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ABSTRACT This study tackles the challenge of parking spot recognition in extreme adverse weather by
developing an automated scripting tool that enhances real parking images with simulated rain, snow, and
fog effects. Experiments using pre-configured network models optimized for specific climatic conditions
show that recognition is more effective under single weather conditions than mixed ones. Starting with
30 real foggy images and progressively adding simulated foggy images, the study enriches the dataset
without needing large-scale data, improving the model’s generalization and adaptability to complex
environments. This approach conserves resources and demonstrates efficient learning potential with limited
data. Addressing fog’s severe visual safety hazards, the study explores the impact of fog density on
recognition and assesses deep learning performance in extremely foggy conditions. Experiments establish
a critical density threshold for fog, offering decision support for parking in such environments. Despite
the human difficulty in recognizing parking spots under heavy fog, deep learning networks show relatively
good performance, proving effective when human vision is limited. Supporting code is available on GitHub:
https://github.com/Wzxzz/parking-plot.git

INDEX TERMS Convolutional neural network, simulated extreme weather, image processing, image

classification, extreme weather.

I. INTRODUCTION

As urbanization accelerates, smart parking solutions are
essential to address urban parking challenges and improve
traffic efficiency. Fog can severely degrade visual perception
systems, affecting parking spot detection and vehicle navi-
gation. Therefore, it is vital to develop intelligent parking
systems that remain efficient and stable under adverse
conditions. These systems improve parking management and
improve detection in low-visibility situations, significantly
enhancing driving safety. This necessity drives ongoing
innovation to strengthen the robustness and adaptability of
the algorithm to real world challenges.

The associate editor coordinating the review of this manuscript and

approving it for publication was Joewono Widjaja

Non-image-based parking spot detection often uses geo-
magnetic sensors [1] installed directly in parking spaces,
but this method is costly and faces scalability issues due to
the need for sensor installation and maintenance for each
spot. Image-based detection methods have become popular
for urban parking challenges because they utilize existing
surveillance cameras, reducing additional hardware needs
and providing richer data. In 2007, Wu et al. [2] used
color histograms spanning three adjacent parking spaces as
features for an SVM classifier. By 2015, Almeida et al. [3]
employed texture features like LBP and LPQ with SVM
classifiers, enhancing performance through ensemble tech-
niques. With the rise of deep learning, Convolutional Neural
Networks (CNNs) have dominated parking spot detection.
In 2016, Gennaro et al. [4] developed mAlexNet, a binary
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classification network based on AlexNet, which significantly
increases recognition accuracy to over 90% in specific
datasets.

Image-based parking space recognition technology excels
under extreme conditions, sometimes exceeding human
capabilities. These systems maintain stable operation in
adverse weather conditions such as heavy rain, snow,
and dense fog conditions that often impair human vision,
highlighting their reliability and adaptability. Researchers
have focused on object detection in harsh weather, with
one strategy involving image restoration before applying
detection methods. Li et al. [5] analyzed optical scattering in
fog and reviewed dehazing technologies over two decades.
Gui et al. [6] summarized deep learning-based dehazing
algorithms. Yang and Sun [8] proposed a deep dehazing net-
work that combines traditional techniques with deep learning
to optimize parameter estimation, effectively merging both
approaches.

Due to the lack of large-scale public datasets for vehicles
in special weather conditions, researchers often simulate such
data using two main approaches. The first is based on physical
models, like the optical scattering model [9], which simulates
weather effects (e.g., fog, rain) by adjusting parameters
without requiring training data. The second approach is
data-driven, achieving realistic effects through style transfer
techniques using real images. For instance, Zhai et al. [11]
combined rain image simulation with adversarial attacks to
create realistic rain effects by simulating raindrops through
imaging models.

Due to the high computational cost and potential infor-
mation loss associated with complex image restoration
and special weather simulation algorithms, fast and simple
simulation methods remain effective and are widely adopted.
This paper introduces the RainFogSnow-Simulation (RFS-
Sim) algorithm, which adds rain, snow, and fog effects
to existing datasets and conducts parking spot recognition
directly under these simulated complex weather conditions
without prior image restoration. The detailed images are
provided in the supplementary material (see Figure S1).
The core idea is to explore and validate that optimized
recognition algorithms can effectively detect parking
spots even without removing weather influences. For
more details, please see: https://github.com/Wzxzz/parking-
plot/blob/master/README.md.

Our research proposes a RainFogSnow-Simulation (RFS-
Sim) algorithm to simulate extreme weather conditions and
train various models to verify its feasibility. The experimental
results indicate that recognition performance under single
weather conditions significantly surpasses that under mixed
conditions. Focusing on fog due to its substantial visual
interference, we utilized 30 real foggy parking spot images
and incrementally added simulated foggy images. This
approach enriched the dataset and enhanced the model’s gen-
eralization without the need for extensive data, demonstrating
efficient learning in complex scenarios. To address the safety
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hazards of foggy weather, we explored various fog densities
and determined a critical threshold impacting parking spot
recognition, providing decision support for parking in foggy
conditions. Despite human difficulty in these conditions, deep
learning networks showed superior recognition performance,
highlighting their potential as effective aids under visually
restrictive conditions.

Il. DATASETS

This study used two datasets for analysis. The first is
the CNRPark-EXT dataset [4], from which about 8,000
parking spot photos were randomly selected (4,000 with
cars and 4,000 without). This extensive library includes
144,965 images captured by nine cameras under various
weather conditions, focusing on complex occlusion scenarios
and low-light conditions. Additionally, the FoggyParking
dataset, containing real images captured in foggy conditions,
was used as a supplementary resource. From this dataset,
30 images were selected to examine the impact of fog density
on parking spot recognition performance.

IIl. METHODS AND EXPERIMENTS

The experiments were conducted within the PyTorch frame-
work, utilizing a 3.2GHz AMD R7-6800H CPU and an
NVIDIA GeForce RTX 3060 GPU. The OpenCV library
was used for RFS-Sim. The CNRPark-Ext dataset and real
foggy parking lot images were employed for training and
testing. Images were preprocessed to a uniform resolution of
64 x 64 pixels, and during training, horizontal image flipping
was applied with a probability of 0.5 for data augmenta-
tion. The network models used included ResNetl8 [16],
DenseNet121 [15], and our proposed BCFPL [14], with
AdamW [12] as the optimizer and cross-entropy loss [13] as
the loss function.

A. DEVELOPING A WEATHER-ADAPTIVE PARKING SPOT
RECOGNITION AUTOMATION SCRIPT

This section introduces an innovative automated scripting
tool developed to simulate real-world scenarios under various
weather conditions, thereby enhancing the performance of
parking spot recognition systems in diverse and complex
environmental conditions. This tool incorporates the RFS-
Sim algorithm, enabling the superimposition of various
weather effects on a selected original image dataset, including
rain, snow, and fog. This process creates a simulated image
dataset that extensively covers a wide range of meteorological
conditions.

Following the successful implementation of the RFS-Sim
algorithm, the script activates multiple weather recognition
models for deployment, with this study specifically utilizing
the ResNetl8, DenseNetl21, and BCFPL networks as
exemplary cases. Here, the BCFPL model is a lightweight
CNN model for low resolution parking space detection [14],
which maintains >0.9 accuracy on 7-9 px parking-slot images
with just two 7 x 7 convolutional layers and two fully
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FIGURE 1. Flow chart for RFS-Sim.

connected layers while slashing parameters, computation
time, and privacy risk compared with conventional deeper
networks such as mAlexNet. These models, leveraging deep
learning technology, conduct thorough analyses and iden-
tifications of the meteorological conditions within images,
accurately distinguishing the specific weather type simulated
in the current image. Upon successfully identifying a
particular weather condition, the script immediately initiates
pre-configured deep network models to execute parking
spot recognition tasks on the processed simulated weather
mixed dataset, then on scenarios under specific weather
conditions. This automated scripting tool has been employed
in the experiments described in Sections III-B and III-C,
effectively reducing the manual labor time involved in the
experimental procedures. The specific operation of this
algorithm is as follows:https://github.com/Wzxzz/parking-
plot/blob/master/README.md. The detailed algorithm has
been included in the supplementary material in the file
[algorithm].

B. PARKING SPOT RECOGNITION IN SIMULATED RAIN,
SNOW, AND FOGGY WEATHER CONDITIONS

Given the scarcity of parking spot image datasets under com-
plex weather conditions and the challenges these conditions
pose to recognition performance, this section is dedicated to
exploring the effectiveness of parking spot recognition by
simulating rainy, snowy, and foggy weather scenarios.

1) METHODOLOGY
In this study, we processed 8,000 parking spot images
from the CNRPark-EXT dataset using RFS-Sim algorithms
to simulate three weather conditions: rain, snow, and fog,
resulting in 8,000 simulated images for each effect. This
created a combined dataset of approximately 24,000 images
for training and testing parking spot recognition under
specific weather conditions. The dataset comprehensively
evaluated the parking spot recognition system’s performance
in variable weather environments.

As shown in Figure 1, the algorithm for artificial rain effect
simulates the blurring effect of falling raindrops relative
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to the camera sensor using motion blur techniques [17].
This involves applying a motion blur kernel to mimic
raindrop trajectories through convolution on the original
image. Algorithm 1 shows the process of fog simulation and
the other two cases of the algorithm will be provided in
the supplementary. To replicate foggy conditions, Gaussian
blur [18] is employed to smooth the image and simulate
blurred edges of distant objects. By adjusting parameters
like the blur radius, the algorithm controls the intensity of
the fog effect, simulating environments from light to dense
fog. For snow effects, image fusion techniques layer fog
and snowflake effects at specific ratios to mimic real snowy
environments, achieving a more realistic and comprehensive
simulation.

Table 1 shows the comparison of RFS-Sim algorithm
and FRG, TPSeNCE algorithm. The whole process of
RFS-Sim algorithm only needs one forward reasoning, which
is not dependent on; with gradient back propagation and
GAN training, the CPU side can reach 40 fps, and higher
FPS means faster synthesis. Massive training data, with
explicit hyperparameters, users can accurately reproduce the
concentration of any rain, fog, and snow without parameter
adjustment iteration. At the same time, the method is based
on the analytic motion blur kernel, which naturally supports
the extension to other bad weather such as snow and fog
by replacing the kernel function, and can be seamlessly
transplanted to C 44 / OpenCV and other lightweight
deployment environment, compared with FRG requiring
20 rounds of backhaul, TPSeNCE relying on a complete set
of generation and discriminator framework, this algorithm
has significant advantages in speed, stability, portability and
multi-weather expansion.

2) EXPERIMENT

The experiments utilized the automated scripting tool that
applies the RFS-Sim algorithms. Next, the ResNetl8,
DenseNet121, and BCFPL network models are automatically
invoked to conduct weather-type recognition under learning
rates set to 0.0001, 0.00001, and 0.000001. The study
explores the parking spot recognition performance under
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TABLE 1. Comparison of RFS-Sim, FRG and TPSeNCE Methods.

Metric RFS-Sim FRG [11] TPSeNCE
[24]
FPS 40 (CPU 3 (GPU, 20 30 (GPU
forward only) backward forward only)
steps)
Raindrop- Explicit Learned Implicit
density counter p sparsity €, control via
control contrastive
learning
(SeNCE)
Direction / Analytic STN + Implicit
blur modelling kernel learnable learning in
K(0,L) kernel generator
Iteration times 1 20 1
Portability Any inference Requires Any inference
framework gradient framework
back-prop
Supported Rain / Snow / Rain only Rain / Snow /
weather Fog Night

Algorithm 1 Simulating Fog Effect Algorithm

Input: Input:original image linput(x, ¥); Gaussian
standard deviation o = 16.67;fog spread weight
w;fog density weight o;
Output: fogged image Itoggy(x, y);
begin
1. Calculate kernel size: ke < 60 + 1 = 101
2. Initialize Gaussian kernel G < 0101101 ¢ . 50
3.form < —k tok do
4. forn < —ktok do
5. Compute kernel value:

Gm+k,n+k) < 271176Xp (—%)

end for

end for

6.Construct mixed kernel:

Gy <w-G+({1—-w)-6=G

7.Initialize blurred image Iy (x, y) < 0

8.for all pixel points (x,y) € Linpur(x,y) do
9.Accumulate calculation:

Ibh;(r(X, y) <;
D ek 2ome—i Gw(m, n) - Linpu(x +m, y + n)
end for

10. Blend images:

Itoggy(x, ¥) < o - Ipur(x, y) + (1 — @) - finput(x, ¥)
end

mixed weather conditions compared to single weather
conditions. The batch size is set to 64, and the number of
training epochs is set to 20.

Experiments illustrated in Figure 2 involved ResNetl8,
DenseNet121, and BCFPL models with learning rates of
0.00001 and 0.000001. The results show that ResNetl8
and BCFPL achieve significantly higher accuracy in
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single weather conditions than in mixed ones. Although
DenseNet121 performs well in mixed conditions, its accuracy
is still better in single weather. This is due to the consistency
of environmental features like lighting and visibility in single
weather conditions, which helps models learn parking slot
features more effectively. Mixed weather increases feature
diversity, making training more difficult. DenseNetl121’s
deeper architecture allows it to extract more features,
maintaining high performance in complex environments.
Learning rates also impact performance: a lower rate
(0.000001) stabilizes training and improves adaptation
to complex conditions but slows convergence, while a
higher rate (0.00001) accelerates learning in single weather,
enhancing accuracy.

In the bar chart shown in Figure 3, the accuracy comparison
across different weather conditions is more clearly illustrated.
Under single weather conditions of rain, snow, and fog, all
three network models’ accuracy is higher than in mixed
weather conditions. These results suggest that, in practical
applications, to improve the performance of parking slot
recognition models, one could employ data augmentation and
preprocessing techniques to reduce the diversity of weather
conditions or design more robust models to handle variable
environments. Additionally, it is essential to fine-tune learn-
ing rates and other hyperparameters according to specific
application scenarios to achieve optimal model performance.

C. ENHANCED DETECTION OF PARKING SPOTS IN REAL
FOGGY CONDITIONS USING A SMALL SAMPLE SET

In the current study, the challenges of visual perception in
foggy conditions are prominently demonstrated. Although
visually, the impact of fog seems to surpass that of other
weather conditions, this observation is further corroborated
by experimental data. Notably, in Section III-B of the
experiment, we observed significant fluctuations in parking
spot recognition accuracy under foggy conditions at a learn-
ing rate of 0.00001, compared to other weather scenarios.
This finding prompted us to focus specifically on parking
spot recognition performance in foggy conditions within
this study.

By combining carefully selected small-sample real foggy
data with the simulated fog effects algorithm in the RFS-
Sim algorithms, this research aims to validate the feasibility
of efficient learning using limited data in complex visual
environments and to explore strategies for maximizing
information extraction from limited data samples. Should this
approach be successfully implemented, it would reduce the
reliance on large-sample data sets to some extent, thereby
saving human resources. This provides valuable practical
experience and the theoretical basis for developing efficient
visual recognition systems in various complex environments
in the future.

1) METHODOLOGY
In this section, we started with 30 real foggy parking lot
images—?20 for training and 10 for testing. We applied a
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FIGURE 2. Recognition performance of three networks under simulated weather conditions.
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simulated fog effect algorithm to the 20 training images,
generating 140 enhanced images with varying fog densities.
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Figure 4 shows the original images in the first column
and the enhanced images with different fog intensities in
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FIGURE 4. Images of parking spots with different densities of fog added.

columns 2 to 4. We then created a series of training and
testing datasets by randomly selecting 0, 5, 10, 20, 30,
and 50 images from the 140 simulated images and com-
bining them with the original 20 real foggy images. This
approach increased data volume and enhanced diversity
by integrating real and simulated images, improving the
model’s generalization ability and robustness in practical
applications.

Lastly, we applied Gaussian smoothing techniques to the
generated accuracy curves to evaluate the trends in parking
spot recognition accuracy. Gaussian smoothing not only
smoothed out the accuracy curves but also effectively reduced
noise caused by randomness, allowing us to more clearly
observe the trend of accuracy changes with the level of data
augmentation. This provided strong data support for further
optimization of the parking spot recognition model.

2) EXPERIMENT

In this experiment, the batch size is set to 4, and the
number of training epochs is set to 60. Within the ResNet18
network and DenseNet121 network frameworks, learning
rates of 0.0001 and 0.00001 are employed; under the BCFPL
network, a learning rate of 0.00001 is utilized.

The experiments were repeated three times under each
learning rate condition, resulting in a total of 15 images.
As shown in Figure 5, we only present the result images of
the ResNetl18 and DenseNet121 networks under a learning
rate of 0.00001. The result images of the ResNetl8 and
DenseNetl121 networks under a learning rate of 0.0001,
as well as the result images of the BCFPL network under a
learning rate of 0.00001, can be found in the supplementary
materials as Figures S2, S3, and S4, respectively. The
findings reveal the impact of data augmentation strate-
gies on the accuracy of parking spot recognition. It was
observed that the inclusion of 5 simulated foggy images
did not exhibit a significant change in recognition accuracy
compared to scenarios where no simulated images were
mixed in.

However, as the number of mixed-in images increased to
10, 20, 30, and 50, a noticeable improvement in parking
spot recognition accuracy was observed, indicating that
this data augmentation method positively affects accuracy
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within a certain range. Additionally, this data augmentation
technique allows the accuracy of parking spot recognition
to reach a stable level more quickly. Under the same
experimental conditions, the training process incorporating
simulated foggy effect images achieved commendable results
by approximately the 30th epoch.

Further analysis revealed that although the initial increase
in augmented data volume significantly contributed to
accuracy improvements, the accuracy curve subsequently
stabilized, indicating that the model performance entered a
state of equilibrium. This phenomenon can be attributed to
the diminishing marginal effect [22], [23] of effective infor-
mation brought about by data augmentation. Specifically,
as the number of simulated foggy images increased, the
incremental information introduced with each addition and its
impact on improving model performance tended to decrease,
ultimately leading to a plateau in performance enhancement.
This result highlights the importance of considering the
efficiency and effectiveness of data augmentation strategies
when implementing them, choosing an appropriate scale of
augmented data to optimize the model training process and
enhance recognition accuracy.

Due to deep structure, ResNet18 and DenseNet121 possess
superior feature extraction capabilities. When confronted
with the visual noise caused by foggy conditions, it can
learn more essential and abstract feature representations from
these disturbed images. This ability ensures that the model’s
recognition accuracy remains stable even when applying
varying degrees of data augmentation, i.e., introducing
more simulated foggy images. This high robustness to
subtle variations in input data demonstrates their strong
generalization capacity in parking spot recognition tasks,
enabling it to effectively process and adapt to visual
information under various weather conditions. For the
BCFPL, a simple binary classification network model,
experiments at a learning rate of 0.00001 demonstrated
that mixing 5, 10, 20, and 30 simulated foggy images into
the training data could improve accuracy compared to not
incorporating any simulated images. When the number of
mixed images increases to 50, the BCFPL algorithm becomes
unusable.

We conducted a comparative analysis of the three
networks across varying learning rates, focusing on the
discrepancies in accuracy and the corresponding time
expenditures. The outcomes are systematically presented in
Table 2. The accuracy figures represent the mean values
obtained from three iterations, reflecting the stabilized
performance under each specified condition. The time
denotes the duration required to achieve the aforementioned
levels of accuracy. Figure 6 illustrates the relationship
between data quantity and accuracy from Table 2. The
dashed lines represent the accuracy saturation value due
to marginal diminishing effects, calculated as the average
accuracy when introducing 10, 20, 30, and 50 artificial
foggy images.
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FIGURE 6. Comparing the ResNet18 network with the BCFPL network at various learning rates reveals differences in accuracy and the time spent.

From the tables and charts, it is clear that data augmen-
tation at different levels significantly improved parking spot
recognition efficiency in terms of both speed and accuracy.

D. CRITICAL CONCENTRATION THRESHOLD UNDER
FOGGY CONDITIONS

Considering the significant visual safety hazards presented
by foggy conditions, this study also examines the impact
of fog density on parking spot recognition effectiveness.
This analysis helps to assess the limit of deep learning
technologies in identifying parking spots under extremely
foggy conditions.

1) METHODOLOGY

This approach uses an artificial fog weather effect algorithm
on 8,000 parking spot images from the CNRPark-EXT
dataset. Twelve parameters were selected as weights for
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fog concentration, ranging from 0.96 to 1.0, simulating vary-
ing degrees of fog effects from mild to extreme. A weight of
1.0 corresponds to a 100% fog effect, verifying the reliability
of the experimental approach. The experimental data points
were fitted with a fifth-degree polynomial, chosen for its
flexibility and accuracy in capturing complex data trends
related to fog concentration and recognition performance.
Detailed derivations are included in the supplementary
material [3.4.1 methodology].

The fitting process begins by defining an error function
to measure the discrepancy between the fitted curve and
the actual data points. The error can be expressed as
the difference between the accuracy and the polynomial
prediction.

By adjusting the coefficients, the error function is mini-
mized. This leads to a system of linear equations from which
the optimal solution for the polynomial coefficients can
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TABLE 2. Comparing the three networks at various learning rates reveals
differences in accuracy and the time spent for model training.

and second derivatives provides insights into data trends and
characteristics. The second derivative helps assess changes in

2) EXPERIMENT
The experiment

utilizes

curvature. By introducing varying densities of fog to parking
spot images, we aim to identify the critical point where recog-
nition effectiveness declines significantly. We define positive
curvature as the area above the fitted curve and negative
curvature below it. Positive curvature indicates the curve is
concave upwards, while negative curvature indicates concave
downward. Only the negative curvature portion is relevant for
determining fog concentration thresholds, as it reflects the
scenario where increased fog leads to decreased recognition
accuracy, representing the performance deterioration phase.

the foggy weather parking
spot dataset processed through the RFS-Sim algorithms,
as described in Section III-A. The batch size is 64, with
30 training epochs, and the learning rate is set to 0.000001.
To analyze the data more precisely, we focused exclusively
on the segments where the impact of fog concentration on
parking spot recognition performance was significant under
two different networks while disregarding the parts where the
influence was minimal.

Model LR Number | Acc(%) Time
0 69.96 s
3 65.53 6
10 72.25 8
0.0001 20 76.30 95
30 7452 | 10s
50 7607 | 10s
ResNet18 0 6874 as
5 T304 65
10 84.28 95
000001 —75 85.97 95
30 85.38 95
50 8655 | 10s
0 85.93 Im 1s
3 90.67 | Tm 10s
10 9038 | 30s
0.0001 20 92.07 | 30s
30 9629 | 295
50 947 | 30s
DenseNet121 0 3382 Tm s
5 9047 | Tm 13s
10 9332 | 30s
000001 —75 9092 | 30s
30 9394 | 30s
50 941 | 295
0 72.06 85
5 75.49 8
10 79.06 8
BCFPL 0.00001 3 i o
30 77.39 95
50 39.36 Ts

be obtained. With these optimal coefficients, the fitting curve
is then derived. Analyzing the curve by calculating its first
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As shown in Figure 7, recognition accuracy declines as fog
density increases, with ResNet18 and DenseNet121 showing
smaller drops compared to BCFPL due to their more complex
structures. Curvature analysis in Figure 8 identifies critical
fog density thresholds: for ResNet18, the minimum curvature
is -2566.96 at a fog density of 0.987, for DenseNetl21
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it’s —1473.98 at 0.9804, and for BCFPL it’s —148.54 at
0.981. These thresholds mark the point where recognition
performance declines sharply, highlighting the networks’
varying abilities to handle visual blurriness.

Additionally, in Supplementary Figure S5, we present
parking spot images with fog density weights of 0, 0.96, 0.97,
and 0.98 added sequentially. As the concentration increases,
it becomes difficult for the human eye to distinguish the pres-
ence of parking spots. The visual blurriness and the decline in
contrast under such conditions severely impact human visual
recognition capabilities. However, deep learning networks
still demonstrate relatively good recognition performance in
these extreme environments.

Hence, applying deep learning technology in foggy con-
ditions for parking spot recognition showcases its capability
to handle complex visual recognition tasks and offers
an effective supplementary solution when human vision
is limited.

IV. CONCLUSION AND DISCUSSION

This study contributes to the development of parking space
recognition systems under extreme weather conditions and
demonstrates the potential of deep learning in address-
ing complex weather challenges. By integrating simulated
weather effects and focusing on specific issues related
to extreme weather, research provides a new direction
for improving the stability and accuracy of image-based
parking space recognition systems in urban environments.
Furthermore, although this study’s experiments were con-
ducted in an offline environment, the proposed RFS-Sim
data augmentation pipeline, automated scripting framework,
and multi-model fusion strategy offer direct applicability to
real-world parking lot scenarios. The core inference code
can be ported on edge devices such as camera in the
parking lot, this enables efficient parking spot detection at
the edge, with results uploaded via MQTT/HTTP protocols
to cloud or local servers, and further integrated with parking
management systems for a complete “detection—billing—
guidance” workflow. Additionally, the automated scripts
allow for regular batch acquisition and annotation of the latest
surveillance data, supporting continuous adaptation through
federated or periodic cloud-based re-training to handle
variations in camera views, parking space markings, and
real-world extreme weather occurrences, thus maintaining
robustness and practicality over time. Therefore, this research
not only demonstrates technical feasibility under challenging
weather but also lays a solid foundation for future engineering
deployment and large-scale application.

This study enhances parking spot recognition by sim-
ulating adverse weather effects like rain, snow, and fog
on real images. Using an automated tool and networks
like ResNetl8, DenseNetl21, and the proposed BCFPL
model, experiments show that recognition accuracy is higher
under single weather conditions compared to mixed condi-
tions. A small-sample approach effectively improves model
generalization without large datasets, conserving resources.

VOLUME 13, 2025

The research also identifies a critical fog density threshold,
aiding decision-making in foggy conditions. Despite the
challenges for human observers, deep learning networks
perform well, proving reliable in visually difficult scenarios.
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