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ARTICLE INFO ABSTRACT
Keywords: This paper focuses on the dynamic simulation of spin-1 Bose-Einstein condensates (BECs) with
Spin-1 Bose-Einstein condensates rotation and spin-orbit coupling (SOC), and presents a high-order compact splitting Fourier
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Rotating

Dynamics

Compact splitting

spectral method with favorable numerical properties. The Hamiltonian is split into a linear part,
which consists of the Laplace, rotation and SOC terms, and a nonlinear part that includes all the
remaining terms. The wave function is well approximated by the Fourier spectral method and is
numerically accessed with discrete Fast Fourier transform (FFT). For the linear subproblem, we
rotate the wave function by a function-rotation mapping, which is realized easily with purely FFT
achieving almost optimal efficiency. The rotation term vanishes, but the SOC term becomes time-
dependent. Using a time-dependent matrix decomposition and the function-rotation mapping, we
can integrate the linear subproblem exactly and explicitly. The nonlinear subproblem is integrated
analytically in physical space. Such “compact” splitting involves only two operators and facilitates
the design of high-order splitting schemes. Our method is spectrally accurate in space and high
order in time. It is efficient, explicit, unconditionally stable and simple to implement. In addition,
we derive some dynamical properties and carry out a systematic study, including accuracy and
efficiency tests, dynamical property verification, the SOC effects and dynamics of quantized
vortices.

1. Introduction

Bose-Einstein condensation (BEC), first observed in 1995 [1,13], has provided a platform to study the macroscopic quantum
world. In the early experiments, magnetic traps were used and the spin degrees of the atoms were then frozen. In 1998, by using
an optical dipole trap, the internal spin degrees of freedom of a gas of spin-1 2>Na atoms were liberated, and a spinor BEC was
first produced [24]. Actually, in the optical trap, particles with different hyperfine states allow different angular momentum in
space, resulting in a rich variety of spin texture. Recently, the spin-orbit coupling (SOC), which plays a key role in spin Hall effect,
topological insulators [15], majorana fermions and spintronic devices [18], was successfully induced in experiments in a neutral
atomic Bose-Einstein condensates by dressing two atomic spin states with a pair of lasers [20]. These experiments triggered a strong
activity in the area of spin-orbit-coupled cold atoms. In particular, many investigations show that the combination of SOC, rotation
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and atomic intrinsic interactions can generate various phenomena in the spinor BEC [16,19,31]. For example, a variety of exotic spin
textures and fractional quantized vortices are exhibited for rotating spin-orbit-coupled BECs [32], a new necklace-type state with
double-ring structure is created in a spin-1 BEC system due to the SOC and rotation, and the ground-state phase diagrams of the
spin-orbit-angular-momentum coupled ®’Rb condensate are experimentally mapped out with first-order phase transitions [30].

At temperatures T much smaller than the critical temperature T, the properties of rotating spin-orbit coupled spin-1 BECs are
well described by the macroscopic complex-valued wave function ¥ = (wl,wo,w_l)T calculated from the three-dimensional (3D)
coupled Gross-Pitaevskii equations (CGPEs) with an angular momentum term and spin-orbit coupling [3]. Moreover, the 3D CGPEs
can be reduced to the effective two-dimensional (2D) equations if the external potential is highly anisotropic, i.e., much stronger in
z-direction. In a unified way, the d-dimensional (d =2 or d = 3) dimensionless CGPEs read as [31]

. 1 _
10y (%0 == JA+V +cop = QL ]y =y Loy +e1(po + p1 = p_)w1 + QW v, (1.1)
. 1 _
i0wo(x,0) =~ EA +V +cop = QL |wo = r(Low_y + Lyyy) +¢1(py + p_Dwo + 2619 w_1 W, (1.2)
. 1 _
o w_(x,1) = [— EA +V+cyp— QLZ]U/_1 —yLyyy+ci(pg+p_1 —pDw_ + clwlu/g, (1.3)
v, (x.0)=yl(x), xeR? £=10-1 (1.4)
Here ¢ denotes time and x = (x,y,2)" € R3 or x = (x,y)" € R2. The total density is given by p = p1+ py + p_y, where p, = |y/,/p|2
represents the density of £-th component. The constant € represents the angular velocity, and L, = —i(xd), — yd,) is the z-component
of angular momentum. L, =id, +J, and L, =id, — d, are the spin-orbit coupling operators, and y is the coupling strength. ¢, and

¢, are the dimensionless mean-field and interaction constants respectively. f denotes the conjugate of complex number f. V (x) is a
real-valued external trapping potential. In most BEC experiments, we choose a harmonic external trapping potential, i.e.,

1 { X+ d=2,

Vx) =< (1.5)
X+ i, d=3,

2

where the constant y, (v =x,, z) represents the trapping frequency in the v-direction.
Introduce the spin-1 matrices f := (f, f}. f. )7 as

L(oro (0 -1 0 10 0
fi=—|1 0 1], f,==—[1 0 -1f, r.=[0 0 o
v2lo 1 o VvV2lo 1 o 00 -1

and the spin vector F := (F (¥), F,(¥), F,(¥))" 1= (PH 7, ¥, P17 W, WH r, W) (PH is the conjugate transpose of ¥) of the condensate
can be expressed as

1. _ _
F, = —[@ 1y + Wy, +w_)) +w_jwpl,

V2

i _ _ _
F,=—[-wyo +wolw; —yv_) +¥w_ 1wl

V2

Fo=ly > =y %

Note that all spin-1 matrices are Hermitian and the spin vector entries are real numbers. The CGPEs (1.1)-(1.3) can be written in the
following compact form

10, = (—%A—QLZ+V+c0p)I3+ch-f —yS]‘P, (1.6)

where I; is the 3 X 3 identity matrix and

F, -—=LF 0
v 0 Ly, 0
Ff=zF 0 2P| s=|L 0 Ly,
o Lr -F 0 L 0
\/E + z

with F, = F, +iF, = V2w + Wow_,) and F_ = F, - iF, = F,.

There have been very extensive studies on the single-component BEC, most of which are concerned about the ground states
computation and dynamics simulation, and we refer the readers to [2,4,6,7,12] for more details. For spinor BEC, the normalized
gradient flow method [3,11] and time splitting spectral method [8] have been successfully applied to compute the ground states and
dynamics respectively. While there are quite few literature on numerics for spinor BEC with SOC terms. As far as we known, the
ground state has been studied for non-rotating spin-1 BEC [29], and it lacks research on dynamics simulation for the spinor BEC with
SOC term and the more physically interesting rotating case. In this paper, we aim to carry out a comprehensive study of the dynamics
for rotating spin-1 BEC with SOC.
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Numerically, the most challenges lie in proper treatments of the rotation and SOC terms. Existing successful methods dealing with
the rotating term include the alternating direction implicit (ADI) [7] method, rotating Lagrangian coordinates (RLC) method [6] and
the exact splitting method (ESM) [10,21]. The standard ADI method splits the Hamiltonian into three parts and is of second order
accurate in time. To effectively study fine structures existing in such rotating system, e.g., vortices lattice and/or vortex lines, it is
favorable to adopt high-order numerical schemes. However, it is somewhat tedious and complicated to construct a high-order scheme
with such triple operators. In ESM, the Laplace and rotation terms are grouped as a linear part, and the corresponding subproblem
can be integrated analytically and explicitly in Fourier space [21], therefore, it is relatively easy to construct high order (temporal)
scheme. But extension or adaptation of ESM to spin-1 BEC with SOC term is non-trivial and quite challenging. While in RLC, the
rotation term automatically vanishes and it is simple to construct high-order schemes [6]. However, when real-time dynamics are
required, it is imperative to rotate the wave function w(x,7) from rotating Lagrangian coordinates to physical Cartesian coordinates
at each time step ¢#,, and such rotation mapping is quite exhaustive computationally and poses great challenges to the simulation
efficiency.

In practice, the rotation mapping is usually implemented using Fourier spectral interpolation and its computation boils down to
a summation of Fourier series at nonuniform target grid 7; using values given on uniform source grid 7;. Naive direct summation,
whose complexity is O(N9*2), becomes impractical for high dimensional problem due to its overwhelmingly huge computation
costs and mediocre round-off performance. Even though the summation can be accelerated by NonUniform FFT (NUFFT) algorithm
[22] with a significant reduction of complexity to C N¢log(N), the pre-factor C is super large and hinders any feasible efficiency
performance. Therefore, an efficient numerical realization of the rotation mapping is of essential importance to overcome such
efficiency bottleneck.

It is important to note that the target grid 7; is exactly a rotation of the source grid 7;. Giving full consideration to the gird
rotation shall help relieve the efficiency bottleneck. Fortunately, using three-shear decomposition of the rotation matrix [26] and its
equivalent PDE reformulation (3.10), the rotation mapping can be reformulated into a computational-friendly form. We will refer to
it as the Rotation-Shear-Decomposition-Acceleration (RSDA) method hereafter. Such idea has also been successfully applied to Vlasov-
type equations [9]. Specifically, RSDA is composed of three simple differential operators, each of which takes the form of %% or
% with real constants a, b. It can be implemented efficiently with one-dimensional FFT/iFFT in Fourier space, thus leading to a
significant efficiency enhancement.

To overcome such efficiency bottleneck, we introduce a high-order compact splitting Fourier spectral method. To be specific, the
CGPEs (1.6) is split into a linear subproblem

i0,¥(x,1) = [(—%A —QL)I; —yS|¥(x,1) := AP(x,1), (1.7)

and a nonlinear subproblem

i0,9(x,1) = [(V + ¢op) I3 + ¢, F - £]¥(x,1) := B¥(x,1). (1.8)

The nonlinear subproblem is integrated analytically in physical space, while it seems difficult or even unlikely to integrate the linear
subproblem in a similar way as before.

Borrowing the RLC idea to deal with the rotation term, we first rotate the wave function on the fixed rectangular domain, and
such function-rotation can be implemented efficiently via purely FFT based on RSDA. For the rotated wave function, the rotation
term vanishes but SOC term becomes time-dependent. Fortunately, we are able to integrate the linear system in Fourier space with
help of a time-dependent matrix decomposition. We do not introduce or work in the rotating Lagrangian coordinates, instead, we
just simply map the wave function by a rotation of spatial variables in the original coordinates. Therefore, the computation domain
remains unchanged as a rectangle. It is worthy to emphasize that each subproblem can be efficiently and exactly solved in either
Fourier or physical space, regardless of the potential V' (x). Such compact splitting greatly facilitates the implementation of high-order
time marching schemes.

In summary, the key advance is that we first achieve fast and exact integration of the Laplace-Rotation-SOC subproblem using
function-rotation mapping and a time-dependent matrix decomposition, where the mapping is efficiently computed with purely FFT
instead of the commonly used NUFFT-accelerated Fourier spectral interpolation. Such fast realization of the function-rotation mapping
is quite vital to alleviate or even overcome the efficiency bottleneck for simulating rotating models.

This paper is organized as follows. In Section 2, we derive some dynamical laws for some physical quantities. In Section 3,
we propose an efficient and robust splitting Fourier spectral method to simulate the dynamics, and prove the mass conservation
(unconditionally stability) and magnetization conservation. In Section 4, we test the temporal/spatial accuracies and efficiency, and
study some interesting numerical phenomena. We make some concluding remarks in Section 5.

2. Dynamical properties

In this section, we demonstrate some main quantities in the study of dynamics of spin-1 BEC with rotation and SOC, including
mass, energy, magnetization, angular momentum expectation and condensate width. The dynamical laws of these quantities are briefly
presented and can be used as benchmarks for testing our numerical methods. Detailed proofs can be found in the appendixes.

Mass and energy. The time-dependent CGPEs (1.6) have two important invariants: the mass of the wave function and the energy
per particle, i.e.,
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N(z)::N(‘P(~,t)):=/ i w0 dx= N'CPC,0) =1, 120, @.1)
p £=—1
and
£(1) 1= EC¥( 1) 1= / [ 21 (219w + Vool P~ L) 2.2)
+cz°p2 FEL+IEP)

~7 (LowoW1 + Low_1Wo + Liw1wo + Lywow_, )] dx
= E(¥(.,0)).

Magnetization. The magnetization of the wave function is defined as

M) 1= M(P(-, 1) := Z /f|w(x D dx, 120 (2.3)
£==1g
By direct calculations, we obtain that the dynamics of the magnetization of the wave function is governed by
d . _ _
EM(I)z(Zyl)S{/ (y/lLlwo—w,lL]wo)dx, (2.4)
R4

where R represents the real part. This implies the magnetization is conserved (i.e., M(?) = M(0)) when y =0.
Angular momentum expectation. The angular momentum expectation of the condensate (1.6) is defined as

(L)1) = Z / W,y (x.0)dx, >0 (2.5)
f=1n

The angular momentum expectation can be used to measure the vortex flux, and we have the following Lemma for its dynamics.

Lemma 1. For CGPEs (1.6) with harmonic potential (1.5), the dynamics of angular momentum expectation is governed by the following
ordinary differential equation (ODE)

d(L_)1)

— =(y§—yf)/xypdx—ZVm/i(t/'flLowo—vl]Llwo)dx.

Rd Rd
This demonstrates that the angular momentum expectation is conserved when y, =y, and y = 0. That is,

(L) =(L)0), 120

The detailed proof can be found in Appendix A.
Condensate width. The condensate width in the a-direction (where a = x, y, z) is defined as o, = 1/6,(?), t > 0, where

1
S(=Y 5,0 with §,,0)= / @ |y, (x, ) dx. (2.6)
=-1 Rd

In particular, we have the following lemma for its dynamics in the 2D case.

Lemma 2. For the 2D CGPEs (1.6) with the radially symmetric harmonic potential (1.5), i.e., v, = Yy=ivpit holds

d?s,(t)
dt 2
where 6,.(t) :=6,(t) + 6,,(1) and

—47/26 1) +4E0)+4Q(L, )1+ G(y,'V), 2.7)

Q _ _
G(y,‘l‘)=4y5’1/[7(zx+y)F++7/(p+|l//o|2—u/1sz/1+u/_1sz_1) dx.
2
d

When y =0, it follows that

(D
5,(t) = M;LZXO) [1 - cos(2yrt)] + 550) cos(2y, L.
Y,

r

1), (2.8)
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where 550) =6,(0) +6,(0) and 651) = 5x )+ Sy(O). Furthermore, if the initial condition is radically symmetric, we have

5,(0=5,0= 15,0 120.

In this case, the condensate widths c,() and c,(t) are periodic functions with frequency that is twice the trapping frequency.
Proof. See details in Appendix B. []
3. Numerical methods

The rotation and SOC terms bring challenges in simulating dynamics. A popular idea is to use the rotating Lagrangian coordinates
to eliminate the rotation term [6]. Unfortunately, directly utilizing this idea poses efficiency challenges when real-time dynamics are
required. Our approach splits the Hamiltonian into a linear part .4, (i.e., the Laplace-Rotation-SOC terms) and a nonlinear part 3,
which contains the remaining terms. This splitting allows for a simple, exact and efficient evaluation of the nonlinear subproblem
in physical space, since B(¥(x,?)) is conserved. Remarkably, we develop an efficient and exact method for integrating the linear
subproblem in Fourier space, with further details provided in subsection 3.1 below. Based on this, we can construct arbitrarily high-
order time marching schemes.

To be exact, for a given time step 7 > 0, we define the time sequence as 7, =nr forn=0,1,.... Thenfromt =1, to 7, ;, we denote
the solutions of linear and nonlinear subproblems as W(f) = e~ /("' AP" and Y(r) = e/~ BPY" respectively. In principle, high order
splitting schemes can be constructed as [28]

m
\Pn+1 — <He—[ajr.Ae—ibjrB> pr
Jj=1

where the coefficients a;,b; € C are chosen suitably. For the classical second-order Strang splitting, we use m =2, a; = a, = %
1-21/3

T 1
and b; =1, b, = 0. For the fourth-order symplectic time integrator, we adopt m =4, a; = a, = oy 2 =93 = 5o and
1 213
by=by= > 173> by = 2513 by =0.
3.1. Exact integrator for the linear subproblem
In this subsection, we propose an exact and efficient integrator to solve
i, Y(x,1) = AY(x,1), 1,<t<t,,, 5.1)
3.1

Y(x,1,) =", xeR,

where A is the Laplace-Rotation-SOC operator given below

1 0 Ly 0
A:(——A—QLZ)IS—y<L, 0 Lo).
2 0L O

We define a function-rotation mapping through a rotation of variables, that is,

G, (%0 = y,(R(OX, 1), xERY,

where R(?) is a time-dependent rotational matrix and reads explicitly as

COS(QZ) sin(Qt) cos(Q1) sin(Qr) 0
R(t) = . ,ifd=2, R(t)={ —sin(@n) cos(r) 0 |, if d =3. (3.2)
—sin(Qf) cos(Qr) 0 0 1

Using the chain rule, for the rotated-function ® = (¢, ¢y, ¢_1) ", we have

i0,d(x,1) = ADYDX, 1), 1, <1<t 33
O(x,1,) =PR(E,)x,1,) ;= D", xR, '
where
] 0 L, ©
A=(380L-y|L 0 L
0 L, 0

with

Ly=i [cos(Q), + sin(Q1)a, ] + [ sin(Q1)0, + cos(Q)d, | ,
Ly=i [cos(Q)a, + sin(Q1)d, | — [~ sin(Q1)d, + cos(QN)d, | .
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Clearly, the Laplace keep unchanged but the SOC terms are time-dependent.

Since the wave function y, is smooth and decays exponentially fast, its rotated function ¢, is also smooth and decays fast.
Therefore, it is reasonable to truncate the whole space R? into a common large enough bounded domain D = [—L, L]¢, L > 0 and
impose periodic boundary conditions for both y, and ¢,. Then we can readily apply the Fourier spectral method [23] to approximate
both wave functions and their spatial derivatives.

It is crucial to calculate function-rotation mapping accurately and efficiently. Based on matrix decomposition and PDE reformula-
tion, we introduce a strategy (RSDA) to calculate this mapping with almost optimal efficiency, which only requires one-dimensional
FFT. That is,

Px) = MMMy l(x), xERY,
+1 0y ,brx0 0. +1 d
wit (0) = e P i (%), xERY,

where a; =tan(Qt,/2), by = —sin(Qt,), a, = —tan(Q¢, ., /2) and b, =sin(Qt,,, ). Further details are provided in subsection 3.1.2.

Remark 3.1. We do not work in the rotating Lagrangian coordinates, but just simply rotate the wave functions and compute them
on a fixed rectangular domain in the original Cartesian coordinates. Such function-rotation can be implemented via purely FFT based
on RSDA.

Specifically, we shall introduce our method in 2D and choose to discretize domain D with uniform mesh size h =(2L)/N,N €
2Z*. For simplicity, we define the Fourier, physical index and grid points sets as

Tv={(G.0€Z?| -N/2<p<N/2-1, -N/2<q<N/2-1},

IN={(j,k)eZZ| 0<j<N-—1, OsksN—l},
G={xy :=(x;, )" i=(-L+jh.—L+kh)", (j.kEIy},
and define u/; ; k(i =1,0,—1) as the computational approximation of y,(x s Yi-t,) for (j,k) € Iy, n> 0. In order to discrete (3.3),
we approximate the function ¢, by applying the Fourier spectral method
by Y By PTDUD () €D,
(P-9ETN

where v;‘ =2zp/(2L), vg =2nq/(2L). The discrete Fourier coefficients are presented as follows

~ 1 —iv¥(x, Y
bem®= 15 Y by MO gy e Ty (3.4)
U.RELN

Using the Fourier spectral approximation in space, the semi-discretization of (3.3) can be written in terms of the Fourier coefficients
as
{ i0,®,,(1) = ANYD,, (1), 1,<1<t,,, 35
D (1) = (@) g5 P9 ETy,

with <’I\>pq = ($1,pq’ q?o,pq, q?_l,pq)T. The time-dependent coefficient matrix reads as
N PR R
AW =3 |03+ 2| 1 - vRa),

0a0

where R = (g 6 a ) with a(f) = — [COS(QI)\/;‘ + sin(Qt)vqy ] +i [— sin(Qt)v;‘ + cos(Qt)vg . With an abuse of notations, we shall omit the
a

subscripts p and ¢ for simplicity. We introduce a new vector

Larv2 (V)2 A
K@) := 20 #0100 § () e 01,

and it satisfies the following ODE system

0K =iyROK(®), with K(1,)=(®"),,. (3.6)

In fact, the above equation can be integrated exactly by virtue of a time-dependent matrix eigenvector decomposition and we shall
present details in the coming subsection.

3.1.1. Exact temporal integration

In this subsection, we aim to integrate equation (3.6). Similar to the diagonalization procedure, we first carry out an eigenvector
decomposition of matrix R, then convert (3.6) to a constant coefficient linear ODE system. Actually, we can diagonalize R explicitly
using a unitary matrix U (i.e., UUH = UNU = I) to a real diagonal matrix A such that R = UAU". That is,
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« o a
V20a|  2lel 2lal 0 0 0
1 1
uv=| 0 A e V2|« 0
-a % 3

a —
Vala|  2lal  2lal o0 Vi

We perform a time-dependent variable transformation Z () := UM (¢)K(¢), and then we have

3.7)

0,Z =0,(UNK +U"(9,K) =i [QG +yA] Z,
Z(t,)=U"1,)K(,),

—1(011 . .. . . .
where the constant coefficient matrix G = 7%( i 88) Since |a| = 4 /(vl’; )2+ (v; )? is time-independent, equation (3.7) is actually an

ODE system with constant skew-Hermitian coefficient matrix. Then we have

Z(1) =N 71,
Correspondingly, the solution to equation (3.6) is
K0 =UMZ(t) = [U@e Ny ) K () := WHK({,),
where W (¢) is a unity matrix and reads explicitly as follows
ad,cyp acy  QQ,cp3
W®=| a,c;p, ¢n a,c3 |, (3.8)
aa@,ci3  ACy3 A, C33

with entries

1 /4
ERARVYFIME [22%1 +2) = &m = 2Qm] . e = o5 [=m +dm].
2 2
_rm _ & _ Y&, _ Qny
‘B=0 022—1+—2/12’ 023—612"‘—12 , 033—011"‘—1'(1'2,

where & = V2y|al, 1= VE +Q2, n; =2cos(Alt —1,)) — 2, 1, = 2isin(A(t — 1,)). Notice that parameters .2, ¢13. 2. C23 and cs3
depend only on y, Q and the time step 7, hence they can be computed once and treated as a pre-computation.
Therefore, the exact solution to (3.5) reads as follows
~ L N2 N2 L X2 Y2 ~
q’pq(t) =e 21[(\/,,) +(Vq) 1( I")K(l) —e 21[(Vp) +(Vq) 1@t I")W(l‘)(@")pq.
Then, we have

Lo xN20 002 —~ ivi(x.+L) v’/ L
<D;‘ll-:l — Z e 7)) +(vp) Iz W(th) (cp,,)pq etvp(xj+ )ezvq(yk+ ). (3.9)
(P.9ETN

Finally, we obtain the solution to (3.1) as
Wi ) = g R G )x) with 0= G,y T

Remark 3.2 (Special cases). The above method naturally resolves special physical cases, including the vanishing spin-orbit coupling
case (y =0) and/or the non-rotating case (Q = 0).

+ Non-SOC: When the spin-orbit coupling strength y goes to zero, for any fixed rotating speed 2, we have W (t) - I5 as y = 0,
and the numerical scheme (3.9) reads as follows

Ll X2 0 VV21, o~ X (. Y
(I);,l-:l - 2 e 2 [(vp) +(vq) ]r(q),,)pq e"’p(xﬂ'L)el"q()’k"’L).
(P.9)ETN
Obviously, this scheme aligns with the numerical scheme for solving the PDEs (3.3) with y =0 (i.e., A= (—%A) 13).
+ Non-rotating: When the rotating speed Q goes to zero, simple calculations imply that
W(t) — 7RI a5 Q0.

Similarly, the corresponding numerical scheme aligns with the scheme for solving the PDEs (3.1) with Q =0 (i.e., A = (—%A) 13—
rS).
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Remark 3.3 (Extension to three dimensional problem). It is straightforward to extend the above method to three dimensional case,
because both the rotation and SOC terms are independent of space variable z, and we choose to omit details for brevity.

3.1.2. Fast implementation of the function-rotation mapping
To ensure that the proposed procedure is computationally viable, we present a specific scheme (RSDA) for the following problems

given wi(x;) = compute ¢L(X;) =i (R(E,)X;), X €G,

given ¢+ (x;;) => compute w1 (x;) =@ (R, )x;), X, €G.

The numerical problem is to compute the function ¢ on the uniform grid x;; using discrete values of y; on the same uniform grid
X

Based on a three-shear decomposition of a rotation matrix [26], and the equivalent PDE reformulation (3.10), the function-rotation
mapping can be reformulated exactly into a computational-friendly form, which is easy to implement with purely one-dimensional

FFT and iFFT achieving almost optimal efficiency. To be specific, the rotation matrix (3.2) can be reformulated as R(f) = ">/ with

the second order symplectic matrix J := (% ) ifd=2and J := (—21 (1)§) if d =3.

0
In fact, for any given d X d matrix M, we can prove that the following identity holds true

u(eMx) = ™M* Vy(x), xeRY, (3.10)
because both the left-hand side (LHS) and the right-hand side (RHS) of (3.10) are exact solutions to the underlying transport equation

oow=Mx-Vw, x€ RY,
w(t =0,x) = u(x).

However, one can not directly apply the above formula (3.10) to calculate the function-rotation mapping simply because Jx - V has
non-constant coefficients. Thanks to the three-shear decomposition of a rotation matrix, that is,

R(t) = MIDMOMO O£ 2k + V7, k€ Z, (3.11)

where M/, M, are nilpotent matrices and read explicitly as

Qt
Ml(t):<8 tan(7)>, M2(t):< 0 0) if d=2,

0 —sin(Qt) O
and
0 tan() 0 0 00\ .
M@=, o) Mz(t):(—sin(m)oo) if d=3,
0 0 o0 0 00
we have

PLx) = l,,ln(eMl(f,,)eMz(rn)eMl(t,,)x) = eMl(tn)X-Vu,ln(eMl(tn)eMz(t,,)x)
— M (r")x~VeM2(t,,)X<VWIn(eM1(tn)x) _ eMl(r,,)x-VeMz(tn)x-VeMl(tn)x~VW;(x)
- ealy‘)x eblxz)y ealyf)x W;(X)’ (3.12)
where a; = tan(Qt,/2), b; = —sin(Q¢,). Similarly, we obtain
l//;+l (x) = eazyz)x ebzxdy e‘ZZY')x ¢;+1(X), (3.13)

where a, = —tan(Qt,, /2), b, =sin(Q¢,,, ). To sum up, the RSDA method for fast evaluation of the function-rotation mapping reads
as follows

Bl(x) = e“17%x eP1X% 041 0x y 1 (x),

W;+1 (x) = eazyax ebzxt)yeazyax ¢;+l (x).

Remark 3.4. If Qt = (2k + 1)z, the entry tan(Q¢/2) in the matrix M, (7) is not well-defined. In such particular case, to realize the
function mapping, we do not perform decomposition as shown in Eqn. (3.11). Actually, the function-rotating mapping is exactly
the reflection operation over the origin, and one can easily realize such mapping by flipping the function against the x and y-axis
successively.

We discrete (3.12)-(3.13) in space by Fourier spectral method [23], taking (3.12) as an example, and the specific discretization
scheme is given below
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Table 1
The performance of RSDA and NUFFT for function-rotation map-
ping evaluation in Example 1.

N =256 2D 3D
Error Time Error Time
RSDA 6.9459E-16 0.012 6.9459E-16 2.66

NUFFT 1.3545E-14 0.171 1.3545E-14 48.25

N/2-1
d)(;)(xj,yk): Z PLsACH) (W;('vJ’k)) M GHD),
p=—N/2 g
N/2-1 , . ,
PP p0= Y, @D (¢0) Mo, (3.14)
q=—-N/2 q
N/2-1 _ . ‘
IR ED WL (¢(f)(-,yk)) It
p=—N/2 p

Here, fp and fq represent the discrete Fourier transform coefficients of the vector f in x- and y-directions, respectively.
In the following, we will demonstrate the efficiency and accuracy of RSDA method for function-rotation mapping evaluation and
compare it with Fourier spectral interpolation, that is,

N - i v )
¢;(xjw‘)k) ~ Z W;,pq e (cos(Qt,,)x,+91n(Qt)yk+L)e,vq( sin(Qt,)x; +cos(Q1)yk+L)’
(P.OETN

with the discrete Fourier coefficients @;’pq being given as (3.4). This interpolation boils down to a summation of Fourier series at
nonuniform grid. Note that the approximation only needs to be done in the x- and y-directions for 3D problem, because the rotation
is independent of the space variable z. Therefore, the complexity of naive direct summation is O(N9*2). The NUFFT-accelerated algo-
rithm requires N9=2 two-dimensional FFT and NUFFT algorithm to accelerate the Fourier spectral interpolation, whose complexity
is reduced to C N9 log(N) with a super large pre-factor C [14,22]. The RSDA method only needs 3N“~! pairs of one-dimensional
FFT and iFFT, thus achieving almost optimal efficiency.

Example 1 (Numerical performance). Here, we choose Q=0.6, 7, =1, and

{ (x + iy)e—(x+0.l)2—(y—0.3)2’ d=2,

y'(x)= , -

(x+l~y)e—(x+0.l) —(y—0.3)"—z , d=3.

Then we have ¢"(x) = y"(R(t,)X). In our simulation, we compare the accuracy and efficiency of RSDA (3.14) and Fourier spectral
interpolation accelerated with NUFFT algorithm [14,22] to evaluate ¢"(x). The algorithms were implemented in Matlab (2022a) and
run on a 1.60GH Intel(R) Core(TM) i5-8265U CPU with a 6 MB cache in Windows.

Table 1 presents the relative maximum error and computational time (in seconds) for RSDA and NUFFT-accelerated spectral
interpolation algorithm with 4 = 1/8 on domain D = [—16, 16]¢. From this, we can conclude that RSDA method performs better in
terms of efficiency and accuracy.

To sum up, from time 7, to t,,, we can solve the linear problem using the following exact integrator.

Algorithm 1 Exact integrator for the linear subproblem.

Input: Given "’;,,k =YX

1: Compute the function-rotation mapping qﬁ’[‘,Jk =y, (R(1,)x) by (3.14).
2: Solve the ODEs (3.3) to obtain ¢;“ (x;4) using (3.9).

n+l1

3: Compute the function-rotation mapping W= ¢’;+1(R"(tn+])xjk) by (3.13).

Remark 3.5 (Efficiency). For Algorithm 1, it appears that we need 8 N pairs of one-dimensional FFT and iFFT. In fact, we can reduce
the number of Fourier-Physical switches by merging adjacent computation. To be specific, at the end of step 1, we do not perform
the inverse Fourier transform in x-direction but stay in phase space, because the subsequent computation is carried out in Fourier
space with respect to x- and y-directions. This strategy helps reduce N pairs of one-dimensional FFT and iFFT. Similarly, we can save
another N pairs of one-dimensional FFT and iFFT from steps 2 to 3. Therefore, it requires only 6 N pairs of one-dimensional FFT
and iFFT, and the complexity is O(N?log(N)).

Similarly, for 3D problem, we need 7N 2 pairs of one-dimensional FFT and iFFT, and the complexity is O(N3 log(N)).
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3.2. Exact integrator for the nonlinear subproblem

In this subsection, as referenced in [3,25], we present an exact solution to the following nonlinear problem

(3.15)

i0,9(x,1) = [(V + ¢op) I3 + ¢/ F - £]¥(x,1) := B¥(x,1),
Yx,t,)="¥" x€D, t,<t<t,,.

We prove that the density p is time-invariant, i.e., p(x,1) = p(x,1,) := p" for any time t, <t <t,,,. Using the facts that f,(v=1x,y,2)
and B are Hermitian matrices, and that the commutator relations [f,, f,] := f,. f, = f,fx =if., Ufy. f1=ify, and [f,, f ] =if,
hold, we have
0,F, = 0,(¥" £, W) = i¥" B, ¥ - iV 1, BY
=ic/YU[F-f, f,1¥ = ic)P[F [, + F,f,+ F.f../,]¥
=ic) (FY S ¥+ F UL, £ 1Y + F Y/ £9) =0, v,z
This implies that the spin vector F, (¥(?)) = F,(¥") and B(Y(?)) = BY") :=B", Vt, <t <t,,,. Itis clear that (3.15) becomes a linear
ODE and the exact solution reads as follows
Y(x, 1) = e—i(r—t,,)B” pr — e—i(r—t,,)(V+cop")e—icl(r—t,,)F’“f\Pn’ (3.16)
where F" = (F, F, ;’ F. Z")T. The eigenvalues of F” - f are |F"|,—|F"| and 0. The associated eigenvectors are e”, e; and eg =
1
[F*|-1272(—F", \/EF o F 1)-'—. In fact, we can expand the wave function vector ¥ with respect to the above eigenvectors as
W' =1 el +1,¢] +I3e5. It is easy to prove that /3 = (", %) = 0 by substituting the explicit formula of ¢ as follows
L= (", eh) = B~y P V2 4w FE ! F2/V2)
|2

= [F"|7 =yl @y + 0w )+ w1 = ™ 1D + v g +wiw” )
=0.

Then we have

F" £ = (F" - )7 (1, ¢} + Lhel) = [F'2(L €] + Leh) = [F" 9",
and the solution (3.16) can be computed as
. " sin(c; (¢t —t,)|F"
Y(x, 1) = e =tV +cor") [c()s(c1 t—t)|F'DY" - i(cl(lF—nln)ll)(F" -HPr|. (3.17)

In practice, from time r =1¢, to t =t,,;, we combine the splitting steps via the standard Strang splitting and present detailed
step-by-step algorithm proposed in Algorithm 2.

Algorithm 2 Second-order compact splitting Fourier spectral method.
1: Solve ODEs (3.15) by (3.17) for half time step 7 /2 with initial data given at t =1,.

2: Solve ODEs (3.1) by Algorithm 1 for one step 7 starting with the data obtained from step 1.
3: Solve ODEs (3.15) by (3.17) for half time step 7/2 again with the data acquired from step 2.

Remark 3.6 (Arbitrary high-order schemes). We can easily design high-order schemes using the operator splitting method [28] since
both subproblems can be exactly integrated.

3.3. Stability

Without loss of generality, we only present proofs in the 2D case and extension to 3D is straightforward. We define the discrete

2 2w N-1 ¢ N-1 ot
I2-norm of w7 as [lyyll 2 = (h* X2 Xyl lwy 192

Lemma 3 (Stability). The compact splitting Fourier spectral method is unconditionally stable. In fact, for every mesh size and time step size
7> 0, we have

1 1
2 02
PA I I S
=—1

r=-1

In other words, the mass is conserved at discrete level.

10
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Proof. For the nonlinear subproblem (3.16) and (3.17), due to (BMHH = B", we have
1
I = e~ |12, = 19717, where 17117 := " w1
£=—1

For the evaluation of linear subproblem, we only require to consider (3.14) and (3.9). For (3.14), applying the subsequent identities

N/2-1 N-1 ;
Z o27ia/N — 2 274/ N = { 0, Jf mN, mez. (3.18)
— = N, j=mN,
we obtain
N-1N-1 N-1 N/2-1 2
. . N —
RGNS WD Y RN (7 )
j=0 k=0 k=0 p=—N/2 ’
N-1 N/2-1 N-1N-1
=Ny 3 |(vicw) | =2 3 Y g P = v
k=0 p=—N/2 j=0 k=0

In a similar way, we have the following equalities

2 _ 1@ 2 — 1sMy2 — 2
ol = lld, 1 =M, I = vl (3.19)
For (3.9), by using (3.18) and WHW = I, we obtain

2

_1 x\2 Y2 —~
||(I)n+1”122 — h2N2 2 e 2l[(v )+ e W(tn+|) (q)n)pq

(P.9)ETN
—~ 2
=nN? Y ‘(cpn)pq‘ = @3 (3.20)
P.9ETN

Through the above discussion, we have the following conclusion

1 1 1 1
12 12 2 2
A [ I A - S T A S 171
£=—1 =-1 £=—1

f=—1
Then the proof is completed. []

Lemma 4 (Magnetization conservation). The magnetization M(W) is conserved at discrete level when y = 0. In fact, for every mesh size and
time step size T > 0, we have

1 1

X A= Y vl
=—1 =—1

Proof. For the linear subproblem, we know that W (¢) = I3 when y = 0. Therefore, from (3.19)-(3.20), we obtain

w2 = wpl%, £=1,0,-1.

For the nonlinear subproblem (3.17), a direct computation shows

w2 = w2 = cos® ey o [FD) (w1 = v 17)

sin“(c | F" 2
ARGl L D Fryl+ Ly —) — Fly",
7| V2 \/_
sin (clle D
=cos2(clfIF”I)(|wf|2—|w21|2)+WIF"Iz(waI2—wallz)
=y =", 1%

1 1
| il |

So we have ||1;/1

||1// = ||u/1"||12 — ||u/]"||122. The proof is completed. []

4. Numerical results

Here, we first conduct the spatial/temporal accuracies confirmation and efficiency test. Then, we explore the dynamical laws,
including the conservation of mass, energy and magnetization, along with the evolution of condensate widths and angular momentum

11
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Table 2
Numerical errors of CmpStrang and CmpYoshida at time 7 = 0.5 for 2D case in Example 2.

Temporal direction

T 1/80 1/160 1/320 1/640

ef“" 1.1681E-03  2.9159E-04  7.2870E-05  1.8216E-05

rate 2.0022 2.0005 2.0001

e’; 5.0694E-04  1.2672E-04  3.1680E-05  7.9199E-06
CmpStrang rate 2.0001 2.0000 2.0000

e’j“]" 1.1520E-03  2.8756E-04  7.1863E-05  1.7964E-05

rate 2.0022 2.0005 2.0001

Spatial direction
h 1/2 1/4 1/8 1/16

eZ'r" 2.8072E-01 4.3046E-03 5.5245E-08 1.2753E-12
eyl'r“ 1.6902E-01 2.2335E-03 2.3224E-08 1.2208E-12
e ']T" 2.9152E-01 4.5147E-03 5.7187E-08 1.3704E-12

Temporal direction

T 1/80 1/160 1/320 1/640

efO" 5.6905E-05  3.6223E-06  2.2751E-07  1.4237E-08

rate 3.9736 3.9929 3.9982

eg“ 1.7442E-05  1.1126E-06  6.9922E-08  4.3767E-09
CmpYoshida  rate 3.9706 3.9920 3.9978

™7 5.6046E-05  3.5675E-06  2.2407E-07  1.4021E-08

rate 3.9736 3.9929 3.9982

Spatial direction
h 1/2 1/4 1/8 1/16
P 6.4844E-02  1.8722E-04  1.5849E-09  1.6546E-12

e 1.6902E-01 2.2335E-03 2.3224E-08 3.5761E-12
e_']r“ 2.9152E-01 4.5149E-03 5.7187E-08 3.6449E-12

expectation. Finally, we apply our method to investigate some interesting phenomena, such as the effect of SOC on dynamics and the
dynamics of quantized vortices.

4.1. Accuracy confirmation

Here, we test the spatial and temporal accuracies in both 2D and 3D. For convenience, we denote the second-order Fourier
spectral method based on Strang splitting as CmpStrang, and the fourth-order method based on Yoshida scheme as CmpYoshida.
The numerical errors are computed as

ht . f h, f
A=y =y /e £=1.0.-1,

where u/;ef denotes the reference solution, and y/;h’r) denotes the numerical result obtained with the mesh size 4 and time step 7.
To confirm the temporal convergence, we compute the wave function with a small mesh size hy = 27;_[, , and the reference solution

y/;ef is obtained by CmpYoshida with mesh size 4, and a small time step 7, = 10*. To confirm the spatial convergence, we compute
the wave function with different mesh size 4 and the reference solution is obtained by CmpStrang/CmpYoshida with s and 7.

Example 2 (Accuracy). Here, we test the spatial and temporal accuracies for both 2D and 3D cases. To this end, we choose the
harmonic potential V' (x) = |x|2/2, Q = 0.2 and the following parameters

+ 2D case: ¢y =100, ¢; =-1, y=0.3.
+ 3D case: ¢y =10, ¢; =1, y=0.1.

The initial data is chosen as

WV =9®., wl®=3V20m.  v’x)=¢x). (4.1)
where $(x) = 1/0.05/ze~1XI>/2 for 2D case and ¢(x) = 1/0.05/73/4¢~1X*/2 for 3D case.

Table 2 presents the temporal and spatial errors of CmpStrang and CmpYoshida at time 7 = 0.5 on the computational domain
D = [—12,12]? for the 2D case, while Table 3 shows those at time # = 0.3 on [—8, 8]° for the 3D case. From Tables 2-3, we can conclude

12
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Table 3
Numerical errors of CmpStrang and CmpYoshida at time 7 = 0.3 for 3D case in Example 2.

Temporal direction

T 1/40 1/80 1/160 1/320

ef“" 1.0786E-04  2.6946E-05  6.7353E-06  1.6837E-06

rate 2.0010 2.0002 2.0001

e’; 8.8380E-05  2.2080E-05  5.5191E-06  1.3797E-06
CmpStrang rate 2.0010 2.0002 2.0001

e’j“]" 1.0755E-04  2.6869E-05  6.7160E-06  1.6789E-06

rate 2.0010 2.0002 2.0001

Spatial direction
h 1 1/2 1/4 1/8

eg'r" 2.2081E-02 2.6570E-04 2.3092E-09 5.6024E-13
eyl'r“ 1.7534E-02 1.8530E-04 1.4885E-09 5.4151E-13
e ']T" 2.3009E-02 2.7258E-04 2.4044E-09 4.3450E-13

Temporal direction

T 1/20 1/40 1/80 1/160

efO" 1.2173E-06  7.8463E-08  4.9435E-09  3.0974E-10

rate 3.9555 3.9884 3.9964

eg“ 9.9441E-07  6.4016E-08  4.0318E-09  2.5257E-10
CmpYoshida  rate 3.9574 3.9889 3.9967

™7 1.2168E-06  7.8428E-08  4.9411E-09  3.0951E-10

rate 3.9556 3.9885 3.9968

Spatial direction

h 1 1/2 1/4 1/8

e 2.2081E-02 2.6570E-04 2.3092E-09 1.6691E-12
e 1.7534E-02 1.8530E-04 1.4885E-09 1.6216E-12
e_']r“ 2.3009E-02 2.7258E-04 2.4044E-09 1.5942E-12

Table 4

Timing results (in seconds) of CmpStrang and CmpYoshida ver-
sus the total grid number N, for d-dimensional problems in
Example 3.

ot

N, 64¢ 1284 1924 2564

tot

CmpStrang 0.27 1.3 2.8 5.5
CmpYoshida 0.76 3.4 7.8 14.8

CmpStrang 24 226 786 1928
CmpYoshida 62 610 2108 5392

that CmpStrang/CmpYoshida is second/fourth order accurate in time and spectrally accurate in space. A higher order operator splitting
scheme is easy to construct since both subproblems can be exactly integrated.

4.2. Efficiency test

Since there is no other method ever been proposed for such system, we choose to show the efficiency performance by investigating
the computational costs, in terms of computational time, as a function of the discrete problem size. Similar efficiency demonstration
about RSDA part was studied by a comparison with NUFFT-accelerated Fourier spectral interpolation in earlier subsection 3.1.2.

Example 3 (Efficiency). Here, we explore the relationship between computational time and total grid number N,, := N¢. To this
end, we choose the harmonic potential V' (x) = |x|?/2, Q=0.2, ¢p =10, ¢; =1, y =0.1 and the initial data (4.1). The algorithms were
implemented in FORTRAN, and run on a single 2.30GH Intel(R) Xeon(R) Sliver 4316 CPU with a 30 MB cache in Ubuntu GNU/Linux
with the Intel complier ifort.

Table 4 and Fig. 1 present the computational time (in seconds), elapsed from ¢ = 0 to # = 0.1 with time step 7 = 1073, as a function
of the total grid number N, in both 2D and 3D problems. From Table 4 and Fig. 1, we can conclude that our method is efficient and
the CPU time scales approximately as CN,,, log(N,,;), which is consistent with our theoretical analysis (Remark 3.5).

13
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Fig. 1. Log-log plots of timing results for CmpStrang and CmpYoshida versus the total grid number N,,, for both 2D (left) and 3D (right) problems in Example 3.

Table 5
Number of one-dimensional FFT/iFFT operators per time step for
CmpStrang/CmpYoshida and ADIStrang/ADIYoshida methods in

Example 4.
Order Method Number of FFT/iFFT pairs
CmpStrang 18N
Second
2D ADIStrang 12N
CmpYoshida 54N
Fourth ) DrYoshida 63N
CmpStrang 21N?
Second 5
3D ADIStrang 24N
CmpYoshida 63N?
Fourth  \ DIyoshida 126N?

4.3. Comparisons with non-compact splitting

In this subsection, we compare our method with other non-compact splitting method. As shown in [28], compact splitting provides
a more straightforward framework for constructing high-order schemes. We conduct a comprehensive comparison in terms of accuracy
and efficiency. Since no other method has ever been proposed, we choose to adapt the classical Alternating Direction Implicit (ADI)
technique, which has been successfully applied to rotating BECs without SOC term. To be specific, we split the Hamiltonian into three
parts, that is, nonlinear part and the other two parts derived by applying ADI to the linear part. Take the 2D case as an example, we
split the linear operator A (1.7) into two parts, i.e., A = A, + A,, where

1 0 id, 0
A, :(——aXX—Qian)]3—y<i()x 0 i()x>
2 0 id, 0

and
1 0 9, 0
Ay =(==0,,+Qixo )y —y| -9, 0 9, ).
A W

Each of the above subproblem can be exactly integrated in Fourier space. For convenience, we denote the second-order Fourier
spectral method based on Strang splitting as ADIStrang and the fourth-order method based on the Yoshida scheme as ADIYoshida.

Example 4 (Comparison of CmpStrang/CmpYoshida and ADIStrang/ADIYoshida). Here, we compare CmpStrang/CmpYoshida with
ADIStrang/ADIYoshida methods in terms of accuracy and efficiency. To this end, we choose the harmonic potential V (x) = |x|?/2,
Q=0.95, ¢y=10, ¢, =1 and y = 5. The initial data is chosen as (4.1).

Fig. 2 and Table 5 present the accuracy and efficiency (measured by the number of FFT/iFFT operations) of the Cmp-
Strang/CmpYoshida and ADIStrang/ADIYoshida methods. From these results, it is evident that our method achieves better accuracy.
Except for the second-order ADIStrang scheme in 2D, our method exhibits superior efficiency. Moreover, the advantages of our method
become more prominent as the convergence order increases. Therefore, we can conclude that the compact splitting method offers a

significant advantage in constructing high-order schemes.

14
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Fig. 2. Comparison of accuracy between CmpStrang/CmpYoshida and ADIStrang/ADIYoshida methods in Example 4.
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Fig. 3. Evolution of energy £(f) and mass N'(r) (left) and magnetization M(¢) (right) for Case i-Case iii in Example 5.

4.4. Dynamical properties verification

Here, we investigate the dynamical laws, focusing on the conservation of mass, energy and magnetization, as well as the evolution
of condensate widths and angular momentum expectation.

Example 5. Here, we consider the 2D case, and the initial condition is the same as (4.1) with ¢(x) = 1/0.05/ me— X1/ 2(x 4 iy). We
take Q = 0.2 and study the following three cases

* Casei:y,=y,=1,7=0,¢y=100, ¢, =-1.
+ Caseiity,=y,=1,7r=1,¢,=80, ¢, =08.
+ Caseiii: y, =1, Yy = 14,7y=0,cy=100, ¢; =—1.

The computational domain, mesh size and time step are respectively taken as D = [—16,16]%, h=1/8 and 7 = 1073,

In Fig. 3, we present the dynamics of energy £(r), mass N (r) and magnetization M(?) computed numerically from the CGPEs
over the interval ¢ € [0, 12]. We find that our method conserves the mass and magnetization (when y = 0) very well during the
dynamics. Fig. 4 shows that if the external trap is radically symmetric and y = 0, the angular momentum expectation is conserved
and condensate width 6, is periodic. Furthermore, we observe that 6,(f) = 6,(f) = %6,(1‘) for radially symmetric initial data. These
numerical observations are consistent with the analytical results.
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~ ——Case i
----Case il
——————— Case iil

Fig. 4. Evolution of angular momentum expectation (L_) (¢) (a) and condensate widths (b)-(d) for Case i-Case iii in Example 5.

4.5. SOC effects

In this subsection, we study the effects of SOC on dynamics in rotating SOC spin-1 BECs.

Example 6. In our simulation, the parameters are chosen as Q =04, y, = Yy = 1, ¢y =100, ¢; = —1 and different y =0,0.7,2. We
consider the following two cases with different initial data

- Case it (%) = p(x), w0(®)=3V2¢x), ¥ (x) = px).
-+ Case i y2(x) = p(x), yIx) =3V2pE)(x +iy), ¥, (%) = (x),

where ¢(x) = 1/0.05/ze X,

In practice, we choose the computational domain D = [—16, 16]%, mesh size 4 = 1/16 and time step = = 107, Figs. 5 and 6 depict
contour plots of the densities at time ¢ = 1 with different y for Case i-Case ii respectively. From these figures, we can see that spin-orbit
coupling interaction can generate spatial spin structures [17].

4.6. Dynamics of quantized vortices

In the following, we study the dynamics of quantized vortices in rotating SOC spin-1 BECs.

Example 7. Here, we choose d =2, ¢, =100, ¢; =—1, Q=0.7 and y = 0.4. The trapping potential is choose as the harmonic one (1.5)
with y, =y, = 1. The initial data is chosen as a stationary vortex state computed by the preconditioned conjugate gradient method
[27] for the chosen parameters. The dynamics of vortices are studied for the following two cases

« Case i: perturb the spin-orbit coupling by setting y = 0.8.
+ Case ii: perturb the external potential by setting y, = 1.05, 7, = 0.95.

In our simulations, we take D = [—10,10]%, N =256 and 7 = 1073, Figs. 7-8 present the contour plots of the densities |1//,f>|2
computed by CmpYoshida at different times for Case i and Case ii. We see that during the dynamics, the vortices rotate to form
different patterns because of spin-orbit coupling interaction in Case i and the anisotropic external potential in Case ii. In addition,
the results in Case ii are similar to those obtained in single-component BEC [6], where the anisotropic compression of the vortex was
observed due to the anisotropic external potential.
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Fig. 5. Contour plots of the densities with y =0,0.7,2 (top to bottom) in Case i of Example 6. (For interpretation of the colors in the figure(s), the reader is referred
to the web version of this article.)
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Fig. 6. Contour plots of the densities with y =0,0.7,2 (top to bottom) in Case ii of Example 6.

5. Conclusions

We proposed efficient high-order numerical schemes to simulate the dynamics of rotating SOC spin-1 BECs. The Hamiltonian is
split into the linear part, including the Laplace, rotation and SOC terms, and the nonlinear part (the remaining terms). The nonlinear
subproblem is integrated analytically in physical space as usual. Importantly, we integrate the linear subproblem exactly and explicitly
in phase space by mapping the wave function through a rotation of variables and using a time-dependent matrix decomposition. This
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Fig. 7. Contour plots of |y, |? (¢ =1,0,—1, from left to right) for Case i in Example 7.
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Fig. 8. Contour plots of |y, |? (¢ =1,0,—1, from left to right) for Case ii in Example 7.

compact splitting facilitates the design of high-order Fourier spectral method. All the calculations, including the function-rotation
mapping and the Fourier spectral method, are implemented on a fixed rectangular domain in the original Cartesian coordinates with
purely FFT/iFFT, thus achieving almost optimal efficiency. Our method is spectrally accurate in space and high order in time. It is
explicit, unconditionally stable, and conserves the mass and magnetization (when y = 0) at discrete level. The dynamical laws of total
mass, energy, magnetization, angular momentum expectation and condensate widths are also derived and confirmed numerically.
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Moreover, our method can be easily adapted and extended to simulate more general rotating systems, such as the rotating SOC spin-F
BECs with/without dipole-dipole interactions.
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Appendix A. Proof of Lemma 1

Proof. Using (1.6) and integration by parts, after a simple calculation, we have

d{L)(1)

1
—— = > / [(0,) (Lowe) +W, L(9y,)] dx

T 'Rd

/ V(x)(xdy, — yo,)p —vi (w1 Lowo + vy LWy —w_ Liwg —w_, Lo%) dx
R4

= (yf - yy2)/xy pdx— 2y91/i(1/71L0w0 - l[_/_lL]l//O) dx.
Rd Rd
The proof is completed. []
Appendix B. Proof of Lemma 2
Proof. Using (1.6), (2.6) and integration by parts, a simple calculation shows

d, (1) ] ]
l;t =/‘12 0r|!l/1|2dx=/052 (O + 10,9 )dx

R4 R4

= 29%/ ia [y 0, —2Qw, |’ L a + Clall_/g‘lllll"fl +yay; L] dx.
R4

Similarly, we obtain

dé, () _ ~ _ ~
(:it = 29{/1'0! [Wodu W — 2@y |* Loa — 2¢;airgynwy +va (woL iy + P Lywy)] dx.
R4
déa,—l(t) . _ 2 _ 2 _
o - 2R | ia [y/_lday/_l =2Qly_|"L,a+ ciawyyy_; + ]/aW_ILll/IO] dx.

R4

Then, a straightforward rearrangement shows
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do, .
ds (z) Z mf)_m / m[Z(Waau?f—ZﬂllI/Asz“)

r=—1 £=—1
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+ya (w Lo+ WoLiw, +woL w_| +w_ L 1Wy) ] dx.
Using integration by parts, we have
/azwlLly‘/de= —/y‘/OLl(azwl)dx= —/ [llzll_/oLlllll + 2011[/11/70L1a] dx.
d

R4 R4

Hence,
1
dsé, (I) _ _ _
_291/10{[ 2 (wfdawf—2Q|wf|2Lza) —2y(w1w0L1a+y/0y/71L1a) dx.
=1

We continue to differentiate the above equation with respect to ¢ using the same method. The detailed calculation is not difficult but
is too lengthy, so we will only provide some key steps. Some tedious manipulations yield

d?8,(1) 2 1 2 2 2 2
5 ="a 0+ |2 D 10aws |+ cop® + el | F 1 + ¢y | Fy |
Rd =—1
=2y (ll71 Lowy +woLow_; + WLy, +V771L1W0)
1
ey = 2
+0,—d)a Y, (419W(xay + 300, + 20203 = ) | )+Gl(a,y,‘l‘)] dx
=—1

where

Gi(a,7,¥)=4yR [a [(Lyw_y + Low)0wo — (Lowo)da ¥y — (L1wo)o 0] + L1a<llfoaall7_1

_ Q _ _ _
+y 0, W — ﬁFfLZa + 7[051!/4 Loy_; + ay, Loy, — |y/0|2 Loo —yw_, Lla] )]

Hence, we have

d?s,(t)
dr 2

= —4y25,(1) +4€ (¥(-,0) + 4 L)) + G (7.'P), (B.1)
where
Gy.,Y) :=G(x,7,¥)+ G (»,7,?)
Q . _ _
= 4yER/ [7(1x +0F, +7y (p+ |1//0|2 -y Ly + 1//_le1//_1) dx.
2
As a result, when y =0, we have G(0,%¥) =0 and (L,)(r) = (L,)(0). Thus the 6,(r) given in (2.8) is the unique solution to second

order ODE (B.1) with the initial data 6,(0) = 650) and 5,(0) = 651). Furthermore, if ¥O(x) is radial symmetric, the solution ¥(x,?) is
also radial symmetric since y, = Yys which implies that [4,5]

1
5, (t) =5,(1) = Eér(t), 1>0.
The proof is completed. []
Data availability
Data will be made available on request.
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