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We propose high-order compact splitting Fourier spectral methods to compute the

dynamics of rotating spin-1 Bose–Einstein condensates (BECs) under an Ioffe-Pritchard
magnetic field. We split the Hamiltonian into a linear part, which consists of the Laplace,

rotation and Zeeman energy terms, and a nonlinear part, which includes all the remain-

ing terms. This “compact” splitting, involving only two operators, significantly simplifies
the construction of high-order schemes. For the linear subproblem, we factorize the linear

operator as a product of simple sub-operators using the exact classical-quantum corre-
spondence and semigroups decomposition, and such sub-operators are well approximated
by Fourier spectral method and integrated exactly in phase space as usual. Importantly

and surprisingly, the splitting coefficients, originally determined by a nonlinear equation,
can actually be computed exactly by solving a linear system, ending up with explicit
formulas. For the nonlinear subproblem, we derive an exact formula of the spin vec-

tor, which is not conserved in presence of the magnetic field, and transform it into a
linear problem. Then we design explicit high-order schemes using Magnus integrators.

Our scheme achieves spectral accuracy in space and high-order precision in time with
near-optimal efficiency. It is explicit, easy to implement and unconditionally stable. In
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addition, we derive some properties of our numerical scheme and conduct a comprehen-

sive investigation, including accuracy confirmation, efficiency test, property verification,
interaction of quantized vortices and dynamics under honeycomb potential.

Keywords: Spin-1 Bose–Einstein condensate; dynamics; rotating; compact operator

splitting scheme; Fourier spectral method.
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1. Introduction

Since its first observation in 1995,2, 15 the Bose–Einstein condensation (BEC) has

provided an incredible glimpse into the macroscopic quantum world. At early stage,

atoms were confined in magnetic traps and the spin degrees of freedom were frozen.

The particles are described by a scalar model and the wave function is governed

by the Gross–Pitaevskii equation (GPE) within the mean-field approximation.4, 16

Recently, the development of optical trapping techniques has enabled to confine

atoms independently of their spin orientation and thus so-called spinor conden-

sates. The spin-1 BEC was realized experimentally in 23Na and 87Rb.17, 28 In con-

trast to a scalar BEC, the spin-F BEC is described by the coupled GPEs, which

consists of 2F + 1 (F ∈ N) equations, and each governs one of the 2F + 1 hyper-

fine states (mF = −F,−F + 1, . . . , F − 1, F ) within the mean field approxima-

tion.18, 19, 23 In fact, experimental achievements of spinor BECs have created great

opportunities to study the abundant quantum phenomena that are absent in scalar

BECs.5, 30

For temperatures below the critical temperature, the dynamics of the rotat-

ing spin-1 BEC are well described by the dimensionless coupled Gross–Pitaevskii

equations (CGPEs) with an angular momentum rotational term in the d-dimension

(d = 2 or d = 3)6, 8, 11, 20

i∂tψ1(x, t) =

[
−1

2
∇2 + V (x) + E1 − ΩLz + βnρ+ βs(ρ1 + ρ0 − ρ−1)

]
ψ1

+βsψ̄−1ψ
2
0 +Bψ0, (1.1)

i∂tψ0(x, t) =

[
−1

2
∇2 + V (x) + E0 − ΩLz + βnρ+ βs(ρ1 + ρ−1)

]
ψ0

+ 2βsψ1ψ−1ψ̄0 +B(ψ1 + ψ−1), (1.2)

i∂tψ−1(x, t) =

[
−1

2
∇2 + V (x) + E−1 − ΩLz + βnρ+ βs(ρ0 + ρ−1 − ρ1)

]
ψ−1

+βsψ̄1ψ
2
0 +Bψ0, (1.3)

ψ`(x, 0) = ψ0
` (x), ` = 1, 0,−1. (1.4)

Here, x = (x, y, z)> ∈ R3 or x = (x, y)> ∈ R2 and t is the time. Ψ := (ψ1, ψ0, ψ−1)>

is the three-component wave function, and ρ = ρ1 + ρ0 + ρ−1 is the total density
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with ρ` = |ψ`|2 (` = 1, 0,−1) being the density of `th component. Lz = i(y∂x−x∂y)

is the z-component of the angular momentum and Ω represents the rotation speed.

E` ∈ R is the Zeeman energy, B ∈ R is the external Ioffe-Pritchard magnetic

field, and βn and βs are the mean-field and spin-exchange interaction constants

respectively. f̄ denotes the conjugate of the function f . In most experiments, V (x)

is usually chosen as the harmonic potential, i.e.

V (x) =
1

2

{
γ2
xx

2 + γ2
yy

2, d = 2,

γ2
xx

2 + γ2
yy

2 + γ2
zz

2, d = 3,
(1.5)

with γv (v = x, y, z) being the trapping frequency in the v-direction.

Introduce the spin-1 matrices f := (fx, fy, fz)
> as

fx =
1√
2

0 1 0

1 0 1

0 1 0

 , fy =
i√
2

0 −1 0

1 0 −1

0 1 0

 , fz =

1 0 0

0 0 0

0 0 −1

 ,

(1.6)

and the spin vector F := (Fx(Ψ), Fy(Ψ), Fz(Ψ))> := (ΨHfxΨ,ΨHfyΨ,ΨHfzΨ)>,

where ΨH is the conjugate transpose of Ψ, then the CGPEs (1.1)–(1.3) are refor-

mulated in the compact form shown below

i∂tΨ = HΨ

:=

[(
−1

2
∇2 + V −ΩLz + βnρ

)
I3 + diag{E1, E0, E−1}+ βsF · f + B

]
Ψ,

(1.7)

where H is the Hamiltonian with I3 being the 3× 3 identity matrix and

F · f =



Fz
1√
2
F− 0

1√
2
F+ 0

1√
2
F−

0
1√
2
F+ −Fz


, B =

 0 B 0

B 0 B

0 B 0

 ,

with F± = Fx ± iFy.

Two important invariants of the time-dependent CGPEs (1.1)–(1.3) are the

mass (or normalization) of the wave function

N(t) := N(Ψ(·, t)) :=

∫
Rd

1∑
`=−1

|ψ`(x, t)|2dx ≡ N(Ψ(·, 0)) = 1, t ≥ 0 (1.8)
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and the energy per particle

E(t) := E(Ψ(·, t)) =

∫
Rd

[
1∑

`=−1

(
1

2
|∇ψ`|2 + (V (x) + E`)|ψ`|2 − Ωψ̄`Lzψ`

)

+
βn
2
ρ2 +

βs
2

(|F+|2 + |Fz|2) + 2BRe(ψ̄0(ψ1 + ψ−1))

]
dx

≡ E(Ψ(·, 0)), t ≥ 0. (1.9)

When B = 0, another important invariant is the total magnetization

M(t) = M(Ψ(·, t)) :=

1∑
`=−1

∫
Rd
` |ψ`(x, t)|2 dx ≡M(Ψ(·, 0)), t ≥ 0. (1.10)

There is vast literature on mathematical and numerical studies of the dynamics

for scalar BEC, and we direct readers to Refs. 3, 5, 9, 10, 14 and 37 for further

information. Along the numerical front, the time-splitting Fourier spectral method

is one of the most popular methods due to its efficiency, stability and implemen-

tation simplicity. This method has been applied to spinor BECs.4, 11, 34–36 For the

rotating spin-1 BEC, Bao et al.7, 11 and Wang36 proposed a second-order spectrally

accurate numerical method, where they all split the Hamiltonian into three parts.

In Refs. 11 and 36, they grouped the Laplace and rotation term as a linear part,

and the linear subproblem was solved either by finite difference/element in polar

and spherical coordinates or by Alternating Direction Implicit (ADI) combined

with Fourier spectral method. In Ref. 7, they grouped the Laplace, rotation and

radial/cylindrical symmetric part of trapping potential as a linear part, and solve it

using generalized Laguerre–Fourier–Hermite spectral method in polar/cylindrical

coordinates on the whole space. To efficiently investigate the fine structures of such

rotating systems, including vortex lines and/or vortex lattice, it is advantageous

to employ high-order schemes. However, it is somewhat complicated to construct

high-order schemes with such three subproblems. It will be much easier if the Hamil-

tonian is split into two operators,38 and we shall refer such splitting with fewer

operators as “compact” splitting hereafter.34, 35

As far as we know, there are very limited research on compact splitting for

spinor BECs. For dynamics of spinor BECs without rotation term, Symes et al.

proposed a compact splitting scheme for spin-1 and spin-2 BECs,34, 35 where the

nonlinear subproblem was integrated analytically in physical space and the linear

operator was integrated in phase space. Recently, for rotating spin-1 BEC with

the spin-orbit coupling (SOC), Liu et al. proposed a high-order compact splitting

scheme, where the Hamiltonian is split into two parts, and both subproblems are

integrated exactly.26 For rotating spinor BEC, there is no simple way to split the

Hamiltonian into two parts due to the presence of the rotation term. It is possible to

switch to the rotating Lagrangian coordinates (RLC), a popular method developed

by Bao et al., where the rotation term vanishes automatically.9 This allows utilizing
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operator splitting methods or exponential integrators to construct a high order

scheme, such as exponential Runge–Kutta methods and Lawson methods for scalar

BEC.14 However, when a real-time dynamics at each time step is on request, one

needs to rotate the wave function ψ`(x, t) from the rotating Lagrangian coordinates

to Cartesian coordinates at every time step. Such coordinate switches are quite

exhaustive numerically and shall bottleneck the simulation efficiency.

To design high-order compact splitting schemes, the exact integration of linear

subproblem is quite crucial. There exists some literature devoted to some par-

ticular coordinates or domain. For example, Bao et al. proposed a generalized

Laguerre–Fourier–Hermite spectral method in the whole space Rd, and they inte-

grate the linear subproblem in polar/cylindrical coordinates.7 Wang et al. intro-

duced a Chebyshev–Fourier spectral method on the bounded disk and integrated

the linear subproblem in polar coordinates.37 Liu et al. successfully integrated the

Laplace-rotation-SOC subproblem exactly in Cartesian coordinates using function-

rotation mapping,26 but it is not optimal in terms of efficiency for non-SOC prob-

lems. Recently, Bernier et al. proposed an exact integration method in Cartesian

coordinates, named as exact splitting method, for the Laplace-Rotation-Potential

linear subproblem.12, 13 However, to obtain the splitting coefficients, one has to

solve a nonlinear matrix system via an iterative method. Amazingly, we managed

to derive an explicit formulation for such splitting coefficients by transforming the

nonlinear system into a linear equation followed by an elaborative block-by-block

matrix matching. It is fairly simple and easy to code using such exact and explicit

splitting coefficients.

In this paper, we split the CGPEs (1.7) into a linear subproblem

i∂tΨ(x, t) =

[(
−1

2
∇2 − ΩLz

)
I3 + diag{E1, E0, E−1}

]
Ψ(x, t) := HlinΨ(x, t),

(1.11)

and a nonlinear subproblem

i∂tΨ(x, t) = [(V + βnρ)I3 + βsF · f + B]Ψ(x, t) := HnonΨ(x, t). (1.12)

Obviously, the linear subproblem is decoupled because each component is indepen-

dent of the other two and (− 1
2∇

2 − ΩLz) commutes with constant E`. We derive

an explicit exact time integrator for the linear subproblem (1.11) and will refer

to it as the Explicit-Exact-Integrator (EEI ) hereafter. In EEI, the wave function

is discretized by Fourier spectral method and integrated exactly in phase space.

While for the nonlinear subproblem (1.12), we cannot integrate it as usual (see

Ref. 35) since the spin vector F is not conserved in presence of the magnetic field.

Here we first derive an exact time-dependent formula of the spin vector, with which

the nonlinear subproblem is transformed to a linear one, then we construct explicit

high-order schemes using the Magnus integrators.21, 22 To sum up, each subprob-

lem can be efficiently and accurately solved in either physical or phase space. This

compact splitting significantly simplifies the design of high-order schemes.
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To sum up, the key advance is that we first design a fast and exact time-splitting

scheme for the Laplace-Rotation subproblem with explicit splitting coefficients,

which are derived by solving a linear system instead of the nonlinear problem orig-

inally proposed in Ref. 12. Explicit coefficients allow for an easy implementation

and adaptation to rotating systems. Additionally, for the nonlinear subproblem,

we transform it into a linear problem by deriving an exact formula for the time-

dependent spin vector, and design explicit high-order schemes.

This paper is organized as follows. In Subsec. 2.1 and 2.2, we propose an

EEI for the linear subproblem, and explicit high-order Magnus integrators for the

nonlinear subproblem. In Subsec. 2.3, we derive some properties of our numer-

ical method, including mass-conservation (stability), magnetization-conservation,

time reversible, time-transverse invariant and rotational symmetry. Detailed spa-

tial/temporal convergence and efficiency tests are presented in Sec. 3, together with

some interesting numerical results. Finally, conclusions are drawn in Sec. 4.

2. Compact Splitting Spectral Method

Due to the trapping potential, the wave functions decay to zero exponentially when

|x| → ∞. Therefore, in practical computation, we truncate the problem into a

sufficiently large bounded rectangular domain and impose periodic boundary con-

ditions. In this section, we introduce a high-order compact splitting Fourier spectral

method for CGPEs (1.1)–(1.4). For simplicity, we shall only present the scheme

in 2D and generalization to the 3D case is straightforward. We choose a square

domain RL := [−L,L]2 and discretize each spatial direction with the same mesh

size h = (2L)/N with N being an even positive integer. Define the physical, Fourier

index and grid points sets as

IN = {(j, k) ∈ Z2 | 0 ≤ j ≤ N − 1, 0 ≤ k ≤ N − 1},

TN = {(p, q) ∈ Z2 | −N/2 ≤ p ≤ N/2− 1,−N/2 ≤ q ≤ N/2− 1},

G = {xjk := (xj , yk)> := (−L+ jh,−L+ kh)>, (j, k) ∈ IN},

and denote ψn`,jk as the numerical approximation of ψ`(xj , yk, tn) for (j, k) ∈ IN .

As stated earlier, the presence of rotation term poses great challenges and a

feasible way is to work in the rotating Lagrangian coordinates to eliminate the

rotation term.9 Unfortunately, direct application of RLC faces efficiency bottleneck

when coordinates switches are invoked for every time step in some real-time simu-

lation. In our method, we split the Hamiltonian into two parts: the linear operator

Hlin (Laplace-Rotation-Zeeman terms), and the nonlinear operator Hnon. For the

linear subproblem, we develop an exact integrator with explicit coefficients. The

main idea is to factorize the semigroup, generated by linear part, into products

of semigroups, which corresponds to differential operators that can be efficiently

approximated using the Fourier spectral method. Further details are provided in

Subsec. 2.1. For the nonlinear subproblem, the presence of the magnetic field results
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in a time-dependent spin vector, and it makes exact integration very difficult. In

fact, we can first derive an exact formula for the spin vector and reduce the non-

linear problem to a linear one. Then we use Magnus integrators to develop efficient

high-order schemes, which are to be detailed in Subsec. 2.2.

Specifically, we denote the time sequence as tn = nτ with n = 0, 1, . . . for a given

time step τ > 0. The solutions to the linear and nonlinear subproblems from t = tn
are denoted as Ψ(t) = e−i(t−tn)HlinΨn and Ψ(t) = e−i(t−tn)HnonΨn, respectively. In

practice, high-order splitting methods can be designed as

Ψn+1 =

 m∏
j=1

e−iajτHline−ibjτHnon

Ψn

with the appropriate coefficients aj , bj ∈ C.38 For the standard second-order Strang

splitting, we adopt m = 2, a1 = a2 = 1
2 and b1 = 1, b2 = 0, while, fourth-order

scheme, proposed by Yoshida, is configured with m = 4, a1 = a4 = 1
2(2−21/3)

,

a2 = a3 = 1−21/3

2(2−21/3)
and b1 = b3 = 1

2−21/3 , b2 = − 21/3

2−21/3 , b4 = 0.

2.1. Explicit exact time integrator for linear subproblem

The exact solution to the following linear problem
i∂tψ`(x, t) =

[
−1

2
∆− ΩLz + E`

]
ψ`(x, t), tn ≤ t ≤ tn+1,

ψ`(x, tn) = ψn` , x ∈ RL,

(2.1)

can be written formally as

ψ`(x, t) = ei(t−tn)[ 12 ∆+ΩLz−E`]ψn` (x) = e−i(t−tn)E`ei(t−tn)[ 12 ∆+ΩLz ]ψn` (x). (2.2)

To compute eiτ [∆/2+ΩLz ], we aim to factorize it as a product of sub-operators that

can be numerically accessed with great efficiency. Based on the exact splitting

method proposed in Refs. 12 and 13, we can factorize it as a product of five sub-

operators as follows

eiτ [∆/2+ΩLz ] = e−iτ(ζ1x
2+ζ2y

2)e−τξy∂xeiτ∇
>K∇e−τηx∂ye−iτx

>Px

(2.3)

with suitable coefficients ζ1, ζ2, ξ, η ∈ R and matrices K, P ∈ R2×2. While for the

3D problem, using Baker–Campbell–Hausdorff (BCH) formula,29 we can still fac-

torize eiτ [∆/2+ΩLz ] as a product of five sub-operators instead of seven sub-operators

proposed in Refs. 12 and 13. Specifically,

eiτ [∆/2+ΩLz ] = eiτ [ 12∂zz ]eiτ [ 12∂xx+ 1
2∂yy+ΩLz ]

= e−iτ(ζ1x
2+ζ2y

2)e−τξy∂xeiτ [∇>⊥K∇⊥+ 1
2∂zz ]e−τηx∂ye−iτx

>
⊥Px⊥ ,

(2.4)

where x⊥ = (x, y)> and ∇⊥ = (∂x, ∂y)>.
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It appears unlikely to derive explicit formula for such coefficients and matrices,

because one has to solve a nonlinear system that involves some complicated matrix

exponentials.12, 13 Fortunately, with an elaborative block-by-block matrix matching

technique, we succeeded in turning such nonlinear equations into a series of linear

equations, and deriving explicit and exact expressions in the following theorem.

Theorem 2.1. The coefficients of exact splitting (2.3) for eiτ [∆/2+ΩLz ] are given

explicitly by

ζ1 =
sec(Ωτ)− 1

2τ2
, ζ2 =

cos(Ωτ)− 1

2τ2
, ξ =

sin(2Ωτ)

2τ
, η = − tan(Ωτ)

τ
,

(2.5)

K =
1

2
Θ−τ,ξWΘτ,η, P =

1

2τ2

(
W>Θτ,ξΘ

>
τ,η − I2

)
, (2.6)

where W =
( cos(Ωτ) sin(Ωτ)
−sin(Ωτ) cos(Ωτ)

)
is a rotational matrix and Θτ,v :=

(1 τv
0 1

)
with v =

ξ, η.

Proof. Exact classical-quantum correspondence suggests a way to transform an

exact splitting of the differential operators into an exact splitting at the level of the

semigroup generated by operators.1 We rewrite the operator splitting (2.3) as

e−τp
w

= e−τp
w
1 e−τp

w
2 e−τp

w
3 e−τp

w
4 e−τp

w
5 , (2.7)

where the Weyl quantization is defined as pwm := z>Qmz with z = (x>,−i∇>)>.

To be specific,

pw = −i(∆/2 + ΩLz) = z>
i

2

(
0 A>

A I2

)
z := z>Qz with A =

(
0 Ω

−Ω 0

)
,

pw1 = i(ζ1x
2 + ζ2y

2) = z>i

(
D 0

0 0

)
z := z>Q1z with D =

(
ζ1 0

0 ζ2

)
,

pw2 = ξy∂x = z>
i

2

(
0 M>ξ

Mξ 0

)
z := z>Q2z with Mξ =

(
0 ξ

0 0

)
,

pw3 = −i∇>K∇ = z>i

(
0 0

0 K

)
z := z>Q3z,

pw4 = ηx∂y = z>
i

2

(
0 Mη

M>η 0

)
z := z>Q4z with Mη =

(
0 η

0 0

)
,

pw5 = ix>Px = z>i

(
P 0

0 0

)
z := z>Q5z.



June 10, 2025 15:38 WSPC/103-M3AS 2550025

High-order compact splitting method for rotating spin-1 BEC 2021

Using exact classical-quantum correspondence, we only need to prove that

e−2iτJ4Q = e−2iτJ4Q1e−2iτJ4Q2e−2iτJ4Q3e−2iτJ4Q4e−2iτJ4Q5 , (2.8)

where J4 is the fundamental symplectic matrix, i.e. J4 :=
(

0 I2
−I2 0

)
with I2 being

the 2× 2 identity matrix. Then, we calculate (2.8) explicitly as follows(
W τW

0 W

)
=

(
I2 0

−2τD I2

)

×

(
Θτ,ξ 0

0 Θ>−τ,ξ

)(
I2 2τK

0 I2

)(
Θ>τ,η 0

0 Θ−τ,η

)(
I2 0

−2τP I2

)

=

(
Θτ,ξΘ

>
τ,η − 2τG12P 2τΘτ,ξKΘ−τ,η

−2τDΘτ,ξΘ
>
τ,η − 2τG22P −2τDG12 + Θ>−τ,ξΘ−τ,η

)

:=

(
G11 G12

G21 G22

)
.

At first glance, the above equation appears to be a complicated nonlinear system.

In fact, we can calculate these coefficients exactly by solving a linear system using

an elaborative block-by-block matching. Starting from the fact that G22 = W , we

calculate ζ1, η, ζ2 and ξ sequentially by solving a linear system. Then, we directly

compute K and P by matrix inversion for G11 = W and G12 = τW . Finally, we

need to verify G21 = 0 with these coefficients.

Specifically, using G22 = −2τDG12 + Θ>−τ,ξΘ−τ,η = W , we obtain{
1− 2τ2ζ1 cos(Ωτ) = cos(Ωτ), τη − 2τ2ζ1 sin(Ωτ) = sin(Ωτ),

−τξ + 2τ2ζ2 sin(Ωτ) = − sin(Ωτ), τ2ξη + 1− 2τ2ζ2 cos(Ωτ) = cos(Ωτ).

Solving the above system, we derive the formulas for ζ1, ζ2, ξ and η, as shown in

(2.5). Then, using

G12 = 2τΘτ,ξKΘ−τ,η = τW, G11 = Θτ,ξΘ
>
τ,η − 2τG12P = W,

we have

K =
1

2
Θ−1
τ,ξWΘ−1

−τ,η =
1

2
Θ−τ,ξWΘτ,η,

P =
1

2τ2
W−1(Θτ,ξΘ

>
τ,η −W ) =

1

2τ2
(W>Θτ,ξΘ

>
τ,η − I2).

Using these coefficients and G22 = W , we have

(2τ2D + I2)Θτ,ξΘ
>
τ,η = W.
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Then, a simple calculation shows that

G21 = −2τDΘτ,ξΘ
>
τ,η − 2τW

[
1

2τ2

(
W>Θτ,ξΘ

>
τ,η − I2

)]
= −1

τ
(2τ2D + I2)Θτ,ξΘ

>
τ,η +

1

τ
W = −1

τ
W +

1

τ
W = 0.

The proof is completed.

The sub-operators in (2.3) or (2.4) can be well approximated by Fourier spectral

method with great efficiency thanks to FFT/iFFT.32 To be specific, the spectral

approximations of wave function ψ` for d = 2 in the x- and y- directions are such

that

ψ`(x, y) ≈
N/2−1∑
p=−N/2

(ψ̂y` )pe
iνxp (x+L), ψ`(x, y) ≈

N/2−1∑
q=−N/2

(ψ̂x` )qe
iνyq (y+L), (2.9)

where νxp = (2πp)/(2L), νyq = (2πq)/(2L). The Fourier coefficients in the x- and y-

directions are given as follows

(ψ̂y` )p =
1

N

N−1∑
j=0

ψ`(xj , y)e−iν
x
p (xj+L), (ψ̂x` )q =

1

N

N−1∑
k=0

ψ`(x, yk)e−iν
y
q (yk+L).

(2.10)

The scheme (2.3) is then discretized as follows

ψ
(1)
`,jk = e−iτx

>
jkPxjk ψn`,jk,

ψ
(2)
`,jq = e−iτηxjν

y
q (ψ̂

(1)
`,j )q,

ψ
(3)
`,pq = e−iτν

>
pqKνpq (ψ̂

(2)
`,q )p,

ψ
(4)
`,pk = e−iτξykν

x
p

N/2−1∑
q=−N/2

ψ
(3)
`,pqe

iνyq (yk+L),

ψ
(n+1)
`,jk = e−iτ(E`+ζ1x

2
j+ζ2y

2
k)

N/2−1∑
p=−N/2

ψ
(4)
`,pke

iνxp (xj+L)

(2.11)

with νpq = (νxp , ν
y
q )>.

Remark 2.1. (Efficiency) The coefficients ζ1, ζ2, ξ, η,K and P depend only on

the time step τ and the rotation speed Ω, and they can be computed once for all

in the pre-computation step. As for the computational costs, the scheme (2.11)

requires only dNd−1 pairs of one-dimensional FFT and iFFT, and the complexity

is O(Nd log(N)).
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2.2. Magnus integrators for nonlinear subproblem

In this subsection, we introduce explicit high-order schemes to solve{
i∂tΨ(x, t) = [(V + βnρ)I3 + βsF · f + B]Ψ(x, t) := HnonΨ(x, t),

Ψ(x, tn) = Ψn, x ∈ RL, tn ≤ t ≤ tn+1.
(2.12)

It is easy to verify that the density ρ is independent of time, i.e. ρ(x, t) ≡
ρ(x, tn) := ρn, tn ≤ t ≤ tn+1. Noticing the facts that fν(ν = x, y, z) are Hermi-

tian matrices and satisfy the commutator relations [fx, fy] := fxfy − fyfx = ifz,

[fy, fz] = ifx, [fz, fx] = ify, we obtain

∂tFν = ∂t(Ψ
HfνΨ) = iΨHHnonfνΨ− iΨHfνHnonΨ

= iβsΨ
H[F · f , fν ]Ψ + iΨH[B, fν ]Ψ

= iβs(FxΨH[fx, fν ]Ψ + FyΨH[fy, fν ]Ψ + FzΨ
H[fz, fν ]Ψ) + iΨH[B, fν ]Ψ

= iΨH[B, fν ]Ψ, ν = x, y, z.

Using the relation B =
√

2Bfx, we have

∂tFx = 0, ∂tFy = −
√

2BFz, ∂tFz =
√

2BFy, (2.13)

from which we derive exact and explicit formula for the spin vector F(t) as follows(
Fy(t)

Fz(t)

)
=

(
cos(
√

2B(t− tn)) −sin(
√

2B(t− tn))

sin(
√

2B(t− tn)) cos(
√

2B(t− tn))

)(
Fny

Fnz

)
, Fx(t) ≡ Fnx .

Clearly, we can see that the seemingly nonlinear operator Hnon actually depends

on only time variable t, therefore, the nonlinear system (2.12) is in fact a linear

system. We use Magnus integrators (see Ref. 22) to design an explicit high-order

solver for this system (2.12). The idea is to write the solution in the following form:

Ψn+1(x) = e−iΩn(τ)Ψn(x), Ωn(τ) ∈ Cd×d. (2.14)

We give specific expressions for Ωn(τ) associated with the second-order and fourth-

order integrators, respectively, and other high-order integrators can be obtained in

a similar manner.22 That is,

• Second-order: The matrix Ωn(τ) reads as

Ωn(τ) =

∫ τ

0

Hnon(tn + σ)dσ. (2.15)

• Fourth-order: The matrix Ωn(τ) reads as

Ωn(τ) =

∫ τ

0

Hnon(tn + σ)dσ

+
1

2
i

∫ τ

0

[∫ σ

0

Hnon(tn + µ)dµ,Hnon(tn + σ)

]
dσ. (2.16)
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Fortunately, integrals in (2.15) and (2.16) can both be computed exactly. To be

specific, we obtain the second-order integrator of ODEs (2.12) as

Ψn+1(x) = e−iΩn(τ)Ψn(x) = e−iτ(V+βnρ
n)e−i

∫ τ
0
βsF(tn+σ)·f+B dσΨn(x)

:= e−iτ(V+βnρ
n)e−iS2ndΨn(x), (2.17)

where S2nd, a Hermitian matrix, is given explicitly as follows:

S2nd :=

∫ τ

0

βsF(tn + σ) · f + B dσ =

β α 0

α 0 α

0 α −β

 , (2.18)

with matrix entries

α = − iβs
2B

[sin(
√

2Bτ)Fny + (cos(
√

2Bτ)− 1)Fnz ] + τ

(
βs√

2
Fnx +B

)
, (2.19)

β =
βs√
2B

[(1− cos(
√

2Bτ))Fny + sin(
√

2Bτ)Fnz ]. (2.20)

Since S2nd is Hermitian, it can be diagonalized as S2nd = UΛUH, where unitary

matrix U and real diagonal matrix Λ read as

U =
1

λ


−α − α|α|

β − λ
α|α|
β + λ

β |α| −|α|

α
α|α|
β + λ

− α|α|
β − λ

 , Λ =


0 0 0

0 λ 0

0 0 −λ

 , λ =
√
β2 + 2|α|2.

Hence, e−iS2nd can be computed analytically as

e−iS2nd = Ue−iΛUH =


g11 g12 g13

g21 g22 −g21

g13 −g12 g11

 := G2nd, (2.21)

where

g11 =
1

λ2

[
|α|2 +

1

4
q1(β2 + λ2) +

1

2
q2βλ

]
, g12 = αc0, g13 =

α2

2λ2
(q1 − 2),

g22 =
1

λ2
[β2 + |α|2q1], g21 = αc0, c0 =

1

2λ2
[β(q1 − 2) + λq2]

with q1 = 2 cos(λ) and q2 = −2i sin(λ). Therefore, we can obtain an explicit second-

order integrator for the subproblem (2.12), i.e.

Ψn+1(x) = e−iτ(V+βnρ
n) G2nd Ψn(x). (2.22)

Remark 2.2. (Non-magnetic field) The integrator (2.22) is exact when the mag-

netic field disappears (i.e. B = 0), because ∂tFν = 0 for ν = x, y, z, which implies
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Hnon(Ψ) = Hnon(Ψn). When B goes to zero, the matrix entries (2.19)–(2.20) tends

to α = 1√
2
τβsF

n
− and β = τβsF

n
z .

Remark 2.3. (Fourth-order integrator) The fourth-order integrator for the sub-

problem (2.12) reads as

Ψn+1(x) = e−iτ(V+βnρ
n) G4th Ψn(x), (2.23)

where the matrix G4th takes the same form as G2nd (2.21), and the only modifica-

tion is to replace α and β in G2nd with the expressions given in (A.1) and (A.2).

A detailed step-by-step computation can be found in Appendix A. It is worthy to

emphasize that other high-order integrators can be constructed in a similar way.

In implementation, from time t = tn to t = tn+1, we combine the solvers (2.11)

and (2.22) for linear and nonlinear subproblems via the classical Strang splitting

and provide a detailed stepwise algorithm (Algorithm 1).

Algorithm 1. Second-order compact operator splitting spectral method.

Input: Initial data ψn` at time tn, time step τ .

1. Precompute the coefficients ζ1, ζ2, ξ, η, K, P by Eqs. (2.5) and (2.6).

2. Solve linear subproblem by EEI (2.11) for half time step τ/2 with initial data

ψn` :

(i) ψ
(1)
` = e−i

τ
2 x
>Pxψn`

(ii) ψ
(2)
` = e−i

τ
2 ηxν

yFy[ψ
(1)
` ]

(iii) ψ
(3)
` = e−i

τ
2 ν
>KνFx[ψ

(2)
` ]

(iv) ψ
(4)
` = e−i

τ
2 ξyν

xF−1
y [ψ

(3)
` ]

(v) ψ∗` = e−i
τ
2 (E`+ζ1x

2+ζ2y
2)F−1

x [ψ
(4)
` ]

Here, Fx/F−1
x and Fy/F−1

y denote the forward/backward discrete Fourier

transform in the x- and y- directions, respectively.

3. Solve nonlinear subproblem by Eq. (2.22) for one step τ beginning with the

data ψ∗` acquired from step 2:

ψ∗∗1 = e−iτ(V+βnρ
n)(g11ψ

∗
1 + g12ψ

∗
0 + g13ψ

∗
−1)

ψ∗∗0 = e−iτ(V+βnρ
n)(g21ψ

∗
1 + g22ψ

∗
0 − ḡ21ψ

∗
−1)

ψ∗∗−1 = e−iτ(V+βnρ
n)(ḡ13ψ

∗
1 − ḡ12ψ

∗
0 + ḡ11ψ

∗
−1)

4. Solve linear subproblem by repeating steps (i)–(v) in step 2, using initial data

ψ∗∗` , to obtain ψn+1
` .

Output: Numerical solution ψn+1
` at time tn+1 = tn + τ .
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Remark 2.4. (Arbitrary high-order schemes) Using the EEI method for linear

subproblem and the Magnus integrators for nonlinear subproblem, it is simple

to construct arbitrary high-order schemes based on high-order operator splitting

method.38

2.3. Properties of the numerical scheme

There are many important dynamical properties for the CGPEs (1.1)–(1.3), and

here we mention several important ones that are still valid with our method

on discrete level. In this subsection, we derive the properties of our numerical

method, including the mass-conservation (stability), magnetization-conservation,

time reversible, time-transverse invariant and rotational symmetry. For convenience,

we only provide proofs for the 2D case and extension to 3D is simple. We denote

the discrete l2-norm of ψn` as ‖ψn` ‖l2 = (h2
∑N−1
j=0

∑N−1
k=0 |ψn`,jk|2)

1
2 .

Lemma 2.1. (Mass-conservation) For any h, τ > 0, the compact splitting Fourier

spectral method conserves the total mass on discrete level, i.e.

1∑
`=−1

‖ψn` ‖2l2 =

1∑
`=−1

‖ψ0
`‖2l2 . (2.24)

In other words, our scheme is unconditionally stable in l2-norm.

Proof. For the nonlinear subproblem (2.14)–(2.16), it is easy to see that Ωn(τ) is

a Hermitian matrix, then we have

‖Ψn+1‖2l2 = ‖e−iΩn(τ)Ψn‖2l2 = ‖Ψn‖2l2 , where ‖Ψn‖2l2 :=

1∑
`=−1

‖ψn` ‖2l2 .

While for the linear subproblem (2.11), we have

‖ψ(1)
` ‖

2
l2 = h2

N−1∑
j=0

N−1∑
k=0

|e−iτx
>
jkPxjkψn`,jk|2 = ‖ψn` ‖2l2 .

Using the following identities

N/2−1∑
q=−N/2

ei2πjq/N =

N−1∑
q=0

ei2πjq/N =

{
0, j 6= mN,

N, j = mN,
m ∈ Z, (2.25)

we obtain

N−1∑
j=0

N/2−1∑
q=−N/2

|ψ(2)
`,jq|

2 =

N−1∑
j=0

N/2−1∑
q=−N/2

|e−iτηxjνq (ψ̂(1)
`,j )q|2

=
1

N2

N−1∑
j=0

N/2−1∑
q=−N/2

∣∣∣∣∣
N−1∑
k=0

ψ
(1)
`,jke

i2πkq/N

∣∣∣∣∣
2

=
1

N

N−1∑
j=0

N−1∑
k=0

|ψ(1)
`,jk|

2.
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Similarly, we have

‖ψ(n+1)
` ‖2l2 = h2

N−1∑
j=0

N−1∑
k=0

∣∣∣∣∣
N/2−1∑
p=−N/2

ψ
(4)
`,pke

iνxp (xj+L)

∣∣∣∣∣
2

= h2N

N/2−1∑
p=−N/2

N−1∑
k=0

|ψ(4)
`,pk|

2

= h2N2

N/2−1∑
p=−N/2

N/2−1∑
q=−N/2

|(ψ̂(2)
`,q )p|2 = h2N

N−1∑
j=0

N/2−1∑
q=−N/2

|ψ(2)
`,jq|

2 (2.26)

= h2
N−1∑
j=0

N−1∑
k=0

|ψ(1)
`,jk|

2 = ‖ψ(1)
` ‖

2
l2 , ` = 1, 0,−1. (2.27)

To sum up, we can prove that the following relation

1∑
`=−1

‖ψn+1
` ‖2l2 =

1∑
`=−1

‖ψ(1)
` ‖

2
l2 =

1∑
`=−1

‖ψn` ‖2l2

holds true.

Lemma 2.2. (Magnetization-conservation) For any h, τ > 0, the compact splitting

Fourier spectral method conserves the magnetization on discrete level, i.e.

1∑
`=−1

`‖ψn` ‖2l2 =

1∑
`=−1

`‖ψ0
`‖2l2 . (2.28)

Proof. For the linear subproblem, from the proof of Lemma 2.1, we have

‖ψn1 ‖2l2 − ‖ψn−1‖2l2 = ‖ψ0
1‖2l2 − ‖ψ0

−1‖2l2 .

For the nonlinear subproblem with B = 0, we have35

Ψn+1 = e−i(V+βnρ
n)τ

[
cos(βsτ |Fn|) Ψn − i sin(βsτ |Fn|)

|Fn|
S(Ψn)Ψn

]
,

where |Fn| =
√

(Fnx )2 + (Fny )2 + (Fnz )2. A direct calculation shows

|ψn+1
1 |2 − |ψn+1

−1 |2

= cos2(βsτ |Fn|)(|ψn1 |2 − |ψn−1|2)

+
sin2(βsτ |Fn|)
|Fn|2

(∣∣∣∣Fnz ψn1 +
1√
2
Fn−ψ

n
0

∣∣∣∣2 − ∣∣∣∣ 1√
2
Fn+ψ

n
0 − Fnz ψn−1

∣∣∣∣2
)

= cos2(βsτ |Fn|)(|ψn1 |2 − |ψn−1|2) +
sin2(βsτ |Fn|)
|Fn|2

|Fn|2(|ψn1 |2 − |ψn−1|2)

= |ψn1 |2 − |ψn−1|2,

which implies ‖ψn+1
1 ‖2l2 − ‖ψ

n+1
−1 ‖2l2 = ‖ψn1 ‖2l2 − ‖ψn−1‖2l2 . We complete the proof.



June 10, 2025 15:38 WSPC/103-M3AS 2550025

2028 X. Liu et al.

Lemma 2.3. (Time reversible) The compact splitting Fourier spectral method is

time reversible, i.e. scheme (Algorithm 1) remains unchanged if we interchange

n↔ n+ 1 and τ ↔ −τ .

Proof. It is sufficient to demonstrate that the numerical methods to both sub-

problems satisfy time-reversal property. For the nonlinear subproblem (2.14), we

can easily prove that Ωn+1(−τ) = −Ωn(τ) holds true for both second-order and

fourth-order scheme. Therefore, we have

e−iΩn+1(−τ)Ψn+1 = eiΩn(τ)(e−iΩn(τ)Ψn) = Ψn.

For the linear subproblem (2.2), the following equation

eiτE`e−iτ [∆/2+ΩLz ]ψn+1
` = eiτE`e−iτ [∆/2+ΩLz ][e−iτE`eiτ [∆/2+ΩLz ]ψn` ] = ψn` ,

holds evidently. The proof is completed.

Lemma 2.4. (Time-transverse invariant) If a constant C is added to the external

potential V (x), i.e. V (x)→ V (x)+C, then the discrete wave function Ψn
jk obtained

from Algorithm 1 shall get multiplied by a phase factor e−inτC . That is,

Ψn
jk → e−inτCΨn

jk.

Proof. Let Ψn
jk and Ψ̃n

jk be the wave function obtained by Algorithm 1 with poten-

tial V and V + C, respectively. Then, we have

Ψ̃1 = e−i[V+C+βnρ
n]τG2ndΨ0 = e−iτCΨ1,

Ψ̃2 = e−i[V+C+βnρ
n]τG2ndΨ1 = e−i2τCΨ2,

· · ·
Ψ̃n = e−i[V+C+βnρ

n]τG2ndΨn = e−inτCΨn.

The proof is completed.

The rotating spin-1 CGPE (1.1)–(1.3) keeps rotational symmetry when the trap-

ping potential V (x) is radially symmetric. To be precise, for solutions starting with

initial value ψ0
` (x) and ψ̃0

` (x) = ψ0
` (R(θ)x), ψ̃`(x, t) is also the θ-rotation of ψ`(x, t)

at time t, i.e. ψ̃`(x, t) = ψ`(R(θ)x, t), where R(θ) =
( cos(θ) sin(θ)
−sin(θ) cos(θ)

)
is the rotational

matrix. In other words, the system will keep the same rotational symmetry as the

initial wave function, e.g. ψ(x, t) is θ-rotational symmetric at any time t if ψ0(x)

is θ-rotational symmetric.

Lemma 2.5. (Rotational symmetry) For rotating spin-1 CGPE (1.1)–(1.3) with

radially symmetric potential, i.e. V (x) = V (|x|), the semi-discrete scheme keeps

rotational symmetry.

Proof. To confirm the rotational symmetry, it suffices to prove that

ψ̃n+1
` (x) = ψn+1

` (R(θ)x)
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if ψ̃n` (x) = ψn` (R(θ)x). For simplicity, we shall denote x̃ = R(θ)x. As shown before,

the numerical solution to the nonlinear subproblem (2.12) reads explicitly as

Ψ̃n+1(x) = e−iτ(V (x)+βnρ̃
n(x))G2nd(Ψ̃n(x))Ψ̃n(x)

= e−iτ(V (x̃)+βnρ
n(x̃))G2nd(Ψn(x̃))Ψn(x̃)

= Ψn+1(x̃) = Ψn+1(R(θ)x).

While for the linear subproblem (2.1), using chain rule, we obtain

∆ψ̃n` (x) = ∆x̃ψ
n
` (x̃), Lzψ̃

n
` (x) = Lz̃ψ

n
` (x̃)

and

ψ̃n+1
` (x) = eiτ [ 12 ∆+ΩLz−E`]ψ̃n` (x) = eiτ [ 12 ∆x̃+ΩLz̃−E`]ψn` (x̃)

= ψn+1
` (x̃) = ψn+1

` (R(θ)x).

Therefore, we can conclude that the semi-discrete scheme keeps rotational

symmetry.

3. Numerical Results

In this section, we first test the accuracies and efficiency in spatial and tempo-

ral directions. Then we study the dynamical properties, including energy, mass

and magnetization conservation, evolution of angular momentum expectation and

condensate widths, and carry out a comparison on the rotational symmetry con-

servation with some existing numerical methods. Finally, we utilize our method to

study various interesting phenomena, such as the evolution of quantized vortices

and dynamics of BEC under honeycomb potential.

3.1. Accuracy confirmation

In this subsection, we test the temporal and spatial convergence for both 2D and

3D cases. For simplicity, we denote the second-order/fourth-order compact splitting

as CS2/CS4. The numerical error is measured in following norm

eh,τ` (t) := ‖ψref
` (t)− ψ(h,τ)

` (t)‖l2/‖ψref
` (t)‖l2 , ` = 1, 0,−1,

where ψ
(h,τ)
` (t) is the numerical approximation at time t obtained with the mesh size

h and time step τ , and ψref
` (t) is the reference solution at time t. In our simulations,

unless otherwise specified, we choose computational domain RL = [−16, 16]d, mesh

size h = 1/8, time step τ = 10−4. The harmonic potential is taken as V (x) = |x|2/2.

Example 1. (Linear case) We test the temporal accuracy for linear subproblem

solver EEI (2.11). To this end, we choose h = 1/4, τ = 1, E` = 0 and consider the

following non-radially symmetric initial data

ψ0
` (x) =

1

π1/4
x2e−

1
2 |x|

2

.
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Table 1. Temporal discretization errors eh,τ` (` = 1, 0,−1) of

the EEI method in Example 1.

Ω 0.2 0.4 0.8

2D 6.2005E-16 4.7358E-16 4.6741E-16
3D 5.7673E-16 6.3983E-16 5.8956E-16

The exact solution is given explicitly as9, 25

ψ`(x, t) =
1

π1/4

(cos(Ωt)x− sin(Ωt)y)2 − t2 + it

(1 + it)(d+4)/2
e−

1
2(it+1)

|x|2 ,

and the detailed derivation are provided in Appendix B.

Table 1 lists the temporal errors of EEI method at time t = 1 with different Ω,

from which one can see that the EEI method is exact in time.

Example 2. (Nonlinear case) We verify the spectral accuracy in space and high-

order temporal convergence for both 2D and 3D cases. To this end, we choose

Ω = 0.2, E` = 1 and the following parameters

• 2D case: βn = 100, βs = −1, B = 2, and the initial data

ψ0
1(x) = (x+ iy)φ(x), ψ0

0(x) = 2φ(x), ψ0
−1(x) = (x+ 2iy)φ(x) (3.1)

with φ(x) =
√

2/(15π)e−|x|
2/2.

• 3D case: βn = 10, βs = 1, B = 1, and the initial data

ψ0
1(x) = φ(x), ψ0

0(x) = 3
√

2φ(x), ψ0
−1(x) = φ(x)

with φ(x) =
√

0.05/π3/4(x+ iy)e−|x|
2/2.

To confirm the convergence of CS2/CS4, let ψref
` be the numerical reference

solution obtained by CS2/CS4 with very fine mesh size h0 = 1
27−d and small time

step τ0 = 10−4. To calculate the spatial errors, we always use time step τ0 so that

the errors from temporal discretization can be neglected compared to those from

spatial discretization. Similarly, the temporal errors are obtained when mesh size

h0 is used.

We take the computational domain RL = [−12, 12]2 in 2D and [−8, 8]3 in 3D.

Table 2 lists the temporal and spatial errors of CS2 and CS4 at time t = 0.5 for

the 2D problem, while Table 3 lists those at time t = 0.3 for the 3D case. From

these tables, one can see the spatial spectrally accuracy and second/fourth order

temporal convergence in CS2/CS4.

3.2. Efficiency test

To show the efficiency performance of our method, we investigate the computational

costs, measured in CPU time, as a function of the total grid points.

Example 3. (Efficiency) We test the efficiency by showing the computational time

variation versus the total grid number Ntot := Nd. The parameters are chosen the
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Table 2. Numerical errors of CS2 and CS4 at time t = 0.5 for 2D case in

Example 2.

CS2

Temporal direction
τ 1/80 1/160 1/320 1/640

eh0,τ
1 3.8009E-04 9.4930E-05 2.3727E-05 5.9313E-06
rate 2.0014 2.0003 2.0001

eh0,τ
0 3.6387E-04 9.0816E-05 2.2695E-05 5.6731E-06
rate 2.0024 2.0006 2.0001

eh0,τ
−1 3.7662E-04 9.4058E-05 2.3508E-05 5.8767E-06

rate 2.0015 2.0004 2.0001

Spatial direction

h 1/2 1/4 1/8 1/16

eh,τ01 6.4844E-02 1.8722E-04 1.5849E-09 6.8645E-13

eh,τ00 7.4716E-02 2.5605E-04 1.1263E-09 6.1212E-13

eh,τ0−1 6.4912E-02 1.8862E-04 1.5153E-09 6.3363E-13

CS4

Temporal direction

τ 1/80 1/160 1/320 1/640

eh0,τ
1 7.0278E-06 4.3518E-07 2.7137E-08 1.6951E-09
rate 4.0134 4.0033 4.0008

eh0,τ
0 9.1809E-06 5.6785E-07 3.5400E-08 2.2110E-09

rate 4.0150 4.0037 4.0010

eh0,τ
−1 7.4004E-06 4.5812E-07 2.8565E-08 1.7834E-09

rate 4.0138 4.0034 4.0008

Spatial direction

h 1/2 1/4 1/8 1/16

eh,τ01 6.4844E-02 1.8722E-04 1.5849E-09 1.6546E-12

eh,τ00 7.4716E-02 2.5605E-04 1.1260E-09 1.3798E-12

eh,τ0−1 6.4912E-02 1.8862E-04 1.5153E-09 1.5307E-12

same as in Example 2. The algorithms were implemented in FORTRAN, and run on

a single 2.30GH Intel(R) Xeon(R) Sliver 4316 CPU with a 30 MB cache in Ubuntu

GNU/Linux with the Intel complier ifort.

Figure 1 displays log–log plot of timing results for CS2/CS4, elapsed from time

t = 0 to t = 0.1 with time step τ = 10−3, versus the total grid number Ntot in

both 2D and 3D cases. From Fig. 1, we can see that our method is efficient and the

CPU time scales roughly as CNtot log(Ntot), which agrees well with our theoretical

analysis (Remark 2.1).

Example 4. (Efficiency comparison) Here, we compare our method with the one

proposed in Refs. 11 and 36, where they proposed a second-order scheme by splitting

the Hamiltonian into three parts and applying the ADI technique to handle the

Laplace-Rotation linear subproblem. For convenience, we denote this method as

ADI2. However, it is somewhat tedious to construct high-order schemes with such

three parts. For comparison, we develop a fourth-order scheme based on the Yoshida
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Table 3. Numerical errors of CS2 and CS4 at time t = 0.3 for 3D case in

Example 2.

CS2

Temporal direction
τ 1/40 1/80 1/160 1/320

eh0,τ1 5.5530E-05 1.3867E-05 3.4658E-06 8.6640E-07
rate 2.0016 2.0004 2.0001

eh0,τ0 5.4062E-05 1.3501E-05 3.3745E-06 8.4357E-07
rate 2.0015 2.0004 2.0001

eh0,τ−1 5.5530E-05 1.3867E-05 3.4658E-06 8.6640E-07

rate 2.0016 2.0004 2.0001

Spatial direction

h 1 1/2 1/4 1/8

eh,τ01 2.2153E-02 4.9362E-04 2.8204E-08 4.7221E-13

eh,τ00 2.1108E-02 4.6762E-04 2.5627E-08 4.6931E-13

eh,τ0−1 2.2153E-02 4.9362E-04 2.8204E-08 4.7256E-13

CS4

Temporal direction

τ 1/20 1/40 1/80 1/160

eh0,τ1 2.6965E-06 1.6438E-07 1.0223E-08 6.3828E-10
rate 4.0360 4.0071 4.0015

eh0,τ0 2.5321E-06 1.5431E-07 9.5966E-08 5.9912E-10

rate 4.0364 4.0072 4.0016

eh0,τ−1 2.6965E-06 1.6438E-07 1.0223E-08 6.3828E-10

rate 4.0360 4.0071 4.0015

Spatial direction

h 1 1/2 1/4 1/8

eh,τ01 2.2153E-02 4.9362E-04 2.8204E-08 8.0481E-13

eh,τ00 2.1108E-02 4.6762E-04 2.5627E-08 7.9953E-13

eh,τ0−1 2.2153E-02 4.9362E-04 2.8204E-08 8.0492E-13

Fig. 1. Log–log plot of CPU time for CS2 and CS4 versus the total grid number Ntot for 2D

(left) and 3D (right) cases in Example 3.
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Table 4. Number of one-dimensional FFT/iFFT operators per

time step for CS2/CS4 and ADI2/ADI4 methods in Example 4.

Order Method Number of FFT/iFFT pairs

2D

Second
CS2 12N

ADI2 12N

Fourth
CS4 24N

ADI4 84N

3D

Second
CS2 18N2

ADI2 24N2

Fourth
CS4 36N2

ADI4 168N2

scheme38 and refer to it as ADI4. We compare CS2/CS4 with ADI2/ADI4 methods

in terms of efficiency, measured by the number of FFT/iFFT operations.

Table 4 presents the efficiency (measured by the number of FFT/iFFT opera-

tions) of the CS2/CS4 and ADI2/ADI4 methods. From these results, we can see

that our method performs better in efficiency, and the superiority becomes more

prominent as the convergence order increases. Consequently, we conclude that the

compact splitting method facilitates the design of high-order schemes.

3.3. Property verification

In this subsection, we study the dynamical properties, including the

energy/mass/magnetization conservation, evolution of angular momentum expecta-

tion and condensate widths, and carry out a comparison on the rotational symmetry

conservation with the ADI method.

Example 5. (Dynamics of the mass and magnetization) Define the mass (or den-

sity) of the spin component mF = ` as

N`(t) :=

∫
Rd
|ψ`(x, t)|2dx, t ≥ 0, ` = −1, 0, 1.

We choose d = 2, Ω = 0.6, βn = 100 and the initial data (3.1). Figure 2 shows

time evolution of the mass of each component Nj(t), the total mass N(t), the

magnetization M(t) and the energy E(t) for the following five sets of parameters:

• Case 1: βs = 0, B = 0, E1 = 1, E0 = 2, E−1 = 4.

• Case 2: βs = 50, B = 0, E1 = 1, E0 = 2, E−1 = 4.

• Case 3: βs = 0, B = 2, E1 = E0 = E−1 = 1.

• Case 4: βs = 50, B = 2, E1 = 1, E0 = 2, E−1 = 3.

• Case 5: βs = 50, B = 2, E1 = 1, E0 = 2, E−1 = 4.

From Fig. 2, we can draw the following conclusions: (i) the total mass N(t) is

always conserved. (ii) When βs = 0, if furthermore B = 0, then the mass of each
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Evolution of Nj(t), N(t), M(t) for (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4, (e)
Case 5 and E(t) for (f) Cases 1–5 in Example 5.
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component is also conserved (cf. Fig. 2(a)), otherwise, it evolves periodically if B 6=
0 (cf. Fig. 2(c)). (iii) When B = 0, the magnetization is conserved (cf. Figa. 2(a)

and 2(b)). (iv) When B 6= 0 but E1 + E−1 = 2E0, the magnetization evolves

periodically (cf. Figs. 2(c) and 2(d)). These are consistent with the dynamical laws

derived in Ref. 11.

Example 6. (Dynamics of the angular momentum expectation) As a measure of

vortex flux, we define the total angular momentum expectation

〈Lz〉(t) =

1∑
`=−1

〈Lz〉`(t) with 〈Lz〉`(t) =

∫
Rd
ψ̄`(x, t)Lzψ`(x, t)dx, t ≥ 0.

In fact, 〈L̃z〉`(t) := 〈Lz〉`(t) / N`(t) is the angular momentum expectation of the

`-th component. In our simulations, we choose Ω = 0.6, βn = 100, E1 = 1, E0 = 0,

E−1 = 2, and the initial data

ψ0
` (x) = Ce−

r2

2 rm`eim`θ,

where the constant C is chosen such that the initial data satisfies the normaliza-

tion (1.8). Figure 3 shows evolution of the angular momentum expectation for the

following four sets of parameters

• Case 1: γx = γy = 1, βs = B = 0, m1 = 1, m0 = 0, m−1 = 2.

• Case 2: γx = γy = 1, βs = 50, B = 2, m1 = 1, m0 = 0, m−1 = 2.

• Case 3: γx = γy = 1, βs = 50, B = 2, m1 = m0 = m−1 = 1.

• Case 4: γx = 1, γy = 2, βs = 50, B = 2, m1 = m0 = m−1 = 1.

From Fig. 3, we can draw the following conclusions: (i) if γx = γy, 〈Lz〉(t) is

conserved for any time t ≥ 0 (cf. Figs. 3(a)–3(c)). Furthermore, if βs = B = 0

or m1 = m0 = m−1 := m, 〈L̃z〉`(t) is also conserved (cf. Figs. 3(a) and 3(c)).

In addition, if βs = B = 0, 〈Lz〉`(t) is also conserved (cf. Fig. 3(a)). (ii) If

γx 6= γy, 〈Lz〉(t) and relate quantities 〈Lz〉`(t), 〈L̃z〉`(t) are, in general, not con-

served (cf. Fig. 3(d)). These observations agree well with the analytical results in

Ref. 11.

Example 7. (Dynamics of condensate widths) Another important quantity char-

acterizing the dynamics of the spin-1 BEC is the condensate width in the ν-direction

(where ν = x, y, z) defined as σν =
√
δν(t), where

δν(t) =

1∑
`=−1

δν,`(t) with δν,`(t) =

∫
Rd
ν2 |ψ`(x, t)|2 dx.

We choose Ω = 0.6, βn = 100, βs = 50, B = 0, E` = 0, and the initial data

ψ0
1(x) = φ(x), ψ0

0(x) = 3
√

2φ(x), ψ0
−1(x) = φ(x), (3.2)
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(a)

(b)

(c)

(d)

Fig. 3. Evolution of angular momentum expectation in Example 6 for Cases 1–4 (from top to
bottom).
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(a) (b)

Fig. 4. Evolution of the condensate widths in Example 7 for (a) Case 1 and (b) Case 2.

with φ(x) =
√

0.05/πe−|x|
2/2. Figure 4 shows evolution of the condensate widths

δx(t), δy(t) and δr(t) := δx(t) + δy(t) for the following two sets of parameters

• Case 1: γx = 1, γy = 1.

• Case 2: γx = 1, γy = 2.

From Fig. 4, we can see that the condensate width δr(t) is a periodic function

when γx = γy, B = 0 and E` = 0. While they are not periodic when γx 6= γy. These

are consistent with the dynamical laws derived in Ref. 11.

Example 8. (Rotational symmetry) We investigate the rotational symmetry

preservation property of two numerical methods, i.e. ADI scheme36 and CS2. That

is, for solution starting with initial value ψ0
` (xjk) and ψ̃0

` (xjk) = ψ0
` (R(θ)xjk),

ψ̃`(xjk, t) is also the θ-rotation of ψ`(xjk, t) at time t, i.e. ψ̃`(xjk, t) =

ψ`(R(θ)xjk, t). Here, we define the following error function:

Esym` (t) := max
xjk∈G

|ψ`(R(θ)xjk, t)− ψ̃`(xjk, t)|/ max
xjk∈G

|ψ`(R(θ)xjk, t)|.

In our simulation, we choose Ω = 0.4 and consider the following two cases:

• Case 1: βn = 1, βs = 1, B = 1, E1 = 3, E0 = 2, E−1 = 1.

• Case 2: βn = 10, βs = 5, B = 0, E1 = E0 = E−1 = 0.

Fig. 5. Errors of the rotational symmetry preservation for Case 1 in Example 8.
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The initial data is chosen as

ψ0
1(x) = φ(x), ψ0

0(x) = 4
√

3φ(x), ψ0
−1(x) = φ(x),

where φ(x, y) =
√

0.02/πe−(x2+y2)/2(x + iy) for Case 1 and φ(x, y) =√
0.02/πe−(x2+y2)/2 for Case 2.

Fig. 6. Densities computed by CS2 (top) and ADI (bottom) for Case 2 in Example 8.

Fig. 7. Contour plots of the densities |ψ`|2 (` = 1, 0,−1, from top to bottom) in Example 9.
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In practice, we choose RL = [−32, 32]2, h = 1/16 and τ = 0.2 for Case 1,

while we choose h = 1/32 and τ = 0.2 for Case 2. Figure 5 presents the errors

Esym` (t) over the interval t ∈ [0, 100] for CS2 and ADI in Case 1, while Fig. 6 shows

the contour plots of the densities at time t = 22 in Case 2. From Figs. 5 and 6,

Fig. 8. Contour plots of the densities |ψ`|2 (` = 1, 0,−1, from left to right) in Example 10.
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we conclude that ADI scheme does not keep rotational symmetry, while the CS2

method does. We refer the readers to Lemma 2.5 for a rigorous proof.

3.4. Applications

In the following, we study the evolution of quantized vortices and dynamics under

honeycomb potential in rotating spin-1 BECs.

Example 9. (Dynamics of quantized vortices) Here, we choose βn = 200, βs = 5,

E1 = 1, E0 = E−1 = 2, B = 1, Ω = 0.6. The initial data is chosen as7, 31

ψ`(x, y) = Ce−
x2+y2

4

9∏
j=1

[(x− xj) + i(y − yj)], ` = 1, 0,−1,

where (xj , yj) ∈ {(0, 0), (±3, 0), (0,±3), (±3
√

2/2,±3
√

2/2)} and the constant C is

chosen such that the initial data satisfies the normalization (1.8).

In our simulation, we adopt CS4 scheme with τ = 10−3 and h = 1/8. Figure 7

shows the contour plots of the densities |ψ`|2(` = 1, 0,−1) at different time.

Example 10. (Dynamics under honeycomb potential) In the following, we study

the dynamics under honeycomb potential

V (x) = 10 [cos(b1 · x) + cos(b2 · x) + cos((b1 + b2) · x)]

in rotating spin-1 BECs, where b1 = π
4 (
√

3, 1)> and b2 = π
4 (−
√

3, 1)>. We choose

the parameters Ω = 0.4, βn = 5, βs = −5, B = 1, E1 = 1, E0 = 2, E−1 = 1 and the

initial data (3.2).

In our simulation, we adopt CS4 scheme with τ = 10−3 and h = 1/16. Figure 8

shows the contour plots of the densities |ψ`|2 (` = 1, 0,−1) at different time.

4. Conclusions

We developed high-order compact splitting Fourier spectral methods to simulate the

dynamics of rotating spin-1 BEC held in the external Ioffe-Pritchard magnetic field.

We split the Hamiltonian into the linear part (Laplace, rotation and Zeeman energy)

and the nonlinear part (all the others terms). The linear operator is decomposed

into a product of five sub-operators with analytical splitting coefficients, and all

these sub-operators are integrated exactly in either physical space or phase space.

For the nonlinear subproblem, we derive an exact time-dependent formula for the

spin vector, therefore, this nonlinear subproblem is reduced to a linear one. Then

we design explicit high-order schemes using Magnus integrators. Based on such

compact splitting, we can easily construct high-order spectral methods to simulate

the dynamics.

Our approach is explicit, achieves high-order temporal convergence and spa-

tial spectral accuracy, and conserves the mass and magnetization (when B = 0)
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on discrete level. Additionally, it is unconditionally stable, time reversible, time

transverse invariant and rotational symmetry preservation. Ample numerical results

demonstrate the effectiveness in simulating the dynamics of rotating spin-1 BEC.

Furthermore, the EEI method is simple to implement and can be easily adapted to

rotating systems, such as the rotating spin-F BECs or BECs under the arbitrary-

angle rotation with/without dipole-dipole interactions.27, 33

Appendix A. Fourth-Order Magnus Integrator

Here, we provide a detailed derivation for the fourth-order integrator ((2.14) and

(2.16)). Specifically,

Ψn+1(x) = e−iτ(V+βnρ
n)e−iS4thΨn(x),

where

S4th =

∫ τ

0

S(tn + σ)dσ +
1

2
i

∫ τ

0

[∫ σ

0

S(tn + µ)dµ,S(tn + σ)

]
dσ,

with S = βsF · f + B. In fact, S4th is a Hermitian matrix with the same structure

as the S2nd (2.18) with matrix entries

α =

∫ τ

0

α̃n(σ)dσ +
1

2
i

∫ τ

0

[
α̃n(σ)

∫ σ

0

β̃n(µ)dµ− β̃n(σ)

∫ σ

0

α̃n(µ)dµ

]
dσ,

β =

∫ τ

0

β̃n(σ)dσ +
1

2
i

∫ τ

0

[
α̃n(σ)

∫ σ

0

α̃n(µ)dµ− α̃n(σ)

∫ σ

0

α̃n(µ)dµ

]
dσ,

with α̃n(σ) = α̃(tn+σ), α̃(t) := βsF−(t)/
√

2+B and β̃(t) := βsFz(t). Both integrals

can be computed analytically, i.e.

α = − iβs
2B

[sin(
√

2Bτ)Fny + (cos(
√

2Bτ)− 1)Fnz ] +

(
βs√

2
Fnx +B

)
τ

+
βs

2
√

2B

[
i

(
βs√

2
Fnx +B

)
((Fnz s1 − Fny c1)−

√
2B(Fny s2 + Fnz c2))

+
βsc1√

2
((Fny )2 + (Fnz )2)

]
, (A.1)

β =
βs√
2B

[sin(
√

2Bτ)Fnz − (cos(
√

2Bτ)− 1)Fny ]

+
βs
2B

(
βs√

2
Fnx +B

)
[(Fny s1 + Fnz c1) +

√
2B(Fnz s2 − Fny c2)], (A.2)

where s1 = 1√
2B

[1− cos(
√

2Bτ)], s2 = 1
2B2 [−

√
2Bτ cos(

√
2Bτ) + sin(

√
2Bτ)], c1 =

1√
2B

sin(
√

2Bτ)− τ and c2 = 1
2B2 [−1 + cos(

√
2Bτ) +

√
2Bτ sin(

√
2Bτ)].

We can obtain the explicit expression for G4th := e−iS4th in a similar way as

G2nd = e−iS2nd (2.21). Therefore, the matrix G4th remains in the form of G2nd

(2.21), and the only modification is to replace α and β in G2nd with the expressions

given in (A.1)–(A.2). Then the fourth-order integrator reads as (2.23).
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Appendix B. Exact Solution for Laplace-Rotation Problem

Here, we derive the exact solution to the following Laplace-Rotation subproblem
i∂tψ(x, t) =

[
−1

2
∆− ΩLz

]
ψ(x, t),

ψ(x, 0) = ψ0(x).

(B.1)

We define a new function by rotation mapping,9 specifically,

φ(x, t) := ψ(R(t)x, t), x ∈ Rd, t ≥ 0,

where the orthogonal rotational matrix

R(t) =

(
cos(Ωt) sin(Ωt)

−sin(Ωt) cos(Ωt)

)
, if d = 2,

R(t) =

 cos(Ωt) sin(Ωt) 0

−sin(Ωt) cos(Ωt) 0

0 0 1

 , if d = 3.

Using the chain rule, it becomes evident that φ satisfies the following equations:i∂tφ(x, t) = −1

2
∆φ(x, t),

φ(x, 0) = ψ(x, 0) = ψ0(x).

(B.2)

We can explicitly solve the above equation in Fourier space,25 to be exact,

φ̂k(t) = e−
1
2 it|k|

2

ψ̂k(0) with ψ̂k(0) =

∫
Rd
ψ(x, 0)e−ik·xdx.

This leads to the solution in physical space after an inverse Fourier transform

φ(x, t) =
1

(2π)d

∫
Rd
e−

1
2 it|k|

2

ψ̂k(0)eik·xdk.

Then, we can obtain the exact solution of equation (B.1) by

ψ(x, t) = φ(R−1(t)x, t). (B.3)

Specifically, we provide the explicit expression of exact solution using the initial

value

ψ(x, 0) =
1

π1/4
x2e−

x2+y2

2 .

A simple calculation shows that

ψ̂k(0) =
1

π1/4

[∫
R
e−

1
2y

2

e−ik2ydy

] [∫
R
x2e−

1
2x

2

e−ik1xdx

]
=

2π

π1/4
e−

1
2k

2
2 [−∂k1k1e−

1
2k

2
1 ]

=
2π

π1/4
(1− k2

1)e−
1
2 (k21+k22).
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Let x̃ = x√
1+it

, ỹ = y√
1+it

, we have

φ(x, y, t) =
1

π1/4

1

2π

[∫
R
e−

1
2 itk

2
2e−

1
2k

2
2eik2ydk2

] [∫
R

(1− k2
1)e−

1
2 itk

2
1e−

1
2k

2
1eik1xdk1

]
=

1

π1/4

1

2π

1

(1 + it)

[∫
R
e−

1
2k

2
2eik2ỹdk2

](
1 +

1

it+ 1
∂x̃x̃

)[∫
R
e−

1
2k

2
1eik1x̃dk1

]
=

1

π1/4

1

(1 + it)

[
1− 1

1 + it
(1− x̃2)

]
e−

1
2 (x̃2+ỹ2)

=
1

π1/4

x2 − t2 + it

(1 + it)3
e−

1
2(it+1)

(x2+y2).

Using (B.3), we have

ψ(x, y, t) = φ(R−1(t)x, t) =
1

π1/4

x2
1 − t2 + it

(1 + it)3
e−

1
2(it+1)

(x2
1+y21)

=
1

π1/4

x2
1 − t2 + it

(1 + it)3
e−

1
2(it+1)

(x2+y2),

where x1 = cos(Ωt)x− sin(Ωt)y and y1 = sin(Ωt)x+ cos(Ωt)y.
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