DIRICHLET HEAT KERNEL ESTIMATES FOR RECTILINEAR STABLE PROCESSES

ZHEN-QING CHEN, ERYAN HU, AND GUOHUAN ZHAO

ABSTRACT. Let d > 2, o € (0,2), and X be the rectilinear a-stable process on R%. We first present a
geometric characterization of open subset D C R% so that the part process X of X in D is irreducible. We
then study the properties of the transition density functions of X2, including the strict positivity property
as well as their sharp two-sided bounds in C1:1 domains in R%. Our bounds are shown to be sharp for a
class of C1'1 domains.
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1. INTRODUCTION AND MAIN RESULTS

Dirichlet heat kernels for non-local operators are a fundamental subject both in analysis and in probability
theory. Sharp two-sided Dirichlet heat kernel estimates for fractional Laplacian A®/2 := —(—A)®/2 in C!
open subsets of R? with a € (0,2) have first been obtained in [8]. Since then, there are many works in
extending it to certain classes of symmetric Markov processes and their lower order perturbations as well as
to more general open sets. In many of these works, the jump measures of the Markov processes are absolutely
continuous with respect to the Lebesgue measure.

Let d > 2 and « € (0,2). The purpose of this paper is to study the Dirichlet heat kernels for

e
E T <_ )
k))2
P (8x( ))
in open subsets of R, Here z(¥) is the k*"-coordinate of a point = = (x(l), z® ... ,x(d)) eR? Wecall £ a

rectilinear fractional Laplace operator, which is more singular than the usual isotropic fractional Laplacian
A%/2_ The rectilinear fractional Laplacian £ is the infinitesimal generator of the rectilinear a-stable process

X = {Xt = (xV,x? o XDyt > 0}

on R%, where XM X® ... X are independent one-dimensional symmetric a-stable processes. The
process X is a Lévy process on R? whose Lévy exponent is ¥(¢£) = 2?21 || for € = (€M) @) ... ¢(d) ¢
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R%; that is,
Eeié(Xe=Xo0) _ o=t 51 €91 ¢+ < 0 and ¢ e R4
The Lévy measure of X is singular with respect to the Lebesgue measure on R?; see ([I.7).

Unlike the isotropic (or, rotationally symmetric) a-stable process Z on R, the distribution of the incre-
ments of the rectilinear a-stable process X is not rotationally invariant. The isotropic a-stable process Z is

a Lévy process on R? having infinitesimal generator A®/2? and Lévy exponent |¢|* := (Z‘;:l (32 |2)a/2. For
f e CaRY),

C
A2 f(z) = ~ — V§(z)- 21, —da g, 1.1
f(z) /Rd\{o} (f(x+2) = f(z) = Vf(z)- 21{z<1}) ojdra (1.1)

while

d
g T+ we;) — wly, — dw,
st /]R\{O}( R ) 5 jw[ite

where e; is the unit vector in the positive z\9)-direction and

a2°7 T ((d + ) /2)
TPT(1 = a)2)

Here I is the usual Gamma function defined by I'(A) := [;° t*~e~"dt for A > 0.

Cd,a =

(1.2)

It is well known (see [3, Theorem 2.1] via stable scaling) that the isotropic a-stable process Z on R has
a smooth density function p(%) (t,x,y) with respect to the Lebesgue measure on R? and there are positive
constants ca > ¢; > 0 that depend only on d and « so that
t t
—d/a (d,e) —d/« d
1(t A|acy|d+a)§p (t,x,y)SCQ(t /\|xyd+a) for t >0, x,y € R*. (1.3)

In this paper, we will use := as a way of definition. For a,b € R, a A b := min{a, b} and a V b := max{a, b}.
Since for ¢ > 0 and b > 0,

ab 2ab
<aAb< ,
a+b a+b
we can rewrite the estimates in (1.3)) by
t t
“ — < plde) (t,z,y) < c for t > 0 and z,y € RY, (1.4)

(7 o =y (7 +Ja =y

where constants c4 > c3 > 0 depend only on d and o.
By the independence between its coordinate processes, the rectilinear a-stable process X on R¢ has a
smooth transition density function

p(t, x,y) I_Ip(1 D (t, 2™ y®)) for t > 0 and z = (x®)), y = (y*®) e RY, (1.5)

with respect to the Lebesgue measure on R%. By (1.3, there is a constant C; = C; (d, ) > 1 so that

d
t
1 —l/a —1/a -
H (t —Ix(’” = k)|1+a> <pt.z,y) < [] (t A Fop y<k>|1+a> (1.6)

k=1

for all t > 0, and z = (z®), y = (y®)) € RL This is clearly quite different from the estimates for
plde) (t,x,%) of the isotropic or rotationally symmetric a-stable process Z on R

Though the rectilinear a-stable process X and the isotropic a-stable process Z are both Lévy processes
that are invariant under the a-stable scaling, they have many fundamentally different properties, which will
be further revealed in this paper. For instance, it is shown in [I] that Harnack inequality fails for rectilinear
stable processes, while scale invariant Harnack inequality holds for isotropic stable processes. The root of
these differences lies in the fact that the isotropic a-stable process Z can jump in any direction uniformly,
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while the rectilinear a-stable process X can only jump along the directions of coordinate axes, one at a time,
and thus is much singular. The Lévy measure of X is

d d
CLa j :
pldz) =Y Wdz(]) © [ 610 (d=™)), (1.7)
= =
where 09y denotes the Dirac measure concentrated at 0 and z = (z(l), 22 z(d)) € RZ. The Lévy measure

u describes how the rectilinear a-stable process X jumps. For any non-negative measurable function f on
R, x R? x R? with f(s,z,2) = 0 for any s > 0 and z € R? and for any stopping time S with respect to the
minimum augmented filtration generated by X, we have

S
Eo | Y f(s, Xeo, Xo)| =E, /0 Rdf(s,Xs,Xs—f—z)u(dz)ds . (1.8)

s<S

See, e.g., [12] proof of Lemma 4.7] and [13, Appendix A]. We mention that recently it is shown in [I9] that
the transition density functions of the symmetric pure jump processes whose jumping measure J(dz, dy) is
comparable to dzu(dy — x), where  is the Lévy measure of (1.7)), have the two-sided estimates (1.6]). This
result has been further extended to more general rectilinear Lévy processes in [20].

For any non-empty open subset D C R? let 7p(w) = inf{t > 0, X;(w) ¢ D} denote the first exit time
from D by X. Taking f(z,y) = 1p(z)lpe(y)p(y) and S = 7p in (L.8), where ¢ is a bounded function
defined on D¢, yields

E, [0(Xrp): Xope # Xop] = E, [ [ [ etmta - x.pas) (1.9)

The subprocess X of X killed upon leaving D is defined as

) X (w) for t < 7p(w)
XtD(w) N {(‘3 for t > 7p(w)’

where 0 is a cemetery state. The subprocesses of other Markov processes in an open set can be defined in
a similar way. Denote by £P the infinitesimal generator of X, which is the non-local operator £ in D
satisfying the zero exterior condition.

Let {P;;t > 0} be the transition semigroup of the rectilinear a-stable process X; that is, for t > 0, z € R¢
and f >0 on R?,

Pf(e) = Bl = [

By , {P;;t > 0} is a strongly continuous semigroup in the Banach space Cx, (R?) of continuous functions
that vanish at infinity equipped with the uniform norm || f||s := sup,cga |f(x)|. Moreover, since p(t,z,y)
is jointly continuous and has estimates , {P;;t > 0} has strong Feller property in the sense that for
every t > 0 and any bounded function f on R%, P,f is a bounded continuous function on R%. Thus the Lévy
process X is a Feller process having strong Feller property. By the proof of [I5, Theorem on p. 68], the
semigroup {P;t > 0} of XP has strong Feller property for any non-empty open subset D C R%. (Observe
that the proof of the strong Feller property of {PP;¢ > 0} in [I5] does not need regular assumption on D.)
In this paper, we will show that X has a jointly locally Hélder continuous transition density pp(t,z,y)
with respect to the Lebesgue measure. Furthermore, we will investigate the strict positivity property and
the two-sided estimates of pp(t,z,v) for a class of open subsets D C R9.

, p(t,z,y) f(y)dy.

Theorem 1.1. For any non-empty open set D C R, the subprocess XP has a jointly (locally) Hélder
continuous density function pp(t,z,y) on (0,00) x D x D; that is, for any x € D and any non-negative Borel
measurable function ¢ on D,

E. [¢(X])] :/ po(t, =, y)e(y)dy. (1.10)
D

Throughout this paper, we use the convention that any function ¢ defined on D is extended to 0 by
setting ¢(9) = 0. We also call pp(t,r,y) the heat kernel of X (or, equivalently, of L), or the Dirichlet
heat kernel of X (or, equivalently, of £) in D.
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Unlike the rotationally symmetric a-stable process Z, the behavior of X? and pp(t,z,y) are strongly
dependent on the shape of the domain D due to the special structure of the Lévy measure of the rectilinear
a-stable process X. For example, X can be reducible for some smooth bounded open sets D.

Definition 1.2. We say a Markov process {Y,P,} on a topological state space E is irreducible if for any
non-empty open subset U C E,
P.(ov < o0) >0 for every x € E,

where oy = inf{t > 0:Y; € U}. Otherwise, we say the process {Y,P,} is reducible.
The next result gives a geometric criterion on D for the irreducibility of the subprocess X in D.

Theorem 1.3. Let D C R? be a non-empty open set. The subprocess X is irreducible if and only if

for every x,y € D, there is N > 1 and some {z;}, C D with 2o = 2 and x5 =y so (L11)
that each consecutive pair (z;—1,x;), 1 <i < N, has only one different coordinate. '

Moreover, X is irreducible if and only if pp(t,x,y) > 0 for every t >0 and z,y € D.

Theorem together with Theorem in particular implies that for any connected open set D, X P is
irreducible and has a strictly positive continuous transition density function pp (¢, z,y).

Corollary 1.4. Suppose that D C R? is a non-empty open set, and Dy and Dy are two disjoint connected
components of D. Then

(i) pp(t,x,y) > 0 for every t >0 and z,y € D;.

(ii) Fither pp(t,x,y) > 0 for every (t,z,y) € (0,00) x Dy x Dy or pp(t,z,y) = 0 for every (t,z,y) €
(0,00) x Dy x Dy. The former happens if and only if there exists a finite sequence {x;}., C D with
xo € D1 and xn € Dy so that each consecutive pair (x;—1,2;), 1 < ¢ < N, has only one different
coordinate.

See Theorems for further information on the positivity of pp(t,x,y). To obtain more precise
bounds (for example the two-sided estimate) on pp(t, z,y), we need certain smoothness of D and some
additional geometric condition on D beyond (1.11)) (or equivalently, the irreducibility of X?).

Recall that an open set D C R? is said to be C''! with characteristics (R, A) for some R, A > 0, if for
every z € 0D, there is a C1'!-function ¢ = ¢, : R¥~! — R satisfying ¢(0) = 0, V¢(0) = 0, |V (Z) —Vo(7)| <
Alz — g|, Z,9 € R4!, and an orthogonal coordinate system CS, : y = (yM), ... y@=D yd) = (7, y@D)
with its origin at z such that

B(=,R)ND = {y = (5,y'") € BO,R) in CS. : y > 6(5)

The pair (R, A) is called the characteristics of the C1'! open set D. Note that the C*! open set D may be
disconnected and may have infinite number of components. However, the distances between any two distinct
connected components of D are bounded from below uniformly by a positive constant.

For an open set D C R? and 2 € D, let 6p(z) be the Euclidean distance between x and D°. We say D
satisfies the uniform interior ball condition with radius Ry > 0, if, for every € D with dp(x) < Ry, there
is z; € 0D such that |z — 2| = 0p(z) and B(zo, R1) C D for xg := 2z, + R1(x — 22)/|x — z,|; see [9, [14].
Similarly, we can define the uniform exterior ball condition.

It is well known that D being a C'™! open set is equivalent to that D satisfies both the uniform interior
and exterior ball conditions. Thus without loss of generality, in this paper, for a C*! open set D, we always
assume its Cb! characteristics (R, A) have the property that R < 1, A > 1 and it satisfies the uniform
interior and exterior ball conditions with radius R.

For u=(u®,u®,-. u@®) e R!, ac Rand 1 <i<d,let
) o= (@, w0 g WD @),

that is, [u]’ is the point in R? by changing its i*"-coordinate to a. For z,y € R? and a permutation

{ilai27' te aid} of {1727 7d}a let

Y, = [x]zyl(i1)7 TYy 1= [@1];2('52)7 TYs 1= [@2];3@3)7 e, XYy = [Tydfl];ﬂéid) =Y.
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That is, Ty, is the point obtained by swapping consecutively the @'};h—coordinate of x with that of y for
k= 1527"' aj'
We consider the following geometric condition on an open set D. Let v € (0, 1].
(H,): An open set D C R? is said to satisfy condition if for any x,y € D with dp(x) Adp(y) > r > 0,
there exists a permutation {i1,4g,-- ,iq} of {1,2,---,d} so that B(Zy,,yr) C D, k=1,2,--- ,d.
Clearly, for any 0 < 71 < 2 < 1, condition (H,,) implies (H,,) and any with v € (0, 1] implies
the irreducibility condition (T.11). Many open sets in R? satisfy condition For example, all balls,

complements of closed balls, and the open sets shown in Figure [1] satisfy [(H;)] But there are also many
open sets which do not satisfy condition see Section |§| for some examples.

0 0

FIGURE 1. The set D := B(Xy,r) U B(Yo,r) with r = 1, and the set D := the cubes with
round corners in R?

Recall that p(¢, z,y) is the transition density function (also called the heat kernel) of the rectilinear stable
process X, and, for any open set D C RY, pp(t,x,y) is the heat kernel of X?. Recall also that L£? is the
infinitesimal generator of XP.

Theorem 1.5. Let D C R? be a C*! open set with characteristics (R, \).
(i) For any T > 0, there exists Cy = Ca(d,a, R, A, T) > 0 such that for allt € (0,T] and x,y € D,

T a/2 a/2
pp(t,z,y) < Co (1 A 6[)(\/)%) (1 A (SD(\y/)z> p(t,z,y). (1.12)

(ii) Assume in addition that D satisfies for some v € (0,1]. Then, for any T > 0, there exists
Cs = Cs(d,a, R,A,v,T) > 0 such that for all t € (0,T] and xz,y € D,

T a/2 a/2
pp(t,z,y) > C3 (1 A (SD(\/)%> <1 A (;D(\y/)i) p(t, x,y). (1.13)

(iii) Assume in addition that D is bounded and satisfies [(H,)| for some v € (0,1]. Denote by A1 (D) the
first eigenvalue of —LP. Then, there exists Cy = Cy(d, o, R, A,~,diam(D)) > 1 such that

Cyt < \(D) <Oy, (1.14)

and, for any T > 0, there exists Cs = Cs(d, o, R, A, v, T, diam(D)) > 0 such that for all t € [T, 00)
and z,y € D,

Cy e M PN ()26 p () < pp(t,2,y) < Cie M P6p (2)*/ 265 (y) /2. (1.15)

For the comparable lower bound estimate to hold, certain geometric condition beyond smoothness
of the bounded open set D is needed. We show by Examples and in Section [0] that there are smooth
connected bounded domains, even some smooth convex domains, that do not satisfy condition F for any
v € (0,1] and the lower bound of Dirichlet heat kernel estimate fails. In Example [6.3] a bounded
smooth open set D is given that does not satisfy the irreducibility condition and thus X7 is not
irreducible. These facts are in strong contrast with that for the rotationally symmetric stable processes
in RY, whose subprocesses in open sets are always irreducible and the comparable two-sided Dirichlet heat
kernel estimates, obtained in [8], are known to hold for any C'! smooth open sets. We next present a
bounded smooth open set D that satisfies the irreducibility condition but does not satisfy condition
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for any v € (0,1] and the lower bound (1.13)) fails for pp(t, z,y), nevertheless for which we can still
derive comparable upper and lower bound of Dirichlet heat kernel estimates.

Let O; € R%2, i =1,---,4 be four points such that, the line through O; and O, is paralleled with x-axis,
the line through O, and Oj is paralleled with y-axis, the line through O3 and O, is paralleled with z-axis,
and |O; — O;41| = 3 for i = 1,2, 3; see Figure Let A;, i =1,---,4 be four squares with round corners and
with edge-length 2 centered at O; respectively. Consider the open set D := U, A;.

Os Oy
As Ay

O,
Ay

FIGURE 2. The set D is the union of four squares with round corners in R?

Note that D C R? is a bounded smooth open set that satisfies the irreducibility condition (T.11)) but does
not satisfy condition [(FL,)] for any v € (0,1] as for any € A; and y € A4, swapping any coordinate of = by
that of y results a point falling outside D.

Theorem 1.6. Let D C R? be the above smooth open set as shown in Figure|d and T > 0.
(i) There exists Cg = Cg(a, T) > 0 such that for allt € (0,T], x € A; and y € A; with |i — j| <2,
s 5D(5'3)°‘/2> ( 5D(y)a/2>
toa,y) 2 (1AL ) (1A 29 e, 2, y). 1.16
o) & (10228 D) ttan) (110
(ii) There exist Cr = C7(a,T) > 0 and Cs = Cg(a,T) > 0 such that for all t € (0,T], x € Ay and

y € Ay,
% Op(x)/? dp(y)*/?
pp(t,z,y) 2 (1 A \/Z> (1 A \/1?) (1.17)

Sy (1 A W) (1 A W) plt,z,y). (1.18)

C
Here and in the sequel, for two functions f, g and a positive constant C, the notation f =< g means that
C~1f < g < Cf holds true on their common domains. Theorem ii) shows that, for the smooth open set

D in Figure [2} the lower bound (1.13)) fails for pp (¢, z,y).

For an open set D C R?, we call Gp(z,y) := / pp(t,z,y)dt the Green function of X in D. It follows
0
from ([1.10) that for any € D and any non-negative Borel measurable function ¢ on D,

E, / " o) ds = /D G (e, v)(y)dy.

From the Dirichlet heat kernel estimates in Theorem for pp(t,x,y), one can clearly derive the Green
function estimates for Gp(x,y).

Finally, we mention that boundary regularity of solutions to the Dirichlet problem for the generator of
isotropic stable processes is studied in [2T]. These regularity results were later extended to more general
stable operators in [23] 24], and further to nonlinear nonlocal equations in [22]. However, for Dirichlet
heat kernel estimates, the singular nature of rectilinear stable processes poses significant challenges. For
instance, as mentioned above, Harnack inequality fails for rectilinear stable processes. Thus we can not use
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the approach developed in [§] for the study of Dirichlet heat kernel estimates for rotationally symmetric
stable processes directly. To see this through a concrete case, we invite the interested reader to pause for
a few minutes and think about possible ways to establish the joint local Holder continuity of the transition
density pp(t,z,y) of X in any open subset D C R before reading the proof of Theorem Some new
ideas and methods are needed for the study of rectilinear stable processes. We employ a combination of the
probabilistic and analytic methods in our investigation.

The rest of the paper is organized as follows. In Section [2, we show that the part process X in any
open subset D C R? has a locally Hélder continuous transition density function. Boundary properties of the
harmonic measures of £, or equivalently, the exit distributions of X, in C' open sets are investigated in
Section [3] using testing function methods developed in [5], [I1]. Various Dirichlet heat kernel estimates are
obtained in Section[d] and the proof of Theorem[I.5]is given in Subsection[£.3] For the upper bound estimates
of pp(t,x,y), we use the exit time estimates, strong Markov property and the Lévy system of the rectilinear
stable process X. For the lower bound estimates of pp(t,x,y), we first obtain its near diagonal interior
estimate in Lemma and then the interior estimates under the condition for some v € (0,1] in
Lemma using the Chapman-Kolmogorov equation, a chaining argument and a delicate probability lower
bound estimate for X! taking values in suitable cubes. The sharp lower bound estimates for pp (¢, x,y) over
some bounded time interval (0,,] in any C1! open set D satisfying the condition for some v € (0,1]
is established in Lemmas though a careful probabilistic argument that boils down to the exit time
estimates for X. The proof of Theorem is given Subsection [4.3] where in particular the lower bound
estimate in Lemma over some bounded time interval is shown to hold over any bounded time interval
through a chaining argument. For any two fixed distinct points z,y € D, a geometric condition for the
positivity of pp(t, z,y) is given in Theorems and whose proof uses some of the lower bound estimates
derived in Section From these, we give in Section [5| a geometric criterion on D for the irreducibility of
XP as well as the strict positivity property of pp(t,z,y) (see Theorem . In addition to the proof of
Theorem three additional examples of bounded smooth open sets are given in Section [6} two of them
are connected open sets, that do not satisfy the condition for any v € (0, 1], for which the lower bound
estimate is shown to fail.

In this paper, for z = (¢, 23, ... 2®) ¢ R and r > 0, we will use Q(z,7) to denote the cube centered
at x with edge-length 2r, that is,

Q(CC,’I‘) = {y = (9(1)79(2)7 e ay(d)) € Rd : |I(Z) - y(Z)‘ <, 1= 1327 o ad} .
For an open set U C R? and A > 0, unless otherwise stated, we define
AU :={\y:yeU}.
For a measurable set A C R%, we use |A| to denote its Lebesgue measure.
There is a more detailed arXiv version [7] of this paper, where the reader can find additional details of
some calculations.

2. HOLDER REGULARITY OF DIRICHLET HEAT KERNEL

In this section, we fix a non-empty open set D C R?%. Recall that 7p(w) = inf{t > 0, X;(w) ¢ D} is the
first exit time from D by the rectilinear a-stable process X. Since X; has a continuous transition density
function with respect to the Lebesgue measure, we have the following property by the same proof as that in
[16] Proposition 1.20].

Proposition 2.1. For everyt >0 and x € R, P, (7p =t) = 0.
For t >0, 2,y € RY set rp(t,z,y) := B, [p(t — 70, X;p,¥); 70 < 1], and

pD(taxay) = p(t,x,y)frD(t,x,y). (21)
Note that the function pp (¢, x,y) is pointwise well-defined. One can follow the proof of [16, Theorem 2.4, p.
33] to prove the following lemma. Let B(R?) denote the collection of all Borel measurable sets in R9.

Lemma 2.2. For anyt >0, v € R? and A € B(RY),

P, (X, € A, t <1p) = / po(t, . y)dy. (2.2)
A
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The function pp(t,x,y) is almost surely symmetric on R? x R: for all t > 0,

pp(t,z,y) =pp(t,y,x) for a.a. (x,y) € D x D. (2.3)

Moreover, for any s,t > 0 and © € R%, we have

pD(t+s7x,y) :/

pp(t,x,2)pp (s, z,y)dz  for a.a. y € D. (2.4)
R4

Unfortunately, we can not use the approach in [16, Theorem 2.4 on p.33] to establish the joint continuity
of pp(t,-,-) on (R?\ D) x (R?\ dD), and hence to improve the identities in and from almost
every point to every point. The main issue is that unlike Brownian motion or rotationally symmetric stable
processes case, in our setting, the function 1¢., . p(t — 7p, X7,,,¥) is unbounded. However, we can apply
the result in [I] and the ideas in [6, Proposition 2.5, p.1603] to establish the joint Holder continuity of
pp(t,-,-) on D x D in Theorem [2.5| (see also [2] or [I§] for another approach). In order to make the proof as
self-contained as possible, we show all the details.

The rectilinear a-stable process X has the following scaling property: for any A > 0, the processes
{AX-as;t > 0} conditioned on Xy = x has the same distribution as {X;;¢ > 0} conditioned on Xy = Az.
Consequently, since the heat kernel p(t,z,y) is continuous, it has the following scaling property: for any
A >0,

p(t,z,y) = A9\, A ta, A hy), t>0, z,y € RY (2.5)

Moreover, {AX{ . ;t > 0} conditioned on Xy = x € D has the same distribution as {X{*”;¢ > 0} conditioned
on Xy = Az. It follows that for every A > 0,¢ >0 and x € D,

po(t,z,y) = Npap(\°t, Az, \y) for a.a. y € D. (2.6)

The following lemma gives the exit time estimates for X from balls.

Lemma 2.3. There exist positive constants c; := c;(d,a) >0, i = 1,2, such that for any vo € R% and r > 0,
(i) Eu [TB(xo,m] < car® for all z € B(zo,r);
(ii) E, [TB(ID,T)] > cor® for all x € B(xg,r/2).

Proof. By the Lévy property of X we may assume that zg = 0. When r = 1, this lemma follows directly

from [Il, Proposition 2.1, p. 492] with the matrix A being the d x d identity matrix. For general r > 0, the

desired property follows from the scaling property of XZ(©7) that E, [TB(O,,.)] =71%Ey )y [73(071)]. O

Definition 2.4. A bounded function h on R? is said to be harmonic (with respect to X ) in a ball B C R? if
h(z) =Ey; [h(X,,)]  forall z € B.

For a non-negative function f on D, let
PPf(x) = / po(t,z,2) f(2)dz = B, [f(XP)], t>0, z €RY, (2.7)
D

where the second equality is due to (2.2). Thus { P, ¢ > 0} is the transition semigroup of X . It follows from
[2-3) that {PP,t > 0} is a strongly continuous symmetric contractive semigroup on L?(D;dz). Moreover,
by (2.7

7) and the Markov property of X we have for any s,t > 0
PR f(z)=PPPPf(z), zeR*\0D. (2.8)

We further define the 1-potential
GPf(z):=E, [/ etf(XtD)dt} :/ e 'PP f(x)dt, = ecR%\ID.
0 0
Let {6;;t > 0} be the time-shifting operators on the canonical probability sample space Q for the Lévy
process X; that is, X, (6w) = X, 14(w) for w € Q and ¢,7 > 0.

Theorem 2.5. There is a jointly (locally) Holder continuous function q(t,z,y) on D x D so that
(i) for anyt >0 and xz € D,
q(t,x,z) =pp(t,xz,z) for a.a. z € D;
(ii) for any t > 0, q(t,x,y) is symmetric on D x D;
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(iii) for any s,t >0 and z,y € D,
q(t + s, x, y) = / Q(t7 z, Z)Q(S7 2, y)dZ
D

Proof. The proof uses a result from [I] and the ideas from [6] Proposition 2.5, p. 1603]. For the reader’s
convenience, we spell out all the details. We divide the proof into five steps.

Step 1. Let r € (0,1] and B := B(xg,r) C D. Suppose that h is a bounded function on R? and is
harmonic with respect to X in B. By the Holder regularity obtained in [I, Theorem 2.9, p. 499], taking the
matrix A there the d x d identity matrix, there exist positive constants ¢; and 8 depending only on d and
a such that

e =g\
|h(z) — h(y)| < e | ——= ] sup |h(z)| forall x,y € B(xg,r/2). (2.9)
r z€R4
Step 2. Let f € L>(D) N L?(D). By the strong Markov property, we obtain that for any = € B,

+E, [/Too e_tf(XtD)dt}

B

=E, _/0 eftf(XtD)dt- +E,; [eTB (/0 etf(XtD)dt> 0973}

=B | [T Pyt + B oGP
LJ O

GPf() = E, | / " et f(XP)r
L/ O

=B, | [ et x| 4 B 7 = DGPAXD)] + B, [6P (X))
= I(2) + Ia(2) + Is(x).
By Lemma i) and the elementary inequality that 1 —e™® < a for a > 0, we have
[ (2)| < ([ flloe(D)Ee [TB] < car®|| fll Lo (D)
and
|I(z)] < |G flln=(p)Ex [T8] < car®|| fll 1 (D)-

Since z — I3(z) = E, [G{Df(X%)} is bounded and harmonic in B, we have by 1) that for any x,y €
B(zo,7/2) C D,

B B B
Xr — xr — xXr —
o) - 1)l < (1) sup 1) < e (E22) 160 oy < e (1) o

r z€R4

Combining the above four formulas, we obtain that for all z,y € B(zg,r/2) C D,

— |8
6P 1) - 6P < (et en) (r + 0 o, (2.10)

Step 3. Recall that £ is the generator of the heat semigroup {P”,¢t > 0} on L?(D). Note that £
is negative definite self-adjoint. By general theory of heat semigroup, we have that for any s,s’ > 0 and
feL*D),

PPLPPRf = PRLPPPf  ae. (2.11)
For a fixed f € L>(D) N L*(D), set
hi:=PPf—LPPPfeL*D), t>0.
By spectral theory, there exists a spectral family {Fx, A € R} such that

LD:_/ ME), f:/ dE\f and Ptha'ze'/ e MdE, f. (2.12)
0 0 0

Consequently,

(1—LPYGPF™ f and  hy :/ (14 \)eMdEy . (2.13)
0
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For any g € L'(D), by , we have for any ¢ > 0

1Pl = | [ ootetgteras]| < | [ pte sl
and then,

4
1PPgllr2(py < \/HPth”Ll(D)||Pth||L°°(D) < \/||9||L1(D)Clt’d/a||9||L1(D) =VCit 2 gl p).  (2.14)
Using the above inequality, Cauchy-Schwarz and the facts that

sup(1+A)e ™M < (tA1)P<oo and  sup(l+N)e 2 <20tA1)7 < 0,
R AS0

< Crt™ | gl| L2 (py,
L= (D)

we obtain

o0
(hey 9)L2(p) = /

0

([
oo 1/2 oo

<2(tn1)7 (/ d(Exf, f)L?(D)) (/ e_wzd(Exgvg)H(D))
0 0

=20t A1) M| fll 2oy 1 Pagll L2y
< 2V/Cr(t A1) 5| £l 2oy gl (-
Since g € L*(D) is arbitrary, we obtain
hell e < 20/C(t A1) 755 | |2y
On the other hand, we have by - ) and (| - ) that a.e. on D,
GPhy=GPPPf—-GPLPPPf=PP (GPf—LPGPf) =PPY.
As noted earlier, PP f and PPh; are continuous functions on D by the strong Feller property of X”. By

the dominated convergence theorem, GPhy(z) = [ e=*PPhy(x)ds is a bounded continuous function on D.
Hence we have

(14 Ne Md(Exf, 9)L2(p)
1/2 e 1/2
(1+A)e Md(BExf, f)Lz(D)> (/ (1+ A)G_Md(EAg,g)LZ(DO
0

1/2

PP f(x) = GPhy(z) for every x € D.
This together with (2.10) yields that for all ¢ > 0 and z,y € B(xo,7/2) C D,
|PP f(x) = PP f(y)] = |G hu(2) — GY ()

o, lz—ylf
< (dey + 1) (r + 5 | Il (p) (2.15)

o — ol
Ci(4cz +c1) <7"a + |7,ﬁy|> (tA 1)71t7% I fllL2(Dy-

Step 4. For any fixed compact set K C D and z,y € K, let di = i(dist(K, OD) Ndist(K,0D)* A1) and
o =2.
Case 1: |z — y| < 0. Setting r:= |z —y

dist(K,0D) > /0 > |z —y|Y? =7 > 2|z — 9.
Applying (2.15) for this r and o = x, we have

T — B 1,_d
PP 1) = P21 < 2v/Biltca o) (r 4+ E ) (en 7 s

< 4\/Ci(4es + er)x — y| D2 (A1) T | )l L2y

11/2) we have

Case 2: |x —y| > 0x. By the definition of PP f and Cauchy-Schwarz inequality, we have for all ¢ > 0 and
z€ D,

[P f(2)] < \//DPD(tazay)zdy 1£1lz2(0y < VP2, 2, 2) [ fll L2y < VL)Y D fl| L2
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This implies that
_ 4
[P f(x) = PP fy)l < |PP f(2)| + PP f(y)| < 2v/Cit™ % || f|l 2 ()
(anp)/2
T —y s
<2vGr (S A o,
K

Combining the above two cases, we obtain for any =,y € K,

PP f(x) = PP f ()| < es(d, a, dist(K, D))o — y| "2t A1) 773 | | 2. (2.16)

Step 5. For any 0 < s < t, we define
qs(t, x,y) == / po(t — s,2,2)pp(s,y,2)dz = P2 ;pp(s,y,)(x) = PPpp(t — s,2,-)(y), x,y€ D.
D

By (2.3) and ([2.4)), we obtain for any 0 < s < ¢t and z € D,

qs(t,x,y) = pp(t,z,y), aa ye€D. (2.17)

On the other hand, let K be any compact subset of D as in Step 4, t > 0 and z,y,2’,y’ € K. Replacing
t by t —sand f by pp(s,y,-) in (2.16)) and using (L.6)), we obtain

lgs (8,2, y) — gs(t, 2 y)| = | P2 f(x) = P2 f ()]
es(d, o, dist(K, 0D)) |z — 2/ |D/2((t — ) A1)t — 5) 2=
< eslw— 2|2t — ) A1)t — 8) 3w/ p(25, 1, y)
esy/Chle — &' |CM2((t — ) A1) 7L (t — )" 3 (25) 7a.
Similarly, replacing ¢ by s and f by pp(t — s,2’,-) in (2.16]) and using (1.6), we obtain
‘QS(tv‘rlvy) - (JS(t7x/a y/)| = |Ptllsf(y) - Pt[lsf(y,”
< e3\/Cily — o/ |2 (s A 1)7157%(2(1? - s))*%

Adding up the above two inequalities, we have that ¢s(t,x,y) is jointly Holder continuous on K x K, and
hence, is jointly (locally) Holder continuous on D x D. Moreover, the (locally) Holder continuity of g5 (¢, z,y)
on D x D and (2.17)) imply that gs does not depend on the choice of s, that is, for any 0 < s,s" < t,

IN

PD(8,Y; ')||L2(D)

A

IA

gs(t,x,y) = qs (t,x,y), forallwz,yeD.

Hence, we can define
a(t,z,y) = ¢s(t,z,y), t>0, z,y€D.
This together with (2.17) yields (i). By the definition of g5 and (2.17), we obtain for all ¢ > 0 and «,y € D,

q(t,z,y) = qea(t, z,y) = /D q(t/2,2,2)q(t/2,y, z)dz = /D q(t/2,y,2)q(t/2,,2)dz = qi2(t,y, ) = q(t,y, T),
which is (ii). By the definition of gs, and the symmetry of ¢, we obtain for all 0 < s < t and z,y € D,
alt.9) =t = [ pot = s 2po(s. s = [ alt = s, 2)als )
which is (iii). The proof is complete. O

Proof of Theorem[I.1 Theorem follows directly from Lemma and Theorem Indeed, we need
only to rename the heat kernel ¢(¢, z,y) from Theorem to pp(t,x,y). |

In the sequel, for any open set D C R?, we always use pp(t,z,y) to denote the (locally) Holder continuous
version of the heat kernel obtained in Theorem [[.11
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3. HARMONIC MEASURES

Let II be a hyperplane described by the function ®(z) = (a,r — x¢), * € R?, where o € R, 0 # a =
(aM,a® ... o) € R? and (-,-) is the inner product in RY. That is, IT = {y : ®(y) = 0}. We define
Su(y) = (@(y) vV 0)|al ™! to be the distance from y to the lower half space separated by the hyperplane II.

The following estimates are given in [22, Lemma 2.3]. See also the arXiv version of this paper, [7, Lemma
3.2], for another proof which adopts the approach from [5l Lemmas 4.1 and 5.1] for censored stable processes
in upper half space and [I1, Lemma 2.1] for the process that is the independent sum of Brownian motion
and isotropic stable processes.

Lemma 3.1. Let p > 0 and suppose that 11 and dy1 are defined as above. Then, there are two constants
C; = Ci(d,o,p) > 0,5 = 9,10 such that for every x € R% with ®(x) > 0,

Ciodm(z)P~* < (Ldf)) (x) < Codni(x)P™*, if p€(a/2,a), (3.1)
(Lo%) (z) =0, if p=a/2. (3.2)
Let D € R? be a C1! open set with characteristics (R, A). For Q € dD and the coordinate system CSo,

we define pgo(y) :== y@ — b0 () for y := (§,y?) € CSq. Note that for every Q € 9D and y € B(Q, R)N D,
we have

rely)
—=r < § < .
NYYE p(y) < pq(y)
Set R
RO = RO(R, A) = W and Tro = TO(R, A) = m (33)
For simplicity, we denote —(—8i(k)x(,€))a/2 by Ag/Q for 1 < k <d. That is, by (L.1),
a2 L (f(x +tex) — f(x)
Ak} f(x) - 51—1}51—‘,-01’& \/I;I|>€ |t|1+a dt. (3.4)

Recall that ey, is the unit vector in the positive z(*)-direction.
Lemma 3.2. Let Q € 0D and fix the coordinate system CSg so that

B(Q,R)ND = {y=(5,9'") € B(0,R) in CSq : y'V > ¢(§)}-
For p € [a/2,a), we define

hp(y) = (p@(¥))” 1pnB(@.r0)(4), ¥ € R™
Then, there exist C; = Ci(d, o, R,A,p) > 0, i = 11,12,13 such that for all x € D with pg(z) < ro and
2] <o,
(1) if p= /2, then, we have
|Lhy(z)| < Ciallnpg(x)], (3.5)
(2) if /2 < p < «, then, we have

Ci3(po ()" < Lhy(x) < Cra (pq(x))" " (3.6)

Proof. Note that any C'*!' open set is locally very close to the upper half space. We will use this property
and apply Lemma [3.1] to prove this lemma.

Fix z = (z,2@®) € CSq with pg(x) < ro and |#| < 7o, and choose zg € D with & = Z¢. See Figure for
a special case.

Denote by II the hyperplane tangent to 9D at the point zy. Then, the function I'* : R4~! = R defined
by T'*(9) := ¢g(Z0) + Véo(Zo)(y — &) describes the plane II. We use the following items:

h(y) = ha(y) == (Y'Y = T*(§)) VO,
Dr. = {y e R*: y¥ > T*(9)},
Su(y) = dist(y,IN1p.. (y), y€RY,

by =1+ |Vog(@)? and  h,,(y) = (h(y))” for a/2<p < a.
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The set {z = (%,2®) € CSq : pg(z) < ro, || <70}

T—— 8D

FiGURE 3. The points @, x and zg, etc

Note that 1 < b, < /14 A2 and hyp,(x) = hy(x). Since h(y) = byon(y), by (3.1) and 7 we have for
Yy S DF*a
Lhep(y) = L7 (y) =0, p=af2, (3.7)
and
Crobh (0n(y)"™* < Lhap(y) = VELIT(Y) < CobZ(on ()", /2 <p<a.
Note that b0 (z) = pg(x). By the last inequality, we have for a/2 < p < a,

Cro(pq ()P~ < Crobg (b26n1 ()P~ < Lhy p(w)

o (3.8)
< Cob2 (bydri ()P~ < Co(1 + A2 (pg(x))P~e.
We claim that,
c1 < 00, pe (5, ),
|L(hy — by p)(2)] < ! _ a2 (3.9)
c2|lnpg(z)], p= 3,

for some constant ¢; = ¢1(d, o, p, R, A) > 0 and co = c2(d, a, R, A) > 0, which together with (3.7) and (3.8))
will establish this lemma.
Let

A={y:T*() <y < ¢o(§) and [§ — 2| <o} U{y : IT(§) > 4V > ¢ (§) and |5 — 7| < ro},
E={yeD\A:|g—2| <roand pg(y) <ro(2+A)}.
Note that, if y € D N B(x, ), then
po(y) =y = 6o(@) < [P — 2P|+ 12D — ¢ ()] + |60 () — Do ()] < r0(2+ A).
If | — Z| < ro and pg(y) < ro(2 + A), then
ly—QF = 191> + [y
< (15— +1E)* + Iy = (@) + b (@)
< (2r0)" + (ro(2 + A) + ¢ (7))
< (2r0)* + (ro(2 + A) + Alg])* < RE.
Consequently, we have
DN B(z,ro) CDN{y:|§—Z| <71 and pg(y) <ro(2+A)} C DN B(Q, Ry),

and then,
ACﬂDﬂB(J?,To) CECDQB(Q,R()). (310)

Hence, by (3.10) and the fact that B(xz,r¢) C F, we have
B(z,ro) N{z:hyp —hyp#0} C AUE; (3.11)
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see [7, p. 16] for details. We first consider the case for p € (a/2, ). Let ex = (0,---,0,1,0,---,0) € R? be
the unit vector along the k*" axis for 1 < k < d. Using (3.11]), we have by (3.4), for 1 < k < d,
_ a/2
(Cra) ™ | AY 2y = ) (@)
< / (ho( + tex) — ho (2 + ter)) =2 +lim/ (2 + te) — By (@ + teg)| —
< k) — Pa, ) oire k) — Do, k) ira
e P [t =0 frosltse P ¢+
dt . dt
< lhp(@ + tew) — hap(@ + teg)| iy + lim |hp(@ + ter) — hap(@ + ter)| e
[t|>ro |t‘ e=0J{ro>t|>e}n{t:z+ter €A} |t|
dt
+ lim (@ + tex) — hap(@ + ten) o (by (BIT))
e=0 J {ro>|t|>e}N{t:z+ter B} It]
2211+12+13. (312)

We estimate I, I, I3 separately. Note that for any y € RY,
P
0< hep(y) < (99 = 2] + 12 = 60(@)| +160(@) —T*()]) < (la—yl+ro+Ala—yl)” < (ro+2A]a—y|)".

Combining this and the facts that 0 < h, <1 and p < «, we have

1 2AJt])P 1+ (2r0)? N
e [ DHCLENOP, o (LECOP e AP
= [t]t+e ! a—p

For y € A, we have
P @)+ [hp()] < [y D =T @) + [yD = do ()7
< 2|9q(H) =T (@) = 2|90 (9) — ¢q(To) — Voo (o) (y — )7
< 2AP|F — |*P < 2AP|x — y|?P (3.13)

(see also [I1} (3.14)]). Then, |hy ,(z + teg)| + |hy(z + teg)| < 2AP|¢|?P and since p > «/2, we have

T0 P
I, < / |hxap(l‘ + tek)| + |hp(:r’ + tek)|dt < / 2Ap‘t|2pfo¢71dt — 4A T(ij—a < 0.
[t|<ro [¢[ 1 0 2p —«

For y € E C DN B(Q, Ry), we have h,(y) = po(y)?. In view of this and the following two inequalities:
for ay,as > 0,

laf —af| < o1 = aaf?, p€(0,1),
“ | p(arVag)P ay —agf,  pe[l,00),
we have for y € E,
E - p’ € 051 )
() — ()] < { (1) = po(v)] pe(0,1) (3.14)
plh(y) = pa)l,  p €[l 00).

On the other hand, by the definitions of h(y) and pg(y), we have for y € E,
7(y) — poW)| = 16 (5) — T* ()] = 6o (5) — ¢q(Fo) — Voq(io) (7 — )|
< AJE—g)* < Az —y)?, (3.15)
(see also [I11 (3.7)]). Using the last two inequalities, we have

dt
I3 < / |hp (2 + tex) — hap(@ + ter) e
{ro>|t]}n{t:a+tes € E} |t

2AP foro t2p—oa—lgy — ZiAja rgpfa, for p € (a/2,1),

2pA foro ti-adt = 22%/\7'37&, for p € [1,00).

[

Combining 1) and the estimates of I1, Is and I3, and using the expression £ = 22:1 Ag/ 2, we can prove
the first part of our claim (3.9).
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It remains to show the second part in (3.9) which is the case when p = /2. Similar to (3.12), we have
by (3.4), for 1 <k < d and p = /2,
— af2
(Cra) ™ [A 2y = o) @)
dt
< \hp(@ + ter) — hap(@ + ter)| e
[¢]>r0 It]

+/ |hp(x + ter) — hy p(z + ter)]
{ro>[tI>pq(z)/(2VI+AZ)}n{t:x+ter €A}

|t|1+oc
dt
+ |hp(@ + ter) — hap(@ + ter)| e
{ro>|t|>po(2)/(2VIFAZ) N {t:ztter €E) It]
+ lim |hp(x + ter) — hy p(x + teg) | (3.16)
=0 Je<|t|<pa(a)/(2VTTRZ) 3 jtH+e
=Ji+Jo+ J3+ J4.
We can estimate J; similar to I;, and have
15 2r)™? (4N g
<oV A .
J1_2( o To o+ )2 Ty < 00
Similar to I, by (3.13) for p = «/2 € (0,1), we have
To
Jy < 2/ 202 |t gt = (4A%/?)(In(2r9V/1 + A2) — In pg(2)),
pq(x)/(2V1+A2)
and similar to I5, by (3.14]) for p = «/2 and (3.15)),
To
Jz < 2/ A2t oL dt = (2A%72) (In(2rgV/ 1 + A2) — In pg (z)).
pQ(z)/(2V1+A2)
For t € (0, pg(x)/(2v1+ A?)], we have
PQ(2) pQ(z) pQ(z)
Op(x +ter) > dp(z) — [t| > — = >0,
and by the definition of h, for y = z + teg,
h(y) = 4" — dq(Z0) — Voo(io)(5 — 7)
= h(z) +y'¥ — 2D — Voo (&0)(5 — 2)
— A
> R(x) = Alf] > po(x) ~ @) o pol@) (3.17)

V1I4+A2 T 2

This together with (3.10) implies that z+tey, € E for all ¢t € (0, po(z)/(2v'1 + A?)]. Furthermore, combining
(3.15)), (3.17) and the following inequality:

at”? —a3?| <af* Mar —asl,  ar,a9 >0,

we have for y = x + tey

z a/2—1 x a/2-1
o) = hoal)] < (R 0) ool < (P42 ) 7 et = (P42) 7 a2

Therefore,

P (2)/(2VITA?) a/2-1
i< / oA <p@(fc)) Ao g
0

1—a/2 1—a/2
2A (1+ A2)e/2-1 (PQ x)) / < 2Ar, / .
2—« -
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Combining 1) and the estimates of Jy,---,J;, and using the expression £ = 2221 AZ‘/Z yields the

second part of our claim (3.9). In view of (3.7)), (3.8) and our claim (3.9)), we get the desired results of this

lemma. |
Recall that pg(x) := (D — ¢g(7) for every Q € D and
z€ B(Q,R)ND = {y = (3,y"”) € B(0O,R) in CSq : y'V > ¢0(§)}.
We define for r{,75 >0
D(ri,re) :=Dg(ri,r2) :={y € D:r1 > pgly) >0, |§| <ra}. (3.18)
Recall that the constants Ry and r are defined in .

Lemma 3.3. There are positive constants dg = do(d, , R, A) € (0,79/(2V1 4+ A?)) and C; = C;(d,a, R, A),
i = 14,15 such that for every Q € 0D and x € Dg(dy,70) with T =0,

P, (XTDQ(‘SO’T(J) S DQ(To/\/ 1+ A2,7“0)> > C]_46D(.’I;)a/27 (319)
P, (XTDQ%,_O) e D) < C150p ()2, (3.20)

and
Eo [TDg (60,r0)] < C150p(2)*/? (3.21)

(cf. Figure .

Dq(ro/v14 A2,79) \ Dg(do,70)
0

DQ((sOvTO)

e

——

27’[]
FIGURE 4. The points @ and z, and the set Dg(dg, 7o), etc

Proof. Recall the notation w = (w™, w® ... w®) = (@,w®) € RY Since D is a C*! open set with
characteristics (R, A), let ¢ : R?"! s R be the C™!-function satisfying (1). ¢(0) = 0, Vé(0) = 0; (2).
Voo < A; (3). |Vo(9) — Vo(2)] < Alg — Z|. Let CSg be the corresponding coordinate system such that

B(Q,R)N D = {(5.4) € BO0,R) in CSq: 4 > 6(5) }
Let p € («/2, ) and define

p(y) ==y D — (7),
h(y) = p(¥)**1p(Q.re)nD(Y)
hy(y) == p(¥)P1B(Q,Re)nD (¥)-

Since p(y) < V14 A26p(y), we have
0<h<(V1+A2R))¥? < RY?<1.

Let 1) : R? — R be a smooth positive function with bounded first and second order derivatives such that
2022

U(y) 2 for [y — Q| <ro/(2V1+ A?),

and

P2 < Y(y) < 2P+3  for ly — Q| > ro/V1+ A2
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Then, there exists ¢; = ¢1(d, a, R, A, p) > 0 such that
L9l < e (3.22)

Step 1. Constructing suitable superharmonic and subharmonic functions with respect to L.
We consider

ui(y) = h(y) + hp(y) and  us(y) = h(y) +P(y) = hp(y).
Since p € (a/2,a), by and (3.6)), there exists o := do(d, o, R, A) € (0,70/(2v/1 4+ A2)) such that for
y € Dq(do,70),

Luy(y) = Lh(y) + Lhy(y) = =Cua|Inp(y)| + Crzp(y)’~* = 0, (3.23)
and by ,

Luz(y) = Lh(y) + LY(y) — Lhy(y) < CualInp(y)| +c1 — Cizp(y)’™* < —1. (3.24)

Step 2. Translating super/subharmonic functions into super/submartingale properties for
X
We claim that the inequalities (3.23]) and (3.24)) imply that

t = u2(Xearp s, v)) T 1A TD(80.r0) 18 @ nON-negative bounded supermartingale, (3.25)
E; [TD(oro)] < p(2)*7%, (3.26)

and
t = u1(Xearp s, . ) 18 @ non-negative bounded submartingale. (3.27)

Recall that 7p(s,,r,) is the first exit time of X upon leaving the set D(do,70).
Observe that if v is a bounded C?-function on R¢ with bounded second order derivatives, then, by Markov
property,

t
MY = v(X;) —v(Xo) — / Lv(Xs)ds is a martingale. (3.28)
0
Hence, if u; and us are C?-functions with bounded second order derivatives, then the above claims would

just follow from (3.28)), (3.23) and (3.24). However, u; and us are not C?-functions. We shall approximate
them by smooth functions. Indeed, let g be a mollifier, and g, (2) := 2"%g(2"z), z € R? for n > 1. Define

W) =g ) = [ olu =y =12

Since ﬁugn) = g, * Lu; for 1 = 1,2, we have for any n > m > 1,
Eugn) >0, and Euén) < -1,

on
Dy, (00,70) := {y 200 — 27" >p(y) >27"" and |§| < ro — 2"”}.

Since each ul(.n) is a bounded smooth functions with bounded second order derivatives, it follows from lj
that for any n > m > 1,

T ué") (Xtnrp, s0.00)) T LA TD,,(50,r0) 18 @ NON-NeEgative supermartingale,

and
t— ugn)(Xt/\TDm(éo’m)) is a non-negative bounded submartingale.

(n)

Since each wu; is bounded and continuous, u; ’ converges to u; uniformly on D,, (o, 7o), and hence,

t = ua(Xinr, +tATp,,(50,r) 1S @ NON-negative supermartingale, (3.29)

m(80,70) )
and
t = u1(Xearp, (5,.0)) 18 @ nON-negative bounded submartingale.

Since D, (00, 70) increases to D(dp,r9) as m — oo, we obtain from above (3.25) and (3.27). Moreover, it
follows from (3.29)) that for each n > 1 and ¢ > 0,

Em |:'LL2 (Xt/\TDm(éo,ro)) + tA TDm(5077"0)1| é U2 ("E)
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Since ug > 0 and D, (do, 79) increases to D(dg, r9), by passing the above formula to the limit as m — oo and
then t — oo, we obtain

Eo [TD(60,r0)] < u2(x).
Note that # = 0, ¢»(z) = 0 and then, us(z) < p(z)®/2. This together with the above inequality implies

(3.26)). Consequently, (3.21)) holds true.

Step 3. Deriving the estimates of the exit distributions from super/submartingale proper-
ties.

Since ¥(y) > 2P*2 for |y — Q| > r0/v1 + A% and ¢(x) = 0, we have by ,
pl@)*? 2 un(@) = By [u2(Xrpsy )i Krpisy gy € D\ Do/ VT4 8%,70)]
> (2742 _1)P, (XTMW € D\ D(ro/V/1+ A2, ro)) .
On the other hand, by , we have
p(2)*? < p(2)*? + p(z)? = uy(x) < E, [ul(XTD(tio,To))] < 2P, (XTDMo,ro) € D) .
Combining the above two formulas, we obtain
P, (XTD%TU) € D(ro/V/1 + A2, ro)) —P, (XTD%TO) e D) —P, (XTD(%’TO) € D\ D(ro/v/1 + A2, ro))

2P+2 -3
B O‘/Q

which implies (3.19).
Recall that 0 < h, < 1. If [y — Q| > 70/v1 + A2, then, ¥(y) > 2P™2 we have
ua(y) = h(y) + ¥(y) —hp(y) 2 0+2°72 —1>1,  ye B(Q,ro/V1+ A?)".
On the other hand, we have for y € B(Q, 1) with dy < p(y) < ro,

uz(y) = h(y) +¥(y) = hp(y) = p()** = p(y)? > ca,

where c3 = ¢2(d0,70,p) € (0,1). It follows from the above two estimates that ug > ¢z on D \ D(dg, o).
Therefore, by (3.25), we have

p(l’)a/2 > ’LLQ(ZL') > Ex u2(XTD(5O,r0))] 2 CQPI (X € D) ’

which implies (3.20)). O

TD(80.70)

4. DIRICHLET HEAT KERNEL ESTIMATES

Throughout this section, D C R? is a C*! open set with characteristics (R, A). Recall that we use the
following convention: for u € RY acRand1<i<d,

W) = (u®, o WD gD L @),
Define
. Cl,a
jla,b) = m for a # b € R,

where C; o is the positive constant in .

With these notation, we rewrite the Lévy system formula as follows. For any non-negative measurable
function f on Ry x R? x R? with f(s,z,2) = 0 for any s > 0 and = € R? and for any stopping time S with
respect to the minimum augmented filtration generated by X, we have

E:v Zf(saXsfst) :Ex

s<S

S d . )
|3 [ s i e, oyanas (4.1)
=1
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4.1. Upper bound estimates.

Lemma 4.1. There is a constant ¢ = ¢(d, «, R, A) > 0 such that for any x € D,
1
P, <TD > 4) <ec (1 A JD(z)O‘/z) . (4.2)

Proof. Let 6g, 79 be the constants from Lemma It suffices to prove (4.2) when dp(z) < 09 Arg = dp.
Indeed, let @ € 0D be such that dp(z) = |;v - Q| and D(dg,ro) be the set defined in (3.18). In this case,
T € DQ((50,7‘0) and Z = 0. It follows from and ( - ) that

1 1 1 1 1
P, (TD > 4> <P, (TD > Z’TD(&),TO) = 4> + Py ( > zaTD(Jo,ro) < 4)

< 4B, [rp(s,.r0)] + P (X € D) < 5Cu50p(x)*/2.

TD(89,70)
O
Lemma 4.2. Let U,U;,Us C R? be three open sets with Uy,Us C U and dist(Uy,Us) > 0. Define Uy :=
U\ (U UUs). We have, for anyt >0, x € Uy and y € Us,
pu(t,z,y) < IE [T, ] sup pu(t/2,2,y) + P, (XTU1 € Ug) sup pu (s, z,9)
t/2<s<t,2€Us
(4.3)

t/2 ,
/ / pu, (8,2, u) Z/py b y)do - sup j(u(l),a) duds.
uGUl,[u]fleUs

Proof. Fix t > 0 and x € Uy. Let 0 < f € LY(U) N L>*(U). By the strong Markov property of X and
Proposition we have

P f(z) = B [f(X4)it < 70
= E; [f(X: )'t <71y, ]+ Ee [f(Xe); 70, <t < T0]
= P f(2) + B [f(X]); 70, <]

(
= P f() +Eq [Exg [FX 0] im0 <t] + By [F(X)i70, =1]

PtUlf(;,;) +E,. [thTU f(XTul);TUl <t, Xr, € Ug]

~— ~—

T

YE, {PtU o F Xy )i, <t Xy, € Ug}
= P f(x)+ 1+ I1. (4.4)

Note that

I <Py (Xp, €Us) sup PIf(z).
0<s<t, z€Usz

Since dist(Uy, Us) > 0, by (4.1] , we obtain,
I1=E, {TUI <t, Xny €Usi P, f(XTUl)}

t
/ 1{S<TU1} ’ <Z/ ]l{[Xs]éGUs} ) PtUsf([XS]é)j(Xgi)ve)d9> d8‘|
/ /U pu, (8,2, u <Z/ Lpgicusy - PY  f([u]§)j (u(i),e)d9> duds

t
/ / pu (5,2, 8) (Z / PY f(jul)do - sup j(u“%a)) duds.
0 JUy i=1 R u€Uy,[u]} €Us

Thus we have by (4.4))
P f(z) < PP f(x) + Py (Xry, €U2)  sup P/ f(2)

0<s<t, zeUsy

:Ew

IN
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t d
+/O /Ul pu, (8,2, 1) <;/RPtU_sf([u]Zg)d9- sup j(u(1)7a)> duds.

u€Uy,[u]l €Us

For any y € Us, by setting f = py(t,-,y) in the above inequality and using semigroup property, we obtain

pu(2t,z,y) < / pu,(t, 2, 2)pu(t, z,y)dz + Py (Xry,, €Us)  sup pu(s, z,y)
U t<s<2t, z€Us

1
t d
[ potsa (X [ o= sldpase s a) ) duds
0 JU: i—1 7R u€eUy,[u]l €Us

<P, (v, > t) sup pu(t,z,y) + Pu (Xr,, €U2)  sup  pu(s, z,y)
zeU; t<s<2t, z€Usz

t d
+/ / by, (‘97337”) (Z/pU(2t -, [u]é7y)d9 : sup J(u(l)7a)) duds.
0 JU; i—1 /R

w€Uy,[u]l €Us

By renaming 2¢ by ¢ in the above inequality, we finish the proof. ]
Lemma 4.3. There is a constant ¢ = ¢(d, «, R, A) > 0 such that for all x,y € D,

po(1/2,2,) < e (1A 6p(@)*/2) p(1/2,2.y). (45)
Proof. 1t suffices to prove when dp(x) < dp, where g is the constant from Lemma Fixz,y e D
with dp(z) < dp. Recall that ro = ro(R,A) = AI(TRAQ). Take r = 4rg for simplicity.

Case 1. Foralli =1,--- ,d, |t — 4| < r. By semigroup property of pp and (4.2)), we have

pp(1/2,2,y) = /DpD(1/4,x,z)pD(1/4,z7y)dz

< suppD(1/4,z,y)/ pp(1/4,x, 2)dz
zeD D

< C1aY P, (tp > 1/4) < ¢10p ()2
On the other hand, since |z(9) —y®)| <7 foralli=1,---,d, we have by (1.6),

d 1/2
p(1/2,x,y) > Cfl H (21/a A T1+a> > 0.

i=1
Combining the above two inequalities, we verify (4.5]) in this case.
Case 2. There is some 1 < i < d such that [z — ()| > 7. Let

T .= {Z : |x(i) —y(i)| >r, 1<i< d},
and @ € 9D be such that |x — Q| = dp(z). Define
Ui := Dg(dg,m0)  (see for the definition of the set Dg(do,70)),
Us = {z € D:3i€Z, such that |z — 2] > () — y(i)|/2} ,
Us:= D\ U, \ Us.

Note that Uy NUs =0, = € Uy by dp(x) < & and y € Us by the definition of Z. By Lemma [4.2] with ¢ = 1/2
and U = D, we have

pp(1/2,2,y) < 4K, [10,] sup pp(1/4,2,y) + Po (Xr,, €U2)  sup  pp(s,2,9)
z€U; 1<s<d zeU;

1/4 d | |
+/O /U pu, (8,2, 1) (;/RPDU/Q—S, [ul},y)d6 - sup j(u@),a)) duds (46)

u€Uy,[u]i €Us

= Il + .[2 -|— Ig.
We estimate I, Io, I3 separately. Indeed, for any i € Z and z € Uy, since |29 — 2| < 27, we have

|Z(i) _ y(i)| > ‘m(i) _ y(i)| _ |Z(i) _ I(i)| > |z(i) _ y(i)| — 2y > |x(i) _ y(i)|/2_
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This together with the upper bound of p(1/4, z,y), the lower bound of p(1/4,z,y) in and - yields
that

-[1 = 4]EI [TU1] sup pD(1/472ay)

zeUq
1/4 1/4
< 2C10p () sup g ( () — y[1+a lg[ |2(D) — (@) |1+a
2+ (1/4)

Q/Q 1/& = ANy 1/0&

< 2Ciép(z 1; (4 2 — y(i)|1+a> 1; (4 )
a/2 IVEN ¢ 1/ L

< c3dp(z H (4 — @ |1+a> H (4 A |z(D) — ()| 1+a

€T i¢T
S 63015D($)a/2p(1/4,$,y),

where in the second to the last inequality, we have used the fact that for all i ¢ Z, |¢() —y() |1+ < plte < o0,
By the definition of Us, for any z € Uy and any i € Z, we have |2(?) — 29| < |2() — y(®|/2, and then
|20 — @) > 120 — @) — 1200 — 20 > 120 — @O — 120 — @) /9 = |x(i) —y®|/2.
This together with the upper bound of p(s, z,y), the lower bound of p(1/4,z,y) in and ( - yields
Iy =P, (X;,, €Us) sup  pp(s,zy)

L<s<d zeU;

<P, (XTU1 € D) sup  p(s,z,y)
I<s<d zel,

<cin(a)® o T (" A e ) Lo
t<s<3},2€Uz 57 200 — y] T
91+ (1 /9) 1/2
<t ] (e n 2D V[T (e 12 )
(4) — (1) |1+ i) _ (1) |14+
Pl R A |20 — @]
< c0p(2)**p(1/2,2,y).
It remains to estimate I3. Note that for all u € Uy, we have [u*) — z(®)| < 2rq for k = 1,--- ,d. Hence, for

all i ¢ Z and u € Uy, by definition of Us, it is not possible that there exists a € R such that [u]} € Us. In
this case,

sup  j(u?,a) = 0. (4.7)
uEUl,[u]ZEUg

On the other hand, for any i € Z and u € Uy, if [u]}, € Us for some a € R, then the number a must satisfy
la — x| > |2 —y®|/2 > 27, and so
o= u®] 2 fa = 2] = o — u®] 2 [z — yO|/2 =y 2 a1 — ]2
In this case,
; C gitec 1/2
3 -0 (1) . 1,a 1,a 1/«
sup  j(u' a) < sup : < — : <cr (2 N ) , (4.8)
w€Uy,[u]i, €Us wely [uli ey | — u® e = gD —y()[1te |2(0) — y(D]1+a
and, for k € 7 with k # i,
|u(k) _ y(k)| > |z(kr)

— B = u® — 2B > 12®) — y®)| _2pg > [zF) — 4B /2. (4.9)

Hence,
1/4 d ]
= / / pU1<vaau) Z/pD 1/2 ]Gvy)de sup j(u(l)7a') duds
0 Uy i—1 /R u€Uy,[u]i €Us

1/2 ,
/ pu, (1/2 — s, z,u) b, y)do - sup  j(u?,a) | duds (by (4.7))
1/4 JUy zEI w€eUy,[u]l €Us
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1/2
< 0701/ / pu,(1/2 —s,z,u (Z sup H (8—1/a A 1+a> —l/a
U: icT 4<‘3<2 kiz | ‘ k I
: a5 Nap (ot Y2
/ <s A = y(i)|1+a) do <2 A 2@ — y@]iTa duds (by (4.8))
% 2e(1/2)
l/a 1/«
ch/ / pui(1/2 = s,2,u <ZH(4 |x(k)—y(k)|1+a> (4 ) (by (4.9))
i€T kez keI
1/2
ol n /2
(2 A 20— y(i)|1+a) )duds
1/4 9lte(1/2) 1/2
1/a I S At 1) p 1=
Scs/ / PUy sxududs(zn(él k)_yk)|1+a>H(4 /\|x(k)—y(k)|1+a>

i€T keZ

k¢ T
1/2
ol pn /2
(4 o))
1/4
< 09/ P, (ty, > s)ds-p(1/2,z,y) (by the lower bound in (1.6))
0

<ecg(LAE, [10,]) - p(1/2,2,y) < ¢ (1 /\(50(95)0‘/2) -p(1/2,z,y) (by (3:21)).

Combining (4.6) and the estimates of Iy, I, I3, we finish the case 2, and then this lemma. O

Lemma 4.4. There is a constant ¢ = ¢(d, «, R, A) > 0 such that for all x,y € D,

pp(lz,y) <c (1 A 6D(a:)°‘/2> (1 A 5D(y)a/2) p(1, z,y). (4.10)

Proof. By the semigroup property of pp and (4.5)), since pp (¢, x,y) is symmetric in z,y, we have
po(ay) = [ po(1/2e2po(1/2 2, 0)dz
D

(1 a/2> /Rd p(1/2,2,2)p(1/2, z,y)dz (1 A 5D(y)a/2>
(

1Adp(x “/2) (1 A 5D(y)a/2> p(l,2,y).

IN

c

c

Lemma 4.5. There is a constant ¢ = c(d, o, R, A) > 0 such that for allt € (0,1], z,y € D,

po(t,z,y) <c (1 A (5[’(\92&/Z> (1 A (SD(y\/;/Q) p(t, z,y).

Proof. Note that for t € (0,1], Dy := t~*/*D = {t~'/®z . 2 € D} is also a C™! open set with the same
characteristics of D. Hence, by scaling properties (2.6) and (2.5), and applying (4.10]) for D;, we obtain for
all z,y e D

pD(tvxay) = tid/ath(lvtil/axatilay)
< et~ (1 Adp, (t_l/o‘x)a/Q) (1 Adp, (t_l/o‘y)o‘/Q) p(1,t= Yz 1=y

—¢ <1 A 5D(\:2a/2> <1 A 5D(3);/2) p(t, 2, y).
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4.2. Lower bound estimates. The following near diagonal lower estimate of pg for balls B is also called
localized lower estimate in some literatures (cf. [I7, [18]).

Lemma 4.6. Let B := B(xg,7) be a ball with radius r > 0. For any a; > 0, there exists as := as(d, a,a1) €
(0,1/ay) such that for any t'/* < ayr,

pB(t7xay) 2 Ct_d/av T,y € B(x()va?tl/a)a
where ¢ = ¢(d, o, aq) > 0.
Proof. Step 1. We first show that for any x,y € B and t > 0,

p(t,z,y) <pp(t,z,y)+2 sup sup p(s,z,w). (4.11)
sE(t/2,1] ZS{eag(y:}

By the Markov property of X, (2.1), the symmetry of p(¢, z,y) and pg(¢,z,y) in z and y, and Theorem [2.5
we have for any x,y € B,

pCtay) = [ plta 2ot z0)d:
R

= [ otttz + [ B bl rm Xy, 2)ia < (020
R R

- / Pty )i (t, 2, 2)dz + Ea [p(2t — 73, Xrg )i 75 < 4
B

= / pB(taya Z)pB(ta z,x)dz =+ / Ey [p(t - TBaXTBaz); 7B < t} pB(ta Zax)dz
B B

+ Ew [P(Qt - TBaXrgvy);TB < t]

/ pe(t,y, 2)pp(t, 2, 2)dz —|—/ Ey [p(t — 7B, Xry,2); 7B < t] p(t, 2, 2)dz
B R?

+ By [p(2t — 7B, X7y, y); B < 1]
pB(Qta yvx) + ]Ey [p(Qt - TBaXTBax);TB < t]
+ E. [p(2t — 78, Xrp,9); 7B < t]

< pp(2t,z,y) + sup sup p(s,z,z)+ sup sup p(s,z,y).
s€(t,2t] z€Be se(t,2t] z€B*©

This establishes the claim (4.11)) after replacing 2¢ by ¢.

IN

Step 2. We next show that there exists a := a(d,«) € (0,1) and ¢; = ¢1(d, @) > 0 such that for any
ti/e < ar,

p(t,x,y) > et~ T,y € B(a:o,tl/a/Q) C B. (4.12)
Indeed, we have by (4.11)) that for all x,y € B(zo,t'/*/2),
|x(i) _y(i)| <lz—y| < e i=1,2,--- .4,

and then, by (|1.6]),

d
— — o t — — «
p(tw,y)ZCllH(t v /\(tl/a)l—i-a> = oyt (4.13)

i=1

On the other hand, for all t'/* < ar (where @ is to be determined later), z € {z,y} and w € B¢, we have

N
|z —w| > |zo —w| — |xog— 2| > 7r— ) 25 Zﬂ’
and then, there exists k € {1,2,-- ,d} so that
r i/
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Consequently,

d
sup  sup p(s,z,w)301<H5 v ) <Z<k)_w<k)1+a>

s€[t/2,t) ze{z,y},weB* i—
itk

t
< O 9ld=1)/ay—(d=1)/a (
= 01 (tl/a/(2\/ﬁa))1+a

> (4.14)

_ C2a1+o¢tfd/o¢7

where ¢y := 2(d-1/et1+ec g(1+2)/2 5 . Combining (4.11)), (4.13) and (4.14)), we obtain
pr(t,e,y) = (Cr' = 2cpa Tyt~
Setting a := (4C1cp) /14 we obtain (4.12) with ¢; = (2C;) .

Step 3. When a7 < a, this lemma follows directly from 1) with ¢ = ¢; and as = % So it suffices to
consider the case that a; > a. Let

ai O‘:| 1
= _ ]_ d = .
" [( a ) +1, an a2 2nl/e
For all t'/® < a;r, we have
1/a
E < ar < ar =ar <r
n — nl/a — ((al/a)a)l/a ’

and then,
B(xg, agt*’®) = B(xg, (t/n)Y*/2) C B.

Hence, by Step 2 and semigroup property of pg(t, x,y), we have for all t'* < a;r and z,y € B(zq, agt™/®),

pB(tv Zz, y) = / pB(t/TL, Zz, Zl)pB (t/nv 21, 22) o pB(t/na Zd—15 y)ledZQ e dZd_1
Bn—1

\Y]

/ pe(t/n,x,21)p(t/n, z1,22) - p(t/N, 2a—1,y)dz1dze - - - dzqg 1
B(xo,antl/a)n—1

v

(H & <t/n>‘d/“> |B(a, agt™)|" "

i=1
_ Crandn/atfdn/a . |B(0, 1)|n71(a2t1/a)d(n71)

= Ct_d/a,

where ¢ = cpn?"/*|B(0, 1)|"’1ag(n_1) > (0. This completes the proof of the lemma. O

Lemma 4.7. Let U C RY be a non-empty open set. For any a1 > 0, there exists as := a(d, o, ,a1) > 0,
c=c(d,a,ay) >0 such that for allt >0 and x,y € U with oy (z) A dy(y) > art’® and |z —y| < axt'/*, we
have

pU(ta €T, y) > Ctid/a'

Proof. Fix t > 0 and let 7 := a;t'/®. Then, we have for = € U with 0y (z) > a1tV =r,
tY* <a7'r and B:= B(x,r)CU.
By Lemma(with ay being replaced by a; '), there exists ag := az(d, o, a1) € (0,a1) and ¢ = ¢(d, o, a1) > 0

such that
pa(t,z,w) > ct= Y 2z w e B(x,ayt?®). (4.15)
On the other hand, by shrinking ay if necessary, we have for all z,y € U with oy (z) A 5y (y) > ait'/® and
|z —y| < agt'/®,
y € B(x,a9t®) and  B(z,ast’*) C B(z,r) C U.

COHSunthly, by " we have Pu (tv z, y) Z PB (ta z, Z/) Z Ct_d/a- U

The following lemma gives the so-called survival estimate in some literatures (cf. [I7]). Recall that 75,
is the first exit time of X for the ball B(x,r), and 7g(,,,) is the first exit time of X for the cube Q(z,7).
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Lemma 4.8. For anyt >0, r > 0 and z € R?, there exists c = e(d, ) > 0 such that

ct
P, (TB(x,r) < t) < ﬁ (416)
and
ct
Po (Te@n <1) < 2 (4.17)

Proof. Fix t >0, 7 > 0 and = € R%. By the strong Markov property (cf. [4, p. 43-44]), one can prove that

P, (TB(x,r) < t) < 2sup sup P, (|1 Xs — Xo| > r/2)
s<t yeRd

(see also [10, (3.1), p. 2494]). By the scaling property (2.5), we have

B, (X, — Xo| > 1/2) = / p(s,y, 2)dz = / p(5,0, 2)dz

ly—z|>r/2 |z|>7/2
= s*d/o‘/ p(l,O,sil/o‘z)dz :/ p(1,0, 2)dz.
|z|=7/2 |z|=r/(251/)
Noting that for any z = (21,22 ... (D) with |z| > r/(2s"/®), there exists some 1 < k < d such that

|2®)| > r/(2¢/ds'/*), and then,
d
{|z| > r/(2sY*)} C U{|z(k)| > r/(2v/dsY/%)}.
k=1
Consequently, by (1.5) and (1.4

d
Py (| Xs — Xo| > 1/2) < / p (1,0, 20))qz®)
12w 2 2vasie)
<c(d a)/ ol = 2vd)7 =
> ) 0|5/ (2/ds1/) |0|1+a a ro

Combining the above three formulas, we obtain the first inequality (4.16)).
Finally, since B(x,r) C Q(x,7), we have {7z < t} C {Tp,r) < t} for all £ > 0. Then, the second

inequality (4.17)) follows from this and (4.16)). O

Lemma 4.9. Assume that U is an open set satisfying conditionfor some v € (0,1]. For any a; > 0,
there exists ¢ = c(d, a,7y,a1) > 0 such that for all t > 0 and x,y € U with oy (z) A dy(y) > a1t'/*, we have
pu(t,z,y) = ep(t,z,y). (4.18)

Proof. Fix t > 0 and z,y € U with §y(x) A dy(y) > ait’/®. By Lemma there exists a; > 0 and
c1 = c1(d,a) > 0 such that if |z — y| < ast'/®, then py(t,z,y) > et~ which together with (1.6) yields
(.18). It remains to consider the case when |z —y| > ast'/®. Without loss of generality, we may assume
that as < ay.

Step 1. Let a € (0,a2/2] and 6 € (0,1) be determined later. By semigroup property of py (¢, z,y), we
have

put,z,y) = / pur(6t,2, 2)pur (1 — S)t, 2, y)d=
U

V

> / pu (6t 2, 2)pu (1 — O)t, 2, y)d= (4.19)
B(y,at/®)

> infp((1—0)t )P (XY € Bly,at/)).
2€B(y,atl/«)

Note that for all z € B(y, at'/®),

50 (2) Adu(y) > (a1 — a)tt/e > %tl/“.
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Hence, by Lemma there exists as € (0, az2) such that if
|z —y| < at'/® < as((1 - 8)t)'/e, (4.20)

then,

inf  pu((1=0)t,2,y) > ca((1 = 6)t) Y™ = eo(1 = §) =¥t~/
2€B(y,atl/«)

for some ¢y = co(d,a,a1) > 0. Consequently, under condition (4.20)), the above inequality together with

(4.19) implies

pult,z,y) > ca(1 —8)~Ver=d/op, (ng € B(y,atl/o‘)) . (4.21)
Note that, inequality (4.20) can be achieved by choosing a,d small enough such that
a < as(1—38)Ye, (4.22)
Step 2 We next derive a lower bound of P, (X§, € B(y,at'/®)). Since U satisfies condition and
Su(x) Aoy (y) > art'/®, there exists a permutation {iy,do, - - ,iq} of {1,2,---,d}, such that
B(@kv Pyaltl/a) - U7 k= 13 23 e 7da (423)
where Ty, = [I’];l(il), TYy 1= [@1];2(1-2)7"' \TY g = [@d_l];‘fid) =y. Set r := at'/®/\/d, where a is chosen to

be small enough such that
a < yay/2. (4.24)
Then Qg := Q(z,r) C U and
Qk = Q(@k,'r) CBk = B(Tyk,\/g’f‘) CU, k:172, 7d. (425)

In the rest of the proof, for a number A > 0 and a cube @ := Q(z,r), we use the notation AQ to denote
the set Q(z, A\r), that is AQ(z,7) = Q(z, Ar). By semigroup property, we have

P, (ngt € B(y,atl/"‘)) :/ pu(t, x, zq)dzq
B(y,at'/®)

= / (/ pu(0t/d,x, z1)py (6t/d, 21, 22) - - - pu (0t /d, zq—1, za)dz1 - "d2d1> dzq
B(y,at/«) Ud-t

/Qd /(21_dQ1)><(22_sz)><""><(2_le1)

pu(0t/d,z, z1)py (0t/d, 21, 22) - - - pu(6t/d, za—1, 2q)dz1 - - - dzqg—1d24
P, (Xg/d c 21—dQ1) inf P, (Xg/d c 22—%22)

21 €21-4Q,

vV

v

xoex b P (XE,€27Qa)  inf P (XE € Q)

24-2€272Qa—2 2a-1€271Qa—1

. U 1—d . U 2—d
> zOGIZIlf';QU P (Xét/d €2 Ql) ZleéglfdQlel (th/d €2 Qz)
x--x  inf P, (XU 2! ,) inf P, (XU c ) 4.26
= S R e Qa—1 I P e Qa (4.26)

Step 3. We estimate the lower bound of each term on the right hand side of (4.26)). In fact, they can be
estimated similarly. We claim that for each 1 < k < d,

U hed tl—‘,—l/oc
z€2k71111fko71 P, (X‘St/d €2 Qk) =3 (1 A |y (in) — x(ik)|1+a> ’ (4.27)

where the constant c3 > 0 is independent of ¢, z, y.
Fix z € 2k=D=4Q, ;. Let Q := Q(z,7/2% 1) and

Q= @ + (y(ik) _ x(ik))eik

= {w eR?: Jw® — 20 < !

. . i i 7 % r
gagy for i # g ™) — (20 4y — )] < m}
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Then, we have @ C 2F79Q;,_; and @ C 28=4Q;. Indeed, since z € 2-=D=4Q,_; and
2/(:7ko — 2/(:7ko71 + (y(lk) _ x(ik))eik7
we have, for any w € @ and i # i,

[ — 77| < [ =201+ |0 — 75| = — O] 4 2O — 7|

r T T
< Sd—(h-1) + 9d—(k—1) ~ 9d—k’
and for iy,
@)z = ) — (] < i) — (200 4y x(i’“))| + [2008) — ()]
= |w(ik) — (Z(ik) + yle) — (lk))| + |Z(Zk) “v) 1
r r o
< Sd—(o1) + 9d—(k—1) — 9d—k-
This shows that Q C 2¥=4Q,,. Since oy (2) A oy (w) > rgl/e for all w € Q by 7 and ‘ 24), it
follows from Lemma that there exists as € (0, 1) such that for all |z —w| < a4 5t/d 1 o,
pu(t/d, z,w) > cq (5t/d)~ Y. (4.28)
Let ¢5 be the constant in (4.17)), and choose a,d small enough such that
5 [e3
(e v 1)7 < <2d+2\[> . (4.29)

Let as := aq (5/d)"/*.
Case 1. |y(%) — 20)| < q5t'/*. In this case, by (4.29),

‘ ‘ s 1/ 1 atl/a r
i i 1/ 1/
|y( k) — Z'( k)| S a5t / = Qa4 <d> t / — 2 ’ 2d+2\/7 2d—k+2'

Hence, by the definitions of @ and @, we have B(z,a5t1/°‘) C 2_1Q - Q N Q; see Figure

Q

Q)

FIGURE 5. The case when |y(ik‘) — x(ik)| < astt/e
Consequently, by , we have
P, (th/d c 2k—ko) > P, (XzISJt/d € @) = /@pU(ét/d,z,w)dw
> / pu(6t/d, 2, w)dw > e (6t/d)~ Y |B(z, ast'/™)|
B(z,a tl/a)

= ¢4 (8/d) " ad|B(0,1)]
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5 7d/a p t].+1/0£
> ca (d> a5|B(0,1)] (1 A () — x(ik)|1+a) )
which is (4.27]).

Case 2. |y(x) — z8)| > ast'/*. Without loss of generality, we may and do assume that 3(*) > (%) In
this case, let

r i ik r i ik i r
A= {HERZ (W—|y(k)—$(k)|)\/(—m> <9—(z(’“)—|—y(")—x(’“))<W},

and, for any w € 271Q \ (2—1©), we have
150 (a1 A\ i i r . . i
271Q\ (2*1Q> = {w eRe: w® — 209 < Si—hF2 for i # ig; w(™*) € A}. (4.30)
See Figure [6]

FIGURE 6. The case when |y(*%) — z(%)| > q5t1/@

We are to apply 1' to estimate IP’Z(X(g/d € 2k=4Q}). Indeed, by 1) and 1] we have

cs0t 1 a \®  2U-k+da /g%
< < 70 P R S g — . .
P, (ry1g < 0t/d) < = Ry < (2“2\/&) t < o<1 (4.31)
This implies that
ot ot ot (1 —-279%)6t
Ez |:2d A\ 7—2_1@:| 2 ﬁpz <7—2_1Q\ > Zd) Z T (432)

Denote by ol , 5 the first hitting time of X U for the set 1Q:
05_1@ =inf{s >0: XY €27'Q}.
Since 2*1@) U (2*1@) C U, the above inequality together with (4.1)) yields that

(
P. (o0, < dt/d) > P <XEJ)AUQ €210\ (21@)) _p, (X(%)MN@ €210\ (21@))

2
d
i=1

(35)Am2-10

/H{d]l?’l@\m()(‘gl)’)(f)’ XU ) XD L ,X§d>)j(X§,i>,w<i>)dw<i>ds]
>E V()ATMA/H e (XD, X B XD ) XD L (@) () w(ik))dw(ik)dsl
o R 271Q\(271Q) e s T s ’ 1 hs s s )
For any i = 1,2,--- ,d and s < (%) ATy 15, We have |Xs(i) — 20| < iz For any |w(ir) — (2() 4 gylin) —
2())| < 575+, we have

|X§ik) _ w(ik)‘ < |X§ik) _ Z(ik)| + |w(ik) _ (Z(ik) + y(ik) _ x(ik))| + |y(ik) _ x(ik)|
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< T r
— 9d—k+2 + 9d—k+2

< at'/ |y(i’“) — 20| < (a/as + 1)yt — 2],

+ |y(ik) _ x(ik)|

Combining the above three formulas, and ( -7 we obtain

. [ (38)ATa-10 1 (XD XD 00 G L @Y LX) 8 ) (i) d
el z R 271Q\(271Q) s ) s ) ) s 9 ) s s )

0
> E, /(2) ? Q/ X)) dap0) g
0 {wlr)cA}
Ld /\7'2 14 C
>R, w ) Lo . ds
= /0 {w<‘k)€A} (a/a5 4 1)1+a|y(zk) _ x(lk)|1+oz

Cla
a/a5 + 1 1+a|y (i) — x(lk)|1+04

) € A}

(8o

IZAW Cra
=E.|{3g) "0 (a/as + 1)i+aly(n) — glin)[ita
T T i i T
X (2d7k+2 - (2d7k+2 — [yt —af k)|) v (_W» (by (4-30))

(1—272)6t Cia (i) _ piK) [@32)

-2 1/04
2 (1 2 )5t Cl’a‘ ' a5t1/a A at
2d (a/a5 + 1)1+0‘|y(7'k) — x(lk)|1+a Qd\/a
06t1+1/a

- |y(ik) — x(ik)|1+a'

Furthermore, by the strong Markov property, the above inequality and an inequality similar to (4.31) yield
that
P. (X§q € 2°79Qu) 2 P. (Xf]4 € Q)

P
P, ( hits 271 Q before time 8t/d and stays in Q for at least §¢/d units of tune)
P (o)

Y

Y

2 o515 < 0t/d; TQQ ol o 6t/d)
v

P, <a .5 < 0t/d; Ex [Tg > §t/dD

2-15

P, (oV - < 5t/d) inf P, (T@ > 6t/d)

we2~1Q

(7%
P, (O’ 5 < (5t/d> inf P, (TQ(w,T/Qd—k+2) > 5t/d)

we2-1Q
CthJrl/Oc

1 . . ..
> ) — Z@[iTa . (1 — 2a> (by an inequality similar to (4.31)),

which gives (4.27)).

Step 4. Note that {i1,i2, - ,iq} is a permutation of {1,2,--- ,d}. By choosing a,d small enough such
that all the conditions ([£.22)), ([4.24)), (4.29) are satisfied, it follows from (4.21]), ([#.26)) and (4.27) that

d/ay—d/ - pe
poltr) 2 et =97t (1 s
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d

t

_ d —d/a -1/«

= c2¢4(1 —9) /H<t /Ay(m_xmm)’
k=1

which together with (1.6)) finishes the proof. O
Remark 4.10. Suppose that ¢ > 0, a € R and U C R? is an open set. Let Qi := Q(z,c;t/) and
Q2 := Q(z + ae;, cltl/o‘) be two cubes with Q1 U Q2 C U, where 1 < i < d, ¢; > 0 is a small constant and e;

is the unit vector in the positive z(?)-direction. Then, by the same arguments that lead to (#.27)), we can in
fact prove the following more general inequality: there exists co > 0 independent of ¢, a, x such that

. U t1+1/a
bl PO @) 20 (10 )

Lemma 4.11. Let D C RY be a CY' open set with characteristics (R, ) satisfying condition for some
v € (0,1]. There exist constants ¢ = c(d,a, R,A,v) > 0 and t, = t.(d,a, R,A,y) > 0 such that for all

z,y € D, we have
Sp(x)*/? Sp(y)*/?
=) (1A te T, Y).
= = p(ts, @,y)

Proof. Let 6o,r¢ be the constants from Lemma [3.3] For any z € D, we can choose Q, € 9D such that
|z — Q.| = dp(2). Let Dg,(do,70) be the set from Lemma Define

pp(Bts, z,y) > ¢ (1 A

01 := 760 and 71y := T
LT oI A2 P VT EAT
Note that ro o T
< —/——== — < —.
T ovIrAz 2 2
For the above z, we use the following notation:
U,S = DQz (7"1, TO) \ DQz (507 TO)?
Uz = U B(’U,7(51),
ueU?
B B(z,01), z¢ Dqg,(0,m0) (ie. dp(z)> o),
., 2 € Dg.(80,70) (ie. dp(2) < dp).
Let Ci4, Ci5 be the constants from Lemma and define
2C5
ty = V1. 4.33
Ot (4.33)

By semigroup property, we have for any =,y € D,

pD(St*a €L, y) = / pD(t*7 €z, U)pD(t*, u, U)pD (t*a v, y)dUdU
DxD

> pD(t*7$7u)pD(t*7uav)pD(t*avay)dUdv
/meEy (4.34)

> ueEiT,I,qu;.EEpr(tMu’v) /EI pD(t*,amu)du/Ey pp(ts, v, y)dv
— 11y Is.
We estimate Iy, I5, I3 separately. For 1 <i <d and (u,v) € E; x Ey, if 1y — 2| < 3rg, then,
0] < i — 2| 4 fa) — 5|4 |y — O] < 3ro + 3r0 + 310 = I,

and

til/a/\# >t71/a/\t7* > (1/\W> (tl/a/\At*.).
* |u(z) _ ,U(z)‘1+oz = (9r0)1+a = (9T0)1+a * |x(z) _ y(z)|1+o¢
If |y — ()| > 3rq, then,
‘u(i) _ v(i)| < |u(i) _ x(i)| + |x(i) _ y(i)‘ + |y(i) _ v(i)| < 3ro + |x(i) _ y(i)| +3ry < 3‘35(1') _ y(i)|’
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and
“1/a t* 1/a t. 1 “1/a ty
* A |u() — (@) |1+a = (t* (3|z() — y(i)|)1+a> = Jlta \ 7F A |z — y(D1+a |~

Combining the above two cases, we obtain

et Vo, b
* A |u(l) — 1;(1)‘1-&-@ = (t* A |x(i) _ y(i)|1+a> (4.35)

for some ¢; = ¢1(d, o, R, A) > 0. Since for all (u,v) € E, x Ey,

(u) A pg, (v) do — 01 ay ,—1/a
TASEAPY > 8 = (8, eV 4.36
T S yirar 2o @en) (4.36)

the above inequality 1) together with Lemma (with aq = 51t1/ %) yields that, there exists ¢, =
ca(d, o, R, A, v) > 0 such that

Sp(u) A dp(v) > P

L= inf . > inf o,
! uGElnveEy pD(t ,U,U) = uEElzr,lveEy p(t v U)
1 71/04 [
> cCl H( )—v(l)|1+a>
>

d -1 -1/« T
e T (- Awwﬂwnw>
1=1

> cleaCT%p(t, ).

We next estimate the lower bound of I. The estimate for I3 is similar so it will be omitted. If dp(z) > dg,
then E, = B(z,061) and, dp(x) Adp(u) > 61 = (51751/0‘) S for u € B, by lb Hence, by Lemma

with a1 = 51153/&, we obtain

12:/ pD(t*7$7u)dUZ/ pD(t*7:E,u)du
Em

B(x,&l)

03/ p(ts, x,u)du = 03/ p(ts,0,u)du
B(xz,01) B(0,61)

5D( )a/2
c p(ts,0,u)du (1 ,
’ /B(O,él) Vi

where fB(O 5 )p(t*, 0,u)du is a positive constant independent of x and D.
Recall that O’UD = 1nf{t > 0: XP € UY} is the first entry time of X for the set UL. If dp(z) < &, then
E,=U,= = Uyero

Y

Y

01), and by Markov property, we have

B(u,
/ (e, x,u) u:IP’x(XtE:EUI)
> P,

(X D hits U, 9 before time t, and stays in U, for at least ¢, units of tlme)

— 5, |of} <tuPxp, (18 > 1.)| 2 it P (8 > 1) u(ofy <),

50 z€eU)2
z

Similar to (4.36)), we have for z € U?,
0
(5[)(2) > pQw(z) > 0
VI+AZ T V1+A2
and hence B := B(z,6;) C U, C D. By Lemma with t = t,, r = 01 and a1 = ti/a/él, there exists
as = as(d, o, R, A) > 0 and ¢4 = c4(d, @, R, A) > 0 such that B(z, agti/a) C B and pg(t«, z,v) > C4t*_d/a for
UNS B(z,agti/a). Hence,
P, (0 >t.) =P, (v, > t.) = / pu, (ts, z,v)dv

x

= 264,
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Y

/p3(t*,z7’0)d1}2/ pB(t*7Z,U)d’U
B

B(za2t2/)
C4t;d/°‘|B(z, agti/a)| =gty Y agtff/oﬂB(O7 1)
c4ad|B(0,1)| > 0.
On the other hand, by the definition (4.33) of ¢, (3.19) and (3.20)), we obtain
D D D 0
P, (U’Ug < t*) > P, <TDQ1(501T0) <1, XD . € Um>

€ U;g) ~P, (X

\

P, (X € U2\ D0, sy > t*)
xr

"PQu(50.70) "DQ4(50.m0)

0
(XTDQw(ao,rm € UZ) — Py (TDQx(éomcﬁ = t*)

E.[
> P, (XTDQE((;O,W) € DQw(Tlﬂ“o)) -

TDQm(éovTo)]
Ci50p(x)*/2 [C14C Sp(x)*/?

t
(See [T, p. 36] for details.) Combining the above four inequalities, we obtain
5D (m)a /2
Vie )’
Finally, combining the estimates of Iy, I, I3 and (4.34)), we finish the proof. O

>P

.[2>C5(]./\

Note that the constant ¢, from Lemma is greater than or equal to 1.

Lemma 4.12. Let D C RY be a CY' open set with characteristics (R, A) satisfying condition for some
~v € (0,1]. There is a constant ¢ = ¢(d, ¢, R, A,v) > 0 such that for allt € (0,3t,], z,y € D,

pp(t,z,y) > ¢ (1 A W} (1 A (W\/;/Q) p(t, @, y).

1/«
A= <31€*) > 1.

Note that AD = {\z : z € D} is also a C1'! open set with the same characteristics of D and satisfies condition

Then, by the scaling property (2.6), (2.5)), (1.6) and Lemma for AD, we obtain for all z,y € D
PD (t7 Zz, y) = Adp)\D ()‘at7 AZ‘, Ay) = Adp)\D (3t*a )"ra Ay)

Proof. For t € (0, 3t.], let

> e\ <1 A W) <1 A W) D(ts, Az, Ay)
=c <1 A W) (1 A W) Np(37IN, Az, My)
=c (1 A W) (1 A W) p(37 ', x,y)
¢ Sp(x)e/? 5 /2
= 5acz (M D(\/)E > <1A D(\z%) p(t, @,y).

We need the following lemma to estimate Dirichlet heat kernel pp (¢, z,y) for large time.

Lemma 4.13. Suppose that U C R? is a bounded open set and let x > diam(U). Then, there are two
positive constants ¢; = ¢;(d, a, k),i = 1,2 such that

pu(t,r,y) <cre 2, t>1, 2,y cU.
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Proof. Since {|z| >k} D {z = (2W),--- ,2(D): 2| > g v 1}, by (L.5), for every = € U, we have

P.(ry <1) > P, (X; € R4\ U) :/ p(1,x,2)dz > / (1,0, 2)dz
RIA\U |z| >k

> [ ode= [ 0,008 i eyfan).
[z >kV1

[z | >kV1
Then,
sup/ pu(lyz,y)dy = supPy(ty > 1) < (1 —¢3) =1cg < 1.
zeU JU zeU

For t € (0,1] and « € U, we have [, py(t,z,2)dz < [, p(t,z,2)dz <1 < ee”". When t € (n,n + 1] for some
integer n > 1, we set xg = x and then obtain by semigroup property,

n
/ pu(t,z,z)dz = / H pu (1, xp—1,zk)pu(t — n, xy, 2)dxy - - - depdz
v Untt =

= / pU(t — N, Tn, Z)dZ pU(la Tn—1, J}n)dl‘n o 'pU(17 Zo, .T])d.’El S CZ S Cllcfy
Un+1
Combining the above two inequalities, we have for all (¢,z) € (0,00) x U,
/ pu(t,z,y)dy < (eVeph)e ",
U

where ¢y := ln(c;1 Ae). Note that by (1.6)), pu (1, z,v) < p(1,2,y) < Cy for all z,y € U. Thus, for all t > 1
and z,y € U we have

pU(t,$,y) = / pU(t - 1,:c,Z)pU(1,z,y)dz S Cl/ pU(t - l,x,z)dz S 01(6 \ ch)ech(tfl).
U U

This proves the lemma with ¢; := Ci(e V czl)e"‘?. O

4.3. Proof of Theorem [L.51

Proof of Theorem[1.5 (i) By Lemmas and we obtain ([1.12) and (1.13) for all ¢t € (0,1]. By the
semigroup property and ([1.12)) for ¢ € (1/2,1], we have for x,y € D,

pD(Qtaxay): /pD(ta‘T,Z)pD(tazay)dz
D

cl/D (1/\513(3);/2) p(t, 2, 2) (m‘SD(\Zg/z) (m‘sD(\fo/z) p(t, 2 1) (M(W\/);/Q> i

o (1 A ‘SD(“”\/);/Z> (1 A ‘W) /R p(t, 2, 2)plt, 2, y)d=
2c1 (1 A W) (1 A W) p(2t, z,y).

IN

IN

IN

V2t V2t
This shows that (1.12) holds for ¢ € (1,2]. For general T' > 0, one can repeat the above arguments for

(1,
[log, T'] times to prove (1.12)) for ¢ € (0,7]. Here for a € R, the notation [a] stands for the smallest integer
greater than or equal to a.

(ii) We next estimate the lower bound of pp(2t,z,y). Note that D is a C1'! open set with characteristics
(R,A). Fixx € D and t € (1/2,1], and let @ € D be such that ép(z) = |z — Q|. Define

- Q+ﬁ@*@)a if op(z) <

Z, if 6D<37) >

and, let r := R/8. We have B := B(xq,r) C Bz, R/4) C D and ép(z) > r for all z € B. By semigroup
property of pp(2t,x,y) and (1.13)) for ¢ € (1/2, 1], we have

pD(Qtvxay): /pD(tax,Z)pD(tazvy)dZ
D

)

L e

)
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> cpr® (1 A W) <1 A ‘W\/);/z) /B p(t, 2, 2)p(t, 2, y)dz. (4.37)

Note that © € B(xo, R/4) and | — 2| < R/4+ R/8 = 3R/8 for all z € B = B(zo,r). We have, by (1.6]), for
te(1/2,1],

d
-1 -1 t 1 1/2 -1
On the other hand, for 1 <i < d, if |2 — y(| < R/2, then

120 — @) < |20 — 2] 4120 — | <3R/8 + R/2 < R,

and
1 t a1 2t (2t)1+1/ 1
PE A yoee 2 @07 A gpm = <1A231+a (2)7%
1 _1 2t
= 2((2“ " AW)

If |2 — 4| > R/2, then
|20 — O < |20 — 2] 4120 — 4| < 3R/8 + |2 — yD| < 2J2 — y@),

and

4 2t

FrA e o opre 2 > (21)7= N @ — it
2t

> (2t)7= A 2(2)2() — y@])i+a

> L (enaa_— 2
= 92+a (2) |2 — y@)[i+a )
Combining the above two cases, we always have

_1 t _ 2t

t o /\ 4|z( ) y(l ‘1—‘,—04 - ((Qt) |ZI:(,L) _ y(i)1+a> Y

for some constant c¢g > 0 independent of ¢, z,y. Hence, by (1.6, we have

d d
—1 1 3 d—1 1 2t d—2
ptzy) >t ] (t A |z(l)—y(l)|1+a) > 0 lj[l ((Qt) A W”‘W‘) > 50 p(2t, 2, y).

i=1

Combining this, and ( -, we have

Sp(x)*/? ( §D(y)a/2) / 1 A2
1A Cy - c5CT " p(2t,x,y)dz
Vit Vit B ' sCnl )

pp(2t,x,y) > cor® (1/\

a/2 a/2
> cpcdreCy (1 A 5D(\:2 ) <1 A 5D(3%> |B| p(2t,x,y)
a/2 a/2
> cpcdrdteC3 (1A 5D> (1 A %) |B(0,1)| p(2t, z,y).

Therefore, we have proved (L.13) for ¢ € (1,2]. Similarly, one can repeat the above arguments for [log, T']
times to prove (1.13)) for ¢ € (0, 7).

(iii) Now, assume in addition that D is a bounded C! open set and satisfies for some v € (0,1].
Recall that £P is the infinitesimal generator of the semigroup {P,t > 0} on L?(D,dz). Since for each
t > 0, the heat kernel pp(t,x,y) is bounded on D x D, it follows from Jentzsch’s Theorem (|25, Theorem
V.6.6, p. 337]) that the value —\;(D) = sup(c(LP)) is an eigenvalue of multiplicity 1 for £P and that the
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eigenfunction ¢p associated with A;(D) can be chosen to be strictly positive with [|¢p||z2(py = 1. In the
rest of the proof, we write A;(D) as Ay for simplicity.

Step 1. We first prove the second inequality in (1.14)). Since ¢p is the eigenfunction of £ associated
with A1, we have for all t > 0 and x € D,

o(a) =M PPop(a) =M [ poltz,)onw)dy. (439)
D
Setting t = 1/4 in (4.39)), by (L.12) with T'= 1, (1.6) and Hélder inequality, we have for all x € D,

bp(x) < caet ™ (1A 26p(2)*7) /D p(1/4, 2. 9)ép (y)dy

< 2646“1(1A5D(w)°‘/2)\// p(1/4,2,y)?dy - [¢pllL2(D)
D

< 2c4e3M (1 A 6p(2)*2)\/p(1/2, 2, 2)

< 204V/24/0CreiN (1 A Sp(2)*/?) =1 c5ei™ (1 A Sp(x)*/?), (4.40)
where ¢; = ¢;(d,a, R, A,7y) > 0, i = 4,5.

On the other hand, set x := diam(D) to be the diameter of D for simplicity. Setting ¢ = 1 in (4.39)), by
(1.13) with T'=1 and (L.6)), we have for all z € D,

op(x) > e (1A dp(x)™/?)eM /D(l ASp(y)*?)p(1, 2, y)dp(y)dy

> 07t (1A (1AGp @) ) [ (1A 8o () )8 )y
D

=:¢g(1 A dp(x)*/?)eM /D(1 ASp () op (y)dy,

where ¢g = ¢g(d, o, R, A, v, k) > 0. Combining this and (4.40)), we have for z € D,
op(a) 2 (1A 5p() ) [ le N )y
D
> 0605716%’\1(1 A 6D(x)a/2)/ (6p(y))*dy > cecgle%’\l(l A 5D(x)°‘/2). (4.41)

D
Combining (4.40) and (4.41]), we have for z € D,
cocs e (1A Sp(2)*?) < ¢p(x) < csei™ (1A Sp(2)*/?),
which implies that
A1 < 21In(c2/cg) < oo. (4.42)
This is exactly the second inequality in ([1.14)).
Step 2. We next show (1.15)). In view of (4.40)), (4.41) and (4.42)), we have for z € D,
7 "1 A 6p(2)*?) < ¢p(x) < er(1Adp(x)*7?), (4.43)
where ¢7 = c7(d, a, R, A, v, k) > 1.
Now, multiplying (4.39) by ¢p(z) and integrating it over D with respect to dz, we have for t > 0,

1= A(¢D(x)>2d$:€>\1t/DXD¢D($>pD(t,$,y)¢D(y)dxdy,

which implies that

/ ¢D(x)pp(t,x,y)¢p(y)dxdy =e M
DxD
Combining this and (4.43]), we have for ¢ > 0,

crlem Mt < /D D(l ASp (@) )pp(t, x,y) (1 A dp(y)*/?)dedy < cZe M, (4.44)
X
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For any T > 0, set tg = (T A 1)/4. Note that, by (1.12) and (1.13)(with T = 1), there is a constant
cs = cg(d,a, R, A,v) > 1 such that for (u,v) € D x D,

pp(to, u,v) < Cgtad/a71(1 ASp(u)®/?)(1 A dp(v)*/?), (4.45)
d
pp(to,u,v) > cg' (tgl/“ A (tomlw)) (1A 8p(w)/2)(1 A 8p(v)*/?). (4.46)
Combining (4.45)), the semigroup property of pp and (4.44]), we have for all (¢,2,y) € (T,o0) x D x D,

pD(ta z, y) = / pD(th z, u)pD(t - 2t07 Uu, ’U)pD(th v, y)dUdv
DxD

< Bty 225 () 265 p () / (LA S6p(w)*®)pp(t — 2t, u, v)(1 A dp(v)*/?)dudv
DxD
< c?cgtaﬁ/aﬁe_(t_%”))‘l(SD(x)a/Q(SD (y)o‘/Q. (4.47)

Similarly, by (4.46)), the semigroup property of pp and (4.44]), we have for all (¢,z,y) € (T,00) X D x D,
pD<t7 x, y) = / pD(t07 x, U)pD(t - 2t03 u, U)pD(th v, y)dUdU
DxD

2d
cs” (tal/a A (toff(”a))) (5 V1)~ (2)*/26p (y)*/?

\%

. / (1A 6p (W) pp(t — 2o, u, v)(1 A 6p(v)*/?)dudv
DxD

2d
52 (tgl/ A (o~ )) (5 V 1)~ %=t 5 (1)0/26 1 ()e/2 (4.48)

v

Combining (4.42)), (4.47) and (4.48)), we obtain ([1.15)).

Step 3. For the first inequality in (1.14)), by Lemma there exist ¢; = ¢;(d,a, k) > 0, i = 9,10 such
that

pp(t.z,y) < cge™ ' >0, z,y € D.
This together with the first inequality in (4.44]) yields that for all ¢ > 1,

el Mt < / (1A 6p(@)YH)pp(t,2,y)(1 A dp(y)*/?)dzdy
DxD
< 096761“/ (IA 5D(1:)O‘/2)(1 A 5D(y)°‘/2)dxdy < 0967‘:1°t|D|2.
DxD

Rewriting the above inequality, we have for all t > 1, e(c10=A)t < c2cg|DJ? < oo. Since this inequality holds
for all t > 1, we obtain that A; > c¢19, which is exactly the first inequality in (1.14)). O

5. IRREDUCIBILITY

Let D C R? be a non-empty open set. In this section, we study the irreducibility of the subprocess X P
and prove Theorem and Corollary Before that, we need some auxiliary results on the positivity of
pp(t,z,y). For z € D, define

U, := {w € D : there exist finitely many points {z;}Y, C D with 2o = z and 2 = w so that

each pair (z;_1,2;), 1 <4 < N, has only one different coordinate}. (5.1)
Note that U, D B(z,r) for any r > 0 such that B(z,r) C D.
Lemma 5.1. For each z € D, U, is both open and closed in D.

Proof. For any w € U,, there is r > 0 so that B(w,r) C D and so B(w,r) C U, by the definition of U,.
This shows that U, is an open subset of D. If U, = D, then U, is clearly closed in D. Suppose now U, # D.
Then for any w € D\ U,, there is some r > 0 so that B(w,r) C D. Note that B(w,r)NU, = 0, as otherwise
there would be some w; € B(w,r) N U, which would imply that w € U,. Hence U, is a closed subset of
D. O
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Theorem 5.2. Suppose that xy and yo are two distinct points in D so that yo € Uy,. Then pp(t, zo,y0) > 0
for every t > 0.

Proof. Fix an arbitrary ¢t > 0. Set ¢; = t~Y/*(6p(z0) Adp(yo)) > 0. According to Lemma there is some
constant ¢y > 0 so that pp(t,zo,y0) > 0 whenever |z — yo| < cot’/®. Suppose that |zg — yo| > cot'/*. We

have by (.19,

pp(t, o, y0) = inf  pp(t/2,2,50)Paz, (th;z € B(yo,C?,tl/a)) ; (5.2)
z€B(yo,cat!/*)

where c3 € (0, (c1 A ¢2)/2) is to be chosen sufficiently small later. Note that for z € B(yo, c3t'/®),
5p(2) Adp(yo) > (c1 — c3)tV/@ > %tl/a.
By Lemma there exists ¢4 > 0 and ¢5 > 0 depending on d, a and c¢; such that
po(t)2,2,50) > st~

for every z with |2 — yo| < cat’/®. Taking c3 € (0, (c1 A c2)/2) small enough so that c3 < c4, we get by (5.2)
that

pD(t,wo, yo) Z C5t_d/an0 (XtD/Q S B(y()7 Cgtl/a)) . (53)

We next show that P, (Xg2 € B(yo, 03151/”‘)) > 0. Let {x;}¥, be a finite sequence of points in D in the
definition for yy € Uy,. Define
L 1 . . . 1/
ri= i min {1221]\]{%_1 — x|}, OglgnN{(SD(zz)}, cst } ,
and
Q; = Q(z;,r) for0<i<N.

For each 0 <i < N, Q; C D and 0p(z) > cst!/ for all z € Q;. Note also that Qn C B(y0703t1/°‘).
For A > 0 and a cube Q := Q(z,7), we use the notation AQ to denote the cube Q(z, A7), that is
AQ(z,7) = Q(z, AT). It follows from the similar arguments that lead to (4.26]) that

P,, (ng c B(yo,03t1/a))

i D 1-N ; D 2-N
= Zoeglf]‘on on <Xt/(2N) €2 Ql) z1€211n_fNQ1 PZl <Xt/(2N) <2 QQ)

xooox il Py (XDowy €27'Quor) i Pay, (XDem €Qn). (5.4)

ZN-2€272QN -2 ZN-1€271QN_1

The reader can find the details of the derivation in the arXiv version of this paper [, Eq. (5.4) on p. 42].

We next estimate the lower bound of the right hand side of the above inequality. Let 1 < k < N. Note
that the centers x;_1 and xj of Qr_1 and Qj differ by only one coordinate. Thus there exists some 1 < i < d
and ay # 0 so that Qp = Qr_1 + are;, . Hence, by Remark (with ¢; = rt_l/"‘)7 we have

D b N 141/
inf ]P’Z<X € ok- )> IA——)>o,
262"‘*11{11\7@1971 t/(2N) Qk = < |ak|1+a>

where the constant ¢g > 0 that may depend on ¢. This together with (5.3))-(5.4) yields that pp(t, zo,y0) > 0
when |zg — yo| > cot’/®. Combining the above two cases, we see that pp(t, g, o) > 0 for any ¢ > 0. O

We next establish a converse of Theorem [5.2]

Theorem 5.3. Suppose that zo € D and yo € D \ Uy,. Then pp(t,z,y) = 0 on (0,00) X Uy, x Uy,. In
particular, pp(t,xzo,y0) =0 for all t > 0.

Proof. Suppose xo € D and yo € D \ Ug,. Then U, NU,, =0 and

z+ae; ¢ D\U,, foreverya€R, z€ U, and 1 <i<d. (5.5)
Since Uy, is both open and closed by Lemma we have for every x € Uy, with 7 := TU,,

X,— €Uy and X, € D\U,, P.-a.s. on {7 < 7p}.
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By the strong Markov property of X, ([4.1)) and (5.5]), we have for every ¢t > 0 and x € U,, and y € Uy,

po(t,z,y) =K, [pp(t— 7, X2 y);m <t] =0. (5.6)
O

Proof of Theorem[I.3 (i) (Sufficient condition) Suppose that the property (1.11]) holds. We have by Theorem
that pp(t,z,y) > 0 for every t > 0 and x,y € D. This in particular implies that X? is irreducible as for
any non-empty open subset U C D, P,(XP € U) = fU pp(t,z,y)dy > 0 for every t > 0 and = € D.

(i) (Necessary condition) Suppose that X P is irreducible in D. Recall that for = € D, U, is the set
defined by (5.1]). Were there two distinct z,y € D so that U, N U, = (), we would have by Theorem

pp(t,x,2) =0 forallt >0 and z € U,.

TD o0
Em/ 1y, (Xs)ds :/ / pp(t,x, z)dzdt = 0.
0 ) 0 U,

Since X7P is irreducible, we have, by Lemma that P,(oy, < 7p) > 0. Since U, is a non-empty open
subset of D, P,-a.s. on {oy, < 7p}, XP spends positive Lebesgue amount of the time in U, in view of
the right continuity of the sample paths of X. Thus E, fOTD 1y, (Xs)ds > 0. This contradiction proves that
U, NU, # 0 for every x # y in D. In other words, U, = D for every z € D. Thus the property holds.
This completes the proof of the theorem. O

Consequently,

Proof of Corollary[I4} (i) This follows directly from Theoremand the connectedness of Dy as pp (¢, z,y)
> pp, (t,z,y) > 0 for (t,z,y) € (0,00) x Dy x Dy.

(ii) If there are some xy € Dy and yo € D so that yy € Uy, (which is equivalent to zg € Uy, ), then, since
Dy and Ds are connected, U, D Dy U Dy for every z € D1 U Ds. In this case, we have by Theorem that
p(t,z,y) > 0 for any (¢,z,y) X Dy x Dy. Otherwise, U, NU, = 0 for any x € D; and y € D,. We then have
by Theorem [5.3| that pp(t,z,y) = 0 for every (t,z,y) € (0,00) x Dy x Ds. O

6. EXAMPLES

In this section, we present three more examples and present a proof for Theorem [1.6] The first two show
that the lower bound estimate (1.13)) in Theorem ii) may fail for some smooth bounded connected open
sets that do not satisfy conditi for any v € (0,1]. The third presents a bounded C*! open set that
does not satisfy the irreducibility condition but for which we can derive two-sided sharp estimates for
its Dirichlet heat kernel. Recall that

j(a’b) =

where Cy o is the positive constant in (1.2)).

Ci,a
m fOra#bER’

Example 6.1. Let U; CR?, i =1,2,---,5 be sets and =,y € R? be two points as shown in Figure [7] Set
U= J UicR’,
1<i<5

which is a bounded connected smooth open set in R? that does not satisfy condition for any v € (0,1]
as swapping any coordinate of z = (0,0) by that of y = (4,4) results a point falling outside D.

Claim: The lower bound estimate (1.13) in Theorem [L.5{ii) fails for this open set U.

Proof of the Claim. Fix x = (0,0) and y = (4,4). Since |2 — 4| =4 > 0 for i = 1,2, if the inequality
(1.13) in Theorem (ii) does hold for the set U shown in Figure [7] then there exists ¢; > 0 such that

pu(t,z,y) > crt? for ¢ € (0,1]. (6.1)
We will show that there exists ¢o > 0 such that
pu(t,z,y) < cot® fort € (0,1], (6.2)

which will contradict (6.1)) and finish our claim.
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T Y= (47 4)

x = (0,0)

FIGURE 7. The set U C R?
Indeed, since (Us UUs) N U, = (), we have by (4.1)),

TUy 2 ) .
P, (XTU1 eUsU U5) =E,; [/ Z/ 1U3UU5([XS]29)j(X§Z)ae)deds
0 i=1 R4

Note that by the definitions of Us, Us and Uy, we have that for any z € Us, y € Us and w € Uy,

2)

20 <w® <y® and 2@ > @ y3 >3,

Hence, since X, € U; for s < 7y,, it is not possible that [X;]§ € Us U Us for any 6 € R. This together with
the above identity implies that
P, (XTU1 e Us U U5) =0. (6.3)
By the above identity and the strong Markov property, we obtain, for almost every w € U,
pu(t,z,w) =E, [pU(t - TUl,X,,[_]Ul,w);TUl < t}
=E, [pU(t - 7'(]1,)(7[]1 s w); T, < t,XTUl e Uy U U4] .
By the positions of Us, Uy and y, for any z € Uy U Uy, we have |z(i) — y(i)| > 3,4 =1,2, and, then by 1'
2
pu(t — TUI,Xml yY) - ]l{ml <t,Xr;, €U2UUL} < Ch H X
i=1

(6.4)

t— 7’U1
)@ — @[ (70 <t Xy, €U0

TU,

Ot
= 32(T+a) ~ tTor <t}

Combining (6.4)), the continuity of pyy and dominated convergence theorem, we obtain for any t € (0, 1],

2
t— TU Cth
pU(t7f,C,y) S CI]E:I: H (XTU )(’L) — ;(i)|1+o¢;TU1 < t7X7'U1 S U2 U U4 S mpz (TUl < t) .
i=1 1
Furthermore, by (4.16) with » = 1, we have

]P)I (TUl < t) S Px (TB(I,l) < t) S Cgt.

Combining the above two inequalities, we get (6.2)) with ¢g := 32?(317% O

In the above example, the domain U is connected but not convex. The ideas used in the above example
can be refined to show that the lower bound estimate (|1.13)) for the Dirichlet heat kernel may still fail for
some smooth bounded convex domains.
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Example 6.2. Let D be the tilted rectangle with rounded corners shown in Figure 8| The points z,y have

the coordinates (—4, —4) and (4, 4) respectively. The connected open set D C R? that does not satisfy (H,)
for any v € (0,1) as swapping any coordinate of & by that of y results a point falling outside D.

* y:(474)

r=(—4,-4)

FIGURE 8. The convex set D C R? that does not satisfies condition (H,) for any v € (0,1)

The similar arguments in Example show that the lower bound estimate (|1.13)) in Theorem ii) fails
for this convex open set D. We skip the details here. The reader can find details in the arXiv version of this
paper at [7, Example 6.2 on p. 45-47].

The following is an example of a bounded smooth open set D C R? that does not satisfy the irreducibility
condition (|1.11)) but for which we can derive two-sided sharp estimates for the Dirichlet heat kernel in D.

Example 6.3. Let r > 0 and D be the union of two disjoint balls sitting in diagonal quadrants:
D .= B(Ol, 7‘) @] B(OQ, T‘), (65)
(see Figure E[) where the two points Oy, 0, € R? satisfy

Ogi)<—r and Og)>r for 1 <¢<d.

FIGURE 9. The set D := B(Oy,7) U B(Og,r) with r = 1 on R?

The open set D clearly does not satisfy the condition (1.11)) as for any x € O; and y € O2, swapping
any coordinate of = by that of y results a point falling outside D. So X is not irreducible. It follows from
Corollary that the following holds with By := B(O1,r) and By := B(Oa,7).

(i) pp(t,x,y) =0 for all t > 0 and z,y that are not in the same connected component of D.
(ii) For i = 1,2, pp(t,x,y) = pp,(t,z,y) for all t > 0 and =,y € B;, and pp, (¢, z,y) has the two-sided
estimates given by Theorem [I.5] with B; in place of D there.
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The above example clearly can be extended to more general open sets D that is the union of two disjoint
C'-smooth connected open subsets that at most one of them has non-empty intersection with any line that
is parallel to the coordinate axes.

We conclude this paper by presenting the proof of Theorem using the techniques from Section [4]

Proof of Theorem[I1.6f Fix T > 0. Note that pp(t,z,y) is symmetric. For any z,y € D, if y does not belong
to Ay U Ay, then z,y belong to the case in (i).

(i). For any z € A;, y € A; with |i — j| < 2, we have that z,y belong to some C'! open subset U of D
and U satisfies the condition In this case, we also have

op(x) = du(z), dp(y) =du(y)- (6.6)

For example, for x € A; and y € A3, we can set U = A; U Ay U A3. For x € Ay and y € As, we can set
U=A4AUA3U Ay4.

The upper bound of pp(t,z,y) in (1.16) follows directly from Theorem (i) since D is a C™! open set.
For the lower bound of pp(t,z,y) in (1.16)), note that U C D is a C1'! open set satisfying the condition

(Hq)l By Theorem (ii) and (6.6)), we have

T a/2 a/2
pD(t,.Z',y) Z pU(tv'Tay) 2 C1 (1 A 5U(\/)£> (1 A 6[](\31/)%) p(t,x,y)

= (1 A <b(af\/3;‘/2) (1 A (w\/);/z) p(t,z,y).

(ii). Fix z = (21, 2?)) € A; and y = (yV,y?) € A,. Similar to (6.3)), one can apply (4.1) to prove that
P, (XTAl € Az U A4) =0.

Hence, by ({1.6)), the function pp(t —7a,, X+, y)]l{TA1<t} is uniformly bounded in y € A4, and then, by the
strong Markov property of X, the continuity of pp and dominated convergence theorem, we have

pD(t, €T, y) =E, [pD(t — TAp XTAl ’ y); TA; < t] =E,; [pD(t — TAy, XTAl ) y); TA, <1, XTAI € AQ] :
Furthermore, by (4.1) again, we have for ¢ > 0,
po(t,z,y) = Ea [pp(t — 7a,, Xoa ,9);7a, <t,Xr,, € Ag]

t 2
=E, [/0 ]]-{S<TA1} ’ (Z /]R ]l{[XS]};GAg} 'pD(t -5, [Xs}zt% y)j(X§1)7 9)d9) d8‘|
i=1

t
= [ [ patsw (/ Ly -0 lt — 5, [ulb )7 (u, e)de) duds. 6.7)
0 Aq
Note that

e for any u = (uM,u?) € A; and 0 € R with [u]} € Ay, we have
lu® — 9] > 1, |y(1) —6|>1 and \u(Z) — y(z)\ >1;
e by (1.16), for any [u]} € A and 0 < s < t, we have

5p(y)™/? _1 t—s 1 t—s
1 D o - — o -
po(t = s [ulsy) < C1C (1/\ Ji—s (t—s5)7% A 0 — y(D]ite (t—s)"= A [u@ — y@[i+a

5D()°‘/2)2
<CiCs (1A t
- 16( Vi—s

Combining the above two inequalities with (6.7) and Theorem (i), we obtain, for all ¢ € (0,7,
Oé1)+1 5 ( )a/Q
| (1A= t2dud
CQ//ApA18$U</(;§1)_1 )( m) uas

262t2/0 (/Al p(sw,u)du) (1/\ ‘W) (1/\ %) ds

IN

pD(ta xz, y)

IN
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< 2¢yt? </Ot/2+/t:2> (1 A 5D(\2a/2> (1 A 5%2) ds

a/2 a/2
= st (1/\5D(z) ) (1/\6D(y) )
Vi e
which is exactly the upper bound in ([1.17]).

We apply to establish the lower bound of pp(t,z,y). Fix t € (0,T]. Let 6 < (16T7Y/*)~1 and
Q. € 0D be such that dp(z) = |z — Q4|. Set
Qo+ 255w = Qu),  if Ip () < 2061/,
o = ®
0 T, if p(x) > 26t/
Define E, = B(xo,6t'/*). Note that E, C A; C D. Observe that
e for any s € (0,t) and u € E,, we have dp(u) > 6t'/® and so by Theorem (i),

pa, (s, z,u)

5, (z)/2 b4, (w)/? s 1 s
C4 (1 A NG NG |x(1) oy [ita s = A 2@ — 4@ [1+a
A\

o (10 22) (“5&/2)( E <36t1/a>1+a>2— (10225 st

o for any u € E; and 0 € [Oél) - %7051) + 1], we have [u]j € Ao, [u) — 0] < 3 and 6p([u]}) > cot'/“.
Furthermore, by (1.16)), we have for any s € (0, %],

po(t = s, [ulg,y)
cs (1 A (5;;(74\/)"‘”) 2.
t

Combining the above two inequalities with (6.7]), we have for any ¢ € (0, T,

t/2
1 oNa0 (1
p(t,z,y) > /0 /ET pa, (s, z,u) (/R l{ee[ogl)fé,oglﬂé]} -pp(t — s, [u)g, y)j(ul ),9)d9> duds

t/2 a2 ofV+1 )2
09/ / <1 A 5[’(:5)) s2t—272/a / c (1 A op(y) > t2 D L o d0 | duds
o JE, Vit o — Vi @ — g

1
2

crot 2/ (1 A (WX/);/Z) (1 A m) B, |/

= ct? (1 A 6D(\/%a/2> (1 N 6D(\/)Za/2) |

which is the lower bound in
On the other hand, for z = (z(M,2)) € A; and y = (y(V),4?)) € A4, we have

1<|z® —y® | <3434+2=8 fork=1,2

Y

Y

Y

Y

v

Y

Hence by (1.6]),

2

e t .
p(t x ’y) i H (t 1/ N |Jj(k)_y(k)|1+a> /\1\/4 t2 for any te (O,T],
k=1

where c13 and ¢4 are positive constants that depend only on v and T. So we get (|1.18)) from ((1.17)). This
completes the proof of the theorem. O
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