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Abstract
Considering soil as a porous medium, the biological mechanism and dynamic behavior of myxobac-

teria and slime affected by favorable environments in the soil cannot be well characterized by the
classical Keller-Segel-Navier-Stokes equations. In this work, we employ the continuous time ran-
dom walk (CTRW) approach to characterize the diffusion behavior of myxobacteria and slime in
porous media at the microscale, and develop a new macroscopic model named as the time-fractional
Keller-Segel system. Then it is coupled with the incompressible Navier-Stokes equations through
transport and buoyancy, resulting in the TF-KSNS system, which appropriately describes the chemo-
tactic diffusion of myxobacteria and slime in the soil. In addition, we demonstrate that the TF-KSNS
system associated with initial and no-flux/no-flux/Dirichlet boundary conditions over a smoothly
bounded domain in Rd (d ≥ 2) admits a local well-posed mild solution, which continuously depends
on the initial data. Moreover, the blow-up of the mild solution is rigorously investigated.

Keywords: chemotactic diffusion, Keller-Segel system, Navier-Stokes equations, CTRW, mild solu-
tion, blow-up
AMS subject classifications: 35Q92, 35Q35, 35R11, 35A01, 35A02, 35B44

1 Introduction

In this paper, we consider to discuss the mathematical modeling, local well-posedness analysis, and blow-
up of the solution to the following time-fractional fully parabolic Keller-Segel (K-S) system coupled with
the incompressible Navier-Stokes (N-S) equations (abbreviated to TF-KSNS)

∂αt n+ (u · ∇)n = ∆n−∇ · (nχ(c)∇c) , x ∈ Ω, 0 < t ≤ T, (1a)

∂αt c+ (u · ∇)c = ∆c− γc+ n, x ∈ Ω, 0 < t ≤ T, (1b)

∂tu + (u · ∇)u = ∆u−∇P + n∇Φ, ∇ · u = 0, x ∈ Ω, 0 < t ≤ T, (1c)

in a given convex, bounded and simply connected domain Ω ⊆ Rd (d ≥ 2) with smooth boundary,
supplemented with no-flux boundary conditions for n and c, a no-slip boundary condition for u,

∂n

∂ν
=
∂c

∂ν
= 0, and u = 0, x ∈ ∂Ω, 0 < t ≤ T, (2)
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and the initial values

n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ Ω, (3)

where the unknown functions n = n(x, t), c = c(x, t), u = [u1(x, t), · · · , ud(x, t)]T and P = P (x, t)
denote the population density of myxobacteria, the slime concentration, the fluid velocity field, and
the pressure, respectively; ν is the outer normal direction; the parameter function χ(c) measures the
chemotactic sensitivity, which may depend on slime concentration c; γ ≥ 0 represents the consumption
rate of the slime; and Φ is the gravitational potential function. ∂

∂ν denotes the outward normal derivative
along the direction ν on ∂Ω; the operator ∂αt is the Caputo fractional derivative defined by

∂αt η(·, t) =
1

Γ(1− α)

∫ t

0
(t− s)−α∂sη(·, s)ds, t > 0, α ∈ (0, 1). (4)

Typically, as α→ 1, ∂αt turns out to be the first-order local differential operator ∂t, and then the problem
(1) reduces to the classical Keller-Segel system coupled to the Navier-Stokes equations (see, e.g., [2, 5,
55, 58]). It is indicated in (1) that chemotaxis and fluid dynamics are coupled through two components:
the transport of myxobacteria and chemoattractants by the fluid, represented by the terms (u · ∇)n and
(u · ∇)c; and the external force n∇Φ exerted on the fluid by the myxobacteria due to buoyancy.

1.1 Background and previous works

Chemotaxis refers to the directional migration of substances driven by concentration gradients, such phe-
nomenon is widely occurring in nature, such as chemistry [38], medicine [28, 47], biology [14, 41, 46],
and etc. The mechanism of chemotaxis in biological processes has always been one of the main concerns
of experimental scientists [10, 22, 52]. Although there are numerous different environmental settings in
which bacterial chemotaxis has been observed, the majority of our understanding of this phenomenon
comes from laboratory research on model organisms. Subsequently, the field on mathematical modeling
of chemotaxis has grown to a wide range of topics, including system modeling, mechanistic basis, and
mathematical analysis of the underlying equations.

Traditionally, macroscopic diffusion is defined as the spatiotemporal distribution of a population
density of random walkers [3]. At the macroscopic level, Keller and Segel [29] built the well-known
Keller-Segel model {

∂tn = Dn∆n−∇ · (nχ(c)∇c), x ∈ Ω, 0 < t ≤ T,
∂tc = Dc∆c− γc+ n, x ∈ Ω, 0 < t ≤ T,

(5)

where the positive constantsDn andDc are the diffusivity of cells and chemoattractant, respectively. The
term χ(c) represents the chemotactic sensitivity of the cells; more specifically, it expresses the tendency
of the cells to aggregate due to the difference of concentration in the chemoattractant c. There exist dif-
ferent forms of χ(c) in literatures. For χ(c) = 1/c in [35, 50, 59], the equation exhibits singularity and
its solution may exist globally. While for χ(c) being a constant in (5), it refers to “minimal system” and
extensive studies have shown that the solution may be blow-up within a finite time (see, e.g., [8, 24, 56]).
To address this issue, Velázquez changed χ(c) = 1 to χ(c) = 1

1+εc with ε > 0 from a mathematical
perspective, ensuring that the solution exists globally on bounded domain [53, 54]. A similar mathe-
matical strategy to handle the blow-up was discussed by Hillen and Painter [24] where χ(c) = 1 − c

M
with c ∈ [0,M ] and M > 0, which refers to the “volume-filling” model. This mathematical model
successfully describes chemotactic aggregation of cellular slime molds because of its intuitive simplic-
ity, analytical tractability, and capacity to replicate key behaviors of chemotactic populations [24]. It
has become the prevailing model for representing chemotactic dynamics in biological systems (see, e.g.,
[11, 31, 43, 49]). This model has solutions blowing up for large enough initial conditions in dimensions
d ≥ 2 (see, e.g., [7, 56, 57]), while the solutions exist globally in one dimension [42], which is confirmed
with the patterns in the biological systems.
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However, the model (5) ignores the interaction between the bacteria, chemoattractants, and the envi-
ronment from the viewpoint of biology. Actually, the migration of bacteria is substantially affected by
changes in the environment. For instance, Tuval et al. [52] proposed the following chemotaxis-Navier-
Stokes model to describe pattern formation in populations of aerobic bacteria interacting with the liquid
environment via transport and buoyancy

∂tn+ (u · ∇)n = ∆n−∇ · (nχ(c)∇c), x ∈ Ω, 0 < t ≤ T,
∂tc+ (u · ∇)c = ∆c− nf(c), x ∈ Ω, 0 < t ≤ T,
∂tu + (u · ∇)u = ∆u +∇P + n∇Φ, ∇ · u = 0, x ∈ Ω, 0 < t ≤ T.

(6)

Due to buoyancy, the bacteria exert force n∇Φ on the fluid, and the source term n∇Φ reflects that
the fluctuations in bacterial population density cause forced changes in fluid velocity u and pressure P
with the given gravitational potential Φ. In the chemotactic movement, bacteria migrate to areas with
higher concentrations of chemoattractants, both bacteria and chemoattractants are transported by the
surrounding fluid. Wang [55] considered a modified Keller-Segel system coupled with the Navier-Stokes
fluid (i.e., the KSNS system) in a bounded domain Ω ⊂ R3, where the terms χ(c) and −nf(c) are
replaced by χ(x, n, c) and −c + n, respectively. Under the condition |χ(x, n, c)| ≤ C(1 + n)−α with
α > 1

3 , the author proved the existence of global weak solutions of (6). Recently, Winkler [58] took into
account the KSNS system with χ(c) = 1 and−nf(c) = −c+n in a bounded domain Ω ⊂ R2, equipped
with the boundary conditions (2) and appropriate initial data. The corresponding initial-boundary value
problem was testified to admit a globally defined generalized solution. One can also refer to [2, 57] and
the references therein for more discussions.

In recent years, the Keller-Segel model with anomalous diffusion has gained popularity in [1, 12, 17,
34], etc. The time-fractional Keller-Segel system [1, 12] reads:{

∂αt n = Dn∆n−∇ · (nχ(c)∇c), x ∈ Ω, 0 < t ≤ T,
∂αt c = Dc∆c− γc+ n, x ∈ Ω, 0 < t ≤ T.

(7)

Azevedo et al. [1] proved an existence result for the time-fractional Keller-Segel system (7) with χ(c) =
1 and small initial data in a class of Besov-Morrey spaces in Rd, d ≥ 2. In [12], Costa and the co-
authors dealt with local existence and blow-up of the solution to the time-fractional Keller-Segel system
(7) in the setting of Lebesgue and Besov spaces for chemotaxis under homogeneous Neumann boundary
conditions in a smooth domain of Rd, d ≥ 2. Moreover, the Keller-Segel system (7) was extended by
Escudero in [17] to the space fractional Keller-Segel system, where the dispersal is characterized by the
fractional Laplacian (−∆)α/2 with α ∈ (0, 2). Li et al. [36] further investigated the Cauchy problems
for the nonlinear fractional time-space generalized Keller-Segel system. Besides that, the time-space
fractional Keller-Segel system was coupled with the incompressible Navier-Stokes equations by Jiang
et al. [25, 26, 27], where the corresponding Cauchy initial problem was investigated, including the
well-posedness, time decay, as well as asymptotic stability of its mild solution in the Lebesgue or Besov-
Morrey spaces in Rd, d ≥ 2.

The time-fractional Keller-Segel system (7) in most existing literatures was simply obtained with
the first-order derivative in (5) replaced by a time-fractional analogue. However, the physical and bi-
ological explanation of (7) describing the chemotactic diffusion combining anomalous diffusion still
remains insufficient despite the efforts made in [34] and [3], let alone its coupled system with incom-
pressible Navier-Stokes equations. To the best of our knowledge, anomalous diffusion models in the
previous works were considered in static medium, such as time-fractional Fokker-Planck equations [32],
time-fractional forward or backward Feynman-Kac equations [9, 15], time-fractional mobile-immobile
equations [37], and etc. Nevertheless, many more biological processes, physical processes, and chemical
reactions are occurring in the non-static medium; at the same time, the corresponding phenomena bring
new inspirations and challenges in the modeling, analysis and simulations. Obviously, in our model
(1), a non-static liquid field is described by the incompressible Navier-Stokes equations, which is the
environment involving the chemotactic diffusion in the porous media. Moreover, the time-fractional
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Caputo derivative ∂αt in (1a)-(1b) is an integral-differential and non-local operator with historical mem-
ory. Therefore, the techniques for analyzing traditional Keller-Segel systems with the first-order time
derivative, as well as the existing existence and regularity results, can not be directly generalized to the
non-local analogue (1a)-(1b), which poses significant challenges for analysis. Another challenge comes
from the handling of bilinear terms (u · ∇)n and (u · ∇)c in (1). Whenever the time-fractional Keller-
Segel system is coupled with the incompressible Navier-Stokes equations, the analytical challenge would
be even bigger for the investigations of well-posedness and blow-up of the solution. Thus, it is necessary
to fill this gap for the TF-KSNS system (1).

1.2 Major contributions

Taking into account the distinctive advantages of the aforementioned works, the main contributions of
the present work consist of two aspects.

The first one is to mathematically derive the model (1) for describing the chemotactic diffusion with
anomalous diffusion in porous media; it provides reasonable mathematical and physical explanations of
the biological process governed by the model. Specifically, the chemotactic diffusion of myxobacteria
from a microscopic perspective in porous media can be characterized by the stochastic process with a
power-law distribution of waiting time based on the continuous time random walk (CTRW), then the
time-fractional Keller-Segel system is naturally derived into the mathematical model. In addition, at
the microlevel, the sliding and diffusion of myxobacteria and slime (chemoattractants) in the soil are
influenced by the surrounding environment in specific biological processes, such as liquid flow fields and
rainwater present in the soil. Similar to the modeling of (6), we will also strongly couple the derived time-
fractional Keller-Segel system with the incompressible Navier-Stokes equations describing the liquid
flow fields and thus obtain the TF-KSNS system (1).

The other one is to perform a complete local well-posedness analysis of the TF-KSNS system (1)
and to address the blow-up of its mild solution over a bounded domain Ω ⊂ Rd (d ≥ 2) with smooth
boundary. To begin with, a complete metric space is first constructed, in which a map is simultaneously
designed according to the expression of the mild solution, and it is verified that the map satisfies the
conditions of the Banach fixed point theorem. Furthermore, the continuous dependence of the mild
solution on the initial values is proved, and the asymptotic property of the mild solution is also discussed.
We also prove the uniqueness of the continuous extension of the mild solution. Meanwhile, the blow-up
of the solution is also analyzed by using the method of contradiction.

1.3 Outline of the paper

The paper is arranged as follows. In Section 2, we build the mathematical modeling of the TF-KSNS
system (1) from microscopic to macroscopic under certain fundamental assumptions. Section 3 presents
the key mathematical analysis results, including the local well-posedness and finite time blow-up of the
mild solution to the TF-KSNS system (1)-(3) with χ(c) = 1. The detailed analyses of the two results are
provided in Sections 4 and 5, respectively. Some conclusions are finally drawn in Section 6.

2 Mathematical modeling: From microscopic to macroscopic

2.1 The biology

It is ubiquitous in environments that myxobacteria aggregate and eventually form fruiting bodies under
starvation conditions (see, e.g., [16, 49]), new slimes are produced to help myxobacteria survive. Slid-
ing myxobacteria employ chemotaxis to find chemical hotspots, which are high concentration areas of
myxobacteria [4], we can refer to Fig. 1 for an intuitive understanding of the motility and directivity
of myxobacteria. In order to get a deeper grasp of the biological mechanisms of myxobacteria chemo-
taxis, Steven [49] constructed a stochastic cellular automaton, in which the author took into account the
biological hypotheses that myxobacteria produce slime traces where they like to glide on.
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It is mentioned in [14] that “natural soils are host to a high density and diversity of microorganisms,
and even deep-earth porous rocks provide a habitat for active microbial communities.” The transport and
distribution of myxobacteria in the soil (porous media) remain unclear due to their disordered flow and
associated chemical gradients. In the next subsection, we consider to provide a mathematical explanation
for a specific biological scenario depicted in Fig. 1 that myxobacteria aggregate and form fruiting bodies
to secrete large amounts of slime for survival in the soil and derive the corresponding mathematical
model.

Figure 1: Illustration of the biological environment and the chemotactic diffusion: the myxobacteria (i.e.,
{Pj}j≥1,j∈N0) glide in a porous medium towards a relatively high concentration of chemical signals,
where black round holes with different sizes refer to obstacles in porous media, and the shades of gray
in the background indicate the concentration of the chemoattractant; the darker the color, the higher the
concentration. Myxobacteria aggregate and form fruiting bodies that produce new slime for survival.

2.2 Time-fractional chemotaxis diffusion equations with space- and time-dependent forces

Based on the biological mechanisms revealed in the previous subsection, we will employ the theory of
stochastic processes at the microscale and the continuous time random walk (CTRW) approach to derive
the time-fractional Keller-Segel system that characterizes the chemotactic diffusion of myxobacteria and
slime in the soil.

In [34], Langlands and Henry utilized the balance equation (8) to describe the chemotaxis and diffu-
sion dynamics of myxobacteria, where a special transition probability density function was constructed
based on slime concentration. To further uncover the biological mechanism, we adopt the transfer prob-
ability density function proposed by Steven [49], to derive a micro dynamic model applicable to the
biological scenario specified in the previous subsection and derive the corresponding macroscopic gov-
erning equations by the Laplace transform. The detailed modeling and derivation process are as follows.

To model the chemotactic diffusion of myxobacteria, we denote the probability distribution n(x, t)
to represent the concentration of myxobacteria at time t and location x. By using the generalized CTRW
balance equation in [23, 34], it incorporates the intricate mechanisms of chemotaxis as

n(x, t) = n(x, 0)Ψ(t) +

∫ t

0

[
pr(x− δx→ x, s)n(x− δx, s)

+ pl(x+ δx→ x, s)n(x+ δx, s)
]
ψ(t− s)ds, (8)

where ψ(t) is the probability density function (PDF) of waiting time, and Ψ(t) is called survival prob-
ability, i.e., the waiting time on a site exceeds t, defined by Ψ(t) :=

∫∞
t ψ(s)ds = 1 −

∫ t
0 ψ(s)ds. In

(8), pr(x − δx → x, t) and pl(x + δx → x, t) are the transition probabilities of jumping from the ad-
jacent grid points (x± δx) in the right and left directions to x, respectively. When different distribution
functions ψ(t), pr(x, t), and pl(x, t) are selected in (8), we will observe different chemotaxis and diffu-
sion dynamics of myxobacteria. Therefore, it is crucial to pick appropriate distribution functions ψ(t),
pr(x, t) and pl(x, t) for accurately describing the chemotaxis and diffusion process of myxobacteria.

5



As is well known, the sub-diffusion process has an advantage for describing the diffusion-transport
process of particles in porous media. Inspired by this and taking into account the sliding trace of
myxobacteria and the hindrance of narrow gaps in the soil to myxobacteria migration, we take a power
law PDF of waiting time as

ψ(t) ∼ τα/t1+α, 0 < α < 1, (9)

for t � τ , where τ is a characteristic waiting time scale [23, 34]. Taking inspiration from the work of
Stevens [49, (8) and (9)], the transition probability law governing jumps to the left or right direction in
(8) is determined by the relative concentration of the slime (chemoattractant) on either side of the current
location, as follows 

pl(x→ x− δx, t) =
v(x− δx, t)

v(x− δx, t) + v(x+ δx, t)
,

pr(x→ x+ δx, t) =
v(x+ δx, t)

v(x− δx, t) + v(x+ δx, t)
,

(10)

where v := g(c) depends on the density (concentration) of the slime (chemoattractant) at time t and
point x, g is a given function. The transition probability in (10) indicates that myxobacteria are attracted
by chemoattractants from different directions, which is reasonable in the biological mechanism.

Next, we are ready to derive the governing equations for modeling the chemotaxis and diffusion
process of myxobacteria and slime in the soil. Employing the Laplace transform to the balance equation
(8) and the relationship Ψ̂(z) = z−1(1− ψ̂(z)), we can obtain the following evolution equation

zn̂(x, z)− n̂(x, 0) =
ψ̂(z)

Ψ̂(z)

{
− n̂(x, z) + Lt→z{pr(x− δx→ x, t)n(x− δx, t)}(z)

+ Lt→z{pl(x+ δx→ x, t)n(x+ δx, t)}(z)
}
,

(11)

where the notation “ŵ(z)” represents the Laplace transform of the function w(t) with respect to the
time variable t, which is also denoted as ŵ(z) := Lt→z{w(t)}(z). According to (9) and Ψ̂(z) =
z−1(1− ψ̂(z)), it obtains that

ψ̂(z)

Ψ̂(z)
∼ Dα

z1−α

τα
, with Dα =

α

Γ(1− α)
. (12)

Then it derives from (12) and the inverse Laplace transform of (11) that

dn(x, t)

dt
=
Dα

τα
dα−1

dtα−1

{
− n(x, t) + pr(x− δx→ x, t)n(x− δx, t)

+ pl(x+ δx→ x, t)n(x+ δx, t)
}
, (13)

where it employs the property of the Laplace transform of the Riemann-Liouville fractional derivative
(Lt→z

{
dα

dtαw(t)
}

(z) = zαŵ(z)− dα−1

dtα−1w(t)
∣∣
t=0

, 0 < α < 1) and the vanishing behavior near the lower
terminal ( d

α−1

dtα−1w(t)|t=0 = 0, [44, P100-P105]).
Subsequently, we consider the continuous limit of the aforementioned spatially discrete formulation

(13) with δx → 0. To this end, we utilize (10) and the Taylor expansions of the lattice functions at the
point x up to and including terms of order (δx)2. It yields from (10) the following expression:

− n(x, t) + pr(x− δx→ x, t)n(x− δx, t) + pl(x+ δx→ x, t)n(x+ δx, t)

=
v(x, t)

v(x, t) + v(x− 2δx)
n(x− δx, t) +

v(x, t)

v(x, t) + v(x+ 2δx)
n(x+ δx, t)− n(x, t)

=
v(x, t)

[(
v(x, t) + v(x+ 2δx, t)

)
n(x− δx, t) +

(
v(x, t) + v(x− 2δx, t)

)
n(x+ δx, t)

](
v(x, t) + v(x− 2δx, t)

)(
v(x, t) + v(x+ 2δx, t)

)
−
n(x, t)

(
v(x, t) + v(x− 2δx, t)

)(
v(x, t) + v(x+ 2δx, t)

)(
v(x, t) + v(x− 2δx, t)

)(
v(x, t) + v(x+ 2δx, t)

) .
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In addition, with simple calculations, it holds that

1(
v(x, t) + v(x− 2δx, t)

)(
v(x, t) + v(x+ 2δx, t)

) ≈ 1

4v2(x, t)
, as δx→ 0,

v(x, t)
[(
v(x, t) + v(x+ 2δx, t)

)
n(x− δx, t) +

(
v(x, t) + v(x− 2δx, t)

)
n(x+ δx, t)

]
≈ 4v(x, t)

(
v(x, t)n(x, t) +

1

2
(δx)2v(x, t)∂xxn(x, t)

− (δx)2∂xv(x, t)∂xn(x, t) + (δx)2n(x, t)∂xxv(x, t)
)
,

and

n(x, t)
(
v(x, t) + v(x− 2δx, t)

)(
v(x, t) + v(x+ 2δx, t)

)
≈ 4n(x, t)(v(x, t))2 + 8n(x, t)(δx)2v(x, t)∂xxv(x, t)− 4(δx)2n(x, t)

(
∂xv(x, t)

)2
.

Then, the above results deduce that

dn(x, t)

dt
=

dα−1

dtα−1

{
Dα∂xxn(x, t)− Tα∂x

(n(x, t)

v(x, t)
∂xv(x, t)

)}
, (14)

where Dα = Dα(δx)2

2τα and Tα = Dα(δx)2

τα as δx, τ → 0. Thus, by using v = g(c) and the connection
between Riemann-Liouville and Caputo fractional derivatives (see [44]), it leads to

∂αt n(x, t) = Dα∂xxn(x, t)− Tα∂x
(
n(x, t)χ(c)∂xc(x, t)

)
, (15)

where χ(c) = g′(c)/g(c). For v(x, t) = g(c(x, t)) = c(x, t) in (10), it refers to the model with χ(c) =
1/c in [2, 24]; for v(x, t) = g(c(x, t)) = eβc(x,t), it covers the model with χ(c) ≡ β in [2, 34]. Upon
selecting suitable coefficients, we obtain the equation (1a) including the transport term (u ·∇)n by virtue
of the fluid velocity. Obviously, as α→ 1+, (15) reduces to the first equation in the classical Keller-Segel
system (5).

As we know, the diffusion of particles (slime molecules) in porous media (soil) can be precisely
described by the subdiffusion equation [39], i.e., ∂αt c(x, t) = ∆c(x, t). Meanwhile, the slime in the
soil will continuously dry up and deplete over time, and the aggregation of myxobacteria can create new
slime. As a result, the reaction and source term −γc(x, t) + n(x, t), characterizing the decay of slime
and new generation of slime, are merged into the subdiffusion equation together with the transport term
(u · ∇)c. Then it produces (1b) to explain the diffusion mechanism of chemoattractants (slime) in the
soil (porous media).

Analogous to the derivation of the system (6) from (5), we also strongly couple (1a) and (1b) with
the well-known incompressible Navier-Stokes equations (1c) to accurately characterize the biological
processes and the living environment, where the migration and chemotaxis of myxobacteria and slime
under space- and time-dependent forces are driven by the fluid flow in the soil.

3 Main results

This section presents the analysis results for the TF-KSNS system (1) the no-flux/no-flux/Dirichlet
boundary conditions (2) in smoothly bounded domain and the initial data in (3), where the chemotactic
sensitivity χ(c) is a constant function, and χ(c) = 1 is considered without loss of generality. Under
some assumptions on the initial values, the problem admits a unique local mild solution; the blow-up and
asymptotic behaviors of the mild solution are also established.
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3.1 Preliminaries

We denote Lp(Ω) (p ≥ 1) as the standard Lebesgue space and Wm,p(Ω) the Sobolev space. In order
to analyze the well-posedness and regularity of (1)-(3) as precisely as possible, we provide some Lp-Lq

estimates of the heat semigroup et∆ under the homogenous Neumann and Dirichlet boundary conditions
in Lemmas 3.1 and 3.2, respectively, and also the results of the Stokes semigroup in Lemma 3.3.

Lemma 3.1 ([11, 56]). Let (et∆)t≥0 be the heat semigroup under the homogenous Neumann boundary
condition. Then there exist some positive constants Ci depending on Ω, p and q such that the following
estimates hold.

(i) If 2 ≤ p <∞, for all t > 0 and ω ∈W 1,p(Ω), then∥∥∇et∆ω∥∥
Lp(Ω)

≤ C1‖∇ω‖Lp(Ω). (16)

(ii) If 1 ≤ p ≤ q ≤ ∞, for all t > 0 and ω ∈ Lp(Ω), then∥∥et∆ω∥∥
Lq(Ω)

≤ C2

(
1 + t

− d
2

( 1
p
− 1
q

))‖ω‖Lp(Ω). (17)

(iii) If 1 ≤ p ≤ q ≤ ∞, for all t > 0 and ω ∈ Lp(Ω), then∥∥∇et∆ω∥∥
Lq(Ω)

≤ C3

(
1 + t

− 1
2
− d

2
( 1
p
− 1
q

))‖ω‖Lp(Ω). (18)

(iv) If 1 < p ≤ q ≤ ∞, for all t > 0 and ω ∈ Lp(Ω;Rd), then∥∥et∆∇ · ω∥∥
Lq(Ω)

≤ C4

(
1 + t

− 1
2
− d

2
( 1
p
− 1
q

))‖ω‖Lp(Ω). (19)

For the heat semigroup (et∆)t≥0 with the homogenous Dirichlet boundary condition, it also has the
analogous results to the Neumann boundary case.

Lemma 3.2. Let Ω ∈ Rd (d ≥ 2) be a domain of class C1,1, and {et∆}t≥0 the Dirichlet heat semigroup
in Ω.

(i) For 1 ≤ p ≤ q ≤ ∞ and all ω ∈ Lp(Ω), it holds

‖et∆ω‖Lq(Ω) ≤ C1t
− d

2
( 1
p
− 1
q

)‖ω‖Lp(Ω), ∀ t > 0. (20)

(ii) For 1 ≤ p ≤ q ≤ ∞ and all ω ∈ Lp(Ω), it holds

‖∇et∆ω‖Lq(Ω) ≤ C2

(
1 + t

− 1
2
− d

2
( 1
p
− 1
q

))‖ω‖Lp(Ω), ∀ t > 0. (21)

(iii) For 1 ≤ p ≤ q ≤ ∞ and all ω ∈ Lp(Ω;Rd), it holds

‖et∆∇ · ω‖Lq(Ω) ≤ C3

(
1 + t

− 1
2
− d

2
( 1
p
− 1
q

))‖ω‖Lp(Ω), ∀ t > 0. (22)

Proof. Regarding (i), the estimate (20) is a better-known result in [45, Proposition 48.4]. As for (ii), (21)
can be derived by the heat kernel estimate in [30] and Young’s inequality for convolution.

Now we turn to prove (iii). By [6, Corollary 1.4], there holds∥∥et∆∇ · ω∥∥
Lq(Ω)

= sup
φ∈Lq∗ (Ω)
‖φ‖

Lq
∗

(Ω)
≤1

∣∣∣ ∫
Ω
et∆∇ · ωφ

∣∣∣ = max
φ∈Lq∗ (Ω)
‖φ‖

Lq
∗

(Ω)
≤1

∣∣∣ ∫
Ω
et∆∇ · ωφ

∣∣∣. (23)
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Note that et∆ is a self-adjoint operator. Then, by an analogous approach in the proof of Lemma 1.3 (iv)
in [56], for any φ ∈ C∞0 (Ω), integrating by parts and employing (21) with 1 ≤ q ≤ p <∞ obtains that∣∣∣ ∫

Ω
et∆∇ · ωφ

∣∣∣ ≤ ∣∣∣− ∫
Ω
ω · ∇et∆φ

∣∣∣ ≤ ‖ω‖Lp∥∥∇et∆φ∥∥Lp∗
≤ C

(
1 + t

− 1
2
− d

2
( 1
q∗−

1
p∗ ))‖ω‖Lp(Ω)‖φ‖Lq∗ (Ω), (24)

where 1
p + 1

p∗ = 1, 1
q + 1

q∗ = 1, and 1
q∗ −

1
p∗ = 1

p −
1
q . Since C∞0 (Ω) is dense in Lp(Ω) for any

1 ≤ p < +∞ [6, Corollary 4.23], then we derive from (23) and (24) that the estimate (22) holds for
1 ≤ p ≤ q < ∞. Furthermore, for the case q = p = ∞, by choosing ω ∈ (C∞0 )d as in [8, Lemma 2.1]
and taking 1 ≤ q̃ < p =∞, we have from (20) that∥∥et∆∇ · ω∥∥

L∞(Ω)
=
∥∥e t2 ∆

(
e
t
2

∆∇ · ω
)∥∥
L∞(Ω)

≤ C
(
1 + t

− 1
2
− d

2q̃
)
‖ω‖Lq̃(Ω).

As Ω being a smooth and bounded domain, therefore, taking the limit q̃ → ∞, we can obtain ‖et∆∇ ·
ω‖L∞(Ω) ≤ c(1 + t−

1
2 )‖ω‖L∞(Ω). The proof is completed.

Let A := P∆ : D(A) → Lpσ(Ω;Rd) (d ≥ 2) be the Stokes operator with D(A) := W 2,p(Ω;Rd) ∩
W 1,p

0 (Ω;Rd)∩Lpσ(Ω;Rd), p ∈ (1,∞), andP the Helmholtz projection fromLp(Ω;Rd) toLpσ(Ω;Rd) :=
{φ ∈ Lp(Ω;Rd) : ∇ · φ = 0 and φ · ν = 0} with ν being the outward unit normal on ∂Ω. The operator
P is introduced to remove the pressure term in (1c) and then obtain the solution representations (39),
and P is bounded in Lp(Ω) for smooth boundary ∂Ω and any p ∈ (1,+∞) [18, Theorem 1]. The Lp-Lq

estimates for the Stokes semigroup is provided in the following.

Lemma 3.3. Let Ω ⊂ Rd (d ≥ 2) be a domain of classC2, and {etA}t≥0 the Stokes semigroup generated
by A with homogeneous Dirichlet boundary condition.

(i) For 1 < p ≤ q <∞ and all ω ∈ Lp(Ω;Rd), it holds∥∥etAPω∥∥
Lq(Ω)

≤ C1t
− d

2
( 1
p
− 1
q

)‖ω‖Lp(Ω), ∀ t > 0. (25)

(ii) For 1 < p ≤ q <∞ and all ω ∈ Lp(Ω;Rd), it holds∥∥∇etAPω∥∥
Lq(Ω)

≤ C2t
− 1

2
− d

2
( 1
p
− 1
q

)‖ω‖Lp(Ω), ∀ t > 0. (26)

(iii) For 1 < p ≤ q <∞ and all ω ∈ Lp(Ω;Rd×d), it holds∥∥etAP∇ · ω∥∥
Lq(Ω)

≤ C3t
− 1

2
− d

2
( 1
p
− 1
q

)‖ω‖Lp(Ω), ∀ t > 0. (27)

Proof. The Stokes operator A is a closed, densely defined linear operator in Lpσ(Ω;Rd), it generates a
bounded analytic semigroup {etA}t≥0 of class C0 in Lpσ(Ω;Rd) [20]. With this, the results in (i) and (ii)
hold according to [33, 51].

Regarding (iii), it follows from [18] that the dual operator P∗ of P is the Helmholtz projection in
Lp
′
(Ω) with 1/p+ 1/p′ = 1, and the dual semigroup of etA is etA

∗
in Lp

′
σ (Ω;Rd). Then, by the similar

approach in [19], for any ω ∈ C∞0 (Ω;Rd×d) and φ ∈ C∞0 (Ω;Rd), there holds

〈etAP∇ · ω, φ〉 = 〈∇ · ω, etA∗P∗φ〉 = −〈ω,∇etA∗P∗φ〉.

Hence, in conjunction with the estimate in (ii), we have that∥∥etAP∇ · ω∥∥
Lq(Ω)

= sup
φ∈Lq′ (Ω),‖φ‖

Lq
′
(Ω)
≤1

∣∣− 〈ω,∇etA∗P∗φ〉∣∣
9



≤ sup
φ∈Lq′ (Ω),‖φ‖

Lq
′
(Ω)
≤1

‖ω‖Lp(Ω) · ‖∇etA
∗P∗φ‖Lp′ (Ω)

≤ Ct−
1
2
− d

2
( 1
q′−

1
p′ )‖ω‖Lp(Ω),

which implies the third assertion (27) by the fact 1
p −

1
q = 1

q′ −
1
p′ .

Let κ > −1, λ ∈ C, the Wright function [44] is defined by the complex convergent seriesWκ,λ(z) :=∑∞
j=0

zj

j!Γ(κj+λ) , z ∈ C, where Γ(·) is the Euler-Gamma function. The Mainardi function denoted as
Mα(z) is a specific case of the Wright function and given by Mα(z) := W−α,1−α(−z). Following [1],
it has been proved that Mα is non-negative and satisfies∫ ∞

0
tγMα(t)dt =

Γ(1 + γ)

Γ(1 + αγ)
, γ > −1. (28)

The third one is the Mittag-Leffler function defined by Eα,β(z) :=
∑∞

j=0
zj

Γ(αj+β) , and Eα(z) :=

Eα,1(z), z ∈ C. The Mainardi function Mα(z) and the Mittag-Leffler function Eα,β(z) satisfy the
following properties (see, e.g., [12, 13])

Eα(tα∆) =

∫ ∞
0

Mα(s)est
α∆ds,

Eα,α(tα∆) =

∫ ∞
0

αsMα(s)est
α∆ds,

(29)


Eα (tα(∆− γ)) =

∫ ∞
0

Mα(s)Hγ(stα)ds,

Eα,α (tα(∆− γ)) =

∫ ∞
0

αsMα(s)Hγ(stα)ds,

(30)

where Hγ(t) := et(∆−γ) : Lp(Ω)→ Lq(Ω) is the damped heat semigroup with γ > 0.
The Mittag-Leffler functions involving the Laplacian, called Mittag-Leffler operators, play a central

role to represent the mild solution in (39) and satisfy some important properties in the following lemmas.

Lemma 3.4 (Strong continuity [12, 13]). The families (Eα(tα∆))t≥0, (Eα(tα(∆−γ)))t≥0, (Eα,α(tα∆))t≥0,
and (Eα,α(tα(∆− γ)))t≥0 are strongly continuous with respect to variable t in Lq(Ω) with 1 ≤ q <∞.

Based on the Lp-Lq estimates for the Neumann heat semigroup in Lemma 3.1, we have the following
estimates of the Mittag-Leffler operators.

Lemma 3.5. Let Eα(tα∆), Eα(tα(∆− γ)), Eα,α(tα∆) and Eα,α(tα(∆− γ)) be defined by (29)-(30).
For t > 0, 1 ≤ q ≤ ∞ and ρ ≥ 1/(q − 1), there exists a constant C > 0 only depending on Ω, α, d and
q, such that the following estimates hold:∥∥Eα(tα∆)

∥∥
Lq(Ω)→Lq(Ω)

≤ C, (31)∥∥Eα,α(tα(∆− γ))
∥∥
Lq(Ω)→Lq(Ω)

≤ C, (32)∥∥Eα,α(tα(∆− γ))
∥∥
L
ρq
ρ+1 (Ω)→Lρq(Ω)

≤ C(1 + t
−αd

2q ), q > d/4, (33)∥∥∇Eα,α(tα(∆− γ))
∥∥
Lq(Ω)→Lq(Ω)

≤ C(1 + t−
α
2 ), (34)∥∥∇Eα,α(tα(∆− γ))

∥∥
L
ρq
ρ+1 (Ω)→Lρq(Ω)

≤ C(1 + t
−α

2
−αd

2q ), q > d/3, (35)∥∥Eα,α(tα∆)∇ ·
∥∥
Lρq(Ω)→Lρq(Ω)

≤ C(1 + t−
α
2 ), (36)∥∥Eα,α(tα∆)∇ ·

∥∥
L
ρq
ρ+1 (Ω)→Lρq(Ω)

≤ C(1 + t
−α

2
−αd

2q ), q > d/3. (37)
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Proof. The estimates (32), (34) and (36) were precisely proved in [12, Lemma 3.3] by using the estimates
of the heat semigroup under Neumann boundary conditions in Lemma 3.1. We next consider to derive
the others. Specifically, (17) in Lemma 3.1 and (28) imply (31) as follows

‖Eα(tα∆)ω‖Lq(Ω) ≤
∫ ∞

0
Mα(s)

∥∥estα∆ω
∥∥
Lq(Ω)

ds

≤
∫ ∞

0
Mα(s) (1 + C2) ds‖ω‖Lq(Ω) ≤ C‖ω‖Lq(Ω).

Regarding (33), applying (17) in Lemma 3.1, we have

‖Eα,α(tα(∆− γ))ω‖Lρq(Ω) ≤
∫ ∞

0
αsMα(s)e−γst

α∥∥estα∆ω
∥∥
Lρq(Ω)

ds

≤ C2

∫ ∞
0

αsMα(s)
(
1 + (stα)

− d
2q
)
‖ω‖

L
ρq
ρ+1 (Ω)

ds

≤ C2α
( 1

Γ(1 + α)
+ t
−αd

2q
Γ(2− d

2q )

Γ(1 + α(1− d
2q ))

)
‖ω‖

L
ρq
ρ+1 (Ω)

≤ C(1 + t
−αd

2q )‖ω‖
L
ρq
ρ+1 (Ω)

.

By the similar approach, (35) and (37) can be derived by (18) and (19) in Lemma 3.1, respectively.

3.2 Main results

In this subsection, we present the main results on the local existence, uniqueness, and blow-up of the
mild solution to the TF-KSNS system (1)-(3) with the chemotactic sensitivity χ(c) = 1. To begin with,
the following assumptions are made similar to those for (6) in [55, 58].

Assumption 3.1. Let q > 2d, ρ ≥ 2 and β = αd
2ρq throughout the paper. The following two conditions

hold.

(i) The time-independent gravitational potential function Φ satisfies Φ ∈W 1,∞(Ω);

(ii) The initial data (n0, c0,u0) fulfills that: n0 ∈ L∞(Ω) is nonnegative with n0 6≡ 0, c0 ∈W 1,∞(Ω)
is nonnegative and u0 ∈ D(A).

The local existence and uniqueness of the mild solution to (1)-(3) under the smallness conditions
(41) and (45) are provided in the following theorem.

Theorem 3.1 (Well-posedness and Lq-regularity). Let Ω ⊂ Rd (d ≥ 2) be a bounded convex domain
with a smooth boundary. If the conditions in Assumption 3.1 hold, then there exists T > 0 such that the
initial-boundary value problem (1)-(3) admits a unique mild solution (n, c,u) : [0, T ] → Lq(Ω;R2+d)
satisfying

n, c ∈ C([0, T ], Lq(Ω)), ∇c,u ∈ C([0, T ], Lq(Ω;Rd)),

and the following asymptotic property holds

tβ‖n(t)‖Lq(Ω) → 0, tβ‖c(t)‖Lq(Ω) → 0, tβ‖u(t)‖Lq(Ω) → 0, as t→ 0+. (38)

Moreover, the solution (n, c,u) is continuously dependent on the initial data (n0, c0,u0).

With Theorem 3.1, the result of blow-up of the mild solution to (1)-(3) can be further obtained, which
is stated as follows.
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Theorem 3.2 (Blow-up). Under the same conditions in Theorem 3.1, the solution (n, c,u) can be
uniquely continued up to maximal time Tmax > T with

Tmax := sup
{
T > 0 : (1)− (3) has a unique solution (n, c,u) ∈ C([0, T ];Lρq(Ω;R2+d))

}
.

Moreover, if Tmax < +∞, then

lim sup
t→T−max

‖n(t)‖Lρq(Ω) = +∞, lim sup
t→T−max

‖c(t)‖Lρq(Ω) = +∞, lim sup
t→T−max

‖u(t)‖Lρq(Ω) = +∞.

The proofs of Theorems 3.1 and 3.2 are rigorously established in Sections 4 and 5, respectively.

Remark 3.1. For the case of χ(c) being not a constant function, such as the logarithmic sensitivity func-
tion χ(c) = 1/c, the above results are not applicable due to the singularity and stronger nonlinearity of
the system introduced by the sensitivity function. Additionally, some literatures on the Keller-Segel equa-
tions [35, 50, 59] show that the solutions do not exhibit blow-up behavior for the logarithmic sensitivity
function, which is different from the findings as above when χ(c) = 1.

4 Analysis of local well-posedness and regularity

4.1 The mild solution of the TF-KSNS system

AsLt→z{Eα(−tβA)} = zβ/(zβ+A) and Lt→z{tβ−1Eα,β(−tβA)} = zα−β/(zα+A) [21], then taking
the Laplace and inverse Laplace transform of the equations in system (1) with the projection of (1c) by
the Helmholtz projection operator P , it formally derives the following Duhamel-type integral equations

n(t) = Eα(tα∆)n0 −
∫ t

0
(t− s)α−1Eα,α

(
(t− s)α∆

)(
u · ∇n+∇ · (n∇c)

)
(s)ds,

c(t) = Eα(tα(∆− γ))c0 −
∫ t

0
(t− s)α−1Eα,α

(
(t− s)α(∆− γ)

)(
u · ∇c− n

)
(s)ds,

u(t) = etAu0 −
∫ t

0
e(t−s)AP

(
∇ · (u⊗ u)(s)− n(s)∇Φ

)
ds,

(39)

where u ⊗ u = (ujuk)
d
j,k=1 with the notation “⊗” being the usual tensor product, and ∇ · (u ⊗ u) =

(u · ∇)u due to the incompressible condition∇ · u = 0. With (39), the definition of the mild solution to
the TF-KSNS system (1)-(3) reads in the following.

Definition 4.1 (Lq(Ω)-mild solution). A triple of continuous functions (n, c,u) : [0, T ]→ Lq(Ω;R2+d)
satisfying the Duhamel-type integral equations presented in (39), is called an Lq(Ω)-mild solution to the
TF-KSNS system (1)-(3).

4.2 The proof of Theorem 3.1

In light of the aforementioned preparations, in this section, we will employ the Banach fixed point the-
orem [6, Theorem 5.7] to demonstrate the local well-posedness of the mild solution in Lq space to the
TF-KSNS system (1) with the initial-boundary conditions (2)-(3) satisfying (41)-(45), as well as As-
sumption 3.1. To this end, we introduce a Banach space given by

ST :=
{

(n, c,u) | n ∈ X , c ∈ X ,∇c ∈ X d,u ∈ X d
}

as the solution space, endowed with the norm

‖(n, c,u)‖ST := sup
t∈(0,T )

tβ‖n(t)‖Lρq(Ω) + sup
t∈(0,T )

tβ‖c(t)‖Lρq(Ω)

+ sup
t∈(0,T )

tβ‖∇c(t)‖Lρq(Ω) + sup
t∈(0,T )

tβ‖u(t)‖Lρq(Ω),

12



where X is the Banach space

X :=
{
v ∈ C((0, T ];Lρq(Ω)) | ‖v‖X := sup

t∈(0,T )
tβ‖v(t)‖Lρq(Ω) < +∞

}
,

with T ∈ (0, 1) being small enough satisfying the conditions in (41)-(45).
We denote X a nonempty complete metric subspace of ST indicated by

X :=
{

(n, c,u) ∈ ST | ‖(n, c,u)‖ST ≤ 3R
}
,

then, given t ∈ (0, T ) with sufficiently small T , it provides a mapM = (M1,M2,M3) on X as follows

M1(n, c,u) := Eα(tα∆)n0 −
∫ t

0
(t− s)α−1Eα,α

(
(t− s)α∆

)(
u · ∇n+∇ · (n∇c)

)
(s)ds,

M2(n, c,u) := Eα(tα(∆− γ))c0 −
∫ t

0
(t− s)α−1Eα,α

(
(t− s)α(∆− γ)

)(
u · ∇c− n

)
(s)ds,

M3(n, c,u) := etAu0 −
∫ t

0
e(t−s)AP

(
∇ · (u⊗ u)(s)− n(s)∇Φ

)
ds.

(40)
Additionally, we take T > 0 being small enough to satisfy the following inequalities.

T β‖∇c0‖Lρq(Ω) ≤
R

8C
, (41)

T
α
2B(1− β, α

2
) + CTαB(1− β, α) + CT ≤ 1

8
, (42)

T
α
2
−αd

2q
−β ≤ 1

8CB(1− 2β, α2 −
αd
2q )R

, (43)

T
1
2
− d

2ρq
−β ≤ 1

8CB(1− 2β, 1
2 −

d
2ρq )R

, (44)

sup
t∈(0,T )

tβ ‖Eβ(tα∆)n0‖Lρq(Ω) + sup
t∈(0,T )

tβ ‖Eβ(tα(∆− γ))c0‖Lρq(Ω)

+ sup
t∈(0,T )

tβ‖etAu0‖Lρq(Ω) ≤
R

8
,

(45)

where (45) is reasonable from Lemmas 3.3, 3.5 and Assumption 3.1, and B(·, ·) is the beta function
defined as B(a, b) :=

∫ 1
0 s

a−1(1− s)b−1ds. Based on the aforementioned arrangements, we first derive
a preliminary lemma as follows.

Lemma 4.1 (Priori estimates in Lρq(Ω)). For t ∈ (0, T ), n, c ∈ X , and u,u1,u2 ∈ X d, we have

I1 : =

∫ t

0
(t− s)α−1

∥∥Eα,α((t− s)α∆
)(
u · ∇n

)
(s)
∥∥
Lρq
ds

≤ Ct
α
2
−αd

2q
−2β

B(1− 2β,
α

2
− αd

2q
)‖n‖X ‖u‖X ,

(46)

I2 : =

∫ t

0
(t− s)α−1

∥∥Eα,α((t− s)α∆
)
∇ ·
(
n∇c

)
(s)
∥∥
Lρq
ds

≤ Ct
α
2
−αd

2q
−2β

B(1− 2β,
α

2
− αd

2q
)‖n‖X ‖∇c‖X ,

(47)

I3 : =

∫ t

0
(t− s)α−1

∥∥Eα,α((t− s)α(∆− γ)
)(
u · ∇c

)
(s)
∥∥
Lρq
ds

≤ Ctα−
αd
2q
−2β

B(1− 2β, α− αd

2q
)‖u‖X ‖∇c‖X ,

(48)
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I4 : =

∫ t

0
(t− s)α−1

∥∥Eα,α((t− s)α(∆− γ)
)
n(s)

∥∥
Lρq
ds

≤ Ctα−βB(1− β, α)‖n‖X ,
(49)

I5 : =

∫ t

0
(t− s)α−1

∥∥∇Eα,α((t− s)α(∆− γ)
)(
u · ∇c

)
(s)
∥∥
Lρq
ds

≤ Ct
α
2
−αd

2q
−2β

B(1− 2β,
α

2
− αd

2q
)‖u‖X ‖∇c‖X ,

(50)

I6 : =

∫ t

0
(t− s)α−1

∥∥∇Eα,α((t− s)α(∆− γ)
)
n(s)

∥∥
Lρq
ds

≤ Ct
α
2
−βB(1− β, α

2
)‖n‖X ,

(51)

I7 : =

∫ t

0

∥∥e(t−s)AP
(
∇ · (u1 ⊗ u2)(s)

)∥∥
Lρq
ds

≤ Ct
1
2
− d

2ρq
−2β

B(1− 2β,
1

2
− d

2ρq
)‖u1‖X ‖u2‖X ,

(52)

I8 :=

∫ t

0

∥∥e(t−s)AP
(
n(s)∇Φ

)∥∥
Lρq
ds ≤ Ct1−β‖n‖X . (53)

Proof. As u · ∇n = ∇ · (un) obtained by the incompressible condition ∇ · u = 0, thanks to (37) in
Lemma 3.5 and Lρq(Ω) ↪→ Lq(Ω) as ρq > q, it derives that

I1 ≤ C
∫ t

0
(t− s)

α
2
−αd

2q
−1‖(un)(s)‖

L
ρq
ρ+1 (Ω)

ds

≤ C
∫ t

0
(t− s)

α
2
−αd

2q
−1‖n(s)‖Lρq(Ω)‖u(s)‖Lq(Ω)ds

≤ C
∫ t

0
(t− s)

α
2
−αd

2q
−1
s−2βds‖n‖X ‖u‖X ,

which implies the result (46), and the estimate (47) can be similarly derived.
By (33) in Lemma 3.5 and (30), we deduce that

I3 ≤ C
∫ t

0
(t− s)α−

αd
2q
−1‖(u · ∇c)(s)‖

L
ρq
ρ+1 (Ω)

ds

≤ C
∫ t

0
(t− s)α−

αd
2q
−1
s−2βds‖u‖X ‖∇c‖X

≤ Ctα−
αd
2q
−2β

B(1− 2β, α− αd

2q
)‖u‖X ‖∇c‖X ,

which reduces to (48), and (32) in Lemma 3.5 directly follows that

I4 ≤ C
∫ t

0
(t− s)α−1s−βds‖n‖X ≤ Ctα−βB(1− β, α)‖n‖X .

Similarly, we deduce (50) by (35) in Lemma 3.5 that

I5 ≤ C
∫ t

0
(t− s)

α
2
−αd

2q
−1‖(u · ∇c)(s)‖

L
ρq
ρ+1 (Ω)

ds

≤ C
∫ t

0
(t− s)

α
2
−αd

2q
−1
s−2βds‖u‖X ‖∇c‖X

≤ Ct
α
2
−αd

2q
−2β

B(1− 2β,
α

2
(1− d

q
))‖u‖X ‖∇c‖X ,
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and by (34) in Lemma 3.5, it follows

I6 ≤ C
∫ t

0
(t− s)

α
2
−1s−βds‖n‖X ≤ Ct

α
2
−βB(1− β, α

2
)‖n‖X .

By the estimate (27) in Lemma 3.3 and ‖u1 ⊗ u2‖L ρq2 (Ω)
≤ ‖u1‖Lρq(Ω)‖u2‖Lρq(Ω), it implies

I7 ≤ C
∫ t

0
(t− s)−

1
2
− d

2ρq ‖(u1 ⊗ u2)(s)‖
L
ρq
2 (Ω)

ds

≤ C
∫ t

0
(t− s)−

1
2
− d

2ρq s−2βds‖u1‖X ‖u2‖X

≤ Ct
1
2
− d

2ρq
−2β

B(1− 2β,
1

2
− d

2ρq
)‖u‖2X ,

which obtains (52), and it finally infers (53) directly from (25) in Lemma 3.3 that

I8 ≤ C
∫ t

0
‖n(s)∇Φ‖Lρq(Ω)ds ≤ C

∫ t

0
s−βds‖n‖X ‖∇Φ‖L∞(Ω) ≤ Ct1−β‖n‖X .

The proof is completed.

We next confirm that the mapM = (M1,M2,M3) in (40) is well-defined in X for t > 0 and maps
X to itself, which can be obtained by the following two lemmas.

Lemma 4.2. Let the conditions in Assumption 3.1 be satisfied and T > 0 be small enough satisfying
(41)-(45). If (n, c,u) ∈ X, then ‖M(n, c,u)‖ST ≤ 3R.

Proof. The incompressible condition (∇ · u = 0) implies that ∇ · (un) = u · ∇n. Then, together with
the formula ofM1 in (40), (46) and (47) in Lemma 4.1, we demonstrate that

tβ‖M1(n, c,u)‖Lρq(Ω) ≤ tβ‖Eα(tα∆)n0‖Lρq(Ω) + Ct
α
2
−αd

2q
−β
B(1− 2β,

α

2
− αd

2q
)‖n‖X ‖u‖X

+ Ct
α
2
−αd

2q
−β
B(1− 2β,

α

2
− αd

2q
)‖n‖X ‖∇c‖X .

Hence, by the conditions (43) and (45), we have

sup
t∈(0,T )

tβ‖M1(n, c,u)‖Lρq(Ω) ≤
R

8
+ 2Ct

α
2
−αd

2q
−β
B(1− 2β,

α

2
− αd

2q
)R2 ≤ 3

8
R. (54)

From (48) and (49) in Lemma 4.1, the mapM2(n, c,u) in (40) satisfies

tβ‖M2(n, c,u)‖Lρq(Ω) ≤ tβ
∥∥Eα(tα(∆− γ)

)
c0

∥∥
Lρq(Ω)

+ CtαB(1− β, α)‖n‖X

+ Ct
α−αd

2q
−β
B(1− 2β, α− αd

2q
)‖u‖X ‖∇c‖X . (55)

Since B(1− 2β, α2 −
αd
2q ) > B(1− 2β, α− αd

2q ) for α ∈ (0, 1), then we obtain from (42), (43), (45), and
(55) that

sup
t∈(0,T )

tβ‖M2(n, c,u)‖Lρq(Ω)

≤ R

8
+ CTαB(1− β, α)R+ CT

α−αd
2q
−β
B(1− 2β, α− αd

2q
)R2 ≤ 3

8
R. (56)

According to (16) in Lemma 3.1 and (33) in Lemma 3.5, we can derive ‖∇Eα(tα(4−γ))c0‖Lρq(Ω) ≤
C1‖∇c0‖Lρq(Ω). With this, by the estimates (50) and (51) in Lemma 4.1, it obtains that

tβ‖∇M2(n, c,u)‖Lρq(Ω) ≤ Ctβ
∥∥∇c0

∥∥
Lρq(Ω)

+ Ct
α
2B(1− β, α

2
)‖n‖X
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+ Ct
α
2
−αd

2q
−β
B(1− 2β,

α

2
− αd

2q
)‖u‖X ‖∇c‖X . (57)

Then, the conditions (41), (42) and (43) show that

sup
t∈(0,T )

tβ‖∇M2(n, c,u)‖Lρq(Ω)

≤ R

8
+ CT

α
2B(1− β, α

2
)R+ CT

α
2
−αd

2q
−β
B(1− 2β,

α

2
− αd

2q
)R2 ≤ 3

8
R. (58)

Similarly, by the conditions (42), (44), (45), and the estimates (52) and (53) in Lemma 4.1, we infer
that

sup
t∈(0,T )

tβ‖M3(n, c,u)‖Lρq(Ω)

≤ R

8
+ CT

1
2
− d

2ρq
−β
B(1− 2β,

1

2
− d

2ρq
)R2 + CTR ≤ 3

8
R. (59)

Thus, the result is obtained from the estimates (54), (56), (58) and (59).

Lemma 4.3 (Continuity). Under the conditions in Lemma 4.2, the mapM = (M1,M2,M3) in (40) is
continuous with respect to variable t ∈ (0, T ] in X.

Proof. It suffices to derive Mi(n, c,u)(t) ∈ C((0, T ];Lρq(Ω)) if (n, c,u) ∈ X, i = 1, 2, 3. We first
prove the continuity ofM1 in (40). Let 0 < t1 < t2 ≤ T , it yields

M1(n, c,u)(t2)−M1(n, c,u)(t1) =
(
Eα(tα2 ∆)− Eα(tα1 ∆)

)
n0 +

6∑
k=1

IM1
k , (60)

where

IM1
1 :=

∫ t2

t1

(t2 − s)α−1Eα,α
(
(t2 − s)α∆

)
(u · ∇n)(s)ds,

IM1
2 :=

∫ t2

t1

(t2 − s)α−1Eα,α
(
(t2 − s)α∆

)
∇ · (n∇c)(s)ds,

IM1
3 :=

∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

)
Eα,α

(
(t2 − s)α∆

)
(u · ∇n)(s)ds,

IM1
4 :=

∫ t1

0
(t1 − s)α−1

[
Eα,α

(
(t2 − s)α∆

)
− Eα,α

(
(t1 − s)α∆

)]
(u · ∇n)(s)ds,

IM1
5 :=

∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

)
Eα,α

(
(t2 − s)α∆

)
∇ · (n∇c)(s)ds,

IM1
6 :=

∫ t1

0
(t1 − s)α−1

[
Eα,α

(
(t2 − s)α∆

)
− Eα,α

(
(t1 − s)α∆

)]
∇ · (n∇c)(s)ds.

As we know from Lemma 3.4 thatEα(tα∆) is strongly continuous, then the term
(
Eα(tα2 ∆)−Eα(tα1 ∆)

)
n0

in (60) tends to 0 in Lρq(Ω) as t1 → t−2 . Analogous to the estimates (46) and (47) in Lemma 4.1, we
have ∥∥IM1

1

∥∥
Lρq(Ω)

≤
∫ t2

t1

(t2 − s)α−1
∥∥Eα,α((t2 − s)α∆

)
∇ · (un)(s)

∥∥
Lρq(Ω)

ds

≤ C
∫ t2

t1

(t2 − s)
α
2
−αd

2q
−1
s−2βds‖n‖X ‖u‖X

≤ Ct
α
2
−αd

2q
−2β

2 R2

∫ 1

t1
t2

(1− τ)
α
2
−αd

2q
−1
τ−2βdτ, (61)
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and ∥∥IM1
2

∥∥
Lρq(Ω)

≤ C
∫ t2

t1

(t2 − s)
α
2
−αd

2q
−1
s−2βds‖n‖X ‖∇c‖X

≤ Ct
α
2
−αd

2q
−2β

2 R2

∫ 1

t1
t2

(1− τ)
α
2
−αd

2q
−1
τ−2βdτ. (62)

As t1 → t−2 , it is evident that ‖IM1
1 ‖Lρq(Ω) and ‖IM1

2 ‖Lρq(Ω) converge to zero.
By (37) in Lemma 3.5, it follows that

∥∥IM1
3

∥∥
Lρq(Ω)

≤
∫ t1

0

∣∣(t2 − s)α−1 − (t1 − s)α−1
∣∣∥∥Eα,α((t2 − s)α∆

)
∇ · (un)(s)

∥∥
Lρq(Ω)

ds

≤ CR2

∫ t1

0

∣∣(t2 − s)α−1 − (t1 − s)α−1
∣∣(t2 − s)−α2−αd2q s−2βds,

∥∥IM1
5

∥∥
Lρq(Ω)

≤ CR2

∫ t1

0

∣∣(t2 − s)α−1 − (t1 − s)α−1
∣∣(t2 − s)−α2−αd2q s−2βds.

Moreover, utilizing (19) in Lemma 3.1 and (29)-(30), we obtain that∥∥IM1
4

∥∥
Lρq(Ω)

≤
∫ t1

0
(t1 − s)α−1

∥∥[Eα,α((t2 − s)α∆
)
− Eα,α

(
(t1 − s)α∆

)]
∇ · (un)(s)

∥∥
Lρq(Ω)

ds,

≤
∫ t1

0
(t1 − s)α−1

∫ ∞
0

ατMα(τ)
∥∥e(t1−s)ατ∆∇ ·

(
e((t2−s)α−(t1−s)α)τ∆ − I

)
un(s)

∥∥
Lρq(Ω)

dτds

≤ C
∫ t1

0
(t1 − s)α−1

∫ ∞
0

ατMα(τ)
(
1 + τ

− 1
2
− d

2q (t1 − s)−
α
2
−αd

2q
)

×
∥∥(e((t2−s)α−(t1−s)α)τ∆ − I

)
un(s)

∥∥
L
ρq
ρ+1 (Ω)

dτds

≤ CR2

∫ t1

0
(t1 − s)α−1s−2β

∫ ∞
0

ατMα(τ)
(
1 + τ

− 1
2
− d

2q (t1 − s)−
α
2
−αd

2q
)

×
∥∥e((t2−s)α−(t1−s)α)τ∆ − I

∥∥
L
ρq
ρ+1 (Ω)→L

ρq
ρ+1 (Ω)

dτds,

and ∥∥IM1
6

∥∥
Lρq(Ω)

≤ CR2

∫ t1

0
(t1 − s)α−1s−2β

∫ ∞
0

ατMα(τ)
(
1 + τ

− 1
2
− d

2q (t1 − s)−
α
2
−αd

2q
)

×
∥∥e((t2−s)α−(t1−s)α)τ∆ − I

∥∥
L
ρq
ρ+1 (Ω)→L

ρq
ρ+1 (Ω)

dτds.

It is easy to demonstrate that ‖IM1
i ‖Lρq(Ω) (i = 3, 4, 5, 6) also converge to zero as t1 → t−2 by the

Lebesgue dominated convergence theorem, (28) and the continuity of the heat semigroup et∆. Thus, we
haveM1(n, c,u)(t) ∈ C((0, T ], Lρq(Ω)).

Analogous to the analysis ofM1(n, c,u)(t), we can also obtain thatM2(n, c,u)(t)∈ C((0, T ], Lρq(Ω))
and ∇M2(n, c,u)(t) ∈ C((0, T ], Lρq(Ω)) by using Lemma 3.4 and the similar techniques for (48) and
(49) in Lemma 4.1.

Next, we demonstrate the continuity ofM3(n, c,u)(t). It follows from (40) that

M3(n, c,u)(t2)−M3(n, c,u)(t1)

=

∫ t2

t1

e(t2−s)AP
(
∇ · (u⊗ u)− n∇Φ

)
ds
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+

∫ t1

0

[
e(t2−s)A − e(t1−s)A]P(∇ · (u⊗ u)− n∇Φ

)
ds. (63)

Then it suffices to estimate the four terms in (64)-(66) due to the boundedness of the projection P in
Lp(Ω) for p ∈ (1,∞). Using the estimates (25), (27) in Lemma 3.3 and ‖(u⊗ u)‖

L
ρq
2 (Ω)

= ‖u‖2Lρq(Ω),
it follows that∫ t2

t1

‖e(t2−s)AP∇ · (u⊗ u)‖Lρq(Ω)ds ≤ C
∫ t2

t1

(t2 − s)−
1
2
− d

2ρq ‖u⊗ u‖
L
ρq
2 (Ω)

ds

≤ Ct
1
2
− d

2ρq
−2β

2 ‖u‖2X
∫ 1

t1
t2

(1− τ)
− 1

2
− d

2ρq τ−2βdτ, (64)

∫ t2

t1

‖e(t2−s)AP(n∇Φ)‖Lρq(Ω)ds ≤ C
∫ t2

t1

‖n∇Φ‖Lρqdτ

≤ Ct1−β2 ‖n‖X
∫ 1

t1
t2

τ−βdτ‖∇Φ‖L∞(Ω), (65)

both of which tend to zero as t1 → t−2 . Employing (25) and (27) in Lemma 3.3, we obtain∫ t1

0

∥∥(e(t2−s)A − e(t1−s)A)P∇ · (u⊗ u)
∥∥
Lρq(Ω)

ds

≤ C
∫ t1

0
(t1 − s)−

1
2
− d

2ρq ‖u⊗ u‖
L
ρq
2 (Ω)
‖e(t2−t1)A − I‖Lρq(Ω)→Lρq(Ω)ds

≤ Ct
1
2
− d

2ρq
−2β

1 ‖u‖2X
∫ 1

0
(1− τ)

− 1
2
− d

2ρq τ−2β‖e(t2−t1)A − I‖Lρq(Ω)→Lρq(Ω)dτ,

and ∫ t1

0

∥∥(e(t2−s)A − e(t1−s)A)(n∇Φ)
∥∥
Lρq(Ω)

ds

≤ Ct1−β1 ‖n‖X
∫ 1

0
τ−β‖e(t2−t1)A − I‖Lρq(Ω)→Lρq(Ω)dτ. (66)

Applying the Lebesgue dominated convergence theorem, the above two terms converge to zero as t1 →
t−2 . Then we deduce thatM3(n, c,u)(t) ∈ C((0, T ], Lρq(Ω)).

Combining the results in Lemmas 4.2 and 4.3, it concludes thatM : X → X is a well-defined map
for t > 0.

Lemma 4.4. The mapM is well-defined in X for t > 0 and maps X to itself.

To obtain the local existence and uniqueness of the solution to the TF-KSNS system (1)-(3), we
further need to show the mapM : X→ X is contractive such that it meets the conditions of the Banach
fixed point theorem [6, Theorem 5.7].

Lemma 4.5 (Contraction). The mapM : X→ X is a contraction.

Proof. Let (n1, c1,u1), (n2, c2,u2) ∈ X, and their distance in X be given by

DT [(n1, c1,u1), (n2, c2,u2)] := ‖n1 − n2‖X + ‖c1 − c2‖X + ‖∇(c1 − c2)‖X + ‖u1 − u2‖X .

It yields from (40) that∥∥M1(n1, c1,u1)−M1(n2, c2,u2)
∥∥
X
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= sup
t∈(0,T )

tβ
∫ t

0
(t− s)α−1‖Eα,α((t− s)α∆)

(
(u2 − u1) · ∇n2

)
(s)‖Lρq(Ω)ds

+ sup
t∈(0,T )

tβ
∫ t

0
(t− s)α−1‖Eα,α((t− s)α∆)

(
u1 · (∇n2 −∇n1)

)
(s)‖Lρq(Ω)ds

+ sup
t∈(0,T )

tβ
∫ t

0
(t− s)α−1‖Eα,α((t− s)α∆)∇ ·

(
(n2 − n1)∇c2

)
(s)‖Lρq(Ω)ds

+ sup
t∈(0,T )

tβ
∫ t

0
(t− s)α−1‖Eα,α((t− s)α∆)∇ ·

(
n1(∇c2 −∇c1)

)
(s)‖Lρq(Ω)ds

= JM1
1 + JM1

2 + JM1
3 + JM1

4 .

To begin with, by (46) in Lemma 4.1 and (43), JM1
1 and JM1

2 are estimated as

JM1
1 ≤ C sup

t∈(0,T )
tβ
∫ t

0
(t− s)

α
2
−αd

2q
−1
s−2βds‖n2‖X ‖u1 − u2‖X

≤ CT
α
2
−αd

2q
−β
B(1− 2β,

α

2
− αd

2q
)R‖u1 − u2‖X ≤

1

8
‖u1 − u2‖X ,

and

JM1
2 ≤ CT

α
2
−αd

2q
−β
B(1− 2β,

α

2
− αd

2q
)R‖n1 − n2‖X ≤

1

8
‖n1 − n2‖X .

As to JM1
3 and JM1

4 , it derives from (47) in Lemma 4.1 and (43) that

JM1
3 ≤ C sup

t∈(0,T )
tβ
∫ t

0
(t− s)

α
2
−αd

2q
−1
s−2βds‖∇c2‖X ‖n1 − n2‖X

≤ CT
α
2
−αd

2q
−β
B(1− 2β,

α

2
− αd

2q
)R‖n1 − n2‖X ≤

1

8
‖n1 − n2‖X ,

JM1
4 ≤ CT

α
2
−αd

2q
−β
B(1− 2β,

α

2
− αd

2q
)R‖∇c1 −∇c2‖X ≤

1

8
‖∇c1 −∇c2‖X .

By combining the above four estimates, we obtain∥∥M1(n1, c1,u1)−M1(n2, c2,u2)
∥∥
X ≤

1

4
‖n1 − n2‖X +

1

8
‖∇c1 −∇c2‖X +

1

8
‖u1 − u2‖X . (67)

Now, it turns to the estimates forM2 and ∇M2. In a similar way, we can conclude from (48) and
(49) in Lemma 4.1, the conditions (42) and (43) that∥∥M2(n1, c1,u1)−M2(n2, c2,u2)

∥∥
X

≤ sup
t∈(0,T )

tβ
∫ t

0
(t− s)α−1‖Eα,α((t− s)α(∆− γ))

(
(u1 − u2) · ∇c1

)
(s)‖Lρq(Ω)ds

+ sup
t∈(0,T )

tβ
∫ t

0
(t− s)α−1‖Eα,α((t− s)α(∆− γ))

(
u2 · ∇(c2 − c1)

)
(s)‖Lρq(Ω)ds

+ sup
t∈(0,T )

tβ
∫ t

0
(t− s)α−1‖Eα,α((t− s)α(∆− γ))(n2 − n1)(s)‖Lρq(Ω)ds

≤ CTα−
αd
2q
−β
B(1− 2β, α− αd

2q
)‖u1 − u2‖X ‖∇c1‖X

+ CT
α−αd

2q
−β
B(1− 2β, α− αd

2q
)‖u2‖X ‖∇(c1 − c2)‖X

+ CTαB(1− β, α)‖n1 − n2‖X
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≤ 1

8

(
‖n1 − n2‖X + ‖∇c1 −∇c2‖X + ‖u1 − u2‖X

)
. (68)

Similarly, it derives from (50) and (51), the conditions (42) and (43) that∥∥∇M2(n1, c1,u1)−∇M2(n2, c2,u2)
∥∥
X

≤ sup
t∈(0,T )

tβ
∫ t

0
(t− s)α−1‖∇Eα,α((t− s)α(∆− γ))

(
(u1 − u2) · ∇c1

)
(s)‖Lρq(Ω)ds

+ sup
t∈(0,T )

tβ
∫ t

0
(t− s)α−1‖∇Eα,α((t− s)α(∆− γ))

(
u2 · ∇(c2 − c1)

)
(s)‖Lρq(Ω)ds

+ sup
t∈(0,T )

tβ
∫ t

0
(t− s)α−1‖∇Eα,α((t− s)α(∆− γ))(n2 − n1)(s)‖Lρq(Ω)ds

≤ CT
α
2
−αd

2q
−β
B(1− 2β,

α

2
− αd

2q
)‖∇c1‖X ‖u1 − u2‖X

+ CT
α
2
−αd

2q
−β
B(1− 2β,

α

2
− αd

2q
)‖u2‖X ‖∇(c1 − c2)‖X

+ CT
α
2B(1− β, α

2
)‖n1 − n2‖X

≤ 1

8

(
‖n1 − n2‖X + ‖∇c1 −∇c2‖X + ‖u1 − u2‖X

)
. (69)

RegardingM3(n1, c1,u1)−M3(n2, c2,u2), there exists∥∥M3(n1, c1,u1)−M3(n2, c2,u2)
∥∥
X

≤ sup
t∈(0,T )

tβ
∫ t

0

∥∥e(t−s)AP∇ ·
(
(u1 − u2)⊗ u1

)
(s)
∥∥
Lρq(Ω)

ds

+ sup
t∈(0,T )

tβ
∫ t

0

∥∥e(t−s)AP∇ ·
(
u2 ⊗ (u1 − u2)

)
(s)
∥∥
Lρq(Ω)

ds

+ sup
t∈(0,T )

tβ
∫ t

0

∥∥e(t−s)AP
(
(n2 − n1)(s)∇Φ

)∥∥
Lρq(Ω)

ds

≤ CT
1
2
− d

2ρq
−β
RB(1− 2β,

1

2
− d

2ρq
)‖u1 − u2‖X

+ CT
1
2
− d

2ρq
−β
RB(1− 2β,

1

2
− d

2ρq
)‖u1 − u2‖X + CT‖n1 − n2‖X

≤ 1

8
‖n1 − n2‖X +

1

4
‖u1 − u2‖X . (70)

Combining all of the aforementioned estimates (67), (68), (69), and (70), it is clear that

DT [M(n1, v1,u1),M(n2, v2,u2)] ≤ 5

8
‖n1 − n2‖X +

3

8
‖∇c1 −∇c2‖X +

5

8
‖u1 − u2‖X

≤ 5

8
DT [(n1, c1,u1), (n2, c2,u2)],

which asserts thatM : X→ X is a strict contraction.

With the results of Lemmas 4.4 and 4.5 established at hand, we can determine the local existence and
uniqueness of the solution to the TF-KSNS system (1)-(3).

Proof of Theorem 3.1. According to Lemmas 4.4 and 4.5, the mapM : X→ X in (40) is well-defined
in the complete metric space X and is strictly contractive for t ∈ (0, T ]. As a result, it follows from
the Banach fixed point theorem [6, Theorem 5.7] that there exists a unique fixed point (n, c,u) ∈ X
satisfying (39), which is the unique local mild solution to the system (1)-(3) for t ∈ (0, T ].
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We next prove that (n, c,u) is continuous at t = 0. To begin with, we have from (36) in Lemma 3.5
and Hölder’s inequality that∥∥n(t)− n0

∥∥
Lq(Ω)

≤
∥∥Eα(tα∆)n0 − n0

∥∥
Lq(Ω)

+ C

∫ t

0
(t− s)

α
2
−1‖n(s)‖Lρq(Ω)‖u(s)‖

L
ρq
ρ−1 (Ω)

ds

+ C

∫ t

0
(t− s)

α
2
−1‖n(s)‖Lρq(Ω)

∥∥∇c(s)∥∥
L

ρq
ρ−1 (Ω)

ds

≤
∥∥Eα(tα∆)n0 − n0

∥∥
Lq(Ω)

+ Ct
α
2
−2βB(1− 2β,

α

2
)‖n‖X ‖u‖X

+ Ct
α
2
−2βB(1− 2β,

α

2
)‖n‖X

∥∥∇c∥∥X .
Similarly, by (32) in Lemma 3.5 and Hölder’s inequality, it holds that∥∥c(t)− c0

∥∥
Lq(Ω)

≤
∥∥Eα(tα(∆− γ))c0 − c0

∥∥
Lq(Ω)

+ C

∫ t

0
(t− s)α−1‖u(s)‖Lρq(Ω)

∥∥∇c(s)∥∥
L

ρq
ρ−1 (Ω)

ds

+ C

∫ t

0
(t− s)α−1‖n(s)‖Lq(Ω)ds

≤
∥∥Eα(tα(∆− γ))c0 − c0

∥∥
Lq(Ω)

+ Ctα−2βB(1− 2β, α)‖u‖X
∥∥∇c∥∥X

+ Ctα−βB(1− β, α)‖n‖X ,

and ∥∥∇c(t)−∇c0

∥∥
Lq(Ω)

≤
∥∥∇Eα(tα(∆− γ))c0 −∇c0

∥∥
Lq(Ω)

+ Ct
α
2
−2βB(1− 2β,

α

2
)‖u‖X

∥∥∇c∥∥X
+ Ct

α
2
−βB(1− β, α

2
)‖n‖X .

In addition, it yields from Lemma 3.3 and Hölder’s inequality that∥∥u(t)− u0

∥∥
Lq(Ω)

≤
∥∥etAu0 − u0

∥∥
Lq(Ω)

+ C

∫ t

0
(t− s)−

1
2
− d

2q ‖u⊗ u‖
L
q
2 (Ω)

ds

+ C

∫ t

0

∥∥n∇Φ
∥∥
Lq(Ω)

ds

≤
∥∥etAu0 − u0

∥∥
Lq(Ω)

+ Ct
1
2
− d

2q
−2β

B(1− 2β,
1

2
− d

2q
)‖u‖2X

+ Ct1−βB(1− β, 1)‖n‖X .

Applying Lemma 3.4, the continuity of etA and Assumption 3.1, the above estimates tell us that limt→0+ ‖n(t)−
n0‖Lq(Ω) = 0, limt→0+ ‖c(t)− c0‖Lq(Ω) = 0, limt→0+ ‖∇c(t)−∇c0‖Lq(Ω) = 0 and limt→0+ ‖u(t)−
u0‖Lq(Ω) = 0. Then we deduce that n, c ∈ C([0, T ], Lq(Ω)), and ∇c,u ∈ C([0, T ], Lq(Ω;Rd)) due to
Lρq(Ω) ↪→ Lq(Ω). In addition, the asymptotic property in (38) is also obtained from the above estimates.

It remains to show the continuous dependence on the initial data, which is crucial for inferring
the continuation of the mild solution to the TF-KSNS system in the next section. Let (n1, c1,u1) and
(n2, c2,u2) be the mild solutions in X to the TF-KSNS system (1)-(3) corresponding to the initial data
(n1,0, c1,0,u1,0) and (n2,0, c2,0,u2,0), respectively. Since ‖∇Eα(tα(∆ − γ))(c1,0 − c2,0)‖Lρq(Ω) ≤
C‖∇(c1,0 − c2,0)‖Lρq(Ω) holds by applying (16) in Lemma 3.1 and (28), then for T > 0 being small
enough, it yields from (39) and (40) that∥∥n1 − n2

∥∥
X +

∥∥c1 − c2

∥∥
X +

∥∥∇(c1 − c2)
∥∥
X +

∥∥u1 − u2

∥∥
X
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≤ C
∥∥n1,0 − n2,0

∥∥
X + C

∥∥c1,0 − c2,0

∥∥
X + C

∥∥∇(c1,0 − c2,0)
∥∥
X + C

∥∥u1,0 − u2,0‖X
+
∥∥M1(n1, c1,u1)−M1(n2, c2,u2)

∥∥
X +

∥∥M2(n1, c1,u1)−M2(n2, c2,u2)
∥∥
X

+
∥∥∇M2(n1, c1,u1)−∇M2(n2, c2,u2)

∥∥
X +

∥∥M3(n1, c1,u1)−M3(n2, c2,u2)
∥∥
X .

Hence, by (67), (68), (69) and (70), it is easy to obtain that

‖n1 − n2‖X + ‖c1 − c2‖X +
∥∥∇(c1 − c2)

∥∥
X + ‖u1 − u2‖X

≤ C(‖n1,0 − n2,0‖X + ‖c1,0 − c2,0‖X +
∥∥∇(c1,0 − c2,0)

∥∥
X + ‖u1,0 − u2,0‖X ).

Therefore, the proof of Theorem 3.1 is completed.

5 Blow-up of the mild solution

Starting from a smooth initial configuration and after a first period of classical evolution, the phenomenon
in which the solution (or in some cases its derivatives) becomes infinite in finite time due to the cumula-
tive effect of the nonlinearities is called blow-up (e.g., [45]). We shall discuss the blow-up of the solution
to the TF-KSNS system (1)-(3). To this end, according to [12, 13], we first introduce the following
definition of the continuation of the solution.

Definition 5.1 (Continuation of the solution). Let (n, c,u) : [0, T ]→ Lq(Ω;R2+d) be a mild solution to
the TF-KSNS system (1)-(3). For T̄ > T , we say that (n̄, c̄, ū) : [0, T̄ ]→ Lq(Ω;R2+d) is a continuation
of (n, c,u) if (n̄, c̄, ū) is a mild solution and n(t) ≡ n̄(t), c(t) ≡ c̄(t), u(t) ≡ ū(t) as t ∈ [0, T ].

Combining the strategies in [12, 13, 25, 36], the proof of Theorem 3.2 consists of two parts: (i) the
mild solution can be continuously extended, and such a continuation is unique; (ii) the assertion on Tmax
in Theorem 3.2 holds by the contradiction method.

For these purposes, we introduce a complete metric space S̄T as follows. Let (n, c,u) : [0, T ] →
Lρq(Ω;R2+d) be the mild solution in X to the TF-KSNS system (1)-(3), and denote X̄ := {v(t) ∈
C((0, T̄ ], Lρq(Ω)) : supt∈(0,T̄ ) t

β‖v(t)‖Lρq(Ω) < +∞}, which is a Banach space endowed with the
norm ‖v̄‖X̄ = supt∈(0,T̄ ) t

β‖v̄(t)‖Lρq(Ω). Taking T̄ < ∞ close to T and satisfying T̄ > T , we extend
the mapM in (40) to the complete metric space S̄T , and

S̄T :=


(n̄, c̄, ū)

∣∣∣∣∣∣∣∣∣∣∣∣∣

n̄ ∈ X̄ , c̄ ∈ X̄ , ∇c̄ ∈ X̄ d, ū ∈ X̄ d,
sup

t∈[T,T̄ ]

‖n̄(t)− n(T )‖Lρq(Ω) + sup
t∈[T,T̄ ]

‖c̄(t)− c(T )‖Lρq(Ω)

+ sup
t∈[T,T̄ ]

‖∇c̄(t)−∇c(T )‖Lρq(Ω) + sup
t∈[T,T̄ ]

‖ū(t)− u(T )‖Lρq(Ω) ≤ R,

n̄ ≡ n, c̄ ≡ c, ū ≡ u in [0, T ]


,

which is endowed with the metric DT̄ given by

DT̄ [(n̄1, c̄1, ū1), (n̄2, c̄2, ū2)] := ‖n̄1 − n̄2‖X̄ + ‖c̄1 − c̄2‖X̄ + ‖∇(c̄1 − c̄2)‖X̄ + ‖ū1 − ū2‖X̄ .

Lemma 5.1. For T̄ > T close enough to T , the operator M maps S̄T to itself, and M(n̄, c̄, ū)(t) is
continuous with respect to t ∈ [0, T̄ ] for (n̄, c̄, ū) ∈ S̄T .

Proof. Let (n̄, c̄, ū) ∈ S̄T . It indicates that n̄ ≡ n, c̄ ≡ c and ū ≡ u for t ∈ [0, T ]. Then the continuity
ofM(n̄, c̄, ū)(t) in the interval [0, T ] is guaranteed by Theorem 3.1. By the similar approach as in the
proof of Lemma 4.3, we can obtain thatM(n̄, c̄, ū)(t) is also continuous for t ∈ (T, T̄ ].

Next, we shall show thatM(n̄, c̄, ū)(t) is continuous at t = T . Let T < t < T̄ , it follows from (40)
and (39) that

M1(n̄, c̄, ū)(t)− n(T )
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= (Eα(tα∆)− Eα(Tα∆))n0 −
∫ t

T
(t− s)α−1Eα,α

(
(t− s)α∆

)
∇ · (ūn̄+ n̄∇c̄) (s)ds

−
∫ T

0

[
(t− s)α−1Eα,α

(
(t− s)α∆

)
− (T − s)α−1Eα,α

(
(T − s)α∆

)]
∇ ·
(
un+ n∇c

)
(s)ds

:= JM1
1 (t) + JM1

2 (t) + JM1
3 (t).

By Lemma 3.4, we have that JM1
1 (t) goes to zero in Lρq(Ω) as t→ T+. Analogous to the estimates for

IM1
4 and IM1

6 in Lemma 4.3, it obtains by the Lebesgue dominated convergence theorem that JM1
3 (t)

tends to zero as t → T+. Regarding JM1
2 (t), by the similar approach for (46) in Lemma 3.5, we can

infer that ∥∥JM1
2 (t)

∥∥
Lρq(Ω)

≤ C
∫ t

T
(t− s)α−1

(
1 + (t− s)−

α
2
−αd

2q
)[
‖ūn̄(s)‖

L
ρq
ρ+1 (Ω)

+ ‖n̄∇c̄(s)‖ ρq
ρ+1

(Ω)

]
ds

≤ C
∫ t

T
(t− s)

α
2
−αd

2q
−1‖n̄(s)‖Lρq(Ω)

[
‖ū(s)‖Lρq(Ω) + ‖∇c̄(s)‖Lρq(Ω)

]
ds

≤ C1

∫ 1

T/t
(1− τ)

α
2
−αd

2q
−1
dτ,

whereC1 = C
(
R+‖n(T )‖Lρq(Ω)

)(
2R+‖u(T )‖Lρq(Ω)+‖∇c(T )‖Lρq(Ω)

)
, then it shows that ‖JM1

2 (t)‖Lρq(Ω) →
0 as t→ T+. Consequently, we can take T̄ close enough to T+ such that

sup
t∈[T,T̄ ]

‖M1(n̄, c̄, ū)(t)− n(T )‖Lρq(Ω) ≤
R

4
. (71)

By analogy, we can assert thatM2(n̄, c̄, ū)(t),∇M2(n̄, c̄, ū)(t) andM3(n̄, c̄, ū)(t) are continuous over
[0, T̄ ], then it also holds that supt∈[T,T̄ ] ‖M2(n̄, c̄, ū)(t)−c(T )‖Lρq(Ω) ≤ R/4, supt∈[T,T̄ ] ‖∇M2(n̄, c̄, ū)(t)−
∇c(T )‖Lρq(Ω) ≤ R/4, and supt∈[T,T̄ ] ‖M3(n̄, c̄, ū)(t)− u(T )‖Lρq(Ω) ≤ R/4 for T̄ close enough to T .
Hence, we haveM(n̄, c̄, ū) ∈ S̄T .

Lemma 5.2. If (n̄, c̄, ū) ∈ S̄T , then the map M is a contraction, and there exists a unique solution
(n̄, c̄, ū) being the continuation of the mild solution (n, c,u) to the interval [0, T̄ ].

Proof. The analysis is analogous to that of Lemma 4.5. Let (n̄1, c̄1, ū1) and (n̄2, c̄2, ū2) belong to S̄T .
We first consider to estimate ‖M1(n̄1, c̄1, ū1) −M1(n̄2, c̄2, ū2)‖X̄ . It consists of analyzing the terms
JM1
j (j = 1, · · · , 4) as in Lemma 4.5 with T replaced by T̄ . By the similar approach, we have

‖M1(n̄1, c̄1, ū1)−M1(n̄2, c̄2, ū2)‖X̄
≤ C1 max

(
3R/8, T̄ βR/4 + T̄ β‖n2(T )‖Lρq(Ω)

)
‖u1 − u2‖X̄

+ C1 max
(
3R/8, T̄ βR/4 + T̄ β‖u1(T )‖Lρq(Ω)

)
‖n1 − n2‖X̄

+ C1 max
(
3R/8, T̄ βR/4 + T̄ β‖∇c2(T )‖Lρq(Ω)

)
‖n1 − n2‖X̄

+ C1 max
(
3R/8, T̄ βR/4 + T̄ β‖n1(T )‖Lρq(Ω)

)
‖∇c1 −∇c2‖X̄ ,

where C1 = CT̄
α
2
−αd

2q
−β
B(1− 2β, α2 −

αd
2q ). ForM2, we can obtain that

‖M2(n̄1, c̄1, ū1)−M2(n̄2, c̄2, ū2)‖X̄
≤ C2 max

(
3R/8, T̄ βR/4 + T̄ β‖∇c1(T )‖Lρq(Ω)

)
‖ū1 − ū2‖X̄

+ C2 max
(
3R/8, T̄ βR/4 + T̄ β‖u2(T )‖Lρq(Ω)

)
‖∇c1 −∇c2‖X̄

+ CT̄αB(1− β, α)‖n1 − n2‖X̄ ,
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in which C2 = CT̄
α−αd

2q
−β
B(1− 2β, α− αd

2q ). Regarding the estimate for∇M2, it holds that

‖∇M2(n̄1, c̄1, ū1)−∇M2(n̄2, c̄2, ū2)‖X̄
≤ C1 max

(
3R/8, T̄ βR/4 + T̄ β‖∇c1(T )‖Lρq(Ω)

)
‖u1 − u2‖X̄ ,

+ C1 max
(
3R/8, T̄ βR/4 + T̄ β‖u2(T )‖Lρq(Ω)

)
‖∇c1 −∇c2‖X̄

+ CT̄
α
2B(1− β, α

2
)‖n1 − n2‖X̄ .

In addition, let C3 = CT̄
1
2
− d

2ρq
−β
B(1− 2β, 1

2 −
d

2ρq ), the estimate forM3 is as follows

‖M3(n̄1, c̄1, ū1)−M3(n̄2, c̄2, ū2)‖X̄
≤ C3 max

(
3R/8, T̄ βR/4 + T̄ β‖u1(T )‖Lρq(Ω)

)
‖u1 − u2‖X̄

+ C3 max
(
3R/8, T̄ βR/4 + T̄ β‖u2(T )‖Lρq(Ω)

)
‖u1 − u2‖X̄

+ CT̄‖n1 − n2‖X .

Then, by choosing an appropriate T̄ , the contraction ofM can be guaranteed

DT̄ [M(n̄1, c̄1, ū1),M(n̄2, c̄2, ū2)] ≤ ϑ̄DT̄ [(n̄1, c̄1, ū1), (n̄2, c̄2, ū2)], with 0 < ϑ̄ < 1.

Consequently, such a continuation is uniquely established by the Banach fixed point theorem.

Based on the above lemmas, a detailed discussion on the blow-up of the mild solution to the TF-
KSNS system (1)-(3) is provided as follows for Theorem 3.2.

Proof of Theorem 3.2. We prove the result using a contradiction approach. By Lemma 5.2, we suppose
that the mild solution (n, c,u) is uniquely continued up to a maximal time Tmax < +∞, and for any
t ∈ [0, Tmax),

‖n(t)‖Lρq(Ω) <∞, ‖c(t)‖Lρq(Ω) <∞, and ‖u(t)‖Lρq(Ω) <∞.

Let {tk}∞k=0 be a sequence in [0, Tmax) and tk → T−max as k → +∞. For any m, k ∈ N with 0 < tm <
tk < Tmax, it has tm, tk → T−max as m, k → +∞. Then, by the analogous estimates in the proof of
Lemma 4.3, for m, k → +∞, we have

‖n(tm)− n(tk)‖Lρq(Ω) + ‖c(tm)− c(tk)‖Lρq(Ω) + ‖u(tm)− u(tk)‖Lρq(Ω) → 0,

which indicates that {(n(tk), c(tk),u(tk))} is a Cauchy sequence and convergent as tk → T−max. Hence,
n(Tmax), c(Tmax) and u(Tmax) can be defined as the limit, and (n, c,u) can be further continued beyond
Tmax, which leads to a contradiction.

6 Conclusions

In this paper, we consider the mathematical modeling and analysis for the chemotactic diffusion kinetics
of myxobacteria in the soil (porous medium) under the influence of liquid flow fields (non-static envi-
ronment). In such a specific biological process, we first derive the time-fractional Keller-Segel system
for describing the chemotactic diffusion of myxobacteria and slime from the CTRW approach, and then
couple it with the Navier-Stokes equations for describing the influence of liquid flow field to obtain the
TF-KSNS system (1). To further investigate the mathematical properties of the system with appropriate
initial and boundary conditions, we construct a suitable metric space and apply the Banach fixed point
theorem to obtain the local well-posedness, dependence on initial values, and asymptotic properties of
the mild solution. The continuity and uniqueness of the continuation are also proved, as well as the
blow-up of the solution. The discussions lay a foundation for further investigations, such as the existence
and uniqueness of global solutions under specific initial conditions and the solvability in Besov spaces.
In addition, numerical approximation, simulation, and numerical analysis for the system are left in future
works.
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