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We propose high-order compact splitting Fourier spectral methods to compute the
dynamics of rotating spin-1 Bose—Einstein condensates (BECs) under an Ioffe-Pritchard
magnetic field. We split the Hamiltonian into a linear part, which consists of the Laplace,
rotation and Zeeman energy terms, and a nonlinear part, which includes all the remain-
ing terms. This “compact” splitting, involving only two operators, significantly simplifies
the construction of high-order schemes. For the linear subproblem, we factorize the linear
operator as a product of simple sub-operators using the exact classical-quantum corre-
spondence and semigroups decomposition, and such sub-operators are well approximated
by Fourier spectral method and integrated exactly in phase space as usual. Importantly
and surprisingly, the splitting coefficients, originally determined by a nonlinear equation,
can actually be computed exactly by solving a linear system, ending up with explicit
formulas. For the nonlinear subproblem, we derive an exact formula of the spin vec-
tor, which is not conserved in presence of the magnetic field, and transform it into a
linear problem. Then we design explicit high-order schemes using Magnus integrators.
Our scheme achieves spectral accuracy in space and high-order precision in time with
near-optimal efficiency. It is explicit, easy to implement and unconditionally stable. In
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addition, we derive some properties of our numerical scheme and conduct a comprehen-
sive investigation, including accuracy confirmation, efficiency test, property verification,
interaction of quantized vortices and dynamics under honeycomb potential.

Keywords: Spin-1 Bose—Einstein condensate; dynamics; rotating; compact operator
splitting scheme; Fourier spectral method.

AMS Subject Classification: 35Q41, 65M70, 81Q05, 81V45

1. Introduction

Since its first observation in 19952 19 the Bose-Einstein condensation (BEC) has
provided an incredible glimpse into the macroscopic quantum world. At early stage,
atoms were confined in magnetic traps and the spin degrees of freedom were frozen.
The particles are described by a scalar model and the wave function is governed
by the Gross—Pitaevskii equation (GPE) within the mean-field approximation . 1°
Recently, the development of optical trapping techniques has enabled to confine
atoms independently of their spin orientation and thus so-called spinor conden-
sates. The spin-1 BEC was realized experimentally in ??Na and 3"Rb2™ 28 In con-
trast to a scalar BEC, the spin-F' BEC is described by the coupled GPEs, which
consists of 2F + 1 (F € N) equations, and each governs one of the 2F + 1 hyper-
fine states (mp = —F,—F + 1,...,F — 1, F) within the mean field approxima-
tion 18 19123/ Iy fact, experimental achievements of spinor BECs have created great
opportunities to study the abundant quantum phenomena that are absent in scalar
BECs 2 Y

For temperatures below the critical temperature, the dynamics of the rotat-
ing spin-1 BEC are well described by the dimensionless coupled Gross—Pitaevskii
equations (CGPEs) with an angular momentum rotational term in the d-dimension
(d =2o0rd= 3)6, 8} 111} 120

Dutn(5,8) = | =524 V) + By = QL.+ B+ Bulor + o = o)
+ Bs¥_195 + B, (1.1)
000 (x, 1) = -—%VQ FV(X) + By — QL. + Bup+ Balpr + pl)} Yo
2Buntbro + Bl + ), (1.2)
But-1(,8) = [ 392+ VO + By = QL+ Bup+ B+ 91— 1) s
+B.BE + B, (1.3)
Ye(x,0) = ¥P(x), £=1,0,—1. (1.4)

Here, x = (z,9,2)" € R®orx = (x,%)" € R? and ¢ is the time. ¥ := (31, %0,1_1) "
is the three-component wave function, and p = p1 + po + p—1 is the total density
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with pe = [p¢|* (¢ = 1,0, —1) being the density of £th component. L, = i(yd, —zd,)
is the z-component of the angular momentum and €2 represents the rotation speed.
E; € R is the Zeeman energy, B € R is the external loffe-Pritchard magnetic
field, and (3, and (s are the mean-field and spin-exchange interaction constants
respectively. f denotes the conjugate of the function f. In most experiments, V (x)
is usually chosen as the harmonic potential, i.e.

2,2 | 2,2
1 [+ 7Y d=2,
Vix) =3 { ’ v (1.5)
vae? + gyt +922%, d=3,
with v, (v = z,y, 2) being the trapping frequency in the v-direction.
Introduce the spin-1 matrices f := (fy, f,, f2) " as
) 0 1 0 /0 -1 0 1 0
i
s =—11 0 1|, fy=—7]|1 0 -1, f,=]1]0 0 0 |,
0 1 0 0 0O 0 -1
(1.6)

and the spin vector F 1= (F,(9), F, (), F,(¥))" := (PHf, 0, OHf 0 OHf0)T,
where UH is the conjugate transpose of ¥, then the CGPEs (1.1)-(L.3)) are refor-
mulated in the compact form shown below

1
= K—?VQ + V—QLZ + ﬁnp) 13 + diag{El,EO,E_l} + BSF -f +B ‘I/,
(1.7)

where H is the Hamiltonian with I3 being the 3 x 3 identity matrix and

1
F.  —F 0

2
1 V2 1 0 B 0

Ff— | —-F o —Fr |, B=|B 0 B,

Noa V2

X 0 B 0
0 —F, —F

Noa

with Fy = F, +iF,.
Two important invariants of the time-dependent CGPEs (1.1)—(L.3) are the
mass (or normalization) of the wave function

N(t) := N(T(-, 1)) := /R 3 el t)Pdx = N(U(,0) =1, t>0 (L8)

=—1
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and the energy per particle

1

B(t) := B(-t)) = / d [ > (ilweﬁ (V) + Bl - Q@sz)
l=—1

+ %"pz + %(|F+|2 + |F.?) + 2B Re(¢o(¢1 + 1#—1))] dx

= B(U(-,0)), t>0. (1.9)

When B = 0, another important invariant is the total magnetization

1
M(t) = M(U(-,1)) = Z/Rdﬂ\wg(x,t)FdxzM(\IJ(-,O)), £>0. (1.10)
(=—1

There is vast literature on mathematical and numerical studies of the dynamics
for scalar BEC, and we direct readers to Refs. [3, [5, 9] [10, [14] and [37 for further
information. Along the numerical front, the time-splitting Fourier spectral method
is one of the most popular methods due to its efficiency, stability and implemen-
tation simplicity. This method has been applied to spinor BECs & 11 B4138 For the
rotating spin-1 BEC, Bao et al® 11l and Wang?% proposed a second-order spectrally
accurate numerical method, where they all split the Hamiltonian into three parts.
In Refs. [11] and [36] they grouped the Laplace and rotation term as a linear part,
and the linear subproblem was solved either by finite difference/element in polar
and spherical coordinates or by Alternating Direction Implicit (ADI) combined
with Fourier spectral method. In Ref. [7) they grouped the Laplace, rotation and
radial/cylindrical symmetric part of trapping potential as a linear part, and solve it
using generalized Laguerre—Fourier—Hermite spectral method in polar/cylindrical
coordinates on the whole space. To efficiently investigate the fine structures of such
rotating systems, including vortex lines and/or vortex lattice, it is advantageous
to employ high-order schemes. However, it is somewhat complicated to construct
high-order schemes with such three subproblems. It will be much easier if the Hamil-
tonian is split into two operators3® and we shall refer such splitting with fewer
operators as “compact” splitting hereafter 2% 32

As far as we know, there are very limited research on compact splitting for
spinor BECs. For dynamics of spinor BECs without rotation term, Symes et al.

54135 where the

proposed a compact splitting scheme for spin-1 and spin-2 BECs)
nonlinear subproblem was integrated analytically in physical space and the linear
operator was integrated in phase space. Recently, for rotating spin-1 BEC with
the spin-orbit coupling (SOC), Liu et al. proposed a high-order compact splitting
scheme, where the Hamiltonian is split into two parts, and both subproblems are
integrated exactly.?® For rotating spinor BEC, there is no simple way to split the
Hamiltonian into two parts due to the presence of the rotation term. It is possible to
switch to the rotating Lagrangian coordinates (RLC), a popular method developed

by Bao et al., where the rotation term vanishes automatically” This allows utilizing
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operator splitting methods or exponential integrators to construct a high order
scheme, such as exponential Runge-Kutta methods and Lawson methods for scalar
BEC™¥ However, when a real-time dynamics at each time step is on request, one
needs to rotate the wave function v,(x, t) from the rotating Lagrangian coordinates
to Cartesian coordinates at every time step. Such coordinate switches are quite
exhaustive numerically and shall bottleneck the simulation efficiency.

To design high-order compact splitting schemes, the exact integration of linear
subproblem is quite crucial. There exists some literature devoted to some par-
ticular coordinates or domain. For example, Bao et al. proposed a generalized
Laguerre-Fourier-Hermite spectral method in the whole space R¢, and they inte-
grate the linear subproblem in polar/cylindrical coordinates” Wang et al. intro-
duced a Chebyshev—Fourier spectral method on the bounded disk and integrated
the linear subproblem in polar coordinates®? Liu et al. successfully integrated the
Laplace-rotation-SOC subproblem exactly in Cartesian coordinates using function-
rotation mapping,2® but it is not optimal in terms of efficiency for non-SOC prob-
lems. Recently, Bernier et al. proposed an exact integration method in Cartesian
coordinates, named as exact splitting method, for the Laplace-Rotation-Potential
linear subproblem!2 13 However, to obtain the splitting coefficients, one has to
solve a nonlinear matrix system via an iterative method. Amazingly, we managed
to derive an explicit formulation for such splitting coeflicients by transforming the
nonlinear system into a linear equation followed by an elaborative block-by-block
matrix matching. It is fairly simple and easy to code using such exact and explicit
splitting coefficients.

In this paper, we split the CGPEs into a linear subproblem

10, (x,t) = K;vz - QLZ> Is + diag{E1, Eo, E_1} | U(x,t) := Hyun ¥(x, 1),
(1.11)
and a nonlinear subproblem
10,V (x,t) = [(V + Bup)ls + BsF - £ + BJU(x,t) := Huon U(x,1).  (1.12)

Obviously, the linear subproblem is decoupled because each component is indepen-
dent of the other two and (—%V2 — QL,) commutes with constant F,. We derive
an explicit exact time integrator for the linear subproblem and will refer
to it as the Explicit-Exact-Integrator (EEI) hereafter. In EEI, the wave function
is discretized by Fourier spectral method and integrated exactly in phase space.
While for the nonlinear subproblem , we cannot integrate it as usual (see
Ref. [35]) since the spin vector F is not conserved in presence of the magnetic field.
Here we first derive an exact time-dependent formula of the spin vector, with which
the nonlinear subproblem is transformed to a linear one, then we construct explicit
high-order schemes using the Magnus integrators2t 22l To sum up, each subprob-
lem can be efficiently and accurately solved in either physical or phase space. This
compact splitting significantly simplifies the design of high-order schemes.



2018 X. Liu et al.

To sum up, the key advance is that we first design a fast and exact time-splitting
scheme for the Laplace-Rotation subproblem with explicit splitting coefficients,
which are derived by solving a linear system instead of the nonlinear problem orig-
inally proposed in Ref. 12l Explicit coefficients allow for an easy implementation
and adaptation to rotating systems. Additionally, for the nonlinear subproblem,
we transform it into a linear problem by deriving an exact formula for the time-
dependent spin vector, and design explicit high-order schemes.

This paper is organized as follows. In Subsec. and we propose an
EEI for the linear subproblem, and explicit high-order Magnus integrators for the
nonlinear subproblem. In Subsec. we derive some properties of our numer-
ical method, including mass-conservation (stability), magnetization-conservation,
time reversible, time-transverse invariant and rotational symmetry. Detailed spa-
tial/temporal convergence and efficiency tests are presented in Sec. [3| together with
some interesting numerical results. Finally, conclusions are drawn in Sec. [4

2. Compact Splitting Spectral Method

Due to the trapping potential, the wave functions decay to zero exponentially when
|x| — oo. Therefore, in practical computation, we truncate the problem into a
sufficiently large bounded rectangular domain and impose periodic boundary con-
ditions. In this section, we introduce a high-order compact splitting Fourier spectral
method for CGPEs 7. For simplicity, we shall only present the scheme
in 2D and generalization to the 3D case is straightforward. We choose a square
domain Ry, := [—L, L]? and discretize each spatial direction with the same mesh
size h = (2L)/N with N being an even positive integer. Define the physical, Fourier
index and grid points sets as

Iy ={(j,k)€Z*|0<j<N-1,0<k<N-1},
Tv = {(p,q) €Z*| —N/2<p< N/2—-1,-N/2 < q< N/2 -1},
G = {x1 = (vj,ur) " = (=L +jh,—L+kh)",(j,k) € In},

and denote 9}’ ;, as the numerical approximation of ¥y (z;, yk,tn) for (j, k) € In.
As stated earlier, the presence of rotation term poses great challenges and a
feasible way is to work in the rotating Lagrangian coordinates to eliminate the
rotation term'? Unfortunately, direct application of RLC faces efficiency bottleneck
when coordinates switches are invoked for every time step in some real-time simu-
lation. In our method, we split the Hamiltonian into two parts: the linear operator
Hin (Laplace-Rotation-Zeeman terms), and the nonlinear operator Hyen. For the
linear subproblem, we develop an exact integrator with explicit coefficients. The
main idea is to factorize the semigroup, generated by linear part, into products
of semigroups, which corresponds to differential operators that can be efficiently
approximated using the Fourier spectral method. Further details are provided in
Subsec. [2.1} For the nonlinear subproblem, the presence of the magnetic field results
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in a time-dependent spin vector, and it makes exact integration very difficult. In
fact, we can first derive an exact formula for the spin vector and reduce the non-
linear problem to a linear one. Then we use Magnus integrators to develop efficient
high-order schemes, which are to be detailed in Subsec.

Specifically, we denote the time sequence as t,, = n7 with n = 0,1,. .. for a given
time step 7 > 0. The solutions to the linear and nonlinear subproblems from ¢t = ¢,
are denoted as W(t) = e (=t )Hin P and W(t) = et tn)Haon U™ respectively. In
practice, high-order splitting methods can be designed as

m
\IJ”+1 — H e—iajTHIine_ib]THnon Py
j=1
with the appropriate coefficients a;, b; € C# For the standard second-order Strang
splitting, we adopt m = 2, a1 = ay = % and by = 1, by = 0, while, fourth-order

scheme, proposed by Yoshida, is configured with m = 4, a; = a4 = m,
1_21/3 1 21/3
az = a3 = 2(2—217%) and by = bz = 2_91/3 by = T 5 _51/3> by = 0.

2.1. Explicit exact time integrator for linear subproblem

The exact solution to the following linear problem

1
iaﬂ/)e(X, t) = 7§A - QLz + EZ W(Xv t)a tn S t S tn—Ha
(2.1)
'l/)g(X,tn) :1/’?, X € RL?
can be written formally as
%/Je(x, t) _ ei(tftn)[%AJrQszEAq/}?(X) _ efi(tftn)Egei(tftn)[%A+QLz],¢)g(X). (22)

To compute ¢/7[A/2+0L:]

, we aim to factorize it as a product of sub-operators that
can be numerically accessed with great efficiency. Based on the exact splitting
method proposed in Refs. 12l and [13, we can factorize it as a product of five sub-

operators as follows

. . 2 2 L oT T
6ZT[A/2+QLZ] — e—ZT(Clr +C2y )e—Téyawem'V Kve—rnraye—u'x Px

(2.3)

with suitable coefficients (1, (2, &, 7 € R and matrices K, P € R?*2, While for the
3D problem, using Baker—Campbell-Hausdorff (BCH) formula,?? we can still fac-
torize e!TA/2+RL:] a5 a product of five sub-operators instead of seven sub-operators
proposed in Refs. [12] and [13l Specifically,

eiT[A/2+QLZ] i‘r[%{)“]ei‘r[%amm—o—%ﬁyy—&-QLz]

=€

— e—i‘r(QEQ—i-{ng)6—‘1’5@;6Jc eiT[VIKVJ_—s—%BZZ]e—Tnza —iTxIPxi_

'.‘/e
)

(2.4)
where x| = (z,y)" and V| = (0,,9,)".
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It appears unlikely to derive explicit formula for such coefficients and matrices,
because one has to solve a nonlinear system that involves some complicated matrix
exponentials 22 13 Fortunately, with an elaborative block-by-block matrix matching
technique, we succeeded in turning such nonlinear equations into a series of linear
equations, and deriving explicit and exact expressions in the following theorem.

Theorem 2.1. The coefficients of exact splitting [2.3)) for e'TIA/2H2L:] gre given
explicitly by

= sec(Qr) — 1 ~cos(2r) — 1 ¢ = sin(27) _ tan(Qr)
e 272 1 T or2 0 ST T op 17 T
(2.5)
K=1le_ .we P=_L (wTe, 0l —I 2.6
- 5 77—’5 M - ﬁ ( T:£ T, - 2) ’ ( . )
where W = (_C:frf(fgg) i;r;((g:%) is a rotational matriz and O, = (é ") with v =

§,n.

Proof. Exact classical-quantum correspondence suggests a way to transform an
exact splitting of the differential operators into an exact splitting at the level of the
semigroup generated by operators™ We rewrite the operator splitting (2.3)) as

w

e TP =e TPie TP2e T TPa g7 TP g7 5 (2.7)

where the Weyl quantization is defined as p := z' Q,,z with z = (xT, -V T)T.
To be specific,

, i (0 AT . . 0 Q
Y= —i(A/24+QL,)=2z - z:=z Qz with A= ,

i)
|

2\A L -Q 0
py = i(ClZ‘Q + ngQ) =z (lo) g) z:=2z'Qiz with D = (%1 §02> ,
py = EYy0, = ZT% (J\Z A{g) z:=2' Quz with M, = <g f)) ,
Py = —iV'KV=2"i <8 ;{) z:=12' Qsz,
py = nroy = ZT% (]\ZT ]\:.)h,) z:=27 Quz with M, = <3 Z) ,

P 0
pY =ix' Px=2z'i <O O) z:=12'Qsz.
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Using exact classical-quantum correspondence, we only need to prove that
6727;7—(]4@ — 6722‘TJ4Q1 672iTJ4Q2€727;TJ4Q36727;7—']4@4672,“—(]4@5, (28)

where Jy is the fundamental symplectic matrix, i.e. Jy := (7012 102) with I being
the 2 x 2 identity matrix. Then, we calculate (2.8]) explicitly as follows

wooW I 0
o w) \-2rD I
O, 0 I, 27K\ (], 0 I 0
X
0 e/ \0 I 0 ©_,,) \-2rP I

GT,E@In — 2TG12P 27’@7-7§K@_7-77]
~ \-27DO, (0], ~ 29GP -2rDG1,+0] O_,,

o Gu1 G

- \Gu G/
At first glance, the above equation appears to be a complicated nonlinear system.
In fact, we can calculate these coefficients exactly by solving a linear system using
an elaborative block-by-block matching. Starting from the fact that Goo = W, we
calculate (q, 1, (3 and £ sequentially by solving a linear system. Then, we directly
compute K and P by matrix inversion for G1; = W and G1o = 7W. Finally, we
need to verify G = 0 with these coeflicients.

Specifically, using Gos = —27DG12 + @jﬂ&@_ﬂn = W, we obtain

1 —272¢ cos(Q7) = cos(Qr), 70 — 272¢; sin(Q7) = sin(Q7),
—7E 4+ 2720 sin(Q7) = —sin(Q7), 720+ 1 — 27%( cos(Q7) = cos(Q7).

Solving the above system, we derive the formulas for (1, {2, £ and 7, as shown in
(2.5). Then, using

G2 =270, KO _., =7W, Gi1 =0,¢0], —27G12P =W,
we have

11
K == §GT,§W6*T,W == §@7T,§W@T,?77

1 -1 T 1 T T
P - ﬁW (@7—75(‘)7," - W) — ﬁ(W @7—75(")7_,7] - IQ)

Using these coeflicients and Gag = W, we have

(27°D + 1,)0,0], = W.
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Then, a simple calculation shows that

Ga1 = —2rDO, O], —2rW (WT@Tg@ 1)

1 1 1 1
= ——(27°D + 1,)0,0], + =W = —=W 4+ —W =0.
T T T T
The proof is completed. O

The sub-operators in (2.3)) or (2.4 can be well approximated by Fourier spectral
method with great efficiency thanks to FFT/iFFT 2 To be specific, the spectral
approximations of wave function vy for d = 2 in the z- and y- directions are such
that

N/2—1 N/2-1
Yl y) m Y @ yy(ay) & > ()™, (2.9)
=—N/2 g=—N/2

where v = (27p)/(2L), v{ = (2mq)/(2L). The Fourier coefficients in the z- and y-
directions are given as follows

N-1
—ivy (z T 1 —ivy
by) - N Z Ye(zs,y () = N e, y)e s WD),
k=0
(2.10)
The scheme ({2.3)) is then discretized as follows
w[jk o —szJkPx]k ,t/}n]k’
—iTnz,jvY 1
"/}/jq =e T q(@[}é,]‘))q»
—iTtv] @)
Uipg = € (W),
N/2—1 (2.11)
4 —iTéy v’ ivY (yr
I W)
=—N/2
N/2-1
q/Jén—L-l) 77,7(Ee+§1m]2.+g“2yk Z 1)[}( u/ “(xz;+L)
J
—N/2

with vy, = (vZ,vY) 7.

Remark 2.1. (Efficiency) The coefficients (1,(2,&,n, K and P depend only on
the time step 7 and the rotation speed €2, and they can be computed once for all
in the pre-computation step. As for the computational costs, the scheme
requires only dIN4~1 pairs of one-dimensional FFT and iFFT, and the complexity
is O(N?log(N)).
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2.2. Magnus integrators for nonlinear subproblem

In this subsection, we introduce explicit high-order schemes to solve

{i@t\ll(x, t) = [(V + Bup)Is + BsF - £ + B]U(x,1) := Hpon U(xX, 1),

(2.12)
U(x,t,) =9", xe€Rp, t,<t<tp41.

It is easy to verify that the density p is independent of time, ie. p(x,t) =
p(x,t,) == p", t, <t < tp41. Noticing the facts that f,(v = x,y,z) are Hermi-
tian matrices and satisfy the commutator relations [fy, fy] = fafy — fyfe = ifs,

[fy: f2] = ife, [f2, fa] = ify, we obtain
OF, = 0n (V" f,0) = i Hoon f, U — 10" fu Hnon ¥
= B WNF £, f,]V +i0"(B, f,]0
= iBu (B0 [fo, £10 + Fy OO [fy, f)0 + FoUO[ 2, £,]0) + W [B, f,]W
= iU"[B, £,]V, v=uz,v,2
Using the relation B = v/2Bf,, we have
F, =0, OF,=-V2BF,, 0,F,=\2BF,, (2.13)
from which we derive exact and explicit formula for the spin vector F(t) as follows
(Fy(t)> _ (cos(\/iB(t —t,)) —sin(v2B(t — tn))> (F;) Fo(t) = P
F.(t) sin(V2B(t —t,))  cos(V2B(t —t,)) ) \Fr)" " v

Clearly, we can see that the seemingly nonlinear operator H,., actually depends
on only time variable ¢, therefore, the nonlinear system is in fact a linear
system. We use Magnus integrators (see Ref. 22)) to design an explicit high-order
solver for this system . The idea is to write the solution in the following form:

U (x) = e DPn(x),  Q, (1) € C*4 (2.14)

We give specific expressions for €, (7) associated with the second-order and fourth-
order integrators, respectively, and other high-order integrators can be obtained in
a similar manner2? That is,

e Second-order: The matrix §,(7) reads as

/ Huon(tn + 0)do. (2.15)

e Fourth-order: The matrix Q,(7) reads as

T) = / Hnon (tn + O')dO'
0

1 T o
+ 52/ {/ Huon (tn + p)dit, Huon(tn + o) | do. (2.16)
o Lo
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Fortunately, integrals in (2.15)) and (2.16)) can both be computed exactly. To be
specific, we obtain the second-order integrator of ODEs (2.12]) as

\I,n-',-l(x) _ e—iQn(T)\IJn<X) _ e—iT(V-&-Bnp”)e—ifOT ﬁsF(tn-‘rU)'f-i-BdU\I;"(X)

= e TV HBnP") = iSamayyn (x), (2.17)

where So,4, a Hermitian matrix, is given explicitly as follows:

- b« 0
Sond == / BsF(tp,+0) - f+Bdo=|a 0 « |, (2.18)
" 0 @ -8
with matrix entries
= —;ﬁé [sin(\/iBT)F;’ + (cos(V2B7) — 1)F" + 7 (\B/%Fﬁ + B> , (2.19)
B \/%é (1 - cos(V2Br))E? + sin(v2Br)F]. (2.20)

Since Song is Hermitian, it can be diagonalized as Sonq = UAUY, where unitary
matrix U and real diagonal matrix A read as

- aq oo
B—x Bt 0 0
1
U= 3 Jé; te] —|a , A=1]0 0|, A=+B%24+2«af?
alal _ ala 0 —A
B+ A 8-

Hence, e~%S20d can be computed analytically as

g11 912 913
—iSond __ U —’LAUH _ = el 291
€ =ve =1 921 g22 921 | ‘= G2nd, (2.21)

913  —G12 9u
where
1T, n 1, o 1 a?
gn =3 |l + th(ﬂ + A7)+ 5(]25)\ ,  g12 = Qco,  g13 = 27)\2((11 —-2),

1 1
922 = F[ﬁz +lalql, g =ac, co= ﬁ[ﬁ(ql —2) + Ago]
with ¢; = 2cos(A) and g2 = —2isin(\). Therefore, we can obtain an explicit second-

order integrator for the subproblem (2.12)), i.e.

tl(x) = e~ TVHBnr") Gy U (x). (2.22)

Remark 2.2. (Non-magnetic field) The integrator (2.22)) is exact when the mag-
netic field disappears (i.e. B = 0), because 0;F, = 0 for v = x,y, z, which implies
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Huon(¥) = Huon(P™). When B goes to zero, the matrix entries - tends
to a = %TBSFLL and 8 = 78, F].

Remark 2.3. (Fourth-order integrator) The fourth-order integrator for the sub-

problem ([2.12)) reads as

U (x) = e TV Gy, U (x), (2.23)

where the matrix Gy, takes the same form as Gang (2 , and the only modifica-
tion is to replace o and (8 in Gonq with the expressions glven in and -
A detailed step-by-step computation can be found in [Appendix A It is worthy to
emphasize that other high-order integrators can be constructed in a similar way.

In implementation, from time ¢t = t¢,, to t = ¢,,41, we combine the solvers (2.11]
and (2.22)) for linear and nonlinear subproblems via the classical Strang splitting
and provide a detailed stepwise algorithm (Algorithm .

Algorithm 1. Second-order compact operator splitting spectral method.
Input: Initial data 1y’ at time ¢,, time step 7.

1. Precompute the coefficients (3, (3, &, n, K, P by Egs. and ([2.6] .

2. Solve linear subproblem by EEI for half time step 7'/ 2 with initial data
Vi

i) ‘51) _ e—ingwa?

if) g = e 5 [y fY)

iil) o) = o718 KV )]

iV) (4) _ e—i%{yuz]_‘y—l[ (3)]

(
(
(
(

(V) f = e Z(BetCra+Cay? VFo1 [@4)]

Here, F,/F,; ! and F,/F,' denote the forward/backward discrete Fourier
transform in the z- and y- directions, respectively.

3. Solve nonlinear subproblem by Eq. (2.22)) for one step 7 beginning with the
data v} acquired from step 2:

= e—ir(V+ﬂnp")(9u¢i‘ + 91298 + g13¢* )
Wit = eIV (gor % + gasthl — Gortb™ )
b = efi‘r(V‘l’,BnPn)(ngz’[)T — J12¥¢ + g1 )

4. Solve linear subproblem by repeating steps (i)—(v) in step 2, using initial data
Y;*, to obtain ¢n+1'

n+1

Output: Numerical solution 1, at time ¢,41 =, + 7.
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Remark 2.4. (Arbitrary high-order schemes) Using the EEI method for linear
subproblem and the Magnus integrators for nonlinear subproblem, it is simple
to construct arbitrary high-order schemes based on high-order operator splitting
method 28

2.3. Properties of the numerical scheme

There are many important dynamical properties for the CGPEs 7, and
here we mention several important ones that are still valid with our method
on discrete level. In this subsection, we derive the properties of our numerical
method, including the mass-conservation (stability), magnetization-conservation,
time reversible, time-transverse invariant and rotational symmetry. For convenience,
we only provide proofs for the 2D case and extension to 3D is simple. We denote
the discrete [2-norm of ¥7 as ||¢7|;2 = (h? Z;.V;Ol g;ol |¢ij|2)%

Lemma 2.1. (Mass-conservation) For any h,T > 0, the compact splitting Fourier
spectral method conserves the total mass on discrete level, i.e.

1 1
D Il = ) IRl (2.24)

{=—1 (=—1

In other words, our scheme is unconditionally stable in I2-norm.

Proof. For the nonlinear subproblem ([2.14)—(2.16)), it is easy to see that €, (7) is
a Hermitian matrix, then we have

1
[ = e W E = 9, where [[97E = Y7 -

1=—1
While for the linear subproblem (2.11)), we have
~1N-1
(1 —iTX X
I 17 = > Z S eIy 2 = [l
j=0 k=0
Using the following identities
N/2—1 .
Z 227\']‘1/1\7 Z e’LZﬂ'jq/N 0’ j 7& mN’ me Z, (225)
B N, j=mN,
we obtain
N-1 N/2-1 N—1 N/2—-1
YO WAL= Y e )
j=0 g=—N/2 j=0 g=—N/2
| No1 N/2—-1 | N—1 : 2 ] NoiN-d
_ (1) i2nkq/N| _
=z X [ 2t =5 [l
=0 ¢=—N/2 | k=0 j=0 k=0
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Similarly, we have

N—1N-1| N/2-1 N/2—1 N-1
n+1 4 ivE (xs
"V 1% = 2 ST e o] = h*N Z Sl
j=0 k=0 | p=—N/2 —N/2 k=0
N/2—1 N/2-1 N—-1 N/2—-1
= h?N? Z > W), = nN SO wEr (220
—N/2q=—N/2 j=0 qg=—N/2
—1N-1
1 1
22 ST = e 1B, 6=1,0,-1. (2.27)
j=0 k=0

To sum up, we can prove that the following relation
1

1 1
Stz = S w1 = Y ez

=1 =1 =—1
holds true. 0

Lemma 2.2. (Magnetization-conservation) For any h, T > 0, the compact splitting
Fourier spectral method conserves the magnetization on discrete level, i.e.

1 1
D il =) el (2.28)

{=—1 {=—1

Proof. For the linear subproblem, from the proof of Lemma we have

21 = 1921l = 19217 = 1924 7%
For the nonlinear subproblem with B = 0, we have®®

Sin(Bs7[E™])

Pl — = i(VABnp™)T |:COS(ﬂST|Fn|) AL |

S(\Il”)\IJ”} :

where |F"| = \/(Fg?)2 + (Fp)? 4 (Fr)2. A direct calculation shows
[P = T
= cos® (BT [F" ([T [* — [0 )

sin® Bt [F™) ([ 0 L 1
+W F 1/11 +EF 1/}0

/)

(77 = 192 )

‘F”d)o -yt

.2
BV ([ n sin®(Bs7|F"|)
= cos? (BT [F™ ) (|07 * — [ %) + TEpE
= [o11? =19,
which implies |7 1% — 0" T3 = [[7 1% — [|4" ]| We complete the proof.
O
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Lemma 2.3. (Time reversible) The compact splitting Fourier spectral method is
time reversible, i.e. scheme (Algorithm remains unchanged if we interchange
nen+1land T —T.

Proof. It is sufficient to demonstrate that the numerical methods to both sub-
problems satisfy time-reversal property. For the nonlinear subproblem 7 we
can easily prove that Q,1(—7) = —Q,(7) holds true for both second-order and
fourth-order scheme. Therefore, we have

6*i9n+1(*7)\pn+1 — eiﬂn(’r) (671'9”(7)\1]71) — ",
For the linear subproblem ({2.2)), the following equation
6iTE(efiT[A/2+QLZ],¢)'Z+1 — ei'rEgefi‘r[A/2+QLz][efi‘rEg eiT[A/2+QLZ]w?] — 1/1?7

holds evidently. The proof is completed. O

Lemma 2.4. (Time-transverse invariant) If a constant C is added to the external
potential V(x), i.e. V(x) — V(x)+C, then the discrete wave function V% obtained
from Algom'thm shall get multiplied by a phase factor e="7¢ . That is,

n —intCqn
Tk e vl

Proof. Let ¥7} and \T/;k be the wave function obtained by Algorithmwith poten-
tial V and V + C, respectively. Then, we have

\If]' _ efi[V+C+,8np ]TGQnd\IJO _ efi‘rC'\:[/l7

\:[12 _ efi[V+C+,8np ]TGQnd\:[ll _ 67i2‘rC\112,

Ejn — e—i[V+C'+ﬁnPn]TG2nd\IJn — e—inTC\I/n-
The proof is completed. O

The rotating spin-1 CGPE f keeps rotational symmetry when the trap-
ping potential V(x) is radially symmetric. To be precise, for solutions starting with
initial value 99 (x) and Jg(x) = ¢Q(R(0)x), Pe(x,t) is also the f-rotation of ¥y (x,t)
at time ¢, i.c. ¥y(x,t) = Yu(R(0)x,t), where R() = (fsisrf(ee)) 222?33) is the rotational
matrix. In other words, the system will keep the same rotational symmetry as the
initial wave function, e.g. 1 (x,t) is @-rotational symmetric at any time ¢ if ¥y(x)
is f-rotational symmetric.

Lemma 2.5. (Rotational symmetry) For rotating spin-1 CGPE (L.1)—(1.3]) with
radially symmetric potential, i.e. V(x) = V(|x|), the semi-discrete scheme keeps
rotational symmetry.

Proof. To confirm the rotational symmetry, it suffices to prove that

p L (x) = vy (R(0)x)
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if {bv? (x) = ¢} (R(#)x). For simplicity, we shall denote X = R(#)x. As shown before,
the numerical solution to the nonlinear subproblem ([2.12]) reads explicitly as

B (x) = eIV 0T 00) G (87 () B ()
= 7 T(VE " X)) Gop g (U7 (X)) 0" (X)
= U"TH(R) = U"TH(R(0)x).
While for the linear subproblem 7 using chain rule, we obtain
AP (x) = Ay} (X), Loy (x) = Ly} ()
and

~?+1(X) _ 61‘7[%A+QL27E£]1;?(X) _ eir[%A;(JrQLngg]i/}?(;()

= ¥y (X) = T (R(0)x).

Therefore, we can conclude that the semi-discrete scheme keeps rotational
Symimetry. O

3. Numerical Results

In this section, we first test the accuracies and efficiency in spatial and tempo-
ral directions. Then we study the dynamical properties, including energy, mass
and magnetization conservation, evolution of angular momentum expectation and
condensate widths, and carry out a comparison on the rotational symmetry con-
servation with some existing numerical methods. Finally, we utilize our method to
study various interesting phenomena, such as the evolution of quantized vortices
and dynamics of BEC under honeycomb potential.

3.1. Accuracy confirmation

In this subsection, we test the temporal and spatial convergence for both 2D and
3D cases. For simplicity, we denote the second-order/fourth-order compact splitting
as CS2/CS4. The numerical error is measured in following norm

T re hﬂ' re
() == [t (t) — T )/ 1O e, €=1,0,-1,

where wéh’T) (t) is the numerical approximation at time ¢ obtained with the mesh size
h and time step 7, and 1}°(¢) is the reference solution at time . In our simulations,
unless otherwise specified, we choose computational domain Ry, = [~16, 16]¢, mesh

size h = 1/8, time step 7 = 10~%. The harmonic potential is taken as V (x) = |x|?/2.

Example 1. (Linear case) We test the temporal accuracy for linear subproblem
solver EEI (2.11)). To this end, we choose h =1/4, 7 =1, E; = 0 and consider the
following non-radially symmetric initial data
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Table 1. Temporal discretization errors e?’T (¢ =1,0,-1) of
the EEI method in Example

Q 0.2 0.4 0.8
2D 6.2005E-16 4.7358E-16 4.6741E-16
3D 5.7673E-16 6.3983E-16 5.8956E-16

The exact solution is given explicitly as? 22

1 (cos(Qt)z — sin(Qt)y)? — t2 + it
belx,t) = —73 N\ (d+4)/2
mt/ (1 + dt)(d+9)/
and the detailed derivation are provided in

Table [[] lists the temporal errors of EEI method at time ¢ = 1 with different €,
from which one can see that the EEI method is exact in time.

_‘;‘x‘?
e 20D ,

Example 2. (Nonlinear case) We verify the spectral accuracy in space and high-
order temporal convergence for both 2D and 3D cases. To this end, we choose
Q' =0.2, E; =1 and the following parameters

e 2D case: 3, = 100, 8; = —1, B = 2, and the initial data
(x) = (2 +iy)e(x), Yo(x) =20(x), ¢2i(x) = (z+2iy)e(x) (3.1)
with ¢(x) = /2/(15m)e~xI*/2.

e 3D case: 3, = 10,3, = 1, B = 1, and the initial data
%) =o(x), ¥p(x) =3V20(x), ¥ (x)=d(x)
with ¢(x) = v0.05/73/4(z + iy)e1¥I"/2.

To confirm the convergence of CS2/CS4, let 1/Jff be the numerical reference
solution obtained by CS2/CS4 with very fine mesh size hg = 27%(1 and small time
step 79 = 1074, To calculate the spatial errors, we always use time step 7o so that
the errors from temporal discretization can be neglected compared to those from
spatial discretization. Similarly, the temporal errors are obtained when mesh size
hg is used.

We take the computational domain Ry, = [~12,12]? in 2D and [-8, 8] in 3D.
Table [2] lists the temporal and spatial errors of CS2 and CS4 at time ¢ = 0.5 for
the 2D problem, while Table [3] lists those at time ¢t = 0.3 for the 3D case. From
these tables, one can see the spatial spectrally accuracy and second/fourth order
temporal convergence in CS2/CS4.

3.2. Efficiency test

To show the efficiency performance of our method, we investigate the computational
costs, measured in CPU time, as a function of the total grid points.

Example 3. (Efficiency) We test the efficiency by showing the computational time
variation versus the total grid number Nyo := N¢. The parameters are chosen the
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Table 2. Numerical errors of CS2 and CS4 at time ¢t = 0.5 for 2D case in

Example
Temporal direction
T 1/80 1/160 1/320 1/640
e}f‘”T 3.8009E-04 9.4930E-05 2.3727E-05 5.9313E-06
rate 2.0014 2.0003 2.0001
ego’T 3.6387E-04 9.0816E-05 2.2695E-05 5.6731E-06
cs2 rate 2.0024 2.0006 2.0001
e}l"l’T 3.7662E-04  9.4058E-05 2.3508E-05 5.8767E-06
rate 2.0015 2.0004 2.0001
Spatial direction
h 1/2 1/4 1/8 1/16

el 6.4844E-02  1.8722E-04 1.5849E-09  6.8645E-13
e™  TATI6E-02  2.5605E-04 1.1263E-09  6.1212E-13
hTo 6.4912E-02  1.8862E-04 1.5153E-09  6.3363E-13

Temporal direction

T 1/80 1/160 1/320 1/640
e?O’T 7.0278E-06  4.3518E-07 2.7137E-08 1.6951E-09
rate 4.0134 4.0033 4.0008
ego T 9.1809E-06  5.6785E-07  3.5400E-08  2.2110E-09
cS4 rate 4.0150 4.0037 4.0010
6}101’7 7.4004E-06  4.5812E-07 2.8565E-08  1.7834E-09
rate 4.0138 4.0034 4.0008
Spatial direction
h 1/2 1/4 1/8 1/16

e?’m 6.4844E-02  1.8722E-04  1.5849E-09  1.6546E-12
eg‘m 7.4716E-02  2.5605E-04 1.1260E-09  1.3798E-12
70 6.4912E-02 1.8862E-04 1.5153E-09  1.5307E-12

same as in Example [2| The algorithms were implemented in FORTRAN, and run on
a single 2.30GH Intel(R) Xeon(R) Sliver 4316 CPU with a 30 MB cache in Ubuntu
GNU/Linux with the Intel complier ifort.

Figure [1| displays log—log plot of timing results for CS2/CS4, elapsed from time
t =0tot=0.1 with time step 7 = 1073, versus the total grid number Ny, in
both 2D and 3D cases. From Fig. 1} we can see that our method is efficient and the
CPU time scales roughly as C Nyt log(Niot), which agrees well with our theoretical

analysis (Remark [2.1)).

Example 4. (Efficiency comparison) Here, we compare our method with the one
proposed in Refs.[11]and 36, where they proposed a second-order scheme by splitting
the Hamiltonian into three parts and applying the ADI technique to handle the
Laplace-Rotation linear subproblem. For convenience, we denote this method as
ADI2. However, it is somewhat tedious to construct high-order schemes with such
three parts. For comparison, we develop a fourth-order scheme based on the Yoshida
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Table 3. Numerical errors of CS2 and CS4 at time ¢ = 0.3 for 3D case in
Example
Temporal direction
T 1/40 1/80 1/160 1/320
6?0’7 5.5530E-05 1.3867E-05 3.4658E-06  8.6640E-07
rate 2.0016 2.0004 2.0001
ego’T 5.4062E-05 1.3501E-05 3.3745E-06  8.4357E-07
S92 rate 2.0015 2.0004 2.0001
e}i‘)l’T 5.5530E-05 1.3867E-05 3.4658E-06  8.6640E-07
rate 2.0016 2.0004 2.0001
Spatial direction
h 1 1/2 1/4 1/8
e?’m 2.2153E-02  4.9362E-04 2.8204E-08 4.7221E-13
eg’TO 2.1108E-02  4.6762E-04  2.5627E-08 4.6931E-13
e}i’;—o 2.2153E-02  4.9362E-04 2.8204E-08 4.7256E-13
Temporal direction
T 1/20 1/40 1/80 1/160
e}llo’T 2.6965E-06  1.6438E-07 1.0223E-08  6.3828E-10
rate 4.0360 4.0071 4.0015
eg‘”' 2.5321E-06 1.5431E-07 9.5966E-08 5.9912E-10
os4 rate 4.0364 4.0072 4.0016
6}10177 2.6965E-06  1.6438E-07 1.0223E-08  6.3828E-10
rate 4.0360 4.0071 4.0015
Spatial direction
h 1 1/2 1/4 1/8
e,IL’TO 2.2153E-02  4.9362E-04  2.8204E-08  8.0481E-13
eg’”’ 2.1108E-02 4.6762E-04 2.5627E-08  7.9953E-13
’l’f(’ 2.2153E-02  4.9362E-04 2.8204E-08 8.0492E-13
10 104
a CS2 a CS2
o CS4 - o CS4 $
Niot log (N P .-
> C5 Nyt log( "tiﬁ’)’o, 1 = 103 CyNyot log(Ntlyf}Q,-" y
B e = ‘_,—"° it
D e -2 D 102 e et
% Q—‘/— . ”’C[Nto[log(Ntof) % /_." ‘/" CSNtotlog(Ntot)
—"”” 6’ —"’ﬁﬂ‘
0085 10" 8"
642 N 1282 1922 2562 64> N 128° 192°  256°
Fig. 1. Log-log plot of CPU time for CS2 and CS4 versus the total grid number Nio¢ for 2D

(left) and 3D (right) cases in Example
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Table 4. Number of one-dimensional FFT/iFFT operators per
time step for CS2/CS4 and ADI2/ADI4 methods in Example

Order Method Number of FFT/iFFT pairs
CS2 12N
Second
2D ADI2 12N
CS4 24N
Fourth ADI4 84N
Second CS2 18N?
2
3D ADI2 24N
Cs4 36N?2
Fourth ADI4 168N

schemé®® and refer to it as ADIJ. We compare CS2/CS4 with ADI2/ADI4 methods
in terms of efficiency, measured by the number of FFT/iFFT operations.

Table [4] presents the efficiency (measured by the number of FFT/iFFT opera-
tions) of the CS2/CS4 and ADI2/ADI4 methods. From these results, we can see
that our method performs better in efficiency, and the superiority becomes more
prominent as the convergence order increases. Consequently, we conclude that the
compact splitting method facilitates the design of high-order schemes.

3.3. Property verification

In this subsection, we study the dynamical properties, including the
energy /mass/magnetization conservation, evolution of angular momentum expecta-
tion and condensate widths, and carry out a comparison on the rotational symmetry
conservation with the ADI method.

Example 5. (Dynamics of the mass and magnetization) Define the mass (or den-
sity) of the spin component mp = £ as

Ny(t) := /]Rd |¢5(X,t)‘2dx, t>0, £{=-1,0,1.

We choose d = 2, = 0.6, 8, = 100 and the initial data (3.1). Figure [2 shows
time evolution of the mass of each component N;(t), the total mass N(¢), the
magnetization M (t) and the energy E(t) for the following five sets of parameters:

Casel1l: 3,=0,B=0,FE1=1,FEy=2, E_1 =4.
Case 2: 3, =50,B=0,F1 =1, Eg=2, F_1 =4.
Case 3: 3,=0,B=2, E1=Ey=FE_; =1.

Case4:65250,B:2,E1:1,E0:2,E,1:3.
Case 5: 3, =50, B=2,E1=1,Ey=2, E_, = 4.

From Fig. [2 we can draw the following conclusions: (i) the total mass N (t) is
always conserved. (ii) When 8, = 0, if furthermore B = 0, then the mass of each
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Fig. 2. Evolution of N;(t), N(t), M(t) for (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4, (e)

Case 5 and E(t) for (f) Cases 1-5 in Example 5]




High-order compact splitting method for rotating spin-1 BEC 2035

component is also conserved (cf. Fig. 2] I(a otherwise, it evolves periodically if B #

0 (cf. Fig. [2 I(C (iii) When B = 0, the magnetization is conserved (cf. Figa. [2[(a)
and I(b (iv) When B # 0 but E; + F_; = 2Fj, the magnetization evolves
periodically (cf. Figs. |2 I(c and l(d . These are consistent with the dynamical laws
derived in Ref. [11l

Example 6. (Dynamics of the angular momentum expectation) As a measure of
vortex flux, we define the total angular momentum expectation

1

(L)1) = S AL)o(t) with (L)e(t) = | Gelx,Latbe(x.)dx, ¢ > 0.

=—1 R

In fact, (L.)e(t) := (L.)¢(t) / Ny(t) is the angular momentum expectation of the
f-th component. In our simulations, we choose 2 = 0.6, 3, = 100, E; =1, Ey = 0,
FE_; = 2, and the initial data

r2 :
Yl (x) = Ce™ T pmeeimed

where the constant C' is chosen such that the initial data satisfies the normaliza-
tion ([L.8). Figure [3| shows evolution of the angular momentum expectation for the
following four sets of parameters

e Casel:y, =7 =1,8=B=0,m =1, my=0,m_, =2.

e Case2: v, =v,=1,8,=50,B=2,m =1, myg=0,m_; =2.

e Case3: v, =v,=1,3,=50,B=2, m =mog=m_1 = 1.

e Cased: v, =1, =2,08,=50,B=2, mi =mg=m_1 =1.

From Fig. l we can draw the following conclusions: (1) if v, = 7y, (L2)(¢ )
conserved for any time ¢t > 0 (cf Figs. l(a ~l(c Furthermore, if 8, = B =
or my = mg = m_y := m, (L.)e(t) is also conserved (cf. Figs. [3(a) andl

In addition, if B, = B = 0, (L.)¢(t) is also conserved (cf. Fig. [B[a)). (ii) If
Yo # Yy, (L2)(t) and relate quantities (L,)(t), (L.)¢(t) are, in general, not con-
served (cf. Fig. [3(d)). These observations agree well with the analytical results in
Ref. [111

Example 7. (Dynamics of condensate widths) Another important quantity char-
acterizing the dynamics of the spin-1 BEC is the condensate width in the v-direction
(where v = z,y, z) defined as o, = 1/J,(t), where

1
0= Y bualt) with6,0(0) = [ Vot ax

=—1

We choose 2 = 0.6, 8,, = 100, 8, = 50, B =0, E;, = 0, and the initial data
U(x) = d(x),  YP(x) = 3V20(x), ¥2(x) = p(x), (3:2)
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Fig. 3. Evolution of angular momentum expectation in Example |§| for Cases 1-4 (from top to

bottom).




High-order compact splitting method for rotating spin-1 BEC 2037

Fig. 4. Evolution of the condensate widths in Example [7]for (a) Case 1 and (b) Case 2.

with ¢(x) = 1/0.05/me~xI"/2. Figure 4| shows evolution of the condensate widths
05(t), 0,(t) and 6, (t) := 0,(t) + 6,(t) for the following two sets of parameters

e Case 1: v, =1, 7, = 1.
o Case 2: v, =1, 7, = 2.

From Fig. |4l we can see that the condensate width 4, () is a periodic function
when v, = v,, B =0 and E; = 0. While they are not periodic when v, # 7,. These
are consistent with the dynamical laws derived in Ref. [T1l

Example 8. (Rotational symmetry) We investigate the rotational symmetry
preservation property of two numerical methods, i.e. ADI schemé®® and CS2. That
is, for solution starting with initial value ¥?(x;) and ¥0(x;x) = VQ(R(0)x;x),
{/;g(Xjk,t) is also the 6@-rotation of y(x;x,t) at time ¢, ie. Jg(Xjk,t) =
Yi(R(0)x;k,t). Here, we define the following error function:

£V () == max [e(R(0)x;k,t) — Do(x;k, 1)]/ max [tho(R(0)xk,1)].
Xk €G Xk €G
In our simulation, we choose {2 = 0.4 and consider the following two cases:

e Case 1: 5,=1,8,=1,B=1,FE, =3, Fg=2,E_1=1.
e Case 226n:10,ﬂ5:5,B:0,E1:E():E_lio.

%10 %10 %1073
—C52.0=n/8
—0S2:0=7/6

—n/5

—C52:0=7/8
——C$2:0=n/6

8 H - ADI : 0 = /3|

Fig. 5.  Errors of the rotational symmetry preservation for Case 1 in Example
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The initial data is chosen as

P(x) = (%), Pg(x) =4V3o(x),  ¥21(x) = d(x),
where  ¢(z,y) = \/0.02/7re’(12+92)/2(x+iy) for Case 1 and ¢(z,y) =
V0.02/me= @ H+¥")/2 for Case 2.

¥af® [ol* ly-1f?

Fig. 6. Densities computed by CS2 (top) and ADI (bottom) for Case 2 in Example

%103 o t =0.9 yo"’ o t=12.3 %1073 s t=36.7 x107
6 32

6 2
3 1 |

3 1
0 0 0
x10% %107 %107
6 6 o
3 B3 113
0 0 0
%103 102 x10°
6 8
i3 1 4
0 0 0

Fig. 7. Contour plots of the densities |t,|? (¢ = 1,0, —1, from top to bottom) in Example@
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In practice, we choose Ry = [—32,32]%, h = 1/16 and 7 = 0.2 for Case 1,
while we choose h = 1/32 and 7 = 0.2 for Case 2. Figure [5| presents the errors
;"™ (t) over the interval ¢ € [0,100] for CS2 and ADI in Case 1, while Fig. [6] shows
the contour plots of the densities at time ¢ = 22 in Case 2. From Figs. [5] and [6]

><103 x1o1 %107
15 15
10
5
-16 0 -16 0
-16 16 -16
t =0.28 %1073 t—0.28 %1072 t—0.28 %1073
6 16 16 6
4 ,
4 y y 4
0 0
2 # 2
0 -16 0o -16 0
-16 -16
t =0.48 %102 : t =0.48 %102 . t =0.48 %102
-16 Uo -16 0
-16 6 -16 0 =z 16

Fig. 8. Contour plots of the densities |¢y|2 (¢ = 1,0, —1, from left to right) in Example
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we conclude that ADI scheme does not keep rotational symmetry, while the CS2
method does. We refer the readers to Lemma for a rigorous proof.

3.4. Applications

In the following, we study the evolution of quantized vortices and dynamics under
honeycomb potential in rotating spin-1 BECs.

Example 9. (Dynamics of quantized vortices) Here, we choose (3,, = 200, 8; = 5,
Ei=1,Ey=FE_; =2, B=1,Q=0.6. The initial data is chosen as” 51

a2 4y?

¢€(J;ay) =Ce 1

[(z =) +i(y —y;)l, £=1,0,—1,

9
=1

J

where (z;,y;) € {(0,0), (£3,0), (0,£3), (£3v2/2,£3v/2/2)} and the constant C is
chosen such that the initial data satisfies the normalization ((1.8)).

In our simulation, we adopt CS4 scheme with 7 = 1073 and h = 1/8. Figure
shows the contour plots of the densities [1|?(¢ = 1,0, —1) at different time.

Example 10. (Dynamics under honeycomb potential) In the following, we study
the dynamics under honeycomb potential

V(x) = 10 [cos(by - x) + cos(ba - x) + cos((b1 + bz) - x)]

in rotating spin-1 BECs, where by = Z(v/3,1) " and by = Z(—V/3,1)T. We choose
the parameters Q2 = 0.4,8, =5,8, = —=5,B=1,F =1,FEy =2,FE_; =1 and the
initial data (3.2]).

In our simulation, we adopt CS4 scheme with 7 = 10~2 and h = 1/16. Figure
shows the contour plots of the densities |1/¢|?> (¢ = 1,0, —1) at different time.

4. Conclusions

We developed high-order compact splitting Fourier spectral methods to simulate the
dynamics of rotating spin-1 BEC held in the external Ioffe-Pritchard magnetic field.
We split the Hamiltonian into the linear part (Laplace, rotation and Zeeman energy)
and the nonlinear part (all the others terms). The linear operator is decomposed
into a product of five sub-operators with analytical splitting coefficients, and all
these sub-operators are integrated exactly in either physical space or phase space.
For the nonlinear subproblem, we derive an exact time-dependent formula for the
spin vector, therefore, this nonlinear subproblem is reduced to a linear one. Then
we design explicit high-order schemes using Magnus integrators. Based on such
compact splitting, we can easily construct high-order spectral methods to simulate
the dynamics.

Our approach is explicit, achieves high-order temporal convergence and spa-
tial spectral accuracy, and conserves the mass and magnetization (when B = 0)
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on discrete level. Additionally, it is unconditionally stable, time reversible, time
transverse invariant and rotational symmetry preservation. Ample numerical results
demonstrate the effectiveness in simulating the dynamics of rotating spin-1 BEC.
Furthermore, the EEI method is simple to implement and can be easily adapted to
rotating systems, such as the rotating spin-F' BECs or BECs under the arbitrary-
angle rotation with/without dipole-dipole interactions 2% 53

Appendix A. Fourth-Order Magnus Integrator

Here, we provide a detailed derivation for the fourth-order integrator ((2.14)) and

(2.16))). Specifically,
gntl (X) — e—iT(V+5nPn)€—iS4ch g (X),

where

s4th_/ S(tn —l—o)do—&-fz/ [/ S(tn + 1)y, S(tn +0)}da

with S = 5,F - f 4+ B. In fact, Sy, is a Hermitian matrix with the same structure
as the Sonq (2.18) with matrix entries

o= [“autorio s gi [ ano) [ Butn = 5uo) [ dntirin]an
o= [ Autorao 51 [ [auio) [ dnman - anto) [ Gt ao

with &, (0) = @(tn+0), @(t) := B F_(t)/v2+B and 3(t) := B, F.(t). Both integrals
can be computed analytically, i.e.

—%[sm(\/iBr)F; + (cos(V2B71) — 1)F7'] + ( ﬁ‘iFg + B>

“ava (5572 ) (o B VBBt 120

5501 n n
() (2 >2>] , (A1)

_ By " — (cos T) — .
B = \/EB[sm(\/iBT)FZ (cos(V2Br) — 1)F}']

top (e ) (s + Fra) + VEB(I s - e, (42)
where 51 = fB[ cos(\fBT)] = 525 [—V2B7 cos(V2BT) + sin(vV2B7)], ¢
fB sin(vV2B71) — 7 and ¢ = 555 [—1 + cos(v2BT) + 2B sin(v2B7)].

We can obtain the explicit expression for Gup := e *S#n in a similar way as

Gonq = e 204 (2.21). Therefore, the matrix Gy, remains in the form of Goyg
(2.21)), and the only modification is to replace @ and g in Gapq with the expressions

given in (A.1)—(A.2). Then the fourth-order integrator reads as (2.23)).

+
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Appendix B. Exact Solution for Laplace-Rotation Problem
Here, we derive the exact solution to the following Laplace-Rotation subproblem
1
10 (x,t) = [—A — QLZ} Y(x,t),
2 (B.1)
¥(x,0) = o(x).
We define a new function by rotation mapping? specifically,
o(x,t) = Y(R(H)x,1), x€R’ >0,
where the orthogonal rotational matrix
cos(Qt sin(Qt
Rit) = MO0 gy
—sin(Qt)  cos(02t)
cos(Qt)  sin(Q) 0O
R(t) = | —sin(Qt)  cos(Qt)
0 0 1

Using the chain rule, it becomes evident that ¢ satisfies the following equations:
1
iat¢(X, t) = 7§A¢(X7 t)a
$(x,0) = 1h(x,0) = Yo(x).

We can explicitly solve the above equation in Fourier space/2 to be exact,

(;Ask(t) = e‘%it\klﬂlAjk(O) with ’JJk(O) = w(x7 O)e—ik‘xdx.
R4

This leads to the solution in physical space after an inverse Fourier transform

d(x,t) = # /Rd e_%it‘kpqz)k(o)eik.xdk.

Then, we can obtain the exact solution of equation (B.1]) by
b(x,t) = $(R™H(1)x, ). (B.3)

Specifically, we provide the explicit expression of exact solution using the initial

(B.2)

value

224y

1,
P(x,0) = v e

A simple calculation shows that

- 1 1 . i )
¢k(0) S /i [/ 62y26m2ydy:| |:/ 126*5902671]@11(1‘%
T R R

el
m

2 9 —l(kz—i-kz)
= 17/4(1 — kl)e 23\ 2/,
™

_ 152
_8k17€16 2k1]
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- e y
Let 2 = T ¥ = A e have

1:47.2 1.2 1 :,7.2 1.2 -
|: 62ltk2e2k2ezk2ydk2:| |:/ (1 o k%)efgztklefgkl ezklwdkl]
u R

11 1 C102 ik 1 —1K2 ik
— Rk 0k, | (1 + —— 853 k1t g,
742 (1 + it) |:/]Re ‘ 2}( T )[/Re ¢ !
11 1
T orl/A (1 +it) 1+t

|~

T

1
¢(x7yvt) = m

DN

(1- 5:2)} e~ 2 (@477

2 42 . -
_ Lz t +Zt6,2(”1+1)(12+y2).

T Ui T (11 it)
Using (B.3)), we have
1 2f —1* +it
Y(z,y,t) = ¢(R™(1)x,1) /4 (1 +it)3

e—m(ﬁ*’y%)

2 2 .
— Lwe_ 2(it1+1)(w2+y2)
wi/4 (1 +it)3

where z1 = cos(Qt)x — sin(Qt)y and y; = sin(Qt)z + cos(Qt)y.

)
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