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In1994, P. Shor discovered quantum algorithms that can break both the RSA cryptosystem and the EIGamal
cryptosystem. In 2007, a Canadian company D-Wave demonstrated the first quantum computer. These events
and quick further developments have brought a crisis to secret communication. In 2022, the National Institute
of Standards and Technology (NIST) announced 4 candidates—CRYSTALS-Kyber, CRYSTALS-Dilithium,
Falcon, and Sphincs+—for post-quantum cryptography standards. The first 3 are based on lattice theory and
the last on Hash functions. In 2024, NIST announced 3 standards: FIPS 203 based on CRYSTALS-Kyber, FIPS
204 based on CRYSTALS-Dilithium, and FIPS 205 based on Sphincs+. The fourth standard based on Falcon
is on the way. It is well known that the security of the lattice-based cryptosystems relies on the hardness of
the shortest vector problem (SVP), the closest vector problem (CVP), and their generalizations. In fact, the
SVP is a ball packing problem and the CVP is a ball covering problem. Furthermore, both SVP and CVP are
equivalent to arithmetic problems for positive definite quadratic forms. There are several books and survey
papers dealing with the computational complexity of the lattice-based cryptography for classical computers.
However, there is no review article to demonstrate the mathematical foundation of the complexity theory.
This paper will briefly introduce post-quantum cryptography and demonstrate its mathematical roots in ball
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packing, ball covering, and positive definite quadratic forms.

Mathematical Cryptography

In 1976, W. Diftie and M. E. Hellman [1] proposed the principle
of public key cryptography. One year later, the first public key
cryptosystem RSA was invented by R. L. Rivest, A. Shamir, and
L. Adleman [2]. These events not only inaugurated a new era
in secret communication but also marked the birth of mathe-
matical cryptography (see [3,4]), the public key cryptography
based on mathematical theories. Since then, several other
mathematical cryptosystems have been discovered, including
the discrete logarithm cryptosystem invented by T. ElGamal
[5] in 1985, the elliptic curve cryptosystem ECC designed by
V. S. Miller [6] in 1985 and by N. Koblitz [7] in 1987, respec-
tively, and the lattice-based cryptosystems AD discovered
by M. Ajtai and C. Dwork [8] in 1997, GGH invented by
O. Goldreich, S. Goldwasser and S. Halevi [9] in 1997, NTRU
designed by J. Hoffstein, J. Pipher, and J. H. Silverman [10] in
1998, LWE discovered by O. Regev [11] in 2005, and FHE
invented by C. Gentry [12] in 2009. In the past half century,
mathematical cryptography has played a crucial role in the
modern technology of computers and the internet. At the same
time, it has been developed into an active interdisciplinary
research field between mathematics and cryptography.

Before Diffie-Hellman, both the enciphering process and
the deciphering process of any secret communication used the
same secret key. Ciphers of this sort are known as symmetric
ciphers. If Bob wants to send a secret message m to Alice, they
have to share a secret key k. Bob first scrambles his message m
by the key k to a ciphertext ¢ and then sends it through some
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channel to Alice. When Alice receives the ciphertext ¢, she uses
the secret key k to unscramble it and reconstitute m. During
this process, if the communication channel is not secure, their
adversary Eve can intercept not only the ciphertext ¢ but also
the secret key k and then reconstitute their secret message m.

In the 1970s, when computers and networks were becoming
part of daily life, symmetric ciphers were no longer efficient
enough for key distribution, key management, and digital sig-
natures. In Diffie and Hellman’s ideal public key cryptosystem,
enciphering and deciphering are governed by distinct keys, k,
and k;, such that computing the decryption key (the private
key) k,; from the encryption key (the public key) k, is compu-
tationally infeasible. All users of a network place their encryp-
tion keys in a public directory. Then, the users can encrypt their
messages using the receivers’ public keys and decrypt the
received messages using their own private keys. We now intro-
duce RSA, NTRU, and LWE as examples, since RSA is the first
functioning public key cryptosystem and both NTRU and LWE
are crucial for post-quantum cryptography.

The RSA cryptosystem
First, Alice chooses 2 large primes p and g, keeps them secret,
defines N = pq implying

oN) = (p—1)(g—1), (1)

where @(N)is Euler’s totient function, and chooses an encipher-
ing exponent e satisfying
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ged(e, p(N)) = 1. )

In other words, e and @(N) have no common divisor. Then, she
chooses (N, e) as the public key and publishes it. Of course,
both Bob and Eve can get it. Second, Bob enciphers his plaintext
m by Alice’s public key to the following ciphertext

c=m’ (mod N) (3)

and sends it to Alice. Third, since Alice knows @(N) = ( p— 1)
(q—1), she can compute d satisfying

ed =1 (mod @(N)) (4)

and decipher Bob’s message as
=m““=m (mod N), )
based on Euler’s formula

m?™ =1 (mod N)- (6)

In the RSA cryptosystem, besides Euler’s formula, 2 other
mathematical results are also crucial. First, when p and g
are known, it is relatively easy to compute the deciphering
key d. For example, the Euclidean algorithm takes at most
2log, (p(N)) + 2iterations to compute gcd(e, @(IN))and it takes
only a small multiple of log, (@(N)) steps to compute d. On the
other hand, without knowledge of p and g, to factorize the large
integer N is hard. There are many electronic computer algo-
rithms to factorize large integers. However, none of them are
efficient enough to break the RSA cryptosystem. The compu-
tational hardness of integer factorization is the security guar-
antee of the RSA cryptosystem.

The NTRU cryptosystem
Let N, p, g, d;, and d, be suitable integers. Let Z, be the ring of
integers modulo g, let R, R,, and R, be 3 polynomial rings
defined by

R = ZIx]/(xN -1),

R, = Z,[x]/(xN -1), (7)

N
R, = Z,x1/(x" -1),

and let T(d;, d,) denote the set of all polynomials in R that has
d, coeflicients equal to 1, d, coefficients equal to —1, and all
other coeflicients equal to 0.

First, Alice and Bob choose a group of public parameters
(N, p,g,d) such that both N and p prime,

ged(p,g) = ged(N,q) =1, (8)

and g > (6d+ 1, )p. Second, Alice choosesk; € T(d + 1,d)and
k, € T(d, d) as private keys, where k, is invertible in both R,

and R, computes the inverse g, of k; in R, and the inverse g,
ofk; in R, computes

h=gk,, 9)

and publishes h as the public key. Third, Bob chooses a random
r € T(d, d), encrypts his plaintext m € R, to

c=prh+m (mod q), (10)
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and sends the ciphertext c to Alice. Finally, when Alice receives
¢, she computes

m°=k;c (mod q), (11)
lifts it tom® € R, and decrypts as

mEgpm' (mod p)- (12)

More precisely, we have

m°® =k,c=pk,g k,r+km=pk,r+km (mod q).
(13)
Since k;, k,, ¥, and m are polynomials of small coefficients,
pkyr + k;m has coeflicients within ( —q/2,q/2) for proper
parameters. This means that

m’ = pk,r + k;m. (14)
The LWE cryptosystem
Let n, m, 4, t, 7, and g be suitable integers and let @ be a positive
real number. Let Z” denote the set of vectors (a;,4a,,...,a,)

witha; € Z, and let ZZX€ denote the set of n X { matrices with
entries a;; € Z,. Furthermore, let ¥, denote the distribution
on Z , obtained by sampling a normal variable with mean 0 and

standard deviation ag / v/ 27, rounding the result to the nearest
integer, and reducing it modulo g, let f be the function that

maps the message space Zf to Zf; by multiplying each coordi-

nate by g/t and rounding to the nearest integer, and let £~}
denote the inverse of f.
First, Alice and Bob choose a group of public parameters

(n,m, {,t,r,q, a). Second, Alice chooses S € Z;’X€ uniformly at
random as the private key, takes A € Z;”X” uniformly at random,
takes E € Z’;X& by choosing each entry according to ¥,, and
chooses (A, P) as the public key, where

P=AS+E. (15)
Third, Bob choosesa € Z;" uniformly at random and encrypts

amessage v E Zf to (u, c), where u = A’a and

c=Pa+f(v). (16)

Finally, when Alice receives (u, ¢), she decrypts it by her secret
key S as

v=f_1(c—S’u). (17)

Lattice is a mathematical concept introduced by Gauss at
the beginning of the 19th century and further developed by
Minkowski and many others (see [13,14]). Leta,;, a,, ... ,a,be
nlinearly independent vectors in the n-dimensional Euclidean
space E". We call

A={zja +z58,+ ... +z,a, z€Z} (18)

an n-dimensional lattice and call {a;, a,, ..
lattice A.

At the first glance, both NTRU and LWE have nothing to
do with lattice. In fact, both of them can be reformulated in

.,a,}abasis of the
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lattice and their security depends on the computational com-
plexity of some lattice problems (see [15]).

Post-Quantum Cryptography

The classical computer is based on the laws of electronics. Its
fundamental unit of information is the binary digit (bit) 0 or 1.
Sequences of bits are manipulated by Boolean logic gates, and
a succession of gates yields a computation.

Quantum Turing machine
At the beginning of the 1980s, Y. I. Manin, P. Benioff, R. Feynman,
and D. Deutsch started investigating the possibility of creating a
computer based on the laws of quantum mechanics (see [16]).
In particular, Deutsch introduced the quantum Turing machine
and quantum circuits in 1985.

A quantum computer operates on quantum bits (or qubits).
The state of a qubit can be represented as

a1|0) + ay|1), (19)

where |0) is its ground state, |1) is its excited state, and a; are
complex numbers satisfying|a; | + |a,|* = 1.In a system of n
qubits, let |s;) = |s’is§ s’n> denote the 2" basis states with
s} € {0, 1}, the superposition of states can be represented as

on

Zailsi>>

i=1

(20)

e 2 2
where a; are complex numbers satisfying }" |;|” = 1, and |a;|

represents the possibility of the system yield state |s; ). The quan-
tum computer manipulates qubits via quantum logic gates to
process computations. A quantum logic gate will change one
superposition of states to one other superposition of states by
a unitary transformation, where unitary means that the conju-
gate transpose of the transformation matrix is equal to its
inverse. For example, suppose a quantum computer of 3 qubits
is in the superposition of states

1 1 1 1
—[000) — =[010) + ={101) — =|111
21000} - 2010y + 01y = 21111 (a1
and the logic gate changes the last 2 qubits of the state by
1111
o0 |2 2 2 2 foo
1 i 1 i
01 5 5 T 5 7501
1A 0 (22)
10 2 _2 12 _11]10
11 % 3 21 i2 11.
2 2 22
Then, the computer will go to the superposition of states
l|001)+l|011)+i|101>—i|111) (23)
2 2 2 2 '

Since the state of the output of a quantum computer can be
a coherent superposition of states corresponding to different
solutions of a problem, it may allow many computations to be
done simultaneously and quickly (see [17]).
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Quantum computing
In the early 1990s, when the quantum computer was not yet
born, Deutsch, R. Jozsa, Shor, and L. Grover started to explore
quantum computing (see [16]). First, Deutsch and Jozsa [18]
presented a problem that can be solved by a quantum computer
with certainty in polynomial time, which is exponentially less
time than any classical deterministic computer, and less than
the expected time of any classical stochastic computer.
Almost at the same time, Shor [19] discovered polyno-
mial time quantum algorithms to deal with the discrete
logarithm problem and the factorization problem. Assume
that0 <a < gand

k-1
a= ) a7 (24)
i=0
is the binary representation of a. Then, he defines the state
la) = |ay_ a;_, -+ @) and introduces the following unitary
transformation:

-1

q
la) — # Z exp(2ziab/q)|b).
b=0

(25)

This transformation, as a quantum logic gate, plays a key
role in his algorithms. A decade later, J. Proos and C. Zalka [20]
succeeded in modifying Shor’s discrete logarithm quantum
algorithm for elliptic curves. It follows that once there is a func-
tioning quantum computer, Shor’s algorithms could break the
RSA cryptosystem, the ElGamal cryptosystem, and the ECC
cryptosystem. Over the years, several improvements to Shor’s
algorithms have been discovered. For example, the one was
announced by Regev [21] in 2023.

Quantum computer

In 1998, the first quantum computer models appeared at Oxford
University, IBM’s Almaden Research Center, and Los Alamos. In
2007, a Canadian company D-Wave demonstrated the Orion sys-
tem, a 16-qubit quantum annealing processor, running 3 different
applications at the Computer History Museum in Mountain View,
California. This marked the first public demonstration of a quan-
tum computer. In 2011, D-Wave announced D-Wave One, operat-
ing on a 128-qubit chipset using quantum annealing to solve
optimization problems. In the following years, several companies
developed gate model quantum machines, including Google, IBM,
Intel, and Rigetti. Gate model quantum computers use gates simi-
lar in concept to classical computers but with vastly different logic
and architecture. By 2020, there were about a hundred working
quantum computers worldwide.

In 2001, a group of researchers at IBM successfully applied
Shor’s algorithm to factorize 15, using nuclear magnetic reso-
nance. In 2019, the numbers 15, 21, and 35 were factorized by
applying Shor’s algorithm on a 6-qubit IBM quantum processor
(see [22]).

Post-quantum cryptography
As larger and larger quantum computers are built, crypto-
systems such as RSA, ElGamal, and ECC will no longer be
secure, so post-quantum cryptography will be critical for the
future of secret communication.

In 2006, the first international workshop on post-quantum
cryptography took place at the Katholieke Universiteit Leuven.
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Since then, post-quantum cryptography has gradually become
an important research branch of cryptography. In particular, it
has become a focus topic of CRYPTO, EUROCRYPT, and
ASIACRYPT.

In 2016, the National Institute of Standards and Technology
(NIST) launched a global project to solicit and select a handful
of encryption algorithms with the ability to resist quantum
computer attacks. On 2022 July 5, after 3 rounds of competition
and selection, NIST announced 4 algorithms that will underpin
its future cryptography standards. They include one algorithm
(CRYSTALS-Kyber) for general encryption and key establish-
ment purposes and 3 (CRYSTALS-Dilithium, Falcon, and
Sphincs+) for digital signatures (see [23-25]). On 2024 August 13,
the agency announced 3 post-quantum cryptography stan-
dards: FIPS 203 based on CRYSTALS-Kyber, FIPS 204 based
on CRYSTALS-Dilithium, and FIPS 205 based on Sphincs+.
The fourth standard based on Falcon is on the way. On
2024 November 12, NIST published the guideline “Transition
to post-quantum cryptography standards”, which lists detailed
route and time table. In fact, many high-tech companies and
institutions have already completed the transition.

Itis well known that both CRYSTALS-Kyber and CRYSTALS-
Dilithium are based on LWE, Falcon is based on NTRU, and
Sphincs+ is based on Hash functions. Both NTRU and LWE
are lattice-based cryptosystems. Lattice-based cryptography
was born more or less at the same time of Shor’s quantum algo-
rithms for the discrete logarithm problem and the factorization
problem (see [26-28]). It has been explored as a key candidate
for post-quantum cryptography ever since.

The Shortest Vector Problem and the Closest
Vector Problem

No one can predict the future of the post-quantum cryptogra-
phy. Currently, a decisive role is played by lattice-based cryp-
tosystems. No matter how different in form, the security of all
known lattice-based cryptosystems and algorithms relies on
the computational complexity of the following 2 problems and
their variations:

The shortest vector problem (SVP): Find a shortest non-
zero vector in an n-dimensional lattice A, i.e., find a nonzero
vector v € A that minimizes the Euclidean norm ||v]|.

The closest vector problem (CVP): Given a vector x € E”
thatis not in A, find a vector v € A that is closest to x, i.e., find
a vector v € A that minimizes the Euclidean norm ||[v—x]|.

In fact, the security of all AD , NTRU, and LWE depends on
the complexity of SVP and its variations, and the security of
GGH and NTRU is based on the complexity of CVP and its
approximation (see [15,27]).

Complexity theory of classical computer

A Turing machine M runs in time #(n) if, for every input string
s of length » over some fixed input alphabet, M(s) halts after
at most #(n) steps. Efficient computation with a Turing machine
means that it halts in polynomial time in the size of the input,
ie., the Turing machine runs in time t(n) = a + n? for some
constants a and b independent of n.

A decision problem consists of deciding whether the input
string satisfies some specified property or not. The class of deci-
sion problems that can be solved by a deterministic Turing
machine in polynomial time is called . The class of decision
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problem that can be solved by a nondeterministic Turing
machine in polynomial time is called N'P. Clearly, we have
P C N'P.ltis widely believed that P # N P, i.e., there are N'P
problems that cannot be solved in deterministic polynomial
time. In fact, to prove or disprove P = NP is a fundamental
problem in both mathematics and computer science.

Let P, and P, be 2 decision problems consisting of strings
of alphabet. A reduction from P, to P, is a polynomial time
computable function f such that s € P, if and only if f(s) € P,.
Clearly, if P, reduces to P, and P, can be solved in polynomial
time, then P, can also be solved in polynomial time. A decision
problem P is N'P-hard if any other NP problem Q reduces to
P.If P is also in N'P, then P is N'P-complete. Evidently, if a
problem P is N'P-hard, then P cannot be solved in polynomial
time unless P = N'P.

The complexity of SVP for the classical computer
First, a lattice may have many shortest vectors. It is easy to see
that the integer lattice Z" has 2n shortest vectors. It is known
that the 8-dimensional Eg lattice has 240 shortest vectors and
the 24-dimensional Leech lattice has 196,560 shortest lattice
vectors. In general, an n-dimensional lattice A has at most

0.401n(1+0(1)) (26)

shortest vectors (see [14]). However, lattice-based cryptography
uses random lattices rather than a particular one, so the fol-
lowing result is pertinent.

Theorem 3.1 (Sodergren [29]). InE", n > 2, a random lat-
tice has exactly one pair (£v) of shortest nonzero vectors, i.e.,
if we randomly pick a lattice, the probability of it having only
one pair of shortest lattice vectors is one.

It is interesting to notice that Theorem 3.1 was proved only
in 2010, much later than it was applied in lattice-based cryptog-
raphy. Obviously, it has been taken for granted by cryptogra-
phers. Nevertheless, if Theorem 3.1 were not true, the SVP-based
cryptosystems would be impossible.

Usually, lattices are given by their bases. One may intuitively
believe that the bases should contain some short lattice vector.
In fact, this is far from the truth. For example, let A be the
integer lattice Z% let m be a large integer, and define
a, = (1,m+1)anda, = —(1,m). It can be verified that {a,,a, }
is a basis of A and

larll = fla]| = V1 +m?. (27)

In other words, both vectors of a basis of A can be arbitrarily
long. Nevertheless, the length of the shortest vectors of a lattice
A can be bounded in terms of its determinant det(A). In 1891,
Minkowski obtained the following fundamental result about
the length of the shortest lattice vector.

Theorem 3.2. Every lattice A of dimension 7 contains a
nonzero vector v satisfying

Ivll < (\/2/7re+0(1))\"/det(/\)\/;. (28)

This result tells us the approximate range of the shortest
lattice vectors. It can be regarded as the first cornerstone of the
lattice-based cryptography.

At the beginning of the 1980s, about 2 decades before lattice-
based cryptography was born, people started to study the
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computational complexity of lattices. In 1981, P. van Emde Boas
[30] made the following conjecture.

Conjecture 3.1. The SVP is N P-hard.

In the same paper, he proved that the SVP in the L norm
is indeed N P-hard. However, 40 years later, the Euclidean case
is still open today. Meanwhile, research has turned toward ran-
domized reduction and approximation. Unlike deterministic
reduction, randomized reduction allows the mapping function
to be computable in polynomial time by a probabilistic algo-
rithm. (A probabilistic Turing machine is a nondeterministic
Turing machine that chooses between the available transitions
at each point according to some probability. A quantum com-
puter is another model of computation that is inherently proba-
bilistic.) Therefore, the output of the reduction is only required
to be correct with sufficiently high probability. In 1997, Ajtai
[31] proved the following theorem.

Theorem 3.3. The SVP is N'P-hard under randomized
reduction.

In fact, even approximating the shortest vector is not easy.
In 1998, D. Micciancio improved Ajtai’s theorem, showing that

approximating the shortest vector within a factor \/E under
randomized reduction is N P-hard. In 2005, S. Khot [32]
proved the following theorem.

Theorem 3.4. To approximate the shortest vector of an
n-dimensional lattice within any constant factor ¢ under ran-
domized reduction is N'P-hard.

All Ajtai, Micciancio, and Khot's works deal with general L,
norms. For simplicity, we only concentrate on the Euclidean
case. Theorem 3.4 has been further extended by I. Haviv, Regev,
and others.

In 2004, Ajtai [33] introduced a new problem, called the short
integer solution (SIS) problem, over random q-ary lattices. He
proved that, under certain hypotheses, solving SIS over a lattice
chosen randomly from an easily samplable distribution is at least
as hard as approximating the SVP for any lattice.

The complexity of CVP for the classical computer

In 1981, when he proposed Conjecture 3.1, van Emde Boas
proved that CVP is N P-hard. On the other hand, it can be shown
that CVP is in N'P. Thus, we have the following theorem.

Theorem 3.5. The CVP is N'P-complete.

As with the SVP, there are many complexity results about
approximating the CVP. We cite one of them here as an example.

Theorem 3.6 (Dinur, Kindler, Raz and Safra [34]). To
approximate the closest vector of an n-dimensional lattice to a
given point of E” within a factor n¢/1°81°8", where ¢ is some abso-
lute constant, is N P-hard.

It was conjectured by L. Babai in 1986 that the SVP is not
harder than the CVP. In 1999, this conjecture was proved by
Goldreich et al. [35]. On the other hand, in practice, a CVP in
dimension 7 can usually be transformed into solving an SVP
in dimension n + 1; so, for cryptographic purposes, they tend
to be of roughly equal difficulty.

Theorem 3.7. There is an approximation-preserving poly-
nomial time reduction from the SVP to the CVP.

The Lenstra-Lenstra-Lovasz algorithm

Since every pair of bases of a lattice is connected by a unimodular
matrix, when the initial basis of the lattice is not very good (for
example, from the perspective of orthogonality), one may hope
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to reduce it to a good one. It is easy to show that, if v, is one of
the shortest vectors of the lattice, it has a basis with v, as one of
the n generators. Many great mathematicians have made contri-
butions in reduction theory, including Lagrange, Gauss, Hermite,
Minkowski, Voronoi, Korkin, and Zolotarov (see [14,36]).
Nevertheless, in higher dimensions, finding or even approximat-
ing the shortest vector turns out to be extremely hard. In 1982,
A. K. Lenstra, H. W. Lenstra Jr., and L. Lovész [37] proposed an
algorithm (known as the LLL algorithm), which can not only
efficiently approximate the shortest vector of a lattice but also
approximate the closest vector.

Theorem 3.8. Let A be an n-dimensional integer lattice, i.e.,
A C 7", and let{ (A) denote the length of the shortest nonzero
vector of A. The LLL algorithm can find a nonzero lattice vector
v € A in polynomial time satisfying

vl < (2/V3) "t

Theorem 3.9 (Babai [38]). There are polynomial time algo-
n
rithms that solve the CVP within a factor 2 (2 / \/5 ) . In other

words, for any x € E” one can find a lattice vector ve A
satisfying

(29)

e—vll <2(2/3) dex ).

In both Theorem 3.8 and Theorem 3.9, the approximation
factors are exponential in the dimensions. Over the years, many
efforts have been made to improve the approximation factors,
such as the BKZ algorithm proposed in 1987 by C.-P. Schnorr
and R. Kannan (see [39]). Nevertheless, no real progress has
been achieved. Essentially, all these algorithms are based on
various types of basis reductions, which will be introduced in
the last section.

SVP and CVP have several variants and generalizations that
are useful in lattice-based cryptosystems as well, such as SVP,,
CVP,, GapSVP, GapCVP, the shortest basis problem (SBP), the
quasi-orthogonal basis problem (QOBP), the successive min-
ima problem (SMP), the shortest independent vector problem
(SIVP), the shortest diagonal problem (SDP), and the densest
sublattice problem (DSP) (see [13,15,27,28,40]). For example,
let A be an n-dimensional lattice and let k be a given positive
number, the GapSVP with approximation factor y(n) asks to
decide whether { (A) < k or { (A) > y(n)k.

(30)

The complexity of SVP and CVP for the

quantum computer
Since the birth of Shor’s quantum algorithms for discrete loga-
rithms and factoring in 1994, in particular since the NIST initi-
ated the post-quantum cryptography competition in 2016,
people have tried hard to search for efficient quantum comput-
ing algorithms for the SVP and the CVP, or tried to prove that
there is no such algorithm. Up to now, none of this effort has
succeeded. This failure led to the following conjectures.
Conjecture 3.2. There is no polynomial time quantum algo-
rithm that can approximate the SVP within a polynomial factor.
Conjecture 3.3. There is no polynomial time quantum algo-
rithm that can approximate the CVP within a polynomial factor.
If Conjectures 3.2 and 3.3 are correct, they will provide evi-
dence for the security of lattice-based cryptosystems in the
quantum computing era. For the updated computational results,
we refer the readers to [41].
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Ball Packing and Ball Covering

Let B" denote the n-dimensional unit ball {x: Y, X < 1}inE"
and let X denote a discrete set of points in E". We call
B"+X = {B” +x;: x5, €X } a ball packing (in discrete geometry,
itis called sphere packing rather than ball packing) if the inte-
riors of the balls are disjoint. In particular, we call it a lattice
ball packing if X is a lattice. Let 6(B") denote the density of the
densest ball packings in E" and let §*(B") denote the density of
the densest lattice ball packings. Clearly, we have

5*(B") <5(B"). (31)

Assume that A is an n-dimensional lattice in E™. Let € (A)
denote the length of the shortest nonzero vectors of A and take
r={(A)/2Itis easy to see that rB” + Ais a lattice ball packing
in E” (see Fig. 1). Then, the SVP can be reformulated in terms
of ball packing.

SVP in ball packing. For a given n-dimensional lattice A,
find the largest number r such that 7B” + A is a ball packing
and the corresponding balls that touch rB" at its boundary.

In fact, based on the previous discussion, one can deduce
the following connection between the length { (A) of the short-
est nonzero vector of a lattice A and the ball packing densities
6*(B") and 6(B™).

Theorem 4.1. Let A be an n-dimensional lattice and let w,,
denote the volume of B". We have

LA < 2{/det(A) - 5*(B")  w, < 24/det(A) - 6(B") ] w,,. (32)

Ball packing, including the study of 6(B") and 6*(B"), is a
classic subject in mathematics. It has been studied by many
prominent mathematicians including Kepler, Newton, Gauss,
and Minkowski (see [14]). However, our knowledge in this field
is still very limited.

In 1594, T. Harriot discovered the face-centered cubic
lattice ball packing in E3 and determined that its density is
z/ \/E = 0.74 ---. However, he was not able to prove that the

density is the maximum. Then, he told his discovery to Kepler.
In 1611, Kepler made the following conjecture: The density of

the densest ball packing in B3 is z / \/ﬁ In other words,

Fig. 1. SVP in ball packing. The balls of the radii of half the length of the shortest
lattice vectors form a lattice packing.
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5(B®) = ——.
In 1694, Newton and D. Gregory discussed the following prob-
lem: Can 13 unit balls in[E> be brought into contact with a fixed
one? These 2 natural and simple sounding problems initiated
ball packing as a field of mathematical research. Some key
results about §*(B") and §(B") are summarized in Table 1 (see
(14,42,43]).

Besides Theorem 4.1, reduction methods to determine the
values of §*(B") are useful in algorithms for SVP and CVP. For
example, the Korkin-Zolotarov reduction is employed in the
block Korkin-Zolotarov algorithm developed by Schnorr [39]
in 1987.

In general dimensions, we have

Cn22—n < 5* (Bn) < 5(3”) < 2—0.599n(1+o(1)) (34)

for a suitable positive constant ¢, where a weaker lower
bound was first proved by Minkowski in 1905, then improved
and generalized by E. Hlawka, C. L. Siegel, H. Davenport,
C. A. Rogers, W. M. Schmidt, B. Klartag, and others (see [44]),
and the upper bound was proved by G. A. Kabatjanski and
V. L. Levenstein in 1978 (see [14]). Clearly, the upper bound
and Theorem 4.1 have the following corollary, which is an
improvement of Theorem 3.2.

Corollary 4.1. Every lattice A of dimension n contains a
nonzero vector v satisfying

vl < (770%e70527009 1 o(1)) {/det(A)v/n.  (35)

There are hundreds of papers on ball packing, employing
methods and tools from various fields of mathematics. As well,
there are many fascinating open problems on ball packing.
Here, we list 2 of them as examples.

Table 1. Known results about ball packing densities

n 5* (B") Author Date 5(3") Author Date
2 7 Lagrange 1173 7 Thue 1892
3 e Gauss 1831 e Hales 2005
4 2 Korkin, 7 7
16 Zolotarev 1872
5 2 Korkin, ?? 7
15v2  Zolotarev 1877
6 23 Blichfeldt 1925 7 7
4813
7 3 Blichfeldt 1926 7 7
105
8 Ead Blichfeldt 1934 Ead Viazovska 2017
384 384
24 2 Cohn, 2 Cohn, Kumar,
1o Kumar 2009 12 Miller, Radchenko,
Viazovska 2017
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Problem 4.1. Determine the asymptotic orders of §*(B")
and 6(B"), if they exist.

Problem 4.2. Is there a dimension # satisfying

5" (B") #5(B")? (36)

Clearly, a solution to Problem 4.1 will provide further
improvement of Theorem 4.1 and better understanding of SVP.
Similar to the ball case, one can define and study lattice packing
of any centrally symmetric convex body, which corresponds to
the SVP in a metric linear space.

Assume that A is an n-dimensional lattice in E”. For every
point x € E", we define the distance between x and its closest
lattice point v € A as d(x, A). Then, we define

p(A) = ,I{lé%d(x’ A). (37)
It is easy to see that p(A)B” + A is a covering of E" (see Fig. 2).
In fact, p(A) is the smallest radius p such that pB" + A is a
covering of E".

CVP in ball covering. Given an n-dimensional lattice A,
find the smallest number p such that pB" 4+ A is a covering of
E". For any x € E", find a lattice point v € pB" + x.

Clearly, finding a lattice point v € pB" + x is slightly sim-
pler than the CVP. However, this covering model can illus-
trate the fundamental difficulty of the CVP. First, unlike
Theorem 3.2 and Theorem 4.1, there is no upper bound
for p(A) in terms of det(A) and n. Let m be a large integer,
take a; = (m,0) and a, = (0,1/m), and define A to be the 2-
dimensional lattice generated by a; and a,. Then, we have
det(A) = L If x = (m/2,1/2m), one can easily deduce that

p(N)=d(x, )= % Vm?+1/m2,

Apparently, p(A) can not be bounded from above just in terms
of det(A).

Let 8(B") denote the density of the thinnest ball covering of
E" and let 8*(B") denote the density of the thinnest lattice ball
covering of E”. As a counterpart to Theorem 4.1, we have the
following relation between p(A) and 6*(B").

Theorem 4.2. Let A be an n-dimensional lattice and let w,,
denote the volume of B". We have

(38)

p(8) 2 {/det(A) - 67(B") [, > {/3ei(A) - 6B [, (39)

Fig. 2. CVP in the ball covering. The balls of radii of the maximum distance between
a point to its closest lattice vectors form a lattice covering.
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Ball covering, in certain sense, is regarded as a dual concept
of ball packing. In fact, they are not much related. Up to now,
the known exact results about 8(B")and 6*(B")are summarized
in Table 2.

In general dimensions, there is a constant ¢ such that

2re

(+0(1) = < 0(B") <67 (B") < cn(log,n) & V™, (40)
63

where the lower bound was achieved by H. S. M. Coxeter,
L. Few, and Rogers in 1959, and the upper bound was discov-
ered by Rogers in 1959 (see [21,45,46]). Clearly, the lower
bound and Theorem 4.2 have the following corollary, which in
certain sense shows the complexity of CVP.

Corollary 4.2. Let A be an n-dimensional lattice. We have

p(A) = (@re)™ +o(1)) {/det(A)y/n.

Corollary 4.1 and Corollary 4.2 together provide an explana-
tion for Theorem 3.7, i.e., the CVP is harder than the SVP.

One may realize that there are very few concrete results on
ball covering in the past half a century, particularly compared
to ball packing. It is fascinating to notice that, unlike the pack-
ing case, the thinnest lattice ball covering in F® is not achieved
by the Eg lattice. At least, the Ag lattice provides a ball covering
with a density thinner than the Eg lattice. Therefore, the follow-
ing problem is important and perhaps very challenging.

Problem 4.3. Determine the values of 6*(B?), 6(B?),

o* (324 ), and @ (324).

(41)

Two bridges connecting SVP and CVP
Let £, denote the family of all n-dimensional lattices. In 1950,
Rogers defined and studied

¢*(B") = min _Zp(A)’
AeL, {(A)
where { (A) is the length of the shortest nonzero vectors of A
and p(A) is the maximum distance between a point x € E" and
its closest lattice point. They are known as Rogers’ constants.
From the intuitive point of view, one may think that ¢*(B")
can be arbitrarily large when n — oo. Surprisingly, Rogers
proved by a reduction method that

(42)

¢"(B") <3 (43)
Table 2. Known results about ball covering densities
" (B") Author Date 9(3") Author Date
2r Kersshner 1939 2= Kersshner 1939
3v3 3v3
3 5v/51 Bambah 1954 7 7
24
4 242 Delone, 7 7
55 Ryskov 1963
5 2451/3542 Ryskov, 7 7
3888v3  Baranovskii 1975
7
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holds in every dimension. In 1972, via mean value techniques
developed by Rogers and Siegel, G. L. Butler improved Rogers’
upper bound to

¢*(B") <2+ o(1). (44)

It follows from Rogers’ upper bound that, for many n-dimen-
sional lattices, the longest distance in CVP is only a constant
multiple of the length of the SVP. In recent years, this idea has
been applied to cryptographic analysis by Micciancio [47] and
others.

The constant ¢*(B")has a couple of different interpretations.
For example, ¢p*(B")is the largest number such that every lattice
ball packing B" + A has a hole into which one can put a ball of
radius ¢*(B") — 1 In the 1980s, several mathematicians studied
¢*(B") from different respects. Up to now, the known exact
results are listed in Table 3.

Just like the ball covering case, there are many important
open problems about ¢*(B"). We list 2 of them here as
examples.

Problem 4.4. Determine the values of ¢*(B®) and ¢* (B**),
and their corresponding lattices.

Problem 4.5. Is there a dimension 7 such that

¢ (B") =22 (45)

What is known about the Leech lattice supports the conjec-

ture that ¢* (B24) = \/E If one can improve Butler’s upper
bound to ¢*(B") < 2 — ¢, where ¢ is a positive constant, the
lower bound for §*(B") will be improved to

§*(B") > 2-o™". (46)

If a dimension n can be found such that ¢*(B") > 2, then

5*(B") #6(B"), (47)

which would solve Problem 4.2. It is easy to see that ¢p*(B") can
be generalized from the ball to arbitrary centrally symmetric
convex bodies. For more on ¢*(B") and its generalizations, we
refer to [48-50].

There is another important notion that is closely related to
both the SVP and the CVP, the Dirichlet-Voronoi cell of A:

D= {x: (x,v) < % (v,v) forallve A\ {o} } (48)
Roughly speaking, D is the set of points that are closer to the

origin than any other lattice point. Clearly, D is a centrally sym-
metric polytope such that D 4 A is a tiling of E” (see Fig. 3).

Table 3. Known results about Rogers’ constants

n 2 3 4 5

¢*'(B)  2/v3 5/3 \/ﬁ(ﬁ_l) i, [B

Author Boroczky Horvath Hovarth
Date 1986 1982 1986
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Furthermore, one can deduce that
{(A)=2min{d(o,F): F is a facet of D} (49)
and
p(A)=max{||v|]: v is a vertex of D}. (50)

Therefore, the Dirichlet-Voronoi cell of a lattice encodes infor-
mation about both SVP and CVP. In fact, the CVP can be refor-
mulated as:

CVP in D-V cell. Let A be an n-dimensional lattice and x
be an arbitrary point of E™. If D is the Dirichlet-Voronoi cell
of A, find a lattice point v satisfyingx € D + v.

We end this section with 2 well-known problems about the
Dirichlet-Voronoi cells of lattices.

Problem 4.6. When n > 6, classify all Dirichlet-Voronoi
cells of the n-dimensional lattices, i.e., determine their geomet-
ric shapes.

Voronoi’s conjecture. Every parallelotope is an affine image
of a lattice Dirichlet—Voronoi cell.

When n < 5, both Problem 4.6 and Voronoi’s conjecture have
been solved. The Dirichlet-Voronoi cell has been applied to lattice-
based cryptography by Micciancio and others since 2010.

Positive Definite Quadratic Forms

Let A be a lattice with a basis {al,az, ,an}, where a; =

(1,355 ... 3y, ) and let A denote the n X n matrix with entries
ajj Then, the lattice can be expressed as

A={zA: 2€7"} (51)

and the norms of the lattice vectors can be expressed as a posi-
tive definite quadratic form

Q(z) = (zA,zA) = 2AA'7, (52)

where A’ and 7’ indicate the transposes of A and z, respectively.
Assume that

Qkx) = Z CijXiX; xCx (53)
1<ij<n
is a positive definite quadratic form of  variables, where ¢;; = ¢;;

and Cis the symmetric matrix with entries ¢;;. It is known that

there is an n X n matrix A satisfying C = AA’. Then, the qua-
dratic form also produces a lattice

Fig. 3. CVP in D-V cell. The Dirichlet-Voronoi cells form a lattice tiling.
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A={zA: z€Z7"}. (54)

Therefore, there is a nice correspondence between lattices
and positive definite quadratic forms. Then, the SVP is equiva-
lent to the following problem.

SVP in quadratic form. Find a nonzero vector z € Z" that
minimizes the positive definite quadratic form Q(z).

Let dis(Q) be the discriminant of the quadratic form Q(x)
and let Q, denote the family of all positive definite quadratic
forms in » variables. Then, we define

mQ)= min Q@) (55)
and
_ m(Q)
Yu= SUp ————. (56)

QeQ, {/dis(Q)

Usually, y,, is called Hermite’s constant. These constants are
closely related to the densities §*(B") of the densest lattice ball

packings. Since { (A) = y/m(Q) and dis(Q) = det(A)? one can

easily deduce that

w77
2H

§*(B") = , (57)
where ®,, is the volume of the n-dimensional unit ball B". In
fact, all the known exact results about 5*(B") (except 5* (B**))
were derived from the known results about y,, (see Table 4).

In lattice-based cryptography, approximating SVP is practi-
cally important. In fact, both SIS and LWE can be reduced to
this type of problems. Let y be a suitable positive number or a
suitable function of n. Then, the SVP, asking, for any given
n-dimensional lattice A, to find a nonzero lattice point ve A
satisfying

VIl < 74 (A). (58)
In terms of positive definite quadratic forms, the SVP, can be
reformulated as:
SVPy in quadratic form. For a given positive definite qua-
dratic form Q(z)and a suitable approximation parameter y, find
a nonzero integral solution z to

Q) < y’*m(Q). (59)
Table 4. Known results about Hermite's constants
n Yn AuthorDate  n Yn Author Date
2 9/4/3 lagrangel773 6 /e Blichfeldt
/ \/_ 3 1925
3 V2 Gauss1831 7  {/ga Blichfeldt
1926
4 \/5 Zolotarev, 8 2 Blichfeldt
Korkin 1872 1934
5) \5/5 Zolotarev, 24 4 Cohn, Kumar
Korkin 1877 2009
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In 1953, R. A. Rankin [51] introduced a generalization of
Hermite’s constant. Let r be an integer, 1 <r <n—1, and let
m,(Q) denote the lower bound of any principal minor of order
r of any form equivalent to Q(x). He defined

Vnr = Sup M (60)
" eq,dis(Q"

Twenty years ago, Rankin’s constant led P. Nguyen and oth-
ers to introduce the DSP, a generalization of the SVP. This new
problem has been studied by Micciancio, Nguyen, and others.
It has important applications to blockwise lattice reduction
generalizing LLL and Schnorr’s algorithm.

Assume that A = {zA: z€Z"}is an n-dimensional lattice
in E", where A is a nonsingular # X n matrix. For any point
p=vA €E"and v=1zA € A, we have

lp—vll = [[y-2)All = VQy-2).

Therefore, the CVP is equivalent to the following problem.
CVP in quadratic form. Given a positive definite quadratic
form Q(x) and a vector y, find an integer vector z € Z" that
minimizes Q(y —z).
Let C denote the unit cube { (x},x,, ...,x,): 0<x;<1},let
A be the lattice corresponding to Q(x), and define

Q= /Iyneagzrg% Qy-2).

It can be verified that p(Q) is the smallest number p such that
pB" + A is a ball covering of E". Consequently, we get

(61)

(62)

o* (B") = min m

Qe0, \/m (63)
In fact, most of the known exact results about 5*(B")and 8*(B")
were achieved by studying quadratic forms.

Besides the fact that both SVP and CVP can be reformulated
in terms of quadratic forms, in recent years Nguyen, L. Ducas,
and others have applied quadratic forms directly to lattice-
based cryptography.

Reduction theory of quadratic forms (lattices)

If {a,,a,,...,a, } is an orthogonal basis of A, then the corre-
sponding quadratic form Q(x) = xCx'is standard. In this case,
both SVP and CVP can be solved easily, since the shortest
basis vector is the shortest nonzero lattice vector of A. If
w=wa; +wa, + - +w,a, € E" taking

v=|wlaj+ [ wyla+ - + [ w,]a, (64)

where | x| denotes the closest integer to x, one can show that
v € Ais a closest lattice vector of w.

It is well known that most lattices have no orthogonal bases.
Nevertheless, every lattice has some relatively good bases.
Correspondingly, every positive definite quadratic form has a
comparatively good equivalent form. This is the philosophy of
reduction theory. In history, reduction theory was first devel-
oped for quadratic forms rather than for lattices.

Let U be a unimodular matrix and write

Q(x) =xUCU'x’. (65)

We say Q) is equivalent to Q(x). Since the map z — zU is an
automophism in Z", one has
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m(Q) =m(Q) (66)

and

dis(Q) = det(UCU’) = dis(Q). (67)

In 1773, Lagrange proved that every positive definite binary
quadratic form Q(x) = xCx' is equivalent to one satisfying

115699
{11 22 (68)

0<2¢cp,<cypyp5

which marked the birth of the reduction theory. In other words,
every 2-dimensional lattice has a basis {al, a2} such that the
angle between a; and a, is at least # / 3 and at most z /2. Then,

one can deduce that y, = 2//3 and 6* (B?)=x/ V2.

Reduction theory has been further developed by Seeber,
Gauss, Hermite, Korkin, Zolotarev, Minkowski, Voronoi, and
many modern authors (see [14,36]). We introduce 3 reductions
as examples.

Korkin-Zolotarev reduction

In 1873, Korkin and Zolotarev proposed the following reduc-
tion: A positive definite quadratic form Q(x) is said to be K-Z
reduced if

n n 2
Qx) = Zci<xi+ > tijxj) , (69)

i=1 j=it1

where | ti | <1/2and

= min
(Zi2i4 15+ 520 )70

n n 2
cj<zj + ) tjkzk> . (70)
=i k

=j+1

Clearly, the first basis vector in the corresponding lattice of
a K-Z reduced form is the shortest nonzero lattice vector. Then,
they proved the following theorem.

Theorem 5.1. Every positive definite quadratic form is
equivalent to a K-Z reduced one.

Korkin and Zolotarev were not able to explore further in
this direction since Zolotarev died in 1878 at the age of 31.
However, in 1934, Blichfeldt succeeded in determining the val-
ues of y¢, v, and y4 by Korkin and Zolotarev’s reduction theory
(see [14]). In particular, in 1987, Schnorr [39] developed a
generalization of the LLL algorithm based on this reduction,
known as block Korkin-Zolotarev (BKZ) algorithm, to approx-
imate the SVP.

Minkowski reduction

As a generalization of Lagrange’s pioneering work, in 1905,
Minkowski discovered the following reduction: As usual, we
denote the greatest common divisor of k integers z;, z,, ...,z
by ged (Zl, Zyseees Zg ) A positive definite quadratic form
Q(x) = xCx is said to be Minkowski reduced, if

CljZO’ ]:2, 3, e N, (71)

and
Q) >c¢y; i=12,...,n (72)

for all integer vectorsz = (zl, Z5, ... ,zn) such that

ged(zpzigp -5 2,) = L. (73)

It is easy to see that the first basis vector in the corresponding
lattice of a Minkowski reduced form is the shortest nonzero
lattice vector. Then, he proved the following theorem.

Theorem 5.2. Every positive definite quadratic form is
equivalent to a Minkowski reduced one.

Minkowski reduction has been studied by many authors,
including B. L. van der Waerden, K. Mahler, and E. S. Barnes,
in particular with respect to the orthogonality defect of a
lattice, which is also useful in lattice-based cryptography.

Lenstra—Lenstra-Lovasz reduction

Assume that {al,az, ,an} is a basis of an n-dimensional
lattice A. We define the associated Gram-Schmidt orthogo-
nal basis as

Lattice-based
cryptography

Shortest
vector

problem

Ball packing
problem

Fig. 4. Lattice-based cryptography is deeply rooted in mathematics.
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a/=a;— Z/‘ijaj’ where p;=—-—.

j<i <a?k,a’.">

7777

In 1982, Lenstra, Lenstra Jr., and Lovasz [37] introduced the

LLL reduction: A basis{a,,a,, ... ,a, } of an n-dimensional lat-
tice A is called to be LLL reduced if

()

(74)

lug|=5— <5 forall 1< j<is 0 (75)
(o)
i
and
laflI> >olla) | foralli =2,3, ...,n, (76)
where
n/(n—1)
a=l+(§) . (77)
4 \4

This time, there is no guarantee that a, is the shortest non-
zero lattice vector of A. However, it is an approximating shortest
nonzero lattice vector. By inventing an algorithm that always
can terminate at an LLL reduced basis in polynomial time, they
proved Theorem 3.8.

Reduction theory has played a key role in the security analy-
sis of lattice-based cryptography for the classical computer.
Naturally, it will be the key tool for the security analysis of
lattice-based cryptography for the quantum computer.

Summary and Outlook

Quantum computing is widely believed to be a revolutionary new
technology. In fact, it is a double-edged sword. If efficient quan-
tum computers can be manufactured in the near future, many of
the current cryptosystems will be in danger and post-quantum
cryptography will be crucial to the security of our communica-
tions. It is possible that better cryptosystems can be invented to
deal with quantum computing attacks in the future. Nevertheless,
up to now, lattice-based cryptosystems are the best candidates to
defend the communication security in the forthcoming quantum
computer era.

The security of the lattice-based cryptosystems relies on the
computational complexity of some fundamental lattice problems
such as the SVP, the CVP, and their generalizations, which are
deeply rooted in the work of Gauss, Hermite, Korkin, Zolotarev,
Minkowski, Siegel, van der Wearden, and many contemporary
mathematicians, as shown by Fig. 4. This makes post-quantum
cryptography one of the few distinguished examples of crucial
modern technology growing up from pure mathematics.

If a new technology can create not only revolutionary pro-
gresses but also disastrous harms, preventing the disasters should
be much more important and urgent than gaining the benefits.
Therefore, post-quantum cryptography provides unprecedented
opportunities for mathematicians to make contributions in mod-
ern technology (see [52]).

If we compare lattice-based cryptography as a fruit tree, the
mathematics discussed in this article should be regarded as its
roots. No matter how the post-quantum cryptography will
develop in the future, mathematics is inevitable since it needs
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complicated models just like lattices. Of course, only mathe-
matics is not enough. Successful post-quantum cryptography
must be a joint work of mathematicians, cryptographers, and
quantum computing scientists.
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