ �∗(Bn)∕�n ≤ 2 n

√
det(Λ) ⋅ �(Bn)∕�n.

(33)�
�
B3
�
=

�√
18

.

(34)cn22−n ≤ �∗
(
Bn

)
≤ �

(
Bn

)
≤ 2−0.599n(1+o(1))

(35)∥v∥ ≤
�

�
−0.5

e
−0.5

2
−0.099+o(1)

�

n
√

det(Λ)
√

n.

Fig. 1. SVP in ball packing. The balls of the radii of half the length of the shortest 
lattice vectors form a lattice packing.

Table 1. Known results about ball packing densities

n �∗
(

Bn
)

Author Date �
(

Bn
)

Author Date

 2 �
√

12
Lagrange 1173 �

√

12
Thue 1892

 3 �
√

18
Gauss 1831 �

√

18
Hales 2005

 4 �2

16

Korkin,  
Zolotarev 1872

?? ??

 5 �2

15

√

2

Korkin,  
Zolotarev 1877

?? ??

 6 �3

48

√

3

Blichfeldt 1925 ?? ??

 7 �3

105

Blichfeldt 1926 ?? ??

 8 �4

384

Blichfeldt 1934 �4

384

Viazovska 2017

 24 �12

12 !

Cohn,  
Kumar 2009

�12

12 !

Cohn, Kumar, 
Miller, Radchenko, 

Viazovska 2017
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   Problem 4.1. Determine the asymptotic orders of  �∗(Bn)    
and  �(Bn)   , if they exist.

   Problem 4.2. Is there a dimension n satisfying
﻿﻿   

   Clearly, a solution to Problem 4.1 will provide further 
improvement of Theorem 4.1 and better understanding of SVP. 
Similar to the ball case, one can define and study lattice packing 
of any centrally symmetric convex body, which corresponds to 
the SVP in a metric linear space.

   Assume that  Λ    is an n-dimensional lattice in  �n   . For every 
point  x ∈ �

n   , we define the distance between  x    and its closest 
lattice point  v ∈ Λ    as  d(x,Λ)   . Then, we define

﻿﻿  

It is easy to see that  �(Λ)Bn + Λ    is a covering of  �n    (see Fig. 2 ). 
In fact,  �(Λ)    is the smallest radius  �    such that  �Bn + Λ    is a 
covering of  �n   .

   CVP in ball covering.  Given an n-dimensional lattice  Λ   , 
find the smallest number  �    such that  �Bn + Λ    is a covering of 
﻿�n   . For any  x ∈ �

n   , find a lattice point  v ∈ �Bn + x   .
   Clearly, finding a lattice point  v ∈ �Bn + x    is slightly sim-

pler than the CVP. However, this covering model can illus-
trate the fundamental difficulty of the CVP. First, unlike 
Theorem 3.2 and Theorem 4.1, there is no upper bound 
for  �(Λ)    in terms of  det(Λ)    and n. Let m be a large integer, 
take  a1 = (m, 0)    and  a2 = (0,1∕m)   , and define  Λ    to be the 2- 
dimensional lattice generated by  a1    and  a2   . Then, we have 
﻿det(Λ) = 1   . If  x = (m∕2, 1∕2m)   , one can easily deduce that

﻿﻿  

 Apparently,  �(Λ)    can not be bounded from above just in terms 
of  det(Λ)   .        

   Let  �(Bn)    denote the density of the thinnest ball covering of 
﻿�n    and let  �∗(Bn)    denote the density of the thinnest lattice ball 
covering of  �n   . As a counterpart to Theorem 4.1, we have the 
following relation between  �(Λ)    and  �∗(Bn)   .

   Theorem 4.2. Let  Λ    be an n-dimensional lattice and let  �n    
denote the volume of  Bn   . We have

﻿﻿   

   Ball covering, in certain sense, is regarded as a dual concept 
of ball packing. In fact, they are not much related. Up to now, 
the known exact results about  �(Bn)    and  �∗(Bn)    are summarized 
in Table  2 .

﻿   In general dimensions, there is a constant c such that
﻿﻿  

where the lower bound was achieved by H. S. M. Coxeter, 
L. Few, and Rogers in 1959, and the upper bound was discov-
ered by Rogers in 1959 (see [ 21 ,  45 ,  46 ]). Clearly, the lower 
bound and Theorem 4.2 have the following corollary, which in 
certain sense shows the complexity of CVP.

   Corollary 4.2. Let  Λ    be an n-dimensional lattice. We have
﻿﻿   

   Corollary 4.1 and Corollary 4.2 together provide an explana-
tion for Theorem 3.7, i.e., the CVP is harder than the SVP.

   One may realize that there are very few concrete results on 
ball covering in the past half a century, particularly compared 
to ball packing. It is fascinating to notice that, unlike the pack-
ing case, the thinnest lattice ball covering in  �8    is not achieved 
by the  E8    lattice. At least, the  A∗

8
    lattice provides a ball covering 

with a density thinner than the  E8    lattice. Therefore, the follow-
ing problem is important and perhaps very challenging.

   Problem 4.3. Determine the values of  �∗
(
B8
)
   ,  �

(
B8
)
   , 

﻿�∗
(
B24

)
   , and  �

(
B24

)
   .  

Two bridges connecting SVP and CVP
   Let  n    denote the family of all n-dimensional lattices. In 1950, 
Rogers defined and studied
﻿﻿  

where  �(Λ)    is the length of the shortest nonzero vectors of  Λ    
and  �(Λ)    is the maximum distance between a point  x ∈ �

n    and 
its closest lattice point. They are known as Rogers’ constants.

   From the intuitive point of view, one may think that  �∗(Bn)    
can be arbitrarily large when  n→ ∞   . Surprisingly, Rogers 
proved by a reduction method that

﻿﻿  

(36)�∗
(
Bn

)
≠ �

(
Bn

)
?

(37)�(Λ) = max
x∈�n

d(x,Λ).

(38)�(Λ) = d(x,Λ) =
1

2

√

m2 + 1∕m2.

(39)�(Λ) ≥
n

�
det(Λ) ⋅ �∗(Bn)∕�n ≥

n
√
det(Λ) ⋅ �(Bn)∕�n.

(40)(1+o(1))
n√
e3

≤ �
�
Bn

�
≤ �∗

�
Bn

�
≤ cn

�
logen

�log2√2�e
,

(41)�(Λ) ≥
�
(2�e)−0.5+o(1)

�
n
√
det(Λ)

√
n.

(42)�∗
(
Bn

)
= min

Λ∈n

2�(Λ)

�(Λ)
,

(43)�∗
(
Bn

)
≤ 3

Fig. 2. CVP in the ball covering. The balls of radii of the maximum distance between 
a point to its closest lattice vectors form a lattice covering.

Table 2. Known results about ball covering densities

n �∗
(

Bn
)

Author Date �
(

Bn
)

Author Date

 2 2�

3

√

3

Kersshner 1939 2�

3

√

3

Kersshner 1939

 3 5

√

5�

24

Bambah 1954 ?? ??

 4 2�2

5

√

5

Delone,  
Ryskov 1963

?? ??

 5 245

√

35�2

3888

√

3

Ryskov,  
Baranovskii 1975

?? ??
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holds in every dimension. In 1972, via mean value techniques 
developed by Rogers and Siegel, G. L. Butler improved Rogers’ 
upper bound to
﻿﻿   

   It follows from Rogers’ upper bound that, for many n-dimen-
sional lattices, the longest distance in CVP is only a constant 
multiple of the length of the SVP. In recent years, this idea has 
been applied to cryptographic analysis by Micciancio [  47 ] and 
others.

   The constant  �∗(Bn)    has a couple of different interpretations. 
For example,  �∗(Bn)    is the largest number such that every lattice 
ball packing  Bn + Λ    has a hole into which one can put a ball of 
radius  �∗(Bn) − 1   . In the 1980s, several mathematicians studied 
﻿�∗(Bn)    from different respects. Up to now, the known exact 
results are listed in Table  3 .

﻿   Just like the ball covering case, there are many important 
open problems about  �∗(Bn)   . We list 2 of them here as 
examples.

   Problem 4.4. Determine the values of  �∗
(
B8
)
    and  �∗

(
B24

)
   , 

and their corresponding lattices.
   Problem 4.5. Is there a dimension n such that
﻿﻿   

   What is known about the Leech lattice supports the conjec-
ture that  �∗

�
B24

�
=
√
2   . If one can improve Butler’s upper 

bound to  �∗(Bn) ≤ 2 − c   , where c is a positive constant, the 
lower bound for  �∗(Bn)    will be improved to

﻿﻿  

If a dimension n can be found such that  �∗(Bn) ≥ 2   , then
﻿﻿   

   which would solve Problem 4.2. It is easy to see that  �∗(Bn)    can 
be generalized from the ball to arbitrary centrally symmetric 
convex bodies. For more on  �∗(Bn)    and its generalizations, we 
refer to [  48 –  50 ].

   There is another important notion that is closely related to 
both the SVP and the CVP, the Dirichlet–Voronoi cell of  Λ   :

﻿﻿  

Roughly speaking, D is the set of points that are closer to the 
origin than any other lattice point. Clearly, D is a centrally sym-
metric polytope such that  D + Λ    is a tiling of  �n    (see Fig.  3 ).        

   Furthermore, one can deduce that
﻿﻿  

and 
﻿﻿  

Therefore, the Dirichlet–Voronoi cell of a lattice encodes infor-
mation about both SVP and CVP. In fact, the CVP can be refor-
mulated as:

   CVP in D–V cell. Let  Λ    be an n-dimensional lattice and  x    
be an arbitrary point of  �n   . If D is the Dirichlet–Voronoi cell 
of  Λ   , find a lattice point  v    satisfying  x ∈ D + v   .

   We end this section with 2 well-known problems about the 
Dirichlet–Voronoi cells of lattices.

   Problem 4.6. When  n ≥ 6   , classify all Dirichlet–Voronoi 
cells of the n-dimensional lattices, i.e., determine their geomet-
ric shapes.

   Voronoi’s conjecture. Every parallelotope is an affine image 
of a lattice Dirichlet–Voronoi cell.

   When  n ≤ 5   , both Problem 4.6 and Voronoi’s conjecture have 
been solved. The Dirichlet–Voronoi cell has been applied to lattice-
based cryptography by Micciancio and others since 2010.    

Positive Definite Quadratic Forms
   Let  Λ    be a lattice with a basis  

{
a1,a2,… ,an

}
   , where  ai =

    
(
ai1,ai2,… ,ain

)
   , and let A denote the  n × n    matrix with entries 

﻿aij   . Then, the lattice can be expressed as
﻿﻿   

   and the norms of the lattice vectors can be expressed as a posi-
tive definite quadratic form

﻿﻿   

   where  A′    and  z′    indicate the transposes of A and  z   , respectively. 
Assume that

﻿﻿   

   is a positive definite quadratic form of n variables, where  cij = cji    
and C is the symmetric matrix with entries  cij   . It is known that 
there is an  n × n    matrix A satisfying  C = AA�   . Then, the qua-
dratic form also produces a lattice

(44)�∗
(
Bn

)
≤ 2 + o(1).

(45)�∗
(
Bn

)
≥ 2?

(46)�∗
(
Bn

)
≥ (2−c)−n.

(47)�∗
(
Bn

)
≠ �

(
Bn

)
,

(48)D=
�
x: ⟨x, v⟩ ≤

1

2
⟨v,v⟩ for all v∈ Λ� {o}

�
.

(49)�(Λ)=2min{d(o,F): F is a facet of D}

(50)�(Λ)=max{∥v∥: v is a vertex of D}.

(51)Λ =
{
zA: z∈ℤ

n
}

(52)Q(z) = ⟨zA, zA⟩ = zAA�z�,

(53)Q(x) =
∑

1≤ i,j≤n

cijxixj = xCx�

Fig. 3. CVP in D–V cell. The Dirichlet–Voronoi cells form a lattice tiling.

Table 3. Known results about Rogers’ constants

n 2 3 4 5

  �∗
(

Bn
)

   2∕
√

3

√

5∕3
�

2

√

3

�
√

3−1
�

√

3

2
+

√

13

6

 Author 
Date

﻿ Boroczky 
1986

Horvath  
1982

Hovarth 
1986
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﻿﻿   

   Therefore, there is a nice correspondence between lattices 
and positive definite quadratic forms. Then, the SVP is equiva-
lent to the following problem.

   SVP in quadratic form. Find a nonzero vector  z ∈ ℤ
n    that 

minimizes the positive definite quadratic form  Q(z)   .﻿
   Let  dis(Q)    be the discriminant of the quadratic form  Q(x)    

and let  n    denote the family of all positive definite quadratic 
forms in n variables. Then, we define

﻿﻿  

and 
﻿﻿   

   Usually,  �n    is called Hermite’s constant. These constants are 
closely related to the densities  �∗(Bn)    of the densest lattice ball 
packings. Since  �(Λ) =

√
m(Q)    and  dis(Q) = det(Λ)2   , one can 

easily deduce that
﻿﻿  

where  �n    is the volume of the n-dimensional unit ball  Bn   . In 
fact, all the known exact results about  �∗(Bn)     

(
except�∗

(
B24

))
    

were derived from the known results about  �n    (see Table  4 ).﻿
   In lattice-based cryptography, approximating SVP is practi-

cally important. In fact, both SIS and LWE can be reduced to 
this type of problems. Let γ be a suitable positive number or a 
suitable function of n. Then, the SVPγ asking, for any given 
﻿n-dimensional lattice  Λ   , to find a nonzero lattice point  v ∈ Λ    
satisfying

﻿﻿  

In terms of positive definite quadratic forms, the SVP �    can be 
reformulated as:

   SVPγ in quadratic form. For a given positive definite qua-
dratic form  Q(z)    and a suitable approximation parameter  �   , find 
a nonzero integral solution  z    to

﻿﻿   

   In 1953, R. A. Rankin [  51 ] introduced a generalization of 
Hermite’s constant. Let r be an integer,  1 ≤ r ≤ n − 1   , and let 
﻿mr(Q)    denote the lower bound of any principal minor of order 
﻿r of any form equivalent to  Q(x)   . He defined

﻿﻿   

   Twenty years ago, Rankin’s constant led P. Nguyen and oth-
ers to introduce the DSP, a generalization of the SVP. This new 
problem has been studied by Micciancio, Nguyen, and others. 
It has important applications to blockwise lattice reduction 
generalizing LLL and Schnorr’s algorithm.

   Assume that  Λ = {zA: z∈ℤ
n}    is an n-dimensional lattice 

in  �n   , where A is a nonsingular  n × n    matrix. For any point 
﻿p = yA ∈ �

n    and  v = zA ∈ Λ   , we have
﻿﻿  

Therefore, the CVP is equivalent to the following problem.
   CVP in quadratic form. Given a positive definite quadratic 

form  Q(x)    and a vector  y   , find an integer vector  z ∈ ℤ
n    that 

minimizes  Q(y−z)   .
   Let C denote the unit cube  

{(
x1,x2,… ,xn

)
: 0≤xi<1

}
   , let 

﻿Λ    be the lattice corresponding to  Q(x)   , and define
﻿﻿  

It can be verified that  �(Q)    is the smallest number  �    such that 
﻿�Bn + Λ    is a ball covering of  �n   . Consequently, we get
﻿﻿  

In fact, most of the known exact results about  �∗(Bn)    and  �∗(Bn)    
were achieved by studying quadratic forms.

   Besides the fact that both SVP and CVP can be reformulated 
in terms of quadratic forms, in recent years Nguyen, L. Ducas, 
and others have applied quadratic forms directly to lattice-
based cryptography.  

Reduction theory of quadratic forms (lattices)
   If  
{
a1,a2,… ,an

}
    is an orthogonal basis of  Λ   , then the corre-

sponding quadratic form  Q(x) = xCx�    is standard. In this case, 
both SVP and CVP can be solved easily, since the shortest 
basis vector is the shortest nonzero lattice vector of  Λ   . If 
﻿w = w1a1 + w2a2 + ⋯ + wnan ∈ �

n   , taking
﻿﻿  

where  ⌊x⌉    denotes the closest integer to x, one can show that 
﻿v ∈ Λ    is a closest lattice vector of  w   .

   It is well known that most lattices have no orthogonal bases. 
Nevertheless, every lattice has some relatively good bases. 
Correspondingly, every positive definite quadratic form has a 
comparatively good equivalent form. This is the philosophy of 
reduction theory. In history, reduction theory was first devel-
oped for quadratic forms rather than for lattices.

   Let U be a unimodular matrix and write
﻿﻿  

We say  ̃Q(x)    is equivalent to  Q(x)   . Since the map  z→ zU    is an 
automophism in  ℤn   , one has

(54)Λ =
{
zA: z∈ℤ

n
}
.

(55)m(Q) = min
z∈ℤ

n �{o}
Q(z)

(56)�n = sup
Q∈n

m(Q)

n
√
dis(Q)

.

(57)�∗
(
Bn

)
=

�n�
n∕2
n

2n
,

(58)∣∣v∣∣ ≤ � �(Λ).

(59)Q(z) ≤ �2m(Q).

(60)�n,r = sup
Q∈n

mr(Q)

dis(Q)r∕n
.

(61)∥p−v∥ = ∥(y−z)A∥ =
√

Q(y−z).

(62)�(Q) =
√

max
y∈C

min
z∈ℤ

n
Q(y−z).

(63)�∗
�
Bn

�
= min

Q∈n

�n�(Q)
n

√
dis(Q)

.

(64)v = ⌊w1⌉a1+⌊w2⌉a2+ ⋯ + ⌊wn⌉an,

(65)Q̃(x) = xUCU �x�.

Table 4. Known results about Hermite’s constants

n �
n

Author Date n �
n

Author Date

 2 2∕
√

3 Lagrange 1773 6 6

√

64

3

Blichfeldt 
1925

 3 3
√

2 Gauss 1831 7 7
√

64 Blichfeldt 
1926

 4
√

2 Zolotarev, 
Korkin 1872

8 2 Blichfeldt 
1934

 5 5
√

8 Zolotarev, 
Korkin 1877

24 4 Cohn, Kumar 
2009
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﻿﻿  

and
﻿﻿   

   In 1773, Lagrange proved that every positive definite binary 
quadratic form  Q(x) = xCx�    is equivalent to one satisfying

﻿﻿  

which marked the birth of the reduction theory. In other words, 
every 2-dimensional lattice has a basis  

{
a1,a2

}
    such that the 

angle between  a1    and  a2    is at least  �∕3    and at most  �∕2   . Then, 
one can deduce that  �2 = 2∕

√
3    and  �∗

�
B2
�
= �∕

√
12.   

   Reduction theory has been further developed by Seeber, 
Gauss, Hermite, Korkin, Zolotarev, Minkowski, Voronoi, and 
many modern authors (see [ 14 , 36 ]). We introduce 3 reductions 
as examples.   

Korkin–Zolotarev reduction
   In 1873, Korkin and Zolotarev proposed the following reduc-
tion: A positive definite quadratic form  Q(x)    is said to be K–Z 
reduced if
﻿﻿  

where  ∣ tij ∣ ≤ 1∕2    and
﻿﻿   

   Clearly, the first basis vector in the corresponding lattice of 
a K–Z reduced form is the shortest nonzero lattice vector. Then, 
they proved the following theorem.

   Theorem 5.1. Every positive definite quadratic form is 
equivalent to a K–Z reduced one.

   Korkin and Zolotarev were not able to explore further in 
this direction since Zolotarev died in 1878 at the age of 31. 
However, in 1934, Blichfeldt succeeded in determining the val-
ues of  �6   ,  �7   , and  �8    by Korkin and Zolotarev’s reduction theory 
(see [ 14 ]). In particular, in 1987, Schnorr [ 39 ] developed a 
generalization of the LLL algorithm based on this reduction, 
known as block Korkin–Zolotarev (BKZ) algorithm, to approx-
imate the SVP.   

Minkowski reduction
   As a generalization of Lagrange’s pioneering work, in 1905, 
Minkowski discovered the following reduction: As usual, we 
denote the greatest common divisor of k integers  z1, z2, … , zk    
by  gcd

(

z1, z2,… , zk
)

   . A positive definite quadratic form 
﻿Q(x) = xCx�    is said to be Minkowski reduced, if
﻿﻿  

and
﻿﻿   

   for all integer vectors  z =
(
z1, z2,… , zn

)
    such that

﻿﻿   

   It is easy to see that the first basis vector in the corresponding 
lattice of a Minkowski reduced form is the shortest nonzero 
lattice vector. Then, he proved the following theorem.

   Theorem 5.2. Every positive definite quadratic form is 
equivalent to a Minkowski reduced one.

   Minkowski reduction has been studied by many authors, 
including B. L. van der Waerden, K. Mahler, and E. S. Barnes, 
in particular with respect to the orthogonality defect of a 
lattice, which is also useful in lattice-based cryptography.   

Lenstra–Lenstra–Lovász reduction
   Assume that  

{
a1,a2,… ,an

}
    is a basis of an n-dimensional 

lattice  Λ   . We define the associated Gram–Schmidt orthogo-
nal basis as

(66)m
(
Q̃
)
= m(Q)

(67)dis
(
Q̃
)
= det

(
UCU �

)
= dis(Q).

(68)

{
c11≤ c22,

0≤2c12≤ c11,

(69)Q(x) =

n∑
i=1

ci

(
xi+

n∑
j=i+1

tijxj

)2

,

(70)ci= min
(zi ,zi+1,…,zn)≠o

⎧⎪⎨⎪⎩

n�
j=i

cj

�
zj+

n�
k=j+1

tjkzk

�2⎫⎪⎬⎪⎭
.

(71)c1j ≥ 0, j = 2, 3, … , n,

(72)Q(z) ≥ cii, i = 1, 2, … , n,

(73)gcd
(
zi, zi+1,… , zn

)
= 1.

Fig. 4. Lattice-based cryptography is deeply rooted in mathematics.
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﻿﻿   

   In 1982, Lenstra, Lenstra Jr., and Lovász [ 37 ] introduced the 
LLL reduction: A basis  

{
a1,a2,… ,an

}
    of an n-dimensional lat-

tice  Λ    is called to be LLL reduced if
﻿﻿  

and
﻿﻿  

where
﻿﻿   

   This time, there is no guarantee that  a1    is the shortest non-
zero lattice vector of  Λ   . However, it is an approximating shortest 
nonzero lattice vector. By inventing an algorithm that always 
can terminate at an LLL reduced basis in polynomial time, they 
proved Theorem 3.8.

   Reduction theory has played a key role in the security analy-
sis of lattice-based cryptography for the classical computer. 
Naturally, it will be the key tool for the security analysis of 
lattice-based cryptography for the quantum computer.    

Summary and Outlook
   Quantum computing is widely believed to be a revolutionary new 
technology. In fact, it is a double-edged sword. If efficient quan-
tum computers can be manufactured in the near future, many of 
the current cryptosystems will be in danger and post-quantum 
cryptography will be crucial to the security of our communica-
tions. It is possible that better cryptosystems can be invented to 
deal with quantum computing attacks in the future. Nevertheless, 
up to now, lattice-based cryptosystems are the best candidates to 
defend the communication security in the forthcoming quantum 
computer era.

   The security of the lattice-based cryptosystems relies on the 
computational complexity of some fundamental lattice problems 
such as the SVP, the CVP, and their generalizations, which are 
deeply rooted in the work of Gauss, Hermite, Korkin, Zolotarev, 
Minkowski, Siegel, van der Wearden, and many contemporary 
mathematicians, as shown by Fig.  4 . This makes post-quantum 
cryptography one of the few distinguished examples of crucial 
modern technology growing up from pure mathematics.        

   If a new technology can create not only revolutionary pro-
gresses but also disastrous harms, preventing the disasters should 
be much more important and urgent than gaining the benefits. 
Therefore, post-quantum cryptography provides unprecedented 
opportunities for mathematicians to make contributions in mod-
ern technology (see [  52 ]).

   If we compare lattice-based cryptography as a fruit tree, the 
mathematics discussed in this article should be regarded as its 
roots. No matter how the post-quantum cryptography will 
develop in the future, mathematics is inevitable since it needs 

complicated models just like lattices. Of course, only mathe-
matics is not enough. Successful post-quantum cryptography 
must be a joint work of mathematicians, cryptographers, and 
quantum computing scientists.   
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