NON-LOCAL OPERATORS WITH LOW SINGULARITY KERNELS:
REGULARITY ESTIMATES AND MARTINGALE PROBLEM

ERYAN HU AND GUOHUAN ZHAO

ABSTRACT. We consider the linear non-local operator £ denoted by
Lu(x) = / (u(z + 2) — u(z)) alz, z) J(z) dz.
Rd

Here a(z, z) is bounded and J(z) is the jump kernel of a Lévy process, which only has
a low-order singularity near the origin and does not allow for standard scaling. The aim
of this work is twofold. Firstly, we introduce generalized Orlicz-Besov spaces tailored to
accommodate the analysis of elliptic equations associated with £, and establish regularity
results for the solutions of such equations in these spaces. Secondly, we investigate the
martingale problem associated with £. By utilizing analytic results, we prove the well-
posedness of the martingale problem under mild conditions. Finally, we obtain a new Krylov-
type estimate for the martingale solution through the use of a Morrey-type inequality for
generalized Orlicz-Besov spaces.
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1. INTRODUCTION

Over the past two decades, extensive research efforts have been dedicated to investigating a
class of non-local operators related to jump Markov processes, called a stable-like operators,
which can be formulated as:

a(z, z)

Lu(x) = /Rd (u(x + z) —u(xr) — Vu(z) - 21p,(2)) [ dz, «a€(0,2) (1.1)

(cf. [Bas88]). Here a : RY x R? — R is a bounded measurable function, and u € Cg°. When
a is smooth, it is known that there exists a pure jump Markov process X generated by .2,

2|79 is the intensity of jumps from x to z + z (cf. [Jac05]).

and a(z, 2)|

The exploration of regularity properties for linear and non-linear equations corresponding
to the above non-local operators has been the subject of extensive investigation. In particular,
Schauder estimates for linear equations were investigated in [BK15, Bas09, DK13, 1.Z22,
MP14], while the non-linear cases were studied in [DJZ18, DZ18]; LP-estimates for non-local
equations are available in [DJK23, DK12, MP92, Zhal3]; Harnack inequalities for positive
Z-harmonic functions and Hoélder continuity of .Z-harmonic functions were first established
in [BLO2] under the assumption that the function a satisfies certain boundedness conditions.
For more related results, readers can refer to [CCV11, CS09, CK03, DK20, Kas09] and the
references therein.

In the context of jump Markov processes, several studies have focused on the martingale
problem for .Z given by (1.1), including [AK09, BT09, CZ16, MP14], among others. Related
problems involving stochastic differential equations driven by rectilinear a-stable processes
were also explored in [BCO6] and [CZZ21].

In this paper, we consider a class of non-local operators including the following one:

Lu(z) = /Rd (u(z + z) —u(x)) a(x, Z)llle|(d2) dz. (1.2)

Here a : RY x R? — R is a non-negative bounded measurable function and Bj is the unit ball
in RZ.

Comparing (1.1) and (1.2), one can roughly think of (1.2) as being about the “a = 0” case,
which turns out to be a more challenging situation. Although there is limited research on this
type of operators compared to the stable case, we have noted that several significant papers
have examined issues related to operators like (1.2) from various perspectives, highlighting
their important applications in different fields. Notably, Sikié-Song-Vondracek [SSV06] first
studied the potential theory of subordinate Brownian motions with geometric stable subordi-
nators, whose generator is given by log(I + (—A)*/?) (below we will see that log(I+(—A)*/2)
is a variant of L). They established the asymptotic behaviors of the Green function and the
Lévy density of these processes. Among the PDE articles, Chen-Weth [CW19] demonstrated
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that

d
ds o log(—A)u(z)

B 15,(2) u(x + 2) s e
= /R e+ 2) — () P dz - /|z|>1|z,d dz + pau(z),

(—=A)%u(z)

where ¢g and pg are constants only depending on d. So the dominating term of %(—A)S ‘s:[)
is —cqL, as defined in (1.2) with @ = 1. In the same work, the authors studied the eigenvalue
of Dirichlet problem for the logarithmic Laplacian. Later, Jarohs-Saldana-Weth [JSnW20]
offered a novel look at the fractional Poisson problem via the logarithmic Laplacian given
above. We also mention that there is some literature revealing the importance of logarithmic
regularization operator T := log™'(el — A) (T~! is also a variant of L). For instance, T
is widely used in the studies of the local (global) well-posedness of the regularized inviscid
models, such as the regularized 2D Euler equation, the surface quasi-geostrophic equation,

and the Boussinesq equations (see [CW12] and the references therein).

Our work is partially inspired by Kassmann-Mimica[[KXM17], where Kassmann and Mimica
considered a much larger class of non-local operators including (1.1) and (1.2). To overcome
the difficulties arising from the lack of the scaling invariant property of L, they introduced a
new intrinsic scale, which can be used to establish a growth lemma for L and a modification
of hitting probability estimate for Markov process corresponding to L. As an application,
log=?(1/r)-order (for some 0 < 3 < 1) regularity estimate for solutions to non-local elliptic
equation Lu = f was obtained under the assumption that the coefficient a only satisfies
some boundedness conditions (see also [Mim14] for the case a = 1). In parallel, the study
conducted by Chen-Zhang [CZ14] delves into parabolic equations with drift terms. However,
an unresolved question remains: can the continuity modulus of u reach log=*(1/r) when we
impose continuity conditions on a, along with the condition that Lu € L7

On the other hand, while the well-posedness of the martingale problem for the a stable-
like operator .Z (0 < « < 2) as defined in equation (1.1) has been extensively studied in
various literature, to the best of our knowledge, there is a notable absence of research on the
martingale problem for L. However, the existence and uniqueness of martingale solutions
associated with L appear as premise assumptions in some works, such as [CZ14] and [KM17].
So it is necessary to provide sufficient conditions for the establishment of these assumptions.

Therefore, in this paper, we aim to address the following two questions:

(Q1) Does the solution u to the equation Lu = f exhibit additional smoothness under certain
continuity conditions satisfied by a?

(Q2) Is it possible to identify a unique strong Markov process X, for which the infinitesimal
generator matches L when acting upon smooth functions, even when a only meets some
minimal conditions?

Recall that, for a second order, uniformly elliptic operator Au = >, . a;;0;;u, the standard
Schauder estimates and LP-estimates are as follows:

(a) For any a € (0,1), there is a constant C' such that for each u € C*%,
[ull 2o < C([[Aulloa + [Jufloo) ,

provided that a € C%;
(b) For any p € (1,00), there is a constant C' such that for each u € W,
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lullwz < C ([ Aullp + [lullp)

provided that a is uniformly continuous (see [HL11]). Both of these results are useful in the
study of diffusion processes. In particular, (b) can be directly used to prove the uniqueness
of the martingale problem corresponding to A when a is merely continuous (see Stroock and

Varadhan [SV07]).

Following the path of Stroock and Varadhan, in response to (Q1) and (Qg2), in this work,
we

e offer a series of analytical results for the elliptic equation
Au—Lu=f

encompassing Schauder-type estimates (see Theorem 1.1 (a) below).

e construct the strong Markov process associated with L (see Theorem 1.4).

e provide an a priori estimate for the solutions to the corresponding elliptic equation
within a generalized Orlicz-Besov space (see Lemma 4.4), facilitating the derivation
of a Krylov-type estimate (or occupation time estimate) for the jump processes (see
Theorem 1.1 (b)).

1.1. Main results and examples. Although an important example of an operator we have
in mind is (1.2), we will consider a more general class of non-local operators that naturally
arise from jump Markov processes. To state our main theorems, we must first introduce some
fundamental concepts from probability theory. Specifically, let S = (S¢)i>0 denote a driftless
subordinator, which is a Lévy process with non-decreasing paths and non-negative jumps.
Its behavior is fully characterized by its Lévy measure II, defined on (0, c0), satisfying the
condition [;(1 A ¢)II(dt) < co. We assume that the Laplace exponent for S is given by

P(s) = —log Ee 1 = / (1 — e *HII(dt) = s/ e S'TI((t, 00))dt. (1.3)
0 0
Let B be a d-dimensional Brownian motion independent of S. Set
Z; = V2Bs,,

which is a pure jump Lévy process known as the subordinate Brownian motion corresponding
to S. Its jump kernel J(z) is rotationally symmetric, meaning that there is a function
j:(0,00) = (0,00) such that

o0 - 2
J(2) = j(2]) = / (drt)~3e~ 0 TI(dt). (1.4)
0
The Lévy exponent of Z is given by the formula

P(€) == —log Be“ % = ¢(|¢]?).

With a slight abuse of notation, the function ¢ can be viewed as a function from R to Ry.

Given 1, we put
1
p(r) = py(r) == ) (1.5)

We study the following spatial inhomogeneous non-local operator:

Lu = / (u(z + 2z) —u(x)) a(z, z)J(z)dz. (1.6)
R
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Our assumptions on ¢ (or II) and a are

Assumption 1.  (®) : ¢ is a slowly varying function at infinity (see Definition 2.7) and
limg_s 00 P(s) = 00;
(A1) : There are positive real numbers po,co € (0,1) such that
a(z,2) = co, for everyx € Rz € Byy = {x € R |z| < po}; (La)
(Az2) : There are real numbers a > 0,cq € (0,1) such that
la(-, 2)llce < cgt, for every z € RY, (Hy)

where p is given by (1.5) and Cy is the generalized Hélder-type space defined in Section
3 (Definition 3.5).

We emphasize that many important examples satisfy the above conditions, such as the
core examples in this paper: log(/ — A) and L in (1.2).
We now can formulate our first main result:

Theorem 1.1 (Schauder-type estimates). Suppose that ¢ satisfies (®), and a satisfies (Ay)-
(A2). Then there exists a constant A\g > 0 such that for each A\ = 2X\g and f € Cy, the
following Poisson equation

Au—Lu=f (PE)

admits a unique solution in C’;*‘O‘. Moreover, for any B € [0, ],

Mullgs + lulgrea < Cl s

where C' only depends on d, ), pg, co, o and 3.

Remark 1.2. (i) The method employed in this article is quite robust. With some modi-
fications, most of the results can be readily extended to the case where ¢ is a general
regqularly varying function (see Definition 2.7). However, for the sake of readability of
the article, we only consider the case where ¢ is slowly varying at infinity.

(ii) p(|z —y|) can be regarded as the “intrinsic” distance between x and y, corresponding to
the operator L. Consider the example where ¢(s) = /s, then L = —/—A and p(|z —1y|)
represents the usual Euclidean distance. In this context, the result analogous to Theorem
1.1 4s: for any a € (0,1),

lullgrre < € (IV=Bullce + ullz= )

which was proved by Bass in [Bas09].

(iii) In this paper, we also establish some estimates for (PE) in Orlicz-Besov spaces, consid-
ering cases where a is spatially homogeneous or satisfies a small oscillation condition.
Refer to Theorem 4.1 and Lemma 4.4 for details.

Theorem 1.1 implies that

Corollary 1.3. Let ¢g € (0,1), o > 0 and p(r) = 1/log(1 + 2). Suppose that co < a < ¢!
and |a(x, 2) — a(2', 2)| < ¢ *p®(|z — 2'|), then for each B € [0,al, it holds that

lullgres < € (ILullgs + llulloc) s Vu € .

Here L is the operator defined in (1.2), and C' only depends on d, py,co, o and .
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In Section 2.3, we will verify that the following key examples satisfy our assumptions.

Example 1. One notable example of S is the gamma subordinator, whose Lévy measure,
density and Laplace exponent are given by

1
I(dt) = e 't tdt, P(S, = u) = %ut_le_“ and ¢(s) =log(1l + s),
respectively. In this case, the process Z = \/2Bsg, is called the variance gamma process whose

infinitesimal generator is
dz
Lu(w) = ~log(I = Aua) = [ (ua+2) ~u(w)

Here ( : (0,00) — (0,00) satisfies £(r) =< 1 (r — 0T) (see more details after Proposition 2.10).

Example 2. Another example is the infinitesimal generator of the solution to stochastic
differential equation (SDE) driven by variance gamma process Z; = \@Bst :
dXt = O’(Xt,) dZt, XO = X. (17)

Assume that o : R4 — R4 js jnvertible. Then the infinitesimal generator L, of X is
formulated by

Lou(z) = /Rd (u(x + o(x)z) —u(x)) |z|d€1(|z|) dz
———
e ()
= 6042 = F o NG T
a(z,z)

When o is p*-continuous and co|€| < |o€| < Cal|§|, for all € € R?, then a(x,z) satisfies
(A1)-(A2) (see the discussion after Proposition 2.10).

Although we consider general non-local operators with low singularity kernels in our study,
it is worth mentioning that one of examples we have in mind is the operator L defined in
(1.2).

Example 3. We can rewrite L in (1.2) as

1
Lu(z) = /Rd(u(fc +2) — u(z)) a(w’z){fl ()Z)E(ZD EZED .
. J(2)

where J is the jump kernel of the variance gamma process given in Example 1. a satisfies
(A1)-(A2) if a satisfies the same conditions, due to the fact that £(r) is bounded from below
and above (see also the discussion after Proposition 2.10).

Our second main result concerns the weak well-posedness of equation (1.7) and relies on
the martingale problem associated with non-local operators of the form (1.6), which includes
L.

Theorem 1.4. Suppose (®) and (A1)-(Az) are satisfied. Then
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(a) for each x € RY, the martingale problem (L, ;) has a unique solution P,, and the family
(Py, X)yera forms a strong Markov process on R%;

(b) for any N-function A (see Definition 2.1) satisfying A(t) = [~ ()] (Ve > 0), the
following Krylov-type estimate is valid

Ez/ ¢ M (X dt < Clfla/h, A>0 and f € La. (1.9)
0

Here ||f||a is the Luxemburg norm of f with respect to A (see Definition 2.3), and C' does
not depend on f.

Corollary 1.5. Let Z be the variance gamma process. Let c¢o € (0,1), a > 0 and p(r) =
1/log(1+771). Suppose co|€| < || < cptl€|, for all € € RY, and

jo(z) = o(a")] < g ' p*(lz — 2']).

Then SDE (1.7) has a unique weak solution X. Moreover, for any A > 0 and § > 1, X
satisfies

E/Oooe_Mf(Xt)dtgfinf{/\>0:/Rd<exp\f(ac)/)\]5—1>dx<1}, fela (110)

Here the constant C' does not depend on f.

Remark 1.6. (i) When we seek to compare the classical results of Stroock-Varadhan for
diffusion processes (see [SVOT]) with the aforementioned findings, a natural question
emerges: can we relaz the assumption (Ag) in Theorem 1.4 to the point where x
a(z, z) is only uniformly continuous? We believe the answer is yes, but currently, we
do not have a solution to this problem. One obstacle is that the singular integrals may
not be bounded in general Orlicz spaces (see Remark 5.2 below for further discussion);

(ii) The inequalities (1.9) and (1.10) are commonly referred to as Krylov-type estimates. For
nondegenerate Ito processes, the dominant term on the right-hand side of the inequality
is C||fllpa/\, which can be derived from the ABP mazximal principle (see [Kry09]). On
the other hand, for the Markov process associated with L, the “diffusion” rate of the
process s exceedingly sluggish, causing the occupation time Eg fol 1p,(X:)dt to decay
more slowly than r®, for any s > 0, as r — 0. Consequently, we require a stronger
integrability condition for f in this case.

(iii) By leveraging the transformations outlined in Ezample 2, and using Theorem 1.4 we can
address the weak well-posedness of SDE (1.7) driven by general subordinate Brownian.
However, this approach requires verifying that £(r) is Holder continuous near r = 0, a
condition that is generally non-trivial to validate. In some specific cases, asymptotic
analysis of £(r) near the origin offers a practical pathway to address this requirement
(see more discussion after Proposition 2.10).

1.2. Approach. As mentioned before, by comparing (1.1) and (1.2), one can roughly inter-
pret (1.2) as dealing with the “a = 0” case, which turns out to be more challenging. Two of
the reasons for this are:

(1) Considering the nearly integrable nature of the kernel |z|~%1 5, (2) (indeed z + |2|~91p, (2)
is in weak L' space), it can be intuitively predicted that the regularity improvement of
L~ will be rather weak. As a result, it seems difficult to deal with such operator using
standard elliptic theory;
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(2) Although when a = 1, operator L corresponds to a nice Lévy process Y, it is essential to
highlight that Y does not exhibit scaling invariance, a distinctive characteristic that sets
it apart from a-stable processes. The lack of scaling invariance introduces a substantial
challenge in the study of these Markov operators, as it renders the conventional scaling
techniques, highly effective for o stable-like operators, but ineffective in this context.

In this work, we mainly use a modified Littlewood-Paley type decomposition and some tools
from probability theory to deal with our two issues. In order to demonstrate the robustness
of our approach, in Appendix A, we apply the classic Littlewood-Paley theory and scaling
techniques to reprove and extend the main result of [Bas09] for stable-like operators. As can
be seen from our proof, it is convenient to consider Schauder-type estimates in the Holder-
Zygmund space ¢°. Here €° is defined using A, which is called the non-homgeneous dyadic
blocks (cf. [BCDI11]). When s > 0 with s ¢ N, it is well known that € coincides with the
usual Holder space C?.

Naturally, we attempt to extend the above mentioned idea to the study of £, but immedi-
ately face difficulties. The usual dyadic decomposition is no longer applicable to the situation
we are concerned with. For example, for the operator £ = —log(l — A), a naive substitute
of 7 is the function space 2" ¢ defined by

2 = {u e 7' (RY) : sup 2+ 5)° 1A flloo < oo} (1.11)
j>—1

(see [CW12]). However, as we demonstrate in Appendix B, 2! contains unbounded dis-
continuous functions. Thus, classical decomposition theory is no longer applicable to the
problems we are concerned with.

To overcome the aforementioned obstacle, we leverage the concept introduced in [KM17]
and propose a novel decomposition for distributions, which we refer to as the “intrinsic dyadic
decomposition” or “i-decomposition” (where 1) denotes any positive, increasing function,
though we ultimately choose it as the Lévy exponent of Z for our purposes). This new
decomposition replaces the role of A; with the ¢-dyadic block H}b, which is defined in Section

3.1. Additionally, the generalized Orlicz-Besov space B A’s (as presented in Section 2.1)
supplants the position of the Besov space B, , in classical theory. One of the key observations
in proving Schauder-type estimates is Theorem 3.6, which serves as an analogy to Theorem
A.2 and establishes that the generalized Holder space C}; and BY*® are consistent.

The second issue at hand pertains to the inadequacy of scaling methods in proving Schauder
estimates for the very low-order operators (further details are provided in Appendix A).
Consequently, we begin by focusing on a specific subset of non-local operators, namely the
infinitesimal generators of subordinate Brownian motions with slowly varying symbols. Using
the favorable analytical properties of the subordinator S and the Gaussian kernel, we establish
the desired a priori estimates in Orlicz-Besov spaces (as stated in Theorem 4.1). Subsequently,
we gradually expand these estimates to encompass the general case using classical techniques
developed for differential operators.

Regarding the martingale problem associated with £, following [SV07], one can see that
well-posedness is a consequence of the solvability of (PE) in generalized Holder spaces. How-
ever, certain crucial properties of the Markov process corresponding to £ cannot be inferred
from estimates in Holder-type spaces. For example, such estimates do not inform us whether
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the occupation time fOT 15(X;)ds is nicely upper or lower bounded. To address this, we
turn to L>-estimates for (PE) under the assumption that f belongs to some Orlicz space.
The L* bounds for solutions to (PE) are derived via a Morrey-type inequality (3.24) and
an a priori estimate for solutions in Orlicz-Besov spaces (as described in Lemma 4.4). We
note that although LP-estimates can also be established (see for instance [KP25]), they are
inadequate for obtaining the probabilistic results we require since the following embedding
result fails for any p < oo: [I + log(I — A)]71LP — L.

Organization: The paper is organized into several sections. Section 2 provides a review
of Orlicz spaces, slowly varying functions, and some important properties of subordinators
with slowly varying Laplace exponents. In Section 3, we introduce the w-decomposition,
generalized Orlicz-Besov spaces, and present the proof of Theorem 3.6. This section also
includes crucial Morrey-type inequalities. In Section 4, we present the proof of Theorem 1.1
and Corollary 1.3. Section 5 investigates the martingale problem associated with £. Finally,
to illustrate the technical difficulties we mentioned above and the need to introduce the new
dyadic decomposition, we offer an appendix including a brief discussion on a theorem by Bass
[Bas09] and a remark on the space 27°.

Notations. Reciprocal of f is denoted by % and f~! denote the inverse function of f.
The letter ¢ or C' with or without subscripts stands for an unimportant constant, whose value
may change in different places. We use a < b to denote that a and b are comparable up to a
constant, and use a S b (a 2 b) to denote a < Cb (a = Cb) for some constant C.

2. PRELIMINARIES

2.1. Orlicz space. In this section, we review some basic facts about Orlicz space. Most of
the results can be found in [AF03, Chapter VIII].

The notion of Orlicz space extends the usual notion of LP space. The function t? entering
the definition of L? is replaced by a more general convex function A(t), which is called an
N-function.

Definition 2.1. Let a(t) be a real valued function defined on [0,00) and having the following
properties:

(a) a(0) =0, a(t) >0 if t >0, limy_00 a(t) = 00;

(b) a(t) is nondecreasing;

(c) a(t) is right continuous.

Then the real valued function A defined on [0,00) by

1s called an N -function.

Typical examples of N-functions include A(t) = for 1 < p < oo and A(t) = e’ — 1 for

=1
The Legendre transform of a convex function A on [0, 00) is given by

A, (s) :=sup[st — A(t)]. (2.1)

t=>0
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By this, one can verify that A, : [0,00) — [0,00) is also an N-function (cf. [AF03]). By A~1
we denote the inverse of A:

A7Ys) =inf {t: A(t) > s}, s=0.
The following result can be found in [AF03, page 265, equation (4)].
Proposition 2.2. Assume that A : [0,00) — [0,00) is an N-function, then
s<A7Y(s) - A7Y(s) < 2. (2.2)

Given an N-function A, for each measurable function f on R?, we define
L) = [ Alfl@) de.
R4

Definition 2.3 (Luxemburg norm). Let A be an N-function. For any measurable function

f, define

Ifl]a :=1inf{X > 0: I4(f/A) <1} € [0, 0]
The Orlicz space Ly is the collection of all functions with finite Luzemburg norm. La is a
Banach space. In general, the space L 4 is not necessarily separable unless A satisfies the Ao-
condition (see [AF03, 8.6, page 266]). However, one can consider a subspace of L, denoted
by E4, which is defined as the closure in La of Ly N Cy, where Cy denotes the space of
continuous functions vanishing at infinity.

Orlicz spaces have good duality and interpolation properties, making them useful in many
areas of mathematics, including probability theory, functional analysis, and PDEs. The
following two propositions can also be found in [AF03, 8.11, page 269 and Lemma 8.17, page
272].

Proposition 2.4. For all f € Ly and g € La~, it holds that

[ 1731 < 20 flLallgla- 2:3)
Proposition 2.5.
Ifla=sup {1falh s [ Actotenas <1},
The following Young’s inequality is crucial.

Proposition 2.6 ([O’N65, Theorem 2.5]). Assume that A, B and C are N-functions and
that A=L(t)B~1(t) <tC~L(t) (Vt > 0), then

1 * glle < 2[[fllallgll - (2.4)

2.2. Regular variation.

Definition 2.7. A measurable function f : (0,00) — (0,00) is reqularly varying at infinity
with index o € R (denoted by f € Ra(0)), if for all b > 0,
lim f(bx)
27w

If a =0, then we say that f is slowly varying. Regular (slow) variation at zero can be defined
similarly, by changing x — oo to x — 0.

=b*.
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The following two Karamata’s theorems (cf. [BGT87, Theorem 1.5.11]) will be used fre-
quently.

Lemma 2.8 (Karamata’s representation theorem). A function f is slowly varying if and
only if there exists M > 0 such that for all x > M the function can be written in the form

F(z) = c(z) exp ( /M S(t)dt>

where c¢(x) is a bounded measurable function of a real variable converging to a finite number
as x goes to infinity, and e(x) is a bounded measurable function of a real variable converging
to zero as x goes to infinity.

Lemma 2.9 (Karamata’s integral theorem). Let f be a slowly varying function at infinity.
Then

(i) for any o > —1 and M > 0,

a+1f( ) _ '
sLoofT o+h
(ii) for any o < —1,
U+1f( )
8—)00 f ta-f _(0+ 1).

2.3. Subordinators and jump kernels. Recall that S is a subordinator without drift. ¢,
the Laplace exponent of S is given by (1.3). Since (st)e™®! < 1 — e for each s,t > 0, by
(1.3), we have

5¢'(s) < &(s). (2.5)

Moreover, (1.3) also implies
dut) > ul/ eTVUII((E, 00))dE = e (1, 00)),  u > 0. (2.6)
0

Recall also that B is a d-dimensional Brownian motion independent of S, Z; = v/2Bg,, and
that

$(§) = —log B 7t = g([¢[)
is the Lévy exponent of the subordinate Brownian motion Z. J(z), the jump kernel of Z, is
given by (1.4).
For any A > 0, let

Ux(du) = / e M P(S; € du)dt
0

be the A-potential measure of S. By Fubini’s theorem,

/ RINGD) / / e MP(S, € du) dt
0
= / e M dt / e TUP(S; € du)
0 0

o 1

[T et gy L
e )

/0 A+ o(7)
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This implies

)\—1—5151(7'1) 2 /O e_%U)\(dU) > e_lU)\((O,'T)), T > 0.

The following proposition will be used in the proof for our main results.

Proposition 2.10. Suppose ¢ satisfies (®), then for any r < 1, it holds that

/ 27 () dz < rp(r ),

r

and
/ J(2)dz S p(r ).
Proof. For (2.8), in virtue of Fubini’s theorem,(1.4) and (2.6), we have
/ \z|J(z)dzA/ )s ds</ dds/ toe 4tH (dt)
r _ ﬁ
- / ) / sle~irds = / TI(dt) / Y e tdu
0 0 0 0
2 r2 2
" A d-1 1 w4
= t2H(dt)/ u 2 e “du+/ t2H(dt)/ u 2 e “du
0 0 r2 0
7"2 oo
1 da
x/ t2H(dt)+7“d+1/ t~2TI(dt)
0 r2
S/ 1{S<t<rz}s*%H(dt) ds+rH((r2,oo))
0 Jo
7,.2
1
5/ s=HTI((5, 00))ds + rT1((12, 00))
0
@6 1 2 1
< / sT2op(s )ds+ro(r ) Sr(r), 0<r<1.
0
Here we used Lemma 2.9 (i) with 0 = —2 and s = 772 in the last inequality.

(2.7)

For (2.9), again by Fubini’s theorem, (2.6) and Lemma 2.9 (ii) with 0 = —2 and s = r—2,

we have

o] o8] oo $2
/ J(2)dz x/ s 1i(s)ds :/ sdlds/ t*%e*TtH(dt)
e T r 0

e oo .2 o) o)
:/ t_gH(dt)/ sd_le_udsx/ I1(d¢) /2 ut e duy
0 r 0 =

4t

0o 00 (26) poo
:/ u2_1e_“du/2 ) < / w2 e P(du/r?) du
0 e 0

4u

<é(r2) /4 us1 e “du + /00 w2 p(4u/r?)du
0 4
o) +172 [ 520 Sl ).
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To verify that Example 2 and Example 3 satisfy our assumptions, we need to conduct a
more detailed analysis. The specific calculations are as follows.
For the gamma subordinator, recall that I1(dt) = e~'¢~'dt. By (1.4),

o r2 1
j(r):(47r)—§/0 e = s

which yields that
d ® 4 r?
1/4(r) = (47r)2rd/ t—2lemmtdt
0

and

d A1 oo d_q 2 ¢ drd+1 o] d_q .2 .
(1/4(@)':(4%)_2“_/0 tE e Tt — (4m) 5 L /0 152~ tdy

For any v € R, set
o0 7‘2
L(r) = / e tdt.
0
By integration by parts formula, we get

1 &0 2
I(r) :’y+1 ; e ® t(l—rz/(4t2))dt
Iv+1(7") r?
= — I, , —1.
Therefore,
1/e(r) =2 % 20T 4 (r)
and
/ -4 . d-1 r’ 1-d_-4 d—1
(1/6(r))" = (4m) " zdr I_g_l(r)—%f_%_Q(r) = 2% "ap I_%(r).

Noting that
0o 9 r2/4 2 00 2
L(r) :/ e~ wtdt = / Ve m tdt +/ e~ tdt
0 0 r2/4
P22y < ]
=q —log(r), y=-1 0<r<l1.
1, > -1,
and I,(r) S e7™/3, r>> 1, we obtain
jlr) = 1/(rd€(r)) = I_%_l(r) =r~4 r—>07F
and
G(r) =1/ ) <3 r > 0.
Moreover, we have
AGIBS rdflffg(r) <1, r>0,

which implies that the coefficient a in (1.8) satisfies (A1) and (Az), provided that o is
p®-continuous and col¢| < |0€] < ¢jt¢] for all £ € RY.
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3. INTRINSIC DYADIC DECOMPOSITION, FUNCTION SPACES AND EMBEDDING THEOREMS

The contents of this section are purely analytical. Generalized Orlicz-Besov spaces, which is
defined by a refined Littlewood-Paley decomposition called -decomposition, are introduced.
Such function space is a natural extension of Besov space Bj ., (see [BCD11] for its definition).
Crucial Morrey-type inequalities are also proved in this section.

3.1. Intrinsic dyadic decomposition. Let ¢ : (0,00) — (0,00) be a strictly increasing
function such that limp_,o ¥(R) = co. We point out that in this section, ¥ needs not be the
Lévy exponent of a subordinate Brownian motion. Set

1/1_1(7’) =1inf {s > 0:¢(s) >r}, r>0.

Let x be a rotationally symmetric, nonnegative and smooth function with compact support
such that
1 when |£

x@)==xﬂﬂ)=:{0 when ¢

Let 0 := F1(x). We define
X(6) = x(2¢) and X(6) = x(£/2); o=F '(x) and o0=F '(X).
Given j > —1, set
m@%=x<

Similarly, we define

_ 3 & 2 _ L d L
=1 (7o) = x () 0@ = G @) oo @),

§
pH(2)

) o) = F ) (@) = (v ()

and

V=1 (=)~ (5 ) 50 =@ @) e @),

The -dyadic block H}b is formulated by

I f = F (1 — X)F(f) = (g1 —0j) * f, § =0

and

Dfo;:f'1(X<¢r§u)>f¥fX®):=Qo*f

Similarly, for each j > 0, we define
I3 f = F - (o1 = X)F ().
Obviously, for each j > 0, it holds that
IVTTY = YT =11
The following simple result will be used several times later.
Lemma 3.1. Let A be an N-function or A = oco. It holds that
IVIE flla < Co~ @) I flla, 52 -1, (3.1)
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Proof. Noting that H?) [ =0j4+1% (H;b f), by Young’s inequality, we get
v ~ I s v
IVIL flla <IVojra* AL Hlla < Vol flla

<CYH (2 I f | a-

3.2. Generalized Orlicz-Besov and Orlicz-Bessel potential spaces.

Definition 3.2. Let s € R and A be an N-function. The || - ||y,s;a-norm of a distribution f
s given by

1£llpsia == sup 27°||TLY f| 4,
jz—1

and the collection of all distributions with finite ||-||y,s.4-norm is denoted by B*®. If A = oo,

we define the space BY® in the same way, and also denote it by %j For simplicity, we denote
1

By (€}) as BY (6y).

By the definition of Bﬁ’s, it is easy to get the following interpolation result:

Lemma 3.3. Suppose s,s0,51 € R, 6 € (0,1) and s = 0sg+ (1 —0)s1. Then
0 1-0
1l ge < 1F w0 11 oes-

We also introduce the definition of Orlicz-Bessel potential spaces. Recall that E4 is defined
in Definition 2.3.

Definition 3.4. Let A be an N-function. The space
HY = {f € 7R : F 1+ 9()F(f)] € Ba}

with the norm
1Al g = 1A+ (V=2)) flla

is called gemeralized Orlicz-Bessel potential space.

We remark that the space H}ﬁ is the collection of all functions f € E4 such that ¢(v/—A)f €
FE 4. Here we use the restricted space E4 instead of L4 for the following reasons. In fact,
we will use the space Hﬁ in the proof of Theorem 3.10, and we first prove Theorem 3.10
for ‘smooth’ functions (which are dense in Ey4, but may not be dense in L,4) and then for
general functions by the standard approximation arguments. On the other hand, F4 already
contains enough ‘good’ functions in many cases (for instance in the case of the hypothesis of
Corollary 3.12).

Definition 3.5. Let s > 0. Letw : (0,00) — (0,00) be a strictly increasing function satisfying

lim, ;g w(r) = 0. Assume w®(t)/t — o0 ast — 0. The || - ||cs-norm of a measurable function
f is given by
flz) = fy
17l = 1 fllo + sup LD = SO
aty (|7 —yl)
The collection of all functions with finite || - ||cs -norm is denoted by C2, which is referred to

as the generalized Hélder space.
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Recall that .
p(r) = py(r) == W

The following result gives a characterization of generalized Holder space C} in terms of -

decomposition.

Theorem 3.6. Let s > 0. Let p be the function defined by (1.5). Assume
r B dr R
— <
¥3(r) e ¥3(r) 7 ¥(R)
Then there is a constant ¢ € (0,1) independent of f such that
-1
el flley < Ifllcs < <M fly-

is an increasing function and

foralle < 1 < R.

(3.2)

(3.3)

Proof. We only prove the case that s = 1 (the proof for the general case is similar). Assume

, < 00. For any |z —y| < 1,
f(@) = f)l < Y f(z) — I ()]

Jjz-1

ST flloo Al = gl VI f -

j=-1
Thanks to (3.1), for each j > —1,
IVIL flloe < 471 2L £ -
So for each K € N, it holds that
f(x) = F@) SIFllg, D 277 Ale —yly™ (2727

j=>—1

%, Z 277 + || fll, |z — vl Z P (272

K+1 j=—1

K+1
<Iflles ( oyl [ v dt)

For R > 1, by integration by parts and (3.2), we have

2R ’1/1_1(2R) 1
—t -1 24 L
/“’ T A /1(1) “d<w<u>)

SIf

-1 PH(2R)
< u ‘w 1 +/ du < y1(2R)2 "
Y(u)le=1r)  Jy-1y  P(u) ~
Choosing R = K + 1 = [logy ¥ (|z — y|™!)], one sees that
x K+1 . . 1
27K 4 | — / Mo-tar<oa K< =
Ealf, v o)

Plugging (3.5) into (3.4), we see that for any |z — y| < 1,

[f(z) = f(y)]

- o |
el = @ = e =3 £ 1l

(3.4)
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This together with the fact that || fllec < [/f[l%, implies

f(x) = f(y)l

Ifllc; = [[flloc + sup Sfls,-
’ ay Pz —yl) v
On the other hand, suppose that
M = sup ‘f(x) — f(y)‘ + ||f”oo < 00.
TH#Y p(‘x - y’)

By the definition of H}p and the fact that [ g; = x;(0) =1(j > 0), we have

@) =| [ (e - o))l +2)

-| [ e - )@+ 2) - o

< [ e [ (= i)~ 16 # |1 (2 ey ) 709 = (36)
1

<M/Rd|g(z)] {m(wlm)] dz+ 01 | lo(2) [1/\@&(1"1‘2’“))] dz

|2 |2
Td 1 Q(?“) d—1

<M/ 1\/¢< (2])) dT+M 1\/¢( 1(23+1)>

dr (5 >0).

So we need to dominate the integration [;* 1(\;’1)[([1 5)1 dr. Using the fact that |o(t)] <g (1 A

—k) (¥k > 0), one sees that for each s > 0,

> o(ryrd-t _ g [ els/t)
A 1vwwwf“"l4 AL 0] O

s tk (&%) 1
< gd-k — dt d/ — _dt
~° A v ) V)]
=11 + I.

Choosing k = d + 2 and using (3.2), we get

s s (3.2)
I 25_2/ t dtSs_l/ dt < ! .
o 1VY(t) o 1V(t) 1V ap(s)

Moreover,

_ad [T 1 1 i [~ ,—da-1 1
b“ié ﬁﬂukuwﬂglvw@f,l AR TGy

Thus, for each s > 0,
* o(r)r™! 1
————dr < : 3.7
|, o S e 30
Combining (3.6) and (3.7), we arrive

LY flloo S M279, for all j > —1.

So we complete our proof. O
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3.3. Morrey-type inequalities. In this section, we prove two Morrey-type inequalities,
(3.11) and (3.24). The novelty of them is that both regularity and integrability of u are
characterized by monotone functions 1 and A, respectively, and 3 can be a slowly varying
function.

We need to make some necessary preparations. Let S be a subordinator with Laplace
exponent ¢. Recall Z is the subordinate Brownian motion corresponding to S. Here and
below, the function v is given by the Lévy exponent of Z, i.e.,

¥(€) = —log B %t = ¢(I¢]?).
In this section, we assume S satisfies
(®1) : ¢ € Ra(oo) with av € [0, 1), ie. ¢ € Ra(oo) with a € [0,1).

Lemma 3.7. Assume that ¢ satisfies (). Then for any R > 1, it holds that

B qr R
L0 VI 35
and R
e < @, r € [1, R]. (3.9)

Proof. If 1) € Rqy(o0) with a € [0,1), then there exists a function ¢ € Rp(co) such that
P(r) =r*4(r). For R > 1, using Lemma 2.9 (i), we have
R R 1—

dr S/ dr < R~ < R .

1 Y(r) reb(r) ~ U(R) T P(R)

For (3.9). By Lemma 2.8, 1(r) = r®c(r) exp( | e(t)/tdt), with ¢(r) = ¢ € R and (r) = 0

as r — 00. Therefore,
rY(R) fe(t)—(1-a)
ra) sow ([ ) 51

which implies our desired assertion. [l

3.3.1. Morrey-type inequality for Orlicz-Bessel potential spaces. The following Morrey-type
inequality for Orlicz-Sobolev space W} can be found in [AF03].

ops . oo A~1(s%)
Proposition 3.8. Let A be an N-function. Assume that fl =2 — dt < oo, then

Ifllc, S M flla+ V£,

where W}‘ is the Orlicz-Sobolev space and

Remark 3.9. As far as the authors are aware, there is no result guaranteeing that the Riesz
transform is bounded in the Orlicz space L4, so in general H}‘ does not coincide with W,}x-
Therefore, H}‘ — C), cannot be derived from Proposition 3.8.

The following result is about Morrey inequalities for generalized Orlicz-Bessel potential
spaces.
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Theorem 3.10. Assume that ¢ satisfies (®). Let A be an N-function satisfying
00 dA—l td
[,
1 v()
Let
00 dA—l td -1
U(R) := (/ Hdt) . (3.10)
r Y@
Then it holds that
Il < Nl (3.11)

Remark 3.11. From a perspective of theoretical completeness, exploring Sobolev-type in-

equalities for generalized Orlicz-Bessel potential spaces can provide a more comprehensive

understanding of these function spaces. However, while this inequality is of interest, it is

not directly utilized in the proof of our main results. Therefore, we have chosen to defer the

investigation of this topic to a future paper.

Our result implies the classical Morrey’s inequality for Bessel potential space:

Corollary 3.12. (a) Let o € (0,1). Assume ¥(R) = ¢(R?) = R® and A(t) = tP with

p>d/a. Then

lull o < Null o = llullmg-

COK
(b) Let ¥(R) = log(1 + R2) and A(t) = e —1 with 8> 1. It holds that

1—1
ulloo + sup |u(x) —u(y)|- (—loglz —y|) &
lz—y|<3

<l = llu+ log(T — A)ul .

Proof. (a) Let ¢(r) =r2. Since
1 © dA~(t9) 4, a_d
R —_— tr d = P
p\IJ(T) \I/(%) /7{ w(t) /71‘ S r bl

the conclusion follows by Theorem 3.10 and Theorem 3.6.
(b) By definition,

AT (1) = log? (1 +1).
For any r <« 1,

1 % g4-1( o0 411605 (1 4 ¢d
i =gl = [T e,

u(l) (1) (T + t9) log(1 + 12)

1
o 1 1\ !
x/ t 1 logh 2 tdt < <log> .
p—d r
Again by Theorem 3.10 and Theorem 3.6, we get the desired result.

Now we give the proof for Theorem 3.10 below.
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Proof of Theorem 3.10. Recall that S is a subordinator with Laplace exponent ¢, and that
Z is the subordinate Brownian motion corresponding to S. For any A > 0 and f € Cy(R9),

set
Pif(x) =Ef(xr+ Z;) and G,f(x) = / e MP,f(x)dt.
0
Then
A+ ¢(—A)GAf = f, [ € Co(RY) (3.12)
and
Ga(A+ ¢(=A))u = v with u = Grf, f € Co(R?). (3.13)

Since f € CyN Ly is dense in F 4, the operator G\ then can be extended to a mapping from
E4 to Hjﬁ. Moreover, (3.12) still holds for all f € F4, and HZ = G E4. Thus,

Gr(A+ (A u=u, ueHY.
Let f =u+ ¢(—A)u. Then
u=G1f = /ooe_tPtfdt.
We need to prove ’

115 o =

H;.P/ etPtfdtH <C277|f | a- (3.14)
0

o

Denote by h; and p; the transition probability density functions of Brownian motion v/2B;
and Z, respectively. Let s¢(du) be the distribution of S;. Let j(z) = (¥ ~1(27))%0(¥~1(27)z),
where g is the smooth function in Section 3.1. Thanks to Holder’s inequality (2.3), we have

H;.I’/O e P fdt /0 e 'pr * (Gy1 — ) * fdt”

1Y 4

g ‘

o0

. o0 (3.15)
<Ifla /0 e lpe* (Ga1 — )l dt.

Thus, to prove (3.14), we need to estimate ||ps * ((j+1 — () A,
Let R > R>> 1 and of'(z) = R%(Rz). Using the fact that

pilz) = /0 " hu(2)si(du),

we get,

/

pe* (07 — o) (2)

= /]Rd pi (x4 2) R%(R'2)dz — /Rd pt (x4 2) RY%(Rz) dz

=/Rd [pt (az + %) — i (a: + %)} o(z) dz (3.16)
:/OOO/Rd b (4 ) = (24 %) | 0(2) se(du) dz

R
:/OOO/RdU—S hy (\ja—F\/SR,)_hl (faJr\/;R)

Here we use the fact that h,(z) = u_%hl(:n /+/u). By mean value theorem, one sees that

hl(fﬁ*ﬁﬁ)‘“(fﬂ*ﬁl%)

s¢(du)o(z) dz.




Non-local Operators with Low Singularity Kernels 21

(Gt i) 1 (G vm)l)
o, (\fa+(1—9)\/5R,+9¢;R>'de.

<(|n
z

z
VuR — JuR

This implies

N\D.

( J}J_MQE+J;>A

z z d .
b —= 2 E vk (==
“21<¢> ‘ww vm%“2V1Qm>m (8.17)
d .
h “2Vh | — .
< )(nHA uzvlﬁm)m>
Setting
d .
= T2 — 1
) = Pl + o fom (| (3.18)
and combining (3.16) and (3.17), we get
Ipe * (o™ QR)I A,
d d
<[L (18 i) o) fatwdzsaw 510
fR 00 il
< rdr—i—/ o(r)[r* " dr | fa,(u)si(du).
L {m temmtars [ o) 4. () so(du)
Noting that |o(r)| < 1 A7~ (Vk > 0), we have
/ Prddr <1A = and /OO lo(r)|rtdr < 1A = VN > 0. (3.20)
N N N ~ AN

Plugging estimate (3.20) into (3.19), we get

msﬂmQAﬁ;)mmmwm. (3.21)

So the main problem comes down to the estimation of f4-(u). Let us estimate the first term
on the right-hand side of (3.18). By the scaling property of h,, one sees that

|P(o® — o)

hy (z/v/u)
In (ha/N) <1 < A <(\/ﬂ>dk> dr <1

(3.22)
hy (x) _
= RdA*<(\/ﬁ)d)\>d$<u .

[V1iSW
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Let K = (4mu)~%2. Basic calculation yields

Jur () &= Lo (m) v

K e g
A
:cd/ <log Su log s) D_A,(s) ds,
0

where D_ f is the left derivative of f. Noting that D_A, is increasing and D_A,(x)(y —z) <
Au(y) — Au(x), we get

/Rd A ((f;ﬁ(;)x) do <ey /00o ube™ du-D_A, (f) §

o () ()] e ()

Using (3.22), we have

This yields

2K u—d/2
=inf {\: T4 (hy/N) <1} < S ;

WV
_

Similarly, we also have
- w2
a " AT eumd/?)

o ()

Thus, there exists a constant ¢ > 0 such that

u—/2

fa,(u) S A (i)’

This together with (3.21) and (2.2) yields

/w-wm*<”—g>

ot
/ / ul/2A7 Y (cu d/2) st(du) df

A, dt
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R2 oo}
1 1
< / AN w20, (du) + = / LA w2y (du)
0 R R—2 u
=:0L+ I

where Uy is the 1- potentlal measure of S.

Recall that A(t fo s)ds, we have A~! fo s)ds with 3(s) =
For Iy, by Fubml theorem and (2.7), we have

_d

/R 2/ N ) ds Up(du)

—// 1{u<(s/c—2/dARf2}5(3) Uo(du)ds
/ B(s)Uo((0, (s/c)~2/1 A R72))ds

=A" (CRd)Uo((O,R2))+/ Uo((0, (s/¢)*/"))dA™!(s)

cRd
(2<7) A~ (cRY) /°° dA=1(s) < A~ (cRY) /‘X’ dAfl(ctd).
o Y(R) crt ¥((s/c)V/9) ~ Y(R) R ¥(@)
For Iy, again by Fubini theorem, (2.7), (3.8) and (
b :l h }Al(cudﬂ)Ul(du)

R-2
/ / 1{R 2<u<(s/c) 2/d}ﬁ(\/sf) (d )dS

/ l{R—2<u<(s/c)*2/d/\t}r8(5)t_5Ul(du)det

3.9), we get

Sh / s r-2y s ceray U (0, (s/¢)" 24 A)B(s)t2dsdt
(2.7) 1

1 3
< = 1 _n1 t2 dsdt
R Jigoop MR Hosemy T g (o gyt PO 40

1 0o o ctf% 6(5) cR4 B(S)
S {/ 1+¢<t—1>d3+/ct% 1+¢<<s/c>2/d>dS] &

1 1 B(s) T dtds
: / 1+¢ T+ 4 (( 5/0)1/d)/ tedid

_2
d

[ IO

s
c

dA~1(s)
<AL (eRY - / 4 / s
~AT )R 1+w TRy T (/o)
(3.8),(3.9) d

229 AT L(cR%)

T Y(R)

Noting that

/OO dA~ M (et?) /2R dA~ ' (et?)  A7'(cRY) _ A7'(cRY)
r W) T g v(t) T Y@2R) T Y(R)

1
a(A=1(s))"
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Therefore, there is a constant Ry > 1 such that for all R > R > Ry, it holds that

© y © dA-(ctd © dA-1(ctd
/ (e — o). dts/ G s/ dd” (o)
0 R

o0 Sl 90 )
</°° dA~1(t%) (3.10) 1 '
~Jroowlt) o w(R)

When j > log, Ry, by letting R = U=1(2/F1) > 1 and R = ¥~1(2/) > 1, and plugging
(3.23) to (3.15), we obtain

1184 < & < 97J .

H ¥l uHOO ~ Ay (\11_1(2])) ~ HfHA
When j < logy Ry, in view of (3.15), we have

o .
I ulloe S Iflla sap (IGlla S 1flla S 277 fla
j<logy Ro

So we obtain (3.14), and complete our proof. O

3.3.2. Morrey-type inequality for generalized Orlicz-Besov spaces. We also prove a Morrey
inequality for generalized Orlicz-Besov spaces, which will be used in the proofs for our main
results.

Theorem 3.13. Assume S satisfies (®')). If A is an N -function satisfies A(t) > [~ (ct'*2)]?
for some € > 0, then

lull_ 5 < lullgo- (3.24)
%JT B,

Proof. For any u € Bﬁ and j = —1, put hj = 0j4+1 — 0; € La, and u; = ﬁju € Ly. Note
that for any |z| > 2R > 1,

W) =| [ G- o)+ | [ G-

lyl<R lyI>R

Sl allhilpg |, + [[uj1sg [|allhjlla. — 0, R — oo

Therefore, H?)u € CoN Ly, for any u € Bﬁ. Similarly, one can verify that (1 —I—gb(—A))Hj}u =
(1 + ¢(_A))H?}Uj € CoN Ly. Thus,

Yu = Gi(1 + ¢(—A)Yu = G111V (1 + ¢(—A))u, u € BY.
Put f = (14 ¢(—A))u. Following the proof for (3.15), one can verify that

m ~
ule < | [T e tn iy anpal

oo

g ’

[T @ - 2y o
0

[e.e]
oo
SISl [ e e @ - 2l .
0
By our assumption A(t) > [p~!(ct'*¢)]?, we have

A7 (s) < CpTH (s4).
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Using this and following the proof for (3.23), we get
/0 e |pe * (0541 — 05)| . dt
00 —1(.d 00 % /
[T g,
%1[1*1(%) 71)(3) %w—l@j) P (S)

AR SR
YT (Jp1(20)
Here we used the fact that for each b > 0,

T R) (T N(R)
lm ————% = lim ————%& = b%.
R—00 R R—oc ¢ (¢~1(R))
Thus,
=l
20 |0 oo S 1T flLa S lel gy
So we complete the proof for (3.24). O

4. STUDIES OF POISSON EQUATIONS

In this section, we study the Poisson equation (PE) in the generalized Orlicz-Besov space.
Our analysis is divided into two parts: In the first part, we explore the case where the
coefficient a is independent of x. Subsequently, we extended our findings to the more general
case by using the method of frozen coefficients.

4.1. Spatially homogeneous case.
Theorem 4.1. Let A be an N-function or A = oo. Assume (®) holds. Suppose that
a:R? = [0,00) is measurable,
/Rd(l Az]?) a(2)J(2) dz < oo, (4.1)
and there are positive numbers pg, co € (0,1) such that
a(z) = co, forall z € B,,. (4.2)
Then there exists a constant A\g > 0 such that for any A > A\g and any o € R,

Al g + lull pyasa < CllAu = Luf e, (4.3)

provided that u € BX’HO‘. Here C is a constant only depending on d, v, pg, co and a.

Remark 4.2. We would like to emphasize that Theorem 4.1 does not require the assumption
that o > 0.

Proof. Without loss of generality, we can assume that cg = 1 to simplify the analysis. By
utilizing the condition in (4.1), we can identify a Lévy process Z whose infinitesimal generator
corresponds to the operator £. As presented in the proof for Theorem 3.13, for any u € Bfﬁ,
we have

Yy = Gy(A — L)Y u = GAITY (A — L)u.
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Using this and letting f = Au — Lu, we obtain

T4 = HH;?GAfHA - HH;P/O e M (P,f)dt

! A (4.4)
g/ MBI fLa dt < AT £,
0

This yields
Ml oo < 11l g = A~ Lul e (45)
Thus, it remains to show that the second term on the left-hand side of (4.3) can be dominated
by C|[Au — EuHBﬁ,a.
We divide the proof into several steps.

Step 1. We first consider the case that a = 1. In this case, L is the infinitesimal generator
of a subordinate Brownian motion Z; = \/iBgt. It is enough to show

HH;pUHA = HH?/ e M(Pf)dt
0

< C27||05 flla, 5> 0. (4.6)
A

Using the fact that ﬁ;bl'[;/) = Hlp ( = 0), we see that
I (P.f) = P(II} f) = P(IT} L} f).
Thus,
T (P4 < I1Pi(@51 — gl T 1L, (4.7)

due to Young’s inequality (2.4). So our problem boils down to estimating HPt(EjJrl - @j)Hl
(j 2 0). For any R’ > R>> 1, put

o"(z) = R(Rx), o (x) = (R)%o(R'x).
Employing the procedure deducing (3.19), for any t > 0, we have

P - s [ [ (182 )l staw)

VuR (4.8)
</ ! / lo (r)]rddr+/oo lo(r)[rd= Lt dr | s;(du).
~Jo \WVuR Jg ViR
Noting that |o(r)| < 1 Ar~* (Vk > 0), one sees that
1 e 1
< - d—1 < s
N/ Prddr <1A I and /N lo(r)|r® " dr < 1A L VN > 0. (4.9)
Combining (4.8) and (4.9), we obtain
/ e 1
Py(o™ — o </ LA —— ) si(d
17" = 5 [ (18 g ) slaw
(4.10)

oy, 1o (o)
SP(S<R7?)+ B <5t 21{St>R2}>
(t,R) + Ix(t, R).

=1
RSt>

For I, noting that e _11{5t<R_2}, we have

Li(t,R) =P (S; < R7?) < Eexp(l — R2S;) S e (),
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Thus,

< 1
/O R RS 3 (4.11)

For I, in virtue of Lemma 2.9 (i) with 0 = —%, s = R? and f = 1/(A + ¢), and (2.7), we

have -
/ e MI(t,R)d / _ME( lem«z > dt
0

1 [oe)
-/ w ¥ / e P(S, € du) dt R i)

) » (4.12)
:E (0.00)? 1{R*2<u<t}t 2l-])\(du)dt

N|w

1 /OO t~ 1
<— —_—dt < ———.
~“R Jpe2 A+t Y A+ 9Y(R)
Here we use Karamata’s theorem in the last inequality. By (4.10)-(4.12), we get

°° 1
/ MNP = o) dt S R >R>1. (4.13)
0 G(R)’

In view of (4.7) and (4.13), there is a constant jo > 1 such that for any j > jo, it holds that
P v [ .7 (] Y ~ =
ula = [ mpad s [T e R0 - ol a
0 A 0
419 U7 flla
~ oy (397H(2)

Here we choose R/ = 2¢~1(2/71) and R = 1¢=1(27) in (4.13), and use the fact that for each
b >0,

< 279|115 £ a-

) b )
R—0c0 R R0 1/}(1/} (R))
For 0 < j < jo, in view of (4.4), we have

T w4 S 1T £lla S 277011 £ll.a < 27711 £ o

=1.

So we complete the proof for (4.6) when a(z,z) = a(z) = 1.
Step 2. Now assume that a satisfies (4.2) with ¢yp = 1 and py = oo. Let

v(dz) = J(z)dz and v(dz) = (a(z) — 1) J(z)dz.
=0

Since 7 and 7 are two Lévy measures, there are two pure jump Lévy processes Z and 7
associated with 7 and v, respectively. Let P; and P; be the semigroups corresponding to Z
and Z, respectively. Noting that H?Pt f= H?)PtPt f, by Step 1, one sees that

‘ Iy / e M(P,f)dt
0 A

Thus, we get (4.6) in the case that a is bounded below by ¢y > 0.
Step 3. Now suppose a only satisfies (4.2) with ¢y = 1. Set

Lu = /B (u(z + 2z) —u(x)) (a(z)prO (2) + 1320(2)) J(z)dz

PO

7 o0 - . »
< IIH?J‘"HA/0 e M| Pi(@j41 — 25) |l dt < 27711V f| -
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and
Ru = /Rd (u(z + 2) — u(z)) ((a(z) - 1)1350) J(2)dz.

Then L satisfies (4.2) with g = 1 and py = oo. By Step 2 and noting that \u — Lu =
A — Lu + Ru, we get

”“HBﬁvHa < Au— ﬁu”BX"’ < [ Au — EuHBﬁ,a + ||RuHBﬁ,a. (4.14)

Since
[Rflla < ||f”A/I> (1 + la(2)])J(2)dz < [ flla,
Z|ZPo
one sees that

Bl g = sup 27|11 Rl s =
Jz— J

up 27| RITYu| 4
>—1

3 - (4.15)
sup 27411 ul| 4 = ||ul| pw.e-
S sup 1L ulla = [lull gy
Combining (4.5), (4.14) and (4.15), we obtain
a « g - N a | .
Ml oo + el o < C (I = Lull g + il o)
Choosing A9 = 2C', we obtain (4.3) for all A > Ag. This completes our proof. O

4.2. Spatially inhomogeneous case. Before proving our main results, we need to make
some necessary preparations. Under assumption (®), one can verify that there is an integer
N > 1 such that for all s > 1,

12N g) < %¢—1(s). (4.16)

Define

SPF=>_10f, TPg=>_ Sif-Uyg, RY(fg)=> T f-IIg.
1<k k ke~
Here | < k means | < k — N and k ~ [ means |k — | < N. Thus,

f.g:Zﬂgf-ﬂ}pg:T}pg+Tff+Rw(f,9)'
kL

For Ry, Ry > 0 with Ry < Ry, denote Dg, g, := {x € RY: Ry < |z| < Ro}. The following
simple fact will be used frequently: For any two functions f and g whose supports are in Bp,
and Dg, g,, respectively, then

Supp[f * g] g D(Rl*Ro)+,R2+R0‘ (417)
Noting that supp[]:(S}ff)] C By-1(gx-ny and supp[]:(H;fg)] C D%d}—l(?’“),w—l@’““)’ in view of
(4.17) and (4.16), we have
supp [.7: (Slff . H}fg)} =supp {}' <S;ff> *x F <H}fgﬂ - Dgw—l(zk), 2—1(2k+1)
ng—1(2k—N)’ %¢—1(2k+N)~

This yields that
Y(SYf-Tg) =0, if |j — k| > N. (4.18)
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Similarly, one can also verify that

H}”(ZHff-H;bg)_o if j > k+2N. (4.19)

k:k~l

Lemma 4.3. Let A be an N-function or A = co. Let a : R x R* — R be a bounded
measurable function (need not be positive). Assume the linear operator L is given by (1.6),
and (®) are satisfied.

(a) For any 8 > 0, it holds that
I£ullgoo < Cllull gy - sup [lal-; 2)ll4, (4.20)
z€R4

where C' only depends on d, cy,y and 0.
(b) For any o > 0 and 6 € (0,«), it holds that

|, (421
z€R4 2€R4 v

I£ul gy.o < © (IUIIB%M -sup [la(:, 2)llgg + l[ull gy.rvo - sup fla(:, 2)

where the constant C only depends on d, cg, ¥, and 0.
Proof. Set

bou(r) =u(x +2) —u(x), ax(z)=a(z,2).
By definition,

1Y Lu(w) =117 ( S.u(-) a(-, 2)J(z) dz>

Rd
(4.22)
:/ H?’ Z H;f((szu) : Hzpaz (x) J(z)dz =: / Ii(z,2) J(2)dz.
R? kl>—1 R?
We drop the variable x below for simplicity. By (4.18) and (4.19),
L(z)| = I Y [(6.000u) - 10 as]
kil>—1
= (o <Z SIu T a, + Y 0T u T a. + > 6.11)u - H}"az> |
k<1 k>l k~l
(4.18),(4.19)
< Z |6zﬂ}fu . H;/Jaz} + Z lézﬂ;fu . H}baz’ + Z ‘5zﬂ;ﬁ)u . H;paz’
k<l~j 1<k~j l~ksk>5—2N

_. (1) (2) (3)
= L7(2)+ [;7(2) + ;7 (2).

By mean value theorem, we get
1 1
10,11 u(z)| = ’/0 - VH}fu(a:—i—tz)dt‘ < yz\/o (VH}fu(ertz)’ dt.

Thus,

16110 u()| < (|H;fu(x)\ + Pz + z)y) A <\z| /01 ‘VH}fu(:U n tz)‘ dt) .
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This and (3.1) imply that

H(SZHZU : prazllA <||5ZHZ)U||A sup ||H;bazuoo
z

. ’ opad (4.23)
<sup [0 'a oo [T ulla (1A 2w (2541))
z

(i) If @« = 0. Combining inequalities (4.23), (2.8) and (2.9), we get

/Rd TV al()de < Y /Rduazngu.n;ﬁazuAJ(z)dz

k<l~j

—k
(ﬁg HUHB%1 Z 2

k<l~j

(4.23) ,
< 27 sup ||a,
z

¢—1(2k+1) /

1
I2I< Geraremy

|z|J(2) dz+/ J(z)dz (4.24)

1
21> =

. ok
—0j —k k
22" 3 2t (e +2)

k=<l~j

(2.8),(2.9)
S lullgsa supa.
A z

-
SIHUHBK’I Sgp Haz cgz j2 7,

Similarly, noting that # > 0, we have

/Rd HI](?)(z)HAJ(z) dz < Z /Rd Hézﬂ}fu . H;/}azHAJ(z) dz

I<k~j

2k
0l .
Sl gy SLleHazH%ﬂg > 2%k (1/}_1(2k+1)+2k> (4.25)
12k~

Slull gy sup flazllgo,

and
2k:
3 —0lo—k k
L GaTE) Sl suplocly Y 20t (s +2)
R z I~kik>j—2N (4.26)
< 2709,
Sl s g

Combining (4.22), (4.24), (4.25) and (4.26), we obtain (4.20).
(ii) When a > 0, by (4.23) and similar discussions in (i), one can see that

k
(1) J —aj —avok (20 ok
I <27 2@ E 2 +2

/]Rd || j (Z)HA (Z) dz 5 Snga ||<€¢ HUHB%HG o (¢—1(2k+1) >

2 fullggasa sup o g,

k

(2) —aj —Olo—k 2 k

/Rd 11;7 (2)][ad (2) d= $2 HUHB%HQ Sngaszg l<§k '2 2 (¢_1(2k+1) +2 >
~J

527””“”3%“0‘ sngaZ 0
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and
k
3 _ 2
LI ds Sllggare 30 2 (s 24 sup o
R? I~ksk>j—2N z
<20 ] s supla(z, 2)|.
A T,z
Combining the above estimates, we get (4.21). O

Lemma 4.4. Let A be an N-function or A = oo. Suppose that (®) and (A1)-(Az) are
satisfied, then there are universal constants €1 > 0 and Ao > 0 such that for each A = 2Xg
and f € Bﬁ’ﬁ with B € [0, a], the Poisson equation (PE) has a unique solution u € BX’HB,
provided that |a(x, z) — a(0, 2)| < e1 and X\ = A\g. Moreover,

)\HUHBX‘H + H“HB%HB < C”fHBﬁ’B’ for each 8 € [0, ). (4.27)

In particular, it holds that
Mlulleg + llull g+ < Clifllcg, (4.28)
if la(z,2) —a(0,2)] < e1 and A = A, and f € CF.

Remark 4.5. Although the above analytic result relies on a special assumption regarding
the oscillation of a, it is sufficient for us to establish our Theorem 1.4. In the case where
A(t) = oo and s > 0, the space BZ’S can be identified as the generalized Hélder space Cj,
which exhibits the following localization property:
1flleg =< sup [Ifn((- = y))lles,
yER4

where 1 is some smooth cut-off function. The method of frozen coefficients, combined with
the aforementioned result, can be employed to eliminate the requirement that the oscillation
of a is small. We will present a detailed proof of this approach for Theorem 1.1. However,
it should be noted that the localization property can not extend to B ., (see [Tri92]). As a
result, it is unclear whether the assumption on the oscillation of a can be entirely eliminated.

Proof of Lemma 4.4. When a = 1, by the proof of Theorem 4.1, we see that if f € Bﬁ’ﬁ,
then G\ f € BK’HB is a solution to (PE) (VA > 0), and estimate (4.27) holds true. Through
the continuity method, it is enough to prove (4.27), under the premise that u € BX’HB is a
solution to equation (PE). By interpolation theorem, we only need to show (4.27) for § =0
and 8 = a.
Assume u € BZ’HQ. Set f = u— Lu,
ap(z) = a(0,2z) and Lou(z) = /d(u(x + 2) —u(x))ao(z)J(2) dz.
R
Thus,
Au— Lou = (/.: — ﬁo)u + f.

Using Theorem 4.1, we have

Aull oo+ [0l v < € (I = LoJull g + 1l s ) (4.29)

Choosing 0 € (0, «), we have

1—-9 9
la(:, 2) = ao(, 2)llge < fla(s2) = ao( 2)llego ™ lla( 2) — ao(, 2)ligy < co7ey
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By (4.21) and interpolation, we have

1—-8

(£ = Loull goo <Cey *[Ju]| gorta + Cllul| gy.ato
A A A

(4.30)

1—-8
<Oy *lufl gyare + Cllull gy.e-

Combining (4.29) and (4.30), and choosing A > 1, we get

1—96
Ml g + el e < Oy ull gyrva + Clfl g

_o
Choosing ¢ sufficiently small, so that Csi * < 1/2, then we obtain (4.27) for f = a.
The case 5 = 0 can be proved by using (4.20) and following the same procedure above. So
we complete our proof. O

Now we are at the point of proving Theorem 1.1.

Proof of Theorem 1.1. Let x be the nonnegative smooth function with compact support de-
fined in Section 3.1. For fixed zo € R?, define

\E(a) = (T and a2®(a,2) 1= alx, ) — alwo, 2) xe(a).

By definition, a® satisfies that

r—x

a2 (z,2)[ S 1 (4.31)
and for every z € R? and |z — 2/| < 1,
a20(z, ) — a2 (o/, 2)| < Cop? (2 — o). (432)

For simplicity, we omit the superscript xg below. Let v = uy.,

0.f(z) = f(x+2) — f(z) and Lou(z)= 9 3.f(z) a(xo, 2)J(z) dz.

We have
v — Lov
=[fxe —uLloxe] + (Lu — Lou)xe — [Lo(uxe) — (Lou)xe — u(Loxe)]
3 (4.33)
— 30,
i=1
Obviously,
I eg <l fxellog + luloxellos Se llfllog + lulles. (4.34)
Noting that
12(x) = (Lou(x) — Lu(@))x=(z) = — [ Sulw)a(x,2) J(2)dz,
R4
then by (4.31), (4.32) and (4.21), for any 6 € (0, )
1P llcg < erp®(@)lullgara + Cllul greo, (4.35)
where the constant c; is independent with . For 15(3)7 by definition
IO) = [ d.xe(x) 6.ulx) a(zo,2)J(2)dz (4.36)

R4
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and
I3(@) —I1¥y) = | dxe(a) [Sou(z) — S.u(y)] alzo,2)J(2)dz
“ (4.37)
+ / [(5zXa(«T) - 52Xg(y)] (5Zu(y) CL(IL‘(), Z)J(Z) dz.
R4

By (4.36), we have

119 ()] < Jlufloc ( /| _ I9xelelela(ao,2) ()2 42 /| | 1||xguooa<xo,z><f<z>dz)
z|< z|>

Se llulloo-

By (4.37), one can see that
189 () = 18 (y)]

<o (12— y) lulles (’VXeHoo /| 8=+ el /

|z|>1

J(2) dz)

tlz—y (uv%uwuunm /| I [l /

J(2) dz)
|z|>1
<eo™(lz — o) lulles.
Therefore,
11Pcg Se llulles. (4.38)
Using Theorem 4.1, and combining (4.34), we obtain that (4.35) and (4.38),
)‘HUHCg(Be/Q(xo)) + HUHC;M(BE/Q(Q;O))

<Ol grra < Cllvllog + ClliLovlles

<eap(e)||ullgive + Cllullgrve + Cllullcg + Clfllcg
for all A > \y(d, o, ¥, o, po) > 0. Using the fact that

lillgyre < sup lullcgre s, ugay) F Cellulleo:

we obtain

”UHCPHQ(Bs/Q(xO)) < c2p®(e) ::ﬁd HUHC;+‘1(BE/2(mO)) +C (”UHC;W + [lulleg + HfHC;}> :
0

We then fix g¢ sufficiently small, such that cap®(e) < 1/2, so we arrive

sup, (Mullog By atwon + Il gzrags, oy ) < € (Iullgyso + lulleg + 11fllcg ) -
o

This yields

Alellos + lullggre <Cep sup. (Ml .y oo + Ilulloysas,. awon)
0

S (lullgyeo + llullcs + 1 fllcg )
By interpolation, one sees that

Mulleg + llullgiea S [ flleg,
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for all A > Ao(d, a, v, co, po) > 0. O

Proof of Corollary 1.3. Let S be the gamma subordinator, whose Laplace exponent is given
by ¢(s) = log(1 + s). By Proposition 2.10, one sees j(r) < r~%,r — 0. Let

d(z,2) = 2|21, (2) alz, 2).

Then a'(z,2) > co, and [d'(,2)|lcs < lla(,2)[lce < C, where p(r) = w(rl—l) = log(lir_z).
Noting that
a(z, 2) !
Lu(z) = (u(x + 2) —u(x)) —dz = (u(x + 2) —u(x)) a'(z,2)J(z)dz,
By ] Rd
by Theorem 1.1, we obtain our assertion. O

5. MARTINGALE PROBLEM

In this section, we study the martingale problem associated with £. We need to introduce

some necessary terminology.
Let D = D([0,00),R%) be the Skorokhod space of cadlag RY-valued trajectories and let
Xt = Xi(w) = wt (w € D), be the canonical process on it. Set

Dy=(o(X,0<s<t+e), D=0(Dyt>0).

e>0

Definition 5.1 (Martingale problem). Let ju be a probability measure on R%. A probability
measure P on (D, D) is said to be a solution to the martingale problem for (L, i) if}P’oXO_1 =U
and for each f € Cy°,

t
M} = f(X) - f(=) —/ Lf(Xs)ds is a Di-martingale under P.
0
Below we briefly introduce the SDE corresponding to the martingale problem (L, u1). Let
(Q, P, F) be a probability space and N(dr,dz,ds) be a Poisson random measure on R X

R? x R, with intensity measure dr J(z)dzds. Consider the following SDE driven by Poisson
random measure N:

t o0
Xi=z+ / / / 210 a(x,_ ) (r)N(dr,dz, ds). (5.1)
0 JREJO

If la(x, 2) — a(z, 2)| < Cla — y| for any =,y € R?, then

& 2
/Rd/o 1212 (Lj0,a(2,2)) () = Ljo,a(y.2)) (1)) dr J(2)dz < Clz — y|*.

This implies (5.1) admits a unique strong solution (see [App09]). By Itd’s formula, we see
that

FOX) — flo) = /0 /R d /0 T (Xt 2L gax, o (7)) — F(Xa)) N(dr,dz, ds)
=[] U 2 = XX 2) T(e)az ds

—I-/O /]Rd/o (f(Xs— +2) = f(Xs-)) Ljpa(x,_,2)] (T)N(dfr, dz,ds),
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t
:/ Lf(X_)ds + M,
0

where N(dr,dz,dt) = N(dr,dz,dt) — drJ(z)dzdt and Mtf is a martingale. Therefore, when
x + a(x,2) is Lipschitz continuous (uniformly in z), P o X! is a martingale solution to

(L,6z).

Now we are at the point of proving Theorem 1.4.

Proof of Theorem 1.4. Existence: The proof for the existence is standard, for the conve-
nience of the reader, we give the details here. Let n € C°(B) satisfying [n = 1. Set
n"(z) = nn(nx) and a”(z,2) = [a(r —y, 2)n.(y) dy. Let X}* be the unique strong solution
to (5.1) (a is replaced by a"), and P? := P o (X")~!. By the discussion above, P? is a
martingale solution associated with (£",d,), and

£ f(a) = /R (Fa+2) — @) @, 2)T(2) e

We claim that {P?} is tight in £?(D). Then upon taking a subsequence, still denoted by
n, we can assume that P? = P,. For any 0 < 51 < --- < s, <s< ¢ f e C’SO(Rd) and
h; € C*(RY), i€ {1,2--- ,k}, we have

B, { [f(Xt) - [ Ef(Xu)du] f[m-(m}
s t i=1 )
~ lim E { o) - e - [ e adl Hm(xt’;)}

n—00 .
=1

~ lim E { [f(Xt”) - s - [ e du] 1 m-(X{j)}

e i=1
+ lim E { [/t(ﬁn — L) f(X}) du] ﬁhi(Xg)} =0.
5 i=1

Here we use the fact that P o (X™)~! is a solution to (£",6,), and (L" — £)f — 0 uniformly
(since a™ — a uniformly). Thus, P, is a martingale solution to (£, d,).
It remains to show {P7} is tight. Given a bounded stopping time 7, we define

T+1 651
N;(dz) = / / N(dr,dz,ds).
T 0

N,(dz) is a Poisson random measure on R? with intensity measure c,*J(2)dz.
P(IX7,5— X7| > )
<P(|X745 — X7 > & No(Bjyy) = 0) + P(N-(Bjy) 2 1)

T4+0 a(Xs—,2)
/ / / zN(dr,dz,ds)
T By J0
)

<> 1217 (2)dz + 5! / J(2)dz.
CoE J|z|<M |z|>M

< 'E +P(N.(B§;) > 1)
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Letting 6 — 0 and then M — 0, we get sup,, . P(| X7 s — XJ'| > ¢) = 0 (0 — 0). Similarly,

one can also see that sup,, P(|X"| > M) — 0 (M — oo). By Aldous tightness criterion, we
get the tightness of {P7}.

Uniqueness: For any f € Cp°, consider equation (PE) in C’;*a. By Theorem 1.1, equation
(PE) admits a unique solution u € Cp1+°‘. Suppose that (P, X;) (i = 1,2) are two solutions
to martingale problem (£, d,), one can easily verify that

MY = (X)) — u(z) — /0 Lu(X,) dt

is a martingale under P{. This implies
de Mu(Xy)) = — e M\ = L)u(Xy) dt + e M dMY
= — e Mf(X,)dt + e MAMPE.

Taking expectation, one sees
. o0
u(z) :E;/ e MA(X)dt, i=1,2.
0

Thanks to [EK09, Theorem 4.2], PL = P2,
Krylov-type estimate: Let 0 € (0,1 A pp/10) such that

pa(25) <éq,
where ¢ is the same constant in Lemma 4.4. For each y € R, let
a(z, z) if x € Bs(y),
a’(x,z) = 52(x —
(z,2) a<y+|x($_y|g),z> if x € B§(y).

Then a¥ satisfies (L,), (H,) and
|a¥(x, 2) — a¥(y, 2)| < e1.
Let
LYu(x) = /Rd (u(x + 2) —u(x)) a(x,z2)J(z)dz.
Since a¥ also satisfies conditions (A1) and (Asg), by Theorem 1.4 (a), for each y € R?, the

martingale problem (£Y,4,) admits a unique solution (Q,, X¢). Moreover, for each y € R4
and f € C2°, by the proof for Theorem 1.4 (a), we have

Eg, /0 Y F(X3) dt = ugs (y), (5.2)

where u,y is the solution to (PE) with £ replaced by L£Y. Noting that a¥ meets all the
assumptions in Lemma 4.4, we have

lttasl| 1 < Cllfll g0 < Cllf (53)

Combining and (5.2) and (5.3) and using Theorem 3.13, we get

o (5.2) (3.24) 5.3)
Bo, [ e Mf(xat < Clual, e < Clluwlpgs < Clfla (54
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Now let 71 = inf{t > 0: | X; — Xo| > 6} and 7441 = 7 + 71 © 05, It holds that

Qy|y7'1 = Py’g‘l'l’

due to the fact that a¥(-,2)|p,y) = a(-, 2)|ps() and the uniqueness of martingale problem
(L,0y). Suppose that (P,,X;) is the unique martingale solution to (L,u), then for any
non-negative function f € C°,

R _ -
B [ d = [ B, e ) d

1 00
Z/Rdu(dy) E@y/o e Mf(Xy)dt < SupE@y/O e MA(X) dt S| f]]a.
Y

By strong Markov property,

Tht1 Tkl 7100+,
E, / e Mf(Xy)dt =E, / e Mf(X)dt =E, / e AT £(X, 00,,)dt
Th Th 0
T1
=R, e ( / e M f(Xt)dt) 00,
0
T1
=E,, (g”@xw /0 e M f(Xt)dt>

SIFILAE ™™ < [ flla supEye ™.
Yy

To estimate sup, Eye_M’C, using strong Markov property again, we have

E e 2+t =F, e A(+m00n) — |, [efATkEx (eﬂn ° 9Tk|ffm>}
=E, [e_/\T’“EXTke_/\Tl] < <sup Eye_)‘”> Eye *
y

k+1
<K (Sup Eye_’\“) .
y

Thus,

00 > Th41
E, / e Mf(Xy)dt S R, / M (X)) dt
0

k=0 Tk
00 [e%e} k
<Y (SupEye—m) <Y <SupEye—m> |
k=1 N Y k=1 N Y

So the desired conclusion follows if Eye_’\Tl < 1/2 for all y. To achieve this, we choose
g € Cp°, which satisfies g(z) = 0 if 2 € Bg)s, g(x) = 1 if 2 € By and ||[Vglloo < C571. Let
gy(x) = g(xz —y). It is easy to verify that there exists a constant K5 < oo such that

Lgy(x) = Agy(2) < [[Lgylloc < K.
Note that -
E, e‘A”gy(Xn)} —9y(y) = Ey /0 ™M (Lgy — Agy) (Xs) ds.
Since gy(y) = g(0) = 0 and gy(X-,) = 1, Py-a.s., we have
E,e ™ < Ks/\.
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Choosing A > 2K V Ao, we have sup,, Eye*/\T1 < 1/2. Therefore,
00 oo 1
Eu/o M) ALY gp < Iflla,  for all AZ 2KV Ao
k=1

For any A > 0 and p € P(R?),
0 1 >
E#/ e M F(Xy)dt <sup Ey/ f(Xy)dt- Ze_)‘k
0 y 0 =0

A lsupE, / e~ GV () dt < [If]]a/A
Yy 0

So we complete our proof. O

Remark 5.2. For diffusion operators, Stroock and Varadhan showed that if the diffusion
coefficients are uniformly elliptic and continuous, then the corresponding martingale problem
is well-posed (see for instance, [SV07]). Two key ingredients proving the uniqueness are:

(1) (I — A)LLP — L>®, p > d/2;
(2) the LP boundedness of the Riesz transforms (singular integrals).

Following the approach of Stroock and Varadhan to obtain a similar result for £ when the
coefficient a is merely uniformly continuous in x, one would need to establish the bounded-
ness of singular integrals in the Orlicz space L, which satisfies (I + ¢(—A)) 1Ly — L.
Unfortunately, the following example demonstrates that if A grows rapidly, even the Hilbert
transform (the archetypal singular integral operator) may not be bounded in L: let d = 1
and H be the Hilbert transform. Set I = (0,1) and A(t) = ¢ — 1. Then

Hx(z) = log

_r
(z—1)|
For each A > 0, we have

2
et

[atmaly = [ a0 e mate) > i [ o=

0 1 -
Thus, it appears that we may need to explore new frameworks to address this problem when
a does not satisfies (Az).

We conclude this section by providing the proof of Corollary 1.5.

Proof of Corollary 1.5. The existence of a weak solution to (1.7) follows from standard argu-
ments under the assumption that the coefficient is continuous and bounded.

For the uniqueness, let S be the gamma subordinator, whose Laplace exponent is given by
¢(s) =log(1 + s). Under the assumption that o is non-degenerate, as presented in Example
2, the generator operator L, associated with (1.7) is given by (1.8). In Section 2.3, we
have verified that the jump kernel of the variance gamma process and the function a satisfy
conditions (®) and (A1)-(Az), respectively. Since any weak solution to (1.7) is also a solution
to martingale problem (L, d;), in the light of Theorem 1.4, (1.7) admits a unique solution.
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For (1.10), set A(t) = e’ — 1 with 8> 1. Then [t (£19))4 = (e — 1)%/2 < A(t), for
all £ > 1 and some € € (0,3 — 1). Thanks to Theorem 1.4 (inequality (1.9)), we obtain that

E, /Oooe_’\tf(Xt)dt gfinf{)\ 50 /RdA(f(x)/)\) dz < 1}

—(;inf{A >0 /Rd (exo [(F@)/)?] ~1) dor < 1}.

APPENDIX A. REMARKS ON A THEOREM BY R. BASS

This section extends the main results of [Bas09] on stable-like operators using Littlewood-
Paley theory and scaling techniques, and emphasizes that it is more natural to study a priori
estimates in the %° space. We also observe that the function space X mentioned in Section 1.2
(aimed to replace €®) contains unbounded and discontinuous functions, so it is not suitable
for the problems we care about. We will also show that techniques that have proven to be
successful for stable-like operators can not yield satisfactory results for our main problem of
concern.

To begin, we review some fundamental concepts from classical Littlewood-Paley theory.
Let x be the same smooth function defined in Section 3.

P(&) = x(&) — x(26).
It is easy to see that ¢ > 0,
suppp C C := Bl\B% and (p(l‘):lif.%'EB%\B%. (A.1)
Operators A; is defined by
NP C L R
T F @ ED, iz
Definition A.1 (Holder-Zygmund space). Assume that s € R, let €*° denote the collection
of all distribution f satisfying

[ fllgs := sup 27°(|A; flloe < o0
j>—1

The following result is well-known.

Theorem A.2 ([BCD11, Theorem 2.36]). Assume s > 0 and s ¢ N, then €° is the usual
Holder space and
[VFIf(z) - VEI7(y)l

\/ = yl|* ]

¢ = || fllos + sup
TH#Y

Let v be a non-degenerate a-stable measure, i.e., for each ¢ € R\ {0},

/ - 25 (de) > 0.
Sd—1

Here X is the spectral measure of v, i.e.

dr

l/(dZ) = m

Y(do), z=ro.
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Let a is a bounded positive function on R? x R?. The operator .%, is defined by
Lyu(x) = / (w(z + 2) —u(z) — Vu(z) - 214e01,2)) alz, 2)r(dz)
R4

when a € (0,2) and o # 1. If a = 1, we always assume [g4_, 0 a(z,70)X(do) = 0 and define

Loula) = /R (u+2) — ulz) - Vu(e) - 215,(2)) alz, 2)(dz).

The following result is a generalization of Proposition 4.2 and Proposition 4.3 in [Bas09].
Note that here we do not need to assume v is absolutely continuous with respect to Lebesgue
measure.

Lemma A.3. Let ¢y € (0,1). Suppose v is a non-degenerate a-stable measure. Assume that
a only depends on z and ¢y < a < cal, then for each A > 1,8 € R, there is a constant
C=C(d,v,a,B,cy) such that

Mlullgs + [[ullgars < CllAu — Zoullgs. (A.2)

Proof. We only prove the case a # 1 here.
Step 1. Let

A= {a €L®RY) : ¢ <alz) <cgl,z € ]Rd}.
We first prove that for any v € .7/(R?) satisfying supp © C C = By \ Bs, it holds that
8
|v]|oo < C inf ||-Z40]|co- (A.3)
acA
Here C'is a constant independent of on v.

Assume (A.3) does not hold. Then, there is a sequence v,, such that v,, is supported on C,
and a sequence a, € A such that

1= vnlloo = nll-Za, valloo- (A.4)
Let h = F Y(x (/2) — x(4+)), where x is the same function in Section 3. Noting that
(x(-/2) — x(4-))v, = v, we have

on(x) = [ h(z = y)oa(y)dy.
Rd

So for any k € N,
IV 000 = V*h % valloo < IVER[I1[[0nloo < Ch- (A.5)

By Ascoli-Azela’s lemma and diagonal argument, there is a subsequence of {v,,} (still denoted
by vy, for simplicity) and v € Cp° such that V*v,, converges to V¥v uniformly on any compact
set. Let xr(-) = x(-/R). For any ¢ € .7(R%),

‘/qb 0| < [1oxr- =0l + [ 1601~ xn)(wn — 0

<lollzillon = vllLo(Byg ) +2 sup |d(z)].
Letting n — oo and then R — oo, we get

|z|>R
(p,v) = (p,u), VYo e Z(RY).
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Here (,) denotes the dual pair of .(R?) and .#/(R%). That is to say v, — v in ./(R%) and
consequently, v, — o in ./(R%). For any ¢ € .%(R?) supported on R¥\C, we have

n—oo
which means ¢ is also supported on C.
On the other hand, note that a,v is a sequence of Radon measures on R%\{0}, and

sup,, [ an(2)r(dz) < co'w(K) < oo for each compact subset K in R¥\{0}. Thus, there
is a subsequence of a,, (still denoted by a,, for simplicity) such that

anv — vp and ag = dvg/dv € [co, ¢y ] (A.6)

Using (A.4)-(A.6) and the fact that V*v,, — V*v uniformly on each compact subset, we have

Loov(z) = /]Rd (v(z + 2) —v(2) = V() - 21ae(1,2)) a(z)v(dz)

= ILm / (vn(z + 2) —vn(x) = Vup(z) - 21ae(1,2)) an(2)v(d2)
n—oo Rd
(A.4)
< lim M =0.

n—00 n

This implies 0 = ZF) = g, 0. Since for £ # 0,

Re(tha (€)) = / (1 - cos(z - £)) ap(2)(dz) 2 / 2 €[2(dz)

R4 |z|<

T
4[¢|
s

_/4 | rladr/ o - €]25(do) > 0,
0 Rd-1

we get that the support of ¢ is the origin. This contradicts the previous conclusion that
supp v C C. So we complete the proof for (A.3).

Step 2. Suppose u € .7/ (R?%) and supp @ C AC. Let v(z) := u(A"'z) and a*(2) = a(A712).
By the scaling property of v, we get

Zav(x) _/]Rd (u(A "tz + A7) —u(Zz) — Vu(ATH(2)) - (A_lz)lae(m)) aM2)v(dz)

:/Rd (u(/\_lx +2) - u(/\_lw) — Vu()\_l(a:)) . z’lae(l,g)) a(Z)A\"v(d?)
=\ L) (A t).
Thus, by (A.3), we get
[ulloo = [[vlloo < CllLorvloe = CA || Lol co, (A.7)

provided that supp @ € AC.
Step 3. Like the proof for Theorem 4.1, it is easy to see that for each j > —1,

MAjulloo < AAju = Lol julloo.
By (A.7), for any j > 0,
2| Ajulloo <OZaljulloo < OMAjulloo + ClIAAju — LaAjul
<AAju — LA ju| o
Thus, for all A > 1 and 8 € R, we get (A.2). O
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Theorem A.4. Let v be a non-degenerate a-stable measure with o € (0,2). Suppose that
there exist constants co and y € (0,1), such that co < a < cg' and sup,ega ||a(-, 2) |l < ¢t
then for any A\ > 0 and B € [0,7], there is a constant C = C(d,v,«, 3,7,co) such that

Mullgs + llullgatrs < CliAu — Lyullsgs.

With Lemma A.3 at hand, utilizing the method of frozen coefficients as before, we can
prove the case that a is a positive function on R? x R?. Since the proof for this result is just
a repetition of the proof of Theorem 1.1, we omit it here.

We point out that the approach used in the proof of Lemma A.3 cannot be directly extended

to the case of v(dz) = lTl‘g )dz and it may not be possible. One significant hurdle arises

from the need to obtain the desired regularity estimate, which requires the use of the -
decomposition with (R) =< log R (R — oc0). However, when attempting to repeat the same
procedure, it becomes apparent that Step 2 in the proof for Lemma A.3 is invalid in the
current situation.

APPENDIX B. A REMARK ON SPACE 2%

In this section, we show that 2¢ given by (1.11) may contains unbounded discontinuous
functions, even if s > 0.

Proposition B.1. Let 2! be the function space given by (1.11). Then 2+ ¢ L.

Proof. We provide an example to demonstrate that 2! encompasses unbounded, discontin-
uous functions.

Let ¢ € .7(R%) such that F(¢) € C(B3\B1) , F(¢) € [0,1] and F(¢) =1 on Bu\Ba.
Define ) °
Z] (2 x#0
flz) =4 =1
0, z =0.

Due to (A.1), F(¢)p = F(¢). Thus,
FE)@(277€) =279 (F(9))(277€)
=j 1277 F(6)(27¢).
This yields

sup max{1, j}{|A; flloc = sup 1627 )]l = 1¢ll0 < oo
jz izl
Therefore, f € 2%

On the other hand, since ¢ € .#(R%) and

o) = | [ FOO<a| < [ Fo)eas=o0) >0
there are constants g, 5 € (0,271) such that ¢(z) > 2e¢, when |z| < §. Now put § := §}°
For any = € Bs\{0}, set j, := [—log, |z|]. It holds that
Clogje 2 6(0) > j7'> > j'6(2z) > olog ja (B.1)

1<5<a 1<j<Je+logy do
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Noting that |¢(2/z)| < C(2/|z|)~N if j > j., we get

i@ <) e NN <0t < 1. (B.2)
J>Jje J>Jje
Moreover,
> i~ p(272)| < —C'log, &o. (B.3)

jz+10g2 6O<j<jz
Combining (B.1)-(B.3), one sees that for any = € Bs\{0},

f(@) > eolog jz = C > T loglogy |o| ' — C

and
|f(2)] < Cloglogy |z|~! + C.
This implies f ¢ L> and f € L'(By).
To sum up, we see that f € (21N LL )\L*>. O
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