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Abstract

In this paper, an optimal control problem governed by a time-fractional diffusion equation is
meticulously approximated based on Crank-Nicolson discretization in time to achieve higher tempo-
ral convergence order. Under absent control constraints, the regularity results on the second-order
time derivatives of the control, state and adjoint variables in the optimality system are estimated. To-
gether with the linear finite element discretization in space, we derive the optimality conditions of the
discretized optimal control system and rigorously analyze the temporal error estimates of the control,
state and adjoint variables only concerning the regularity property of the given data. The theoretical
result indicates that our proposed Crank-Nicolson discretization scheme for the considered fractional
optimal control problem converges by the optimal order of O (7™ %““72}) in time, which is verified
in numerical examples.
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1 Introduction

Let  be a bounded convex polygonal domain with the boundary 92 in R%, d > 1, and T be the fixed
final time. This paper is dedicated to designing and analyzing a Crank-Nicolson scheme for an optimal
control problem constrained by a time-fractional diffusion equation as follows

. 1 2 g 2
qrél(}?d J(q) = 5””((1) - ud”L2(0,T;L2(Q)) + §”CI||L2(0,T;L2(Q)) (L.1)

with u(q) determined by the time-fractional diffusion equation

du— ANO " u=f+q, (x,t)eQx(0,T],
u(z,t) =0, (x,t) € 092 x (0,77, (1.2)
u(z,0) =0, x € Q,

where v > 0 is a penalty parameter, ug : (0,7) — L?(2) denotes the given target function, and the
admissible set U, is given by

Uwi={q € L*(0,T;L*(Q)) :a < g < b ae. inQ x [0,T]} (1.3)

with a,b € Rand a < b. In (1.2), f : (0,T) — L*(Q) is the given source term, the operator A :
HY () N H%() — L?(Q) refers to the Dirichlet Laplacian, the notation 9, ~* with o € (0, 1) defined
by

1 9 [

o u(x,t) == (o) ot J, (t — 5)* tu(z, s)ds, (1.4)
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represents the left-sided Riemann-Liouville fractional time derivative of order (1 — «), where I'(s) :=
Jo~ t5te~tdt is the Euler gamma function [24].

In recent decades, investigations have revealed that the dynamics of numerous systems in physics,
chemistry, and engineering can be more accurately described using fractional equations, as discussed in
[19, 20, 24] and references therein. Anomalous diffusion, a widespread phenomenon in nature, has been
observed in various fields, including solid surface diffusion [27], RNA movement in bacterial cytoplasm
[2], ultracold atoms’ anomalous diffusion in polarization optical lattice [26], animals’ hunting strategy
[25, 30], and so on. The time-fractional diffusion equation (1.2) has been extensively utilized to simulate
anomalous diffusion phenomena in physics [19, 20, 33]. This equation describes a sublinear growth in
the mean squared displacement of particle motion over time and has gained significant attention for its
capability to depict anomalously slow diffusion processes, also known as subdiffusion. It is characterized
by local motion occasionally interrupted by long sojourns and trapping effects. As the parameter o
approaches 1, the equation (1.2) reduces to the classical diffusion equation, describing standard Brownian
motion. The regularity of solutions to (1.2) has been well established in [14], and various numerical
schemes for (1.2) have been designed and analyzed, as demonstrated in [6, 12, 16, 17, 15, 23, 37].

The optimal control problems governed by time fractional diffusion equations have attracted consid-
erable interest in the past decade, both in theoretical issues and numerical algorithms [5, 9, 22, 21, 32,
34, 35, 36, 38, 39]. For an optimal control problem with constraint of the subdiffusion equation

ofu— Au = f+q, (1.5)

the existence, uniqueness, and first-order optimality condition were discussed with the control or state
constraints in [21, 22]. In [34, 35], the authors developed a space-time spectral method for solving the
optimal control problem constrained by the equation (1.5), and established the corresponding prior error
estimates. The spatially semidiscrete Galerkin finite element scheme for the optimal control of (1.5) was
proposed and analyzed in [38], and the temporal L1 discrete scheme was also considered without error
estimates. Later, [9] estimated almost optimal-order convergence O(7¢) for the temporal discretization
by L1 and backward Euler scheme. In [32], a piecewise constant discontinuous Galerkin method in time
is considered and estimated.

The research on the optimal control problem (1.1)-(1.2) is relatively limited. In [39], the optimality
system of the optimal control problem (1.1)-(1.2) was derived, and a piecewise constant time-stepping
discontinuous Galerkin method combined with a piecewise linear finite element method was considered
to solve the problem. In [5], the authors considered a fully discrete finite element method along with
backward Euler convolution quadrature for time discretization, and estimated almost optimal conver-
gence of O(7|In 7| + h?). Nevertheless, the existing numerical schemes in aforementioned works only
have first-order convergence, this motivates us to consider establishing a higher order scheme in time for
solving the optimal control problem (1.1)-(1.2). Inspired by temporal discretization schemes with second
order accuracy in [1, 18, 31] for parabolic optimal control problem, we will develop a Crank-Nicolson
type scheme in time combining with the piecewise linear finite element in space for the optimal control
problem (1.1)-(1.2). Then we derive the optimality system for the discretized optimal control problem,
and rigorously analyze the error estimates without making additional assumptions about the regularity of
the optimality system’s solutions. The main result in Theorem 4.15 reveals that our proposed scheme for
the problem (1.1)-(1.2) without control constraints has an optimal convergence order of O(Tmin{%+a’2})
in time.

The rest of this paper is organized as follows. We present some preliminaries and the semidiscrete
scheme for the optimal control problem (1.1)-(1.2) based on the Galerkin finite element method in Sec-
tion 2, and analyze the regularity estimates on the second derivatives of the control, state and adjoint vari-
ables with respective to time in the optimality system. In Section 3, we design a fully discrete scheme
for the optimal control problem (1.1)-(1.2) by a Crank-Nicolson type discretization in time. Then the
error estimates for temporal approximation are rigorously derived in Section 4. In Section 5, some nu-
merical examples are illustrated to verify the theoretical convergence rates in temporal direction. Some
conclusions are made in Section 6.



2 Preliminaries

In this section, we first state some main results on the optimality conditions, solutions representations
and regularity for the optimal control problem (1.1)-(1.2), then present the spatial semidiscrete Galerkin
finite element method for the problem and the error estimate derived in [5]. Throughout the paper, we
denote || - || as the L2(£2)-norm, which induces the operator norm from L?(£2) to L2((2), also denoted by

2.1 Continuous problem

The adjoint derivative of 9; ~* in (1.4) denoted by 29}~ is the (1 — «)-th order right-sided Riemann-
Liouville fractional derivative [24] with o € (0,1), and P9}~z (z, t) is defined by

Bal—« 1 9 4 a—1
0y “z(x,t) = F(a)@t/t (s —t)* " z(z,s)ds. (2.1)

From [13, Lemma 2.3], the two types of Riemann-Liouville fractional derivatives in (1.4) and (2.1)
satisfy the fractional integration by parts formula, that is

T T
/ (0, ~*u(t))z(t)dt = / u(t)(Po}~“z(t))dt. (2.2)
0 0

Lemma 2.1 ([5, 39]). Let ¢ € U,q be the solution to the optimal control problem (1.1)-(1.2) and u
the corresponding state variable given by (1.2). Then, there exists an adjoint state z such that (u, z, q)
satisfies the optimality system

Ou— A} u=f+q, inQx(0,T], u=0, ondQx (0,7], (2.3)
— Oz — ABth_O‘z =u—ug, nQxI[0,7T), z=0, ondQx][0,T), 2.4)

with u(-,0) = 0 and z(-,T) = 0, and the variational inequality

T
J(@)(v—q) = / / (1a+2)(v — dadt > 0, Vo€ Upa. 2.5)
0 Q

The variational inequality (2.5) can be expressed as

1
q= PUad< - fz), (2.6)
8
where P, , is a pointwise projection onto U,g denoted by

Py,,(v(t)) = max {a, min{v(t),b}}, (2.7)

one can refer to [11, 29, 40] for more details. We obtain from Lemma 2.1 that the objective functional
J(+)in (1.1) is strongly convex, that is, the following property holds

T®)p—a) = T(@)®—a) >p = dlliz20r.r200) (2.8)

for any p, ¢ € L?(0,T; L?(£2)). This implies that the continuous optimal control problem (1.1)-(1.2) has
a unique solution.
By using the Laplace transform, the solutions to (2.3) and (2.4) can be derived [5] as follows

u(-,t):/o E(t—s)(f(,s) +q(,s))ds, (2.9)

T
() = /t E(s — ) (u(- 5) — ua(-, 5))ds, (2.10)

3



where the operator E(-) : L?(2) — L?(1) is given by

E(t) := 1 eflea (g — A)~Lde, (2.11)

a 2771—1 FG K
with a contour I'y ,; on the complex plane given by
Tow=1{€C:[¢| =k, |argg| <O} U{E € C: €= pe™™ p > k). (2.12)

The operator F(-) : L?(Q2) — L?(£2) in (2.11) can also be represented by

o

E(tyv =Y Ea1(=Xt*)(v,05)¢;, (2.13)
j=1

where E, 1(-) is the Mittag-Leffler function [24].
The following regularity of the solutions has been proved in [5, Lemma 2.4].

Lemma 2.2 ([5]). Let (u, z, q) denote solutions of the system (2.3)-(2.5). For f € L*(0,T; L*(Q)) and
ug € L?(0,T; L?(2)), we have

lwll 7 o0,7:2200)) + lull 20,7582 0)) < CIf + dllL20,m;22(0) (2.14)
21z 0,m522(0)) + 121l 20,112 (02)) < Cllw = wallp20,7522(0)) (2.15)
lall 0,522 < C. (2.16)

More regularity requirements are necessary to achieve more than first order convergence of temporal
discrete schemes for the optimal control problem. We introduce the space HP(Q) C L?(Q2) for p > 0

with the norm H’UH%IP(Q) = 252 (v, )%, where {(\j, ;) }32; are the L*-orthonormal eigenpairs

of —A in  with a homogeneous Dirichlet boundary condition [28], in particular, H°(Q) = L2(Q),
HY(Q) = H)(Q) and H?(Q) = H?(Q) N HY(Q). With additional assumptions of f and ug, we
can obtain the following regularity results for the problem (2.3)-(2.5) with the admissible set U,y =
L2(0,T; L?(%2)).

Theorem 2.3. Let (u,z,q) denote solb_ttions of the system (2.3)-_(2.5) with the admissible set Uyg =
L*(0,T; L*()). For f € H*(0,T; HP(Q)), ug € H?*(0,T; HP(?)), f(0) € HP™*(Q), f(0) €
HP(Q), ug(T) € HPT2(Q), uly(T) € HP(Q),0< p < land 3 < o < 1, we have

HatQuHB(o,T;Hp(Q)) < C(HQ(O)HHp+2(Q) + ”g/(O)HHP(Q) + HaggHL2(o,T;Hp(Q)))7 (2.17)
HatzZHL?(QT;HP(Q)) < C(HQ(T)HHPH(Q) + ||a/(T)HHP(Q) + Hatﬂ’HL?(QT;HP(Q)))’ (2.18)
”atZQHL?(o,T;Hp(Q)) <C, (2.19)

where g(t) := f(t) + q(t) and u(t) = u(t) — uq(t).
Proof. By using (2.9) and (2.13), it obtains that

2. 112
16; U”L2(0’T;Hp(g))

s Pl 52 ' o 2
_/0 ;Aj‘ t/o Ean( =Xt —5)*)(g(s), 05)ds| dt

= 2 T 2 = 2 T 2
< 3(2)‘§(g(0)7¢j) A (atEa,l(_)‘jta)) dt + Z)\f(gl(o),%) /0 (Ea,l(_)\jta)) dt
j=1

j=1



+ °°>\§ Eai(—Aj(t—s)® 92g(s),p;)ds 2dt
> [ ([ Fan ) (#20(5). o7)ds) )
:3(I1+I2+I3).

Itindicates in [10, Lemma 1.3] that the Mittag-Leffler functions satisfy 0; E 1 (—At®) = —)\ta_lEa,a(—)\ta)
and |Eq o (2)| < C/(1 + |2]?), then for a € (1/2, 1), we derive that

0 T
=3 X (g(0), ¢5)° /0 (= A B a(—Ajt%)) 2t
j=1
e 5 [T \2¢20—2
P . _e
S Cz; >\j (9(0)7 90]) /0 (1 + )\?tQQ)th
< CY N (9(0),05)" = Clg(O) 1z

and Iy < Cl|¢'(0 )|| by the estimate |E, 1(2)] < C/(1 + |z|) in [10, Lemma 1.3]. In addition, it

follows from Young’s 1nequa11ty for convolution that

I3 :ji:;)\? /OT (/Ot Eai( =Xt —s)%) (8529(3), gpj)ds)th
< i X2 ( /T Ea,l(_/\jta)dt)Z /T (07g(t), p;) dt

0

2
<0H8t g||L2(O T: Hp(Q))

Thus, the estimate (2.17) is obtained. By the similar approach, (2.18) can also be derived by setting
p(-,7) = 2(-, T — r) with p(r) satisfying 9,p(r) — Ad}~*p(r) = u(T —r) — ug(T — r). Then it further
deduces (2.19) from (2.6) and the condition U,y = L?(0, T’; L*(Q2)). O

Remark 24. If f € H'(0,T; H?(Q)), ug € H'(0,T;HP(Q)), f(0) € HP**(Q) and uq(T) €
HPT2(Q), then the estimates in Theorem 2.3 also hold by the similar approach.

2.2 Semidiscrete Galerkin scheme

Let X;, C H}(2) be a continuous piecewise linear finite element space on a regular triangulation mesh
Tr, of the domain 2 with h = maxyc7; diam(7") being the maximal diameter. In [5], the semidiscrete
Galerkin scheme with variational discretization for the control variable is considered for the optimal
control problem (1.1)-(1.2), that is to find g5, € U,q4 such that

2 g 2
i J(qn) = *Huh = udlz20,7;22(0)) + 5 l9nl 20,7220 (2.20)
subject to
(Opun, xn) + (VO ~%upn, Vxn) = (f + ans xn)s ¥ xn € Xn (2.21)

with wup(-,0) = 0, where the control variable gy, is discretized in a variational concept in [7]. The
corresponding discrete optimality conditions are as follows

(Oun, xn) + (VO “upn, Vxn) = (f +an, xn), ¥ xn € Xp, t€(0,7T], (2.22)

— Bz, xn) + (VPO 21, Vxn) = (un — ug, xn), ¥ xn € Xn, t€1[0,7), (2.23)



with up(-,0) = 0, z,(-,7) = 0 and

T
/ /(7% + 2p) (v — qp)dzdt > 0, Vo € Uga, (2.24)
0 JQ
which implies that
1
qw:HW<—§%) (2.25)
Similarly by using the Laplace transform, the solutions to (2.22)-(2.23) can be represented by
t
wnet) = [ Bt = 5)(7(5) + an(9)ds, 2.26)
0
T
2n(t) = / Bn(s — ) (un -, 5) — ua(-, ) ds, (2.27)
t
where the operator Ej,(-) : L?(Q) — X}, is given by
1
Ep(t) =5~ | eMeTHE" — Ap) T Pdg, (2.28)
27 Ty

and P, : L?(Q) — X, denotes the L? projection operator by

(Pa, xn) = (9, xn), ¥ € L*(Q), xn € X (2.29)
In (2.28), the discrete Laplacian Ay, : X;, — X, is defined by

(Anen, on) = =(Von, Von), Y on, én € Xn,

and it satisfies the following estimates [3, Lemma 5].

Lemma 2.5 ([3]). Forany ¢ € ¥y := {& € C\{0} : |arg&| < 0} with 0 € (0, ), we have the resolvent
estimates

1€ = Ap)~HI < Cle ™, (2.30)
IAL(E = Ap)THI < ClET, v e o, 1]. (2.31)

The regularity of the solutions of the semidiscrete system (2.22)-(2.24) has also been presented in [5,
Lemma 3.2].

Lemma 2.6 ([5]). Let (uy, 21, qr,) denote solutions of the system (2.22)-(2.24). For f € L*(0,T; L?(2))
and ug € L*(0,T; L?(Q)), we have

lunll e o,mc2)) + lunllc2omm @) < CIf + anllz2o,m:020)) (2.32)
|zl z1 0,122 (0)) + 120l L2 (0,701 (02)) < Cllun — wallL20.102(02)) (2.33)
lgnllm0,7;22(02)) < C- (2.34)

Remark 2.7. By the similar approach as in Theorem 2.3, analogous regularity estimates in H(0, T'; L*(£2))
can be established for the semidiscrete solutions (uy,, zn, qn) of the system (2.22)-(2.24).

In [5, Theorem 3.1], the optimal finite element error estimates in space are derived for the semidis-
crete system (2.22)-(2.24).

Theorem 2.8 ([5]). Let (u, z,q) and (un, zn, qn) be the solutions of the systems (2.3)-(2.5) and (2.22)-
(2.24), respectively. For f € L*(0,T; L*(Q)) and uqg € L*(0,T; L?(52)), we have

lu = unll20,rsL2(0) + 12 = 2zl L20,5220)) + 19 = anll2(0,15220)) < Ch2,

IV (u —un)llr20,1:2(0)) + IV(2 = 20) 220,122 (02)) < Chs

where the constant C' is independent of h.



3 Fully discrete Crank-Nicolson scheme

In this section, we devote to designing the fully discrete numerical discretization with Crank-Nicolson
scheme in time for the optimal control problem (1.1)-(1.2).

The time interval [0, 7] is divided into a uniform partition with a step size 7 = T'/N, and ¢, =
nt, n =0,---, N. We denote (‘2_0‘ the Griinwald-Letnikov difference formula (also called the back-
ward Euler convolution quadrature) by

_ 1 <& )
ol—oup = Tli_aan_jU,g, n=12,...,N, (3.1)
j=1

where the coefficients {b;, j > 0} satisfy the following power series expansion

(o]
1= => b, V[(<1,¢eC (3.2)
j=0
and the recursive formula by = 1, b; = b;_1 - a+j_2, j=1,2,--- . The notation 9}~ in (3.1) reduces

7o
to the standard backward Euler difference operator 0, when o = 0 and

_ ur -yt
oUN :=—h “h _ p—12. .. N (3.3)
T

By using the approach in [6], the time-fractional derivative at ¢, — & can be approximated by

1l -« 11—«

_ T Q1 o
OF ™y, (t, — 5) =(1- 5)@1 Yup(tn — TT) + 532 “up(tn-1 — )+ O(7?)
= (1= 5)0up + S0~ + O(r%),
then we obtain a fully discrete Crank-Nicolson scheme for (1.2) as follows
= e — o o~ N _1 _1
a, U — (1 — §)Aha; yup — §Aha; Urt = £ + Pug, 2 (3.4)

1 1
forn=1,2,...,N, with U =0, f,?fi = Py f(z,t, 1) and q;h? = qu(w,t, 1), where Py, is the L?
projection operator given by (2.29). Note that the fully (fiscrete scheme (3.4) for (21 .2) with the averaged
values of right terms at ¢,, and ¢,,_1 is different from that in [6], and such modification makes the scheme
(3.4) become applicable for approximating the optimal control problem (1.1)-(1.2).
We propose the fully discrete Crank-Nicolson scheme for the optimal control problem (1.1)-(1.2) as
follows

N-1 N
' T T T T n—212
min_ J-(Qp) = ZHU;? —ugl® + 3 DU — gl + ZHU;JLV —ug |+ 3 dYoales " 39
QhGUad n=1 n=1

subject to
n

5 « = o, = _ -1 n1
O0:Up — (1= 5)Mn0; Uy = R0 U™ = f 2 + PuQ), 2 (3.6)

_1 _1
forn = 1,2,---, N, with U} = 0, f: 2 = th(:zj,tn_%) and QZ 2 = Qh(:z:,tn_%). The discrete
admissible set U], in (3.5) is

Urg={Qn = (QZ_%)L: aSQZ_% <b,n=12,...,N}.



_ _1 S |
Let the notations a}—az,’j 2 and B GTZZ ? be defined by

Zn=s — ZnFs

Bél—azn_% 1 al b Z]_% Bé Zn—%
T h T la E J—np > Th : T
j=n

respectively, we can obtain by the above notations and simple calculations that

n*% 3 7\ B3 n*% n N N*% - 0 %
Y (2, 2 oup) =7y (Po.z, 2 up)+ (UY, 2, %) - (UR, 22), 3.7)

=2
(NI

E

Ty (Béifazfj‘%, Un)y =1y (2, 2,9L°Up), (3.8)
n=1 n=1
N N
>3 (Bal-ez 2 up) =1 > (Z37%, ey, (3.9)
T h 'Y h h » YT h
n=1 n=1

3.1 Optimality conditions and solution representations

In this subsection, we derive the optimality conditions of the fully discrete optimal control problem (3.5)-
(3.6) with Crank-Nicolson scheme, and then investigate integral representations of the solutions and their
stability analysis. We introduce the following notations for further discussions.

Up = ( ( tn))n 1’ Zh = (Zh('vtn_%))g:p qn = (Qh( >tn_§)),,]:]:17

U, = (Uh) ,jj:lv Qh - (Qh )n 1°

The discrete space-time inner product and norm are defined by

1
n=1’ Zp = (Zn 2)
[va = TZ (0", w"), = (vn)r]y W= (wn)rjyzl S Lz(Q)Nv

”|U|H—\/’UU Vo= 1€L2(Q)N.

Theorem 3.1. The fully discrete optimal control problem (3.5)-(3.6) admits a unique solution (U}, Qp,)
and a adjoint state Zy, such that (U, Qy, Z},) satisfies the following optimality system

O-Uf — (1= 5)Aud} U = SAWI TR = fi” P4 PQ n=1, N, (3.10)
N-—1
Z, ? o = N-1 U}]lV—PhuéV

— (1= 2)ARPa ez, 2 =
T ( 2> b Zh 2 ’ @3.11)

_ _1 _ _1
Bo.Zy % — (1 — %)AhBai—az,f 2 _ —AhBal az”ﬂ Ur — P,
forn=N—1,---,1, and

_1 n—1 o1
(’YQZ +2Z, 2W -, 2)20, VW e Uy, (3.12)

Proof. By the strong convexity of the fully discrete optimal control problem (3.5)-(3.6), it admits a
unique solution (Up, Q).

Due to the convexity of U_ ,, it holds that Q) + cdQ), € U, with 6Q), := W — Qj for 0 < e < 1
and any W € U7, We have from (3.6) that 6U}, = lim. o+ (Up(Qn +£0Qp) — Un(Qp)) /e satisfies
the following variational form

_ _ _ nol
(0:6U, xn) + (1 — %) (VOr—*sUR, Vxn) + %(vai—aw;;—l, Vxn) = (6Q, %.xn). (3.13)



By taking x;, = Z,?72 in (3.13), it obtains from (3.7), (3.8), (3.9) and (3.11) that the differentiation of
J-(Qp) is as follows

0< lim J-(Qn +€0Qp) — J-(Qn)
e—0Tt 13

T

N-1
Q/Q(U;{V(Qh)—uflv)éU,{de—kTZ/Q(U,’;(Qh)—ug)éU,?dx
n=1
N nel o1
+TZ/’7Qh 20Q, *da
n=1"%

N n—1L n—1 n—L
=3 [ Q2 e
n=1

Thus the proof is completed. O

We next derive the representations of the solutions to the system (3.10)-(3.12) by using Cauchy’s
integral formula and analyze their stability estimates. The truncated contour I‘g’n of I'g , in (2.12) is
defined by

he= {2 €Toe: () < ). (3.14)

_1 _1
Theorem 3.2. Let G} := f; 24 PhQZ > and M} := Uy’ — Pyuyj. The solutions of the fully discrete
scheme (3.10)-(3.11) can be represented as

T —{T\a —{r\a - —€r\—-1~ (,—¢7
U= 5= [ (e ) [Bre )™ = Au]or () T Gie ),
T (3.15)
k(b |
:TZE’T (fy 2+Q, *),
k=1
n—j T - —ém\a —¢T\a - —&r\—177 (,—&T
R L g G R R N R AR
1 " N (3.16)
= STEN MU —ug) 1y BY RO g ™),
k=1
where the operators E™ : L*(Q) — X, are given by
1 T\« —£T\ - —&T\—
Bl = o | B ) [Br(e ) = An) b (e ) T Py (3.17)
™ an
and the functions 8-(-), B-(-), Gn(-) and My(-) are respectively given by
1— C 57’ C
50 =125 o= G.18)
(1-5+50"
_ 00 N N 1
Gu(Q) =D _Gi¢", My(Q) = Mp¢ch™"— oMy, (3.19)
n=0 n=—00
Proof. Multiplying (3.10) by ¢™ on both sides and summing 7 from 1 to oo yields
- > e 00 1 GR(Q)
U = U™ =6, () H——22— — A —_— 3.20
7 (<) Z:; 48 ©) [1_%+%< ] —sia (3.20)

9



Then it further follows that

—{mya “1 Gy (e €T
n_ T 132 —&r afl{ 57'(6 ) _ } h(e )
S A T—gtgee
O (3.21)
T —&r —¢r -1 —er\—17 [ —ET
:2,/ €10 B, () [B(e=7) — Ap] 10 (e=T) TG (e e,
T 1"5’{
which confirms the first equality of (3.15).
By changing the variable ( = e~¢7, it also yields that
1 —n-1]__0-()* -1 00!
TEn L= n 1|: i — A i| s Prd
T |<|:pC Tgrac o Togygc
- (3.22)
=5 | B (e ) [Brem ) — An] () T P
™ an

Hence, we derive from (3.20) and Cauchy’s integral formula that

On(©) = (Yo rErc) (X (2 + @y 2)¢),
n=0 n=1
and the coefficients of the power series on both sides lead to the second equality of (3.15).

By the similar approach, we can obtain the solution representation for (3.11). It obtains by multiply-
ing (V=" on both sides of (3.11) and summing n from —oo to N that

- (0)" -1 Mi(Q)

(
T—a ., ar T a . apq (3:23)
1-5+5¢ 1-5+5¢

N 1
ZnQ)i= > 2y N =00

n=—oo

which is analytic with respect to ¢ in a neighborhood of the origin. Then applying Cauchy’s integral
formula implies that

n—4i T ~
2= T [ s ey
21 Jrr
o N (3.24)
_ 2Ti eg(T—tn)lBT<e—§T)a [67’(6_67—)& N Ah] *léT(e—gr)—th(e—ST)dgj
Iy,

which obtains the first equality of (3.16). Similarly, it has from (3.23) and (3.22) that

~ N N 1 N 1
20 = (X rEe ) (X GO - 3D G -y ),

n=-—oo n=-—o0o n=—0oo
Thus, the second equality of (3.16) is obtained by comparing the coefficients of the power series on both

sides of the above formula. O

The functions ¢, (-) and 5, (+) in (3.18) satisfy the properties in the following two lemmas, which are
derived in [4, Lemma 3.4] and [8, Lemmas 3.3 and 3.4], respectively.

Lemma 3.3 ([4]). Let o € (0,1), 6 € (%, arccot(—%)) and 6, (-) be defined in (3.18). Then, for any
§ eIy, we have 5, (e7¢7) € Yy and

Colé| < |0-(e74M)| < C1fé], (3.25)
|6,(e57) — ¢| < Cl¢)?, (3.26)
|6 (747 — €2 < Crj¢|~T, (3.27)

where Y¢ is defined in Lemma 2.5 and the constants Cy, C7 and C' are independent of T and k.
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Lemma 3.4 ([8]). Let o € (0,1), ¢ € (am/2,7) and B;(-) be defined in (3.18). Then there exists a
constant k1 > 0 (independent of T) such that for k € (0, k1], 0 € (7/2,m/2 + k1] and any § € I'y ., we
have B3 (e~¢7) € X and

Col¢| < |Br(e™*T)| < Cu ¢, (3.28)
|B-(e¢7) = &| < Or?ieP, (3.29)
|8 (€767 — €2 < Or? g, (3.30)

where the constants Cy, C1 and C are independent of 7,0 and r (but may depend on k1).

For the error analysis of the fully discrete optimal control problem (3.5)-(3.6) in the next section, we
introduce three auxiliary notations Uy (qy,), Z, (U (qn)), Zn(wp), which respectively satisfy the follow-
ing three systems

5 « 1— o =1 n— n—= n—1
OrUp(qn)" — (1 — E)Ahai “Un(qn)" — gﬁhai Un(gn)" ' = f, %+ Pag,, °,

(3.31)

Uh(Qh)OZOa TL:].,Q,"',N,
7 N-1 B N _ P, N

WO 2y ), 501 2y U gV = D)= T

.

= n—l o} Sl—a n—l « Al—a ntl (332

50, Zn(Unlan))"™F = (1 = DAPOL 2, (Un(gn)" " = GA,P0I 2, (Un(@))™+E O3
= Up(qn)" — Pruy,
1

Zp(up)N 2 Q. Bal-a N1 wy = Pyl
— U= AT 0 A ) = T, (3.33)

BETZh(uh)”‘% - (1- %)AhBal__aZh(uh)n_% — %AhBéi_aZh(uh)n—’—% = uy — Ppuj,

forn=N-1,--- 1.
In the following, we obtain the stability results of the solutions to (3.10), (3.11) and (3.31)-(3.33).

_1
Theorem 3.5. Let U}, ZZ 2, Un(qn)™, Zh(Uh(qh))”_% and Zh(uh)"_% be solutions to (3.10), (3.11),
(3.31), (3.32) and (3.33), respectively. Then we have

11Uk (gn) — Unlll < Clllan — Qxlll, (3.34)
11Zn(Un(qn)) — Zn(up)|l| < C[||Un(qn) — ualll, (3.35)
I1Zn(ur) — Zpll| < Clllun — Ul (3.36)

where the constant C'is independent of T.

Proof. The operators ET in (3.17) are bounded by using Lemmas 2.5, 3.3 and 3.4, that is
IEZ ()] < C/FT 118 (e 118 (e™<T)™ — Ap]~HI|0-(e™7) 7| dg
0,k
<c [ el tag <.
L
Then it has from the expression (3.15) that

n _1 _1 n _1 _1
1Un(gn)™ = URI < 7Y IEZ Filllg, 2 - Qi l<ord o, - Qi 2|,
k=1 k=1

11



which directly implies (3.34) from

N N
k-1 k—L1 \2
[[Un(an) = Ull? <077 (7 llan = @y *1)" < Clllan — Qulll*
n=1 k=1

Next we consider the estimate (3.35). We have from (3.16) that

120 (Un(@n)" ™% = Zn(un)""2 | 2
N—n
1
< SrIE MOn @)™ =i ||+ 7 > BT [0 (an) T = w7
k=1

N—n N
<Cr 3 B0 ¥ — ) < or 3 o) - k]|
k=0 P

Then we further obtain that

N N
2
1124 (Un(gn)) — Zn(un)||> < CT ) (TZ 1Un(gn)* — U'fLH) < CO|[|Un(gn) — unll*
n=1 k=1
By the similar approach as above, the estimate (3.36) can also be derived from (3.16). ]

4 Error estimates

In this section, we consider the analysis of temporal errors between the fully discrete Crank-Nicolson
scheme (3.5)-(3.6) and the semidiscrete scheme (2.20)-(2.21) for the case of the admissible set U,y =
L?(0,T; L?(f2)), including the error estimates of |||w, — Uy ||, |||zn — Z4|| and |||qr, — Q4|||. The main
result is stated in Theorem 4.15.

We first consider the temporal error estimates of |||w;, — Up(qp)||| and |||zn — Zp,(un)||| for the
schemes (3.31) and (3.33), respectively, in the next two subsections. The following lemma is necessary
for our analysis, which refers to [6, Lemma 3.2].

Lemma 4.1 ([6]). Let o € (0,1), pu(-) and ~(-) be defined by
%7 Y(¢) = a—l——i 4.1)
(1-5+350)a (1-5+ %0

Then there exists a constant k1 > 0 (independent of T) such that for k. € (0, k1] and 0 € (7/2,7/2+ k1],
it holds that

N[ =
N[ =

n(¢) =

Q=

e <, | )| <c, (4.2)
(e ) = 1] < Cr*[¢)?,  |y(e ) — 1] < Cr?I¢P, 4.3)

forany § € T ., where the constants C are independent of 7,0 and k (maybe dependent on k1).

4.1 Error estimate of |||u;, — U, (q)|||

In this subsection, we derive the error estimate of |||u, — Up(qy)||| by analyzing the error |jup(t,) —
Ui (qn)"|| for each term in the Taylor expansions of the source terms f3,(¢) and gp (),

fu(t) = fn(0) + tf4(0) + (¢ f5) (), an(t) = an(0) + tqp,(0) + (t * g;)(t).

It shows that the estimate of ||up(t,) — Upn(gn)™|| consists of errors for three parts: f3,(0) and g5, (0);
t.f,(0) and tq, (0); ( = f3)(£) and (¢ * g;)(¢).

12



For the case fi,(t) = fr(0) and g5 (t) = g»(0), it follows from (2.26) and Theorem 3.2 that the solu-
tions up, (t,) and Up(gp)™ to (2.22) and (3.31) with f5(¢t) = fr(0) and ¢x(t) = g1 (0) can be represented
as

wnlta) = 55 [ € E = A0 (0) + Pran(0))d€

. (4.4)
= 50+ Puan0) + 5 [ e = AT APL(0) + a1 0))d
Un(an)" = 5 B (e T R [ () = ] T T ((0) + Paan(0))d
= ((0) + Pan (0)) @)
g [ B R B = A (AP (0) + anl0)) s

respectively, where £% = (€% — Ap,) + Ay and B-(e757)* = (B, (e757)® — Ap) + Ay, are applied, 5,(-)
is given by (3.18) and u(-) is defined by (4.1).

Lemma 4.2. For f5(t) = fr(0) and qn(t) = qn(0), let up(t,) and Uy (qn)™ be solutions to (2.22) and
(3.31), respectively. Then we have

[un(tn) = Unan)"[| < CT25~ | AnPa(£(0) + qn(0)]], (4.6)
where the constant C is independent of T.

Proof. As|¢| > cr1inTy \I'} ., we deduce from the estimate ||(£* — Ap) 1| < CJ¢€]7 that

1 o 3 o
I5— /F " S ET2(E% — Ap) T ARPL(F(0) + r(0)dE| < CTHETHARPL(£(0) + gn(0))].-
0,k gm
Then, the estimate (4.6) is derived from (4.4), (4.5) and Lemmas 3.4 and 4.1. ]

For fp,(t) = tf;,(0) and g5, (t) = tq;,(0), it also obtains from (2.26) and Theorem 3.2 that the solutions
up(ty) and Uy (qp)™ to (2.22) and (3.31) are in the form of

un(tn) = —— /F £t g3 (e — ALY TI(f1(0) + Pagy(0))dE, @)

21

n 1 2e 67 —ET\a—
Unlan)” = g7 |, o T emetr(e ) .
[B-(e767) — Aw] "'y (e7ET)(£4(0) + Pug},(0))de,

where 3 (-) is given in (3.18) and ~(-) is defined by (4.1). Note that the scheme (3.31) for f5,(¢) = ¢ f; (0)
and g, (t) = tq;,(0) is identical to the one in [6], and the error estimate has been obtained in [6, Lemma
3.4].

Lemma 4.3 ([6]). For fx(t) = tf;(0) and q1,(t) = tq),(0), let uy(t,,) and Uy (gp)" be solutions to (2.22)
and (3.31), respectively. Then we have

[un(tn) = Un(gn)"|| < CT2||'(0) + g;,(0)], (4.9)

where the constant C'is independent of T.
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Next, we consider the case of f3,(t) = (¢txf;')(t) and g5 (t) = (t*q} )(t), and state the result in Lemma
4.5. It follows from (2.26) and (2.28) that the solution uy,(t,) to (2.22) at time t,, with f5(t) = (t* f;')(¢)

and g5, (t) = (t * g7 )(t) is given by
un(tn) = (En* (f +qn)) (tn) = (Bn st (f" 4+ @) (tn) = ((Bn 5 1) = (f" + ¢)) (tn),  (4.10)

with E},(t) defined in (2.28) and

B+ 1)(t) = —— /F (e _ A) T Pyde. @11

21

Analogous to the representation of U;' in Theorem 3.2, the solution U n(qn)™ to (3.31) can be expressed
by

N|=

Un(gn)" =7y BP9 (f73 +q) 2), (4.12)
j=1

where E7 is given in (3.17). Then we obtain

Un(qn)" = (@@r * (f + Qh))(tn) = (éDT * 1% (f” + q;{)) (tn)

= (6 ) (" ) (), “
where -
t)y=r Z Eloy (1), (4.14)
with 5tj+ 1 (t) being the Dirac delta function at ¢ i+l
Lemma 4.4. Let Ey(t) and &-(t) be given by (2.28) and (4.14). Then we have
I((En — &) xt)()|| < CT%, VtE (tp-1,ta], n=1,2,---,N, (4.15)

where the constant C' is independent of T.

Proof. We first prove (4.15) for t = ¢,,. The definition of & (t) in (4.14) follows that

00 oo n—1

(Ex)(tn)C" =7 ) (tn—t, EJ(”
n=1 n=1 j=0
S me) (S
7C -1

Br(Q* B = Ar] (0,

BNCENGE
where 7(-) is defined by (4.1). By Cauchy’s integral formula, we have

1
2mi

2,—€T
(6 t)(t) = 5 | ey T BT = A TN @ae)

Then it obtains from (4.11), (4.16) and Lemma 4.3 that
|((Bn — &) = t)(tn)| < OT%. 4.17)

Next we confirm that (4.15) holds for any ¢ € (¢,-1,t,). Taking the Taylor expansions of the
functions E}, * t and & % t at t,,, it follows that

(B )0) = (B o))+ ¢~ ) (Bre Do) + [ G- 9)Bu(o)ds @19
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(& 1)(E) = (& % 1) (En) + (£ — £)(Er % 1) (bn) + /t (£ — )6, (5)ds. .19)

It yields from Lemma 4.2 that || ((Er, — &%) * 1)(¢,)|| < C7. The definition of & in (4.14) implies that
H / (t - )6, (s)ds| < 72| E2 7 < O,

together with which and the boundedness of the operator Ep(-) in (2.28) obtains (4.15) for any ¢t €
(tn—lv tn) . Il

Lemma 4.5. For f, = (t* f;/)(t), qn = (t % q})(t), let up(t,) and Uy (gn)™ be solutions to (2.22) and
(3.31), respectively. Then we have

tn
un(tn) — Un(an)"]| < O / 177(s) + ()| ds, (4.20)
0
where the constant C' is independent of T.
Proof. 1t follows from (4.10) and (4.13) that

[un(tn) = Un(gn)" || = [[(Bn = &) =t (" + ai)(tn) ||
which directly obtains the estimate (4.20) by applying Lemma 4.4. O

To this end, we are ready to estimate the error |||u, — U (gy)|| in the following lemma.

Lemma 4.6. Let up(t,) and Uy (qp)™ be solutions to (2.22) and (3.31), then we have

1w — Un(gn)|l| < CromE+e2H | AL Py (£(0) + ga(0))]
+ CT*[|IF/(0) + ¢ (O] + I f" + a, nllL20.1:220))]
where the constant C'is independent of T.

Proof. 1t follows from Lemmas 4.2, 4.3 and 4.5 that
[un(tn) = Un(an)"|| < CTt5 | ARPa(£(0) + n(0))]l + C72(| /(0) + ;,(0)
tn
ver [T + dio)las @22
0

=I,+1I,+1I1,.

On one hand, with the fact 2¢,, > ¢,,1 for n > 1, we derive that

4.21)

N
ZF )E < O(r Y TH272) 2 | AP (£(0) + aa(0))]
n=1

N totl
<o (30 / 7 207200) 2| AL PA(F(0) + 4u(0))] @29
n=1 n
< O™ a2 AL Py (£(0) + gr(0))]).
On the other hand, it has
) N
ZHQ )2 < C(r 32 £10) + gh(0)] < O F(0) + gh(0)]]. (4.24)
n=1

In addition,

1

Zm?ﬁ Z / 177 (s) + aj(s) 2ds ) (4.25)

< CT2||f”(5) + 4 ()| 20,7020
Then the result (4.21) is obtained by (4.23)-(4.25). ]
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Remark 4.7. The estimate (4.6) in Lemma 4.2 imposes higher spatial regularity of f and q at the initial
time, which is crucial to derive the optimal error estimate (4.21) in Lemma 4.6. Otherwise, it was
obtained in [6, Lemma 3.3] that

|un(tn) — Un(qn)"|| < C7t, M| £1(0) + an (0)],
then it will result in the following error estimate

3
[lun — Un(gn)lll < C72]|fn(0) + qn(0)]|
+Cr? [1£/(0) + q, 0) || + 11 /" + Q;:HL2(O,T;L2(Q))]7
which is lower than the convergence order O(Tmin{%+a’2}) in (4.21). In addition, by using (2.25),

(2.27), (2.28), Lemmas 2.5-2.6 and the Sobolev imbedding H*(0,T) — C|0,T], we can obtain that
| AL PLgn(0)|| < C is satisfied when U,q = L?(0, T'; L?(£2)).

4.2 Error estimate of |||z, — Z;,(uy)|||

In this subsection, we derive the error estimate of |||z, — Z,(uy,)||| for the semidiscrete scheme (2.23) and
fully discrete scheme (3.33). It is noticed that the temporal error analysis for the discrete adjoint equation
(3.33) is largely different from that for the discrete state equation (3.31). Then we first meticulously
analyze the error estimate of ||z (¢, _ 1 ) — Zp, (uh)”_% || for each term in the Taylor expansions of wy,(t)

and ug(t) at T, that is
T
wn(t) = un(T) ~ (T = (1) + [ (s = D (5)ds,
t
T
wa(t) = ua(T) = (T = i) + [ (s = o).
t
For the case of uy (t) = up(T) and ug(t) = ug(T), together with the splittings £* = (% — Ap)+ Ay,

and B, (e7¢7)* = (B, (e7¢7)*—Ap)+Ay, itimplies from (2.27) and (2.28) that the semidiscrete solution
zp(t, 1) to (2.23) can also be represented by

1
2

zn(t, 1) = % - eg(Titn_%)fad(ﬁa — Ap) T Py (un(T) — ua(T))dé
=(T=t, )b (un(T) — ua(T)) (4.26)
% TV e=2 (0 A TIAL Py (un(T) — ug(T))de,
T FG,m

and the fully discrete solution Zh(uh)"_% to (3.33) can be obtained from (3.16) in Theorem 3.2 as
follows

Zn(up)" "2
= (T'- tnfé)Ph(Uh(T) — ud(T))
+ 4LTI'Z eg(T—tn_l)ﬁT(e_ﬁT)—Q [BT(e—fT)a . Ah] *llu(e—&r)AhPh (uh(T) . Ud(T))df 4.27)
Thx

* ﬁ /FT STt B (e7T) 2 [ (e767) — A] T (e ) APy (un(T) — ua(T) ) d,

where 3, (e7¢7) and p(e~¢7) are given by (3.18) and (4.1), respectively.
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Lemma 4.8. For up(t) = up(T') and uq(t) = ug(T), let Zh(tn,%) and Zh(uh)"fé be solutions to
(2.23) and (3.33) given by (4.26) and (4.27), respectively. Then we have

2 (t_) = Zn(un)"3]| < Cr2(T — t,_)* [ (D) + [Aua(D]],  @28)

where the constant C'is independent of T.
Proof. From (4.26) and (4.27), it obtains that
_1
zn(t,_1) = Zn(un)" >
1 eir-
47 FGW\F;—,H (429)

1 &(T—t
S (&
47Ti Fg

n_%)N(g)AhPh(uh(T) — uq(T))dg,

where M () and NV () are given by

M(&) = 2672(% — Ap) 7,
N(E) = 26726 = Ay) ™ = (73 + e )Br(e74) 2B, (e )™ — Ag] (e,
It derives from Lemmas 2.5, 3.4 and 4.1 the following two estimates
IM(E)Il < ClEIT* 2 < CT?[€]™, V€ € T\TG (4.30)
and
IV < [[2672(6% — Ap) ™ — 267 [m -W - A7
2672 [Br(e ) — AT - 28, ( 2B (78 — Ay
+28:(e) 2 [Bre ) = An] T = 2B,(e7) 2 [Br(eT) = An] (e )
+2B-(e74) 2 [Br(e 7)™ = Ap] (e )

(€ 4 TPl ) B = ] )
< CTYET, VEETy,,

4.31)

where the inequality }2 — 2T e%&} < C72[€]? is employed. Then the estimate (4.28) is obtained
from (4.29), (4.30), (4.31) and the inequality || A, Pyv|| < C||Av|| forany v € H2(Q) in [3, (2.13)]. O

The term || Apup(T)| in (4.28) is actually bounded by using (2.26), (2.28), Lemmas 2.5-2.6 and the
Sobolev imbedding H(0,7T) < C[0, T].
Next we consider the error estimate for the case of uy (t) = (T'—t)uj, (T') and uq(t) = (T —t)ul(T),

and obtain the result in Lemma 4.9. Similarly by (2 27) and (3.16), the seimidiscrete solution zh( _1)
2

to (2.23) and the fully discrete solution Zp, (up)"~ 3 to (3.33) with up(t) = (T — t)u),(T) and ug(t) =
(T — t)u/,(T) can be represented by

1 T—t
alty ) = g [T AR (D) - (D) @)
Lo
1 1 T2e7¢T
Tt = o [ T (e
(e 2mi Jry (1—e4)? ( (4.33)

[B7(e™57)® = Ap] 6, (e75) T P (uh(T) — uy(T))de,
respectively, where d-(-) and (3, (-) are defined in (3.18).
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Lemma 4.9. For up(t) = (T — t)u},(T) and uq(t) = (T — t)u,(T), let zp(t, 1) and Zh(uh)"fé be
2
solutions to (2.23) and (3.33) given by (4.32) and (4.33), respectively. Then we have the estimate

2n(t, 1) = Zn(un)" =2 || < CT2|uf,(T) = (D] (434)

where the constant C' is independent of T.

Proof. Let C(&) and F (&) be defined by

C(&) = €73(¢" — Ap) ' B,

7_26—57'

7757)267(@*57)“[57(@*57)“ — Ap] 7o (7).

F(€) = T3 — Ap) 1Py - =

From Lemmas 2.5, 3.3 and 3.4, it obtains that ||C(£)|| < C|¢|~3 and

IF© < [leFer3e — an) ™t — €272(€ — Ap) Lor(e*) !

FETHE — Ap) o (e78)
r2e—¢T (4.35)

e G R C R A I CRpR

< OrPiElTh, VEETy,,

where the estimate ‘f‘le%& — 6.(e7¢7) 7t < C72[¢| is applied.
Then we derive from (4.32) and (4.33) that

ET—t, 1)
2

en(t,_1) — Zn(un)™ 3| < || e / ¢ C(€)dE |||}, (T) — ()|
I‘gq,ﬁ\F

1
2

which completes the proof. O

In the following, we consider the terms uy, () = ftT(s — t)uj(s)ds and ug4(t) = ftT(s — t)ulj(s)ds,
which yields that uy(7) = 0 and ug(7) = 0. Then we obtain from (2.27) that the corresponding

semidiscrete solution zp, (¢t _ 1) to (2.23) is as follows

1
n—3

T T
)= [ Bl =) [ 0= s)(uh(r) —uir)drds
T7 r
=[] Bt e = ) — ur)dsar (436
?j n—3
= [ B =t ) 0) = whr)ar

It also derives from (3.16) that the fully discrete solution Zh(uh)”_% to (3.33) is represented accordingly
by
) N—n ' ) )
Zy(up)""2 =7 Y BN () — ), (4.37)

J]=



Let &, (t) be the Dirac delta function at ¢; and

t) =7y Bl (1), (4.38)
then we further have
) T
Zp(up)""2 = | Hz(s — tn)(un(s) — ua(s))ds
tn
T T
= A7 (s —ty) / (r— 5)(u%(7“) — ug(r))drds

b ’ (4.39)

- / (s — 1) (r — 8)(ul (r) — uli(r))dsdr
tn Jin
T
— [ G0~ i) ~ i)
tn
Lemma 4.10. Ler E,(t) and 7, (t) be defined by (2.28) and (4.38), respectively. Then we have
(B« 1)t + 5) = (o xH)(B)]| < O, (4.40)

where t € [0,T — 7|, and the constant C'is independent of T.

Proof. Forany t € [ty,tmt1) With0 < m < N —n—1landn = 1,2,--- , N, we take the Taylor
expansions of operators (Ep,  t)(t + 5) and (J7  t)(t) at time ¢,, and get

(Bn # 0)(t 4 5) = (B )t + 5) + (= ) (B D)t + 3)
"3 (4.41)
+ / (t+ R s)Ep(s)ds,
tm+73

t
(A x 1) (t) = (A7 ) (tm) + (t — tm) (S % 1)(tm) + / (t — s) A7 (s)ds. (4.42)

tm

It follows from (4.11) that
. 1 E(tm+3) ca—3(ca _ A -1

(Ep *t)(tm + 2) 37 /1“9,,€ e TSR3 Ap) dE. (4.43)

By the definition of the operator .77 (t) in (4.38), it implies that

m

(S 5 8)(tm) = 7> | B (4.44)

7=0

then we further derive from (3.17) that

i%*t )(tm)C TZZEJ — ;)™

=0 m=0 j=0
(X B (3t (449
OIS (;:0 )
@ @ -1 - TC
= 57’(() [/BT(C) - Ah] 5T(C) ! (1 _ 4)2 :

19



From (4.45) and Cauchy’s integral formula, it obtains that

(A 1) (tm) = 2%” / et (17_266__2)267(@—53“ [Br(e77)™ = Ap] N0 (e7)TNE. (4.46)
Then by the similar approach as in the proof of Lemma 4.9, we have
(B )t + ) = (5 x ) (2| < O (4.47)
Next we consider to analyze the following estimate

(B Dt + ) = (9 x D (t)| < O (4.48)

From the definition of Ej(+) in (2.28), we have

21

1 -
(B Dt + 3) = ‘/ St B2 (e — Ap) e (4.49)
Fe,n
By the similar approach for deriving (4.44), it obtains

1 _
(A D)(t) = /gﬁeﬁtml_TegTﬂT<e—&>a[ﬁT<e—fT>aAh] () TE @s0)

2mi

With Lemmas 2.5, 3.3 and 3.4, it also holds that

“e%€Q—2(§a - Ah)_l o 1_7_?@’_(6—57—)& [ﬁT(e—ﬁr)a o Ah] —15T(6—§T>—IH

&7 o _ _ _
< [ler €2 — AR Tt =€ — An) 7|
+ Hga—2(§o¢ . Ah)_l _ 5T(e—§r)—2§a(£a _ Ah)—lu
+ “57(6757)72504(5(1 o Ah)fl _ 57(6757—)72,67—(6757)& [57(6757—)6! . Ah] —IH
< Crlg|T +Or?, vEeTy,,
then (4.48) is derived, which further implies that

(t = ta)[[(Bn * 1)t + 5) = (5 % D)(tm)|| < O @51)

Due to || Ep(t)|| < C and ||ET*|| < C, we derive the following estimates

H (t —|— — —38)En( )dsH < C7?, (4.52)
tm+3
and
H/ (t — s) A (s)ds|| < 72| EP|| < CT2. (4.53)
Therefore, the result (4.40) is obtained from (4.47), (4.51), (4.52) and (4.53). ]
Lemma 4.11. For up(t ft s — t)uj(s)ds and u4(t) = ft s — t)ulj(s)ds, let z(t, 1) and
2

Zy (uh)”_% be solutions to (2.23) and (3.33). Then we obtain the estimate

T
lenty) = Zatn 4| < €7 [ Jui(s) = )]s, (454)
t

n—

[N

where the constant C' is independent of T.
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Proof. The formulae (4.36) and (4.39) imply that
_1
[0 (t,,—1) = Zn(un)""2

g/t" B x )0 — )|l (r) — iy

n—

T
+ /t H(Eh xt)(r — tnf%) — (G *t)(r — tn)H Hu%(r) — ug(r)Hdr
=1V +V

For the term IV, it yields from (4.11) and Lemma 2.5 that

tn
IV < CTQ/t Hu’é(r) — ug(T)Hdr.

n—

N

By (4.40) in Lemma 4.10, we obtain the estimate for the term V' as follows

T
V< CT2/ Hu%(r) — ug(r)Hdr.
tn

Thus the result (4.54) is derived by combining the above two estimates. 0

By the results in Lemmas 4.8, 4.9 and 4.11, it directly implies that

120 (un)™% = an(t, )| < CrAT — )™ [ Apun (D) + [ Aua(T)]

T 4.55)
+ Cr? )y (T) — dy(T)|| + O / () — wli(s) 1 ds,
o1

where the constant C' is independent of 7, zj,(¢,,_1) and Zh(uh)”_% are solutions to (2.23) and (3.33),
2

respectively. Therefore, by the similar approach as in the proof of Lemma 4.6, we can obtain the error

estimate |||z, — Zp(up)||| in Lemma 4.12.

Lemma 4.12. Let z;, and Zh(uh)”_% be solutions to (2.23) and (3.33), respectively, then we have the
following estimate

121 = Zu(un)|[| < Cr 22 [ Ayun (1) + | Aua(T) | @.56)
+ 072 [ (T) = T + (o) — wif(s) 20 1200

where the constant C'is independent of T.

4.3 Fully discrete error estimates

With the results obtained at hand in Sections 4.1 and 4.2, we are ready to analyze the error estimates of
llwp, —Uplll, ||z — Z4||| and |||gn, — Qp]|| for the fully discrete Crank-Nicolson scheme (3.5)-(3.6) and
the semidiscrete scheme (2.20)-(2.21).

Lemma 4.13. Let uj, and U}’ be solutions to (2.22) and (3.10), respectively. Then we have

llwn = Unlll < Clllgn — Qulll + 2| A, B (£(0) + ga(0))]

C 2 / / " " (4'57)
+C2 1 7(0) + ¢ (OO + [1F" + anll 20,7220 ) »

where the constant C'is independent of T.
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Proof. By the estimate (3.34) in Theorem 3.5 and the triangular inequality, we derive that
[lwn, = Unlll < [[lun, — Un(gn)lll + [[[Un(gn) — Unl||
< llun = Un(an)lll + Clllgn — Qulll,
which directly obtains the result (4.57) from Lemma 4.6.

The error analysis of |||g;, — Qp]|| is derived in the following lemma.
_1
Lemma 4.14. Let g, and Q: 2 be solutions to (2.24) and (3.12), respectively, then we have

llgn — Qulll < Cro™ =2 [|ALPL(£(0) + u(0)) | + [ Apun(T)] + | Aua(T)|]
+C72[[[£/(0) + g (0| + [|up(T) — ug(T)||]
+ CT2 " + aill2omr2)) + ur — wiillz20.r:22(0))]
where the constant C'is independent of T.

Proof. It obtains from (2.25) that g5, (t,,_1) = Py,,( — %zh(tn_ 1)), and then
2 2

(van(stp_1) +2n(t, 1), 0n = an(st,_1)) 20, Vo € Uaa.
Together with (3.12) and (4.59), it implies that

Ylllgn — Qulll* = v[an, an — Qr] — v[Qn.arn — Qu)
< —lgn — Qn,zn] + [an — Qn, Zy]

= [an — Qn, Z1 — Zn(Un(an))] + [an — Qn. Zn(Un(qn)) — zn)-

By (3.10)-(3.11), (3.31)-(3.32), and (3.7)-(3.9), we can derive that
[an — Qn, Zh — Zn(Un(qn))] = —l|Un(gn) — Unl||* < 0.

Furthermore, it has from the above estimates and (3.35) in Theorem 3.5 that
llgn — Qulll < Cll1Z1(Un(gn)) — 2nlll
< Cll|Zn(Un(an)) = Zn(un)lll + Cl|Zn(un) — 2l
< C|[|Un(qn) — unlll + C|[| Zp(un) — 2],
from which it obtains the result (4.58) directly from the estimates (4.21) and (4.56).

By using (3.36) in Theorem 3.5, we have that
120 = Znlll < [llzn = Zn(un)lll + [[|Zn(un) = Zu]||
< llzn = Zn(un)lll + Clllun — Ul

(4.58)

(4.59)

(4.60)

4.61)

Together with (4.61), Lemmas 4.12, 4.13 and 4.14, we finally derive the main result in the following

theorem.

_1 _1
Theorem 4.15. Let (up, zp, qn) and (U;Ll, ZZ 2, QZ 2) be solutions to the systems (2.22)-(2.24) and
(3.10)-(3.12), respectively. If the conditions in Theorem 2.3 are satisfied and the admissible set U,; =

L2(0,T; L%(RY)), then we have
[lur, = Unlll + llzn = Zn[l| + [[lan — Qxlll
< CrmntEH O || AL Py (£(0) + gn (0)) | + | Anun(T)]| + || Aug(T)]]
+ C7[[1£(0) + g, (O[] + [[up,(T) — w(T)]l]
+ CT (Il + aill 20 r2@)) + llur — will 2002

where the constant C'is independent of T.

Remark 4.16. For the optimal control problem with the box constraint (1.3), the best temporal regularity
of qy, is restricted to W1 by the property of the projection operator Py, ,(+)in(2.7), see [9, (3.5)] and
[40, Corollary 2.1.8]. Then it appears challenging to establish the optimal temporal error estimate for

the fully discrete Crank-Nicolson scheme (3.5)-(3.6).
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5 Numerical results

In this section, we present some numerical examples to verify the theoretical convergence result in Theo-
rem 4.15 of the proposed fully discrete Crank-Nicolson scheme (3.5)-(3.6) for solving the optimal control
problem (1.1)-(1.2).

Two numerical examples with the admissible set U,q = L2(0,T; L?(12)) are presented to illustrate
the efficiency of the proposed discrete Crank-Nicolson scheme (3.5)-(3.6). We solve the fully discrete
system (3.5)-(3.6) by the conjugate gradient method with a stopping tolerance 10~% measuring the gra-
dient of the objective function with respect to Qp, in (3.5).

Example 5.1. Let Q = (0,1) and T = 1. We take v = 1 in the optimal control problem (1.1)-(1.2) and
set the exact solutions as

u(z, t) = 57 g(1 — 2),
2(z,t) = (1 — )5+ (1 — 2),
q(z,t) = —z(x,¢t).

By simple calculations, it obtains the expressions of f and ug from (2.3) and (2.4).

To demonstrate the temporal convergence rate of the fully discrete Crank-Nicolson scheme (3.5)-
(3.6), we solve the one dimensional optimal control problem in Example 5.1 for &« = 0.1,0.3,0.5,0.7
and 0.9 with the time step and finite element mesh size 7 = h = 27%, k = 3,4, 5, 6. In Table 1, the errors
llwn, — Upllls ||2n — Z1lll» [||gn — Q]| and their temporal convergence rates are reported. It shows that
the numerical scheme has the convergence order of O(Tmin{%Jra’Q})
theoretical convergence order in Theorem 4.15.

in time, which is consistent with the

Table 1: Errors |||un, —Uyl, |||zn—Z1]]], |||gr— Q||| and their temporal convergence rates for Example
5.1.
a Error T=273 T=274 T=27° T=27"0 Rate
ll|lup, — Unl|l 6.5791E-04 2.1063E-04 6.8409E-05 2.2409E-05 1.63 (1.6)
0.10 |||z — Zn||] 1.9146E-03 6.1414E-04 1.9661E-04 6.3162E-05 1.64 (1.6)
llgn — Qnlll 1.9147E-03 6.1414E-04 1.9661E-04 6.3162E-05 1.64 (1.6)
Ilwn — Unl| 2.8456E-04 7.8631E-05 2.2295E-05 6.4935E-06 1.82(1.8)
030 |||zn — Zy|| 1.2315E-03 3.4528E-04 9.6767B-05 2.7325B-05 1.83 (1.8)
lllan — Qnll| 1.2315E-03 3.4528E-04 9.6767E-05 2.7325E-05 1.83 (1.8)
Ilun — Unl| 2.1904E-04 5.4259E-05 1.2990E-05 3.0365E-06 2.06 (2.0)
0.50 |||zn — Zn||| 9.7469E-04 2.5903E-04 6.9232E-05 1.8769E-05 1.90 (2.0)
llgn — Qnll| 9.7469E-04 2.5903E-04 6.9232B-05 1.8769E-05 1.90 (2.0)
lwn — Upl||  2.6789E-04 6.4009E-05 1.4957E-05 3.4005E-06 2.10 (2.0)
0.70 |||z — Z4||| 8.6773E-04 2.2799E-04 6.0457E-05 1.6277E-05 1.91 (2.0)
lllgn — Qrlll 8.6773E-04 2.2799E-04 6.0457E-05 1.6277E-05 1.91 (2.0)
llup — Up||| 2.5752E-04 6.0488E-05 1.4254E-05 3.3384E-06 2.09 (2.0)
0.90 |[|zn — Zn|| 8.0626E-04 2.1123E-04 5.5724E-05 1.4866E-05 1.92 (2.0)
llgn — Qulll  8.0626E-04 2.1123E-04 5.5724E-05 1.4866E-05 1.92 (2.0)

Example 5.2. Consider the two dimensional optimal control problem (1.1)-(1.2) with Q = (0,1) x (0, 1),
T =1and~ = 1. For any x = (x1,x2) € S, the exact solution is chosen as

u(x, t) = t+5 O sin () sin(mras),
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2(z,t) = (1 — )25+ gin(ray) sin(mas),
q(z,t) = —z(x,t),
and f and ug are calculated from (2.3) and (2.4).

We consider the fully discrete Crank-Nicolson scheme (3.5)-(3.6) to solve the two dimensional op-
timal control problem in Example 5.2. In order to verify its convergence order in time, we choose
a=0.1,0.3,0.5,0.7,0.9, and perform numerical experiments with time step 7 = 27k (k = 3,4,5,6,7)
and finite element mesh size h = 27, The errors |||uy, — Uyl |||z — Z4|l |||gn — Q4| and their
temporal convergence rates are presented in Table 2, where similar observations as those in Example
5.1 are shown. The scheme also converges by the order of O(Tmin{%““’?}) in time, which confirms the
theoretical result in Theorem 4.15.

Table 2: Errors |||un, —Uyl, |||zn—Z1]], |||gr— Q||| and their temporal convergence rates for Example
5.2.
o Error =273 =274 T=27° =27 Rate
Ilun — Unl| 1.1646E-03 4.1573E-04 1.4586E-04 5.0255E-05 1.51 (1.6)
0.10 |[|zn — Zn|| 5.4275E-03 1.7262E-03 S5.5277E-04 1.7868E-04 1.64 (1.6)
llgn — Qnll| 5.4275E-03 1.7262E-03 5.5277B-04 1.7868E-04 1.64 (1.6)
Ilun — Unl|  2.8509E-04 7.6380E-05 2.2607E-05 7.1627E-06 1.77 (1.8)
0.30 |||zn — Zn||| 3.5268E-03 9.7637E-04 2.7212E-04 7.6976E-05 1.84 (1.8)
llgn — Qnlll 3.5268E-03 9.7637E-04 2.7212E-04 7.6977E-05 1.84 (1.8)
lwn — Upl||  9.5288E-04 2.3690E-04 5.7849B-05 1.3876E-05 2.03 (2.0)
0.50 |||z — Z4||] 2.8092E-03 7.3280E-04 1.9346E-04 5.2271E-05 1.92(2.0)
lllgn — Qrlll 2.8092E-03 7.3280E-04 1.9346E-04 5.2271E-05 1.92(2.0)
llup, — Upnl|| 1.4006E-03 3.4003E-04 8.2500E-05 1.9979E-05 2.04 (2.0)
0.70 |||zn — Zn|| 2.5076E-03 6.4431E-04 1.6911E-04 4.5804E-05 1.92(2.0)
llgn — Qulll  2.5076E-03 6.4431E-04 1.6911E-04 4.5804E-05 1.92 (2.0)
ll|lup, — Upl|l 1.5531E-03 3.6841E-04 8.9197E-05 2.1787E-05 2.05(2.0)
090 |||zn — Zy||] 2.3271E-03 5.9800E-04 1.5806E-04 4.3190E-05 1.92(2.0)
lllan — Qnlll 2.3271E-03 5.9800E-04 1.5806E-04 4.3190E-05 1.92 (2.0)

6 Conclusion

In this paper, we concentrate on higher order approximation in time of the optimal control problem gov-
erned by a time-fractional diffusion equation. A Crank-Nicolson scheme is designed for the optimal
control problem and the corresponding optimality conditions are derived simultaneously. The optimal
solutions are represented by using techniques based on the Laplace transform and Cauchy’s integral for-
mula. Then we rigorously analyze the temporal error estimate of the proposed scheme. Some numerical
results are reported to verify the efficiency of our method by applying the conjugate gradient method
to the fully discretized optimization problem without control constraints, which is consistent with the
theoretical assertion.
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