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Abstract. We consider the linear non-local operator L denoted by

Lu(x) =

ˆ
Rd

(u(x + z)− u(x)) a(x, z)J(z) dz.

Here a(x, z) is bounded and J(z) is the jump kernel of a Lévy process, which only has

a low-order singularity near the origin and does not allow for standard scaling. The aim

of this work is twofold. Firstly, we introduce generalized Orlicz-Besov spaces tailored to

accommodate the analysis of elliptic equations associated with L, and establish regularity

results for the solutions of such equations in these spaces. Secondly, we investigate the

martingale problem associated with L. By utilizing analytic results, we prove the well-

posedness of the martingale problem under mild conditions. Finally, we obtain a new Krylov-

type estimate for the martingale solution through the use of a Morrey-type inequality for

generalized Orlicz-Besov spaces.
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1. Introduction

Over the past two decades, extensive research efforts have been dedicated to investigating a

class of non-local operators related to jump Markov processes, called α stable-like operators,

which can be formulated as:

L u(x) =

ˆ
Rd

(u(x+ z)− u(x)−∇u(x) · z1B1(z))
a(x, z)

|z|d+α
dz, α ∈ (0, 2) (1.1)

(cf. [Bas88]). Here a : Rd × Rd → R is a bounded measurable function, and u ∈ C∞b . When

a is smooth, it is known that there exists a pure jump Markov process X generated by L ,

and a(x, z)|z|−d−α is the intensity of jumps from x to x+ z (cf. [Jac05]).

The exploration of regularity properties for linear and non-linear equations corresponding

to the above non-local operators has been the subject of extensive investigation. In particular,

Schauder estimates for linear equations were investigated in [BK15, Bas09, DK13, LZ22,

MP14], while the non-linear cases were studied in [DJZ18, DZ18]; Lp-estimates for non-local

equations are available in [DJK23, DK12, MP92, Zha13]; Harnack inequalities for positive

L -harmonic functions and Hölder continuity of L -harmonic functions were first established

in [BL02] under the assumption that the function a satisfies certain boundedness conditions.

For more related results, readers can refer to [CCV11, CS09, CK03, DK20, Kas09] and the

references therein.

In the context of jump Markov processes, several studies have focused on the martingale

problem for L given by (1.1), including [AK09, BT09, CZ16, MP14], among others. Related

problems involving stochastic differential equations driven by rectilinear α-stable processes

were also explored in [BC06] and [CZZ21].

In this paper, we consider a class of non-local operators including the following one:

Lu(x) =

ˆ
Rd

(u(x+ z)− u(x)) a(x, z)
1B1(z)

|z|d
dz. (1.2)

Here a : Rd×Rd → R is a non-negative bounded measurable function and B1 is the unit ball

in Rd.
Comparing (1.1) and (1.2), one can roughly think of (1.2) as being about the “α = 0” case,

which turns out to be a more challenging situation. Although there is limited research on this

type of operators compared to the stable case, we have noted that several significant papers

have examined issues related to operators like (1.2) from various perspectives, highlighting

their important applications in different fields. Notably, Šikić-Song-Vondraček [ŠSV06] first

studied the potential theory of subordinate Brownian motions with geometric stable subordi-

nators, whose generator is given by log(I+(−∆)α/2) (below we will see that log(I+(−∆)α/2)

is a variant of L). They established the asymptotic behaviors of the Green function and the

Lévy density of these processes. Among the PDE articles, Chen-Weth [CW19] demonstrated
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that
d

ds
(−∆)su(x)

∣∣∣
s=0

= log(−∆)u(x)

=− cd
ˆ
Rd

(u(x+ z)− u(x))
1B1(z)

|z|d
dz − cd

ˆ
|z|>1

u(x+ z)

|z|d
dz + ρdu(x),

where cd and ρd are constants only depending on d. So the dominating term of d
ds(−∆)s

∣∣
s=0

is −cdL, as defined in (1.2) with a = 1. In the same work, the authors studied the eigenvalue

of Dirichlet problem for the logarithmic Laplacian. Later, Jarohs-Saldaña-Weth [JSnW20]

offered a novel look at the fractional Poisson problem via the logarithmic Laplacian given

above. We also mention that there is some literature revealing the importance of logarithmic

regularization operator T := log−1(eI − ∆) (T−1 is also a variant of L). For instance, T

is widely used in the studies of the local (global) well-posedness of the regularized inviscid

models, such as the regularized 2D Euler equation, the surface quasi-geostrophic equation,

and the Boussinesq equations (see [CW12] and the references therein).

Our work is partially inspired by Kassmann-Mimica[KM17], where Kassmann and Mimica

considered a much larger class of non-local operators including (1.1) and (1.2). To overcome

the difficulties arising from the lack of the scaling invariant property of L, they introduced a

new intrinsic scale, which can be used to establish a growth lemma for L and a modification

of hitting probability estimate for Markov process corresponding to L. As an application,

log−β(1/r)-order (for some 0 < β < 1) regularity estimate for solutions to non-local elliptic

equation Lu = f was obtained under the assumption that the coefficient a only satisfies

some boundedness conditions (see also [Mim14] for the case a = 1). In parallel, the study

conducted by Chen-Zhang [CZ14] delves into parabolic equations with drift terms. However,

an unresolved question remains: can the continuity modulus of u reach log−1(1/r) when we

impose continuity conditions on a, along with the condition that Lu ∈ L∞?

On the other hand, while the well-posedness of the martingale problem for the α stable-

like operator L (0 < α < 2) as defined in equation (1.1) has been extensively studied in

various literature, to the best of our knowledge, there is a notable absence of research on the

martingale problem for L. However, the existence and uniqueness of martingale solutions

associated with L appear as premise assumptions in some works, such as [CZ14] and [KM17].

So it is necessary to provide sufficient conditions for the establishment of these assumptions.

Therefore, in this paper, we aim to address the following two questions:

(Q1) Does the solution u to the equation Lu = f exhibit additional smoothness under certain

continuity conditions satisfied by a?

(Q2) Is it possible to identify a unique strong Markov process X, for which the infinitesimal

generator matches L when acting upon smooth functions, even when a only meets some

minimal conditions?

Recall that, for a second order, uniformly elliptic operator Au =
∑

i,j aij∂iju, the standard

Schauder estimates and Lp-estimates are as follows:

(a) For any α ∈ (0, 1), there is a constant C such that for each u ∈ C2,α,

‖u‖C2+α 6 C (‖Au‖Cα + ‖u‖∞) ,

provided that a ∈ Cα;

(b) For any p ∈ (1,∞), there is a constant C such that for each u ∈W 2
p ,
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‖u‖W 2
p
6 C (‖Au‖p + ‖u‖p) ,

provided that a is uniformly continuous (see [HL11]). Both of these results are useful in the

study of diffusion processes. In particular, (b) can be directly used to prove the uniqueness

of the martingale problem corresponding to A when a is merely continuous (see Stroock and

Varadhan [SV07]).

Following the path of Stroock and Varadhan, in response to (Q1) and (Q2), in this work,

we

• offer a series of analytical results for the elliptic equation

λu− Lu = f

encompassing Schauder-type estimates (see Theorem 1.1 (a) below).

• construct the strong Markov process associated with L (see Theorem 1.4).

• provide an a priori estimate for the solutions to the corresponding elliptic equation

within a generalized Orlicz-Besov space (see Lemma 4.4), facilitating the derivation

of a Krylov-type estimate (or occupation time estimate) for the jump processes (see

Theorem 1.1 (b)).

1.1. Main results and examples. Although an important example of an operator we have

in mind is (1.2), we will consider a more general class of non-local operators that naturally

arise from jump Markov processes. To state our main theorems, we must first introduce some

fundamental concepts from probability theory. Specifically, let S = (St)t>0 denote a driftless

subordinator, which is a Lévy process with non-decreasing paths and non-negative jumps.

Its behavior is fully characterized by its Lévy measure Π, defined on (0,∞), satisfying the

condition
´∞

0 (1 ∧ t) Π(dt) <∞. We assume that the Laplace exponent for S is given by

φ(s) = − log Ee−sS1 =

ˆ ∞
0

(1− e−st)Π(dt) = s

ˆ ∞
0

e−stΠ((t,∞))dt. (1.3)

Let B be a d-dimensional Brownian motion independent of S. Set

Zt =
√

2BSt ,

which is a pure jump Lévy process known as the subordinate Brownian motion corresponding

to S. Its jump kernel J(z) is rotationally symmetric, meaning that there is a function

j : (0,∞)→ (0,∞) such that

J(z) = j(|z|) =

ˆ ∞
0

(4πt)−
d
2 e−

|z|2
4t Π(dt). (1.4)

The Lévy exponent of Z is given by the formula

ψ(ξ) := − log Eeiξ·Z1 = φ(|ξ|2).

With a slight abuse of notation, the function ψ can be viewed as a function from R+ to R+.

Given ψ, we put

ρ(r) = ρψ(r) :=
1

ψ(r−1)
. (1.5)

We study the following spatial inhomogeneous non-local operator:

Lu =

ˆ
Rd

(u(x+ z)− u(x)) a(x, z)J(z) dz. (1.6)
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Our assumptions on φ (or Π) and a are

Assumption 1. (Φ) : φ is a slowly varying function at infinity (see Definition 2.7) and

lims→∞ φ(s) =∞;

(A1) : There are positive real numbers ρ0, c0 ∈ (0, 1) such that

a(x, z) > c0, for every x ∈ Rd, z ∈ Bρ0 = {x ∈ Rd : |x| < ρ0}; (La)

(A2) : There are real numbers α > 0, c0 ∈ (0, 1) such that

‖a(·, z)‖Cαρ 6 c
−1
0 , for every z ∈ Rd, (Ha)

where ρ is given by (1.5) and Cαρ is the generalized Hölder-type space defined in Section

3 (Definition 3.5).

We emphasize that many important examples satisfy the above conditions, such as the

core examples in this paper: log(I −∆) and L in (1.2).

We now can formulate our first main result:

Theorem 1.1 (Schauder-type estimates). Suppose that φ satisfies (Φ), and a satisfies (A1)-

(A2). Then there exists a constant λ0 > 0 such that for each λ > 2λ0 and f ∈ Cαρ , the

following Poisson equation

λu− Lu = f (PE)

admits a unique solution in C1+α
ρ . Moreover, for any β ∈ [0, α],

λ‖u‖
Cβρ

+ ‖u‖
C1+β
ρ
6 C‖f‖

Cβρ
,

where C only depends on d, ψ, ρ0, c0, α and β.

Remark 1.2. (i) The method employed in this article is quite robust. With some modi-

fications, most of the results can be readily extended to the case where φ is a general

regularly varying function (see Definition 2.7). However, for the sake of readability of

the article, we only consider the case where φ is slowly varying at infinity.

(ii) ρ(|x− y|) can be regarded as the “intrinsic” distance between x and y, corresponding to

the operator L. Consider the example where φ(s) =
√
s, then L = −

√
−∆ and ρ(|x−y|)

represents the usual Euclidean distance. In this context, the result analogous to Theorem

1.1 is: for any α ∈ (0, 1),

‖u‖C1+α 6 C
(
‖
√
−∆u‖Cα + ‖u‖L∞

)
,

which was proved by Bass in [Bas09].

(iii) In this paper, we also establish some estimates for (PE) in Orlicz-Besov spaces, consid-

ering cases where a is spatially homogeneous or satisfies a small oscillation condition.

Refer to Theorem 4.1 and Lemma 4.4 for details.

Theorem 1.1 implies that

Corollary 1.3. Let c0 ∈ (0, 1), α > 0 and ρ(r) = 1/ log(1 + 1
r ). Suppose that c0 6 a 6 c−1

0

and |a(x, z)− a(x′, z)| 6 c−1
0 ρα(|x− x′|), then for each β ∈ [0, α], it holds that

‖u‖
C1+β
ρ
6 C

(
‖Lu‖

Cβρ
+ ‖u‖∞

)
, ∀u ∈ C1+β

ρ .

Here L is the operator defined in (1.2), and C only depends on d, ρ0, c0, α and β.
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In Section 2.3, we will verify that the following key examples satisfy our assumptions.

Example 1. One notable example of S is the gamma subordinator, whose Lévy measure,

density and Laplace exponent are given by

Π(dt) = e−tt−1dt, P(St = u) =
1

Γ(t)
ut−1e−u and φ(s) = log(1 + s),

respectively. In this case, the process Z =
√

2BSt is called the variance gamma process whose

infinitesimal generator is

Lu(x) = − log(I −∆)u(x) =

ˆ
Rd

(u(x+ z)− u(x))
dz

|z|d`(|z|)
.

Here ` : (0,∞)→ (0,∞) satisfies `(r) � 1 (r → 0+) (see more details after Proposition 2.10).

Example 2. Another example is the infinitesimal generator of the solution to stochastic

differential equation (SDE) driven by variance gamma process Zt =
√

2BSt:

dXt = σ(Xt−) dZt, X0 = x. (1.7)

Assume that σ : Rd → Rd×d is invertible. Then the infinitesimal generator Lσ of X is

formulated by

Lσu(x) =

ˆ
Rd

(u(x+ σ(x)z)− u(x))
1

|z|d`(|z|)︸ ︷︷ ︸
J(z)

dz

=

ˆ
Rd

(u(x+ z)− u(x))
|z|d`(|z|)

| detσ(x)| · |σ−1(x)z|d`(|σ−1(x)z|)︸ ︷︷ ︸
a(x,z)

J(z)dz.

(1.8)

When σ is ρα-continuous and c0|ξ| 6 |σξ| 6 c−1
0 |ξ|, for all ξ ∈ Rd, then a(x, z) satisfies

(A1)-(A2) (see the discussion after Proposition 2.10).

Although we consider general non-local operators with low singularity kernels in our study,

it is worth mentioning that one of examples we have in mind is the operator L defined in

(1.2).

Example 3. We can rewrite L in (1.2) as

Lu(x) =

ˆ
Rd

(u(x+ z)− u(x)) a(x, z)1B1(z)`(|z|)︸ ︷︷ ︸
ã(x,z)

1

|z|d`(|z|)︸ ︷︷ ︸
J(z)

dz,

where J is the jump kernel of the variance gamma process given in Example 1. ã satisfies

(A1)-(A2) if a satisfies the same conditions, due to the fact that `(r) is bounded from below

and above (see also the discussion after Proposition 2.10).

Our second main result concerns the weak well-posedness of equation (1.7) and relies on

the martingale problem associated with non-local operators of the form (1.6), which includes

Lσ.

Theorem 1.4. Suppose (Φ) and (A1)-(A2) are satisfied. Then



Non-local Operators with Low Singularity Kernels 7

(a) for each x ∈ Rd, the martingale problem (L, δx) has a unique solution Px, and the family

(Px, X)x∈Rd forms a strong Markov process on Rd;
(b) for any N -function A (see Definition 2.1) satisfying A(t) &ε [ψ−1(t1+ε)]d (∀ε > 0), the

following Krylov-type estimate is valid

Ex
ˆ ∞

0
e−λtf(Xt) dt 6 C‖f‖A/λ, λ > 0 and f ∈ LA. (1.9)

Here ‖f‖A is the Luxemburg norm of f with respect to A (see Definition 2.3), and C does

not depend on f .

Corollary 1.5. Let Z be the variance gamma process. Let c0 ∈ (0, 1), α > 0 and ρ(r) =

1/ log(1 + r−1). Suppose c0|ξ| 6 |σξ| 6 c−1
0 |ξ|, for all ξ ∈ Rd, and

|σ(x)− σ(x′)| 6 c−1
0 ρα(|x− x′|).

Then SDE (1.7) has a unique weak solution X. Moreover, for any λ > 0 and β > 1, X

satisfies

E

ˆ ∞
0

e−λtf(Xt) dt 6
C

λ
inf

{
λ > 0 :

ˆ
Rd

(
exp |f(x)/λ|β − 1

)
dx 6 1

}
, f ∈ LA. (1.10)

Here the constant C does not depend on f .

Remark 1.6. (i) When we seek to compare the classical results of Stroock-Varadhan for

diffusion processes (see [SV07]) with the aforementioned findings, a natural question

emerges: can we relax the assumption (A2) in Theorem 1.4 to the point where x 7→
a(x, z) is only uniformly continuous? We believe the answer is yes, but currently, we

do not have a solution to this problem. One obstacle is that the singular integrals may

not be bounded in general Orlicz spaces (see Remark 5.2 below for further discussion);

(ii) The inequalities (1.9) and (1.10) are commonly referred to as Krylov-type estimates. For

nondegenerate Itô processes, the dominant term on the right-hand side of the inequality

is C‖f‖Ld/λ, which can be derived from the ABP maximal principle (see [Kry09]). On

the other hand, for the Markov process associated with L, the “diffusion” rate of the

process is exceedingly sluggish, causing the occupation time E0

´ 1
0 1Br(Xt) dt to decay

more slowly than rs, for any s > 0, as r → 0. Consequently, we require a stronger

integrability condition for f in this case.

(iii) By leveraging the transformations outlined in Example 2, and using Theorem 1.4 we can

address the weak well-posedness of SDE (1.7) driven by general subordinate Brownian.

However, this approach requires verifying that `(r) is Hölder continuous near r = 0, a

condition that is generally non-trivial to validate. In some specific cases, asymptotic

analysis of `(r) near the origin offers a practical pathway to address this requirement

(see more discussion after Proposition 2.10).

1.2. Approach. As mentioned before, by comparing (1.1) and (1.2), one can roughly inter-

pret (1.2) as dealing with the “α = 0” case, which turns out to be more challenging. Two of

the reasons for this are:

(1) Considering the nearly integrable nature of the kernel |z|−d1B1(z) (indeed z 7→ |z|−d1B1(z)

is in weak L1 space), it can be intuitively predicted that the regularity improvement of

L−1 will be rather weak. As a result, it seems difficult to deal with such operator using

standard elliptic theory;
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(2) Although when a = 1, operator L corresponds to a nice Lévy process Y , it is essential to

highlight that Y does not exhibit scaling invariance, a distinctive characteristic that sets

it apart from α-stable processes. The lack of scaling invariance introduces a substantial

challenge in the study of these Markov operators, as it renders the conventional scaling

techniques, highly effective for α stable-like operators, but ineffective in this context.

In this work, we mainly use a modified Littlewood-Paley type decomposition and some tools

from probability theory to deal with our two issues. In order to demonstrate the robustness

of our approach, in Appendix A, we apply the classic Littlewood-Paley theory and scaling

techniques to reprove and extend the main result of [Bas09] for stable-like operators. As can

be seen from our proof, it is convenient to consider Schauder-type estimates in the Hölder-

Zygmund space C s. Here C s is defined using ∆j , which is called the non-homgeneous dyadic

blocks (cf. [BCD11]). When s > 0 with s /∈ N, it is well known that C s coincides with the

usual Hölder space Cs.

Naturally, we attempt to extend the above mentioned idea to the study of L, but immedi-

ately face difficulties. The usual dyadic decomposition is no longer applicable to the situation

we are concerned with. For example, for the operator L = − log(I −∆), a naive substitute

of C s is the function space X s defined by

X s =
{
u ∈ S ′(Rd) : sup

j>−1
(2 + j)s‖∆jf‖∞ <∞

}
(1.11)

(see [CW12]). However, as we demonstrate in Appendix B, X 1 contains unbounded dis-

continuous functions. Thus, classical decomposition theory is no longer applicable to the

problems we are concerned with.

To overcome the aforementioned obstacle, we leverage the concept introduced in [KM17]

and propose a novel decomposition for distributions, which we refer to as the “intrinsic dyadic

decomposition” or “ψ-decomposition” (where ψ denotes any positive, increasing function,

though we ultimately choose it as the Lévy exponent of Z for our purposes). This new

decomposition replaces the role of ∆j with the ψ-dyadic block Πψ
j , which is defined in Section

3.1. Additionally, the generalized Orlicz-Besov space Bψ,s
A (as presented in Section 2.1)

supplants the position of the Besov space Bs
p,∞ in classical theory. One of the key observations

in proving Schauder-type estimates is Theorem 3.6, which serves as an analogy to Theorem

A.2 and establishes that the generalized Hölder space Csρ and Bψ,s
∞ are consistent.

The second issue at hand pertains to the inadequacy of scaling methods in proving Schauder

estimates for the very low-order operators (further details are provided in Appendix A).

Consequently, we begin by focusing on a specific subset of non-local operators, namely the

infinitesimal generators of subordinate Brownian motions with slowly varying symbols. Using

the favorable analytical properties of the subordinator S and the Gaussian kernel, we establish

the desired a priori estimates in Orlicz-Besov spaces (as stated in Theorem 4.1). Subsequently,

we gradually expand these estimates to encompass the general case using classical techniques

developed for differential operators.

Regarding the martingale problem associated with L, following [SV07], one can see that

well-posedness is a consequence of the solvability of (PE) in generalized Hölder spaces. How-

ever, certain crucial properties of the Markov process corresponding to L cannot be inferred

from estimates in Hölder-type spaces. For example, such estimates do not inform us whether
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the occupation time
´ T

0 1B(Xs)ds is nicely upper or lower bounded. To address this, we

turn to L∞-estimates for (PE) under the assumption that f belongs to some Orlicz space.

The L∞ bounds for solutions to (PE) are derived via a Morrey-type inequality (3.24) and

an a priori estimate for solutions in Orlicz-Besov spaces (as described in Lemma 4.4). We

note that although Lp-estimates can also be established (see for instance [KP25]), they are

inadequate for obtaining the probabilistic results we require since the following embedding

result fails for any p <∞: [I + log(I −∆)]−1Lp ↪→ L∞.

Organization: The paper is organized into several sections. Section 2 provides a review

of Orlicz spaces, slowly varying functions, and some important properties of subordinators

with slowly varying Laplace exponents. In Section 3, we introduce the ψ-decomposition,

generalized Orlicz-Besov spaces, and present the proof of Theorem 3.6. This section also

includes crucial Morrey-type inequalities. In Section 4, we present the proof of Theorem 1.1

and Corollary 1.3. Section 5 investigates the martingale problem associated with L. Finally,

to illustrate the technical difficulties we mentioned above and the need to introduce the new

dyadic decomposition, we offer an appendix including a brief discussion on a theorem by Bass

[Bas09] and a remark on the space X s.

Notations. Reciprocal of f is denoted by 1
f and f−1 denote the inverse function of f .

The letter c or C with or without subscripts stands for an unimportant constant, whose value

may change in different places. We use a � b to denote that a and b are comparable up to a

constant, and use a . b (a & b) to denote a 6 Cb (a > Cb) for some constant C.

2. Preliminaries

2.1. Orlicz space. In this section, we review some basic facts about Orlicz space. Most of

the results can be found in [AF03, Chapter VIII].

The notion of Orlicz space extends the usual notion of Lp space. The function tp entering

the definition of Lp is replaced by a more general convex function A(t), which is called an

N -function.

Definition 2.1. Let α(t) be a real valued function defined on [0,∞) and having the following

properties:

(a) α(0) = 0, α(t) > 0 if t > 0, limt→∞ α(t) =∞;

(b) α(t) is nondecreasing;

(c) α(t) is right continuous.

Then the real valued function A defined on [0,∞) by

A(t) =

ˆ t

0
α(s) ds, t > 0

is called an N -function.

Typical examples of N -functions include A(t) = tp for 1 < p < ∞ and A(t) = et
β − 1 for

β > 1.

The Legendre transform of a convex function A on [0,∞) is given by

A∗(s) := sup
t>0

[st−A(t)]. (2.1)
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By this, one can verify that A∗ : [0,∞)→ [0,∞) is also an N -function (cf. [AF03]). By A−1

we denote the inverse of A:

A−1(s) = inf {t : A(t) > s} , s > 0.

The following result can be found in [AF03, page 265, equation (4)].

Proposition 2.2. Assume that A : [0,∞)→ [0,∞) is an N -function, then

s 6 A−1
∗ (s) ·A−1(s) 6 2s. (2.2)

Given an N -function A, for each measurable function f on Rd, we define

IA(f) :=

ˆ
Rd
A(|f |(x)) dx.

Definition 2.3 (Luxemburg norm). Let A be an N -function. For any measurable function

f , define

‖f‖A := inf {λ > 0 : IA(f/λ) 6 1} ∈ [0,∞].

The Orlicz space LA is the collection of all functions with finite Luxemburg norm. LA is a

Banach space. In general, the space LA is not necessarily separable unless A satisfies the ∆2-

condition (see [AF03, 8.6, page 266]). However, one can consider a subspace of LA, denoted

by EA, which is defined as the closure in LA of LA ∩ C0, where C0 denotes the space of

continuous functions vanishing at infinity.

Orlicz spaces have good duality and interpolation properties, making them useful in many

areas of mathematics, including probability theory, functional analysis, and PDEs. The

following two propositions can also be found in [AF03, 8.11, page 269 and Lemma 8.17, page

272].

Proposition 2.4. For all f ∈ LA and g ∈ LA∗, it holds thatˆ
|fg| 6 2‖f‖A‖g‖A∗ . (2.3)

Proposition 2.5.

‖f‖A � sup

{
‖fg‖1 :

ˆ
Rd
A∗(g(x)) dx 6 1

}
.

The following Young’s inequality is crucial.

Proposition 2.6 ([O’N65, Theorem 2.5]). Assume that A,B and C are N -functions and

that A−1(t)B−1(t) 6 tC−1(t) (∀t > 0), then

‖f ∗ g‖C 6 2‖f‖A‖g‖B. (2.4)

2.2. Regular variation.

Definition 2.7. A measurable function f : (0,∞) → (0,∞) is regularly varying at infinity

with index α ∈ R (denoted by f ∈ Rα(∞)), if for all b > 0,

lim
x→∞

f(bx)

f(x)
= bα.

If α = 0, then we say that f is slowly varying. Regular (slow) variation at zero can be defined

similarly, by changing x→∞ to x→ 0+.
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The following two Karamata’s theorems (cf. [BGT87, Theorem 1.5.11]) will be used fre-

quently.

Lemma 2.8 (Karamata’s representation theorem). A function f is slowly varying if and

only if there exists M > 0 such that for all x >M the function can be written in the form

f(x) = c(x) exp

(ˆ x

M

ε(t)

t
dt

)
where c(x) is a bounded measurable function of a real variable converging to a finite number

as x goes to infinity, and ε(x) is a bounded measurable function of a real variable converging

to zero as x goes to infinity.

Lemma 2.9 (Karamata’s integral theorem). Let f be a slowly varying function at infinity.

Then

(i) for any σ > −1 and M > 0,

lim
s→∞

sσ+1f(s)´ s
M tσf(t) dt

= σ + 1;

(ii) for any σ < −1,

lim
s→∞

sσ+1f(s)´∞
s tσf(t) dt

= −(σ + 1).

2.3. Subordinators and jump kernels. Recall that S is a subordinator without drift. φ,

the Laplace exponent of S is given by (1.3). Since (st)e−st 6 1 − e−st for each s, t > 0, by

(1.3), we have

sφ′(s) 6 φ(s). (2.5)

Moreover, (1.3) also implies

φ(u−1) > u−1

ˆ u

0
e−t/uΠ((t,∞))dt > e−1Π((u,∞)), u > 0. (2.6)

Recall also that B is a d-dimensional Brownian motion independent of S, Zt =
√

2BSt , and

that

ψ(ξ) = − log Eeiξ·Z1 = φ(|ξ|2)

is the Lévy exponent of the subordinate Brownian motion Z. J(z), the jump kernel of Z, is

given by (1.4).

For any λ > 0, let

Uλ(du) =

ˆ ∞
0

e−λt P(St ∈ du) dt

be the λ-potential measure of S. By Fubini’s theorem,ˆ ∞
0

e−τuUλ(du) =

ˆ ∞
0

e−τu
ˆ ∞

0
e−λtP(St ∈ du) dt

=

ˆ ∞
0

e−λt dt

ˆ ∞
0

e−τuP(St ∈ du)

=

ˆ ∞
0

e−(λ+φ(τ))t dt =
1

λ+ φ(τ)
.
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This implies

1

λ+ φ(τ−1)
>
ˆ τ

0
e−

u
τ Uλ(du) > e−1Uλ((0, τ)), τ > 0. (2.7)

The following proposition will be used in the proof for our main results.

Proposition 2.10. Suppose φ satisfies (Φ), then for any r � 1, it holds thatˆ
Br

|z|J(z) dz . rψ(r−1), (2.8)

and ˆ
Bcr

J(z) dz . ψ(r−1). (2.9)

Proof. For (2.8), in virtue of Fubini’s theorem,(1.4) and (2.6), we haveˆ
Br

|z|J(z) dz �
ˆ r

0
j(s)sd ds .

ˆ r

0
sdds

ˆ ∞
0

t−
d
2 e−

s2

4t Π(dt)

=

ˆ ∞
0

t−
d
2 Π(dt)

ˆ r

0
sde−

s2

4t ds �
ˆ ∞

0
t

1
2 Π(dt)

ˆ r2

4t

0
u
d−1

2 e−udu

�
ˆ r2

0
t

1
2 Π(dt)

ˆ r2

4t

0
u
d−1

2 e−udu+

ˆ ∞
r2

t
1
2 Π(dt)

ˆ r2

4t

0
u
d−1

2 e−udu

�
ˆ r2

0
t

1
2 Π(dt) + rd+1

ˆ ∞
r2

t−
d
2 Π(dt)

.
ˆ ∞

0

ˆ ∞
0

1{s<t6r2}s
− 1

2 Π(dt) ds+ rΠ((r2,∞))

.
ˆ r2

0
s−

1
2 Π((s,∞))ds+ rΠ((r2,∞))

(2.6)

.
ˆ r2

0
s−

1
2φ(s−1)ds+ rφ(r−2) . rψ(r−1), 0 < r � 1.

Here we used Lemma 2.9 (ii) with σ = −3
2 and s = r−2 in the last inequality.

For (2.9), again by Fubini’s theorem, (2.6) and Lemma 2.9 (ii) with σ = −2 and s = r−2,

we have ˆ
Bcr

J(z) dz �
ˆ ∞
r

sd−1j(s)ds =

ˆ ∞
r

sd−1ds

ˆ ∞
0

t−
d
2 e−

s2

4t Π(dt)

=

ˆ ∞
0

t−
d
2 Π(dt)

ˆ ∞
r

sd−1e−
s2

4t ds �
ˆ ∞

0
Π(dt)

ˆ ∞
r2

4t

u
d
2
−1e−udu

=

ˆ ∞
0

u
d
2
−1e−udu

ˆ ∞
r2

4u

Π(dt)
(2.6)

.
ˆ ∞

0
u
d
2
−1e−uφ(4u/r2) du

.φ(r−2)

ˆ 1
4

0
u
d
2
−1e−udu+

ˆ ∞
1
4

u−2φ(4u/r2)du

.φ(r−2) + r−2

ˆ ∞
r−2

s−2φ(s)ds . ψ(r−1).

�
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To verify that Example 2 and Example 3 satisfy our assumptions, we need to conduct a

more detailed analysis. The specific calculations are as follows.

For the gamma subordinator, recall that Π(dt) = e−tt−1dt. By (1.4),

j(r) = (4π)−
d
2

ˆ ∞
0

t−
d
2
−1e−

r2

4t
−tdt =

1

rd`(r)
,

which yields that

1/`(r) = (4π)−
d
2 rd
ˆ ∞

0
t−

d
2
−1e−

r2

4t
−tdt

and

(1/`(r))′ = (4π)−
d
2 d rd−1

ˆ ∞
0

t−
d
2
−1e−

r2

4t
−tdt− (4π)−

d
2
rd+1

2

ˆ ∞
0

t−
d
2
−2e−

r2

4t
−tdt

For any γ ∈ R, set

Iγ(r) :=

ˆ ∞
0

tγe−
r2

4t
−tdt.

By integration by parts formula, we get

Iγ(r) =
1

γ + 1

ˆ ∞
0

tγ+1e−
r2

4t
−t(1− r2/(4t2))dt

=
Iγ+1(r)

γ + 1
− r2

4(γ + 1)
Iγ−1(r), γ 6= −1.

Therefore,

1/`(r) = 2−dπ−
d
2 rdI− d

2
−1(r)

and

(1/`(r))′ = (4π)−
d
2 drd−1

(
I− d

2
−1(r)− r2

2d
I− d

2
−2(r)

)
= −21−dπ−

d
2 rd−1I− d

2
(r).

Noting that

Iγ(r) =

ˆ ∞
0

tγe−
r2

4t
−tdt =

ˆ r2/4

0
tγe−

r2

4t
−tdt+

ˆ ∞
r2/4

tγe−
r2

4t
−tdt

�


r2γ+2, γ < −1

− log(r), γ = −1

1, γ > −1,

0 < r � 1.

and Iγ(r) . e−r/3, r � 1, we obtain

j(r) = 1/(rd`(r)) � I− d
2
−1(r) � r−d, r → 0+

and

j(r) = 1/(rd`(r)) . r−de−r/3, r > 0.

Moreover, we have

|`′(r)| . rd−1I− d
2
(r) . 1, r > 0,

which implies that the coefficient a in (1.8) satisfies (A1) and (A2), provided that σ is

ρα-continuous and c0|ξ| 6 |σξ| 6 c−1
0 |ξ| for all ξ ∈ Rd.
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3. Intrinsic dyadic decomposition, function spaces and embedding theorems

The contents of this section are purely analytical. Generalized Orlicz-Besov spaces, which is

defined by a refined Littlewood-Paley decomposition called ψ-decomposition, are introduced.

Such function space is a natural extension of Besov space Bs
p,∞ (see [BCD11] for its definition).

Crucial Morrey-type inequalities are also proved in this section.

3.1. Intrinsic dyadic decomposition. Let ψ : (0,∞) → (0,∞) be a strictly increasing

function such that limR→∞ ψ(R) =∞. We point out that in this section, ψ needs not be the

Lévy exponent of a subordinate Brownian motion. Set

ψ−1(r) := inf {s > 0 : ψ(s) > r} , r > 0.

Let χ be a rotationally symmetric, nonnegative and smooth function with compact support

such that

χ(ξ) = χ(|ξ|) =

{
1 when |ξ| 6 3/4,

0 when |ξ| > 1.

Let % := F−1(χ). We define

χ̄(ξ) = χ(2ξ) and χ̃(ξ) = χ(ξ/2); %̄ = F−1(χ̄) and %̃ = F−1(χ̃).

Given j > −1, set

χj(ξ) := χ

(
ξ

ψ−1(2j)

)
, %j(x) := F−1(χj)(x) =

(
ψ−1(2j)

)d
%
(
ψ−1(2j)x

)
.

Similarly, we define

χ̄j = χ̄

(
ξ

ψ−1(2j)

)
= χ

(
2ξ

ψ−1(2j)

)
, %̄j(x) =

(
1
2ψ
−1(2j)

)d
%
(

1
2ψ
−1(2j)x

)
,

and

χ̃j = χ̃

(
ξ

ψ−1(2j)

)
= χ

(
ξ

2ψ−1(2j)

)
, %̃j(x) =

(
2ψ−1(2j)

)d
%
(
2ψ−1(2j)x

)
.

The ψ-dyadic block Πψ
j is formulated by

Πψ
j f := F−1((χj+1 − χj)F(f)) = (%j+1 − %j) ∗ f, j > 0

and

Πψ
−1f := F−1

(
χ

(
ξ

ψ−1(1)

)
F(f)(ξ)

)
= %0 ∗ f.

Similarly, for each j > 0, we define

Π̃ψ
j f := F−1((χ̃j+1 − χ̄j)F(f)).

Obviously, for each j > 0, it holds that

Π̃ψ
j Πψ

j = Πψ
j Π̃ψ

j = Πψ
j .

The following simple result will be used several times later.

Lemma 3.1. Let A be an N -function or A =∞. It holds that

‖∇Πψ
j f‖A 6 Cψ

−1(2j+1) ‖Πψ
j f‖A, j > −1. (3.1)
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Proof. Noting that Πψ
j f = %̃j+1 ∗ (Πψ

j f), by Young’s inequality, we get

‖∇Πψ
j f‖A 6‖∇%̃j+1 ∗ (Πψ

j f)‖A
(2.4)

6 ‖∇%̃j+1‖1‖Πψ
j f‖A

6Cψ−1(2j+1) ‖Πψ
j f‖A.

�

3.2. Generalized Orlicz-Besov and Orlicz-Bessel potential spaces.

Definition 3.2. Let s ∈ R and A be an N -function. The ‖ · ‖ψ,s;A-norm of a distribution f

is given by

‖f‖ψ,s;A := sup
j>−1

2js‖Πψ
j f‖A,

and the collection of all distributions with finite ‖ ·‖ψ,s;A-norm is denoted by Bψ,s
A . If A =∞,

we define the space Bψ,s
∞ in the same way, and also denote it by C s

ψ. For simplicity, we denote

Bψ,1
A (C 1

ψ) as Bψ
A (Cψ).

By the definition of Bψ,s
A , it is easy to get the following interpolation result:

Lemma 3.3. Suppose s, s0, s1 ∈ R, θ ∈ (0, 1) and s = θs0 + (1− θ)s1. Then

‖f‖
Bψ,sA
6 ‖f‖θ

B
ψ,s0
A

‖f‖1−θ
B
ψ,s1
A

.

We also introduce the definition of Orlicz-Bessel potential spaces. Recall that EA is defined

in Definition 2.3.

Definition 3.4. Let A be an N -function. The space

Hψ
A :=

{
f ∈ S ′(Rd) : F−1[(1 + ψ(·))F(f)] ∈ EA

}
with the norm

‖f‖
Hψ
A

:= ‖(1 + ψ(
√
−∆))f‖A

is called generalized Orlicz-Bessel potential space.

We remark that the spaceHψ
A is the collection of all functions f ∈ EA such that ψ(

√
−∆)f ∈

EA. Here we use the restricted space EA instead of LA for the following reasons. In fact,

we will use the space Hψ
A in the proof of Theorem 3.10, and we first prove Theorem 3.10

for ‘smooth’ functions (which are dense in EA, but may not be dense in LA) and then for

general functions by the standard approximation arguments. On the other hand, EA already

contains enough ‘good’ functions in many cases (for instance in the case of the hypothesis of

Corollary 3.12).

Definition 3.5. Let s > 0. Let ω : (0,∞)→ (0,∞) be a strictly increasing function satisfying

limr↓0 ω(r) = 0. Assume ωs(t)/t→∞ as t→ 0. The ‖ · ‖Csω -norm of a measurable function

f is given by

‖f‖Csω := ‖f‖∞ + sup
x 6=y

|f(x)− f(y)|
ωs(|x− y|)

.

The collection of all functions with finite ‖ · ‖Csω -norm is denoted by Csω, which is referred to

as the generalized Hölder space.
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Recall that

ρ(r) = ρψ(r) :=
1

ψ(r−1)
.

The following result gives a characterization of generalized Hölder space Csρ in terms of ψ-

decomposition.

Theorem 3.6. Let s > 0. Let ρ be the function defined by (1.5). Assume

r 7→ r

ψs(r)
is an increasing function and

ˆ R

ε

dr

ψs(r)
.ε

R

ψs(R)
for all ε� 1� R. (3.2)

Then there is a constant c ∈ (0, 1) independent of f such that

c‖f‖C sψ 6 ‖f‖Csρ 6 c
−1‖f‖C sψ . (3.3)

Proof. We only prove the case that s = 1 (the proof for the general case is similar). Assume

that ‖f‖Cψ <∞. For any |x− y| � 1,

|f(x)− f(y)| 6
∑
j>−1

|Πψ
j f(x)−Πψ

j f(y)|

.
∑
j>−1

‖Πψ
j f‖∞ ∧ |x− y|‖∇Πψ

j f‖∞.

Thanks to (3.1), for each j > −1,

‖∇Πψ
j f‖∞ . ψ

−1(2j+1)‖Πψ
j f‖∞.

So for each K ∈ N, it holds that

|f(x)− f(y)| .‖f‖Cψ
∑
j>−1

2−j ∧ |x− y|ψ−1(2j+1)2−j

.‖f‖Cψ
∞∑
K+1

2−j + ‖f‖Cψ |x− y|
K∑

j=−1

ψ−1(2j+1)2−j

.‖f‖Cψ
(

2−K + |x− y|
ˆ K+1

0
ψ−1(2t)2−t dt

)
.

(3.4)

For R� 1, by integration by parts and (3.2), we have

ˆ R

0
ψ−1(2t)2−tdt .

ˆ 2R

1
ψ−1(r)r−2dr = −

ˆ ψ−1(2R)

ψ−1(1)
ud

(
1

ψ(u)

)
.

u

ψ(u)

∣∣∣ψ−1(1)

ψ−1(R)
+

ˆ ψ−1(2R)

ψ−1(1)

du

ψ(u)
. ψ−1(2R)2−R.

Choosing R = K + 1 = [log2 ψ(|x− y|−1)], one sees that

2−K + |x− y|
ˆ K+1

0
ψ−1(2t)2−tdt . 2−K .

1

ψ(|x− y|−1)
. (3.5)

Plugging (3.5) into (3.4), we see that for any |x− y| � 1,

|f(x)− f(y)|
ρ(|x− y|)

= |f(x)− f(y)|ψ(|x− y|−1) . ‖f‖Cψ .
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This together with the fact that ‖f‖∞ . ‖f‖Cψ implies

‖f‖C1
ρ

= ‖f‖∞ + sup
x 6=y

|f(x)− f(y)|
ρ(|x− y|)

. ‖f‖Cψ .

On the other hand, suppose that

M = sup
x 6=y

|f(x)− f(y)|
ρ(|x− y|)

+ ‖f‖∞ <∞.

By the definition of Πψ
j and the fact that

´
%j = χj(0) = 1 (j > 0), we have

|Πψ
j f(x)| =

∣∣∣∣ˆ
Rd

(%j+1 − %j)(z)f(x+ z) dz

∣∣∣∣
=

∣∣∣∣ˆ
Rd

(%j+1 − %j)(z)(f(x+ z)− f(x)) dz

∣∣∣∣
6
ˆ
Rd
|%(z)|

[∣∣∣∣f (x+
z

ψ−1(2j)

)
− f(x)

∣∣∣∣+

∣∣∣∣f (x+
z

ψ−1(2j+1)

)
− f(x)

∣∣∣∣] dz

6M
ˆ
Rd
|%(z)|

1 ∧ 1

ψ
(
ψ−1(2j)
|z|

)
 dz +M

ˆ
Rd
|%(z)|

1 ∧ 1

ψ
(
ψ−1(2j+1)
|z|

)
 dz

.M
ˆ ∞

0

%(r)rd−1

1 ∨ ψ
(
ψ−1(2j)

r

) dr +M

ˆ ∞
0

%(r)rd−1

1 ∨ ψ
(
ψ−1(2j+1)

r

) dr (j > 0).

(3.6)

So we need to dominate the integration
´∞

0
%(r)rd−1

1∨ψ( sr )
dr. Using the fact that |%(t)| .k (1 ∧

t−k) (∀k > 0), one sees that for each s > 0,ˆ ∞
0

%(r)rd−1

1 ∨ ψ(s/r)
dr = sd

ˆ ∞
0

%(s/t)

td+1[1 ∨ ψ(t)]
dt

. sd−k
ˆ s

0

tk

td+1[1 ∨ ψ(t)]
dt+ sd

ˆ ∞
s

1

td+1[1 ∨ ψ(t)]
dt

=I1 + I2.

Choosing k = d+ 2 and using (3.2), we get

I1 = s−2

ˆ s

0

t

1 ∨ ψ(t)
dt . s−1

ˆ s

0

dt

1 ∨ ψ(t)

(3.2)

.
1

1 ∨ ψ(s)
.

Moreover,

I2 = sd
ˆ ∞
s

1

td+1[1 ∨ ψ(t)]
dt 6

1

1 ∨ ψ(s)
sd
ˆ ∞
s

t−d−1dt .
1

1 ∨ ψ(s)
.

Thus, for each s > 0, ˆ ∞
0

%(r)rd−1

1 ∨ ψ(s/r)
dr .

1

1 ∨ ψ(s)
. (3.7)

Combining (3.6) and (3.7), we arrive

‖Πψ
j f‖∞ .M2−j , for all j > −1.

So we complete our proof. �
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3.3. Morrey-type inequalities. In this section, we prove two Morrey-type inequalities,

(3.11) and (3.24). The novelty of them is that both regularity and integrability of u are

characterized by monotone functions ψ and A, respectively, and ψ can be a slowly varying

function.

We need to make some necessary preparations. Let S be a subordinator with Laplace

exponent φ. Recall Z is the subordinate Brownian motion corresponding to S. Here and

below, the function ψ is given by the Lévy exponent of Z, i.e.,

ψ(ξ) = − log Eeiξ·Z1 = φ(|ξ|2).

In this section, we assume S satisfies

(Φ′1) : φ ∈ Rα
2
(∞) with α ∈ [0, 1), i.e. ψ ∈ Rα(∞) with α ∈ [0, 1).

Lemma 3.7. Assume that φ satisfies (Φ′1). Then for any R > 1, it holds that
ˆ R

1

dr

ψ(r)
.

R

ψ(R)
(3.8)

and
r

ψ(r)
.

R

ψ(R)
, r ∈ [1, R]. (3.9)

Proof. If ψ ∈ Rα(∞) with α ∈ [0, 1), then there exists a function ` ∈ R0(∞) such that

ψ(r) = rα`(r). For R > 1, using Lemma 2.9 (i), we have
ˆ R

1

dr

ψ(r)
.
ˆ R

1

dr

rα`(r)
.
R1−α

`(R)
.

R

ψ(R)
.

For (3.9). By Lemma 2.8, ψ(r) = rαc(r) exp(
´ r

1 ε(t)/tdt), with c(r)→ c ∈ R and ε(r)→ 0

as r →∞. Therefore,

rψ(R)

Rψ(r)
. exp

(ˆ R

r

ε(t)− (1− α)

t
dt

)
. 1,

which implies our desired assertion. �

3.3.1. Morrey-type inequality for Orlicz-Bessel potential spaces. The following Morrey-type

inequality for Orlicz-Sobolev space W 1
A can be found in [AF03].

Proposition 3.8. Let A be an N -function. Assume that
´∞

1
A−1(sd)

s2
dt <∞, then

‖f‖Cρ . ‖f‖A + ‖∇f‖A,

where W 1
A is the Orlicz-Sobolev space and

ρ(r) =

(ˆ ∞
1
r

A−1(sd)

s2
ds

)−1

.

Remark 3.9. As far as the authors are aware, there is no result guaranteeing that the Riesz

transform is bounded in the Orlicz space LA, so in general H1
A does not coincide with W 1

A.

Therefore, H1
A ↪→ Cρ cannot be derived from Proposition 3.8.

The following result is about Morrey inequalities for generalized Orlicz-Bessel potential

spaces.
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Theorem 3.10. Assume that φ satisfies (Φ′1). Let A be an N -function satisfying

ˆ ∞
1

dA−1(td)

ψ(t)
dt <∞.

Let

Ψ(R) :=

(ˆ ∞
R

dA−1(td)

ψ(t)
dt

)−1

. (3.10)

Then it holds that

‖u‖CΨ
. ‖u‖

Hψ
A
. (3.11)

Remark 3.11. From a perspective of theoretical completeness, exploring Sobolev-type in-

equalities for generalized Orlicz-Bessel potential spaces can provide a more comprehensive

understanding of these function spaces. However, while this inequality is of interest, it is

not directly utilized in the proof of our main results. Therefore, we have chosen to defer the

investigation of this topic to a future paper.

Our result implies the classical Morrey’s inequality for Bessel potential space:

Corollary 3.12. (a) Let α ∈ (0, 1). Assume ψ(R) = φ(R2) = Rα and A(t) = tp with

p > d/α. Then

‖u‖
C
α− dp
. ‖u‖

Hψ
A

= ‖u‖Hα
p
.

(b) Let ψ(R) = log(1 +R2) and A(t) = et
β − 1 with β > 1. It holds that

‖u‖∞ + sup
|x−y|< 1

2

|u(x)− u(y)| · (− log |x− y|)1− 1
β

.‖u‖
Hψ
A

= ‖u+ log(I −∆)u‖A.

Proof. (a) Let φ(r) = r
α
2 . Since

ρΨ(r) =
1

Ψ(1
r )

=

ˆ ∞
1
r

dA−1(td)

ψ(t)
�
ˆ ∞

1
r

t
d
p
−α−1

ds � rα−
d
p ,

the conclusion follows by Theorem 3.10 and Theorem 3.6.

(b) By definition,

A−1(t) = log
1
β (1 + t).

For any r � 1,

ρΨ(r) =
1

Ψ(1
r )

=

ˆ ∞
1
r

dA−1(td)

ψ(t)
�
ˆ ∞

1
r

td−1 log
1
β
−1

(1 + td)

(1 + td) log(1 + t2)
dt

�
ˆ ∞
r−d

t−1 log
1
β
−2
t dt �

(
log

1

r

) 1
β
−1

.

Again by Theorem 3.10 and Theorem 3.6, we get the desired result. �

Now we give the proof for Theorem 3.10 below.
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Proof of Theorem 3.10. Recall that S is a subordinator with Laplace exponent φ, and that

Z is the subordinate Brownian motion corresponding to S. For any λ > 0 and f ∈ C0(Rd),
set

Ptf(x) = Ef(x+ Zt) and Gλf(x) =

ˆ ∞
0

e−λtPtf(x) dt.

Then

(λ+ φ(−∆))Gλf = f, f ∈ C0(Rd) (3.12)

and

Gλ(λ+ φ(−∆))u = u with u = Gλf, f ∈ C0(Rd). (3.13)

Since f ∈ C0 ∩LA is dense in EA, the operator Gλ then can be extended to a mapping from

EA to Hψ
A. Moreover, (3.12) still holds for all f ∈ EA, and Hψ

A = GλEA. Thus,

Gλ(λ+ φ(−∆))u = u, u ∈ Hψ
A.

Let f = u+ φ(−∆)u. Then

u = G1f =

ˆ ∞
0

e−tPtf dt.

We need to prove

‖ΠΨ
j u‖∞ =

∥∥∥∥ΠΨ
j

ˆ ∞
0

e−tPtf dt

∥∥∥∥
∞
6 C2−j‖f‖A. (3.14)

Denote by ht and pt the transition probability density functions of Brownian motion
√

2Bt
and Zt, respectively. Let st(du) be the distribution of St. Let ζj(x) = (Ψ−1(2j))d%(Ψ−1(2j)x),

where % is the smooth function in Section 3.1. Thanks to Hölder’s inequality (2.3), we have

‖ΠΨ
j u‖∞ 6

∥∥∥∥ΠΨ
j

ˆ ∞
0

e−tPtf dt

∥∥∥∥
∞
6

∥∥∥∥ˆ ∞
0

e−tpt ∗ (ζj+1 − ζj) ∗ f dt

∥∥∥∥
∞

.‖f‖A
ˆ ∞

0
e−t‖pt ∗ (ζj+1 − ζj)‖A∗ dt.

(3.15)

Thus, to prove (3.14), we need to estimate ‖pt ∗ (ζj+1 − ζj)‖A∗ .
Let R′ > R� 1 and %R(x) = Rd%(Rx). Using the fact that

pt(x) =

ˆ ∞
0

hu(x)st(du),

we get

pt ∗ (%R
′ − %R)(x)

=

ˆ
Rd
pt (x+ z)R′d%(R′z) dz −

ˆ
Rd
pt (x+ z)Rd%(Rz) dz

=

ˆ
Rd

[
pt

(
x+

z

R′

)
− pt

(
x+

z

R

)]
%(z) dz

=

ˆ ∞
0

ˆ
Rd

∣∣∣hu (x+
z

R′

)
− hu

(
x+

z

R

)∣∣∣ %(z) st(du) dz

=

ˆ ∞
0

ˆ
Rd
u−

d
2

∣∣∣∣h1

(
x√
u

+
z√
uR′

)
− h1

(
x√
u

+
z√
uR

)∣∣∣∣ st(du)%(z) dz.

(3.16)

Here we use the fact that hu(x) = u−
d
2h1(x/

√
u). By mean value theorem, one sees that∣∣∣∣h1

(
x√
u

+
z√
uR′

)
− h1

(
x√
u

+
z√
uR

)∣∣∣∣
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6

(∣∣∣∣h1

(
x√
u

+
z√
uR′

)∣∣∣∣+

∣∣∣∣h1

(
x√
u

+
z√
uR

)∣∣∣∣)∧∣∣∣∣ z√
uR′
− z√

uR

∣∣∣∣ ˆ 1

0

∣∣∣∣∇h1

(
x√
u

+ (1− θ) z√
uR′

+ θ
z√
uR

)∣∣∣∣ dθ.

This implies

u−
d
2

∥∥∥∥h1

(
·√
u

+
z√
uR′

)
− h1

(
·√
u

+
z√
uR

)∥∥∥∥
A∗

.

∥∥∥∥u− d2h1

(
·√
u

)∥∥∥∥
A∗

∧
∣∣∣∣ z√
uR′
− z√

uR

∣∣∣∣ ∥∥∥∥u− d2∇h1

(
·√
u

)∥∥∥∥
A∗

.

(
1 ∧ z√

uR

) (
‖hu‖A∗ +

∥∥∥∥u− d2∇h1

(
·√
u

)∥∥∥∥
A∗

)
.

(3.17)

Setting

fA∗(u) = ‖hu‖A∗ +

∥∥∥∥u− d2∇h1

(
·√
u

)∥∥∥∥
A∗

, (3.18)

and combining (3.16) and (3.17), we get

‖pt ∗ (%R
′ − %R)‖A∗

.
ˆ ∞

0

ˆ
Rd

(
1 ∧ z√

uR

)
%(z) fA∗(u) dz st(du)

.
ˆ ∞

0

(
1√
uR

ˆ √uR
0

|%(r)|rd dr +

ˆ ∞
√
uR
|%(r)|rd−1 dr

)
fA∗(u) st(du).

(3.19)

Noting that |%(r)| . 1 ∧ r−k (∀k > 0), we have

1

N

ˆ N

0
|%(r)|rd dr . 1 ∧ 1

N
and

ˆ ∞
N
|%(r)|rd−1 dr . 1 ∧ 1

N
, ∀N > 0. (3.20)

Plugging estimate (3.20) into (3.19), we get

‖Pt(%R
′ − %R)‖A∗ .

ˆ ∞
0

(
1 ∧ 1√

uR

)
fA∗(u) st(du). (3.21)

So the main problem comes down to the estimation of fA∗(u). Let us estimate the first term

on the right-hand side of (3.18). By the scaling property of hu, one sees that

IA∗(hu/λ) 6 1 ⇐⇒
ˆ
Rd
A∗

(
h1 (x/

√
u)

(
√
u)dλ

)
dx 6 1

⇐⇒
ˆ
Rd
A∗

(
h1 (x)

(
√
u)dλ

)
dx 6 u−

d
2 .

(3.22)
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Let K = (4πu)−d/2. Basic calculation yields

ˆ
Rd
A∗

(
h1 (x)

(
√
u)dλ

)
dx =

ˆ
Rd
A∗

 e−
|x|2

4

(
√

4πu)dλ

 dx

=cd

ˆ ∞
0

A∗

(
e−r

2/4

(
√

4πu)dλ

)
rd−1 dr

=cd

ˆ K
λ

0
A∗(r)

(
log

K

λ
− log r

) d
2
−1

r−1 dr

=cd

ˆ K
λ

0

(
log

K

λ
− log r

) d
2
−1

r−1 dr

ˆ r

0
dA∗(s)

=cd

ˆ K
λ

0
dA∗(s)

ˆ K
λ

s

(
log

K

λ
− log r

) d
2
−1

r−1 dr

=cd

ˆ K
λ

0

(
log

K

λ
− log s

) d
2

D−A∗(s) ds,

where D−f is the left derivative of f . Noting that D−A∗ is increasing and D−A∗(x)(y−x) 6
A∗(y)−A∗(x), we getˆ

Rd
A∗

(
h1 (x)

(
√
u)dλ

)
dx 6cd

ˆ ∞
0

u
d
2 e−u du ·D−A∗

(
K

λ

)
K

λ

6cd

[
A∗

(
2K

λ

)
−A∗

(
K

λ

)]
6 cdA∗

(
2K

λ

)
.

Using (3.22), we have

IA∗(hu/λ) 6 1⇐= A∗

(
2K

λ

)
6 CK.

This yields

‖hu‖A∗ = inf {λ : IA∗(hu/λ) 6 1} 6 2K

A−1
∗ (CK)

.
u−d/2

A−1
∗ (cu−d/2)

, c > 1.

Similarly, we also have ∥∥∥∥u− d2∇h1

(
·√
u

)∥∥∥∥
A∗

.
u−d/2

A−1
∗ (cu−d/2)

.

Thus, there exists a constant c > 0 such that

fA∗(u) .
u−d/2

A−1
∗ (cu−d/2)

.

This together with (3.21) and (2.2) yieldsˆ ∞
0

e−t‖pt ∗ (%R
′ − %R)‖A∗ dt

.
ˆ ∞

0
e−t
ˆ ∞

0

1 ∧ 1√
uR

ud/2A−1
∗ (cu−d/2)

st(du) dt
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.
ˆ R−2

0
A−1(cu−d/2)U1(du) +

1

R

ˆ ∞
R−2

1√
u
A−1(cu−d/2)U1(du)

= : I1 + I2.

where U1 is the 1- potential measure of St.

Recall that A(t) =
´ t

0 α(s)ds, we have A−1(t) =
´ t

0 β(s)ds with β(s) = 1
α(A−1(s))

.

For I1, by Fubini theorem and (2.7), we have

I1 .
ˆ R−2

0

ˆ cu−
d
2

0
β(s) ds U0(du)

=

ˆ ∞
0

ˆ ∞
0

1{u<(s/c)−2/d∧R−2}β(s) U0(du)ds

=

ˆ ∞
0

β(s)U0((0, (s/c)−2/d ∧R−2))ds

=A−1(cRd)U0((0, R−2)) +

ˆ ∞
cRd

U0((0, (s/c)−2/d))dA−1(s)

(2.7)

.
A−1(cRd)

ψ(R)
+

ˆ ∞
cRd

dA−1(s)

ψ((s/c)1/d)
.
A−1(cRd)

ψ(R)
+

ˆ ∞
R

dA−1(ctd)

ψ(t)
.

For I2, again by Fubini theorem, (2.7), (3.8) and (3.9), we get

I2 =
1

R

ˆ ∞
R−2

1√
u
A−1(cu−d/2)U1(du)

=
1

R

ˆ ∞
0

ˆ ∞
0

1{R−2<u<(s/c)−2/d}
β(s)√
u
U1(du)ds

� 1

R

ˆ
(0,∞)3

1{R−2<u<(s/c)−2/d∧t}β(s)t−
3
2U1(du)dsdt

.
1

R

ˆ
(0,∞)2

1{t>R−2}1{s<cRd}U1(0, (s/c)−2/d ∧ t)β(s)t−
3
2 dsdt

(2.7)

.
1

R

ˆ
(0,∞)2

1{t>R−2}1{s<cRd}
1

1 + φ((s/c)2/d ∨ t−1)
t−

3
2β(s) dsdt

.
1

R

ˆ ∞
R−2

t−
3
2

ˆ ct−
d
2

0

β(s)

1 + φ(t−1)
ds+

ˆ cRd

ct−
d
2

β(s)

1 + φ((s/c)2/d)
ds

dt

.
1

R

ˆ R

0

A−1(cud)

1 + ψ(u)
du+

1

R

ˆ cRd

0

β(s)

1 + ψ((s/c)1/d)

ˆ ∞
( s
c
)−

2
d

t−
3
2 dtds

.A−1(cRd)
1

R

ˆ R

0

1

1 + ψ(u)
du+

1

R

ˆ cRd

0

s
1
ddA−1(s)

1 + ψ((s/c)1/d)

(3.8),(3.9)

.
A−1(cRd)

ψ(R)
.

Noting that
ˆ ∞
R

dA−1(ctd)

ψ(t)
&
ˆ 2R

R

dA−1(ctd)

ψ(t)
&
A−1(cRd)

ψ(2R)
&
A−1(cRd)

ψ(R)
,
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Therefore, there is a constant R0 > 1 such that for all R′ > R > R0, it holds thatˆ ∞
0

e−t‖Pt(%R
′ − %R)‖A∗ dt .

ˆ ∞
R

dA−1(ctd)

ψ(t)
.
ˆ ∞
R

dA−1(ctd)

ψ(t)

.
ˆ ∞
R

dA−1(td)

ψ(t)

(3.10)
=

1

Ψ(R)
.

(3.23)

When j & log2R0, by letting R′ = Ψ−1(2j+1) � 1 and R = Ψ−1(2j) � 1, and plugging

(3.23) to (3.15), we obtain

‖ΠΨ
j u‖∞ .

‖f‖A
Ψ (Ψ−1(2j))

. 2−j‖f‖A.

When j . log2R0, in view of (3.15), we have

‖ΠΨ
j u‖∞ . ‖f‖A sup

j.log2R0

‖ζj‖A . ‖f‖A . 2−j‖f‖A.

So we obtain (3.14), and complete our proof. �

3.3.2. Morrey-type inequality for generalized Orlicz-Besov spaces. We also prove a Morrey

inequality for generalized Orlicz-Besov spaces, which will be used in the proofs for our main

results.

Theorem 3.13. Assume S satisfies (Φ′1). If A is an N -function satisfies A(t) > [ψ−1(ct1+ε)]d

for some ε > 0, then

‖u‖
C

ε
1+ε
ψ

. ‖u‖
BψA
. (3.24)

Proof. For any u ∈ Bψ
A and j > −1, put hj = %j+1 − %j ∈ LA∗ and ũj = Π̃ju ∈ LA. Note

that for any |x| > 2R� 1,

|Πψ
j u(x)| =

∣∣∣∣∣
ˆ
|y|6R

ũj(y)hj(x− y)

∣∣∣∣∣+

∣∣∣∣∣
ˆ
|y|>R

ũj(y)hj(x− y)

∣∣∣∣∣
.‖ũj‖A‖hj1BcR‖A∗ + ‖ũj1BcR‖A‖hj‖A∗ → 0, R→∞.

Therefore, Πψ
j u ∈ C0∩LA, for any u ∈ Bψ

A. Similarly, one can verify that (1 +φ(−∆))Πψ
j u =

(1 + φ(−∆))Πψ
j uj ∈ C0 ∩ LA. Thus,

Πψ
j u = G1(1 + φ(−∆))Πψ

j u = G1Πψ
j (1 + φ(−∆))u, u ∈ Bψ

A.

Put f = (1 + φ(−∆))u. Following the proof for (3.15), one can verify that

‖Πψ
j u‖∞ 6

∥∥∥∥ˆ ∞
0

e−tPt Π̃ψ
j (Πψ

j f) dt

∥∥∥∥
∞

6

∥∥∥∥ˆ ∞
0

e−tpt ∗ (%̃j+1 − %̄j) ∗ (Πψ
j f) dt

∥∥∥∥
∞

.‖Πψ
j f‖A

ˆ ∞
0

e−t‖pt ∗ (%̃j+1 − %̄j)‖A∗ dt.

By our assumption A(t) > [ψ−1(ct1+ε)]d, we have

A−1(s) 6 Cψ
1

1+ε (s
1
d ).
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Using this and following the proof for (3.23), we getˆ ∞
0

e−t‖pt ∗ (%̃j+1 − %̄j)‖A∗ dt

.
ˆ ∞

1
2
ψ−1(2j)

dA−1(sd)

ψ(s)
.
ˆ ∞

1
2
ψ−1(2j)

ψ
1

1+ε (s)ψ′(s)

ψ2(s)
ds

.
1

ψ
ε

1+ε (1
2ψ
−1(2j))

. 2−
εj

1+ε .

Here we used the fact that for each b > 0,

lim
R→∞

ψ
(
bψ−1(R)

)
R

= lim
R→∞

ψ
(
bψ−1(R)

)
ψ
(
ψ−1(R)

) = bα.

Thus,

2
εj

1+ε ‖Πψ
j u‖∞ . ‖Π

ψ
j f‖A . ‖u‖Bψ,1A

.

So we complete the proof for (3.24). �

4. Studies of Poisson equations

In this section, we study the Poisson equation (PE) in the generalized Orlicz-Besov space.

Our analysis is divided into two parts: In the first part, we explore the case where the

coefficient a is independent of x. Subsequently, we extended our findings to the more general

case by using the method of frozen coefficients.

4.1. Spatially homogeneous case.

Theorem 4.1. Let A be an N -function or A = ∞. Assume (Φ) holds. Suppose that

a : Rd → [0,∞) is measurable, ˆ
Rd

(1 ∧ |z|2) a(z)J(z) dz <∞, (4.1)

and there are positive numbers ρ0, c0 ∈ (0, 1) such that

a(z) > c0, for all z ∈ Bρ0 . (4.2)

Then there exists a constant λ0 > 0 such that for any λ > λ0 and any α ∈ R,

λ‖u‖
Bψ,αA

+ ‖u‖
Bψ,1+α
A

6 C‖λu− Lu‖
Bψ,αA

, (4.3)

provided that u ∈ Bψ,1+α
A . Here C is a constant only depending on d, ψ, ρ0, c0 and α.

Remark 4.2. We would like to emphasize that Theorem 4.1 does not require the assumption

that α > 0.

Proof. Without loss of generality, we can assume that c0 = 1 to simplify the analysis. By

utilizing the condition in (4.1), we can identify a Lévy process Z whose infinitesimal generator

corresponds to the operator L. As presented in the proof for Theorem 3.13, for any u ∈ Bψ
A,

we have

Πψ
j u = Gλ(λ− L)Πψ

j u = GλΠψ
j (λ− L)u.
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Using this and letting f = λu− Lu, we obtain

‖Πψ
j u‖A =

∥∥∥Πψ
j Gλf

∥∥∥
A

=

∥∥∥∥Πψ
j

ˆ ∞
0

e−λt(Ptf)dt

∥∥∥∥
A

6
ˆ ∞

0
e−λt‖PtΠψ

j f‖A dt 6 λ−1‖Πψ
j f‖A.

(4.4)

This yields

λ‖u‖
Bψ,αA

6 ‖f‖
Bψ,αA

= ‖λu− Lu‖
Bψ,αA

. (4.5)

Thus, it remains to show that the second term on the left-hand side of (4.3) can be dominated

by C‖λu− Lu‖
Bψ,αA

.

We divide the proof into several steps.

Step 1. We first consider the case that a ≡ 1. In this case, L is the infinitesimal generator

of a subordinate Brownian motion Zt =
√

2BSt . It is enough to show

‖Πψ
j u‖A =

∥∥∥∥Πψ
j

ˆ ∞
0

e−λt(Ptf)dt

∥∥∥∥
A

6 C2−j‖Πψ
j f‖A, j > 0. (4.6)

Using the fact that Π̃ψ
j Πψ

j = Πψ
j (j > 0), we see that

Πψ
j (Ptf) = Pt(Π

ψ
j f) = Pt(Π̃

ψ
j Πψ

j f).

Thus,

‖Πψ
j (Ptf)‖A 6 ‖Pt(%̃j+1 − %̄j)‖1 ‖Πψ

j f‖A, (4.7)

due to Young’s inequality (2.4). So our problem boils down to estimating ‖Pt(%̃j+1 − %̄j)‖1
(j > 0). For any R′ > R� 1, put

%R(x) = Rd%(Rx), %R
′
(x) = (R′)d%(R′x).

Employing the procedure deducing (3.19), for any t > 0, we have

‖Pt(%R
′ − %R)‖1 .

ˆ ∞
0

ˆ
Rd

(
1 ∧ |z|√

uR

)
|%(z)|dz st(du)

.
ˆ ∞

0

(
1√
uR

ˆ √uR
0

|%(r)|rd dr +

ˆ ∞
√
uR
|%(r)|rd−1 dr

)
st(du).

(4.8)

Noting that |%(r)| . 1 ∧ r−k (∀k > 0), one sees that

1

N

ˆ N

0
|%(r)|rd dr . 1 ∧ 1

N
and

ˆ ∞
N
|%(r)|rd−1 dr . 1 ∧ 1

N
, ∀N > 0. (4.9)

Combining (4.8) and (4.9), we obtain

‖Pt(%R
′ − %R)‖1 .

ˆ ∞
0

(
1 ∧ 1√

uR

)
st(du)

6 P
(
St 6 R

−2
)

+
1

R
E

(
S
− 1

2
t 1{St>R−2}

)
=: I1(t, R) + I2(t, R).

(4.10)

For I1, noting that e−R
2St > e−11{St6R−2}, we have

I1(t, R) = P
(
St 6 R

−2
)
6 E exp(1−R2St) . e−tψ(R).
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Thus, ˆ ∞
0

e−λtI1(t, R) dt .
1

λ+ ψ(R)
. (4.11)

For I2, in virtue of Lemma 2.9 (i) with σ = −1
2 , s = R2 and f = 1/(λ + φ), and (2.7), we

have ˆ ∞
0

e−λtI2(t, R) dt =
1

R

ˆ ∞
0

e−λtE

(
S
− 1

2
t 1St>R−2

)
dt

=
1

R

ˆ ∞
R−2

u−
1
2

ˆ ∞
0

e−λt P(St ∈ du) dt =
1

R

ˆ ∞
R−2

u−
1
2Uλ(du)

=
1

R

ˆ
(0,∞)2

1{R−2<u<t}t
− 3

2Uλ(du)dt

.
1

R

ˆ ∞
R−2

t−
3
2

λ+ φ(t−1)
dt .

1

λ+ ψ(R)
.

(4.12)

Here we use Karamata’s theorem in the last inequality. By (4.10)-(4.12), we getˆ ∞
0

e−λt‖Pt(%R
′ − %R)‖1 dt .

1

ψ(R)
, R′ > R� 1. (4.13)

In view of (4.7) and (4.13), there is a constant j0 � 1 such that for any j > j0, it holds that

‖Πψ
j u‖A =

∥∥∥∥Πψ
j

ˆ ∞
0

e−λt(Ptf)dt

∥∥∥∥
A

(4.7)

6 ‖Πψ
j f‖A

ˆ ∞
0

e−λt‖Pt(%̃j+1 − %̄j)‖1 dt

(4.13)

.
‖Πψ

j f‖A
ψ
(

1
2ψ
−1(2j)

) . 2−j‖Πψ
j f‖A.

Here we choose R′ = 2ψ−1(2j+1) and R = 1
2ψ
−1(2j) in (4.13), and use the fact that for each

b > 0,

lim
R→∞

ψ
(
bψ−1(R)

)
R

= lim
R→∞

ψ
(
bψ−1(R)

)
ψ
(
ψ−1(R)

) = 1.

For 0 6 j < j0, in view of (4.4), we have

‖Πψ
j u‖A . ‖Π

ψ
j f‖A . 2−j0‖Πψ

j f‖A . 2−j‖Πψ
j f‖A.

So we complete the proof for (4.6) when a(x, z) = a(z) = 1.

Step 2. Now assume that a satisfies (4.2) with c0 = 1 and ρ0 =∞. Let

ν̄(dz) = J(z)dz and ν̃(dz) = (a(z)− 1)︸ ︷︷ ︸
>0

J(z)dz.

Since ν̄ and ν̃ are two Lévy measures, there are two pure jump Lévy processes Z̄ and Z̃

associated with ν̄ and ν̃, respectively. Let P̄t and P̃t be the semigroups corresponding to Z̄

and Z̃, respectively. Noting that Πψ
j Ptf = Πψ

j P̄tP̃tf , by Step 1, one sees that∥∥∥∥Πψ
j

ˆ ∞
0

e−λt(Ptf)dt

∥∥∥∥
A

(4.7)

6 ‖Πψ
j f‖A

ˆ ∞
0

e−λt‖Pt(%̃j+1 − %̄j)‖1 dt . 2−j‖Πψ
j f‖A.

Thus, we get (4.6) in the case that a is bounded below by c0 > 0.

Step 3. Now suppose a only satisfies (4.2) with c0 = 1. Set

L̄u :=

ˆ
Bρ0

(u(x+ z)− u(x))
(
a(z)1Bρ0 (z) + 1Bcρ0

(z)
)
J(z) dz
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and

Ru :=

ˆ
Rd

(u(x+ z)− u(x))
(

(a(z)− 1)1Bcρ0

)
J(z) dz.

Then L̄ satisfies (4.2) with c0 = 1 and ρ0 = ∞. By Step 2 and noting that λu − L̄u =

λu− Lu+Ru, we get

‖u‖
Bψ,1+α
A

. ‖λu− L̄u‖
Bψ,αA

. ‖λu− Lu‖
Bψ,αA

+ ‖Ru‖
Bψ,αA

. (4.14)

Since

‖Rf‖A . ‖f‖A
ˆ
|z|>ρ0

(1 + |a(z)|)J(z) dz . ‖f‖A,

one sees that
‖Ru‖

Bψ,αA
= sup
j>−1

2jα‖Πψ
j Ru‖A = sup

j>−1
2jα‖RΠψ

j u‖A

. sup
j>−1

2jα‖Πψ
j u‖A = ‖u‖

Bψ,αA
.

(4.15)

Combining (4.5), (4.14) and (4.15), we obtain

λ‖u‖
Bψ,αA

+ ‖u‖
Bψ,1+α
A

6 C
(
‖λu− Lu‖

Bψ,αA
+ ‖u‖

Bψ,αA

)
.

Choosing λ0 = 2C, we obtain (4.3) for all λ > λ0. This completes our proof. �

4.2. Spatially inhomogeneous case. Before proving our main results, we need to make

some necessary preparations. Under assumption (Φ), one can verify that there is an integer

N > 1 such that for all s > 1,

ψ−1(21−Ns) 6
3

8
ψ−1(s). (4.16)

Define

Sψk f =
∑
l≺k

Πψ
l f, Tψf g =

∑
k

Sψk f ·Π
ψ
k g, Rψ(f, g) =

∑
k∼l

Πψ
k f ·Π

ψ
l g.

Here l ≺ k means l < k −N and k ∼ l means |k − l| 6 N . Thus,

f · g =
∑
k,l

Πψ
k f ·Π

ψ
l g = Tψf g + Tψg f +Rψ(f, g).

For R1, R2 > 0 with R1 < R2, denote DR1,R2 := {x ∈ Rd : R1 6 |x| 6 R2}. The following

simple fact will be used frequently: For any two functions f̂ and ĝ whose supports are in BR0

and DR1,R2 , respectively, then

supp[f̂ ∗ ĝ] ⊆ D(R1−R0)+,R2+R0
. (4.17)

Noting that supp[F(Sψk f)] ⊆ Bψ−1(2k−N ) and supp[F(Πψ
k g)] ⊆ D 3

4
ψ−1(2k),ψ−1(2k+1), in view of

(4.17) and (4.16), we have

supp
[
F
(
Sψk f ·Π

ψ
k g
)]

=supp
[
F
(
Sψk f

)
∗ F

(
Πψ
k g
)]
⊆ D 3

8
ψ−1(2k), 2ψ−1(2k+1)

⊆Dψ−1(2k−N ), 3
4
ψ−1(2k+N ).

This yields that

Πψ
j (Sψk f ·Π

ψ
k g) = 0, if |j − k| > N. (4.18)
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Similarly, one can also verify that

Πψ
j

(∑
k:k∼l

Πψ
k f ·Π

ψ
l g

)
= 0, if j > k + 2N. (4.19)

Lemma 4.3. Let A be an N -function or A = ∞. Let a : Rd × Rd → R be a bounded

measurable function (need not be positive). Assume the linear operator L is given by (1.6),

and (Φ) are satisfied.

(a) For any θ > 0, it holds that

‖Lu‖
Bψ,0A

6 C‖u‖
Bψ,1A
· sup
z∈Rd

‖a(·, z)‖C θψ , (4.20)

where C only depends on d, c0, ψ and θ.

(b) For any α > 0 and θ ∈ (0, α), it holds that

‖Lu‖
Bψ,αA

6 C

(
‖u‖

Bψ,1+α
A

· sup
z∈Rd

‖a(·, z)‖C θψ + ‖u‖
Bψ,1+θ
A

· sup
z∈Rd

‖a(·, z)‖Cαψ

)
, (4.21)

where the constant C only depends on d, c0, ψ, α and θ.

Proof. Set

δzu(x) = u(x+ z)− u(x), az(x) = a(x, z).

By definition,

Πψ
j Lu(x) =Πψ

j

(ˆ
Rd
δzu(·) a(·, z)J(z) dz

)

=

ˆ
Rd

Πψ
j

∑
k,l>−1

Πψ
k (δzu) ·Πψ

l az

 (x) J(z) dz =:

ˆ
Rd
Ij(x, z) J(z) dz.

(4.22)

We drop the variable x below for simplicity. By (4.18) and (4.19),

|Ij(z)| =

∣∣∣∣∣∣Πψ
j

∑
k,l>−1

[
(δzΠ

ψ
k u) ·Πψ

l az
]∣∣∣∣∣∣

=

∣∣∣∣∣Πψ
j

(∑
k≺l

δzΠ
ψ
k u ·Π

ψ
l az +

∑
k�l

δzΠ
ψ
k u ·Π

ψ
l az +

∑
k∼l

δzΠ
ψ
k u ·Π

ψ
l az

)∣∣∣∣∣
(4.18),(4.19)

6
∑
k≺l∼j

∣∣δzΠψ
k u ·Π

ψ
l az
∣∣+

∑
l≺k∼j

∣∣δzΠψ
k u ·Π

ψ
l az
∣∣+

∑
l∼k;k>j−2N

∣∣δzΠψ
k u ·Π

ψ
l az
∣∣

=: I
(1)
j (z) + I

(2)
j (z) + I

(3)
j (z).

By mean value theorem, we get

|δzΠψ
k u(x)| =

∣∣∣∣ˆ 1

0
z · ∇Πψ

k u(x+ tz)dt

∣∣∣∣ 6 |z| ˆ 1

0

∣∣∣∇Πψ
k u(x+ tz)

∣∣∣ dt.

Thus,

|δzΠψ
k u(x)| 6

(
|Πψ

k u(x)|+ |Πψ
k u(x+ z)|

)
∧
(
|z|
ˆ 1

0

∣∣∣∇Πψ
k u(x+ tz)

∣∣∣ dt

)
.
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This and (3.1) imply that

‖δzΠψ
k u ·Π

ψ
l az‖A 6‖δzΠ

ψ
k u‖A sup

z
‖Πψ

l az‖∞

6 sup
z
‖Πψ

l az‖∞ ‖Π
ψ
k u‖A

(
1 ∧ |z|ψ−1(2k+1)

)
.

(4.23)

(i) If α = 0. Combining inequalities (4.23), (2.8) and (2.9), we getˆ
Rd
‖I(1)
j (z)‖AJ(z) dz 6

∑
k≺l∼j

ˆ
Rd

∥∥δzΠψ
k u ·Π

ψ
l az
∥∥
A
J(z) dz

(4.23)

6 2−θj sup
z
‖az‖C θψ ‖u‖Bψ,1A

∑
k≺l∼j

2−k

ψ−1(2k+1)

ˆ
|z|6 1

ψ−1(2k+1)

|z|J(z) dz +

ˆ
|z|> 1

ψ−1(2k+1)

J(z) dz


(2.8),(2.9)

. ‖u‖
Bψ,1A

sup
z
‖az‖C θψ 2−θj

∑
k≺l∼j

2−k
(

2k

ψ−1(2k+1)
+ 2k

)
.‖u‖

Bψ,1A
sup
z
‖az‖C θψ j2

−θj .

(4.24)

Similarly, noting that θ > 0, we haveˆ
Rd
‖I(2)
j (z)‖AJ(z) dz 6

∑
l≺k∼j

ˆ
Rd

∥∥δzΠψ
k u ·Π

ψ
l az
∥∥
A
J(z) dz

.‖u‖
Bψ,1A

sup
z
‖az‖C θψ

∑
l≺k∼j

2−θl2−k
(

2k

ψ−1(2k+1)
+ 2k

)
.‖u‖

Bψ,1A
sup
z
‖az‖C θψ ,

(4.25)

andˆ
Rd
‖I(3)
j (z)‖AJ(z) dz .‖u‖

Bψ,1A
sup
z
‖az‖C θψ

∑
l∼k;k>j−2N

2−θl2−k
(

2k

ψ−1(2k+1)
+ 2k

)
.‖u‖

Bψ,1A
sup
z
‖az‖C θψ 2−θj .

(4.26)

Combining (4.22), (4.24), (4.25) and (4.26), we obtain (4.20).

(ii) When α > 0, by (4.23) and similar discussions in (i), one can see that
ˆ
Rd
‖I(1)
j (z)‖AJ(z) dz .2−αj sup

z
‖az‖Cαψ ‖u‖Bψ,1+θ

A

∑
k≺l∼j

2−(1+θ)k

(
2k

ψ−1(2k+1)
+ 2k

)
.2−αj‖u‖

Bψ,1+θ
A

sup
z
‖az‖Cαψ ,

ˆ
Rd
‖I(2)
j (z)‖AJ(z) dz .2−αj‖u‖

Bψ,1+α
A

sup
z
‖az‖C θψ

∑
l≺k∼j

2−θl2−k
(

2k

ψ−1(2k+1)
+ 2k

)
.2−αj‖u‖

Bψ,1+α
A

sup
z
‖az‖C θψ ,
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andˆ
Rd
‖I(3)
j (z)‖AJ(z) dz .‖u‖

Bψ,1+α
A

∑
l∼k;k>j−2N

2−(1+α)k

(
2k

ψ−1(2k+1)
+ 2k

)
sup
z
‖Πψ

l az‖∞

.2−αj‖u‖
Bψ,1+α
A

sup
x,z
|a(x, z)|.

Combining the above estimates, we get (4.21). �

Lemma 4.4. Let A be an N -function or A = ∞. Suppose that (Φ) and (A1)-(A2) are

satisfied, then there are universal constants ε1 > 0 and λ0 > 0 such that for each λ > 2λ0

and f ∈ Bψ,β
A with β ∈ [0, α], the Poisson equation (PE) has a unique solution u ∈ Bψ,1+β

A ,

provided that |a(x, z)− a(0, z)| 6 ε1 and λ > λ0. Moreover,

λ‖u‖
Bψ,βA

+ ‖u‖
Bψ,1+β
A

6 C‖f‖
Bψ,βA

, for each β ∈ [0, α]. (4.27)

In particular, it holds that

λ‖u‖Cαρ + ‖u‖C1+α
ρ
6 C‖f‖Cαρ , (4.28)

if |a(x, z)− a(0, z)| 6 ε1 and λ > λ0, and f ∈ Cαρ .

Remark 4.5. Although the above analytic result relies on a special assumption regarding

the oscillation of a, it is sufficient for us to establish our Theorem 1.4. In the case where

A(t) = ∞ and s > 0, the space Bψ,s
A can be identified as the generalized Hölder space Csρ,

which exhibits the following localization property:

‖f‖Csρ �ε sup
y∈Rd

‖fη((· − y))‖Csρ ,

where η is some smooth cut-off function. The method of frozen coefficients, combined with

the aforementioned result, can be employed to eliminate the requirement that the oscillation

of a is small. We will present a detailed proof of this approach for Theorem 1.1. However,

it should be noted that the localization property can not extend to Bs
p,∞ (see [Tri92]). As a

result, it is unclear whether the assumption on the oscillation of a can be entirely eliminated.

Proof of Lemma 4.4. When a ≡ 1, by the proof of Theorem 4.1, we see that if f ∈ Bψ,β
A ,

then Gλf ∈ Bψ,1+β
A is a solution to (PE) (∀λ > 0), and estimate (4.27) holds true. Through

the continuity method, it is enough to prove (4.27), under the premise that u ∈ Bψ,1+β
A is a

solution to equation (PE). By interpolation theorem, we only need to show (4.27) for β = 0

and β = α.

Assume u ∈ Bψ,1+α
A . Set f = λu− Lu,

a0(z) = a(0, z) and L0u(x) =

ˆ
Rd

(u(x+ z)− u(x))a0(z)J(z) dz.

Thus,

λu− L0u = (L − L0)u+ f.

Using Theorem 4.1, we have

λ‖u‖
Bψ,αA

+ ‖u‖
Bψ,1+α
A

6 C
(
‖(L − L0)u‖

Bψ,αA
+ ‖f‖

Bψ,αA

)
. (4.29)

Choosing θ ∈ (0, α), we have

‖a(·, z)− a0(·, z)‖C θψ 6 ‖a(·, z)− a0(·, z)‖1−
θ
α

C 0
ψ
‖a(·, z)− a0(·, z)‖

θ
α
Cαψ
6 c−1

0 ε
1− θ

α
1 .
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By (4.21) and interpolation, we have

‖(L − L0)u‖
Bψ,αA

6Cε
1− θ

α
1 ‖u‖

Bψ,1+α
A

+ C‖u‖
Bψ,1+θ
A

6Cε
1− θ

α
1 ‖u‖

Bψ,1+α
A

+ C‖u‖
Bψ,αA

.

(4.30)

Combining (4.29) and (4.30), and choosing λ� 1, we get

λ‖u‖
Bψ,αA

+ ‖u‖
Bψ,1+α
A

6 Cε
1− θ

α
1 ‖u‖

Bψ,1+α
A

+ C‖f‖
Bψ,αA

.

Choosing ε1 sufficiently small, so that Cε
1− θ

α
1 6 1/2, then we obtain (4.27) for β = α.

The case β = 0 can be proved by using (4.20) and following the same procedure above. So

we complete our proof. �

Now we are at the point of proving Theorem 1.1.

Proof of Theorem 1.1. Let χ be the nonnegative smooth function with compact support de-

fined in Section 3.1. For fixed x0 ∈ Rd, define

χx0
ε (x) := χ

(x− x0

ε

)
and ax0

ε (x, z) := [a(x, z)− a(x0, z)]χε(x).

By definition, ax0
ε satisfies that

|ax0
ε (x, z)| . 1 (4.31)

and for every z ∈ Rd and |x− x′| < 1,

|ax0
ε (x, z)− ax0

ε (x′, z)| 6 Cερα(|x− x′|). (4.32)

For simplicity, we omit the superscript x0 below. Let v = uχε,

δzf(x) = f(x+ z)− f(x) and L0u(x) =

ˆ
Rd
δzf(x) a(x0, z)J(z) dz.

We have

λv − L0v

=[fχε − uL0χε] + (Lu− L0u)χε − [L0(uχε)− (L0u)χε − u(L0χε)]

= :
3∑
i=1

I(i)
ε .

(4.33)

Obviously,

‖I(1)
ε ‖Cαρ 6‖fχε‖Cαρ + ‖uL0χε‖Cαρ .ε ‖f‖Cαρ + ‖u‖Cαρ . (4.34)

Noting that

I(2)
ε (x) = (L0u(x)− Lu(x))χε(x) = −

ˆ
Rd
δzu(x)aε(x, z) J(z) dz,

then by (4.31), (4.32) and (4.21), for any θ ∈ (0, α)

‖I(2)
ε ‖Cαρ 6 c1ρ

α(ε)‖u‖C1+α
ρ

+ C‖u‖C1+θ
ρ

, (4.35)

where the constant c1 is independent with ε. For I
(3)
ε , by definition

I(3)
ε (x) =

ˆ
Rd
δzχε(x) δzu(x) a(x0, z)J(z) dz (4.36)
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and

I(3)
ε (x)− I(3)

ε (y) =

ˆ
Rd
δzχε(x)

[
δzu(x)− δzu(y)

]
a(x0, z)J(z) dz

+

ˆ
Rd

[
δzχε(x)− δzχε(y)

]
δzu(y) a(x0, z)J(z) dz.

(4.37)

By (4.36), we have∣∣I(3)
ε (x)| 6 ‖u‖∞

(ˆ
|z|61
‖∇χε‖∞|z|a(x0, z)J(z) dz + 2

ˆ
|z|>1

‖χε‖∞a(x0, z)J(z) dz

)
.ε ‖u‖∞.

By (4.37), one can see that∣∣I(3)
ε (x)− I(3)

ε (y)
∣∣

.ερ
α(|x− y|) ‖u‖Cαρ

(
‖∇χε‖∞

ˆ
|z|61
|z|J(z) dz + ‖χε‖∞

ˆ
|z|>1

J(z) dz

)

+ |x− y|

(
‖∇2χε‖∞‖u‖∞

ˆ
|z|61
|z|J(z) dz + ‖∇χε‖∞‖u‖∞

ˆ
|z|>1

J(z) dz

)
.ερ

α(|x− y|) ‖u‖Cαρ .

Therefore,

‖I(3)
ε ‖Cαρ .ε ‖u‖Cαρ . (4.38)

Using Theorem 4.1, and combining (4.34), we obtain that (4.35) and (4.38),

λ‖u‖Cαρ (Bε/2(x0)) + ‖u‖C1+α
ρ (Bε/2(x0))

6C‖v‖C1+α
ρ
6 C‖v‖Cαρ + C‖L0v‖Cαρ

6c2ρ
α(ε)‖u‖C1+α

ρ
+ C‖u‖C1+θ

ρ
+ C‖u‖Cαρ + C‖f‖Cαρ ,

for all λ > λ′0(d, α, ψ, c0, ρ0) > 0. Using the fact that

‖u‖C1+α
ρ
6 sup

x0∈Rd
‖u‖C1+α

ρ (Bε/2(x0)) + Cε‖u‖∞,

we obtain

‖u‖C1+α
ρ (Bε/2(x0)) 6 c2ρ

α(ε) sup
x0∈Rd

‖u‖C1+α
ρ (Bε/2(x0)) + C

(
‖u‖C1+θ

ρ
+ ‖u‖Cαρ + ‖f‖Cαρ

)
.

We then fix ε0 sufficiently small, such that c2ρ
α(ε) 6 1/2, so we arrive

sup
x0∈Rd

(
λ‖u‖Cαρ (Bε0/2(x0)) + ‖u‖C1+α

ρ (Bε0/2(x0))

)
6 C

(
‖u‖C1+θ

ρ
+ ‖u‖Cαρ + ‖f‖Cαρ

)
.

This yields

λ‖u‖Cαρ + ‖u‖C1+α
ρ
6Cε0 sup

x0∈Rd

(
λ‖u‖Cαρ (Bε0/2(x0)) + ‖u‖C1+α

ρ (Bε0/2(x0))

)
.
(
‖u‖C1+θ

ρ
+ ‖u‖Cαρ + ‖f‖Cαρ

)
.

By interpolation, one sees that

λ‖u‖Cαρ + ‖u‖C1+α
ρ
. ‖f‖Cαρ ,
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for all λ > λ0(d, α, ψ, c0, ρ0) > 0. �

Proof of Corollary 1.3. Let S be the gamma subordinator, whose Laplace exponent is given

by φ(s) = log(1 + s). By Proposition 2.10, one sees j(r) � r−d, r → 0. Let

a′(x, z) = |z|−dj−1(|z|)1B1(z) a(x, z).

Then a′(x, z) > c0, and ‖a′(·, z)‖Cαρ . ‖a(·, z)‖Cαρ 6 C, where ρ(r) = 1
ψ(r−1)

= 1
log(1+r−2)

.

Noting that

Lu(x) =

ˆ
B1

(u(x+ z)− u(x))
a(x, z)

|z|d
dz =

ˆ
Rd

(u(x+ z)− u(x)) a′(x, z)J(z) dz,

by Theorem 1.1, we obtain our assertion. �

5. Martingale problem

In this section, we study the martingale problem associated with L. We need to introduce

some necessary terminology.

Let D = D([0,∞),Rd) be the Skorokhod space of càdlàg Rd-valued trajectories and let

Xt = Xt(ω) = ωt (ω ∈ D), be the canonical process on it. Set

Dt =
⋂
ε>0

σ(Xs, 0 6 s 6 t+ ε), D = σ(Dt, t > 0).

Definition 5.1 (Martingale problem). Let µ be a probability measure on Rd. A probability

measure P on (D,D) is said to be a solution to the martingale problem for (L, µ) if P◦X−1
0 = µ

and for each f ∈ C∞b ,

Mf
t := f(Xt)− f(x)−

ˆ t

0
Lf(Xs) ds is a Dt-martingale under P.

Below we briefly introduce the SDE corresponding to the martingale problem (L, µ). Let

(Ω,P,F) be a probability space and N(dr, dz,ds) be a Poisson random measure on R+ ×
Rd×R+ with intensity measure dr J(z)dz ds. Consider the following SDE driven by Poisson

random measure N :

Xt = x+

ˆ t

0

ˆ
Rd

ˆ ∞
0

z1[0,a(Xs−,z))(r)N(dr, dz, ds). (5.1)

If |a(x, z)− a(x, z)| 6 C|x− y| for any x, y ∈ Rd, thenˆ
Rd

ˆ ∞
0
|z|2

(
1[0,a(x,z))(r)− 1[0,a(y,z))(r)

)2
dr J(z)dz 6 C|x− y|2.

This implies (5.1) admits a unique strong solution (see [App09]). By Itô’s formula, we see

that

f(Xt)− f(x) =

ˆ t

0

ˆ
Rd

ˆ ∞
0

(
f
(
Xs− + z1[0,a(Xs−,z))(r)

)
− f(Xs−)

)
N(dr, dz,ds)

=

ˆ t

0

ˆ
Rd

(f(Xs− + z)− f(Xs−)) a(Xs−, z) J(z)dz ds

+

ˆ t

0

ˆ
Rd

ˆ ∞
0

(f(Xs− + z)− f(Xs−)) 1[0,a(Xs−,z)](r)Ñ(dr, dz,ds),
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=

ˆ t

0
Lf(Xs−)ds+Mf

t ,

where Ñ(dr, dz,dt) = N(dr, dz, dt) − drJ(z)dzdt and Mf
t is a martingale. Therefore, when

x 7→ a(x, z) is Lipschitz continuous (uniformly in z), P ◦ X−1 is a martingale solution to

(L, δx).

Now we are at the point of proving Theorem 1.4.

Proof of Theorem 1.4. Existence: The proof for the existence is standard, for the conve-

nience of the reader, we give the details here. Let η ∈ C∞c (B1) satisfying
´
η = 1. Set

ηn(x) = ndη(nx) and an(x, z) =
´
a(x− y, z)ηn(y) dy. Let Xn

t be the unique strong solution

to (5.1) (a is replaced by an), and Pnx := P ◦ (Xn)−1. By the discussion above, Pnx is a

martingale solution associated with (Ln, δx), and

Lnf(x) =

ˆ
Rd

(f(x+ z)− f(x)) an(x, z)J(z) dz.

We claim that {Pnx} is tight in P(D). Then upon taking a subsequence, still denoted by

n, we can assume that Pnx ⇒ Px. For any 0 6 s1 6 · · · 6 sk 6 s 6 t, f ∈ C∞c (Rd) and

hi ∈ C∞c (Rd), i ∈ {1, 2 · · · , k}, we have

EPx

{[
f(Xt)− f(Xs)−

ˆ t

s
Lf(Xu) du

] k∏
i=1

hi(Xti)

}

= lim
n→∞

E

{[
f(Xn

t )− f(Xn
s )−

ˆ t

s
Lf(Xn

u ) du

] k∏
i=1

hi(X
n
ti)

}

= lim
n→∞

E

{[
f(Xn

t )− f(Xn
s )−

ˆ t

s
Lnf(Xn

u ) du

] k∏
i=1

hi(X
n
ti)

}

+ lim
n→∞

E

{[ˆ t

s
(Ln − L)f(Xn

u ) du

] k∏
i=1

hi(X
n
ti)

}
= 0.

Here we use the fact that P ◦ (Xn)−1 is a solution to (Ln, δx), and (Ln −L)f → 0 uniformly

(since an → a uniformly). Thus, Px is a martingale solution to (L, δx).

It remains to show {Pnx} is tight. Given a bounded stopping time τ , we define

Nτ (dz) =

ˆ τ+1

τ

ˆ c−1
0

0
N(dr, dz,ds).

Nτ (dz) is a Poisson random measure on Rd with intensity measure c−1
0 J(z)dz.

P(|Xn
τ+δ −Xn

τ | > ε)

6P(|Xn
τ+δ −Xn

τ | > ε;Nτ (Bc
M ) = 0) + P(Nτ (Bc

M ) > 1)

6ε−1E

∣∣∣∣∣
ˆ τ+δ

τ

ˆ
BM

ˆ a(Xs−,z)

0
zN(dr, dz, ds)

∣∣∣∣∣+ P(Nτ (Bc
M ) > 1)

6
δ

c0ε

ˆ
|z|6M

|z|J(z)dz + c−1
0

ˆ
|z|>M

J(z)dz.
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Letting δ → 0 and then M → 0, we get supn,τ P(|Xn
τ+δ −Xn

τ | > ε) → 0 (δ → 0). Similarly,

one can also see that supn P(|Xn| > M) → 0 (M → ∞). By Aldous tightness criterion, we

get the tightness of {Pnx}.
Uniqueness: For any f ∈ C∞b , consider equation (PE) in C1+α

ρ . By Theorem 1.1, equation

(PE) admits a unique solution u ∈ C1+α
ρ . Suppose that (Pix, Xt) (i = 1, 2) are two solutions

to martingale problem (L, δx), one can easily verify that

Mu
t = u(Xt)− u(x)−

ˆ t

0
Lu(Xt) dt

is a martingale under Pix. This implies

d(e−λtu(Xt)) =− e−λt(λ− L)u(Xt) dt+ e−λt dMu
t

=− e−λtf(Xt) dt+ e−λtdMu
t .

Taking expectation, one sees

u(x) = Eix
ˆ ∞

0
e−λtf(Xt) dt, i = 1, 2.

Thanks to [EK09, Theorem 4.2], P1
x = P2

x.

Krylov-type estimate: Let δ ∈ (0, 1 ∧ ρ0/10) such that

ρα(2δ) < ε1,

where ε1 is the same constant in Lemma 4.4. For each y ∈ Rd, let

ay(x, z) =


a(x, z) if x ∈ Bδ(y),

a

(
y +

δ2(x− y)

|x− y|2
, z

)
if x ∈ Bc

δ(y).

Then ay satisfies (La), (Ha) and

|ay(x, z)− ay(y, z)| < ε1.

Let

Lyu(x) =

ˆ
Rd

(u(x+ z)− u(x)) ay(x, z)J(z) dz.

Since ay also satisfies conditions (A1) and (A2), by Theorem 1.4 (a), for each y ∈ Rd, the

martingale problem (Ly, δy) admits a unique solution (Qy, Xt). Moreover, for each y ∈ Rd
and f ∈ C∞c , by the proof for Theorem 1.4 (a), we have

EQy

ˆ ∞
0

e−λtf(Xt) dt = uay(y), (5.2)

where uay is the solution to (PE) with L replaced by Ly. Noting that ay meets all the

assumptions in Lemma 4.4, we have

‖uay‖Bψ,1A
6 C‖f‖

Bψ,0A
6 C‖f‖A. (5.3)

Combining and (5.2) and (5.3) and using Theorem 3.13, we get

EQy

ˆ ∞
0

e−λtf(Xt) dt
(5.2)

6 C‖uay‖
C

ε
1+ε
ψ

(3.24)

6 C‖uay‖Bψ,1A

(5.3)

6 C‖f‖A. (5.4)
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Now let τ1 = inf{t > 0 : |Xt −X0| > δ} and τk+1 = τk + τ1 ◦ θτk . It holds that

Qy|Fτ1
= Py|Fτ1

,

due to the fact that ay(·, z)|Bδ(y) = a(·, z)|Bδ(y) and the uniqueness of martingale problem

(L, δy). Suppose that (Pµ, Xt) is the unique martingale solution to (L, µ), then for any

non-negative function f ∈ C∞c ,

Eµ
ˆ τ1

0
e−λtf(Xt) dt =

ˆ
Rd
µ(dy) Ey

ˆ τ1

0
e−λtf(Xt) dt

=

ˆ
Rd
µ(dy) EQy

ˆ τ1

0
e−λtf(Xt) dt 6 sup

y
EQy

ˆ ∞
0

e−λtf(Xt) dt . ‖f‖A.

By strong Markov property,

Eµ
ˆ τk+1

τk

e−λtf(Xt) dt =Eµ
ˆ τk+1

τk

e−λtf(Xt) dt = Eµ
ˆ τ1◦θτk

0
e−λ(τk+t)f(Xt ◦ θτk) dt

=Eµe−λτk
(ˆ τ1

0
e−λtf(Xt) dt

)
◦ θτk

=Eµ
(

e−λτkEXτk

ˆ τ1

0
e−λtf(Xt) dt

)
.‖f‖AEµe−λτk 6 ‖f‖A sup

y
Eye−λτk .

To estimate supy Eye−λτk , using strong Markov property again, we have

Exe−λτk+1 =Exe−λ(τk+τ1◦θτk ) = Ex
[
e−λτkEx

(
e−λτ1 ◦ θτk |Fτk

)]
=Ex

[
e−λτkEXτk e−λτ1

]
6

(
sup
y

Eye−λτ1
)
Exe−λτk

6 · · · 6
(

sup
y

Eye−λτ1
)k+1

.

Thus,

Eµ
ˆ ∞

0
e−λtf(Xt) dt .

∞∑
k=0

Eµ
ˆ τk+1

τk

e−λtf(Xt) dt

.‖f‖A
∞∑
k=1

(
sup
y

Eye−λτk
)
6 ‖f‖A

∞∑
k=1

(
sup
y

Eye−λτ1
)k

.

So the desired conclusion follows if Eye−λτ1 6 1/2 for all y. To achieve this, we choose

g ∈ C∞b , which satisfies g(x) = 0 if x ∈ Bδ/2, g(x) = 1 if x ∈ Bδ and ‖∇g‖∞ 6 Cδ−1. Let

gy(x) = g(x− y). It is easy to verify that there exists a constant Kδ <∞ such that

Lgy(x)− λgy(x) 6 ‖Lgy‖∞ 6 Kδ.

Note that

Ey
[
e−λτ1gy(Xτ1)

]
− gy(y) = Ey

ˆ ∞
0

e−λs(Lgy − λgy)(Xs) ds.

Since gy(y) = g(0) = 0 and gy(Xτ1) = 1, Py-a.s., we have

Eye−λτ1 6 Kδ/λ.
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Choosing λ > 2K ∨ λ0, we have supy Eye−λτ1 6 1/2. Therefore,

Eµ
ˆ ∞

0
e−λtf(Xt) dt . ‖f‖A

∞∑
k=1

1

2k
. ‖f‖A, for all λ > 2K ∨ λ0.

For any λ > 0 and µ ∈ P(Rd),

Eµ
ˆ ∞

0
e−λtf(Xt) dt 6 sup

y
Ey
ˆ 1

0
f(Xt) dt ·

∞∑
k=0

e−λk

.λ−1 sup
y

Ey
ˆ ∞

0
e−(2K∨λ0)tf(Xt) dt . ‖f‖A/λ.

So we complete our proof. �

Remark 5.2. For diffusion operators, Stroock and Varadhan showed that if the diffusion

coefficients are uniformly elliptic and continuous, then the corresponding martingale problem

is well-posed (see for instance, [SV07]). Two key ingredients proving the uniqueness are:

(1) (I −∆)−1Lp ↪→ L∞, p > d/2;

(2) the Lp boundedness of the Riesz transforms (singular integrals).

Following the approach of Stroock and Varadhan to obtain a similar result for L when the

coefficient a is merely uniformly continuous in x, one would need to establish the bounded-

ness of singular integrals in the Orlicz space LA, which satisfies (I + φ(−∆))−1LA ↪→ L∞.

Unfortunately, the following example demonstrates that if A grows rapidly, even the Hilbert

transform (the archetypal singular integral operator) may not be bounded in LA: let d = 1

and H be the Hilbert transform. Set I = (0, 1) and A(t) = et
2 − 1. Then

HχI(x) = log

∣∣∣∣ x

(x− 1)

∣∣∣∣ .
For each λ > 0, we have

ˆ
A(|HχI |/λ) =

ˆ ∞
0

A′(t) |{x : HχI(x) > λt}|dt >
ˆ ∞

1

et
2

(eλt − 1)
dt =∞.

Thus, it appears that we may need to explore new frameworks to address this problem when

a does not satisfies (A2).

We conclude this section by providing the proof of Corollary 1.5.

Proof of Corollary 1.5. The existence of a weak solution to (1.7) follows from standard argu-

ments under the assumption that the coefficient is continuous and bounded.

For the uniqueness, let S be the gamma subordinator, whose Laplace exponent is given by

φ(s) = log(1 + s). Under the assumption that σ is non-degenerate, as presented in Example

2, the generator operator Lσ associated with (1.7) is given by (1.8). In Section 2.3, we

have verified that the jump kernel of the variance gamma process and the function a satisfy

conditions (Φ) and (A1)-(A2), respectively. Since any weak solution to (1.7) is also a solution

to martingale problem (Lσ, δx), in the light of Theorem 1.4, (1.7) admits a unique solution.
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For (1.10), set A(t) = et
β − 1 with β > 1. Then [ψ−1(t1+ε)]d = (et

1+ε − 1)d/2 . A(t), for

all t� 1 and some ε ∈ (0, β − 1). Thanks to Theorem 1.4 (inequality (1.9)), we obtain that

Ex
ˆ ∞

0
e−λtf(Xt) dt 6

C

λ
inf

{
λ > 0 :

ˆ
Rd
A (f(x)/λ) dx 6 1

}
=
C

λ
inf

{
λ > 0 :

ˆ
Rd

(
exp

[
(f(x)/λ)β

]
− 1
)

dx 6 1

}
.

�

Appendix A. Remarks on a theorem by R. Bass

This section extends the main results of [Bas09] on stable-like operators using Littlewood-

Paley theory and scaling techniques, and emphasizes that it is more natural to study a priori

estimates in the C s space. We also observe that the function space X mentioned in Section 1.2

(aimed to replace C s) contains unbounded and discontinuous functions, so it is not suitable

for the problems we care about. We will also show that techniques that have proven to be

successful for stable-like operators can not yield satisfactory results for our main problem of

concern.

To begin, we review some fundamental concepts from classical Littlewood-Paley theory.

Let χ be the same smooth function defined in Section 3.

ϕ(ξ) := χ(ξ)− χ(2ξ).

It is easy to see that ϕ > 0,

suppϕ ⊂ C := B1 \B 3
8

and ϕ(x) = 1 if x ∈ B 3
4
\B 1

2
. (A.1)

Operators ∆j is defined by

∆jf :=

{
F−1(χ(2·)Ff), j = −1,

F−1(ϕ(2−j ·)Ff), j > 0.

Definition A.1 (Hölder-Zygmund space). Assume that s ∈ R, let C s denote the collection

of all distribution f satisfying

‖f‖C s := sup
j>−1

2js‖∆jf‖∞ <∞.

The following result is well-known.

Theorem A.2 ([BCD11, Theorem 2.36]). Assume s > 0 and s /∈ N, then C s is the usual

Hölder space and

‖f‖C s � ‖f‖∞ + sup
x 6=y

|∇[s]f(x)−∇[s]f(y)|
|x− y|s−[s]

.

Let ν be a non-degenerate α-stable measure, i.e., for each ξ ∈ Rd\{0},ˆ
Sd−1

|σ · ξ|2Σ(dσ) > 0.

Here Σ is the spectral measure of ν, i.e.

ν(dz) =
dr

r1+α
Σ(dσ), z = rσ.
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Let a is a bounded positive function on Rd × Rd. The operator La is defined by

Lau(x) =

ˆ
Rd

(
u(x+ z)− u(x)−∇u(x) · z1α∈(1,2)

)
a(x, z)ν(dz)

when α ∈ (0, 2) and α 6= 1. If α = 1, we always assume
´
Sd−1 σ a(x, rσ)Σ(dσ) = 0 and define

Lau(x) =

ˆ
Rd

(u(x+ z)− u(x)−∇u(x) · z1B1(z)) a(x, z)ν(dz).

The following result is a generalization of Proposition 4.2 and Proposition 4.3 in [Bas09].

Note that here we do not need to assume ν is absolutely continuous with respect to Lebesgue

measure.

Lemma A.3. Let c0 ∈ (0, 1). Suppose ν is a non-degenerate α-stable measure. Assume that

a only depends on z and c0 6 a 6 c−1
0 , then for each λ > 1, β ∈ R, there is a constant

C = C(d, ν, α, β, c0) such that

λ‖u‖C β + ‖u‖Cα+β 6 C‖λu−Lau‖C β . (A.2)

Proof. We only prove the case α 6= 1 here.

Step 1. Let

A =
{
a ∈ L∞(Rd) : c0 6 a(z) 6 c−1

0 , z ∈ Rd
}
.

We first prove that for any v ∈ S ′(Rd) satisfying supp v̂ ⊆ C = B1 \B 3
8
, it holds that

‖v‖∞ 6 C inf
a∈A
‖Lav‖∞. (A.3)

Here C is a constant independent of on v.

Assume (A.3) does not hold. Then, there is a sequence vn such that v̂n is supported on C,
and a sequence an ∈ A such that

1 = ‖vn‖∞ > n‖Lanvn‖∞. (A.4)

Let h = F−1(χ(·/2) − χ(4·)), where χ is the same function in Section 3. Noting that

(χ(·/2)− χ(4·))v̂n = v̂n, we have

vn(x) =

ˆ
Rd
h(x− y)vn(y)dy.

So for any k ∈ N,

‖∇kvn‖∞ = ‖∇kh ∗ vn‖∞ 6 ‖∇kh‖1‖vn‖∞ 6 Ck. (A.5)

By Ascoli-Azela’s lemma and diagonal argument, there is a subsequence of {vn} (still denoted

by vn for simplicity) and v ∈ C∞b such that ∇kvn converges to ∇kv uniformly on any compact

set. Let χR(·) = χ(·/R). For any φ ∈ S (Rd),∣∣∣∣ˆ φ(vn − v)

∣∣∣∣ 6ˆ |φχR · (vn − v)|+
ˆ
|φ(1− χR)(vn − v)|

6‖φ‖L1‖vn − v‖L∞(B3R/2) + 2 sup
|x|>R

|φ(x)|.

Letting n→∞ and then R→∞, we get

〈φ, vn〉 → 〈φ, u〉, ∀φ ∈ S (Rd).



Non-local Operators with Low Singularity Kernels 41

Here 〈, 〉 denotes the dual pair of S (Rd) and S ′(Rd). That is to say vn → v in S ′(Rd) and

consequently, v̂n → v̂ in S ′(Rd). For any φ ∈ S (Rd) supported on Rd\C, we have

〈φ, v̂〉 = lim
n→∞

〈φ, v̂n〉 = 0,

which means v̂ is also supported on C.
On the other hand, note that anν is a sequence of Radon measures on Rd\{0}, and

supn
´
K an(z)ν(dz) 6 c−1

0 ν(K) < ∞ for each compact subset K in Rd\{0}. Thus, there

is a subsequence of an (still denoted by an for simplicity) such that

anν
v−→ ν0 and a0 := dν0/dν ∈ [c0, c

−1
0 ]. (A.6)

Using (A.4)-(A.6) and the fact that ∇kvn → ∇kv uniformly on each compact subset, we have

La0v(x) =

ˆ
Rd

(
v(x+ z)− v(x)−∇v(x) · z1α∈(1,2)

)
a(z)ν(dz)

= lim
n→∞

∣∣∣∣ˆ
Rd

(
vn(x+ z)− vn(x)−∇vn(x) · z1α∈(1,2)

)
an(z)ν(dz)

∣∣∣∣
(A.4)

6 lim
n→∞

‖vn‖∞
n

= 0.

This implies 0 = L̂a0v = ψa0 v̂. Since for ξ 6= 0,

Re(ψa0(ξ)) =

ˆ
Rd

(1− cos(z · ξ)) a0(z)ν(dz) &
ˆ
|z|6 π

4|ξ|

|z · ξ|2ν(dz)

=

ˆ π
4|ξ|

0
r1−αdr

ˆ
Rd−1

|σ · ξ|2Σ(dσ) > 0,

we get that the support of v̂ is the origin. This contradicts the previous conclusion that

supp v̂ ⊆ C. So we complete the proof for (A.3).

Step 2. Suppose u ∈ S ′(Rd) and supp û ⊆ λC. Let v(x) := u(λ−1x) and aλ(z) = a(λ−1z).

By the scaling property of ν, we get

Laλv(x) =

ˆ
Rd

(
u(λ−1x+ λ−1z)− u(λ−1x)−∇u(λ−1(x)) · (λ−1z)1α∈(1,2)

)
aλ(z)ν(dz)

=

ˆ
Rd

(
u(λ−1x+ z′)− u(λ−1x)−∇u(λ−1(x)) · z′1α∈(1,2)

)
a(z′)λ−αν(dz′)

=λ−α(Lau)(λ−1x).

Thus, by (A.3), we get

‖u‖∞ = ‖v‖∞ 6 C‖Laλv‖∞ = Cλ−α‖Lau‖∞, (A.7)

provided that supp û ∈ λC.
Step 3. Like the proof for Theorem 4.1, it is easy to see that for each j > −1,

λ‖∆ju‖∞ 6 ‖λ∆ju−La∆ju‖∞.

By (A.7), for any j > 0,

2jα‖∆ju‖∞ 6C‖La∆ju‖∞ 6 Cλ‖∆ju‖∞ + C‖λ∆ju−La∆ju‖∞
6‖λ∆ju−La∆ju‖∞.

Thus, for all λ > 1 and β ∈ R, we get (A.2). �



42 E. Hu & G. ZHAO

Theorem A.4. Let ν be a non-degenerate α-stable measure with α ∈ (0, 2). Suppose that

there exist constants c0 and γ ∈ (0, 1), such that c0 6 a 6 c
−1
0 and supz∈Rd ‖a(·, z)‖C γ 6 c−1

0 ,

then for any λ > 0 and β ∈ [0, γ], there is a constant C = C(d, ν, α, β, γ, c0) such that

λ‖u‖C β + ‖u‖Cα+β 6 C‖λu−Lau‖C β .

With Lemma A.3 at hand, utilizing the method of frozen coefficients as before, we can

prove the case that a is a positive function on Rd ×Rd. Since the proof for this result is just

a repetition of the proof of Theorem 1.1, we omit it here.

We point out that the approach used in the proof of Lemma A.3 cannot be directly extended

to the case of ν(dz) =
1B1

(z)

|z|d dz, and it may not be possible. One significant hurdle arises

from the need to obtain the desired regularity estimate, which requires the use of the ψ-

decomposition with ψ(R) � logR (R→∞). However, when attempting to repeat the same

procedure, it becomes apparent that Step 2 in the proof for Lemma A.3 is invalid in the

current situation.

Appendix B. A remark on space X s

In this section, we show that X s given by (1.11) may contains unbounded discontinuous

functions, even if s > 0.

Proposition B.1. Let X 1 be the function space given by (1.11). Then X 1 6⊆ L∞.

Proof. We provide an example to demonstrate that X 1 encompasses unbounded, discontin-

uous functions.

Let φ ∈ S (Rd) such that F(φ) ∈ C∞c (B 3
4
\B 1

2
) , F(φ) ∈ [0, 1] and F(φ) = 1 on B 11

16
\B 9

16
.

Define

f(x) =


∑
j>1

j−1φ(2jx), x 6= 0

0, x = 0.

Due to (A.1), F(φ)ϕ = F(φ). Thus,

F(f)(ξ)ϕ(2−jξ) =j−12−j(F(φ)ϕ)(2−jξ)

=j−12−jF(φ)(2−jξ).

This yields

sup
j>−1

max{1, j}‖∆jf‖∞ = sup
j>1
‖φ(2j ·)‖ = ‖φ‖∞ <∞.

Therefore, f ∈X 1.

On the other hand, since φ ∈ S (Rd) and

|φ(x)| =
∣∣∣∣ˆ

Rd
F(φ)(ξ)ei2πx·ξdξ

∣∣∣∣ 6 ˆ
Rd
F(φ)(ξ)dξ = φ(0) > 0,

there are constants ε0, δ0 ∈ (0, 2−10) such that φ(x) > 2ε0, when |x| 6 δ0. Now put δ := δ10
0 .

For any x ∈ Bδ\{0}, set jx := [− log2 |x|]. It holds that

C log jx > φ(0)
∑

16j6jx

j−1 >
∑

16j6jx+log2 δ0

j−1φ(2jx) > ε0 log jx. (B.1)
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Noting that |φ(2jx)| 6 C(2j |x|)−N if j > jx, we get∑
j>jx

|j−1φ(2jx)| 6 C
∑
j>jx

j−12−jN |x|−N 6 Cj−1
x � 1. (B.2)

Moreover, ∑
jx+log2 δ0<j6jx

|j−1φ(2jx)| 6 −C log2 δ0. (B.3)

Combining (B.1)-(B.3), one sees that for any x ∈ Bδ\{0},

f(x) > ε0 log jx − C >
ε0

2
log log2 |x|−1 − C

and

|f(x)| 6 C log log2 |x|−1 + C.

This implies f /∈ L∞ and f ∈ L1(Bδ).

To sum up, we see that f ∈ (X 1 ∩ L1
loc)\L∞. �
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