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Abstract—DNA storage is now being considered as a new
archival storage method for its durability and high information
density, but still facing some challenges like high costs and low
throughput. By reducing sequencing sample size for decoding
digital data, minimizing DNA coverage depth helps lower both
costs and system latency. In this framework, for noiseless
channels, we explore the relationship between coverage depth
and the MDS code with different redundancy in log-normal
distribution channels, a conclusion derived from our PCR and
sequencing experimental data analysis. For noisy channels, we
study the theoretical lower bounds of sequencing coverage depth
required for successful data decoding with high probability, and
derive several conclusions that can further guide the efficient
implementation of DNA storage experiments.

I. INTRODUCTION

With the rapid growth of global data and advancements
in information technology, traditional storage media such as
HDDs and SSDs may no longer meet future data storage
demands [1], [2]. DNA storage, with its high density and
durability, has emerged as a promising solution to address
this challenge. However, current DNA storage technologies
face significant obstacles, including low throughput and high
costs. Reducing the sequencing sample size required to ensure
a high probability of decoding all information is the main
goal of coverage depth problem, which could provide valuable
insights for reducing latency and associated costs.

Several studies have addressed this issue in DNA storage
channels follow uniform distribution by adjusting outer error-
correcting codes [3]-[7]. However, the processes of DNA
synthesis and amplification exhibit a degree of randomness,
which results in a non-uniform channel probability distribu-
tion. Therefore, in this study, we investigate the problem of
minimizing sequencing coverage depth in a real-world channel
based on Polymerase Chain Reaction (PCR) and sequencing
experimental data, under the non-random access setting.

This paper is organized as follows: Section II offers a
detailed description of the problem addressed in this study and
then provides an overview of previous work. Section III ana-
lyzes PCR and sequencing experimental data to establish the
foundation for research on minimizing sequencing coverage
depth in channels where the probability distribution follows a
log-normal distribution. Section IV investigates the expected
value of minimum sequencing coverage depth in the noiseless
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channel and two lower bounds in the noisy channel, under the
non-random access setting.

II. PROBLEM STATEMENT, RELATED WORK
A. Problem Statement

The problem we study is built on the following DNA storage
model (see Fig. 1).

Writing Process. The digital information is first converted
into a binary bit stream, which is then segmented and trans-
lated into m short DNA fragments. These fragments are
subsequently encoded with error-correcting codes to generate
n DNA strands with redundant information, which are syn-
thesized artificially. After synthesis, the strands undergo PCR
amplification and are stored in dry powder form, unordered,
in a container.

Reading Process. To read the information, a portion of the
dry powder is extracted and sequenced using next-generation
sequencing to obtain K reads. After the retrieval process
(including clustering, sequence reconstruction), decoding, and
the DNA sequence-to-bit steps, the original digital information
is recovered.

Notice that due to the inherent randomness in the synthesis,
amplification, and sequencing processes of DNA storage [8],
it is uncertain whether all the original information can be
fully recovered from the K reads obtained through sequenc-
ing. Thus, we focus on how to ensure the 100% successful
decoding of the original data with high probability, using as
small sequencing sample size as possible in the real channel.

We formulate this coverage depth problem under non-
random access setting as a variant of the classical coupon
collector’s problem [9] or the urn model [10]. Specifically,
we consider the scenario in which one identical ball is thrown
in each round, and the probability of a ball falling into each
urn varies. After throwing K rounds, we are interested in the
number of urns—among n indistinguishable urns except for
their labels—that contain at least a balls. To this end, we
model the sample size as a function of the channel probability
distribution, the MDS code [11], and the retrieval algorithm.
We proceed to give a detailed explanation of three variables.

1) Channel probability distribution. The inherent ran-

domness in processes such as synthesis and PCR ampli-
fication leads to varying copy numbers of each designed
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Fig. 1. Framework of this paper.

strand in the sequencing pool, resulting in unequal
proportions of each strand in the overall population.
We assume that the probability of each designed strand
observed in the sequencing reads follows a probability

distribution p, = (pgt),pét), . ,pgf )>, where pl(-t) de-
notes the probability of sampling a read corresponding
to the i-th strand after ¢ cycles of PCR amplification.
Notice that for simplicity, we consider the distribution
p, solely as a function of the DNA storage channel,
without accounting for potential influences from strand
design [3]. Accordingly, we refer to p, as the channel
probability distribution in this paper.

2) The MDS code. When an [n,m] MDS code is used to
encode the information strands, successful retrieval of
any m out of the n encoded strands is sufficient to fully
recover the original information. We denote the code
rate of the [n, m] MDS code by R = ™.

3) The retrieval algorithm. The probability of successful
retrieval of each designed strand depends on the number
of its noisy copies in the sequencing pool, the use of
inner codes during encoding, and the channel error rate
[3]. In this paper, we model the retrieval algorithm by
introducing a positive integer parameter ¢ > 1, assuming
that each designed strand can be successfully retrieved
if at least a reads corresponding to it are available.

Based on the assumptions above, we define a new notation
K 2 KPt (n,m), which means the sample size K to decode
the complete information under the condition that after ¢ cycles
of PCR, retrieving at least a reads of each of m out of n

designed strands. For a uniformly distributed channel, we will
omit p,, and denote it as K,(n,m). The main problems we
investigate in this paper are defined below.

Problem 1. (Simulation of DNA storage channel distribu-
tion) Given values of n > m > 1, ¢ > 1, the synthesis amount
of each designed strand ci,co,...,cCp i p(c), and the
amplification efficiency of each designed strand r1, 72, . . .

we focus on the following questions:

7Tn7

1) The probability distribution of z/i(t), i.e., copy numbers
of the i-th designed strand after ¢ cycles of PCR ampli-
fication. "

2) The probability distribution of p{” = =, e, the

proportion of the i-th designed strand in Iﬁe]population
after ¢ cycles of PCR amplification.
Problem 2. (MDS coverage depth problem in the real
channel) Given values of n > m > 1, a > 1, we focus
on the following questions:
1) The expectation value E[K,(n,m)].
2) Given t > 1, the expectation value E[KT*(n,m)].
3) Given t > 1, the lower bounds of K%*(n,m).

B. Previous Work

By directly mapping the coupon collector’s problem, urn
and dixie cup problem to the sequencing coverage depth
problem, we obtain from [12]-[15] that,

E[Ki(n =m,m)] = mlogm + ym + O(1),
where v ~ 0.577 is the Euler—Mascheroni constant.

E[Ky(n,m)] = n(Hy = Hnm),



where H,, is the n-th harmonic number.
E[K,(n =m,m)] =mlogm + m(a — 1) loglogm
+mCy + o(m),

where C, is a constant corresponding to a.

m—1

Bl (nm)] = S [ Q) 0

q=0

where p represents any general discrete distribution, [v?]Q(v)
represents the coefficients of the g-th terms of the polynomial
Q(v), and Q(v) = [Ti=, (er—1(pir)+v(eP" —er 1 (pir)))e ™,
er(z) = Zgzo %

Based on the models above, previous work has been carried
out mainly in channels following uniform distribution. For
example, [3] proved that for any € > 0,

log (1_13) + fu(n,R) <E {K(:m)} < K*,

where K* = (log (ﬁ) + aloglogn + 2log(a + 1)) (14
2¢), and fo(n, R) = O(-%).

Equation (1) does not provide a closed-form expression and
is not straightforward to compute. Thus, we will derive the
expectation value of K%*(n,m) in a noiseless channel, as well
as its lower bounds in a noisy channel building upon the MDS
coverage depth problem in [3] in Section IV.

III. SIMULATION OF DNA STORAGE CHANNEL
PROBABILITY DISTRIBUTION

According to the definition of the channel probability dis-
tribution in Section II, it is closely related to the proportion of
each designed strand in the population after PCR amplification.
In this section, by analyzing PCR and sequencing experimental
data, we find that the real channel probability distribution
follows a log-normal distribution. Based on this, we propose
a theoretical model for the simulation of the real channel
probability distribution, which serves as the foundation for
the subsequent research on minimizing sequencing coverage
depth.

A. Analysis of Channel Probability Distribution Based on
PCR and Sequencing Experimental Data

We first analyze the real channel probability distribution
based on the PCR and sequencing experimental data. We syn-
thesized 11,520 oligos, each 150 nucleotides long, using inkjet
printing technology at Twist Bioscience (i.e., n = 11520),
and PCR amplification is performed using these oligos as
template strands. After 10 cycles of amplification, sequencing
4,970,786 reads to generate Dataset PCR10; after 30 cycles,
sequencing 11,001,029 reads to generate Dataset PCR30; and
after 60 cycles, sequencing 11,180,177 reads to generate
Dataset PCR60. The relationship between different PCR cycles
and the copy numbers of different oligos at corresponding
cycle is shown in Fig. 2(a), 2(b) and 2(c).

Our primary interest lies in the relationship between the
number of PCR cycles and the proportion of each strand in
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Fig. 2. Visualization of different cycles of PCR data.

the population. Given that the sequencing data exhibit a clear
skewed distribution, we assume that the PCR data follow a
log-normal distribution [16]. Then we perform a logarithmic
transformation on the normalized data before fitting a normal
distribution, and Fig. 2(d), 2(e) and 2(f) show the results of a
good fit on all three datasets, which means after PCR amplifi-
cation, the channel actually follows a log-normal distribution.

Assuming X is a random variable that follows a normal
distribution with parameters ;1 and o2 as its expectation and
variance after logarithmic transformation, we denote it as
X ~ LN (p,0?). After fitting the PCR data to a log-normal
distribution, the sample distributions of the proportion of the
i-th strand in the population after different PCR cycles are
presented in Table L.

Since all three datasets are samples from the overall pop-
ulation generated by PCR amplification for 10, 30, and 60
cycles, we will next perform maximum likelihood estimation
(MLE) to estimate the parameters of the population. Let
Z1,%2,...,Ty, beasimple random sample from the population
X ~ LN (u,0?), the MLE for p and o2 are denoted as fiyr i
and 63, ., respectively. Then, from [17], we have

N I
fiviLe = — ;ln (%), 2)
and "
Giree = — Y _(In (@) — finrre)* 3)
=1

Based on the calculations from (2) and (3), the population
distributions of the proportions of different strands after 10,
30, and 60 PCR cycles are presented in Table I.

B. Real Channel Probability Distribution Model

In the previous subsection, we analyzed PCR experimental
data to obtain the real channel distributions after 10, 30,
and 60 cycles of PCR amplification. However, in practical



TABLE I
THE DISTRIBUTION OF DIFFERENT CYCLES OF PCR DATA.

Cycles Sample distribution Population distribution
PCRI0  LN(—9.71,0.862) LN (—9.72,0.742)
PCR30  LN(—9.91,0.982) LN (—9.86,0.962)
PCR60 LN(—10.38,1.11%)  LN(—10.25,1.382)

experiments, additional sequencing of PCR data to obtain
the parameter information of the probability distribution is
typically not performed. This necessitates the simulation of
the channel probability distribution under the condition that
only the synthetic amount ¢; and amplification efficiency 7;
of each designed strand are known, where PCR amplification
efficiency is the rate at which the target DNA fragment is
amplified during each cycle in the exponential phase. Theo-
retically, perfect replication would result in 100% efficiency,
doubling the DNA amount per cycle. However, in practice,
efficiency is typically below 100% and ranges from 80% to
110% due to various factors [22].

Therefore, for given ¢; and r;, where i € [1,n], we model
the channel probability distribution as a function of PCR
cycles. First, we show in [21] that after ¢ cycles of PCR
amplification, the expected copy number of the i-th strand is
E Vi(t)] = ¢;(1 + r;)*. Thus, we can derive the proportion
of the ¢-th strand in the population after ¢ cycles of PCR

: : t) _ ci(14ri)* ;
amplification as p,’ = PO ETLE then the expectation

and variance of pgt) can be calculated, denoted by E {pgtq
and Var {p(t)

; } . From the conclusion we obtain in the previous

subsection, we have pgt) ~ LN (u(t),a(t)2). According to
[17], we can calculate that,

Var [p!”
4 = log (E [pl(_t)D — %log 1+ I;Y[Ej;)ﬂ , @
and
O
o® = |In|1+ - [pi } ©

=]

Remark. For the simulation of theorems in the following sec-
tion, we use the population distribution of PCR amplification
data from those three different cycles.

IV. MDS COVERAGE DEPTH PROBLEM IN THE
LOG-NORMAL DISTRIBUTION CHANNEL

Under the condition of non-random access, the main goal
of our study is to find the minimum sequencing sample size
K that ensures the successful decoding of all digital data in
the real channel that follows the log-normal distribution after
PCR. For given n designed strands, we denote « £ % as the
sequencing coverage depth.

Due to space limitations, the proofs of all lemmas and
theorems presented in this section can be found in [21].

A. MDS Coverage Depth Problem in the Noiseless Channel

In practical experiments, in addition to focusing on the
expected sequencing coverage depth required to decode all
the digital information (i.e., E[a]), we are also concerned
with the probability of successfully decoding all data in a
single sequencing run (i.e., Var[a]). Theorem 1 and Theorem
2 respectively describe the probability distribution of the
number of designed strands that can be successfully retrieved
when sequencing with a fixed sample size of K in practical
channels and uniform channels. Let N denote the number of
successfully retrieved strands from K fixed sequencing reads.
Remark. In a noiseless channel, a = 1.

Theorem 1. For any channel probability distribution p, =
(pgt),pét), . ,p£f>) and any K > n > m > 1, it holds that

N ~N<zn: (1 _ e—K"’E”) :

i_1
- ® ) - ® ’
ZefK.pi (1 _ KBl ) K (sz(t)eK.m ) >,
1=1 =1

where X ~ MN(u,0?) represents r.v. X follows a normal
distribution with mean p and variance o2, and this assumption
is carried forward in Theorem 2.

On the basis of Theorem 1, let p, = (p1 ,DPs sy Dn ) =

(£,1,...,1), the following result is straightforward.
Theorem 2. For a uniform distribution channel, and any K >
n > m > 1, it holds that

Ne~N(m(l—e®),n(e*—e? —ae?)).

) (@) ) —

In summary, for n designed strands, when sequencing fixed
K reads, the expected ratio of successfully decoding designed
strands is @. That is, if m information strands are encoded

with the [m,mj MDS code, then theoretically speaking,
sequencing K reads in a noiseless channel recovers complete
information.

Applying the conclusions of Theorem 1 and Theorem 2,
Fig. 3 shows a comparison of the minimum sequencing cov-
erage depth between real channels and a uniform distribution
channel. Fig. 4 visualizes the variance derivative function to
intuitively show the probability of successfully decoding all
digital data in a single sequencing experiment, where f(K) £

] s (g [p0]) e
We conclude as follows:

1) When encoding m information strands with identical
redundancy, the minimum sequencing coverage depth
required to decode all data in a uniform distribution
channel is considerably smaller than in a real channel.

2) The lower the code rate, the smaller the minimum
sequencing coverage depth in any channels.

3) In a log-normal distribution channel, the minimum se-
quencing coverage depth increases with the number of
PCR cycles. This is attributed to varying amplification
efficiencies among the designed strands, leading to the



over-amplification and sequencing of a small subset of
strands as the cycle count rises.

4) The variance reaches its maximum between o = 1 and
a = 2 for PCR cycles between 10 and 60, and tends to
minimize when a > 7 and a > 8 respectively, which
means that when the expected coverage depth is between
1 and 2, although sequencing an strands is sufficient to
decode all data, the probability of successfully decoding
all data in a single experiment is minimized. We recom-
mend increasing the sequencing ratio or the code rate to
reduce the variance.
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Fig. 4. This plot illustrates the trend of the probability that a single experiment
fails to decode all information when sequencing is performed at the expected
sample size. This probability is quantified by the variance of each designed
strand under that sequencing sample size, denoted as f(K), thus the trend of
this probability is the derivative f/(K'), which indicates that the variance has
only one peak, corresponding to the maximum variance point as annotated in
the figure.

B. MDS Coverage Depth Problem in the Noisy Channel

Theorem 3 and Theorem 4 of this section provide two
lower bounds on KZ%‘(n,m) in noisy channels obeying a

log-normal distribution. According to Section III, if given
the synthetic amount and the amplification efficiency of each
strand, denoted as ¢ = (c1,¢2,...,¢n), T = (11,72, .., )
respectively, we can deduce the parameters p(*) and o(*) of
the real log-normal distribution channel after ¢ cycles of PCR.
Remark. In a noisy channel, a > 1.

In [21], we show that using —

Egpj ]

rems 3 and 4. To achieve a tighter lower bound, we can replace

SIOL
it with E p(vl”} where E [pgt)} N , E |:p<1t) —

is sufficient for Theo-

t) | o(t)
efu(f)d‘, .

[19]. This replacement is justified by Jensen’s
inequality, since 1 is convex, implying E [1] > ﬁ.
Theorem 3. For given ¢, =, for any ¢t > 1,

g > 1, a > 1, let R = 7, it holds that
P [KE (n,m) < Ki (1®,00,a,R)] < e (14 520,
where

()2

Ki(u®,0® a,R) 2 oI

1-R -8

log

Let Nk represent the number of urns that contain less than
a balls after K rounds. When using an [n,m] MDS code,
recovering all data means successfully decoding m out of
n strands, implying that at most n — m strands cannot be
successfully decoded. According to Claim 2 in [3], Lemma 1
follows straightforwardly.

Lemma 1. For K > (a — 1) - E (1,)} we have E [Ng] <
P;

K-E ft) K-E[pgt) log 2
n—mif %B‘T <l(1-Rer.

Based on Lemma 1, the second tighter lower bound is as
follows.
Theorem 4. For given ¢, r, for any a > 1, t > 1, let
R = 2, we have E[Nk] < n — m, if K§'(n,m) >
K> (u®,0®, a, R), where

1, o ()2
K, (u(t),a(t),a,R> e (@a—1)
2log 2
_10g2log(1—R)+(a—1)\/— Ogl log (1 — R)

V. CONCLUSION

In this paper, by working with PCR and sequencing data,
we analyze and simulate the probability distribution of the
real channel, and mainly investigate the MDS coverage depth
problem based on experimental data, under the non-random
access setting. That is, we prove the expected coverage depth
and its theoretical lower bounds in real noiseless and noisy
channels respectively, with the lower bounds shown in Table
IT in [21], and first propose the problem of decoding all
data successfully in a single sequencing experiment under the
expected sample size.
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