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Abstract. Let d ≥ 2, α ∈ (0, 2), and X be the rectilinear α-stable process on Rd. We first present a
geometric characterization of open subset D ⊂ Rd so that the part process XD of X in D is irreducible. We

then study the properties of the transition density functions of XD, including the strict positivity property

as well as their sharp two-sided bounds in C1,1 domains in Rd. Our bounds are shown to be sharp for a
class of C1,1 domains.
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1. Introduction and main results

Dirichlet heat kernels for non-local operators are a fundamental subject both in analysis and in probability
theory. Sharp two-sided Dirichlet heat kernel estimates for fractional Laplacian ∆α/2 := −(−∆)α/2 in C1,1

open subsets of Rd with α ∈ (0, 2) have first been obtained in [8]. Since then, there are many works in
extending it to certain classes of symmetric Markov processes and their lower order perturbations as well as
to more general open sets. In many of these works, the jump measures of the Markov processes are absolutely
continuous with respect to the Lebesgue measure.

Let d ≥ 2 and α ∈ (0, 2). The purpose of this paper is to study the Dirichlet heat kernels for

L := −
d∑
k=1

(
− ∂2

(∂x(k))2

)α/2
in open subsets of Rd. Here x(k) is the kth-coordinate of a point x = (x(1), x(2), · · · , x(d)) ∈ Rd. We call L a
rectilinear fractional Laplace operator, which is more singular than the usual isotropic fractional Laplacian
∆α/2. The rectilinear fractional Laplacian L is the infinitesimal generator of the rectilinear α-stable process

X =
{
Xt =

(
X

(1)
t , X

(2)
t , · · · , X(d)

t

)
; t ≥ 0

}
on Rd, where X(1), X(2), · · · , X(d) are independent one-dimensional symmetric α-stable processes. The

process X is a Lévy process on Rd whose Lévy exponent is Ψ(ξ) =
∑d
j=1 |ξ(j)|α for ξ = (ξ(1), ξ(2), · · · , ξ(d)) ∈
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Rd; that is,

Eeiξ·(Xt−X0) = e−t
∑d
j=1 |ξ

(j)|α for t > 0 and ξ ∈ Rd.
The Lévy measure of X is singular with respect to the Lebesgue measure on Rd; see (1.7).

Unlike the isotropic (or, rotationally symmetric) α-stable process Z on Rd, the distribution of the incre-
ments of the rectilinear α-stable process X is not rotationally invariant. The isotropic α-stable process Z is

a Lévy process on Rd having infinitesimal generator ∆α/2 and Lévy exponent |ξ|α :=
(∑d

j=1 |ξ(j)|2
)α/2

. For

f ∈ C2
c (Rd),

∆α/2f(x) =

∫
Rd\{0}

(
f(x+ z)− f(x)−∇f(x) · z1{|z|≤1}

) Cd,α
|z|d+α

dz, (1.1)

while

Lf(x) =

d∑
j=1

∫
R\{0}

(
f(x+ wej)− f(x)− w1{|w|≤1}

∂f(x)

∂x(j)

)
C1,α
|w|1+α

dw,

where ej is the unit vector in the positive x(j)-direction and

Cd,α =
α2α−1Γ((d+ α)/2)

πd/2Γ(1− α/2)
. (1.2)

Here Γ is the usual Gamma function defined by Γ(λ) :=
∫∞

0
tλ−1e−tdt for λ > 0.

It is well known (see [3, Theorem 2.1] via stable scaling) that the isotropic α-stable process Z on Rd has
a smooth density function p(d,α)(t, x, y) with respect to the Lebesgue measure on Rd and there are positive
constants c2 > c1 > 0 that depend only on d and α so that

c1

(
t−d/α ∧ t

|x− y|d+α

)
≤ p(d,α)(t, x, y) ≤ c2

(
t−d/α ∧ t

|x− y|d+α

)
for t > 0, x, y ∈ Rd. (1.3)

In this paper, we will use := as a way of definition. For a, b ∈ R, a ∧ b := min{a, b} and a ∨ b := max{a, b}.
Since for a > 0 and b > 0,

ab

a+ b
≤ a ∧ b ≤ 2ab

a+ b
,

we can rewrite the estimates in (1.3) by

c3 t

(t1/α + |x− y|)d+α
≤ p(d,α)(t, x, y) ≤ c4 t

(t1/α + |x− y|)d+α
for t > 0 and x, y ∈ Rd, (1.4)

where constants c4 > c3 > 0 depend only on d and α.
By the independence between its coordinate processes, the rectilinear α-stable process X on Rd has a

smooth transition density function

p(t, x, y) =

d∏
k=1

p(1,α)(t, x(k), y(k)) for t > 0 and x = (x(k)), y = (y(k)) ∈ Rd, (1.5)

with respect to the Lebesgue measure on Rd. By (1.3), there is a constant C1 = C1(d, α) > 1 so that

C−1
1

d∏
k=1

(
t−1/α ∧ t

|x(k) − y(k)|1+α

)
≤ p(t, x, y) ≤ C1

d∏
k=1

(
t−1/α ∧ t

|x(k) − y(k)|1+α

)
(1.6)

for all t > 0, and x = (x(k)), y = (y(k)) ∈ Rd. This is clearly quite different from the estimates for
p(d,α)(t, x, y) of the isotropic or rotationally symmetric α-stable process Z on Rd.

Though the rectilinear α-stable process X and the isotropic α-stable process Z are both Lévy processes
that are invariant under the α-stable scaling, they have many fundamentally different properties, which will
be further revealed in this paper. For instance, it is shown in [1] that Harnack inequality fails for rectilinear
stable processes, while scale invariant Harnack inequality holds for isotropic stable processes. The root of
these differences lies in the fact that the isotropic α-stable process Z can jump in any direction uniformly,
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while the rectilinear α-stable process X can only jump along the directions of coordinate axes, one at a time,
and thus is much singular. The Lévy measure of X is

µ(dz) =

d∑
j=1

C1,α
|z(j)|1+α

dz(j) ⊗
d∏
k=1
k 6=j

δ{0}(dz
(k)), (1.7)

where δ{0} denotes the Dirac measure concentrated at 0 and z = (z(1), z(2), · · · , z(d)) ∈ Rd. The Lévy measure
µ describes how the rectilinear α-stable process X jumps. For any non-negative measurable function f on
R+ ×Rd ×Rd with f(s, x, x) = 0 for any s ≥ 0 and x ∈ Rd and for any stopping time S with respect to the
minimum augmented filtration generated by X, we have

Ex

∑
s≤S

f(s,Xs−, Xs)

 = Ex

[∫ S

0

∫
Rd
f(s,Xs, Xs + z)µ(dz)ds

]
. (1.8)

See, e.g., [12, proof of Lemma 4.7] and [13, Appendix A]. We mention that recently it is shown in [19] that
the transition density functions of the symmetric pure jump processes whose jumping measure J(dx, dy) is
comparable to dxµ(dy − x), where µ is the Lévy measure of (1.7), have the two-sided estimates (1.6). This
result has been further extended to more general rectilinear Lévy processes in [20].

For any non-empty open subset D ⊂ Rd, let τD(ω) = inf{t > 0, Xt(ω) /∈ D} denote the first exit time
from D by X. Taking f(x, y) = 1D(x)1Dc(y)ϕ(y) and S = τD in (1.8), where ϕ is a bounded function
defined on Dc, yields

Ex [ϕ(XτD );XτD− 6= XτD ] = Ex
[∫ τD

0

∫
Dc
ϕ(z)µ(dz −Xs)ds

]
. (1.9)

The subprocess XD of X killed upon leaving D is defined as

XD
t (ω) =

{
Xt(ω) for t < τD(ω)

∂ for t ≥ τD(ω)
,

where ∂ is a cemetery state. The subprocesses of other Markov processes in an open set can be defined in
a similar way. Denote by LD the infinitesimal generator of XD, which is the non-local operator L in D
satisfying the zero exterior condition.

Let {Pt; t ≥ 0} be the transition semigroup of the rectilinear α-stable process X; that is, for t > 0, x ∈ Rd
and f ≥ 0 on Rd,

Ptf(x) := Ex [f(Xt)] =

∫
Rd
p(t, x, y)f(y)dy.

By (1.6), {Pt; t ≥ 0} is a strongly continuous semigroup in the Banach space C∞(Rd) of continuous functions
that vanish at infinity equipped with the uniform norm ‖f‖∞ := supx∈Rd |f(x)|. Moreover, since p(t, x, y)
is jointly continuous and has estimates (1.6), {Pt; t ≥ 0} has strong Feller property in the sense that for
every t > 0 and any bounded function f on Rd, Ptf is a bounded continuous function on Rd. Thus the Lévy
process X is a Feller process having strong Feller property. By the proof of [15, Theorem on p. 68], the
semigroup {PDt ; t ≥ 0} of XD has strong Feller property for any non-empty open subset D ⊂ Rd. (Observe
that the proof of the strong Feller property of {PDt ; t ≥ 0} in [15] does not need regular assumption on D.)
In this paper, we will show that XD has a jointly locally Hölder continuous transition density pD(t, x, y)
with respect to the Lebesgue measure. Furthermore, we will investigate the strict positivity property and
the two-sided estimates of pD(t, x, y) for a class of open subsets D ⊂ Rd.

Theorem 1.1. For any non-empty open set D ⊂ Rd, the subprocess XD has a jointly (locally) Hölder
continuous density function pD(t, x, y) on (0,∞)×D×D; that is, for any x ∈ D and any non-negative Borel
measurable function ϕ on D,

Ex
[
ϕ(XD

t )
]

=

∫
D

pD(t, x, y)ϕ(y)dy. (1.10)

Throughout this paper, we use the convention that any function ϕ defined on D is extended to ∂ by
setting ϕ(∂) = 0. We also call pD(t, x, y) the heat kernel of XD (or, equivalently, of LD), or the Dirichlet
heat kernel of X (or, equivalently, of L) in D.
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Unlike the rotationally symmetric α-stable process Z, the behavior of XD and pD(t, x, y) are strongly
dependent on the shape of the domain D due to the special structure of the Lévy measure of the rectilinear
α-stable process X. For example, XD can be reducible for some smooth bounded open sets D.

Definition 1.2. We say a Markov process {Y,Px} on a topological state space E is irreducible if for any
non-empty open subset U ⊂ E,

Px(σU <∞) > 0 for every x ∈ E,
where σU := inf{t > 0 : Yt ∈ U}. Otherwise, we say the process {Y,Px} is reducible.

The next result gives a geometric criterion on D for the irreducibility of the subprocess XD in D.

Theorem 1.3. Let D ⊂ Rd be a non-empty open set. The subprocess XD is irreducible if and only if

for every x, y ∈ D, there is N ≥ 1 and some {xi}Ni=0 ⊂ D with x0 = x and xN = y so

that each consecutive pair (xi−1, xi), 1 ≤ i ≤ N , has only one different coordinate.
(1.11)

Moreover, XD is irreducible if and only if pD(t, x, y) > 0 for every t > 0 and x, y ∈ D.

Theorem 1.3 together with Theorem 1.1 in particular implies that for any connected open set D, XD is
irreducible and has a strictly positive continuous transition density function pD(t, x, y).

Corollary 1.4. Suppose that D ⊂ Rd is a non-empty open set, and D1 and D2 are two disjoint connected
components of D. Then

(i) pD(t, x, y) > 0 for every t > 0 and x, y ∈ D1.
(ii) Either pD(t, x, y) > 0 for every (t, x, y) ∈ (0,∞) × D1 × D2 or pD(t, x, y) = 0 for every (t, x, y) ∈

(0,∞) ×D1 ×D2. The former happens if and only if there exists a finite sequence {xi}Ni=0 ⊂ D with
x0 ∈ D1 and xN ∈ D2 so that each consecutive pair (xi−1, xi), 1 ≤ i ≤ N , has only one different
coordinate.

See Theorems 5.2-5.3 for further information on the positivity of pD(t, x, y). To obtain more precise
bounds (for example the two-sided estimate) on pD(t, x, y), we need certain smoothness of D and some
additional geometric condition on D beyond (1.11) (or equivalently, the irreducibility of XD).

Recall that an open set D ⊂ Rd is said to be C1,1 with characteristics (R,Λ) for some R,Λ > 0, if for
every z ∈ ∂D, there is a C1,1-function φ = φz : Rd−1 → R satisfying φ(0) = 0, ∇φ(0) = 0, |∇φ(x̃)−∇φ(ỹ)| ≤
Λ|x̃ − ỹ|, x̃, ỹ ∈ Rd−1, and an orthogonal coordinate system CSz : y = (y(1), · · · , y(d−1), y(d)) =: (ỹ, y(d))
with its origin at z such that

B(z,R) ∩D =
{
y = (ỹ, y(d)) ∈ B(0, R) in CSz : y(d) > φ(ỹ)

}
.

The pair (R,Λ) is called the characteristics of the C1,1 open set D. Note that the C1,1 open set D may be
disconnected and may have infinite number of components. However, the distances between any two distinct
connected components of D are bounded from below uniformly by a positive constant.

For an open set D ⊂ Rd and x ∈ D, let δD(x) be the Euclidean distance between x and Dc. We say D
satisfies the uniform interior ball condition with radius R1 > 0, if, for every x ∈ D with δD(x) ≤ R1, there
is zx ∈ ∂D such that |x − zx| = δD(x) and B(x0, R1) ⊂ D for x0 := zx + R1(x − zx)/|x − zx|; see [9, 14].
Similarly, we can define the uniform exterior ball condition.

It is well known that D being a C1,1 open set is equivalent to that D satisfies both the uniform interior
and exterior ball conditions. Thus without loss of generality, in this paper, for a C1,1 open set D, we always
assume its C1,1 characteristics (R,Λ) have the property that R ≤ 1, Λ ≥ 1 and it satisfies the uniform
interior and exterior ball conditions with radius R.

For u = (u(1), u(2), · · · , u(d)) ∈ Rd, a ∈ R and 1 ≤ i ≤ d, let

[u]ia := (u(1), · · · , u(i−1), a, u(i+1), · · · , u(d));

that is, [u]ia is the point in Rd by changing its ith-coordinate to a. For x, y ∈ Rd and a permutation
{i1, i2, · · · , id} of {1, 2, · · · , d}, let

xy1 := [x]i1
y(i1) , xy2 := [xy1]i2

y(i2) , xy3 := [xy2]i3
y(i3) , · · · , xyd := [xyd−1]id

y(id) = y.
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That is, xyj is the point obtained by swapping consecutively the ithk -coordinate of x with that of y for
k = 1, 2, · · · , j.

We consider the following geometric condition on an open set D. Let γ ∈ (0, 1].

(Hγ): An open set D ⊂ Rd is said to satisfy condition (Hγ) if for any x, y ∈ D with δD(x)∧ δD(y) ≥ r > 0,
there exists a permutation {i1, i2, · · · , id} of {1, 2, · · · , d} so that B(xyk, γr) ⊂ D, k = 1, 2, · · · , d.

Clearly, for any 0 < γ1 < γ2 ≤ 1, condition (Hγ2) implies (Hγ1) and any (Hγ) with γ ∈ (0, 1] implies
the irreducibility condition (1.11). Many open sets in Rd satisfy condition (Hγ). For example, all balls,
complements of closed balls, and the open sets shown in Figure 1 satisfy (H1). But there are also many
open sets which do not satisfy condition (Hγ); see Section 6 for some examples.

0

r =
1

X0 r =
1

Y0 D

0

Figure 1. The set D := B(X0, r) ∪ B(Y0, r) with r = 1, and the set D := the cubes with
round corners in R2

Recall that p(t, x, y) is the transition density function (also called the heat kernel) of the rectilinear stable
process X, and, for any open set D ⊂ Rd, pD(t, x, y) is the heat kernel of XD. Recall also that LD is the
infinitesimal generator of XD.

Theorem 1.5. Let D ⊂ Rd be a C1,1 open set with characteristics (R,Λ).

(i) For any T > 0, there exists C2 = C2(d, α,R,Λ, T ) > 0 such that for all t ∈ (0, T ] and x, y ∈ D,

pD(t, x, y) ≤ C2

(
1 ∧ δD(x)α/2√

t

)(
1 ∧ δD(y)α/2√

t

)
p(t, x, y). (1.12)

(ii) Assume in addition that D satisfies (Hγ) for some γ ∈ (0, 1]. Then, for any T > 0, there exists
C3 = C3(d, α,R,Λ, γ, T ) > 0 such that for all t ∈ (0, T ] and x, y ∈ D,

pD(t, x, y) ≥ C3

(
1 ∧ δD(x)α/2√

t

)(
1 ∧ δD(y)α/2√

t

)
p(t, x, y). (1.13)

(iii) Assume in addition that D is bounded and satisfies (Hγ) for some γ ∈ (0, 1]. Denote by λ1(D) the
first eigenvalue of −LD. Then, there exists C4 = C4(d, α,R,Λ, γ, diam(D)) > 1 such that

C−1
4 ≤ λ1(D) ≤ C4, (1.14)

and, for any T > 0, there exists C5 = C5(d, α,R,Λ, γ, T, diam(D)) > 0 such that for all t ∈ [T,∞)
and x, y ∈ D,

C−1
5 e−λ1(D)tδD(x)α/2δD(y)α/2 ≤ pD(t, x, y) ≤ C5e

−λ1(D)tδD(x)α/2δD(y)α/2. (1.15)

For the comparable lower bound estimate (1.13) to hold, certain geometric condition beyond smoothness
of the bounded open set D is needed. We show by Examples 6.1 and 6.2 in Section 6 that there are smooth
connected bounded domains, even some smooth convex domains, that do not satisfy condition (Hγ) for any
γ ∈ (0, 1] and the lower bound of Dirichlet heat kernel estimate (1.13) fails. In Example 6.3, a bounded
smooth open set D is given that does not satisfy the irreducibility condition (1.11) and thus XD is not
irreducible. These facts are in strong contrast with that for the rotationally symmetric stable processes
in Rd, whose subprocesses in open sets are always irreducible and the comparable two-sided Dirichlet heat
kernel estimates, obtained in [8], are known to hold for any C1,1 smooth open sets. We next present a
bounded smooth open set D that satisfies the irreducibility condition (1.11) but does not satisfy condition
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(Hγ) for any γ ∈ (0, 1] and the lower bound (1.13) fails for pD(t, x, y), nevertheless for which we can still
derive comparable upper and lower bound of Dirichlet heat kernel estimates.

Let Oi ∈ R2, i = 1, · · · , 4 be four points such that, the line through O1 and O2 is paralleled with x-axis,
the line through O2 and O3 is paralleled with y-axis, the line through O3 and O4 is paralleled with x-axis,
and |Oi−Oi+1| = 3 for i = 1, 2, 3; see Figure 2. Let Ai, i = 1, · · · , 4 be four squares with round corners and
with edge-length 2 centered at Oi respectively. Consider the open set D := ∪4

i=1Ai.

0

r = 1O1

A1

O2

A2

O3

A3

O4

A4

Figure 2. The set D is the union of four squares with round corners in R2

Note that D ⊂ R2 is a bounded smooth open set that satisfies the irreducibility condition (1.11) but does
not satisfy condition (Hγ) for any γ ∈ (0, 1] as for any x ∈ A1 and y ∈ A4, swapping any coordinate of x by
that of y results a point falling outside D.

Theorem 1.6. Let D ⊂ R2 be the above smooth open set as shown in Figure 2 and T > 0.

(i) There exists C6 = C6(α, T ) > 0 such that for all t ∈ (0, T ], x ∈ Ai and y ∈ Aj with |i− j| ≤ 2,

pD(t, x, y)
C6�
(

1 ∧ δD(x)α/2√
t

)(
1 ∧ δD(y)α/2√

t

)
p(t, x, y). (1.16)

(ii) There exist C7 = C7(α, T ) > 0 and C8 = C8(α, T ) > 0 such that for all t ∈ (0, T ], x ∈ A1 and
y ∈ A4,

pD(t, x, y)
C7� t3

(
1 ∧ δD(x)α/2√

t

)(
1 ∧ δD(y)α/2√

t

)
(1.17)

C8� t

(
1 ∧ δD(x)α/2√

t

)(
1 ∧ δD(y)α/2√

t

)
p(t, x, y). (1.18)

Here and in the sequel, for two functions f, g and a positive constant C, the notation f
C� g means that

C−1f ≤ g ≤ Cf holds true on their common domains. Theorem 1.6(ii) shows that, for the smooth open set
D in Figure 2, the lower bound (1.13) fails for pD(t, x, y).

For an open set D ⊂ Rd, we call GD(x, y) :=

∫ ∞
0

pD(t, x, y)dt the Green function of X in D. It follows

from (1.10) that for any x ∈ D and any non-negative Borel measurable function ϕ on D,

Ex
∫ τD

0

ϕ(Xs)ds =

∫
D

GD(x, y)ϕ(y)dy.

From the Dirichlet heat kernel estimates in Theorem 1.5 for pD(t, x, y), one can clearly derive the Green
function estimates for GD(x, y).

Finally, we mention that boundary regularity of solutions to the Dirichlet problem for the generator of
isotropic stable processes is studied in [21]. These regularity results were later extended to more general
stable operators in [23, 24], and further to nonlinear nonlocal equations in [22]. However, for Dirichlet
heat kernel estimates, the singular nature of rectilinear stable processes poses significant challenges. For
instance, as mentioned above, Harnack inequality fails for rectilinear stable processes. Thus we can not use
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the approach developed in [8] for the study of Dirichlet heat kernel estimates for rotationally symmetric
stable processes directly. To see this through a concrete case, we invite the interested reader to pause for
a few minutes and think about possible ways to establish the joint local Hölder continuity of the transition
density pD(t, x, y) of XD in any open subset D ⊂ Rd before reading the proof of Theorem 2.5. Some new
ideas and methods are needed for the study of rectilinear stable processes. We employ a combination of the
probabilistic and analytic methods in our investigation.

The rest of the paper is organized as follows. In Section 2, we show that the part process XD in any
open subset D ⊂ Rd has a locally Hölder continuous transition density function. Boundary properties of the
harmonic measures of L, or equivalently, the exit distributions of X, in C1,1 open sets are investigated in
Section 3, using testing function methods developed in [5, 11]. Various Dirichlet heat kernel estimates are
obtained in Section 4, and the proof of Theorem 1.5 is given in Subsection 4.3. For the upper bound estimates
of pD(t, x, y), we use the exit time estimates, strong Markov property and the Lévy system of the rectilinear
stable process X. For the lower bound estimates of pD(t, x, y), we first obtain its near diagonal interior
estimate in Lemma 4.7, and then the interior estimates under the condition (Hγ) for some γ ∈ (0, 1] in
Lemma 4.9 using the Chapman-Kolmogorov equation, a chaining argument and a delicate probability lower
bound estimate for XU

t taking values in suitable cubes. The sharp lower bound estimates for pD(t, x, y) over
some bounded time interval (0, t∗] in any C1,1 open set D satisfying the condition (Hγ) for some γ ∈ (0, 1]
is established in Lemmas 4.11-4.12 though a careful probabilistic argument that boils down to the exit time
estimates for X. The proof of Theorem 1.5 is given Subsection 4.3, where in particular the lower bound
estimate in Lemma 4.12 over some bounded time interval is shown to hold over any bounded time interval
through a chaining argument. For any two fixed distinct points x, y ∈ D, a geometric condition for the
positivity of pD(t, x, y) is given in Theorems 5.2 and 5.3, whose proof uses some of the lower bound estimates
derived in Section 4. From these, we give in Section 5 a geometric criterion on D for the irreducibility of
XD as well as the strict positivity property of pD(t, x, y) (see Theorem 1.3). In addition to the proof of
Theorem 1.6, three additional examples of bounded smooth open sets are given in Section 6, two of them
are connected open sets, that do not satisfy the condition (Hγ) for any γ ∈ (0, 1], for which the lower bound
estimate (1.13) is shown to fail.

In this paper, for x = (x(1), x(2), · · · , x(d)) ∈ Rd and r > 0, we will use Q(x, r) to denote the cube centered
at x with edge-length 2r, that is,

Q(x, r) :=
{
y = (y(1), y(2), · · · , y(d)) ∈ Rd : |x(i) − y(i)| < r, i = 1, 2, · · · , d

}
.

For an open set U ⊂ Rd and λ > 0, unless otherwise stated, we define

λU := {λy : y ∈ U}.
For a measurable set A ⊂ Rd, we use |A| to denote its Lebesgue measure.

There is a more detailed arXiv version [7] of this paper, where the reader can find additional details of
some calculations.

2. Hölder regularity of Dirichlet heat kernel

In this section, we fix a non-empty open set D ⊂ Rd. Recall that τD(ω) = inf{t > 0, Xt(ω) /∈ D} is the
first exit time from D by the rectilinear α-stable process X. Since Xt has a continuous transition density
function with respect to the Lebesgue measure, we have the following property by the same proof as that in
[16, Proposition 1.20].

Proposition 2.1. For every t > 0 and x ∈ Rd, Px(τD = t) = 0.

For t > 0, x, y ∈ Rd, set rD(t, x, y) := Ex [p(t− τD, XτD , y); τD < t] , and

pD(t, x, y) := p(t, x, y)− rD(t, x, y). (2.1)

Note that the function pD(t, x, y) is pointwise well-defined. One can follow the proof of [16, Theorem 2.4, p.
33] to prove the following lemma. Let B(Rd) denote the collection of all Borel measurable sets in Rd.

Lemma 2.2. For any t > 0, x ∈ Rd and A ∈ B(Rd),

Px (Xt ∈ A, t < τD) =

∫
A

pD(t, x, y)dy. (2.2)
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The function pD(t, x, y) is almost surely symmetric on Rd × Rd: for all t > 0,

pD(t, x, y) = pD(t, y, x) for a.a. (x, y) ∈ D ×D. (2.3)

Moreover, for any s, t > 0 and x ∈ Rd, we have

pD(t+ s, x, y) =

∫
Rd
pD(t, x, z)pD(s, z, y)dz for a.a. y ∈ D. (2.4)

Unfortunately, we can not use the approach in [16, Theorem 2.4 on p.33] to establish the joint continuity
of pD(t, ·, ·) on (Rd \ ∂D) × (Rd \ ∂D), and hence to improve the identities in (2.3) and (2.4) from almost
every point to every point. The main issue is that unlike Brownian motion or rotationally symmetric stable
processes case, in our setting, the function 1{τD<t}p(t − τD, XτD , y) is unbounded. However, we can apply
the result in [1] and the ideas in [6, Proposition 2.5, p.1603] to establish the joint Hölder continuity of
pD(t, ·, ·) on D×D in Theorem 2.5 (see also [2] or [18] for another approach). In order to make the proof as
self-contained as possible, we show all the details.

The rectilinear α-stable process X has the following scaling property: for any λ > 0, the processes
{λXλ−αt; t ≥ 0} conditioned on X0 = x has the same distribution as {Xt; t ≥ 0} conditioned on X0 = λx.
Consequently, since the heat kernel p(t, x, y) is continuous, it has the following scaling property: for any
λ > 0,

p(t, x, y) = λ−dp(λ−αt, λ−1x, λ−1y), t > 0, x, y ∈ Rd. (2.5)

Moreover, {λXD
λ−αt; t ≥ 0} conditioned onX0 = x ∈ D has the same distribution as {XλD

t ; t ≥ 0} conditioned
on X0 = λx. It follows that for every λ > 0, t > 0 and x ∈ D,

pD(t, x, y) = λdpλD(λαt, λx, λy) for a.a. y ∈ D. (2.6)

The following lemma gives the exit time estimates for X from balls.

Lemma 2.3. There exist positive constants ci := ci(d, α) > 0, i = 1, 2, such that for any x0 ∈ Rd and r > 0,

(i) Ex
[
τB(x0,r)

]
≤ c1rα for all x ∈ B(x0, r);

(ii) Ex
[
τB(x0,r)

]
≥ c2rα for all x ∈ B(x0, r/2).

Proof. By the Lévy property of X we may assume that x0 = 0. When r = 1, this lemma follows directly
from [1, Proposition 2.1, p. 492] with the matrix A being the d× d identity matrix. For general r > 0, the
desired property follows from the scaling property of XB(0,r) that Ex

[
τB(0,r)

]
= rαEx/r

[
τB(0,1)

]
. �

Definition 2.4. A bounded function h on Rd is said to be harmonic (with respect to X) in a ball B ⊂ Rd if

h(x) = Ex [h(XτB )] for all x ∈ B.

For a non-negative function f on D, let

PDt f(x) :=

∫
D

pD(t, x, z)f(z)dz = Ex[f(XD
t )], t > 0, x ∈ Rd, (2.7)

where the second equality is due to (2.2). Thus {PDt , t > 0} is the transition semigroup of XD. It follows from
(2.3) that {PDt , t > 0} is a strongly continuous symmetric contractive semigroup on L2(D; dx). Moreover,
by (2.7) and the Markov property of XD, we have for any s, t > 0

PDt+sf(x) = PDt P
D
s f(x), x ∈ Rd \ ∂D. (2.8)

We further define the 1-potential

GD1 f(x) := Ex
[∫ ∞

0

e−tf(XD
t )dt

]
=

∫ ∞
0

e−tPDt f(x)dt, x ∈ Rd \ ∂D.

Let {θt; t ≥ 0} be the time-shifting operators on the canonical probability sample space Ω for the Lévy
process X; that is, Xr(θtω) = Xr+t(ω) for ω ∈ Ω and t, r ≥ 0.

Theorem 2.5. There is a jointly (locally) Hölder continuous function q(t, x, y) on D ×D so that

(i) for any t > 0 and x ∈ D,

q(t, x, z) = pD(t, x, z) for a.a. z ∈ D;

(ii) for any t > 0, q(t, x, y) is symmetric on D ×D;
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(iii) for any s, t > 0 and x, y ∈ D,

q(t+ s, x, y) =

∫
D

q(t, x, z)q(s, z, y)dz.

Proof. The proof uses a result from [1] and the ideas from [6, Proposition 2.5, p. 1603]. For the reader’s
convenience, we spell out all the details. We divide the proof into five steps.

Step 1. Let r ∈ (0, 1] and B := B(x0, r) ⊂ D. Suppose that h is a bounded function on Rd and is
harmonic with respect to X in B. By the Hölder regularity obtained in [1, Theorem 2.9, p. 499], taking the
matrix A there the d × d identity matrix, there exist positive constants c1 and β depending only on d and
α such that

|h(x)− h(y)| ≤ c1
(
|x− y|
r

)β
sup
z∈Rd

|h(z)| for all x, y ∈ B(x0, r/2). (2.9)

Step 2. Let f ∈ L∞(D) ∩ L2(D). By the strong Markov property, we obtain that for any x ∈ B,

GD1 f(x) = Ex
[∫ τB

0

e−tf(XD
t )dt

]
+ Ex

[∫ ∞
τB

e−tf(XD
t )dt

]
= Ex

[∫ τB

0

e−tf(XD
t )dt

]
+ Ex

[
e−τB

(∫ ∞
0

e−tf(XD
t )dt

)
◦ θτB

]
= Ex

[∫ τB

0

e−tf(XD
t )dt

]
+ Ex

[
e−τBGD1 f(XD

τB )
]

= Ex
[∫ τB

0

e−tf(XD
t )dt

]
+ Ex

[
(e−τB − 1)GD1 f(XD

τB )
]

+ Ex
[
GD1 f(XD

τB )
]

= I1(x) + I2(x) + I3(x).

By Lemma 2.3(i) and the elementary inequality that 1− e−a ≤ a for a ≥ 0, we have

|I1(x)| ≤ ‖f‖L∞(D)Ex [τB ] ≤ c2rα‖f‖L∞(D),

and

|I2(x)| ≤ ‖GD1 f‖L∞(D)Ex [τB ] ≤ c2rα‖f‖L∞(D).

Since z 7→ I3(z) = Ez
[
GD1 f(XD

τB )
]

is bounded and harmonic in B, we have by (2.9) that for any x, y ∈
B(x0, r/2) ⊂ D,

|I3(x)− I3(y)| ≤ c1
(
|x− y|
r

)β
sup
z∈Rd

|I3(z)| ≤ c1
(
|x− y|
r

)β
‖GD1 f‖L∞(D) ≤ c1

(
|x− y|
r

)β
‖f‖L∞(D).

Combining the above four formulas, we obtain that for all x, y ∈ B(x0, r/2) ⊂ D,

|GD1 f(x)−GD1 f(y)| ≤ (4c2 + c1)

(
rα +

|x− y|β

rβ

)
‖f‖L∞(D). (2.10)

Step 3. Recall that LD is the generator of the heat semigroup {PDt , t > 0} on L2(D). Note that LD
is negative definite self-adjoint. By general theory of heat semigroup, we have that for any s, s′ > 0 and
f ∈ L2(D),

PDs LDPDs′ f = PDs′ LDPDs f a.e.. (2.11)

For a fixed f ∈ L∞(D) ∩ L2(D), set

ht := PDt f − LDPDt f ∈ L2(D), t > 0.

By spectral theory, there exists a spectral family {Eλ, λ ∈ R} such that

LD = −
∫ ∞

0

λdEλ, f =

∫ ∞
0

dEλf and PDt f
a.e.
=

∫ ∞
0

e−λtdEλf. (2.12)

Consequently,

(1− LD)GD1 f
a.e.
= f and ht

a.e.
=

∫ ∞
0

(1 + λ)e−λtdEλf. (2.13)
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For any g ∈ L1(D), by (1.6), we have for any t > 0

‖PDt g‖L∞(D) =

∥∥∥∥∫
D

pD(t, ·, z)g(z)dz

∥∥∥∥
L∞(D)

≤
∥∥∥∥∫

D

|p(t, ·, z)||g(z)|dz
∥∥∥∥
L∞(D)

≤ C1t
−d/α‖g‖L1(D),

and then,

‖PDt g‖L2(D) ≤
√
‖PDt g‖L1(D)‖PDt g‖L∞(D) ≤

√
‖g‖L1(D)C1t−d/α‖g‖L1(D) =

√
C1t
− d

2α ‖g‖L1(D). (2.14)

Using the above inequality, Cauchy-Schwarz and the facts that

sup
λ>0

(1 + λ)e−λt ≤ (t ∧ 1)−1 <∞ and sup
λ>0

(1 + λ)e−λt/2 ≤ 2(t ∧ 1)−1 <∞,

we obtain

(ht, g)L2(D) =

∫ ∞
0

(1 + λ)e−λtd(Eλf, g)L2(D)

≤
(∫ ∞

0

(1 + λ)e−λtd(Eλf, f)L2(D)

)1/2(∫ ∞
0

(1 + λ)e−λtd(Eλg, g)L2(D)

)1/2

≤ 2(t ∧ 1)−1

(∫ ∞
0

d(Eλf, f)L2(D)

)1/2(∫ ∞
0

e−λt/2d(Eλg, g)L2(D)

)1/2

= 2(t ∧ 1)−1‖f‖L2(D)‖PDt/2g‖L2(D)

≤ 2
√
C1(t ∧ 1)−1t−

d
2α ‖f‖L2(D)‖g‖L1(D).

Since g ∈ L1(D) is arbitrary, we obtain

‖ht‖L∞ ≤ 2
√
C1(t ∧ 1)−1t−

d
2α ‖f‖L2(D).

On the other hand, we have by (2.11) and (2.13) that a.e. on D,

GD1 ht = GD1 P
D
t f −GD1 LDPDt f = PDt

(
GD1 f − LDGD1 f

)
= PDt f.

As noted earlier, PDt f and PDt ht are continuous functions on D by the strong Feller property of XD. By
the dominated convergence theorem, GD1 ht(x) =

∫∞
0
e−sPDs ht(x)ds is a bounded continuous function on D.

Hence we have
PDt f(x) = GD1 ht(x) for every x ∈ D.

This together with (2.10) yields that for all t > 0 and x, y ∈ B(x0, r/2) ⊂ D,

|PDt f(x)− PDt f(y)| = |GD1 ht(x)−GD1 ht(y)|

≤ (4c2 + c1)

(
rα +

|x− y|β

rβ

)
‖ht‖L∞(D)

≤ 2
√
C1(4c2 + c1)

(
rα +

|x− y|β

rβ

)
(t ∧ 1)−1t−

d
2α ‖f‖L2(D).

(2.15)

Step 4. For any fixed compact set K ⊂ D and x, y ∈ K, let δK = 1
4 (dist(K, ∂D)∧ dist(K, ∂D)2 ∧ 1) and

x0 = x.
Case 1: |x− y| < δK . Setting r := |x− y|1/2, we have

dist(K, ∂D) >
√
δK > |x− y|1/2 = r > 2|x− y|.

Applying (2.15) for this r and x0 = x, we have

|PDt f(x)− PDt f(y)| ≤ 2
√
C1(4c2 + c1)

(
rα +

|x− y|β

rβ

)
(t ∧ 1)−1t−

d
2α ‖f‖L2(D)

≤ 4
√
C1(4c2 + c1)|x− y|(α∧β)/2(t ∧ 1)−1t−

d
2α ‖f‖L2(D).

Case 2: |x− y| ≥ δK . By the definition of PDt f and Cauchy-Schwarz inequality, we have for all t > 0 and
z ∈ D,

|PDt f(z)| ≤

√∫
D

pD(t, z, y)2dy ‖f‖L2(D) ≤
√
p(2t, z, z)‖f‖L2(D) ≤

√
C1(2t)−d/(2α)‖f‖L2(D).
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This implies that

|PDt f(x)− PDt f(y)| ≤ |PDt f(x)|+ |PDt f(y)| ≤ 2
√
C1t
− d

2α ‖f‖L2(D)

≤ 2
√
C1

(
|x− y|
δK

)(α∧β)/2

t−
d

2α ‖f‖L2(D).

Combining the above two cases, we obtain for any x, y ∈ K,

|PDt f(x)− PDt f(y)| ≤ c3(d, α, dist(K, ∂D))|x− y|(α∧β)/2(t ∧ 1)−1t−
d

2α ‖f‖L2(D). (2.16)

Step 5. For any 0 < s < t, we define

qs(t, x, y) :=

∫
D

pD(t− s, x, z)pD(s, y, z)dz = PDt−spD(s, y, ·)(x) = PDs pD(t− s, x, ·)(y), x, y ∈ D.

By (2.3) and (2.4), we obtain for any 0 < s < t and x ∈ D,

qs(t, x, y) = pD(t, x, y), a.a. y ∈ D. (2.17)

On the other hand, let K be any compact subset of D as in Step 4, t > 0 and x, y, x′, y′ ∈ K. Replacing
t by t− s and f by pD(s, y, ·) in (2.16) and using (1.6), we obtain

|qs(t, x, y)− qs(t, x′, y)| = |PDt−sf(x)− PDt−sf(x′)|

≤ c3(d, α, dist(K, ∂D))|x− x′|(α∧β)/2((t− s) ∧ 1)−1(t− s)− d
2α ‖pD(s, y, ·)‖L2(D)

≤ c3|x− x′|(α∧β)/2((t− s) ∧ 1)−1(t− s)− d
2α

√
p(2s, y, y)

≤ c3
√
C1|x− x′|(α∧β)/2((t− s) ∧ 1)−1(t− s)− d

2α (2s)−
d

2α .

Similarly, replacing t by s and f by pD(t− s, x′, ·) in (2.16) and using (1.6), we obtain

|qs(t, x′, y)− qs(t, x′, y′)| = |PDt−sf(y)− PDt−sf(y′)|

≤ c3
√
C1|y − y′|(α∧β)/2(s ∧ 1)−1s−

d
2α (2(t− s))− d

2α .

Adding up the above two inequalities, we have that qs(t, x, y) is jointly Hölder continuous on K ×K, and
hence, is jointly (locally) Hölder continuous on D×D. Moreover, the (locally) Hölder continuity of qs(t, x, y)
on D ×D and (2.17) imply that qs does not depend on the choice of s, that is, for any 0 < s, s′ < t,

qs(t, x, y) = qs′(t, x, y), for all x, y ∈ D.

Hence, we can define

q(t, x, y) = qs(t, x, y), t > 0, x, y ∈ D.

This together with (2.17) yields (i). By the definition of qs and (2.17), we obtain for all t > 0 and x, y ∈ D,

q(t, x, y) = qt/2(t, x, y) =

∫
D

q(t/2, x, z)q(t/2, y, z)dz =

∫
D

q(t/2, y, z)q(t/2, x, z)dz = qt/2(t, y, x) = q(t, y, x),

which is (ii). By the definition of qs, (2.17) and the symmetry of q, we obtain for all 0 < s < t and x, y ∈ D,

q(t, x, y) = qs(t, x, y) =

∫
D

pD(t− s, x, z)pD(s, y, z)dz =

∫
D

q(t− s, x, z)q(s, z, y)dz,

which is (iii). The proof is complete. �

Proof of Theorem 1.1. Theorem 1.1 follows directly from Lemma 2.2 and Theorem 2.5. Indeed, we need
only to rename the heat kernel q(t, x, y) from Theorem 2.5 to pD(t, x, y). �

In the sequel, for any open set D ⊂ Rd, we always use pD(t, x, y) to denote the (locally) Hölder continuous
version of the heat kernel obtained in Theorem 1.1.
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3. Harmonic measures

Let Π be a hyperplane described by the function Φ(x) = (a, x − x0), x ∈ Rd, where x0 ∈ Rd, 0 6= a =
(a(1), a(2), · · · , a(d)) ∈ Rd and (·, ·) is the inner product in Rd. That is, Π = {y : Φ(y) = 0}. We define
δΠ(y) = (Φ(y) ∨ 0)|a|−1 to be the distance from y to the lower half space separated by the hyperplane Π.

The following estimates are given in [22, Lemma 2.3]. See also the arXiv version of this paper, [7, Lemma
3.2], for another proof which adopts the approach from [5, Lemmas 4.1 and 5.1] for censored stable processes
in upper half space and [11, Lemma 2.1] for the process that is the independent sum of Brownian motion
and isotropic stable processes.

Lemma 3.1. Let p > 0 and suppose that Π and δΠ are defined as above. Then, there are two constants
Ci = Ci(d, α, p) > 0, i = 9, 10 such that for every x ∈ Rd with Φ(x) > 0,

C10δΠ(x)p−α ≤ (LδpΠ) (x) ≤ C9δΠ(x)p−α, if p ∈ (α/2, α), (3.1)

(LδpΠ) (x) = 0, if p = α/2. (3.2)

Let D ⊂ Rd be a C1,1 open set with characteristics (R,Λ). For Q ∈ ∂D and the coordinate system CSQ,

we define ρQ(y) := y(d) − φQ(ỹ) for y := (ỹ, y(d)) ∈ CSQ. Note that for every Q ∈ ∂D and y ∈ B(Q,R)∩D,
we have

ρQ(y)√
1 + Λ2

≤ δD(y) ≤ ρQ(y).

Set

R0 := R0(R,Λ) =
R√

1 + Λ2
and r0 := r0(R,Λ) =

R

4(1 + Λ2)
. (3.3)

For simplicity, we denote −(−∂2
x(k)x(k))

α/2 by ∆
α/2
k for 1 ≤ k ≤ d. That is, by (1.1),

∆
α/2
k f(x) = lim

ε→0+
C1,α

∫
|t|>ε

(f(x+ tek)− f(x)

|t|1+α
dt. (3.4)

Recall that ek is the unit vector in the positive x(k)-direction.

Lemma 3.2. Let Q ∈ ∂D and fix the coordinate system CSQ so that

B(Q,R) ∩D = {y = (ỹ, y(d)) ∈ B(0, R) in CSQ : y(d) > φQ(ỹ)}.
For p ∈ [α/2, α), we define

hp(y) = (ρQ(y))
p
1D∩B(Q,R0)(y), y ∈ Rd.

Then, there exist Ci = Ci(d, α,R,Λ, p) > 0, i = 11, 12, 13 such that for all x ∈ D with ρQ(x) < r0 and
|x̃| < r0,

(1) if p = α/2, then, we have

|Lhp(x)| ≤ C11| ln ρQ(x)|, (3.5)

(2) if α/2 < p < α, then, we have

C13 (ρQ(x))
p−α ≤ Lhp(x) ≤ C12 (ρQ(x))

p−α
. (3.6)

Proof. Note that any C1,1 open set is locally very close to the upper half space. We will use this property
and apply Lemma 3.1 to prove this lemma.

Fix x = (x̃, x(d)) ∈ CSQ with ρQ(x) < r0 and |x̃| < r0, and choose x0 ∈ ∂D with x̃ = x̃0. See Figure 3 for
a special case.

Denote by Π the hyperplane tangent to ∂D at the point x0. Then, the function Γ∗ : Rd−1 7→ R defined
by Γ∗(ỹ) := φQ(x̃0) +∇φQ(x̃0)(ỹ − x̃) describes the plane Π. We use the following items:

h(y) := hx(y) := (y(d) − Γ∗(ỹ)) ∨ 0,

DΓ∗ = {y ∈ Rd : y(d) > Γ∗(ỹ)},

δΠ(y) = dist(y,Π)1DΓ∗ (y), y ∈ Rd,

bx :=
√

1 + |∇φQ(x̃)|2 and hx,p(y) := (h(y))p for α/2 ≤ p < α.
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Q
x0

x
y

δ Π
(y

)

h
(y

)ρ
Q

(y
)

∂D

Π

The set
{
z = (z̃, z(d)) ∈ CSQ : ρQ(z) < r0, |z̃| < r0

}

Figure 3. The points Q, x and x0, etc

Note that 1 ≤ bx ≤
√

1 + Λ2 and hx,p(x) = hp(x). Since h(y) = bxδΠ(y), by (3.1) and (3.2), we have for
y ∈ DΓ∗ ,

Lhx,p(y) = bpxLδ
p
Π(y) = 0, p = α/2, (3.7)

and

C10b
p
x(δΠ(y))p−α ≤ Lhx,p(y) = bpxLδ

p
Π(y) ≤ C9b

p
x(δΠ(y))p−α, α/2 < p < α.

Note that bxδΠ(x) = ρQ(x). By the last inequality, we have for α/2 < p < α,

C10(ρQ(x))p−α ≤ C10b
α
x(bxδΠ(x))p−α ≤ Lhx,p(x)

≤ C9b
α
x(bxδΠ(x)))p−α ≤ C9(1 + Λ2)α/2(ρQ(x))p−α.

(3.8)

We claim that,

|L(hp − hx,p)(x)| ≤

{
c1 <∞, p ∈ (α2 , α),

c2| ln ρQ(x)|, p = α
2 ,

(3.9)

for some constant c1 = c1(d, α, p,R,Λ) > 0 and c2 = c2(d, α,R,Λ) > 0, which together with (3.7) and (3.8)
will establish this lemma.

Let

A := {y : Γ∗(ỹ) < y(d) < φQ(ỹ) and |ỹ − x̃| < r0} ∪ {y : Γ∗(ỹ) > y(d) > φQ(ỹ) and |ỹ − x̃| < r0},
E := {y ∈ D\A : |ỹ − x̃| < r0 and ρQ(y) < r0(2 + Λ)}.

Note that, if y ∈ D ∩B(x, r0), then

ρQ(y) = y(d) − φQ(ỹ) ≤ |y(d) − x(d)|+ |x(d) − φQ(x̃)|+ |φQ(x̃)− φQ(ỹ)| < r0(2 + Λ).

If |ỹ − x̃| < r0 and ρQ(y) < r0(2 + Λ), then

|y −Q|2 = |ỹ|2 + |y(d)|2

≤ (|ỹ − x̃|+ |x̃|)2 + (|y(d) − φQ(ỹ)|+ |φQ(ỹ)|)2

≤ (2r0)2 + (r0(2 + Λ) + |φQ(ỹ)|)2

≤ (2r0)2 + (r0(2 + Λ) + Λ|ỹ|)2 < R2
0.

Consequently, we have

D ∩B(x, r0) ⊂ D ∩ {y : |ỹ − x̃| < r0 and ρQ(y) < r0(2 + Λ)} ⊂ D ∩B(Q,R0),

and then,

Ac ∩D ∩B(x, r0) ⊂ E ⊂ D ∩B(Q,R0). (3.10)

Hence, by (3.10) and the fact that B(x, r0) ⊂ F , we have

B(x, r0) ∩ {z : hp − hx,p 6= 0} ⊂ A ∪ E; (3.11)
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see [7, p. 16] for details. We first consider the case for p ∈ (α/2, α). Let ek = (0, · · · , 0, 1, 0, · · · , 0) ∈ Rd be
the unit vector along the kth axis for 1 ≤ k ≤ d. Using (3.11), we have by (3.4), for 1 ≤ k ≤ d,

(C1,α)−1
∣∣∣∆α/2

k (hp − hx,p)(x)
∣∣∣

≤

∣∣∣∣∣
∫
|t|≥r0

(hp(x+ tek)− hx,p(x+ tek))
dt

|t|1+α

∣∣∣∣∣+ lim
ε→0

∫
r0>|t|>ε

|hp(x+ tek)− hx,p(x+ tek)| dt

|t|1+α

≤
∫
|t|≥r0

|hp(x+ tek)− hx,p(x+ tek)| dt

|t|1+α
+ lim
ε→0

∫
{r0>|t|>ε}∩{t:x+tek∈A}

|hp(x+ tek)− hx,p(x+ tek)| dt

|t|1+α

+ lim
ε→0

∫
{r0>|t|>ε}∩{t:x+tek∈E}

|hp(x+ tek)− hx,p(x+ tek)| dt

|t|1+α
(by (3.11))

=:I1 + I2 + I3. (3.12)

We estimate I1, I2, I3 separately. Note that for any y ∈ Rd,

0 ≤ hx,p(y) ≤
(
|y(d) − x(d)|+ |x(d) − φQ(x̃)|+ |φQ(x̃)− Γ∗(ỹ)|

)p
≤ (|x−y|+r0+Λ|x−y|)p ≤ (r0+2Λ|x−y|)p.

Combining this and the facts that 0 ≤ hp ≤ 1 and p < α, we have

I1 ≤
∫
|t|≥r0

1 + (r0 + 2Λ|t|)p

|t|1+α
dt ≤ 2

(
1 + (2r0)p

α
r−α0 +

(4Λ)p

α− p
rp−α0

)
<∞.

For y ∈ A, we have

|hx,p(y)|+ |hp(y)| ≤ |y(d) − Γ∗(ỹ)|p + |y(d) − φQ(ỹ)|p

≤ 2|φQ(ỹ)− Γ∗(ỹ)|p = 2|φQ(ỹ)− φQ(x̃0)−∇φQ(x̃0)(ỹ − x̃)|p

≤ 2Λp|x̃− ỹ|2p ≤ 2Λp|x− y|2p (3.13)

(see also [11, (3.14)]). Then, |hx,p(x+ tek)|+ |hp(x+ tek)| ≤ 2Λp|t|2p and since p > α/2, we have

I2 ≤
∫
|t|≤r0

|hx,p(x+ tek)|+ |hp(x+ tek)|
|t|1+α

dt ≤
∫ r0

0

2Λp|t|2p−α−1dt =
4Λp

2p− α
r2p−α
0 <∞.

For y ∈ E ⊂ D ∩ B(Q,R0), we have hp(y) = ρQ(y)p. In view of this and the following two inequalities:
for a1, a2 > 0,

|ap1 − a
p
2| ≤

{
|a1 − a2|p, p ∈ (0, 1),

p(a1 ∨ a2)p−1|a1 − a2|, p ∈ [1,∞),

we have for y ∈ E,

|hx,p(y)− hp(y)| ≤

{
|h(y)− ρQ(y)|p, p ∈ (0, 1),

p|h(y)− ρQ(y)|, p ∈ [1,∞).
(3.14)

On the other hand, by the definitions of h(y) and ρQ(y), we have for y ∈ E,

|h(y)− ρQ(y)| = |φQ(ỹ)− Γ∗(ỹ)| = |φQ(ỹ)− φQ(x̃0)−∇φQ(x̃0)(ỹ − x̃)|
≤ Λ|x̃− ỹ|2 ≤ Λ|x− y|2, (3.15)

(see also [11, (3.7)]). Using the last two inequalities, we have

I3 ≤
∫
{r0>|t|}∩{t:x+tek∈E}

|hp(x+ tek)− hx,p(x+ tek)| dt

|t|1+α

≤

2Λp
∫ r0

0
t2p−α−1dt = 2Λp

2p−αr
2p−α
0 , for p ∈ (α/2, 1),

2pΛ
∫ r0

0
t1−αdt = 2pΛ

2−αr
2−α
0 , for p ∈ [1,∞).

Combining (3.12) and the estimates of I1, I2 and I3, and using the expression L =
∑d
k=1 ∆

α/2
k , we can prove

the first part of our claim (3.9).
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It remains to show the second part in (3.9) which is the case when p = α/2. Similar to (3.12), we have
by (3.4), for 1 ≤ k ≤ d and p = α/2,

(C1,α)−1
∣∣∣∆α/2

k (hp − hx,p)(x)
∣∣∣

≤
∫
|t|≥r0

|hp(x+ tek)− hx,p(x+ tek)| dt

|t|1+α

+

∫
{r0>|t|>ρQ(x)/(2

√
1+Λ2)}∩{t:x+tek∈A}

|hp(x+ tek)− hx,p(x+ tek)| dt

|t|1+α

+

∫
{r0>|t|>ρQ(x)/(2

√
1+Λ2)}∩{t:x+tek∈E}

|hp(x+ tek)− hx,p(x+ tek)| dt

|t|1+α

+ lim
ε→0

∫
ε<|t|≤ρQ(x)/(2

√
1+Λ2)

|hp(x+ tek)− hx,p(x+ tek)| dt

|t|1+α
(3.16)

=:J1 + J2 + J3 + J4.

We can estimate J1 similar to I1, and have

J1 ≤ 2

(
1 + (2r0)α/2

α
r−α0 +

(4Λ)α/2

α/2
r
−α/2
0

)
<∞.

Similar to I2, by (3.13) for p = α/2 ∈ (0, 1), we have

J2 ≤ 2

∫ r0

ρQ(x)/(2
√

1+Λ2)

2Λα/2|t|α−α−1dt = (4Λα/2)(ln(2r0

√
1 + Λ2)− ln ρQ(x)),

and similar to I3, by (3.14) for p = α/2 and (3.15),

J3 ≤ 2

∫ r0

ρQ(x)/(2
√

1+Λ2)

Λα/2|t|α−α−1dt = (2Λα/2)(ln(2r0

√
1 + Λ2)− ln ρQ(x)).

For t ∈ (0, ρQ(x)/(2
√

1 + Λ2)], we have

δD(x+ tek) ≥ δD(x)− |t| ≥ ρQ(x)√
1 + Λ2

− ρQ(x)

2
√

1 + Λ2
=

ρQ(x)

2
√

1 + Λ2
> 0,

and by the definition of h, for y = x+ tek,

h(y) = y(d) − φQ(x̃0)−∇φQ(x̃0)(ỹ − x̃)

= h(x) + y(d) − x(d) −∇φQ(x̃0)(ỹ − x̃)

≥ h(x)− Λ|t| ≥ ρQ(x)− ΛρQ(x)

2
√

1 + Λ2
≥ ρQ(x)

2
> 0. (3.17)

This together with (3.10) implies that x+tek ∈ E for all t ∈ (0, ρQ(x)/(2
√

1 + Λ2)]. Furthermore, combining
(3.15), (3.17) and the following inequality:

|aα/21 − aα/22 | ≤ aα/2−1
1 |a1 − a2|, a1, a2 > 0,

we have for y = x+ tek

|hx,α/2(y)− hα/2(y)| ≤ (h(y))α/2−1|h(y)− ρQ(y)| ≤
(
ρQ(x)

2

)α/2−1

Λ|x− y|2 =

(
ρQ(x)

2

)α/2−1

Λt2.

Therefore,

J4 ≤
∫ ρQ(x)/(2

√
1+Λ2)

0

2Λ

(
ρQ(x)

2

)α/2−1

t1−αdt

=
2Λ

2− α
(1 + Λ2)α/2−1

(
ρQ(x)

2

)1−α/2

≤ 2Λr
1−α/2
0

2− α
.
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Combining (3.16) and the estimates of J1, · · · , J4, and using the expression L =
∑d
k=1 ∆

α/2
k yields the

second part of our claim (3.9). In view of (3.7), (3.8) and our claim (3.9), we get the desired results of this
lemma. �

Recall that ρQ(x) := x(d) − φQ(x̃) for every Q ∈ ∂D and

x ∈ B(Q,R) ∩D = {y = (ỹ, y(d)) ∈ B(0, R) in CSQ : y(d) > φQ(ỹ)}.
We define for r1, r2 > 0

D(r1, r2) := DQ(r1, r2) := {y ∈ D : r1 > ρQ(y) > 0, |ỹ| < r2}. (3.18)

Recall that the constants R0 and r0 are defined in (3.3).

Lemma 3.3. There are positive constants δ0 = δ0(d, α,R,Λ) ∈ (0, r0/(2
√

1 + Λ2)) and Ci = Ci(d, α,R,Λ),
i = 14, 15 such that for every Q ∈ ∂D and x ∈ DQ(δ0, r0) with x̃ = 0,

Px
(
XτDQ(δ0,r0)

∈ DQ(r0/
√

1 + Λ2, r0)
)
≥ C14δD(x)α/2, (3.19)

Px
(
XτDQ(δ0,r0)

∈ D
)
≤ C15δD(x)α/2, (3.20)

and
Ex
[
τDQ(δ0,r0)

]
≤ C15δD(x)α/2 (3.21)

(cf. Figure 4).

Q

x

DQ(δ0, r0)

DQ(r0/
√

1 + Λ2, r0) \DQ(δ0, r0)

φ

2r0

D

Figure 4. The points Q and x, and the set DQ(δ0, r0), etc

Proof. Recall the notation w = (w(1), w(2), · · · , w(d)) := (w̃, w(d)) ∈ Rd. Since D is a C1,1 open set with
characteristics (R,Λ), let φ : Rd−1 7→ R be the C1,1-function satisfying (1). φ(0) = 0, ∇φ(0) = 0; (2).
‖∇φ‖∞ ≤ Λ; (3). |∇φ(ỹ)−∇φ(z̃)| ≤ Λ|ỹ − z̃|. Let CSQ be the corresponding coordinate system such that

B(Q,R) ∩D =
{

(ỹ, y(d)) ∈ B(0, R) in CSQ : y(d) > φ(ỹ)
}
.

Let p ∈ (α/2, α) and define

ρ(y) := y(d) − φ(ỹ),

h(y) := ρ(y)α/21B(Q,R0)∩D(y),

hp(y) := ρ(y)p1B(Q,R0)∩D(y).

Since ρ(y) ≤
√

1 + Λ2δD(y), we have

0 ≤ h ≤ (
√

1 + Λ2R0)α/2 ≤ Rα/2 ≤ 1.

Let ψ : Rd 7→ R be a smooth positive function with bounded first and second order derivatives such that

ψ(y) =
2p+2|ỹ|2

r2
0

for |y −Q| < r0/(2
√

1 + Λ2),

and
2p+2 ≤ ψ(y) ≤ 2p+3 for |y −Q| ≥ r0/

√
1 + Λ2.



DIRICHLET HEAT KERNEL ESTIMATES FOR RECTILINEAR STABLE PROCESSES 17

Then, there exists c1 = c1(d, α,R,Λ, p) > 0 such that

‖Lψ‖∞ ≤ c1. (3.22)

Step 1. Constructing suitable superharmonic and subharmonic functions with respect to L.
We consider

u1(y) := h(y) + hp(y) and u2(y) := h(y) + ψ(y)− hp(y).

Since p ∈ (α/2, α), by (3.5) and (3.6), there exists δ0 := δ0(d, α,R,Λ) ∈ (0, r0/(2
√

1 + Λ2)) such that for
y ∈ DQ(δ0, r0),

Lu1(y) = Lh(y) + Lhp(y) ≥ −C11| ln ρ(y)|+ C13ρ(y)p−α ≥ 0, (3.23)

and by (3.22),

Lu2(y) = Lh(y) + Lψ(y)− Lhp(y) ≤ C11| ln ρ(y)|+ c1 − C13ρ(y)p−α ≤ −1. (3.24)

Step 2. Translating super/subharmonic functions into super/submartingale properties for
Xt.

We claim that the inequalities (3.23) and (3.24) imply that

t 7→ u2(Xt∧τD(δ0,r0)
) + t ∧ τD(δ0,r0) is a non-negative bounded supermartingale, (3.25)

Ex
[
τD(δ0,r0)

]
≤ ρ(x)α/2, (3.26)

and

t 7→ u1(Xt∧τD(δ0,r0)
) is a non-negative bounded submartingale. (3.27)

Recall that τD(δ0,r0) is the first exit time of X upon leaving the set D(δ0, r0).

Observe that if v is a bounded C2-function on Rd with bounded second order derivatives, then, by Markov
property,

Mv
t := v(Xt)− v(X0)−

∫ t

0

Lv(Xs)ds is a martingale. (3.28)

Hence, if u1 and u2 are C2-functions with bounded second order derivatives, then the above claims would
just follow from (3.28), (3.23) and (3.24). However, u1 and u2 are not C2-functions. We shall approximate
them by smooth functions. Indeed, let g be a mollifier, and gn(z) := 2ndg(2nz), z ∈ Rd for n ≥ 1. Define

u
(n)
i (z) := gn ∗ ui(z) =

∫
Rd
gn(y)ui(z − y)dy, i = 1, 2.

Since Lu(n)
i = gn ∗ Lui for i = 1, 2, we have for any n > m ≥ 1,

Lu(n)
1 ≥ 0, and Lu(n)

2 ≤ −1,

on

Dm(δ0, r0) :=
{
y : δ0 − 2−m > ρ(y) > 2−m and |ỹ| < r0 − 2−m

}
.

Since each u
(n)
i is a bounded smooth functions with bounded second order derivatives, it follows from (3.28)

that for any n > m ≥ 1,

t 7→ u
(n)
2 (Xt∧τDm(δ0,r0)

) + t ∧ τDm(δ0,r0) is a non-negative supermartingale,

and

t 7→ u
(n)
1 (Xt∧τDm(δ0,r0)

) is a non-negative bounded submartingale.

Since each ui is bounded and continuous, u
(n)
i converges to ui uniformly on Dm(δ0, r0), and hence,

t 7→ u2(Xt∧τDm(δ0,r0)
) + t ∧ τDm(δ0,r0) is a non-negative supermartingale, (3.29)

and

t 7→ u1(Xt∧τDm(δ0,r0)
) is a non-negative bounded submartingale.

Since Dm(δ0, r0) increases to D(δ0, r0) as m → ∞, we obtain from above (3.25) and (3.27). Moreover, it
follows from (3.29) that for each n ≥ 1 and t > 0,

Ex
[
u2(Xt∧τDm(δ0,r0)

) + t ∧ τDm(δ0,r0)

]
≤ u2(x).
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Since u2 ≥ 0 and Dm(δ0, r0) increases to D(δ0, r0), by passing the above formula to the limit as m→∞ and
then t→∞, we obtain

Ex
[
τD(δ0,r0)

]
≤ u2(x).

Note that x̃ = 0, ψ(x) = 0 and then, u2(x) ≤ ρ(x)α/2. This together with the above inequality implies
(3.26). Consequently, (3.21) holds true.

Step 3. Deriving the estimates of the exit distributions from super/submartingale proper-
ties.

Since ψ(y) ≥ 2p+2 for |y −Q| > r0/
√

1 + Λ2 and φ(x) = 0, we have by (3.25),

ρ(x)α/2 ≥ u2(x) ≥ Ex
[
u2(XτD(δ0,r0)

);XτD(δ0,r0)
∈ D \D(r0/

√
1 + Λ2, r0)

]
≥ (2p+2 − 1)Px

(
XτD(δ0,r0)

∈ D \D(r0/
√

1 + Λ2, r0)
)
.

On the other hand, by (3.27), we have

ρ(x)α/2 ≤ ρ(x)α/2 + ρ(x)p = u1(x) ≤ Ex
[
u1(XτD(δ0,r0)

)
]
≤ 2Px

(
XτD(δ0,r0)

∈ D
)
.

Combining the above two formulas, we obtain

Px
(
XτD(δ0,r0)

∈ D(r0/
√

1 + Λ2, r0)
)

= Px
(
XτD(δ0,r0)

∈ D
)
− Px

(
XτD(δ0,r0)

∈ D \D(r0/
√

1 + Λ2, r0)
)

≥ 2p+2 − 3

2(2p+2 − 1)
ρ(x)α/2,

which implies (3.19).

Recall that 0 ≤ hp ≤ 1. If |y −Q| ≥ r0/
√

1 + Λ2, then, ψ(y) ≥ 2p+2, we have

u2(y) = h(y) + ψ(y)− hp(y) ≥ 0 + 2p+2 − 1 ≥ 1, y ∈ B(Q, r0/
√

1 + Λ2)c.

On the other hand, we have for y ∈ B(Q, r0) with δ0 ≤ ρ(y) ≤ r0,

u2(y) ≥ h(y) + ψ(y)− hp(y) ≥ ρ(y)α/2 − ρ(y)p ≥ c2,

where c2 = c2(δ0, r0, p) ∈ (0, 1). It follows from the above two estimates that u2 ≥ c2 on D \ D(δ0, r0).
Therefore, by (3.25), we have

ρ(x)α/2 ≥ u2(x) ≥ Ex
[
u2(XτD(δ0,r0)

)
]
≥ c2Px

(
XτD(δ0,r0)

∈ D
)
,

which implies (3.20). �

4. Dirichlet heat kernel estimates

Throughout this section, D ⊂ Rd is a C1,1 open set with characteristics (R,Λ). Recall that we use the
following convention: for u ∈ Rd, a ∈ R and 1 ≤ i ≤ d,

[u]ia := (u(1), · · · , u(i−1), a, u(i+1), · · · , u(d)).

Define

j(a, b) =
C1,α

|a− b|1+α
for a 6= b ∈ R,

where C1,α is the positive constant in (1.2).
With these notation, we rewrite the Lévy system formula (1.8) as follows. For any non-negative measurable

function f on R+ ×Rd ×Rd with f(s, x, x) = 0 for any s ≥ 0 and x ∈ Rd and for any stopping time S with
respect to the minimum augmented filtration generated by X, we have

Ex

∑
s≤S

f(s,Xs−, Xs)

 = Ex

[∫ S

0

d∑
i=1

∫
R
f(s,Xs, [Xs]

i
θ)j(X

(i)
s , θ)dθds

]
. (4.1)
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4.1. Upper bound estimates.

Lemma 4.1. There is a constant c = c(d, α,R,Λ) > 0 such that for any x ∈ D,

Px
(
τD ≥

1

4

)
≤ c

(
1 ∧ δD(x)α/2

)
. (4.2)

Proof. Let δ0, r0 be the constants from Lemma 3.3. It suffices to prove (4.2) when δD(x) < δ0 ∧ r0 = δ0.
Indeed, let Q ∈ ∂D be such that δD(x) = |x − Q|, and D(δ0, r0) be the set defined in (3.18). In this case,
x ∈ DQ(δ0, r0) and x̃ = 0. It follows from (3.20) and (3.21) that

Px
(
τD ≥

1

4

)
≤ Px

(
τD ≥

1

4
, τD(δ0,r0) ≥

1

4

)
+ Px

(
τD ≥

1

4
, τD(δ0,r0) <

1

4

)
≤ 4Ex

[
τD(δ0,r0)

]
+ Px

(
XτD(δ0,r0)

∈ D
)
≤ 5C15δD(x)α/2.

�

Lemma 4.2. Let U,U1, U3 ⊂ Rd be three open sets with U1, U3 ⊂ U and dist(U1, U3) > 0. Define U2 :=
U \ (U1 ∪ U3). We have, for any t > 0, x ∈ U1 and y ∈ U3,

pU (t, x, y) ≤ 2

t
Ex [τU1

] sup
z∈U1

pU (t/2, z, y) + Px
(
XτU1

∈ U2

)
sup

t/2<s<t,z∈U2

pU (s, z, y)

+

∫ t/2

0

∫
U1

pU1
(s, x, u)

(
d∑
i=1

∫
R
pU (t− s, [u]iθ, y)dθ · sup

u∈U1,[u]ia∈U3

j(u(i), a)

)
duds.

(4.3)

Proof. Fix t > 0 and x ∈ U1. Let 0 ≤ f ∈ L1(U) ∩ L∞(U). By the strong Markov property of X and
Proposition 2.1, we have

PUt f(x) = Ex [f(Xt); t < τU ]

= Ex [f(Xt); t < τU1
] + Ex [f(Xt); τU1

≤ t < τU ]

= PU1
t f(x) + Ex

[
f(XU

t ); τU1
≤ t
]

= PU1
t f(x) + Ex

[
EXUτU1

[
f(XU

t−τU1
)
]

; τU1
< t
]

+ Ex
[
f(XU

t ); τU1
= t
]

= PU1
t f(x) + Ex

[
PUt−τU1

f(XτU1
); τU1

< t, XτU1
∈ U2

]
+Ex

[
PUt−τU1

f(XτU1
); τU1

< t, XτU1
∈ U3

]
=: PU1

t f(x) + I + II. (4.4)

Note that

I ≤ Px
(
XτU1

∈ U2

)
sup

0<s<t, z∈U2

PUs f(z).

Since dist(U1, U3) > 0, by (4.1), we obtain,

II = Ex
[
τU1

< t, XτU1
∈ U3;PUt−τU1

f(XτU1
)
]

= Ex

[∫ t

0

1{s<τU1
} ·

(
d∑
i=1

∫
R
1{[Xs]iθ∈U3} · P

U
t−sf([Xs]

i
θ)j(X

(i)
s , θ)dθ

)
ds

]

=

∫ t

0

∫
U1

pU1(s, x, u)

(
d∑
i=1

∫
R
1{[u]iθ∈U3} · P

U
t−sf([u]iθ)j(u

(i), θ)dθ

)
duds

≤
∫ t

0

∫
U1

pU1
(s, x, u)

(
d∑
i=1

∫
R
PUt−sf([u]iθ)dθ · sup

u∈U1,[u]ia∈U3

j(u(i), a)

)
duds.

Thus we have by (4.4)

PUt f(x) ≤ PU1
t f(x) + Px

(
XτU1

∈ U2

)
sup

0<s<t, z∈U2

PUs f(z)
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+

∫ t

0

∫
U1

pU1(s, x, u)

(
d∑
i=1

∫
R
PUt−sf([u]iθ)dθ · sup

u∈U1,[u]ia∈U3

j(u(i), a)

)
duds.

For any y ∈ U3, by setting f = pU (t, ·, y) in the above inequality and using semigroup property, we obtain

pU (2t, x, y) ≤
∫
U1

pU1
(t, x, z)pU (t, z, y)dz + Px

(
XτU1

∈ U2

)
sup

t<s<2t, z∈U2

pU (s, z, y)

+

∫ t

0

∫
U1

pU1(s, x, u)

(
d∑
i=1

∫
R
pU (2t− s, [u]iθ, y)dθ · sup

u∈U1,[u]ia∈U3

j(u(i), a)

)
duds

≤ Px (τU1 > t) sup
z∈U1

pU (t, z, y) + Px
(
XτU1

∈ U2

)
sup

t<s<2t, z∈U2

pU (s, z, y)

+

∫ t

0

∫
U1

pU1(s, x, u)

(
d∑
i=1

∫
R
pU (2t− s, [u]iθ, y)dθ · sup

u∈U1,[u]ia∈U3

j(u(i), a)

)
duds.

By renaming 2t by t in the above inequality, we finish the proof. �

Lemma 4.3. There is a constant c = c(d, α,R,Λ) > 0 such that for all x, y ∈ D,

pD(1/2, x, y) ≤ c
(

1 ∧ δD(x)α/2
)
p(1/2, x, y). (4.5)

Proof. It suffices to prove (4.5) when δD(x) < δ0, where δ0 is the constant from Lemma 3.3. Fix x, y ∈ D
with δD(x) < δ0. Recall that r0 = r0(R,Λ) = R

4(1+Λ2) . Take r = 4r0 for simplicity.

Case 1. For all i = 1, · · · , d, |x(i) − y(i)| < r. By semigroup property of pD and (4.2), we have

pD(1/2, x, y) =

∫
D

pD(1/4, x, z)pD(1/4, z, y)dz

≤ sup
z∈D

pD(1/4, z, y)

∫
D

pD(1/4, x, z)dz

≤ C14d/αPx (τD > 1/4) ≤ c1δD(x)α/2.

On the other hand, since |x(i) − y(i)| < r, for all i = 1, · · · , d, we have by (1.6),

p(1/2, x, y) ≥ C−1
1

d∏
i=1

(
21/α ∧ 1/2

r1+α

)
> 0.

Combining the above two inequalities, we verify (4.5) in this case.
Case 2. There is some 1 ≤ i ≤ d such that |x(i) − y(i)| ≥ r. Let

I :=
{
i : |x(i) − y(i)| ≥ r, 1 ≤ i ≤ d

}
,

and Q ∈ ∂D be such that |x−Q| = δD(x). Define

U1 := DQ(δ0, r0) (see (3.18) for the definition of the set DQ(δ0, r0)),

U3 :=
{
z ∈ D : ∃ i ∈ I, such that |z(i) − x(i)| > |x(i) − y(i)|/2

}
,

U2 := D \ U1 \ U3.

Note that U1 ∩U3 = ∅, x ∈ U1 by δD(x) < δ0 and y ∈ U3 by the definition of I. By Lemma 4.2 with t = 1/2
and U = D, we have

pD(1/2, x, y) ≤ 4Ex [τU1 ] sup
z∈U1

pD(1/4, z, y) + Px
(
XτU1

∈ U2

)
sup

1
4<s<

1
2 ,z∈U2

pD(s, z, y)

+

∫ 1/4

0

∫
U1

pU1
(s, x, u)

(
d∑
i=1

∫
R
pD(1/2− s, [u]iθ, y)dθ · sup

u∈U1,[u]ia∈U3

j(u(i), a)

)
duds

=: I1 + I2 + I3.

(4.6)

We estimate I1, I2, I3 separately. Indeed, for any i ∈ I and z ∈ U1, since |z(i) − x(i)| < 2r0, we have

|z(i) − y(i)| ≥ |x(i) − y(i)| − |z(i) − x(i)| ≥ |x(i) − y(i)| − 2r0 ≥ |x(i) − y(i)|/2.
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This together with the upper bound of p(1/4, z, y), the lower bound of p(1/4, x, y) in (1.6) and (3.21) yields
that

I1 = 4Ex [τU1
] sup
z∈U1

pD(1/4, z, y)

≤ c2C1δD(x)α/2 sup
z∈U1

∏
i∈I

(
41/α ∧ 1/4

|z(i) − y(i)|1+α

)∏
i/∈I

(
41/α ∧ 1/4

|z(i) − y(i)|1+α

)

≤ c2C1δD(x)α/2
∏
i∈I

(
41/α ∧ 21+α(1/4)

|x(i) − y(i)|1+α

)∏
i/∈I

(
41/α

)
≤ c3δD(x)α/2

∏
i∈I

(
41/α ∧ 1/4

|x(i) − y(i)|1+α

)∏
i/∈I

(
41/α ∧ 1/4

|x(i) − y(i)|1+α

)
≤ c3C1δD(x)α/2p(1/4, x, y),

where in the second to the last inequality, we have used the fact that for all i /∈ I, |x(i)−y(i)|1+α < r1+α <∞.
By the definition of U2, for any z ∈ U2 and any i ∈ I, we have |z(i) − x(i)| ≤ |x(i) − y(i)|/2, and then

|z(i) − y(i)| ≥ |x(i) − y(i)| − |z(i) − x(i)| ≥ |x(i) − y(i)| − |x(i) − y(i)|/2 = |x(i) − y(i)|/2.

This together with the upper bound of p(s, z, y), the lower bound of p(1/4, x, y) in (1.6) and (3.20) yields

I2 = Px
(
XτU1

∈ U2

)
sup

1
4<s<

1
2 ,z∈U2

pD(s, z, y)

≤ Px
(
XτU1

∈ D
)

sup
1
4<s<

1
2 ,z∈U2

p(s, z, y)

≤ c4δD(x)α/2 sup
1
4<s<

1
2 ,z∈U2

∏
i∈I

(
s−1/α ∧ s

|z(i) − y(i)|1+α

)∏
i/∈I

s−1/α

≤ c5δD(x)α/2
∏
i∈I

(
41/α ∧ 21+α(1/2)

|x(i) − y(i)|1+α

)∏
i/∈I

(
41/α ∧ 1/2

|x(i) − y(i)|1+α

)
≤ c6δD(x)α/2p(1/2, x, y).

It remains to estimate I3. Note that for all u ∈ U1, we have |u(k) − x(k)| < 2r0 for k = 1, · · · , d. Hence, for
all i /∈ I and u ∈ U1, by definition of U3, it is not possible that there exists a ∈ R such that [u]ia ∈ U3. In
this case,

sup
u∈U1,[u]ia∈U3

j(u(i), a) = 0. (4.7)

On the other hand, for any i ∈ I and u ∈ U1, if [u]ia ∈ U3 for some a ∈ R, then the number a must satisfy
|a− x(i)| > |x(i) − y(i)|/2 > 2r0, and so

|a− u(i)| ≥ |a− x(i)| − |x(i) − u(i)| ≥ |x(i) − y(i)|/2− r0 ≥ |x(i) − y(i)|/4.

In this case,

sup
u∈U1,[u]ia∈U3

j(u(i), a) ≤ sup
u∈U1,[u]ia∈U3

C1,α
|a− u(i)|1+α

≤ 41+αC1,α
|x(i) − y(i)|1+α

≤ c7
(

21/α ∧ 1/2

|x(i) − y(i)|1+α

)
, (4.8)

and, for k ∈ I with k 6= i,

|u(k) − y(k)| ≥ |x(k) − y(k)| − |u(k) − x(k)| ≥ |x(k) − y(k)| − 2r0 ≥ |x(k) − y(k)|/2. (4.9)

Hence,

I3 =

∫ 1/4

0

∫
U1

pU1
(s, x, u)

(
d∑
i=1

∫
R
pD(1/2− s, [u]iθ, y)dθ · sup

u∈U1,[u]ia∈U3

j(u(i), a)

)
duds

≤
∫ 1/2

1/4

∫
U1

pU1(1/2− s, x, u)

(∑
i∈I

∫
R
p(s, [u]iθ, y)dθ · sup

u∈U1,[u]ia∈U3

j(u(i), a)

)
duds (by (4.7))



22 Z.-Q. CHEN, E. HU, AND G. ZHAO

≤ c7C1

∫ 1/2

1/4

∫
U1

pU1(1/2− s, x, u)

(∑
i∈I

sup
1
4<s<

1
2

∏
k∈I
k 6=i

(
s−1/α ∧ s

|u(k) − y(k)|1+α

)∏
k/∈I

(
s−1/α

)

·
∫
R

(
s−1/α ∧ s

|θ − y(i)|1+α

)
dθ ·

(
21/α ∧ 1/2

|x(i) − y(i)|1+α

))
duds (by (4.8))

≤ c8

∫ 1/2

1/4

∫
U1

pU1(1/2− s, x, u)

(∑
i∈I

∏
k∈I
k 6=i

(
41/α ∧ 21+α(1/2)

|x(k) − y(k)|1+α

)∏
k/∈I

(
41/α

)
(by (4.9))

·
(

21/α ∧ 1/2

|x(i) − y(i)|1+α

))
duds

≤ c8

∫ 1/4

0

∫
U1

pU1(s, x, u)du ds

(∑
i∈I

∏
k∈I
k 6=i

(
41/α ∧ 21+α(1/2)

|x(k) − y(k)|1+α

)∏
k/∈I

(
41/α ∧ 1/2

|x(k) − y(k)|1+α

)

·
(

21/α ∧ 1/2

|x(i) − y(i)|1+α

))
≤ c9

∫ 1/4

0

Px (τU1 > s) ds · p(1/2, x, y) (by the lower bound in (1.6))

≤ c9 (1 ∧ Ex [τU1
]) · p(1/2, x, y) ≤ c9

(
1 ∧ δD(x)α/2

)
· p(1/2, x, y) (by (3.21)).

Combining (4.6) and the estimates of I1, I2, I3, we finish the case 2, and then this lemma. �

Lemma 4.4. There is a constant c = c(d, α,R,Λ) > 0 such that for all x, y ∈ D,

pD(1, x, y) ≤ c
(

1 ∧ δD(x)α/2
)(

1 ∧ δD(y)α/2
)
p(1, x, y). (4.10)

Proof. By the semigroup property of pD and (4.5), since pD(t, x, y) is symmetric in x, y, we have

pD(1, x, y) =

∫
D

pD(1/2, x, z)pD(1/2, z, y)dz

≤ c
(

1 ∧ δD(x)α/2
)∫

Rd
p(1/2, x, z)p(1/2, z, y)dz

(
1 ∧ δD(y)α/2

)
= c

(
1 ∧ δD(x)α/2

)(
1 ∧ δD(y)α/2

)
p(1, x, y).

�

Lemma 4.5. There is a constant c = c(d, α,R,Λ) > 0 such that for all t ∈ (0, 1], x, y ∈ D,

pD(t, x, y) ≤ c
(

1 ∧ δD(x)α/2√
t

)(
1 ∧ δD(y)α/2√

t

)
p(t, x, y).

Proof. Note that for t ∈ (0, 1], Dt := t−1/αD = {t−1/αz : z ∈ D} is also a C1,1 open set with the same
characteristics of D. Hence, by scaling properties (2.6) and (2.5), and applying (4.10) for Dt, we obtain for
all x, y ∈ D

pD(t, x, y) = t−d/αpDt(1, t
−1/αx, t−1αy)

≤ ct−d/α
(

1 ∧ δDt(t−1/αx)α/2
)(

1 ∧ δDt(t−1/αy)α/2
)
p(1, t−1/αx, t−1/αy)

= c

(
1 ∧ δD(x)α/2√

t

)(
1 ∧ δD(y)α/2√

t

)
p(t, x, y).

�
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4.2. Lower bound estimates. The following near diagonal lower estimate of pB for balls B is also called
localized lower estimate in some literatures (cf. [17, 18]).

Lemma 4.6. Let B := B(x0, r) be a ball with radius r > 0. For any a1 > 0, there exists a2 := a2(d, α, a1) ∈
(0, 1/a1) such that for any t1/α ≤ a1r,

pB(t, x, y) ≥ ct−d/α, x, y ∈ B(x0, a2t
1/α),

where c = c(d, α, a1) > 0.

Proof. Step 1. We first show that for any x, y ∈ B and t > 0,

p(t, x, y) ≤ pB(t, x, y) + 2 sup
s∈(t/2,t]

sup
z∈{x,y}
w∈Bc

p(s, z, w). (4.11)

By the Markov property of X, (2.1), the symmetry of p(t, x, y) and pB(t, x, y) in x and y, and Theorem 2.5,
we have for any x, y ∈ B,

p(2t, x, y) =

∫
Rd
p(t, x, z)p(t, z, y)dz

=

∫
Rd
pB(t, x, z)p(t, z, y)dz +

∫
Rd

Ex [p(t− τB , XτB , z); τB < t] p(t, z, y)dz

=

∫
B

p(t, y, z)pB(t, z, x)dz + Ex [p(2t− τB , XτB , y); τB < t]

=

∫
B

pB(t, y, z)pB(t, z, x)dz +

∫
B

Ey [p(t− τB , XτB , z); τB < t] pB(t, z, x)dz

+ Ex [p(2t− τB , XτB , y); τB < t]

≤
∫
B

pB(t, y, z)pB(t, z, x)dz +

∫
Rd

Ey [p(t− τB , XτB , z); τB < t] p(t, z, x)dz

+ Ex [p(2t− τB , XτB , y); τB < t]

= pB(2t, y, x) + Ey [p(2t− τB , XτB , x); τB < t]

+ Ex [p(2t− τB , XτB , y); τB < t]

≤ pB(2t, x, y) + sup
s∈(t,2t]

sup
z∈Bc

p(s, z, x) + sup
s∈(t,2t]

sup
z∈Bc

p(s, z, y).

This establishes the claim (4.11) after replacing 2t by t.

Step 2. We next show that there exists a := a(d, α) ∈ (0, 1) and c1 = c1(d, α) > 0 such that for any
t1/α ≤ ar,

pB(t, x, y) ≥ c1t−d/α, x, y ∈ B(x0, t
1/α/2) ⊂ B. (4.12)

Indeed, we have by (4.11) that for all x, y ∈ B(x0, t
1/α/2),

|x(i) − y(i)| ≤ |x− y| ≤ t1/α, i = 1, 2, · · · , d,

and then, by (1.6),

p(t, x, y) ≥ C−1
1

d∏
i=1

(
t−1/α ∧ t

(t1/α)1+α

)
= C−1

1 t−d/α. (4.13)

On the other hand, for all t1/α ≤ ar (where a is to be determined later), z ∈ {x, y} and w ∈ Bc, we have

|z − w| ≥ |x0 − w| − |x0 − z| ≥ r −
t1/α

2
≥ r

2
≥ t1/α

2a
,

and then, there exists k ∈ {1, 2, · · · , d} so that

|z(k) − w(k)| ≥ r

2
√
d
≥ t1/α

2
√
da
.
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Consequently,

sup
s∈[t/2,t)

sup
z∈{x,y},w∈Bc

p(s, z, w) ≤ C1

( d∏
i=1
i6=k

s−1/α

)(
s

|z(k) − w(k)|1+α

)

≤ C12(d−1)/αt−(d−1)/α

(
t

(t1/α/(2
√
da))1+α

)
= c2a

1+αt−d/α,

(4.14)

where c2 := 2(d−1)/α+1+αC1d
(1+α)/2 > 0. Combining (4.11), (4.13) and (4.14), we obtain

pB(t, x, y) ≥ (C−1
1 − 2c2a

1+α)t−d/α.

Setting a := (4C1c2)−1/(1+α), we obtain (4.12) with c1 = (2C1)−1.

Step 3. When a1 ≤ a, this lemma follows directly from (4.12) with c = c1 and a2 = 1
2 . So it suffices to

consider the case that a1 > a. Let

n :=
[(a1

a

)α]
+ 1, and a2 :=

1

2n1/α
.

For all t1/α ≤ a1r, we have (
t

n

)1/α

≤ a1r

n1/α
≤ a1r

((a1/a)α)1/α
= ar < r,

and then,

B(x0, a2t
1/α) = B(x0, (t/n)1/α/2) ⊂ B.

Hence, by Step 2 and semigroup property of pB(t, x, y), we have for all t1α ≤ a1r and x, y ∈ B(x0, a2t
1/α),

pB(t, x, y) =

∫
Bn−1

pB(t/n, x, z1)pB(t/n, z1, z2) · · · pB(t/n, zd−1, y)dz1dz2 · · · dzd−1

≥
∫
B(x0,a2t1/α)n−1

pB(t/n, x, z1)pB(t/n, z1, z2) · · · pB(t/n, zd−1, y)dz1dz2 · · · dzd−1

≥

(
n∏
i=1

c1 (t/n)
−d/α

)
|B(x0, a2t

1/α)|n−1

= cn1n
dn/αt−dn/α · |B(0, 1)|n−1(a2t

1/α)d(n−1)

=: ct−d/α,

where c = cn1n
dn/α|B(0, 1)|n−1a

d(n−1)
2 > 0. This completes the proof of the lemma. �

Lemma 4.7. Let U ⊂ Rd be a non-empty open set. For any a1 > 0, there exists a2 := a2(d, α, , a1) > 0,
c = c(d, α, a1) > 0 such that for all t > 0 and x, y ∈ U with δU (x) ∧ δU (y) ≥ a1t

1/α and |x− y| < a2t
1/α, we

have
pU (t, x, y) ≥ ct−d/α.

Proof. Fix t > 0 and let r := a1t
1/α. Then, we have for x ∈ U with δU (x) ≥ a1t

1/α = r,

t1/α ≤ a−1
1 r and B := B(x, r) ⊂ U.

By Lemma 4.6 (with a1 being replaced by a−1
1 ), there exists a2 := a2(d, α, a1) ∈ (0, a1) and c = c(d, α, a1) > 0

such that
pB(t, z, w) ≥ ct−d/α, z, w ∈ B(x, a2t

1/α). (4.15)

On the other hand, by shrinking a2 if necessary, we have for all x, y ∈ U with δU (x) ∧ δU (y) ≥ a1t
1/α and

|x− y| < a2t
1/α,

y ∈ B(x, a2t
1/α) and B(x, a2t

1/α) ⊂ B(x, r) ⊂ U.
Consequently, by (4.15), we have pU (t, x, y) ≥ pB(t, x, y) ≥ ct−d/α. �

The following lemma gives the so-called survival estimate in some literatures (cf. [17]). Recall that τB(x,r)

is the first exit time of X for the ball B(x, r), and τQ(x,r) is the first exit time of X for the cube Q(x, r).
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Lemma 4.8. For any t > 0, r > 0 and x ∈ Rd, there exists c = c(d, α) > 0 such that

Px
(
τB(x,r) ≤ t

)
≤ ct

rα
(4.16)

and

Px
(
τQ(x,r) ≤ t

)
≤ ct

rα
. (4.17)

Proof. Fix t > 0, r > 0 and x ∈ Rd. By the strong Markov property (cf. [4, p. 43-44]), one can prove that

Px
(
τB(x,r) ≤ t

)
≤ 2 sup

s≤t
sup
y∈Rd

Py (|Xs −X0| ≥ r/2)

(see also [10, (3.1), p. 2494]). By the scaling property (2.5), we have

Py (|Xs −X0| ≥ r/2) =

∫
|y−z|≥r/2

p(s, y, z)dz =

∫
|z|≥r/2

p(s, 0, z)dz

= s−d/α
∫
|z|≥r/2

p(1, 0, s−1/αz)dz =

∫
|z|≥r/(2s1/α)

p(1, 0, z)dz.

Noting that for any z = (z(1), z(2), · · · , z(d)) with |z| ≥ r/(2s1/α), there exists some 1 ≤ k ≤ d such that

|z(k)| ≥ r/(2
√
ds1/α), and then,

{|z| ≥ r/(2s1/α)} ⊂
d⋃
k=1

{|z(k)| ≥ r/(2
√
ds1/α)}.

Consequently, by (1.5) and (1.4)

Py (|Xs −X0| ≥ r/2) ≤
d∑
k=1

∫
|z(k)|≥r/(2

√
ds1/α)

p(1,α)(1, 0, z(k))dz(k)

≤ c1(d, α)

∫
|θ|≥r/(2

√
ds1/α)

dθ

|θ|1+α
=

(2
√
d)αc1
α

s

rα
.

Combining the above three formulas, we obtain the first inequality (4.16).
Finally, since B(x, r) ⊂ Q(x, r), we have {τQ(x,r) ≤ t} ⊂ {τB(x,r) ≤ t} for all t > 0. Then, the second

inequality (4.17) follows from this and (4.16). �

Lemma 4.9. Assume that U is an open set satisfying condition (Hγ) for some γ ∈ (0, 1]. For any a1 > 0,

there exists c = c(d, α, γ, a1) > 0 such that for all t > 0 and x, y ∈ U with δU (x) ∧ δU (y) ≥ a1t
1/α, we have

pU (t, x, y) ≥ cp(t, x, y). (4.18)

Proof. Fix t > 0 and x, y ∈ U with δU (x) ∧ δU (y) ≥ a1t
1/α. By Lemma 4.7, there exists a2 > 0 and

c1 = c1(d, α) > 0 such that if |x − y| < a2t
1/α, then pU (t, x, y) ≥ c1t

−d/α, which together with (1.6) yields
(4.18). It remains to consider the case when |x − y| ≥ a2t

1/α. Without loss of generality, we may assume
that a2 < a1.

Step 1. Let a ∈ (0, a2/2] and δ ∈ (0, 1) be determined later. By semigroup property of pU (t, x, y), we
have

pU (t, x, y) =

∫
U

pU (δt, x, z)pU ((1− δ)t, z, y)dz

≥
∫
B(y,at1/α)

pU (δt, x, z)pU ((1− δ)t, z, y)dz (4.19)

≥ inf
z∈B(y,at1/α)

pU ((1− δ)t, z, y)Px
(
XU
δt ∈ B(y, at1/α)

)
.

Note that for all z ∈ B(y, at1/α),

δU (z) ∧ δU (y) ≥ (a1 − a)t1/α ≥ a1

2
t1/α.
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Hence, by Lemma 4.7, there exists a3 ∈ (0, a2) such that if

|z − y| < at1/α < a3((1− δ)t)1/α, (4.20)

then,

inf
z∈B(y,at1/α)

pU ((1− δ)t, z, y) ≥ c2((1− δ)t)−d/α = c2(1− δ)−d/αt−d/α,

for some c2 = c2(d, α, a1) > 0. Consequently, under condition (4.20), the above inequality together with
(4.19) implies

pU (t, x, y) ≥ c2(1− δ)−d/αt−d/αPx
(
XU
δt ∈ B(y, at1/α)

)
. (4.21)

Note that, inequality (4.20) can be achieved by choosing a, δ small enough such that

a < a3(1− δ)1/α. (4.22)

Step 2 We next derive a lower bound of Px
(
XU
δt ∈ B(y, at1/α)

)
. Since U satisfies condition (Hγ) and

δU (x) ∧ δU (y) ≥ a1t
1/α, there exists a permutation {i1, i2, · · · , id} of {1, 2, · · · , d}, such that

B(xyk, γa1t
1/α) ⊂ U, k = 1, 2, · · · , d, (4.23)

where xy1 := [x]i1
y(i1) , xy2 := [xy1]i2

y(i2) , · · · , xyd := [xyd−1]id
y(id) = y. Set r := at1/α/

√
d, where a is chosen to

be small enough such that

a < γa1/2. (4.24)

Then Q0 := Q(x, r) ⊂ U and

Qk := Q(xyk, r) ⊂ Bk := B(xyk,
√
dr) ⊂ U, k = 1, 2, · · · , d. (4.25)

In the rest of the proof, for a number λ > 0 and a cube Q := Q(z, r), we use the notation λQ to denote
the set Q(z, λr), that is λQ(z, r) = Q(z, λr). By semigroup property, we have

Px
(
XU
δt ∈ B(y, at1/α)

)
=

∫
B(y,at1/α)

pU (δt, x, zd)dzd

=

∫
B(y,at1/α)

(∫
Ud−1

pU (δt/d, x, z1)pU (δt/d, z1, z2) · · · pU (δt/d, zd−1, zd)dz1 · · · dzd−1

)
dzd

≥
∫
Qd

∫
(21−dQ1)×(22−dQ2)×···×(2−1Qd−1)

pU (δt/d, x, z1)pU (δt/d, z1, z2) · · · pU (δt/d, zd−1, zd)dz1 · · · dzd−1dzd

≥ Px
(
XU
δt/d ∈ 21−dQ1

)
inf

z1∈21−dQ1

Pz1
(
XU
δt/d ∈ 22−dQ2

)
× · · · × inf

zd−2∈2−2Qd−2

Pzd−2

(
XU
δt/d ∈ 2−1Qd−1

)
inf

zd−1∈2−1Qd−1

Pzd−1

(
XU
δt/d ∈ Qd

)
≥ inf

z0∈2−dQ0

Pz0
(
XU
δt/d ∈ 21−dQ1

)
inf

z1∈21−dQ1

Pz1
(
XU
δt/d ∈ 22−dQ2

)
× · · · × inf

zd−2∈2−2Qd−2

Pzd−2

(
XU
δt/d ∈ 2−1Qd−1

)
inf

zd−1∈2−1Qd−1

Pzd−1

(
XU
δt/d ∈ Qd

)
. (4.26)

Step 3. We estimate the lower bound of each term on the right hand side of (4.26). In fact, they can be
estimated similarly. We claim that for each 1 ≤ k ≤ d,

inf
z∈2k−1−dQk−1

Pz
(
XU
δt/d ∈ 2k−dQk

)
≥ c3

(
1 ∧ t1+1/α

|y(ik) − x(ik)|1+α

)
, (4.27)

where the constant c3 > 0 is independent of t, x, y.

Fix z ∈ 2(k−1)−dQk−1. Let Q̂ := Q(z, r/2d−(k−1)) and

Q̃ := Q̂+ (y(ik) − x(ik))eik

=
{
w ∈ Rd : |w(i) − z(i)| < r

2d−(k−1)
for i 6= ik; |w(ik) − (z(ik) + y(ik) − x(ik))| < r

2d−(k−1)

}
.
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Then, we have Q̂ ⊂ 2k−dQk−1 and Q̃ ⊂ 2k−dQk. Indeed, since z ∈ 2(k−1)−dQk−1 and

2k−dQk = 2k−dQk−1 + (y(ik) − x(ik))eik ,

we have, for any w ∈ Q̃ and i 6= ik,

|w(i) − xy(i)
k | ≤ |w

(i) − z(i)|+ |z(i) − xy(i)
k | = |w(i) − z(i)|+ |z(i) − xy(i)

k−1|

<
r

2d−(k−1)
+

r

2d−(k−1)
=

r

2d−k
,

and for ik,

|w(ik) − xy(ik)
k | = |w(ik) − y(ik)| ≤ |w(ik) − (z(ik) + y(ik) − x(ik))|+ |z(ik) − x(ik)|

= |w(ik) − (z(ik) + y(ik) − x(ik))|+ |z(ik) − xy(ik)
k−1|

<
r

2d−(k−1)
+

r

2d−(k−1)
=

r

2d−k
.

This shows that Q̃ ⊂ 2k−dQk. Since δU (z) ∧ δU (w) ≥ γa1

2 t1/α for all w ∈ Q̃ by (4.23), (4.25) and (4.24), it

follows from Lemma 4.7 that there exists a4 ∈ (0, 1
2 ) such that for all |z − w| < a4(δt/d)1/α,

pU (δt/d, z, w) ≥ c4 (δt/d)
−d/α

. (4.28)

Let c5 be the constant in (4.17), and choose a, δ small enough such that

(c5 ∨ 1)
δ

d
<

(
a

2d+2
√
d

)α
. (4.29)

Let a5 := a4 (δ/d)
1/α

.
Case 1. |y(ik) − x(ik)| ≤ a5t

1/α. In this case, by (4.29),

|y(ik) − x(ik)| ≤ a5t
1/α = a4

(
δ

d

)1/α

t1/α ≤ 1

2
· at1/α

2d+2
√
d
<

r

2d−k+2
.

Hence, by the definitions of Q̂ and Q̃, we have B(z, a5t
1/α) ⊂ 2−1Q̂ ⊂ Q̂ ∩ Q̃; see Figure 5.

xyk−1

2k−1−dQk−1

xyk

2k−1−dQk

z

Q̂ Q̃

B(z, a5t
1/α)

Figure 5. The case when |y(ik) − x(ik)| ≤ a5t
1/α

Consequently, by (4.28), we have

Pz
(
XU
δt/d ∈ 2k−dQk

)
≥ Pz

(
XU
δt/d ∈ Q̃

)
=

∫
Q̃

pU (δt/d, z, w)dw

≥
∫
B(z,a5t1/α)

pU (δt/d, z, w)dw ≥ c4 (δt/d)
−d/α |B(z, a5t

1/α)|

= c4 (δ/d)
−d/α

ad5|B(0, 1)|
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≥ c4

(
δ

d

)−d/α
ad5|B(0, 1)|

(
1 ∧ t1+1/α

|y(ik) − x(ik)|1+α

)
,

which is (4.27).
Case 2. |y(ik) − x(ik)| > a5t

1/α. Without loss of generality, we may and do assume that y(ik) > x(ik). In
this case, let

A :=
{
θ ∈ R :

( r

2d−k+2
− |y(ik) − x(ik)|

)
∨
(
− r

2d−k+2

)
< θ − (z(ik) + y(ik) − x(ik)) <

r

2d−k+2

}
,

and, for any w ∈ 2−1Q̃ \
(

2−1Q̂
)

, we have

2−1Q̃ \
(

2−1Q̂
)

=
{
w ∈ Rd : |w(i) − z(i)| < r

2d−k+2
for i 6= ik;w(ik) ∈ A

}
. (4.30)

See Figure 6.

xyk−1

2k−1−dQk−1

xyk

2k−1−dQk

z

Q̂ Q̃

2−1Q̂ 2−1Q̃

y(ik) − x(ik)

Figure 6. The case when |y(ik) − x(ik)| > a5t
1/α

We are to apply (4.1) to estimate Pz(XU
δt/d ∈ 2k−dQk). Indeed, by (4.17) and (4.29), we have

Pz
(
τ2−1Q̂ ≤ δt/d

)
≤ c5δt

d

1

(r/2d−k+2)α
<

(
a

2d+2
√
d

)α
· t · 2(d−k+2)α

√
d
α

aαt
<

1

2α
< 1. (4.31)

This implies that

Ez
[
δt

2d
∧ τ2−1Q̂

]
≥ δt

2d
Pz
(
τ2−1Q̂ >

δt

2d

)
≥ (1− 2−α)δt

2d
. (4.32)

Denote by σU
2−1Q̃

the first hitting time of XU for the set 1
2 Q̃:

σU
2−1Q̃

:= inf{s > 0 : XU
s ∈ 2−1Q̃}.

Since (2−1Q̂) ∪ (2−1Q̃) ⊂ U , the above inequality together with (4.1) yields that

Pz
(
σU

2−1Q̃
< δt/d

)
≥ Pz

(
XU

( δt2d )∧τU
2−1Q̂

∈ 2−1Q̃ \
(

2−1Q̂
))

= Pz
(
X( δt2d )∧τ2−1Q̂

∈ 2−1Q̃ \
(

2−1Q̂
))

= Ez

[∫ ( δt2d )∧τ2−1Q̂

0

d∑
i=1

∫
Rd
1

2−1Q̃\(2−1Q̂)
(X(1)

s , X(2)
s , · · · , X(i−1)

s , w(i), X(i+1)
s , · · · , X(d)

s )j(X(i)
s , w(i))dw(i)ds

]

≥ Ez

[∫ ( δt2d )∧τ2−1Q̂

0

∫
R
1

2−1Q̃\(2−1Q̂)
(X(1)

s , X(2)
s , · · · , X(ik−1)

s , w(ik), X(ik+1)
s , · · · , X(d)

s )j(X(ik)
s , w(ik))dw(ik)ds

]
.

For any i = 1, 2, · · · , d and s <
(
δt
2d

)
∧ τ2−1Q̂, we have |X(i)

s − z(i)| < r
2d−k+2 . For any |w(ik) − (z(ik) + y(ik) −

x(ik))| < r
2d−k+2 , we have

|X(ik)
s − w(ik)| ≤ |X(ik)

s − z(ik)|+ |w(ik) − (z(ik) + y(ik) − x(ik))|+ |y(ik) − x(ik)|
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≤ r

2d−k+2
+

r

2d−k+2
+ |y(ik) − x(ik)|

≤ at1/α + |y(ik) − x(ik)| ≤ (a/a5 + 1)|y(ik) − x(ik)|.

Combining the above three formulas, (4.32) and (4.30), we obtain

Pz
(
σU

2−1Q̃
< δt/d

)
≥ Ez

[∫ ( δt2d )∧τ2−1Q̂

0

∫
R
1

2−1Q̃\(2−1Q̂)
(X(1)

s , · · · , X(ik−1)
s , w(ik), X(ik+1)

s , · · · , X(d)
s ) · j(X(ik)

s , w(ik))dw(ik)ds

]

≥ Ez

[∫ ( δt2d )∧τ2−1Q̂

0

∫
{w(ik)∈A}

j(X(ik)
s , w(ik))dw(ik)ds

]

≥ Ez

[∫ ( δt2d )∧τ2−1Q̂

0

∫
{w(ik)∈A}

dw(ik) C1,α
(a/a5 + 1)1+α|y(ik) − x(ik)|1+α

ds

]

= Ez
[(

δt

2d

)
∧ τ2−1Q̂

]
C1,α

(a/a5 + 1)1+α|y(ik) − x(ik)|1+α
· |{w(ik) ∈ A}|

= Ez
[(

δt

2d

)
∧ τ2−1Q̂

]
C1,α

(a/a5 + 1)1+α|y(ik) − x(ik)|1+α

×
( r

2d−k+2
−
( r

2d−k+2
− |y(ik) − x(ik)|

)
∨
(
− r

2d−k+2

))
(by (4.30))

≥ (1− 2−α)δt

2d

C1,α
(a/a5 + 1)1+α|y(ik) − x(ik)|1+α

(
|y(ik) − x(ik)| ∧ r

2d−k+1

)
(by (4.32))

≥ (1− 2−α)δt

2d

C1,α
(a/a5 + 1)1+α|y(ik) − x(ik)|1+α

(
a5t

1/α ∧ at
1/α

2d
√
d

)
≥ c6t

1+1/α

|y(ik) − x(ik)|1+α
.

Furthermore, by the strong Markov property, the above inequality and an inequality similar to (4.31) yield
that

Pz
(
XU
δt/d ∈ 2k−dQk

)
≥ Pz

(
XU
δt/d ∈ Q̃

)
≥ Pz

(
XU hits 2−1Q̃ before time δt/d and stays in Q̃ for at least δt/d units of time

)
≥ Pz

(
σU

2−1Q̃
< δt/d; τU

Q̃
◦ θσU

2−1Q̃
> δt/d

)
= Pz

(
σU

2−1Q̃
< δt/d; EX

σU
2−1Q̃

[
τU
Q̃
> δt/d

])
= Pz

(
σU

2−1Q̃
< δt/d

)
inf

w∈2−1Q̃
Pw
(
τQ̃ > δt/d

)
= Pz

(
σU

2−1Q̃
< δt/d

)
inf

w∈2−1Q̃
Pw
(
τQ(w,r/2d−k+2) > δt/d

)
≥ c6t

1+1/α

|y(ik) − x(ik)|1+α
·
(

1− 1

2α

)
(by an inequality similar to (4.31)),

which gives (4.27).

Step 4. Note that {i1, i2, · · · , id} is a permutation of {1, 2, · · · , d}. By choosing a, δ small enough such
that all the conditions (4.22), (4.24), (4.29) are satisfied, it follows from (4.21), (4.26) and (4.27) that

pU (t, x, y) ≥ c2(1− δ)−d/αt−d/α
d∏
k=1

c3

(
1 ∧ t1+1/α

|y(ik) − x(ik)|1+α

)
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= c2c
d
3(1− δ)−d/α

d∏
k=1

(
t−1/α ∧ t

|y(k) − x(k)|1+α

)
,

which together with (1.6) finishes the proof. �

Remark 4.10. Suppose that t > 0, a ∈ R and U ⊂ Rd is an open set. Let Q1 := Q(x, c1t
1/α) and

Q2 := Q(x+ aei, c1t
1/α) be two cubes with Q1 ∪Q2 ⊂ U , where 1 ≤ i ≤ d, c1 > 0 is a small constant and ei

is the unit vector in the positive x(i)-direction. Then, by the same arguments that lead to (4.27), we can in
fact prove the following more general inequality: there exists c2 > 0 independent of t, a, x such that

inf
z∈2−1Q1

Pz
(
XU
t ∈ Q2

)
≥ c2

(
1 ∧ t

1+1/α

|a|1+α

)
.

Lemma 4.11. Let D ⊂ Rd be a C1,1 open set with characteristics (R,Λ) satisfying condition (Hγ) for some
γ ∈ (0, 1]. There exist constants c = c(d, α,R,Λ, γ) > 0 and t∗ = t∗(d, α,R,Λ, γ) > 0 such that for all
x, y ∈ D, we have

pD(3t∗, x, y) ≥ c
(

1 ∧ δD(x)α/2√
t∗

)(
1 ∧ δD(y)α/2√

t∗

)
p(t∗, x, y).

Proof. Let δ0, r0 be the constants from Lemma 3.3. For any z ∈ D, we can choose Qz ∈ ∂D such that
|z −Qz| = δD(z). Let DQz (δ0, r0) be the set from Lemma 3.3. Define

δ1 :=
δ0

2
√

1 + Λ2
, and r1 :=

r0√
1 + Λ2

.

Note that
δ0 <

r0

2
√

1 + Λ2
=
r1

2
<
r0

2
.

For the above z, we use the following notation:

U0
z := DQz (r1, r0) \DQz (δ0, r0),

Uz :=
⋃
u∈U0

z

B(u, δ1),

Ez :=

{
B(z, δ1), z /∈ DQz (δ0, r0) ( i.e. δD(z) ≥ δ0),

Uz, z ∈ DQz (δ0, r0) ( i.e. δD(z) < δ0).

Let C14, C15 be the constants from Lemma 3.3, and define

t∗ =
2C15

C14
∨ 1. (4.33)

By semigroup property, we have for any x, y ∈ D,

pD(3t∗, x, y) =

∫
D×D

pD(t∗, x, u)pD(t∗, u, v)pD(t∗, v, y)dudv

≥
∫
Ex×Ey

pD(t∗, x, u)pD(t∗, u, v)pD(t∗, v, y)dudv

≥ inf
u∈Ex,v∈Ey

pD(t∗, u, v)

∫
Ex

pD(t∗, x, u)du

∫
Ey

pD(t∗, v, y)dv

= I1 · I2 · I3.

(4.34)

We estimate I1, I2, I3 separately. For 1 ≤ i ≤ d and (u, v) ∈ Ex × Ey, if |y(i) − x(i)| < 3r0, then,

|u(i) − v(i)| ≤ |u(i) − x(i)|+ |x(i) − y(i)|+ |y(i) − v(i)| < 3r0 + 3r0 + 3r0 = 9r0,

and

t
−1/α
∗ ∧ t∗

|u(i) − v(i)|1+α
≥ t−1/α
∗ ∧ t∗

(9r0)1+α
≥

(
1 ∧ t

1+1/α
∗

(9r0)1+α

)(
t
−1/α
∗ ∧ t∗

|x(i) − y(i)|1+α

)
.

If |y(i) − x(i)| ≥ 3r0, then,

|u(i) − v(i)| ≤ |u(i) − x(i)|+ |x(i) − y(i)|+ |y(i) − v(i)| < 3r0 + |x(i) − y(i)|+ 3r0 ≤ 3|x(i) − y(i)|,
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and

t
−1/α
∗ ∧ t∗

|u(i) − v(i)|1+α
≥
(
t
−1/α
∗ ∧ t∗

(3|x(i) − y(i)|)1+α

)
≥ 1

31+α

(
t
−1/α
∗ ∧ t∗

|x(i) − y(i)|1+α

)
.

Combining the above two cases, we obtain

t
−1/α
∗ ∧ t∗

|u(i) − v(i)|1+α
≥ c1

(
t
−1/α
∗ ∧ t∗

|x(i) − y(i)|1+α

)
(4.35)

for some c1 = c1(d, α,R,Λ) > 0. Since for all (u, v) ∈ Ex × Ey,

δD(u) ∧ δD(v) ≥
ρQx(u) ∧ ρQy (v)
√

1 + Λ2
≥ δ0 − δ1√

1 + Λ2
≥ δ1 = (δ1t

1/α
∗ ) · t−1/α

∗ , (4.36)

the above inequality (4.35) together with Lemma 4.9 (with a1 = δ1t
1/α
∗ ) yields that, there exists c2 =

c2(d, α,R,Λ, γ) > 0 such that

I1 = inf
u∈Ex,v∈Ey

pD(t∗, u, v) ≥ c2 inf
u∈Ex,v∈Ey

p(t∗, u, v)

≥ c2C
−1
1

d∏
i=1

(
t
−1/α
∗ ∧ t∗

|u(i) − v(i)|1+α

)

≥ cd1c2C
−1
1

d∏
i=1

(
t
−1/α
∗ ∧ t∗

|x(i) − y(i)|1+α

)
≥ cd1c2C

−2
1 p(t∗, x, y).

We next estimate the lower bound of I2. The estimate for I3 is similar so it will be omitted. If δD(x) ≥ δ0,

then Ex = B(x, δ1) and, δD(x) ∧ δD(u) ≥ δ1 = (δ1t
1/α
∗ )t

−1/α
∗ for u ∈ Ex by (4.36). Hence, by Lemma 4.9

with a1 = δ1t
1/α
∗ , we obtain

I2 =

∫
Ex

pD(t∗, x, u)du =

∫
B(x,δ1)

pD(t∗, x, u)du

≥ c3

∫
B(x,δ1)

p(t∗, x, u)du = c3

∫
B(0,δ1)

p(t∗, 0, u)du

≥ c3

∫
B(0,δ1)

p(t∗, 0, u)du

(
1 ∧ δD(x)α/2√

t∗

)
,

where
∫
B(0,δ1)

p(t∗, 0, u)du is a positive constant independent of x and D.

Recall that σDU0
x

:= inf{t > 0 : XD
t ∈ U0

x} is the first entry time of XD for the set U0
x . If δD(x) < δ0, then

Ex = Ux = ∪u∈U0
x
B(u, δ1), and by Markov property, we have

I2 =

∫
Ex

pD(t∗, x, u)du = Px
(
XD
t∗ ∈ Ux

)
≥ Px

(
XD hits U0

x before time t∗ and stays in Ux for at least t∗ units of time
)

= Ey
[
σDU0

x
< t∗,PXD

σD
U0
x

(
τDUx > t∗

)]
≥ inf
z∈U0

x

Pz
(
τDUx > t∗

)
· Px

(
σDU0

x
< t∗

)
.

Similar to (4.36), we have for z ∈ U0
x ,

δD(z) ≥ ρQx(z)√
1 + Λ2

≥ δ0√
1 + Λ2

= 2δ1,

and hence B := B(z, δ1) ⊂ Ux ⊂ D. By Lemma 4.6 with t = t∗, r = δ1 and a1 = t
1/α
∗ /δ1, there exists

a2 = a2(d, α,R,Λ) > 0 and c4 = c4(d, α,R,Λ) > 0 such that B(z, a2t
1/α
∗ ) ⊂ B and pB(t∗, z, v) ≥ c4t−d/α∗ for

v ∈ B(z, a2t
1/α
∗ ). Hence,

Pz
(
τDUx > t∗

)
= Pz (τUx > t∗) =

∫
Ux

pUx(t∗, z, v)dv
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≥
∫
B

pB(t∗, z, v)dv ≥
∫
B(z,a2t

1/α
∗ )

pB(t∗, z, v)dv

≥ c4t
−d/α
∗ |B(z, a2t

1/α
∗ )| = c4t

−d/α
∗ · ad2t

d/α
∗ |B(0, 1)|

= c4a
d
2|B(0, 1)| > 0.

On the other hand, by the definition (4.33) of t∗, (3.19) and (3.20), we obtain

Px
(
σDU0

x
< t∗

)
≥ Px

(
τDDQx(δ0,r0)

< t∗, X
D
τDDQx(δ0,r0)

∈ U0
x

)
= Px

(
XτDQx(δ0,r0)

∈ U0
x

)
− Px

(
XτDQx(δ0,r0)

∈ U0
x , τDQx(δ0,r0)

≥ t∗
)

≥ Px
(
XτDQx(δ0,r0)

∈ U0
x

)
− Px

(
τDQx(δ0,r0)

≥ t∗
)

≥ Px
(
XτDQx(δ0,r0)

∈ DQx(r1,r0)

)
−

Ex[τDQx(δ0,r0)
]

t∗

≥ C14δD(x)α/2 − C15δD(x)α/2

t∗
≥
√
C14C15

2

(
1 ∧ δD(x)α/2√

t∗

)
.

(See [7, p. 36] for details.) Combining the above four inequalities, we obtain

I2 ≥ c5
(

1 ∧ δD(x)α/2√
t∗

)
.

Finally, combining the estimates of I1, I2, I3 and (4.34), we finish the proof. �

Note that the constant t∗ from Lemma 4.11 is greater than or equal to 1.

Lemma 4.12. Let D ⊂ Rd be a C1,1 open set with characteristics (R,Λ) satisfying condition (Hγ) for some
γ ∈ (0, 1]. There is a constant c = c(d, α,R,Λ, γ) > 0 such that for all t ∈ (0, 3t∗], x, y ∈ D,

pD(t, x, y) ≥ c
(

1 ∧ δD(x)α/2√
t

)(
1 ∧ δD(y)α/2√

t

)
p(t, x, y).

Proof. For t ∈ (0, 3t∗], let

λ :=

(
3t∗
t

)1/α

≥ 1.

Note that λD = {λz : z ∈ D} is also a C1,1 open set with the same characteristics of D and satisfies condition
(Hγ). Then, by the scaling property (2.6), (2.5), (1.6) and Lemma 4.11 for λD, we obtain for all x, y ∈ D

pD(t, x, y) = λdpλD(λαt, λx, λy) = λdpλD(3t∗, λx, λy)

≥ cλd
(

1 ∧ δλD(λx)α/2√
t∗

)(
1 ∧ δλD(λy)α/2√

t∗

)
p(t∗, λx, λy)

= c

(
1 ∧ λ

α/2δD(x)α/2√
t∗

)(
1 ∧ λ

α/2δD(y)α/2√
t∗

)
λdp(3−1λαt, λx, λy)

= c

(
1 ∧
√

3δD(x)α/2√
t

)(
1 ∧
√

3δD(y)α/2√
t

)
p(3−1t, x, y)

≥ c

3dC2
1

(
1 ∧ δD(x)α/2√

t

)(
1 ∧ δD(y)α/2√

t

)
p(t, x, y).

�

We need the following lemma to estimate Dirichlet heat kernel pD(t, x, y) for large time.

Lemma 4.13. Suppose that U ⊂ Rd is a bounded open set and let κ ≥ diam(U). Then, there are two
positive constants ci = ci(d, α, κ), i = 1, 2 such that

pU (t, x, y) ≤ c1e−c2t, t > 1, x, y ∈ U.
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Proof. Since {|z| ≥ κ} ⊃ {z = (z(1), · · · , z(d)) : |z(1)| ≥ κ ∨ 1}, by (1.5), for every x ∈ U , we have

Px(τU ≤ 1) ≥ Px(X1 ∈ Rd \ U) =

∫
Rd\U

p(1, x, z)dz ≥
∫
|z|≥κ

p(1, 0, z)dz

≥
∫
|z(1)|≥κ∨1

p(1, 0, z)dz =

∫
|z(1)|≥κ∨1

p(1,α)(1, 0, z(1))dz(1) := c3(α, κ).

Then,

sup
x∈U

∫
U

pU (1, x, y)dy = sup
x∈U

Px(τU > 1) ≤ (1− c3) =: c4 < 1.

For t ∈ (0, 1] and x ∈ U , we have
∫
U
pU (t, x, z)dz ≤

∫
U
p(t, x, z)dz ≤ 1 ≤ ee−t. When t ∈ (n, n+ 1] for some

integer n ≥ 1, we set x0 = x and then obtain by semigroup property,∫
U

pU (t, x, z)dz =

∫
Un+1

n∏
k=1

pU (1, xk−1, xk)pU (t− n, xn, z)dx1 · · · dxndz

=

∫
Un+1

pU (t− n, xn, z)dz pU (1, xn−1, xn)dxn · · · pU (1, x0, x1)dx1 ≤ cn4 ≤ c−1
4 ct4.

Combining the above two inequalities, we have for all (t, x) ∈ (0,∞)× U ,∫
U

pU (t, x, y)dy ≤ (e ∨ c−1
4 )e−c2t,

where c2 := ln(c−1
4 ∧ e). Note that by (1.6), pU (1, z, y) ≤ p(1, z, y) ≤ C1 for all z, y ∈ U . Thus, for all t > 1

and z, y ∈ U we have

pU (t, x, y) =

∫
U

pU (t− 1, x, z)pU (1, z, y)dz ≤ C1

∫
U

pU (t− 1, x, z)dz ≤ C1(e ∨ c−1
4 )e−c2(t−1).

This proves the lemma with c1 := C1(e ∨ c−1
4 )ec2 . �

4.3. Proof of Theorem 1.5.

Proof of Theorem 1.5. (i) By Lemmas 4.5 and 4.12, we obtain (1.12) and (1.13) for all t ∈ (0, 1]. By the
semigroup property and (1.12) for t ∈ (1/2, 1], we have for x, y ∈ D,

pD(2t, x, y) =

∫
D

pD(t, x, z)pD(t, z, y)dz

≤ c1

∫
D

(
1 ∧ δD(x)α/2√

t

)
p(t, x, z)

(
1 ∧ δD(z)α/2√

t

)(
1 ∧ δD(z)α/2√

t

)
p(t, z, y)

(
1 ∧ δD(y)α/2√

t

)
dz

≤ c1

(
1 ∧ δD(x)α/2√

t

)(
1 ∧ δD(y)α/2√

t

)∫
Rd
p(t, x, z)p(t, z, y)dz

≤ 2c1

(
1 ∧ δD(x)α/2√

2t

)(
1 ∧ δD(y)α/2√

2t

)
p(2t, x, y).

This shows that (1.12) holds for t ∈ (1, 2]. For general T > 0, one can repeat the above arguments for
dlog2 T e times to prove (1.12) for t ∈ (0, T ]. Here for a ∈ R, the notation dae stands for the smallest integer
greater than or equal to a.

(ii) We next estimate the lower bound of pD(2t, x, y). Note that D is a C1,1 open set with characteristics
(R,Λ). Fix x ∈ D and t ∈ (1/2, 1], and let Q ∈ ∂D be such that δD(x) = |x−Q|. Define

x0 =

{
Q+ R

4|x−Q| (x−Q), if δD(x) < R
4 ,

x, if δD(x) ≥ R
4 ,

and, let r := R/8. We have B := B(x0, r) ⊂ B(x0, R/4) ⊂ D and δD(z) ≥ r for all z ∈ B. By semigroup
property of pD(2t, x, y) and (1.13) for t ∈ (1/2, 1], we have

pD(2t, x, y) =

∫
D

pD(t, x, z)pD(t, z, y)dz
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≥ c2

∫
D

(
1 ∧ δD(x)α/2√

t

)
p(t, x, z)

(
1 ∧ δD(z)α/2√

t

)(
1 ∧ δD(z)α/2√

t

)
p(t, z, y)

(
1 ∧ δD(y)α/2√

t

)
dz

≥ c2r
α

(
1 ∧ δD(x)α/2√

t

)(
1 ∧ δD(y)α/2√

t

)∫
B

p(t, x, z)p(t, z, y)dz. (4.37)

Note that x ∈ B(x0, R/4) and |x− z| < R/4 +R/8 = 3R/8 for all z ∈ B = B(x0, r). We have, by (1.6), for
t ∈ (1/2, 1],

p(t, x, z) ≥ C−1
1

d∏
i=1

(
t−

1
α ∧ t

|x(i) − z(i)|1+α

)
≥ C−1

1

d∏
i=1

(
1 ∧ 1/2

(3R/8)1+α

)
= C−1

1 > 0. (4.38)

On the other hand, for 1 ≤ i ≤ d, if |x(i) − y(i)| < R/2, then

|z(i) − y(i)| ≤ |z(i) − x(i)|+ |x(i) − y(i)| ≤ 3R/8 +R/2 < R,

and

t−
1
α ∧ t

|z(i) − y(i)|1+α
≥ (2t)−

1
α ∧ 2t

2R1+α
=

(
1 ∧ (2t)1+1/α

2R1+α

)
(2t)−

1
α

≥ 1

2

(
(2t)−

1
α ∧ 2t

|x(i) − y(i)|1+α

)
.

If |x(i) − y(i)| ≥ R/2, then

|z(i) − y(i)| ≤ |z(i) − x(i)|+ |x(i) − y(i)| ≤ 3R/8 + |x(i) − y(i)| ≤ 2|x(i) − y(i)|,

and

t−
1
α ∧ t

|z(i) − y(i)|1+α
≥ (2t)−

1
α ∧ 2t

2|z(i) − y(i)|1+α

≥ (2t)−
1
α ∧ 2t

2(2|x(i) − y(i)|)1+α

≥ 1

22+α

(
(2t)−

1
α ∧ 2t

|x(i) − y(i)|1+α

)
.

Combining the above two cases, we always have

t−
1
α ∧ t

|z(i) − y(i)|1+α
≥ c3

(
(2t)−

1
α ∧ 2t

|x(i) − y(i)|1+α

)
,

for some constant c3 > 0 independent of t, x, y. Hence, by (1.6), we have

p(t, z, y) ≥ C−1
1

d∏
i=1

(
t−

1
α ∧ t

|z(i) − y(i)|1+α

)
≥ cd3C

−1
1

d∏
i=1

(
(2t)−

1
α ∧ 2t

|x(i) − y(i)|1+α

)
≥ cd3C−2

1 p(2t, x, y).

Combining this, (4.37) and (4.38), we have

pD(2t, x, y) ≥ c2r
α

(
1 ∧ δD(x)α/2√

t

)(
1 ∧ δD(y)α/2√

t

)∫
B

C−1
1 · cd3C−2

1 p(2t, x, y)dz

≥ c2c
d
3r
αC−3

1

(
1 ∧ δD(x)α/2√

t

)(
1 ∧ δD(y)α/2√

t

)
|B| p(2t, x, y)

≥ c2c
d
3r
d+αC−3

1

(
1 ∧ δD(x)α/2√

2t

)(
1 ∧ δD(y)α/2√

2t

)
|B(0, 1)| p(2t, x, y).

Therefore, we have proved (1.13) for t ∈ (1, 2]. Similarly, one can repeat the above arguments for dlog2 T e
times to prove (1.13) for t ∈ (0, T ].

(iii) Now, assume in addition that D is a bounded C1,1 open set and satisfies (Hγ) for some γ ∈ (0, 1].
Recall that LD is the infinitesimal generator of the semigroup {PDt , t ≥ 0} on L2(D, dx). Since for each
t > 0, the heat kernel pD(t, x, y) is bounded on D × D, it follows from Jentzsch’s Theorem ([25, Theorem
V.6.6, p. 337]) that the value −λ1(D) = sup(σ(LD)) is an eigenvalue of multiplicity 1 for LD and that the
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eigenfunction φD associated with λ1(D) can be chosen to be strictly positive with ‖φD‖L2(D) = 1. In the
rest of the proof, we write λ1(D) as λ1 for simplicity.

Step 1. We first prove the second inequality in (1.14). Since φD is the eigenfunction of LD associated
with λ1, we have for all t > 0 and x ∈ D,

φD(x) = eλ1tPDt φD(x) = eλ1t

∫
D

pD(t, x, y)φD(y)dy. (4.39)

Setting t = 1/4 in (4.39), by (1.12) with T = 1, (1.6) and Hölder inequality, we have for all x ∈ D,

φD(x) ≤ c4e
1
4λ1(1 ∧ 2δD(x)α/2)

∫
D

p(1/4, x, y)φD(y)dy

≤ 2c4e
1
4λ1(1 ∧ δD(x)α/2)

√∫
D

p(1/4, x, y)2dy · ‖φD‖L2(D)

≤ 2c4e
1
4λ1(1 ∧ δD(x)α/2)

√
p(1/2, x, x)

≤ 2c4
√

2d/αC1e
1
4λ1(1 ∧ δD(x)α/2) =: c5e

1
4λ1(1 ∧ δD(x)α/2), (4.40)

where ci = ci(d, α,R,Λ, γ) > 0, i = 4, 5.

On the other hand, set κ := diam(D) to be the diameter of D for simplicity. Setting t = 1 in (4.39), by
(1.13) with T = 1 and (1.6), we have for all x ∈ D,

φD(x) ≥ c−1
4 (1 ∧ δD(x)α/2)eλ1

∫
D

(1 ∧ δD(y)α/2)p(1, x, y)φD(y)dy

≥ c−1
4 C−1

1

(
1 ∧ κ−d(1+α)

)
(1 ∧ δD(x)α/2)eλ1

∫
D

(1 ∧ δD(y)α/2)φD(y)dy

=: c6(1 ∧ δD(x)α/2)eλ1

∫
D

(1 ∧ δD(y)α/2)φD(y)dy,

where c6 = c6(d, α,R,Λ, γ, κ) > 0. Combining this and (4.40), we have for x ∈ D,

φD(x) ≥ c6(1 ∧ δD(x)α/2)eλ1

∫
D

c−1
5 e−

1
4λ1(φD(y))2dy

≥ c6c
−1
5 e

3
4λ1(1 ∧ δD(x)α/2)

∫
D

(φD(y))2dy ≥ c6c−1
5 e

3
4λ1(1 ∧ δD(x)α/2). (4.41)

Combining (4.40) and (4.41), we have for x ∈ D,

c6c
−1
5 e

3
4λ1(1 ∧ δD(x)α/2) ≤ φD(x) ≤ c5e

1
4λ1(1 ∧ δD(x)α/2),

which implies that

λ1 ≤ 2 ln(c25/c6) <∞. (4.42)

This is exactly the second inequality in (1.14).

Step 2. We next show (1.15). In view of (4.40), (4.41) and (4.42), we have for x ∈ D,

c−1
7 (1 ∧ δD(x)α/2) ≤ φD(x) ≤ c7(1 ∧ δD(x)α/2), (4.43)

where c7 = c7(d, α,R,Λ, γ, κ) ≥ 1.
Now, multiplying (4.39) by φD(x) and integrating it over D with respect to dx, we have for t > 0,

1 =

∫
D

(φD(x))2dx = eλ1t

∫
D×D

φD(x)pD(t, x, y)φD(y)dxdy,

which implies that ∫
D×D

φD(x)pD(t, x, y)φD(y)dxdy = e−λ1t.

Combining this and (4.43), we have for t > 0,

c−2
7 e−λ1t ≤

∫
D×D

(1 ∧ δD(x)α/2)pD(t, x, y)(1 ∧ δD(y)α/2)dxdy ≤ c27e−λ1t. (4.44)
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For any T > 0, set t0 = (T ∧ 1)/4. Note that, by (1.12) and (1.13)(with T = 1), there is a constant
c8 = c8(d, α,R,Λ, γ) ≥ 1 such that for (u, v) ∈ D ×D,

pD(t0, u, v) ≤ c8t
−d/α−1
0 (1 ∧ δD(u)α/2)(1 ∧ δD(v)α/2), (4.45)

pD(t0, u, v) ≥ c−1
8

(
t
−1/α
0 ∧ (t0κ

−(1+α))
)d

(1 ∧ δD(u)α/2)(1 ∧ δD(v)α/2). (4.46)

Combining (4.45), the semigroup property of pD and (4.44), we have for all (t, x, y) ∈ (T,∞)×D ×D,

pD(t, x, y) =

∫
D×D

pD(t0, x, u)pD(t− 2t0, u, v)pD(t0, v, y)dudv

≤ c28t
−2d/α−2
0 δD(x)α/2δD(y)α/2

∫
D×D

(1 ∧ δD(u)α/2)pD(t− 2t0, u, v)(1 ∧ δD(v)α/2)dudv

≤ c27c
2
8t
−2d/α−2
0 e−(t−2t0)λ1δD(x)α/2δD(y)α/2. (4.47)

Similarly, by (4.46), the semigroup property of pD and (4.44), we have for all (t, x, y) ∈ (T,∞)×D ×D,

pD(t, x, y) =

∫
D×D

pD(t0, x, u)pD(t− 2t0, u, v)pD(t0, v, y)dudv

≥ c−2
8

(
t
−1/α
0 ∧ (t0κ

−(1+α))
)2d

(κ ∨ 1)−αδD(x)α/2δD(y)α/2

·
∫
D×D

(1 ∧ δD(u)α/2)pD(t− 2t0, u, v)(1 ∧ δD(v)α/2)dudv

≥ c−2
8

(
t
−1/α
0 ∧ (t0κ

−(1+α))
)2d

(κ ∨ 1)−αe−(t−2t0)λ1δD(x)α/2δD(y)α/2. (4.48)

Combining (4.42), (4.47) and (4.48), we obtain (1.15).

Step 3. For the first inequality in (1.14), by Lemma 4.13, there exist ci = ci(d, α, κ) > 0, i = 9, 10 such
that

pD(t, x, y) ≤ c9e−c10t, t > 0, x, y ∈ D.
This together with the first inequality in (4.44) yields that for all t > 1,

c−2
7 e−λ1t ≤

∫
D×D

(1 ∧ δD(x)α/2)pD(t, x, y)(1 ∧ δD(y)α/2)dxdy

≤ c9e
−c10t

∫
D×D

(1 ∧ δD(x)α/2)(1 ∧ δD(y)α/2)dxdy ≤ c9e−c10t|D|2.

Rewriting the above inequality, we have for all t > 1, e(c10−λ1)t ≤ c27c9|D|2 <∞. Since this inequality holds
for all t > 1, we obtain that λ1 ≥ c10, which is exactly the first inequality in (1.14). �

5. Irreducibility

Let D ⊂ Rd be a non-empty open set. In this section, we study the irreducibility of the subprocess XD

and prove Theorem 1.3 and Corollary 1.4. Before that, we need some auxiliary results on the positivity of
pD(t, x, y). For z ∈ D, define

Uz := {w ∈ D : there exist finitely many points {xi}Ni=0 ⊂ D with x0 = z and xN = w so that

each pair (xi−1, xi), 1 ≤ i ≤ N , has only one different coordinate}. (5.1)

Note that Uz ⊃ B(z, r) for any r > 0 such that B(z, r) ⊂ D.

Lemma 5.1. For each z ∈ D, Uz is both open and closed in D.

Proof. For any w ∈ Uz, there is r > 0 so that B(w, r) ⊂ D and so B(w, r) ⊂ Uz by the definition of Uz.
This shows that Uz is an open subset of D. If Uz = D, then Uz is clearly closed in D. Suppose now Uz 6= D.
Then for any w ∈ D \Uz, there is some r > 0 so that B(w, r) ⊂ D. Note that B(w, r)∩Uz = ∅, as otherwise
there would be some w1 ∈ B(w, r) ∩ Uz which would imply that w ∈ Uz. Hence Uz is a closed subset of
D. �
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Theorem 5.2. Suppose that x0 and y0 are two distinct points in D so that y0 ∈ Ux0 . Then pD(t, x0, y0) > 0
for every t > 0.

Proof. Fix an arbitrary t > 0. Set c1 = t−1/α(δD(x0)∧ δD(y0)) > 0. According to Lemma 4.7, there is some
constant c2 > 0 so that pD(t, x0, y0) > 0 whenever |x0 − y0| ≤ c2t

1/α. Suppose that |x0 − y0| > c2t
1/α. We

have by (4.19),

pD(t, x0, y0) ≥ inf
z∈B(y0,c3t1/α)

pD(t/2, z, y0)Px0

(
XD
t/2 ∈ B(y0, c3t

1/α)
)
, (5.2)

where c3 ∈ (0, (c1 ∧ c2)/2) is to be chosen sufficiently small later. Note that for z ∈ B(y0, c3t
1/α),

δD(z) ∧ δD(y0) ≥ (c1 − c3)t1/α ≥ c1
2
t1/α.

By Lemma 4.7, there exists c4 > 0 and c5 > 0 depending on d, α and c1 such that

pD(t/2, z, y0) ≥ c5t−d/α

for every z with |z − y0| < c4t
1/α. Taking c3 ∈ (0, (c1 ∧ c2)/2) small enough so that c3 < c4, we get by (5.2)

that

pD(t, x0, y0) ≥ c5t−d/αPx0

(
XD
t/2 ∈ B(y0, c3t

1/α)
)
. (5.3)

We next show that Px0

(
XD
t/2 ∈ B(y0, c3t

1/α)
)
> 0. Let {xi}Ni=1 be a finite sequence of points in D in the

definition for y0 ∈ Ux0
. Define

r :=
1

4
√
d

min

{
min

1≤i≤N
{|xi−1 − xi|}, min

0≤i≤N
{δD(xi)}, c3t1/α

}
,

and

Qi := Q(xi, r) for 0 ≤ i ≤ N.
For each 0 ≤ i ≤ N , Qi ⊂ D and δD(z) ≥ c3t1/α for all z ∈ Qi. Note also that QN ⊂ B(y0, c3t

1/α).
For λ > 0 and a cube Q := Q(z, r̄), we use the notation λQ to denote the cube Q(z, λr̄), that is

λQ(z, r̄) = Q(z, λr̄). It follows from the similar arguments that lead to (4.26) that

Px0

(
XD
t/2 ∈ B(y0, c3t

1/α)
)

≥ inf
z0∈2−NQ0

Pz0
(
XD
t/(2N) ∈ 21−NQ1

)
inf

z1∈21−NQ1

Pz1
(
XD
t/(2N) ∈ 22−NQ2

)
× · · · × inf

zN−2∈2−2QN−2

PzN−2

(
XD
t/(2N) ∈ 2−1QN−1

)
inf

zN−1∈2−1QN−1

PzN−1

(
XD
t/(2N) ∈ QN

)
. (5.4)

The reader can find the details of the derivation in the arXiv version of this paper [7, Eq. (5.4) on p. 42].
We next estimate the lower bound of the right hand side of the above inequality. Let 1 ≤ k ≤ N . Note

that the centers xk−1 and xk of Qk−1 and Qk differ by only one coordinate. Thus there exists some 1 ≤ ik ≤ d
and ak 6= 0 so that Qk = Qk−1 + akeik . Hence, by Remark 4.10 (with c1 = rt−1/α), we have

inf
z∈2k−1−NQk−1

Pz
(
XD
t/(2N) ∈ 2k−NQk

)
≥ c6

(
1 ∧ t1+1/α

|ak|1+α

)
> 0,

where the constant c6 > 0 that may depend on t. This together with (5.3)-(5.4) yields that pD(t, x0, y0) > 0
when |x0 − y0| ≥ c2t1/α. Combining the above two cases, we see that pD(t, x0, y0) > 0 for any t > 0. �

We next establish a converse of Theorem 5.2.

Theorem 5.3. Suppose that x0 ∈ D and y0 ∈ D \ Ux0
. Then pD(t, x, y) = 0 on (0,∞) × Ux0

× Uy0
. In

particular, pD(t, x0, y0) = 0 for all t > 0.

Proof. Suppose x0 ∈ D and y0 ∈ D \ Ux0
. Then Ux0

∩ Uy0
= ∅ and

z + aei /∈ D \ Ux0 for every a ∈ R, z ∈ Ux0 and 1 ≤ i ≤ d. (5.5)

Since Ux0
is both open and closed by Lemma 5.1, we have for every x ∈ Ux0

, with τ := τUx0
,

Xτ− ∈ Ux0
and Xτ ∈ D \ Ux0

Px-a.s. on {τ < τD}.
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By the strong Markov property of XD, (4.1) and (5.5), we have for every t > 0 and x ∈ Ux0 and y ∈ Uy0 ,

pD(t, x, y) = Ex
[
pD(t− τ,XD

τ , y); τ < t
]

= 0. (5.6)

�

Proof of Theorem 1.3. (i) (Sufficient condition) Suppose that the property (1.11) holds. We have by Theorem
5.2 that pD(t, x, y) > 0 for every t > 0 and x, y ∈ D. This in particular implies that XD is irreducible as for
any non-empty open subset U ⊂ D, Px(XD

t ∈ U) =
∫
U
pD(t, x, y)dy > 0 for every t > 0 and x ∈ D.

(ii) (Necessary condition) Suppose that XD is irreducible in D. Recall that for z ∈ D, Uz is the set
defined by (5.1). Were there two distinct x, y ∈ D so that Ux ∩ Uy = ∅, we would have by Theorem 5.3

pD(t, x, z) = 0 for all t > 0 and z ∈ Uy.
Consequently,

Ex
∫ τD

0

1Uy (Xs)ds =

∫ ∞
0

∫
Uy

pD(t, x, z)dzdt = 0.

Since XD is irreducible, we have, by Lemma 5.1 that Px(σUy < τD) > 0. Since Uy is a non-empty open

subset of D, Px-a.s. on {σUy < τD}, XD spends positive Lebesgue amount of the time in Uy in view of

the right continuity of the sample paths of X. Thus Ex
∫ τD

0
1Uy (Xs)ds > 0. This contradiction proves that

Ux ∩Uy 6= ∅ for every x 6= y in D. In other words, Ux = D for every x ∈ D. Thus the property (1.11) holds.
This completes the proof of the theorem. �

Proof of Corollary 1.4. (i) This follows directly from Theorem 1.3 and the connectedness of D1 as pD(t, x, y)
≥ pD1

(t, x, y) > 0 for (t, x, y) ∈ (0,∞)×D1 ×D1.

(ii) If there are some x0 ∈ D1 and y0 ∈ D2 so that y0 ∈ Ux0
(which is equivalent to x0 ∈ Uy0

), then, since
D1 and D2 are connected, Uz ⊃ D1 ∪D2 for every z ∈ D1 ∪D2. In this case, we have by Theorem 5.2 that
p(t, x, y) > 0 for any (t, x, y)×D1 ×D2. Otherwise, Ux ∩Uy = ∅ for any x ∈ D1 and y ∈ D2. We then have
by Theorem 5.3 that pD(t, x, y) = 0 for every (t, x, y) ∈ (0,∞)×D1 ×D2. �

6. Examples

In this section, we present three more examples and present a proof for Theorem 1.6. The first two show
that the lower bound estimate (1.13) in Theorem 1.5(ii) may fail for some smooth bounded connected open
sets that do not satisfy condition (Hγ) for any γ ∈ (0, 1]. The third presents a bounded C1,1 open set that
does not satisfy the irreducibility condition (1.11) but for which we can derive two-sided sharp estimates for
its Dirichlet heat kernel. Recall that

j(a, b) =
C1,α

|a− b|1+α
for a 6= b ∈ R,

where C1,α is the positive constant in (1.2).

Example 6.1. Let Ui ⊂ Rd, i = 1, 2, · · · , 5 be sets and x, y ∈ Rd be two points as shown in Figure 7. Set

U =
⋃

1≤i≤5

Ui ⊂ Rd,

which is a bounded connected smooth open set in R2 that does not satisfy condition (Hγ) for any γ ∈ (0, 1]
as swapping any coordinate of x = (0, 0) by that of y = (4, 4) results a point falling outside D.

Claim: The lower bound estimate (1.13) in Theorem 1.5(ii) fails for this open set U .

Proof of the Claim. Fix x = (0, 0) and y = (4, 4). Since |x(i) − y(i)| = 4 > 0 for i = 1, 2, if the inequality
(1.13) in Theorem 1.5 (ii) does hold for the set U shown in Figure 7, then there exists c1 > 0 such that

pU (t, x, y) ≥ c1t2 for t ∈ (0, 1]. (6.1)

We will show that there exists c2 > 0 such that

pU (t, x, y) ≤ c2t3 for t ∈ (0, 1], (6.2)

which will contradict (6.1) and finish our claim.
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x = (0, 0)

y = (4, 4)

U1U2

U3

U4
U5

10

10

22

Figure 7. The set U ⊂ R2

Indeed, since (U3 ∪ U5) ∩ U1 = ∅, we have by (4.1),

Px
(
XτU1

∈ U3 ∪ U5

)
= Ex

[∫ τU1

0

2∑
i=1

∫
Rd
1U3∪U5

([Xs]
i
θ)j(X

(i)
s , θ)dθds

]
.

Note that by the definitions of U3, U5 and U1, we have that for any z ∈ U3, y ∈ U5 and w ∈ U1,

z(1) < w(1) < y(1) and z(2) > w(2), y(2) > w(2).

Hence, since Xs ∈ U1 for s < τU1
, it is not possible that [Xs]

i
θ ∈ U3 ∪ U5 for any θ ∈ R. This together with

the above identity implies that
Px
(
XτU1

∈ U3 ∪ U5

)
= 0. (6.3)

By the above identity and the strong Markov property, we obtain, for almost every w ∈ U ,

pU (t, x, w) = Ex
[
pU (t− τU1

, XU
τU1

, w); τU1
< t
]

= Ex
[
pU (t− τU1

, XτU1
, w); τU1

< t,XτU1
∈ U2 ∪ U4

]
.

(6.4)

By the positions of U2, U4 and y, for any z ∈ U2 ∪ U4, we have |z(i) − y(i)| ≥ 3, i = 1, 2, and, then by (1.6),

pU (t− τU1
, XτU1

, y) · 1{τU1
<t,XτU1

∈U2∪U4} ≤ C1

2∏
i=1

t− τU1

(XτU1
)(i) − y(i)|1+α

1{τU1
<t,XτU1

∈U2∪U4}

≤ C1t
2

32(1+α)
1{τU1

<t}.

Combining (6.4), the continuity of pU and dominated convergence theorem, we obtain for any t ∈ (0, 1],

pU (t, x, y) ≤ C1Ex

[
2∏
i=1

t− τU1

(XτU1
)(i) − y(i)|1+α

; τU1
< t,XτU1

∈ U2 ∪ U4

]
≤ C1t

2

32(1+α)
Px (τU1

< t) .

Furthermore, by (4.16) with r = 1, we have

Px (τU1
< t) ≤ Px

(
τB(x,1) < t

)
≤ c3t.

Combining the above two inequalities, we get (6.2) with c2 := c3C1

32(1+α) . �

In the above example, the domain U is connected but not convex. The ideas used in the above example
can be refined to show that the lower bound estimate (1.13) for the Dirichlet heat kernel may still fail for
some smooth bounded convex domains.
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Example 6.2. Let D be the tilted rectangle with rounded corners shown in Figure 8. The points x, y have
the coordinates (−4,−4) and (4, 4) respectively. The connected open set D ⊂ R2 that does not satisfy (Hγ)
for any γ ∈ (0, 1) as swapping any coordinate of x by that of y results a point falling outside D.

D

0

x = (−4,−4)

y = (4, 4)

Figure 8. The convex set D ⊂ R2 that does not satisfies condition (Hγ) for any γ ∈ (0, 1)

The similar arguments in Example 6.1 show that the lower bound estimate (1.13) in Theorem 1.5(ii) fails
for this convex open set D. We skip the details here. The reader can find details in the arXiv version of this
paper at [7, Example 6.2 on p. 45–47].

The following is an example of a bounded smooth open set D ⊂ R2 that does not satisfy the irreducibility
condition (1.11) but for which we can derive two-sided sharp estimates for the Dirichlet heat kernel in D.

Example 6.3. Let r > 0 and D be the union of two disjoint balls sitting in diagonal quadrants:

D := B(O1, r) ∪B(O2, r), (6.5)

(see Figure 9) where the two points O1, O2 ∈ Rd satisfy

O
(i)
1 < −r and O

(i)
2 > r for 1 ≤ i ≤ d.

0

r =
1

O1

r =
1

O2

Figure 9. The set D := B(O1, r) ∪B(O2, r) with r = 1 on R2

The open set D clearly does not satisfy the condition (1.11) as for any x ∈ O1 and y ∈ O2, swapping
any coordinate of x by that of y results a point falling outside D. So XD is not irreducible. It follows from
Corollary 1.4 that the following holds with B1 := B(O1, r) and B2 := B(O2, r).

(i) pD(t, x, y) = 0 for all t > 0 and x, y that are not in the same connected component of D.
(ii) For i = 1, 2, pD(t, x, y) = pBi(t, x, y) for all t > 0 and x, y ∈ Bi, and pBi(t, x, y) has the two-sided

estimates given by Theorem 1.5 with Bi in place of D there.
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The above example clearly can be extended to more general open sets D that is the union of two disjoint
C1.1-smooth connected open subsets that at most one of them has non-empty intersection with any line that
is parallel to the coordinate axes.

We conclude this paper by presenting the proof of Theorem 1.6, using the techniques from Section 4.

Proof of Theorem 1.6. Fix T > 0. Note that pD(t, x, y) is symmetric. For any x, y ∈ D, if y does not belong
to A1 ∪A4, then x, y belong to the case in (i).

(i). For any x ∈ Ai, y ∈ Aj with |i − j| ≤ 2, we have that x, y belong to some C1,1 open subset U of D
and U satisfies the condition (H1). In this case, we also have

δD(x) = δU (x), δD(y) = δU (y). (6.6)

For example, for x ∈ A1 and y ∈ A3, we can set U = A1 ∪ A2 ∪ A3. For x ∈ A4 and y ∈ A2, we can set
U = A2 ∪A3 ∪A4.

The upper bound of pD(t, x, y) in (1.16) follows directly from Theorem 1.5 (i) since D is a C1,1 open set.
For the lower bound of pD(t, x, y) in (1.16), note that U ⊂ D is a C1,1 open set satisfying the condition
(H1). By Theorem 1.5 (ii) and (6.6), we have

pD(t, x, y) ≥ pU (t, x, y) ≥ c1

(
1 ∧ δU (x)α/2√

t

)(
1 ∧ δU (y)α/2√

t

)
p(t, x, y)

= c1

(
1 ∧ δD(x)α/2√

t

)(
1 ∧ δD(y)α/2√

t

)
p(t, x, y).

(ii). Fix x = (x(1), x(2)) ∈ A1 and y = (y(1), y(2)) ∈ A4. Similar to (6.3), one can apply (4.1) to prove that

Px
(
XτA1

∈ A3 ∪A4

)
= 0.

Hence, by (1.6), the function pD(t− τA1
, XτA1

, y)1{τA1
<t} is uniformly bounded in y ∈ A4, and then, by the

strong Markov property of X, the continuity of pD and dominated convergence theorem, we have

pD(t, x, y) = Ex
[
pD(t− τA1 , XτA1

, y); τA1 < t
]

= Ex
[
pD(t− τA1 , XτA1

, y); τA1 < t,XτA1
∈ A2

]
.

Furthermore, by (4.1) again, we have for t > 0,

pD(t, x, y) = Ex
[
pD(t− τA1

, XτA1
, y); τA1

< t,XτA1
∈ A2

]
= Ex

[∫ t

0

1{s<τA1
} ·

(
2∑
i=1

∫
R
1{[Xs]iθ∈A2} · pD(t− s, [Xs]

i
θ, y)j(X(i)

s , θ)dθ

)
ds

]

=

∫ t

0

∫
A1

pA1
(s, x, u)

(∫
R
1{[u]1θ∈A2} · pD(t− s, [u]1θ, y)j(u(1), θ)dθ

)
duds. (6.7)

Note that

• for any u = (u(1), u(2)) ∈ A1 and θ ∈ R with [u]1θ ∈ A2, we have

|u(1) − θ| ≥ 1, |y(1) − θ| ≥ 1 and |u(2) − y(2)| ≥ 1;

• by (1.16), for any [u]1θ ∈ A2 and 0 < s < t, we have

pD(t− s, [u]1θ, y) ≤ C1C6

(
1 ∧ δD(y)α/2√

t− s

)(
(t− s)− 1

α ∧ t− s
|θ − y(1)|1+α

)(
(t− s)− 1

α ∧ t− s
|u(2) − y(2)|1+α

)
≤ C1C6

(
1 ∧ δD(y)α/2√

t− s

)
t2.

Combining the above two inequalities with (6.7) and Theorem 1.5 (i), we obtain, for all t ∈ (0, T ],

pD(t, x, y) ≤ c2

∫ t

0

∫
A1

pA1(s, x, u)

(∫ O
(1)
2 +1

O
(1)
2 −1

dθ

)(
1 ∧ δD(y)α/2√

t− s

)
t2duds

≤ 2c2t
2

∫ t

0

(∫
A1

p(s, x, u)du

)(
1 ∧ δA1(x)α/2√

s

)(
1 ∧ δD(y)α/2√

t− s

)
ds
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≤ 2c2t
2

(∫ t/2

0

+

∫ t

t/2

)(
1 ∧ δD(x)α/2√

s

)(
1 ∧ δD(y)α/2√

t− s

)
ds

= c3t
3

(
1 ∧ δD(x)α/2√

t

)(
1 ∧ δD(y)α/2√

t

)
.

which is exactly the upper bound in (1.17).

We apply (6.7) to establish the lower bound of pD(t, x, y). Fix t ∈ (0, T ]. Let δ < (16T 1/α)−1 and
Qx ∈ ∂D be such that δD(x) = |x−Qx|. Set

x0 =

{
Qx + 2δt1/α

|x−Qx| (x−Qx), if δD(x) < 2δt1/α,

x, if δD(x) ≥ 2δt1/α.

Define Ex = B(x0, δt
1/α). Note that Ex ⊂ A1 ⊂ D. Observe that

• for any s ∈ (0, t) and u ∈ Ex, we have δD(u) ≥ δt1/α and so by Theorem 1.5 (ii),

pA1
(s, x, u)

≥ c4

(
1 ∧ δA1

(x)α/2√
s

)(
1 ∧ δA1

(u)α/2√
s

)(
s−

1
α ∧ s

|x(1) − u(1)|1+α

)(
s−

1
α ∧ s

|x(2) − u(2)|1+α

)
≥ c4

(
1 ∧ δD(x)α/2√

t

)
(1 ∧ δα/2)

(
s−

1
α ∧ s

(3δt1/α)1+α

)2

≥ c5
(

1 ∧ δD(x)α/2√
t

)
s2t−2−2/α;

• for any u ∈ Ex and θ ∈ [O
(1)
2 − 1

2 , O
(1)
2 + 1

2 ], we have [u]1θ ∈ A2, |u(1) − θ| ≤ 3 and δD([u]1θ) ≥ c6t1/α.
Furthermore, by (1.16), we have for any s ∈ (0, t2 ],

pD(t− s, [u]1θ, y)

≥ c7

(
1 ∧ δD([u]1θ)

α/2

√
t− s

)(
1 ∧ δD(y)α/2√

t− s

)(
(t− s)− 1

α ∧ t− s
|θ − y(1)|1+α

)(
(t− s)− 1

α ∧ t− s
|u(2) − y(2)|1+α

)
≥ c8

(
1 ∧ δD(y)α/2√

t

)
t2.

Combining the above two inequalities with (6.7), we have for any t ∈ (0, T ],

pD(t, x, y) ≥
∫ t/2

0

∫
Ex

pA1
(s, x, u)

(∫
R
1{θ∈[O

(1)
2 −

1
2 ,O

(1)
2 + 1

2 ]} · pD(t− s, [u]1θ, y)j(u(1), θ)dθ

)
duds

≥ c9

∫ t/2

0

∫
Ex

(
1 ∧ δD(x)α/2√

t

)
s2t−2−2/α.

(∫ O
(1)
2 + 1

2

O
(1)
2 −

1
2

(
1 ∧ δD(y)α/2√

t

)
t2

1

|u(1) − θ|1+α
dθ

)
duds

≥ c10t
−2/α

(
1 ∧ δD(x)α/2√

t

)(
1 ∧ δD(y)α/2√

t

)
|Ex|

∫ t/2

0

s2ds

= c11t
3

(
1 ∧ δD(x)α/2√

t

)(
1 ∧ δD(y)α/2√

t

)
,

which is the lower bound in (1.17).
On the other hand, for x = (x(1), x(2)) ∈ A1 and y = (y(1), y(2)) ∈ A4, we have

1 ≤ |x(k) − y(k)| ≤ 3 + 3 + 2 = 8 for k = 1, 2.

Hence by (1.6),

p(t, x, y)
c13�

2∏
k=1

(
t−1/α ∧ t

|x(k) − y(k)|1+α

)
c14� t2 for any t ∈ (0, T ],

where c13 and c14 are positive constants that depend only on α and T . So we get (1.18) from (1.17). This
completes the proof of the theorem. �
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