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Abstract
In this paper, an optimal control problem governed by a time-fractional diffusion equation is

meticulously approximated based on Crank-Nicolson discretization in time to achieve higher tempo-
ral convergence order. Under absent control constraints, the regularity results on the second-order
time derivatives of the control, state and adjoint variables in the optimality system are estimated. To-
gether with the linear finite element discretization in space, we derive the optimality conditions of the
discretized optimal control system and rigorously analyze the temporal error estimates of the control,
state and adjoint variables only concerning the regularity property of the given data. The theoretical
result indicates that our proposed Crank-Nicolson discretization scheme for the considered fractional
optimal control problem converges by the optimal order ofO(τmin{ 3

2+α,2}) in time, which is verified
in numerical examples.
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1 Introduction

Let Ω be a bounded convex polygonal domain with the boundary ∂Ω in Rd, d ≥ 1, and T be the fixed
final time. This paper is dedicated to designing and analyzing a Crank-Nicolson scheme for an optimal
control problem constrained by a time-fractional diffusion equation as follows

min
q∈Uad

J(q) =
1

2
‖u(q)− ud‖2L2(0,T ;L2(Ω)) +

γ

2
‖q‖2L2(0,T ;L2(Ω)) (1.1)

with u(q) determined by the time-fractional diffusion equation
∂tu−∆∂1−α

t u = f + q, (x, t) ∈ Ω× (0, T ],

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ],

u(x, 0) = 0, x ∈ Ω,

(1.2)

where γ > 0 is a penalty parameter, ud : (0, T ) → L2(Ω) denotes the given target function, and the
admissible set Uad is given by

Uad =
{
q ∈ L2(0, T ;L2(Ω)) : a ≤ q ≤ b a.e. in Ω× [0, T ]

}
(1.3)

with a, b ∈ R and a ≤ b. In (1.2), f : (0, T ) → L2(Ω) is the given source term, the operator ∆ :
H1

0 (Ω) ∩H2(Ω) → L2(Ω) refers to the Dirichlet Laplacian, the notation ∂1−α
t with α ∈ (0, 1) defined

by

∂1−α
t u(x, t) :=

1

Γ(α)

∂

∂t

∫ t

0
(t− s)α−1u(x, s)ds, (1.4)

*This work was partially supported by the National Natural Science Foundation of China under grant 12071343 and basic
research fund of Tianjin University under grant 2025XJ21-0010.

†Center for Applied Mathematics and KL-AAGDM, Tianjin University, Tianjin 300072, China.
‡Corresponding author. Center for Applied Mathematics and KL-AAGDM, Tianjin University, Tianjin 300072, China

(twymath@gmail.com).

1



represents the left-sided Riemann-Liouville fractional time derivative of order (1 − α), where Γ(s) :=∫∞
0 ts−1e−tdt is the Euler gamma function [24].

In recent decades, investigations have revealed that the dynamics of numerous systems in physics,
chemistry, and engineering can be more accurately described using fractional equations, as discussed in
[19, 20, 24] and references therein. Anomalous diffusion, a widespread phenomenon in nature, has been
observed in various fields, including solid surface diffusion [27], RNA movement in bacterial cytoplasm
[2], ultracold atoms’ anomalous diffusion in polarization optical lattice [26], animals’ hunting strategy
[25, 30], and so on. The time-fractional diffusion equation (1.2) has been extensively utilized to simulate
anomalous diffusion phenomena in physics [19, 20, 33]. This equation describes a sublinear growth in
the mean squared displacement of particle motion over time and has gained significant attention for its
capability to depict anomalously slow diffusion processes, also known as subdiffusion. It is characterized
by local motion occasionally interrupted by long sojourns and trapping effects. As the parameter α
approaches 1, the equation (1.2) reduces to the classical diffusion equation, describing standard Brownian
motion. The regularity of solutions to (1.2) has been well established in [14], and various numerical
schemes for (1.2) have been designed and analyzed, as demonstrated in [6, 12, 16, 17, 15, 23, 37].

The optimal control problems governed by time fractional diffusion equations have attracted consid-
erable interest in the past decade, both in theoretical issues and numerical algorithms [5, 9, 22, 21, 32,
34, 35, 36, 38, 39]. For an optimal control problem with constraint of the subdiffusion equation

∂αt u−∆u = f + q, (1.5)

the existence, uniqueness, and first-order optimality condition were discussed with the control or state
constraints in [21, 22]. In [34, 35], the authors developed a space-time spectral method for solving the
optimal control problem constrained by the equation (1.5), and established the corresponding prior error
estimates. The spatially semidiscrete Galerkin finite element scheme for the optimal control of (1.5) was
proposed and analyzed in [38], and the temporal L1 discrete scheme was also considered without error
estimates. Later, [9] estimated almost optimal-order convergence O(τα) for the temporal discretization
by L1 and backward Euler scheme. In [32], a piecewise constant discontinuous Galerkin method in time
is considered and estimated.

The research on the optimal control problem (1.1)-(1.2) is relatively limited. In [39], the optimality
system of the optimal control problem (1.1)-(1.2) was derived, and a piecewise constant time-stepping
discontinuous Galerkin method combined with a piecewise linear finite element method was considered
to solve the problem. In [5], the authors considered a fully discrete finite element method along with
backward Euler convolution quadrature for time discretization, and estimated almost optimal conver-
gence of O(τ | ln τ | + h2). Nevertheless, the existing numerical schemes in aforementioned works only
have first-order convergence, this motivates us to consider establishing a higher order scheme in time for
solving the optimal control problem (1.1)-(1.2). Inspired by temporal discretization schemes with second
order accuracy in [1, 18, 31] for parabolic optimal control problem, we will develop a Crank-Nicolson
type scheme in time combining with the piecewise linear finite element in space for the optimal control
problem (1.1)-(1.2). Then we derive the optimality system for the discretized optimal control problem,
and rigorously analyze the error estimates without making additional assumptions about the regularity of
the optimality system’s solutions. The main result in Theorem 4.15 reveals that our proposed scheme for
the problem (1.1)-(1.2) without control constraints has an optimal convergence order of O(τmin{ 3

2
+α,2})

in time.
The rest of this paper is organized as follows. We present some preliminaries and the semidiscrete

scheme for the optimal control problem (1.1)-(1.2) based on the Galerkin finite element method in Sec-
tion 2, and analyze the regularity estimates on the second derivatives of the control, state and adjoint vari-
ables with respective to time in the optimality system. In Section 3, we design a fully discrete scheme
for the optimal control problem (1.1)-(1.2) by a Crank-Nicolson type discretization in time. Then the
error estimates for temporal approximation are rigorously derived in Section 4. In Section 5, some nu-
merical examples are illustrated to verify the theoretical convergence rates in temporal direction. Some
conclusions are made in Section 6.
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2 Preliminaries

In this section, we first state some main results on the optimality conditions, solutions representations
and regularity for the optimal control problem (1.1)-(1.2), then present the spatial semidiscrete Galerkin
finite element method for the problem and the error estimate derived in [5]. Throughout the paper, we
denote ‖ · ‖ as the L2(Ω)-norm, which induces the operator norm from L2(Ω) to L2(Ω), also denoted by
‖ · ‖.

2.1 Continuous problem

The adjoint derivative of ∂1−α
t in (1.4) denoted by B∂1−α

t is the (1 − α)-th order right-sided Riemann-
Liouville fractional derivative [24] with α ∈ (0, 1), and B∂1−α

t z(x, t) is defined by

B∂1−α
t z(x, t) := − 1

Γ(α)

∂

∂t

∫ T

t
(s− t)α−1z(x, s)ds. (2.1)

From [13, Lemma 2.3], the two types of Riemann-Liouville fractional derivatives in (1.4) and (2.1)
satisfy the fractional integration by parts formula, that is∫ T

0

(
∂1−α
t u(t)

)
z(t)dt =

∫ T

0
u(t)

(
B∂1−α

t z(t)
)
dt. (2.2)

Lemma 2.1 ([5, 39]). Let q ∈ Uad be the solution to the optimal control problem (1.1)-(1.2) and u
the corresponding state variable given by (1.2). Then, there exists an adjoint state z such that (u, z, q)
satisfies the optimality system

∂tu−∆∂1−α
t u = f + q, in Ω× (0, T ], u = 0, on ∂Ω× (0, T ], (2.3)

− ∂tz −∆B∂1−α
t z = u− ud, in Ω× [0, T ), z = 0, on ∂Ω× [0, T ), (2.4)

with u(·, 0) = 0 and z(·, T ) = 0, and the variational inequality

J ′(q)(v − q) =

∫ T

0

∫
Ω

(γq + z)(v − q)dxdt ≥ 0, ∀ v ∈ Uad. (2.5)

The variational inequality (2.5) can be expressed as

q = PUad

(
− 1

γ
z
)
, (2.6)

where PUad is a pointwise projection onto Uad denoted by

PUad
(
v(t)

)
= max

{
a,min{v(t), b}

}
, (2.7)

one can refer to [11, 29, 40] for more details. We obtain from Lemma 2.1 that the objective functional
J(·) in (1.1) is strongly convex, that is, the following property holds

J ′(p)(p− q)− J ′(q)(p− q) ≥ γ‖p− q‖2L2(0,T ;L2(Ω)) (2.8)

for any p, q ∈ L2(0, T ;L2(Ω)). This implies that the continuous optimal control problem (1.1)-(1.2) has
a unique solution.

By using the Laplace transform, the solutions to (2.3) and (2.4) can be derived [5] as follows

u(·, t) =

∫ t

0
E(t− s)

(
f(·, s) + q(·, s)

)
ds, (2.9)

z(·, t) =

∫ T

t
E(s− t)

(
u(·, s)− ud(·, s)

)
ds, (2.10)
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where the operator E(·) : L2(Ω)→ L2(Ω) is given by

E(t) :=
1

2πi

∫
Γθ,κ

eξtξα−1(ξα −∆)−1dξ, (2.11)

with a contour Γθ,κ on the complex plane given by

Γθ,κ =
{
ξ ∈ C : |ξ| = κ, | arg ξ| ≤ θ

}
∪
{
ξ ∈ C : ξ = ρe±iθ, ρ ≥ κ

}
. (2.12)

The operator E(·) : L2(Ω)→ L2(Ω) in (2.11) can also be represented by

E(t)v =

∞∑
j=1

Eα,1(−λjtα)(v, ϕj)ϕj , (2.13)

where Eα,1(·) is the Mittag-Leffler function [24].
The following regularity of the solutions has been proved in [5, Lemma 2.4].

Lemma 2.2 ([5]). Let (u, z, q) denote solutions of the system (2.3)-(2.5). For f ∈ L2(0, T ;L2(Ω)) and
ud ∈ L2(0, T ;L2(Ω)), we have

‖u‖H1(0,T ;L2(Ω)) + ‖u‖L2(0,T ;H2(Ω)) ≤ C‖f + q‖L2(0,T ;L2(Ω)), (2.14)

‖z‖H1(0,T ;L2(Ω)) + ‖z‖L2(0,T ;H2(Ω)) ≤ C‖u− ud‖L2(0,T ;L2(Ω)), (2.15)

‖q‖H1(0,T ;L2(Ω)) ≤ C. (2.16)

More regularity requirements are necessary to achieve more than first order convergence of temporal
discrete schemes for the optimal control problem. We introduce the space Ḣp(Ω) ⊂ L2(Ω) for p ≥ 0
with the norm ‖v‖2

Ḣp(Ω)
:=
∑∞

j=1 λ
p
j (v, ϕj)

2, where {(λj , ϕj)}∞j=1 are the L2-orthonormal eigenpairs

of −∆ in Ω with a homogeneous Dirichlet boundary condition [28], in particular, Ḣ0(Ω) = L2(Ω),
Ḣ1(Ω) = H1

0 (Ω) and Ḣ2(Ω) = H2(Ω) ∩ H1
0 (Ω). With additional assumptions of f and ud, we

can obtain the following regularity results for the problem (2.3)-(2.5) with the admissible set Uad =
L2(0, T ;L2(Ω)).

Theorem 2.3. Let (u, z, q) denote solutions of the system (2.3)-(2.5) with the admissible set Uad =
L2(0, T ;L2(Ω)). For f ∈ H2(0, T ; Ḣp(Ω)), ud ∈ H2(0, T ; Ḣp(Ω)), f(0) ∈ Ḣp+2(Ω), f ′(0) ∈
Ḣp(Ω), ud(T ) ∈ Ḣp+2(Ω), u′d(T ) ∈ Ḣp(Ω), 0 ≤ p ≤ 1 and 1

2 < α < 1, we have

‖∂2
t u‖L2(0,T ;Ḣp(Ω)) ≤ C

(
‖g(0)‖Ḣp+2(Ω) + ‖g′(0)‖Ḣp(Ω) + ‖∂2

t g‖L2(0,T ;Ḣp(Ω))

)
, (2.17)

‖∂2
t z‖L2(0,T ;Ḣp(Ω)) ≤ C

(
‖ũ(T )‖Ḣp+2(Ω) + ‖ũ′(T )‖Ḣp(Ω) + ‖∂2

t ũ‖L2(0,T ;Ḣp(Ω))

)
, (2.18)

‖∂2
t q‖L2(0,T ;Ḣp(Ω)) ≤ C, (2.19)

where g(t) := f(t) + q(t) and ũ(t) := u(t)− ud(t).

Proof. By using (2.9) and (2.13), it obtains that

‖∂2
t u‖2L2(0,T ;Ḣp(Ω))

=

∫ T

0

∞∑
j=1

λpj
∣∣∂2
t

∫ t

0
Eα,1

(
− λj(t− s)α

)(
g(s), ϕj

)
ds
∣∣2dt

≤ 3
( ∞∑
j=1

λpj
(
g(0), ϕj

)2 ∫ T

0

(
∂tEα,1(−λjtα)

)2
dt+

∞∑
j=1

λpj
(
g′(0), ϕj

)2 ∫ T

0

(
Eα,1(−λjtα)

)2
dt
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+
∞∑
j=1

λpj

∫ T

0

( ∫ t

0
Eα,1

(
− λj(t− s)α

)(
∂2
sg(s), ϕj

)
ds
)2

dt
)

= 3(I1 + I2 + I3).

It indicates in [10, Lemma 1.3] that the Mittag-Leffler functions satisfy ∂tEα,1(−λtα) = −λtα−1Eα,α(−λtα)
and |Eα,α(z)| ≤ C/(1 + |z|2), then for α ∈ (1/2, 1), we derive that

I1 =
∞∑
j=1

λpj
(
g(0), ϕj

)2 ∫ T

0

(
− λjtα−1Eα,α(−λjtα)

)2
dt

≤ C
∞∑
j=1

λpj
(
g(0), ϕj

)2 ∫ T

0

λ2
j t

2α−2

(1 + λ2
j t

2α)2
dt

≤ C
∞∑
j=1

λp+2
j

(
g(0), ϕj

)2
= C‖g(0)‖2

Ḣp+2(Ω)
,

and I2 ≤ C‖g′(0)‖2
Ḣp(Ω)

by the estimate |Eα,1(z)| ≤ C/(1 + |z|) in [10, Lemma 1.3]. In addition, it
follows from Young’s inequality for convolution that

I3 =
∞∑
j=1

λpj

∫ T

0

(∫ t

0
Eα,1

(
− λj(t− s)α

)(
∂2
sg(s), ϕj

)
ds
)2

dt

≤
∞∑
j=1

λpj

(∫ T

0
Eα,1(−λjtα)dt

)2
∫ T

0

(
∂2
t g(t), ϕj

)2
dt

≤C‖∂2
t g‖2L2(0,T ;Ḣp(Ω))

.

Thus, the estimate (2.17) is obtained. By the similar approach, (2.18) can also be derived by setting
p(·, r) = z(·, T − r) with p(r) satisfying ∂rp(r)−∆∂1−α

r p(r) = u(T − r)−ud(T − r). Then it further
deduces (2.19) from (2.6) and the condition Uad = L2(0, T ;L2(Ω)).

Remark 2.4. If f ∈ H1(0, T ; Ḣp(Ω)), ud ∈ H1(0, T ; Ḣp(Ω)), f(0) ∈ Ḣp+2(Ω) and ud(T ) ∈
Ḣp+2(Ω), then the estimates in Theorem 2.3 also hold by the similar approach.

2.2 Semidiscrete Galerkin scheme

Let Xh ⊂ H1
0 (Ω) be a continuous piecewise linear finite element space on a regular triangulation mesh

Th of the domain Ω with h = maxT∈Th diam(T ) being the maximal diameter. In [5], the semidiscrete
Galerkin scheme with variational discretization for the control variable is considered for the optimal
control problem (1.1)-(1.2), that is to find qh ∈ Uad such that

min
qh∈Uad

J(qh) =
1

2
‖uh − ud‖2L2(0,T ;L2(Ω)) +

γ

2
‖qh‖2L2(0,T ;L2(Ω)) (2.20)

subject to
(∂tuh, χh) + (∇∂1−α

t uh,∇χh) = (f + qh, χh), ∀ χh ∈ Xh (2.21)

with uh(·, 0) = 0, where the control variable qh is discretized in a variational concept in [7]. The
corresponding discrete optimality conditions are as follows

(∂tuh, χh) + (∇∂1−α
t uh,∇χh) = (f + qh, χh), ∀ χh ∈ Xh, t ∈ (0, T ], (2.22)

− (∂tzh, χh) + (∇B∂1−α
t zh,∇χh) = (uh − ud, χh), ∀ χh ∈ Xh, t ∈ [0, T ), (2.23)
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with uh(·, 0) = 0, zh(·, T ) = 0 and∫ T

0

∫
Ω

(γqh + zh)(vh − qh)dxdt ≥ 0, ∀ vh ∈ Uad, (2.24)

which implies that

qh = PUad

(
− 1

γ
zh

)
. (2.25)

Similarly by using the Laplace transform, the solutions to (2.22)-(2.23) can be represented by

uh(·, t) =

∫ t

0
Eh(t− s)

(
f(·, s) + qh(·, s)

)
ds, (2.26)

zh(·, t) =

∫ T

t
Eh(s− t)

(
uh(·, s)− ud(·, s)

)
ds, (2.27)

where the operator Eh(·) : L2(Ω)→ Xh is given by

Eh(t) :=
1

2πi

∫
Γθ,κ

eξtξα−1(ξα −∆h)−1Phdξ, (2.28)

and Ph : L2(Ω)→ Xh denotes the L2 projection operator by

(Phϕ, χh) = (ϕ, χh), ∀ ϕ ∈ L2(Ω), χh ∈ Xh. (2.29)

In (2.28), the discrete Laplacian ∆h : Xh → Xh is defined by

(∆hϕh, φh) = −(∇ϕh,∇φh), ∀ ϕh, φh ∈ Xh,

and it satisfies the following estimates [3, Lemma 5].

Lemma 2.5 ([3]). For any ξ ∈ Σθ := {ξ ∈ C\{0} : | arg ξ| ≤ θ} with θ ∈ (0, π), we have the resolvent
estimates

‖(ξ −∆h)−1‖ ≤ C|ξ|−1, (2.30)

‖∆1−γ
h (ξ −∆h)−1‖ ≤ C|ξ|−γ , γ ∈ [0, 1]. (2.31)

The regularity of the solutions of the semidiscrete system (2.22)-(2.24) has also been presented in [5,
Lemma 3.2].

Lemma 2.6 ([5]). Let (uh, zh, qh) denote solutions of the system (2.22)-(2.24). For f ∈ L2(0, T ;L2(Ω))
and ud ∈ L2(0, T ;L2(Ω)), we have

‖uh‖H1(0,T ;L2(Ω)) + ‖uh‖L2(0,T ;H1(Ω)) ≤ C‖f + qh‖L2(0,T ;L2(Ω)), (2.32)

‖zh‖H1(0,T ;L2(Ω)) + ‖zh‖L2(0,T ;H1(Ω)) ≤ C‖uh − ud‖L2(0,T ;L2(Ω)), (2.33)

‖qh‖H1(0,T ;L2(Ω)) ≤ C. (2.34)

Remark 2.7. By the similar approach as in Theorem 2.3, analogous regularity estimates inH2(0, T ;L2(Ω))
can be established for the semidiscrete solutions (uh, zh, qh) of the system (2.22)-(2.24).

In [5, Theorem 3.1], the optimal finite element error estimates in space are derived for the semidis-
crete system (2.22)-(2.24).

Theorem 2.8 ([5]). Let (u, z, q) and (uh, zh, qh) be the solutions of the systems (2.3)-(2.5) and (2.22)-
(2.24), respectively. For f ∈ L2(0, T ;L2(Ω)) and ud ∈ L2(0, T ;L2(Ω)), we have

‖u− uh‖L2(0,T ;L2(Ω)) + ‖z − zh‖L2(0,T ;L2(Ω)) + ‖q − qh‖L2(0,T ;L2(Ω)) ≤ Ch2,

‖∇(u− uh)‖L2(0,T ;L2(Ω)) + ‖∇(z − zh)‖L2(0,T ;L2(Ω)) ≤ Ch,

where the constant C is independent of h.
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3 Fully discrete Crank-Nicolson scheme

In this section, we devote to designing the fully discrete numerical discretization with Crank-Nicolson
scheme in time for the optimal control problem (1.1)-(1.2).

The time interval [0, T ] is divided into a uniform partition with a step size τ = T/N , and tn =
nτ, n = 0, · · · , N . We denote ∂̄1−α

τ the Grünwald-Letnikov difference formula (also called the back-
ward Euler convolution quadrature) by

∂̄1−α
τ Unh :=

1

τ1−α

n∑
j=1

bn−jU
j
h, n = 1, 2, . . . , N, (3.1)

where the coefficients {bj , j ≥ 0} satisfy the following power series expansion

(1− ζ)1−α =
∞∑
j=0

bjζ
j , ∀ |ζ| < 1, ζ ∈ C (3.2)

and the recursive formula b0 = 1, bj = bj−1 · α+j−2
j , j = 1, 2, · · · . The notation ∂̄1−α

τ in (3.1) reduces
to the standard backward Euler difference operator ∂̄τ when α = 0 and

∂̄τU
n
h :=

Unh − U
n−1
h

τ
, n = 1, 2, . . . , N. (3.3)

By using the approach in [6], the time-fractional derivative at tn − τ
2 can be approximated by

∂1−α
t uh(tn −

τ

2
) =

(
1− α

2

)
∂1−α
t uh(tn −

1− α
2

τ) +
α

2
∂1−α
t uh(tn−1 −

1− α
2

τ) +O(τ2)

=
(
1− α

2

)
∂̄1−α
τ unh +

α

2
∂̄1−α
τ un−1

h +O(τ2),

then we obtain a fully discrete Crank-Nicolson scheme for (1.2) as follows

∂̄τU
n
h −

(
1− α

2

)
∆h∂̄

1−α
τ Unh −

α

2
∆h∂̄

1−α
τ Un−1

h = f
n− 1

2
h + Phq

n− 1
2

h (3.4)

for n = 1, 2, . . . , N , with U0
h = 0, f

n− 1
2

h = Phf(x, tn− 1
2
) and q

n− 1
2

h = qh(x, tn− 1
2
), where Ph is the L2

projection operator given by (2.29). Note that the fully discrete scheme (3.4) for (1.2) with the averaged
values of right terms at tn and tn−1 is different from that in [6], and such modification makes the scheme
(3.4) become applicable for approximating the optimal control problem (1.1)-(1.2).

We propose the fully discrete Crank-Nicolson scheme for the optimal control problem (1.1)-(1.2) as
follows

min
Qh∈Uτad

Jτ (Qh) =
τ

4
‖U0

h − u0
d‖2 +

τ

2

N−1∑
n=1

‖Unh − und‖2 +
τ

4
‖UNh − uNd ‖2 +

τ

2

N∑
n=1

γ
∥∥Qn− 1

2
h

∥∥2 (3.5)

subject to

∂̄τU
n
h −

(
1− α

2

)
∆h∂̄

1−α
τ Unh −

α

2
∆h∂̄

1−α
τ Un−1

h = f
n− 1

2
h + PhQ

n− 1
2

h (3.6)

for n = 1, 2, · · · , N , with U0
h = 0, f

n− 1
2

h = Phf(x, tn− 1
2
) and Q

n− 1
2

h = Qh(x, tn− 1
2
). The discrete

admissible set U τad in (3.5) is

U τad =
{
Qh =

(
Q
n− 1

2
h

)N
n=1

: a ≤ Qn−
1
2

h ≤ b, n = 1, 2, . . . , N
}
.

7



Let the notations B ∂̄1−α
τ Z

n− 1
2

h and B ∂̄τZ
n− 1

2
h be defined by

B ∂̄1−α
τ Z

n− 1
2

h :=
1

τ1−α

N∑
j=n

bj−nZ
j− 1

2
h , B ∂̄τZ

n− 1
2

h :=
Zn−

1
2 − Zn+ 1

2

τ
, n = 1, 2, · · · , N,

respectively, we can obtain by the above notations and simple calculations that

τ

N∑
n=1

(
Z
n− 1

2
h , ∂̄τU

n
h

)
= τ

N−1∑
n=1

(
B ∂̄τZ

n− 1
2

h , Unh
)

+
(
UNh , Z

N− 1
2

h

)
−
(
U0
h , Z

1
2
h

)
, (3.7)

τ

N∑
n=1

(
B ∂̄1−α

τ Z
n− 1

2
h , Unh

)
= τ

N∑
n=1

(
Z
n− 1

2
h , ∂̄1−α

τ Unh
)
, (3.8)

τ

N∑
n=1

(
B ∂̄1−α

τ Z
n− 1

2
h , Un−1

h

)
= τ

N∑
n=1

(
Z
n− 1

2
h , ∂̄1−α

τ Un−1
h

)
. (3.9)

3.1 Optimality conditions and solution representations

In this subsection, we derive the optimality conditions of the fully discrete optimal control problem (3.5)-
(3.6) with Crank-Nicolson scheme, and then investigate integral representations of the solutions and their
stability analysis. We introduce the following notations for further discussions.

uh =
(
uh(·, tn)

)N
n=1

, zh =
(
zh(·, tn− 1

2
)
)N
n=1

, qh =
(
qh(·, tn− 1

2
)
)N
n=1

,

Uh =
(
Unh
)N
n=1

, Zh =
(
Z
n− 1

2
h

)N
n=1

, Qh =
(
Q
n− 1

2
h

)N
n=1

.

The discrete space-time inner product and norm are defined by

[v,w] = τ
N∑
n=1

(vn, wn), ∀ v = (vn)Nn=1, w = (wn)Nn=1 ∈ L2(Ω)N ,

‖|v|‖ =
√

[v,v], ∀ v = (vn)Nn=1 ∈ L2(Ω)N .

Theorem 3.1. The fully discrete optimal control problem (3.5)-(3.6) admits a unique solution (Uh,Qh)
and a adjoint state Zh such that (Uh,Qh,Zh) satisfies the following optimality system

∂̄τU
n
h −

(
1− α

2

)
∆h∂̄

1−α
τ Unh −

α

2
∆h∂̄

1−α
τ Un−1

h = f
n− 1

2
h + PhQ

n− 1
2

h , n = 1, · · · , N, (3.10)
Z
N− 1

2
h

τ
−
(
1− α

2

)
∆h

B ∂̄1−α
τ Z

N− 1
2

h =
UNh − PhuNd

2
,

B ∂̄τZ
n− 1

2
h −

(
1− α

2

)
∆h

B ∂̄1−α
τ Z

n− 1
2

h − α

2
∆h

B ∂̄1−α
τ Z

n+ 1
2

h = Unh − Phund ,
(3.11)

for n = N − 1, · · · , 1, and(
γQ

n− 1
2

h + Z
n− 1

2
h ,W −Qn−

1
2

h

)
≥ 0, ∀W ∈ U τad. (3.12)

Proof. By the strong convexity of the fully discrete optimal control problem (3.5)-(3.6), it admits a
unique solution (Uh,Qh).

Due to the convexity of U τad, it holds that Qh + εδQh ∈ U τad with δQh := W −Qh for 0 < ε� 1
and any W ∈ U τad. We have from (3.6) that δUh = limε→0+

(
Uh(Qh + εδQh)−Uh(Qh)

)
/ε satisfies

the following variational form(
∂̄τδU

n
h , χh

)
+
(
1− α

2

)(
∇∂̄1−α

τ δUnh ,∇χh
)

+
α

2

(
∇∂̄1−α

τ δUn−1
h ,∇χh

)
=
(
δQ

n− 1
2

h , χh
)
. (3.13)
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By taking χh = Z
n− 1

2
h in (3.13), it obtains from (3.7), (3.8), (3.9) and (3.11) that the differentiation of

Jτ (Qh) is as follows

0 ≤ lim
ε→0+

Jτ (Qh + εδQh)− Jτ (Qh)

ε

=
τ

2

∫
Ω

(
UNh (Qh)− uNd

)
δUNh dx+ τ

N−1∑
n=1

∫
Ω

(
Unh (Qh)− und

)
δUnh dx

+ τ
N∑
n=1

∫
Ω
γQ

n− 1
2

h δQ
n− 1

2
h dx

= τ
N∑
n=1

∫
Ω

(
γQ

n− 1
2

h + Z
n− 1

2
h

)
δQ

n− 1
2

h dx.

Thus the proof is completed.

We next derive the representations of the solutions to the system (3.10)-(3.12) by using Cauchy’s
integral formula and analyze their stability estimates. The truncated contour Γτθ,κ of Γθ,κ in (2.12) is
defined by

Γτθ,κ =
{
z ∈ Γθ,κ : | Im(ξ)| ≤ π

τ

}
. (3.14)

Theorem 3.2. Let Gnh := f
n− 1

2
h + PhQ

n− 1
2

h and Mn
h := Unh − Phund . The solutions of the fully discrete

scheme (3.10)-(3.11) can be represented as

Unh =
τ

2πi

∫
Γτθ,κ

eξtnβτ (e−ξτ )α
[
βτ (e−ξτ )α −∆h

]−1
δτ (e−ξτ )−1G̃h(e−ξτ )dξ,

= τ
n∑
k=1

En−kτ (f
k− 1

2
h +Q

k− 1
2

h ),

(3.15)

Z
n− 1

2
h =

τ

2πi

∫
Γτθ,κ

eξ(T−tn)βτ (e−ξτ )α
[
βτ (e−ξτ )α −∆h

]−1
δτ (e−ξτ )−1M̃h(e−ξτ )dξ,

=
1

2
τEN−nτ (UNh − uNd ) + τ

N−n∑
k=1

EN−n−kτ (UN−kh − uN−kd ),

(3.16)

where the operators Enτ : L2(Ω)→ Xh are given by

Enτ =
1

2πi

∫
Γτθ,κ

eξtnβτ (e−ξτ )α
[
βτ (e−ξτ )α −∆h

]−1
δτ (e−ξτ )−1Ph dξ, (3.17)

and the functions δτ (·), βτ (·), G̃h(·) and M̃h(·) are respectively given by

δτ (ζ) =
1− ζ
τ

, βτ (ζ) =
δτ (ζ)(

1− α
2 + α

2 ζ
) 1
α

, (3.18)

G̃h(ζ) =

∞∑
n=0

Gnhζ
n, M̃h(ζ) =

N∑
n=−∞

Mn
h ζ

N−n − 1

2
MN
h , (3.19)

Proof. Multiplying (3.10) by ζn on both sides and summing n from 1 to∞ yields

Ũh(ζ) :=

∞∑
n=0

Unh ζ
n = δτ (ζ)α−1

[ δτ (ζ)α

1− α
2 + α

2 ζ
−∆h

]−1 G̃h(ζ)

1− α
2 + α

2 ζ
. (3.20)
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Then it further follows that

Unh =
τ

2πi

∫
Γτθ,κ

eξtnδτ (e−ξτ )α−1
[ δτ (e−ξτ )α

1− α
2 + α

2 e
−ξτ −∆h

]−1 G̃h(e−ξτ )

1− α
2 + α

2 e
−ξτ dξ

=
τ

2πi

∫
Γτθ,κ

eξtnβτ (e−ξτ )α
[
βτ (e−ξτ )α −∆h

]−1
δτ (e−ξτ )−1G̃h(e−ξτ )dξ,

(3.21)

which confirms the first equality of (3.15).
By changing the variable ζ = e−ξτ , it also yields that

τEnτ : =
1

2πi

∫
|ζ|=ρ

ζ−n−1
[ δτ (ζ)α

1− α
2 + α

2 ζ
−∆h

]−1 δτ (ζ)α−1

1− α
2 + α

2 ζ
Phdζ

=
τ

2πi

∫
Γτθ,κ

eξtnβτ (e−ξτ )α
[
βτ (e−ξτ )α −∆h

]−1
δτ (e−ξτ )−1Phdξ.

(3.22)

Hence, we derive from (3.20) and Cauchy’s integral formula that

Ũh(ζ) =
( ∞∑
n=0

τEnτ ζ
n
)( ∞∑

n=1

(
f
n− 1

2
h +Q

n− 1
2

h

)
ζn
)
,

and the coefficients of the power series on both sides lead to the second equality of (3.15).
By the similar approach, we can obtain the solution representation for (3.11). It obtains by multiply-

ing ζN−n on both sides of (3.11) and summing n from −∞ to N that

Z̃h(ζ) :=
N∑

n=−∞
Z
n− 1

2
h ζN−n = δτ (ζ)α−1

[ δτ (ζ)α

1− α
2 + α

2 ζ
−∆h

]−1 M̃h(ζ)

1− α
2 + α

2 ζ
, (3.23)

which is analytic with respect to ζ in a neighborhood of the origin. Then applying Cauchy’s integral
formula implies that

Z
n− 1

2
h =

τ

2πi

∫
Γτθ,κ

eξ(T−tn)Z̃h(e−ξτ )dξ

=
τ

2πi

∫
Γτθ,κ

eξ(T−tn)βτ (e−ξτ )α
[
βτ (e−ξτ )α −∆h

]−1
δτ (e−ξτ )−1M̃h(e−ξτ )dξ,

(3.24)

which obtains the first equality of (3.16). Similarly, it has from (3.23) and (3.22) that

Z̃h(ζ) =
( N∑
n=−∞

τEN−nτ ζN−n
)( N∑

n=−∞

1

2
(Unh − und )ζN−n +

N∑
n=−∞

1

2
(Un−1

h − un−1
d )ζN−n+1

)
.

Thus, the second equality of (3.16) is obtained by comparing the coefficients of the power series on both
sides of the above formula.

The functions δτ (·) and βτ (·) in (3.18) satisfy the properties in the following two lemmas, which are
derived in [4, Lemma 3.4] and [8, Lemmas 3.3 and 3.4], respectively.

Lemma 3.3 ([4]). Let α ∈ (0, 1), θ ∈
(
π
2 , arccot(− 2

π )
)

and δτ (·) be defined in (3.18). Then, for any
ξ ∈ Γτθ,κ, we have δτ (e−ξτ ) ∈ Σθ and

C0|ξ| ≤
∣∣δτ (e−ξτ )

∣∣ ≤ C1|ξ|, (3.25)∣∣δτ (e−ξτ )− ξ
∣∣ ≤ Cτ |ξ|2, (3.26)∣∣δτ (e−ξτ )α − ξα
∣∣ ≤ Cτ |ξ|α+1, (3.27)

where Σθ is defined in Lemma 2.5 and the constants C0, C1 and C are independent of τ and κ.
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Lemma 3.4 ([8]). Let α ∈ (0, 1), φ ∈ (απ/2, π) and βτ (·) be defined in (3.18). Then there exists a
constant κ1 > 0 (independent of τ ) such that for κ ∈ (0, κ1], θ ∈ (π/2, π/2 + κ1] and any ξ ∈ Γτθ,κ, we
have βτ (e−ξτ ) ∈ Σφ and

C0|ξ| ≤
∣∣βτ (e−ξτ )

∣∣ ≤ C1|ξ|, (3.28)∣∣βτ (e−ξτ )− ξ
∣∣ ≤ Cτ2|ξ|3, (3.29)∣∣βτ (e−ξτ )α − ξα
∣∣ ≤ Cτ2|ξ|2+α, (3.30)

where the constants C0, C1 and C are independent of τ, θ and κ (but may depend on κ1).

For the error analysis of the fully discrete optimal control problem (3.5)-(3.6) in the next section, we
introduce three auxiliary notations Uh(qh),Zh(Uh(qh)),Zh(uh), which respectively satisfy the follow-
ing three systems∂̄τUh(qh)n − (1− α

2
)∆h∂̄

1−α
τ Uh(qh)n − α

2
∆h∂̄

1−α
τ Uh(qh)n−1 = f

n− 1
2

h + Phq
n− 1

2
h ,

Uh(qh)0 = 0, n = 1, 2, · · · , N,
(3.31)


Zh(Uh(qh))N−

1
2

τ
− (1− α

2
)∆h

B ∂̄1−α
τ Zh(Uh(qh))N−

1
2 =

Uh(qh)N − PhuNd
2

,

B ∂̄τZh(Uh(qh))n−
1
2 − (1− α

2
)∆h

B ∂̄1−α
τ Zh(Uh(qh))n−

1
2 − α

2
∆h

B ∂̄1−α
τ Zh(Uh(qh))n+ 1

2

= Uh(qh)n − Phund ,

(3.32)


Zh(uh)N−

1
2

τ
− (1− α

2
)∆h

B ∂̄1−α
τ Zh(uh)N−

1
2 =

uNh − PhuNd
2

,

B ∂̄τZh(uh)n−
1
2 − (1− α

2
)∆h

B ∂̄1−α
τ Zh(uh)n−

1
2 − α

2
∆h

B ∂̄1−α
τ Zh(uh)n+ 1

2 = unh − Phund ,
(3.33)

for n = N − 1, · · · , 1.
In the following, we obtain the stability results of the solutions to (3.10), (3.11) and (3.31)-(3.33).

Theorem 3.5. Let Unh , Z
n− 1

2
h , Uh(qh)n, Zh(Uh(qh))n−

1
2 and Zh(uh)n−

1
2 be solutions to (3.10), (3.11),

(3.31), (3.32) and (3.33), respectively. Then we have

‖|Uh(qh)−Uh|‖ ≤ C‖|qh −Qh|‖, (3.34)

‖|Zh(Uh(qh))−Zh(uh)|‖ ≤ C‖|Uh(qh)− uh|‖, (3.35)

‖|Zh(uh)−Zh|‖ ≤ C‖|uh −Uh|‖, (3.36)

where the constant C is independent of τ .

Proof. The operators Enτ in (3.17) are bounded by using Lemmas 2.5, 3.3 and 3.4, that is

‖Enτ (t)‖ ≤ C
∫

Γτθ,κ

|eξt||βτ (e−ξτ )|α‖[βτ (e−ξτ )α −∆h]−1‖|δτ (e−ξτ )−1||dξ|

≤ C
∫

Γτθ,κ

|eξt||ξ|−1|dξ| ≤ C.

Then it has from the expression (3.15) that

‖Uh(qh)n − Unh ‖ ≤ τ
n∑
k=1

‖En−kτ ‖
∥∥qk− 1

2
h −Qk−

1
2

h

∥∥ ≤ Cτ n∑
k=1

∥∥qk− 1
2

h −Qk−
1
2

h

∥∥,
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which directly implies (3.34) from

‖|Uh(qh)−Uh|‖2 ≤ Cτ
N∑
n=1

(
τ

N∑
k=1

‖qk−
1
2

h −Qk−
1
2

h ‖
)2
≤ C‖|qh −Qh|‖2.

Next we consider the estimate (3.35). We have from (3.16) that∥∥Zh(Uh(qh))n−
1
2 − Zh(uh)n−

1
2

∥∥
L2(Ω)

≤ 1

2
τ
∥∥EN−nτ

∥∥∥∥Uh(qh)N − uNh
∥∥+ τ

N−n∑
k=1

∥∥EN−n−kτ

∥∥∥∥Uh(qh)N−k − uN−kh

∥∥
≤ Cτ

N−n∑
k=0

∥∥EN−n−kτ

∥∥∥∥Uh(qh)N−k − uN−kh

∥∥ ≤ Cτ N∑
k=n

∥∥Uh(qh)k − ukh
∥∥.

Then we further obtain that

‖|Zh(Uh(qh))−Zh(uh)|‖2 ≤ Cτ
N∑
n=1

(
τ

N∑
k=1

‖Uh(qh)k − ukh‖
)2
≤ C‖|Uh(qh)− uh|‖2.

By the similar approach as above, the estimate (3.36) can also be derived from (3.16).

4 Error estimates

In this section, we consider the analysis of temporal errors between the fully discrete Crank-Nicolson
scheme (3.5)-(3.6) and the semidiscrete scheme (2.20)-(2.21) for the case of the admissible set Uad =
L2(0, T ;L2(Ω)), including the error estimates of ‖|uh−Uh|‖, ‖|zh−Zh|‖ and ‖|qh−Qh|‖. The main
result is stated in Theorem 4.15.

We first consider the temporal error estimates of ‖|uh − Uh(qh)|‖ and ‖|zh − Zh(uh)|‖ for the
schemes (3.31) and (3.33), respectively, in the next two subsections. The following lemma is necessary
for our analysis, which refers to [6, Lemma 3.2].

Lemma 4.1 ([6]). Let α ∈ (0, 1), µ(·) and γ(·) be defined by

µ(ζ) =
ζ

(1− α
2 + α

2 ζ)
2
α

, γ(ζ) =
1
2 + 1

2ζ

(1− α
2 + α

2 ζ)
1
α

. (4.1)

Then there exists a constant κ1 > 0 (independent of τ ) such that for κ ∈ (0, κ1] and θ ∈ (π/2, π/2+κ1],
it holds that ∣∣µ(e−ξτ )

∣∣ ≤ C, ∣∣γ(e−ξτ )
∣∣ ≤ C, (4.2)∣∣µ(e−ξτ )− 1

∣∣ ≤ Cτ2|ξ|2,
∣∣γ(e−ξτ )− 1

∣∣ ≤ Cτ2|ξ|2, (4.3)

for any ξ ∈ Γτθ,κ, where the constants C are independent of τ, θ and κ (maybe dependent on κ1).

4.1 Error estimate of ‖|uh −Uh(qh)|‖

In this subsection, we derive the error estimate of ‖|uh − Uh(qh)|‖ by analyzing the error ‖uh(tn) −
Uh(qh)n‖ for each term in the Taylor expansions of the source terms fh(t) and qh(t),

fh(t) = fh(0) + tf ′h(0) + (t ∗ f ′′h )(t), qh(t) = qh(0) + tq′h(0) + (t ∗ q′′h)(t).

It shows that the estimate of ‖uh(tn) − Uh(qh)n‖ consists of errors for three parts: fh(0) and qh(0);
tf ′h(0) and tq′h(0); (t ∗ f ′′h )(t) and (t ∗ q′′h)(t).
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For the case fh(t) = fh(0) and qh(t) = qh(0), it follows from (2.26) and Theorem 3.2 that the solu-
tions uh(tn) and Uh(qh)n to (2.22) and (3.31) with fh(t) = fh(0) and qh(t) = qh(0) can be represented
as

uh(tn) =
1

2πi

∫
Γθ,κ

eξtnξα−2(ξα −∆h)−1(fh(0) + Phqh(0))dξ

= tn(fh(0) + Phqh(0)) +
1

2πi

∫
Γθ,κ

eξtnξ−2(ξα −∆h)−1∆hPh(f(0) + qh(0))dξ,

(4.4)

Uh(qh)n =
1

2πi

∫
Γτθ,κ

eξtnβτ (e−ξτ )α−2
[
βτ (e−ξτ )α −∆h

]−1
µ(e−ξτ )(fh(0) + Phqh(0))dξ

= tn(fh(0) + Phqh(0))

+
1

2πi

∫
Γτθ,κ

eξtnβτ (e−ξτ )−2
[
βτ (e−ξτ )α −∆h

]−1
µ(e−ξτ )∆hPh(f(0) + qh(0))dξ,

(4.5)

respectively, where ξα = (ξα−∆h) + ∆h and βτ (e−ξτ )α = (βτ (e−ξτ )α−∆h) + ∆h are applied, βτ (·)
is given by (3.18) and µ(·) is defined by (4.1).

Lemma 4.2. For fh(t) = fh(0) and qh(t) = qh(0), let uh(tn) and Uh(qh)n be solutions to (2.22) and
(3.31), respectively. Then we have∥∥uh(tn)− Uh(qh)n

∥∥ ≤ Cτ2tα−1
n ‖∆hPh(f(0) + qh(0))‖, (4.6)

where the constant C is independent of τ .

Proof. As |ξ| ≥ cτ−1 in Γθ,κ\Γτθ,κ, we deduce from the estimate ‖(ξα −∆h)−1‖ ≤ C|ξ|−α that

∥∥ 1

2πi

∫
Γθ,κ\Γτθ,κ

eξtnξ−2(ξα −∆h)−1∆hPh(f(0) + qh(0))dξ
∥∥ ≤ Cτ2tα−1

n ‖∆hPh(f(0) + qh(0))‖.

Then, the estimate (4.6) is derived from (4.4), (4.5) and Lemmas 3.4 and 4.1.

For fh(t) = tf ′h(0) and qh(t) = tq′h(0), it also obtains from (2.26) and Theorem 3.2 that the solutions
uh(tn) and Uh(qh)n to (2.22) and (3.31) are in the form of

uh(tn) =
1

2πi

∫
Γθ,κ

eξtnξα−3(ξα −∆h)−1(f ′h(0) + Phq
′
h(0))dξ, (4.7)

Uh(qh)n =
1

2πi

∫
Γτθ,κ

eξtn
τ2e−ξτ

(1− e−ξτ )2
βτ (e−ξτ )α−1

[
βτ (e−ξτ )α −∆h

]−1
γ(e−ξτ )(f ′h(0) + Phq

′
h(0))dξ,

(4.8)

where βτ (·) is given in (3.18) and γ(·) is defined by (4.1). Note that the scheme (3.31) for fh(t) = tf ′h(0)
and qh(t) = tq′h(0) is identical to the one in [6], and the error estimate has been obtained in [6, Lemma
3.4].

Lemma 4.3 ([6]). For fh(t) = tf ′h(0) and qh(t) = tq′h(0), let uh(tn) and Uh(qh)n be solutions to (2.22)
and (3.31), respectively. Then we have∥∥uh(tn)− Uh(qh)n

∥∥ ≤ Cτ2‖f ′(0) + q′h(0)‖, (4.9)

where the constant C is independent of τ .
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Next, we consider the case of fh(t) = (t∗f ′′h )(t) and qh(t) = (t∗q′′h)(t), and state the result in Lemma
4.5. It follows from (2.26) and (2.28) that the solution uh(tn) to (2.22) at time tn with fh(t) = (t∗f ′′h )(t)
and qh(t) = (t ∗ q′′h)(t) is given by

uh(tn) =
(
Eh ∗ (f + qh)

)
(tn) =

(
Eh ∗ t ∗ (f ′′ + q′′h)

)
(tn) =

(
(Eh ∗ t) ∗ (f ′′ + q′′h)

)
(tn), (4.10)

with Eh(t) defined in (2.28) and

(Eh ∗ t)(t) =
1

2πi

∫
Γθ,κ

eξtξα−3(ξα −∆h)−1Phdξ. (4.11)

Analogous to the representation of Unh in Theorem 3.2, the solution Uh(qh)n to (3.31) can be expressed
by

Uh(qh)n = τ
n∑
j=1

En−jτ (f j−
1
2 + q

j− 1
2

h ), (4.12)

where Enτ is given in (3.17). Then we obtain

Uh(qh)n =
(
Eτ ∗ (f + qh)

)
(tn) =

(
Eτ ∗ t ∗ (f ′′ + q′′h)

)
(tn)

=
(
(Eτ ∗ t) ∗ (f ′′ + q′′h)

)
(tn),

(4.13)

where

Eτ (t) = τ
∞∑
j=0

Ejτδtj+1
2

(t), (4.14)

with δt
j+1

2

(t) being the Dirac delta function at tj+ 1
2
.

Lemma 4.4. Let Eh(t) and Eτ (t) be given by (2.28) and (4.14). Then we have∥∥((Eh − Eτ ) ∗ t
)
(t)
∥∥ ≤ Cτ2, ∀ t ∈ (tn−1, tn], n = 1, 2, · · · , N, (4.15)

where the constant C is independent of τ .

Proof. We first prove (4.15) for t = tn. The definition of Eτ (t) in (4.14) follows that

∞∑
n=1

(Eτ ∗ t)(tn)ζn = τ

∞∑
n=1

n−1∑
j=0

(tn − tj+ 1
2
)Ejτζ

n

=
(1

2
+
ζ

2

)(
τ
∞∑
n=0

Enτ ζ
n
)( ∞∑

n=0

tnζ
n
)

=
τζ

(1− ζ)2
βτ (ζ)α−1

[
βτ (ζ)α −∆h

]−1
γ(ζ),

where γ(·) is defined by (4.1). By Cauchy’s integral formula, we have

(Eτ ∗ t)(tn) =
1

2πi

∫
Γτθ,κ

eξtn
τ2e−ξτ

(1− e−ξτ )2
βτ (e−ξτ )α−1

[
βτ (e−ξτ )α −∆h

]−1
γ(e−ξτ )dξ. (4.16)

Then it obtains from (4.11), (4.16) and Lemma 4.3 that∥∥((Eh − Eτ ) ∗ t
)
(tn)

∥∥ ≤ Cτ2. (4.17)

Next we confirm that (4.15) holds for any t ∈ (tn−1, tn). Taking the Taylor expansions of the
functions Eh ∗ t and Eτ ∗ t at tn, it follows that

(Eh ∗ t)(t) = (Eh ∗ t)(tn) + (t− tn)(Eh ∗ 1)(tn) +

∫ t

tn

(t− s)Eh(s)ds, (4.18)
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(Eτ ∗ t)(t) = (Eτ ∗ t)(tn) + (t− tn)(Eτ ∗ 1)(tn) +

∫ t

tn

(t− s)Eτ (s)ds. (4.19)

It yields from Lemma 4.2 that ‖((Eh − Eτ ) ∗ 1)(tn)‖ ≤ Cτ . The definition of Eτ in (4.14) implies that∥∥∫ t

tn

(t− s)Eτ (s)ds
∥∥ ≤ τ2‖En−1

τ ‖ ≤ Cτ2,

together with which and the boundedness of the operator Eh(·) in (2.28) obtains (4.15) for any t ∈
(tn−1, tn).

Lemma 4.5. For fh = (t ∗ f ′′h )(t), qh = (t ∗ q′′h)(t), let uh(tn) and Uh(qh)n be solutions to (2.22) and
(3.31), respectively. Then we have∥∥uh(tn)− Uh(qh)n

∥∥ ≤ Cτ2

∫ tn

0
‖f ′′(s) + q′′h(s)‖ds, (4.20)

where the constant C is independent of τ .

Proof. It follows from (4.10) and (4.13) that∥∥uh(tn)− Uh(qh)n
∥∥ =

∥∥((Eh − Eτ ) ∗ t ∗ (f ′′ + q′′h))(tn)
∥∥,

which directly obtains the estimate (4.20) by applying Lemma 4.4.

To this end, we are ready to estimate the error ‖|uh −Uh(qh)|‖ in the following lemma.

Lemma 4.6. Let uh(tn) and Uh(qh)n be solutions to (2.22) and (3.31), then we have

‖|uh −Uh(qh)|‖ ≤ Cτmin{ 3
2

+α,2}‖∆hPh(f(0) + qh(0))‖
+ Cτ2

[
‖f ′(0) + q′h(0)‖+ ‖f ′′ + q′′h‖L2(0,T ;L2(Ω))

]
,

(4.21)

where the constant C is independent of τ .

Proof. It follows from Lemmas 4.2, 4.3 and 4.5 that

‖uh(tn)− Uh(qh)n‖ ≤ Cτ2tα−1
n ‖∆hPh(f(0) + qh(0))‖+ Cτ2‖f ′(0) + q′h(0)‖

+ Cτ2

∫ tn

0
‖f ′′(s) + q′′h(s)‖ds

=: In + IIn + IIIn.

(4.22)

On one hand, with the fact 2tn ≥ tn+1 for n ≥ 1, we derive that

(
τ

N∑
n=1

I2
n

) 1
2 ≤ C

(
τ

N∑
n=1

τ4t2α−2
n

) 1
2 ‖∆hPh(f(0) + qh(0))‖

≤ Cτ2
( N∑
n=1

∫ tn+1

tn

t2α−2dt
) 1

2 ‖∆hPh(f(0) + qh(0))‖

≤ Cτmin{ 3
2

+α,2}‖∆hPh(f(0) + qh(0))‖.

(4.23)

On the other hand, it has(
τ

N∑
n=1

II2
n

) 1
2 ≤ C

(
τ

N∑
n=1

τ4
) 1

2 ‖f ′(0) + q′h(0)‖ ≤ Cτ2‖f ′(0) + q′h(0)‖. (4.24)

In addition, (
τ

N∑
n=1

III2
n

) 1
2 ≤ C

(
τ

N∑
n=1

τ4

∫ tn

0
‖f ′′(s) + q′′h(s)‖2ds

) 1
2

≤ Cτ2‖f ′′(s) + q′′h(s)‖L2(0,T ;L2(Ω)).

(4.25)

Then the result (4.21) is obtained by (4.23)-(4.25).
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Remark 4.7. The estimate (4.6) in Lemma 4.2 imposes higher spatial regularity of f and q at the initial
time, which is crucial to derive the optimal error estimate (4.21) in Lemma 4.6. Otherwise, it was
obtained in [6, Lemma 3.3] that∥∥uh(tn)− Uh(qh)n

∥∥ ≤ Cτ2t−1
n ‖fh(0) + qh(0)‖,

then it will result in the following error estimate

‖|uh −Uh(qh)|‖ ≤ Cτ
3
2 ‖fh(0) + qh(0)‖

+ Cτ2
[
‖f ′(0) + q′h(0)‖+ ‖f ′′ + q′′h‖L2(0,T ;L2(Ω))

]
,

which is lower than the convergence order O(τmin{ 3
2

+α,2}) in (4.21). In addition, by using (2.25),
(2.27), (2.28), Lemmas 2.5-2.6 and the Sobolev imbedding H1(0, T ) ↪→ C[0, T ], we can obtain that
‖∆hPhqh(0)‖ ≤ C is satisfied when Uad = L2(0, T ;L2(Ω)).

4.2 Error estimate of ‖|zh −Zh(uh)|‖

In this subsection, we derive the error estimate of ‖|zh−Zh(uh)|‖ for the semidiscrete scheme (2.23) and
fully discrete scheme (3.33). It is noticed that the temporal error analysis for the discrete adjoint equation
(3.33) is largely different from that for the discrete state equation (3.31). Then we first meticulously
analyze the error estimate of ‖zh(tn− 1

2
)− Zh(uh)n−

1
2 ‖ for each term in the Taylor expansions of uh(t)

and ud(t) at T , that is

uh(t) = uh(T )− (T − t)u′h(T ) +

∫ T

t
(s− t)u′′h(s)ds,

ud(t) = ud(T )− (T − t)u′d(T ) +

∫ T

t
(s− t)u′′d(s)ds.

For the case of uh(t) = uh(T ) and ud(t) = ud(T ), together with the splittings ξα = (ξα−∆h)+∆h

and βτ (e−ξτ )α = (βτ (e−ξτ )α−∆h)+∆h, it implies from (2.27) and (2.28) that the semidiscrete solution
zh(tn− 1

2
) to (2.23) can also be represented by

zh(tn− 1
2
) =

1

2πi

∫
Γθ,κ

e
ξ(T−t

n− 1
2

)
ξα−2(ξα −∆h)−1Ph

(
uh(T )− ud(T )

)
dξ

= (T − tn− 1
2
)Ph
(
uh(T )− ud(T )

)
+

1

2πi

∫
Γθ,κ

e
ξ(T−t

n− 1
2

)
ξ−2(ξα −∆h)−1∆hPh

(
uh(T )− ud(T )

)
dξ,

(4.26)

and the fully discrete solution Zh(uh)n−
1
2 to (3.33) can be obtained from (3.16) in Theorem 3.2 as

follows

Zh(uh)n−
1
2

= (T − tn− 1
2
)Ph
(
uh(T )− ud(T )

)
+

1

4πi

∫
Γτθ,κ

eξ(T−tn−1)βτ (e−ξτ )−2
[
βτ (e−ξτ )α −∆h

]−1
µ(e−ξτ )∆hPh

(
uh(T )− ud(T )

)
dξ

+
1

4πi

∫
Γτθ,κ

eξ(T−tn)βτ (e−ξτ )−2
[
βτ (e−ξτ )α −∆h

]−1
µ(e−ξτ )∆hPh

(
uh(T )− ud(T )

)
dξ,

(4.27)

where βτ (e−ξτ ) and µ(e−ξτ ) are given by (3.18) and (4.1), respectively.
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Lemma 4.8. For uh(t) = uh(T ) and ud(t) = ud(T ), let zh(tn− 1
2
) and Zh(uh)n−

1
2 be solutions to

(2.23) and (3.33) given by (4.26) and (4.27), respectively. Then we have∥∥zh(tn− 1
2
)− Zh(uh)n−

1
2

∥∥ ≤ Cτ2(T − tn− 1
2
)α−1

[
‖∆huh(T )‖+ ‖∆ud(T )‖

]
, (4.28)

where the constant C is independent of τ .

Proof. From (4.26) and (4.27), it obtains that

zh(tn− 1
2
)− Zh(uh)n−

1
2

=
1

4πi

∫
Γθ,κ\Γτθ,κ

e
ξ(T−t

n− 1
2

)M(ξ)∆hPh(uh(T )− ud(T ))dξ

+
1

4πi

∫
Γτθ,κ

e
ξ(T−t

n− 1
2

)N (ξ)∆hPh(uh(T )− ud(T ))dξ,

(4.29)

whereM(ξ) and N (ξ) are given by

M(ξ) := 2ξ−2(ξα −∆h)−1,

N (ξ) := 2ξ−2(ξα −∆h)−1 − (e
−ξτ
2 + e

ξτ
2 )βτ (e−ξτ )−2[βτ (e−ξτ )α −∆h]−1µ(e−ξτ ).

It derives from Lemmas 2.5, 3.4 and 4.1 the following two estimates

‖M(ξ)‖ ≤ C|ξ|−α−2 ≤ Cτ2|ξ|−α, ∀ ξ ∈ Γθ,κ\Γτθ,κ (4.30)

and

‖N (ξ)‖ ≤
∥∥2ξ−2(ξα −∆h)−1 − 2ξ−2

[
βτ (e−ξτ )α −∆h

]−1

+ 2ξ−2
[
βτ (e−ξτ )α −∆h

]−1 − 2βτ (e−ξτ )−2
[
βτ (e−ξτ )α −∆h

]−1

+ 2βτ (e−ξτ )−2
[
βτ (e−ξτ )α −∆h

]−1 − 2βτ (e−ξτ )−2
[
βτ (e−ξτ )α −∆h

]−1
µ(e−ξτ )

+ 2βτ (e−ξτ )−2
[
βτ (e−ξτ )α −∆h

]−1
µ(e−ξτ )

− (e
−ξτ
2 + e

ξτ
2 )βτ (e−ξτ )−2

[
βτ (e−ξτ )α −∆h

]−1
µ(e−ξτ )

∥∥
≤ Cτ2|ξ|−α, ∀ ξ ∈ Γτθ,κ,

(4.31)

where the inequality
∣∣2 − e− 1

2
ξτ − e

1
2
ξτ
∣∣ ≤ Cτ2|ξ|2 is employed. Then the estimate (4.28) is obtained

from (4.29), (4.30), (4.31) and the inequality ‖∆hPhv‖ ≤ C‖∆v‖ for any v ∈ Ḣ2(Ω) in [3, (2.13)].

The term ‖∆huh(T )‖ in (4.28) is actually bounded by using (2.26), (2.28), Lemmas 2.5-2.6 and the
Sobolev imbedding H1(0, T ) ↪→ C[0, T ].

Next we consider the error estimate for the case of uh(t) = (T −t)u′h(T ) and ud(t) = (T −t)u′d(T ),
and obtain the result in Lemma 4.9. Similarly by (2.27) and (3.16), the seimidiscrete solution zh(tn− 1

2
)

to (2.23) and the fully discrete solution Zh(uh)n−
1
2 to (3.33) with uh(t) = (T − t)u′h(T ) and ud(t) =

(T − t)u′d(T ) can be represented by

zh(tn− 1
2
) =

1

2πi

∫
Γθ,κ

e
ξ(T−t

n− 1
2

)
ξα−3(ξα −∆h)−1Ph(u′h(T )− u′d(T ))dξ, (4.32)

Zh(uh)n−
1
2 =

1

2πi

∫
Γτθ,κ

eξ(T−tn) τ2e−ξτ

(1− e−ξτ )2
βτ (e−ξτ )α[

βτ (e−ξτ )α −∆h

]−1
δτ (e−ξτ )−1Ph(u′h(T )− u′d(T ))dξ,

(4.33)

respectively, where δτ (·) and βτ (·) are defined in (3.18).
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Lemma 4.9. For uh(t) = (T − t)u′h(T ) and ud(t) = (T − t)u′d(T ), let zh(tn− 1
2
) and Zh(uh)n−

1
2 be

solutions to (2.23) and (3.33) given by (4.32) and (4.33), respectively. Then we have the estimate∥∥zh(tn− 1
2
)− Zh(uh)n−

1
2

∥∥ ≤ Cτ2‖u′h(T )− u′d(T )‖, (4.34)

where the constant C is independent of τ .

Proof. Let C(ξ) and F(ξ) be defined by

C(ξ) := ξα−3(ξα −∆h)−1Ph,

F(ξ) := e
ξτ
2 ξα−3(ξα −∆h)−1Ph −

τ2e−ξτ

(1− e−ξτ )2
βτ (e−ξτ )α[βτ (e−ξτ )α −∆h]−1δτ (e−ξτ )−1Ph.

From Lemmas 2.5, 3.3 and 3.4, it obtains that ‖C(ξ)‖ ≤ C|ξ|−3 and∥∥F(ξ)
∥∥ ≤ ∥∥e ξτ2 ξα−3(ξα −∆h)−1 − ξα−2(ξα −∆h)−1δτ (e−ξτ )−1

+ ξα−2(ξα −∆h)−1δτ (e−ξτ )−1

− τ2e−ξτ

(1− e−ξτ )2
βτ (e−ξτ )α[βτ (e−ξτ )α −∆h]−1δτ (e−ξτ )−1

∥∥
≤ Cτ2|ξ|−1, ∀ ξ ∈ Γτθ,κ,

(4.35)

where the estimate
∣∣ξ−1e

1
2
ξτ − δτ (e−ξτ )−1

∣∣ ≤ Cτ2|ξ| is applied.
Then we derive from (4.32) and (4.33) that∥∥zh(tn− 1

2
)− Zh(uh)n−

1
2

∥∥ ≤ ∥∥ 1

2πi

∫
Γθ,κ\Γτθ,κ

e
ξ(T−t

n− 1
2

)C(ξ)dξ
∥∥‖u′h(T )− u′d(T )‖

+
∥∥ 1

2πi

∫
Γτθ,κ

eξ(T−tn)F(ξ)dξ
∥∥‖u′h(T )− u′d(T )‖

≤ Cτ2‖u′h(T )− u′d(T )‖,

which completes the proof.

In the following, we consider the terms uh(t) =
∫ T
t (s− t)u′′h(s)ds and ud(t) =

∫ T
t (s− t)u′′d(s)ds,

which yields that uh(T ) = 0 and ud(T ) = 0. Then we obtain from (2.27) that the corresponding
semidiscrete solution zh(tn− 1

2
) to (2.23) is as follows

zh(tn− 1
2
) =

∫ T

t
n− 1

2

Eh(s− tn− 1
2
)

∫ T

s
(r − s)(u′′h(r)− u′′d(r))drds

=

∫ T

t
n− 1

2

∫ r

t
n− 1

2

Eh(s− tn− 1
2
)(r − s)(u′′h(r)− u′′d(r))dsdr

=

∫ T

t
n− 1

2

(Eh ∗ t)(r − tn− 1
2
)(u′′h(r)− u′′d(r))dr.

(4.36)

It also derives from (3.16) that the fully discrete solution Zh(uh)n−
1
2 to (3.33) is represented accordingly

by

Zh(uh)n−
1
2 = τ

N−n∑
j=0

EN−n−jτ (uN−jh − uN−jd ). (4.37)
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Let δtj (t) be the Dirac delta function at tj and

Hτ (t) := τ
∞∑
j=0

Ejτδtj (t), (4.38)

then we further have

Zh(uh)n−
1
2 =

∫ T

tn

Hτ (s− tn)(uh(s)− ud(s))ds

=

∫ T

tn

Hτ (s− tn)

∫ T

s
(r − s)(u′′h(r)− u′′d(r))drds

=

∫ T

tn

∫ r

tn

Hτ (s− tn)(r − s)(u′′h(r)− u′′d(r))dsdr

=

∫ T

tn

(Hτ ∗ t)(r − tn)(u′′h(r)− u′′d(r))dr.

(4.39)

Lemma 4.10. Let Eh(t) and Hτ (t) be defined by (2.28) and (4.38), respectively. Then we have∥∥(Eh ∗ t)(t+
τ

2
)− (Hτ ∗ t)(t)

∥∥ ≤ Cτ2, (4.40)

where t ∈ [0, T − τ ], and the constant C is independent of τ .

Proof. For any t ∈ [tm, tm+1) with 0 ≤ m ≤ N − n − 1 and n = 1, 2, · · · , N , we take the Taylor
expansions of operators (Eh ∗ t)(t+ τ

2 ) and (Hτ ∗ t)(t) at time tm and get

(Eh ∗ t)(t+
τ

2
) = (Eh ∗ t)(tm +

τ

2
) + (t− tm)(Eh ∗ 1)(tm +

τ

2
)

+

∫ t+ τ
2

tm+ τ
2

(t+
τ

2
− s)Eh(s)ds,

(4.41)

(Hτ ∗ t)(t) = (Hτ ∗ t)(tm) + (t− tm)(Hτ ∗ 1)(tm) +

∫ t

tm

(t− s)Hτ (s)ds. (4.42)

It follows from (4.11) that

(Eh ∗ t)(tm +
τ

2
) =

1

2πi

∫
Γθ,κ

eξ(tm+ τ
2

)ξα−3(ξα −∆h)−1dξ. (4.43)

By the definition of the operator Hτ (t) in (4.38), it implies that

(Hτ ∗ t)(tm) = τ
m∑
j=0

Ejτ (tm − tj), (4.44)

then we further derive from (3.17) that

∞∑
m=0

(Hτ ∗ t)(tm)ζm = τ
∞∑
m=0

m∑
j=0

Ejτ (tm − tj)ζm

=
(
τ
∞∑
m=0

Emτ ζ
m
)( ∞∑

m=0

tmζ
m
)

= βτ (ζ)α
[
βτ (ζ)α −∆h

]−1
δτ (ζ)−1 τζ

(1− ζ)2
.

(4.45)
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From (4.45) and Cauchy’s integral formula, it obtains that

(Hτ ∗ t)(tm) =
1

2πi

∫
Γτθ,κ

eξtm
τ2e−ξτ

(1− e−ξτ )2
βτ (e−ξτ )α

[
βτ (e−ξτ )α −∆h

]−1
δτ (e−ξτ )−1dξ. (4.46)

Then by the similar approach as in the proof of Lemma 4.9, we have∥∥(Eh ∗ t)(tm +
τ

2
)− (Hτ ∗ t)(tm)

∥∥ ≤ Cτ2. (4.47)

Next we consider to analyze the following estimate∥∥(Eh ∗ 1)(tm +
τ

2
)− (Hτ ∗ 1)(tm)

∥∥ ≤ Cτ. (4.48)

From the definition of Eh(·) in (2.28), we have

(Eh ∗ 1)(tm +
τ

2
) =

1

2πi

∫
Γθ,κ

eξ(tm+ τ
2

)ξα−2(ξα −∆h)−1dξ. (4.49)

By the similar approach for deriving (4.44), it obtains

(Hτ ∗ 1)(tm) =
1

2πi

∫
Γτθ,κ

eξtm
τ

1− e−ξτ
βτ (e−ξτ )α

[
βτ (e−ξτ )α −∆h

]−1
δτ (e−ξτ )−1dξ. (4.50)

With Lemmas 2.5, 3.3 and 3.4, it also holds that∥∥e ξτ2 ξα−2(ξα −∆h)−1 − τ

1− e−ξτ
βτ (e−ξτ )α

[
βτ (e−ξτ )α −∆h

]−1
δτ (e−ξτ )−1

∥∥
≤
∥∥e ξτ2 ξα−2(ξα −∆h)−1 − ξα−2(ξα −∆h)−1

∥∥
+
∥∥ξα−2(ξα −∆h)−1 − δτ (e−ξτ )−2ξα(ξα −∆h)−1

∥∥
+
∥∥δτ (e−ξτ )−2ξα(ξα −∆h)−1 − δτ (e−ξτ )−2βτ (e−ξτ )α

[
βτ (e−ξτ )α −∆h

]−1∥∥
≤ Cτ |ξ|−1 + Cτ2, ∀ ξ ∈ Γτθ,κ,

then (4.48) is derived, which further implies that

(t− tm)
∥∥(Eh ∗ 1)(tm +

τ

2
)− (Hτ ∗ 1)(tm)

∥∥ ≤ Cτ2. (4.51)

Due to ‖Eh(t)‖ ≤ C and ‖Emτ ‖ ≤ C, we derive the following estimates

∥∥∫ t+ τ
2

tm+ τ
2

(t+
τ

2
− s)Eh(s)ds

∥∥ ≤ Cτ2, (4.52)

and ∥∥∫ t

tm

(t− s)Hτ (s)ds
∥∥ ≤ τ2‖Emτ ‖ ≤ Cτ2. (4.53)

Therefore, the result (4.40) is obtained from (4.47), (4.51), (4.52) and (4.53).

Lemma 4.11. For uh(t) =
∫ T
t (s − t)u′′h(s)ds and ud(t) =

∫ T
t (s − t)u′′d(s)ds, let zh(tn− 1

2
) and

Zh(uh)n−
1
2 be solutions to (2.23) and (3.33). Then we obtain the estimate

∥∥zh(tn− 1
2
)− Zh(uh)n−

1
2

∥∥ ≤ Cτ2

∫ T

t
n− 1

2

‖u′′h(s)− u′′d(s)‖ds, (4.54)

where the constant C is independent of τ .

20



Proof. The formulae (4.36) and (4.39) imply that∥∥zh(tn− 1
2
)− Zh(uh)n−

1
2

∥∥
≤
∫ tn

t
n− 1

2

∥∥(Eh ∗ t)(r − tn− 1
2
)
∥∥∥∥u′′h(r)− u′′d(r)

∥∥dr

+

∫ T

tn

∥∥(Eh ∗ t)(r − tn− 1
2
)− (Hτ ∗ t)(r − tn)

∥∥∥∥u′′h(r)− u′′d(r)
∥∥dr

=: IV + V.

For the term IV , it yields from (4.11) and Lemma 2.5 that

IV ≤ Cτ2

∫ tn

t
n− 1

2

∥∥u′′h(r)− u′′d(r)
∥∥dr.

By (4.40) in Lemma 4.10, we obtain the estimate for the term V as follows

V ≤ Cτ2

∫ T

tn

∥∥u′′h(r)− u′′d(r)
∥∥dr.

Thus the result (4.54) is derived by combining the above two estimates.

By the results in Lemmas 4.8, 4.9 and 4.11, it directly implies that∥∥Zh(uh)n−
1
2 − zh(tn− 1

2
)
∥∥ ≤ Cτ2(T − tn− 1

2
)α−1

[
‖∆huh(T )‖+ ‖∆ud(T )‖

]
+ Cτ2‖u′h(T )− u′d(T )‖+ Cτ2

∫ T

t
n− 1

2

‖u′′h(s)− u′′d(s)‖ds,
(4.55)

where the constant C is independent of τ , zh(tn− 1
2
) and Zh(uh)n−

1
2 are solutions to (2.23) and (3.33),

respectively. Therefore, by the similar approach as in the proof of Lemma 4.6, we can obtain the error
estimate ‖|zh −Zh(uh)|‖ in Lemma 4.12.

Lemma 4.12. Let zh and Zh(uh)n−
1
2 be solutions to (2.23) and (3.33), respectively, then we have the

following estimate

‖|zh −Zh(uh)|‖ ≤ Cτmin{ 3
2

+α,2}[‖∆huh(T )‖+ ‖∆ud(T )‖
]

+ Cτ2
[
‖u′h(T )− u′d(T )‖+ ‖u′′h(s)− u′′d(s)‖L2(0,T ;L2(Ω))

]
,

(4.56)

where the constant C is independent of τ .

4.3 Fully discrete error estimates

With the results obtained at hand in Sections 4.1 and 4.2, we are ready to analyze the error estimates of
‖|uh−Uh|‖, ‖|zh−Zh|‖ and ‖|qh−Qh|‖ for the fully discrete Crank-Nicolson scheme (3.5)-(3.6) and
the semidiscrete scheme (2.20)-(2.21).

Lemma 4.13. Let uh and Unh be solutions to (2.22) and (3.10), respectively. Then we have

‖|uh −Uh|‖ ≤ C‖|qh −Qh|‖+ Cτmin{ 3
2

+α,2}‖∆hPh(f(0) + qh(0))‖
+ Cτ2

[
‖f ′(0) + q′h(0)‖+ ‖f ′′ + q′′h‖L2(0,T ;L2(Ω))

]
,

(4.57)

where the constant C is independent of τ .
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Proof. By the estimate (3.34) in Theorem 3.5 and the triangular inequality, we derive that

‖|uh −Uh|‖ ≤ ‖|uh −Uh(qh)|‖+ ‖|Uh(qh)−Uh|‖
≤ ‖|uh −Uh(qh)|‖+ C‖|qh −Qh|‖,

which directly obtains the result (4.57) from Lemma 4.6.

The error analysis of ‖|qh −Qh|‖ is derived in the following lemma.

Lemma 4.14. Let qh and Q
n− 1

2
h be solutions to (2.24) and (3.12), respectively, then we have

‖|qh −Qh|‖ ≤ Cτmin{ 3
2

+α,2}[‖∆hPh(f(0) + qh(0))‖+ ‖∆huh(T )‖+ ‖∆ud(T )‖
]

+ Cτ2
[
‖f ′(0) + q′h(0)‖+ ‖u′h(T )− u′d(T )‖

]
+ Cτ2

[
‖f ′′ + q′′h‖L2(0,T ;L2(Ω)) + ‖u′′h − u′′d‖L2(0,T ;L2(Ω))

]
,

(4.58)

where the constant C is independent of τ .

Proof. It obtains from (2.25) that qh(tn− 1
2
) = PUad

(
− 1

γ zh(tn− 1
2
)
)
, and then(

γqh(·, tn− 1
2
) + zh(·, tn− 1

2
), vh − qh(·, tn− 1

2
)
)
≥ 0, ∀ vh ∈ Uad. (4.59)

Together with (3.12) and (4.59), it implies that

γ‖|qh −Qh|‖2 = γ
[
qh, qh −Qh

]
− γ
[
Qh, qh −Qh

]
≤ −

[
qh −Qh, zh

]
+
[
qh −Qh,Zh

]
=
[
qh −Qh,Zh −Zh(Uh(qh))

]
+
[
qh −Qh,Zh(Uh(qh))− zh

]
.

By (3.10)-(3.11), (3.31)-(3.32), and (3.7)-(3.9), we can derive that[
qh −Qh,Zh −Zh(Uh(qh))

]
= −‖|Uh(qh)−Uh|‖2 ≤ 0.

Furthermore, it has from the above estimates and (3.35) in Theorem 3.5 that

‖|qh −Qh|‖ ≤ C‖|Zh(Uh(qh))− zh|‖
≤ C‖|Zh(Uh(qh))−Zh(uh)|‖+ C‖|Zh(uh)− zh|‖
≤ C‖|Uh(qh)− uh|‖+ C‖|Zh(uh)− zh|‖,

(4.60)

from which it obtains the result (4.58) directly from the estimates (4.21) and (4.56).

By using (3.36) in Theorem 3.5, we have that

‖|zh −Zh|‖ ≤ ‖|zh −Zh(uh)|‖+ ‖|Zh(uh)−Zh|‖
≤ ‖|zh −Zh(uh)|‖+ C‖|uh −Uh|‖.

(4.61)

Together with (4.61), Lemmas 4.12, 4.13 and 4.14, we finally derive the main result in the following
theorem.

Theorem 4.15. Let (uh, zh, qh) and
(
Unh , Z

n− 1
2

h , Q
n− 1

2
h

)
be solutions to the systems (2.22)-(2.24) and

(3.10)-(3.12), respectively. If the conditions in Theorem 2.3 are satisfied and the admissible set Uad =
L2(0, T ;L2(Ω)), then we have

‖|uh −Uh|‖+ ‖|zh −Zh|‖+ ‖|qh −Qh|‖

≤ Cτmin{ 3
2

+α,2}[‖∆hPh(f(0) + qh(0))‖+ ‖∆huh(T )‖+ ‖∆ud(T )‖
]

+ Cτ2
[
‖f ′(0) + q′h(0)‖+ ‖u′h(T )− u′d(T )‖

]
+ Cτ2

[
‖f ′′ + q′′h‖L2(0,T ;L2(Ω)) + ‖u′′h − u′′d‖L2(0,T ;L2(Ω))

]
,

where the constant C is independent of τ .

Remark 4.16. For the optimal control problem with the box constraint (1.3), the best temporal regularity
of qh is restricted to W 1,∞ by the property of the projection operator PUad(·) in (2.7), see [9, (3.5)] and
[40, Corollary 2.1.8]. Then it appears challenging to establish the optimal temporal error estimate for
the fully discrete Crank-Nicolson scheme (3.5)-(3.6).
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5 Numerical results

In this section, we present some numerical examples to verify the theoretical convergence result in Theo-
rem 4.15 of the proposed fully discrete Crank-Nicolson scheme (3.5)-(3.6) for solving the optimal control
problem (1.1)-(1.2).

Two numerical examples with the admissible set Uad = L2(0, T ;L2(Ω)) are presented to illustrate
the efficiency of the proposed discrete Crank-Nicolson scheme (3.5)-(3.6). We solve the fully discrete
system (3.5)-(3.6) by the conjugate gradient method with a stopping tolerance 10−8 measuring the gra-
dient of the objective function with respect to Qh in (3.5).

Example 5.1. Let Ω = (0, 1) and T = 1. We take γ = 1 in the optimal control problem (1.1)-(1.2) and
set the exact solutions as

u(x, t) = t1.5+α/4x(1− x),

z(x, t) = (1− t)1.5+α/4x(1− x),

q(x, t) = −z(x, t).

By simple calculations, it obtains the expressions of f and ud from (2.3) and (2.4).

To demonstrate the temporal convergence rate of the fully discrete Crank-Nicolson scheme (3.5)-
(3.6), we solve the one dimensional optimal control problem in Example 5.1 for α = 0.1, 0.3, 0.5, 0.7
and 0.9 with the time step and finite element mesh size τ = h = 2−k, k = 3, 4, 5, 6. In Table 1, the errors
‖|uh−Uh|‖, ‖|zh−Zh|‖, ‖|qh−Qh|‖ and their temporal convergence rates are reported. It shows that
the numerical scheme has the convergence order of O(τmin{ 3

2
+α,2}) in time, which is consistent with the

theoretical convergence order in Theorem 4.15.

Table 1: Errors ‖|uh−Uh|‖, ‖|zh−Zh|‖, ‖|qh−Qh|‖ and their temporal convergence rates for Example
5.1.

α Error τ = 2−3 τ = 2−4 τ = 2−5 τ = 2−6 Rate

0.10
‖|uh −Uh|‖ 6.5791E-04 2.1063E-04 6.8409E-05 2.2409E-05 1.63 (1.6)
‖|zh −Zh|‖ 1.9146E-03 6.1414E-04 1.9661E-04 6.3162E-05 1.64 (1.6)
‖|qh −Qh|‖ 1.9147E-03 6.1414E-04 1.9661E-04 6.3162E-05 1.64 (1.6)

0.30
‖|uh −Uh|‖ 2.8456E-04 7.8631E-05 2.2295E-05 6.4935E-06 1.82 (1.8)
‖|zh −Zh|‖ 1.2315E-03 3.4528E-04 9.6767E-05 2.7325E-05 1.83 (1.8)
‖|qh −Qh|‖ 1.2315E-03 3.4528E-04 9.6767E-05 2.7325E-05 1.83 (1.8)

0.50
‖|uh −Uh|‖ 2.1904E-04 5.4259E-05 1.2990E-05 3.0365E-06 2.06 (2.0)
‖|zh −Zh|‖ 9.7469E-04 2.5903E-04 6.9232E-05 1.8769E-05 1.90 (2.0)
‖|qh −Qh|‖ 9.7469E-04 2.5903E-04 6.9232E-05 1.8769E-05 1.90 (2.0)

0.70
‖|uh −Uh|‖ 2.6789E-04 6.4009E-05 1.4957E-05 3.4005E-06 2.10 (2.0)
‖|zh −Zh|‖ 8.6773E-04 2.2799E-04 6.0457E-05 1.6277E-05 1.91 (2.0)
‖|qh −Qh|‖ 8.6773E-04 2.2799E-04 6.0457E-05 1.6277E-05 1.91 (2.0)

0.90
‖|uh −Uh|‖ 2.5752E-04 6.0488E-05 1.4254E-05 3.3384E-06 2.09 (2.0)
‖|zh −Zh|‖ 8.0626E-04 2.1123E-04 5.5724E-05 1.4866E-05 1.92 (2.0)
‖|qh −Qh|‖ 8.0626E-04 2.1123E-04 5.5724E-05 1.4866E-05 1.92 (2.0)

Example 5.2. Consider the two dimensional optimal control problem (1.1)-(1.2) with Ω = (0, 1)×(0, 1),
T = 1 and γ = 1. For any x = (x1, x2) ∈ Ω, the exact solution is chosen as

u(x, t) = t1.5+α/6 sin(πx1) sin(πx2),
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z(x, t) = (1− t)1.5+α/6 sin(πx1) sin(πx2),

q(x, t) = −z(x, t),

and f and ud are calculated from (2.3) and (2.4).

We consider the fully discrete Crank-Nicolson scheme (3.5)-(3.6) to solve the two dimensional op-
timal control problem in Example 5.2. In order to verify its convergence order in time, we choose
α = 0.1, 0.3, 0.5, 0.7, 0.9, and perform numerical experiments with time step τ = 2−k (k = 3, 4, 5, 6, 7)
and finite element mesh size h = 2−9. The errors ‖|uh − Uh|‖, ‖|zh − Zh|‖, ‖|qh − Qh|‖ and their
temporal convergence rates are presented in Table 2, where similar observations as those in Example
5.1 are shown. The scheme also converges by the order of O(τmin{ 3

2
+α,2}) in time, which confirms the

theoretical result in Theorem 4.15.

Table 2: Errors ‖|uh−Uh|‖, ‖|zh−Zh|‖, ‖|qh−Qh|‖ and their temporal convergence rates for Example
5.2.

α Error τ = 2−3 τ = 2−4 τ = 2−5 τ = 2−6 Rate

0.10
‖|uh −Uh|‖ 1.1646E-03 4.1573E-04 1.4586E-04 5.0255E-05 1.51 (1.6)
‖|zh −Zh|‖ 5.4275E-03 1.7262E-03 5.5277E-04 1.7868E-04 1.64 (1.6)
‖|qh −Qh|‖ 5.4275E-03 1.7262E-03 5.5277E-04 1.7868E-04 1.64 (1.6)

0.30
‖|uh −Uh|‖ 2.8509E-04 7.6380E-05 2.2607E-05 7.1627E-06 1.77 (1.8)
‖|zh −Zh|‖ 3.5268E-03 9.7637E-04 2.7212E-04 7.6976E-05 1.84 (1.8)
‖|qh −Qh|‖ 3.5268E-03 9.7637E-04 2.7212E-04 7.6977E-05 1.84 (1.8)

0.50
‖|uh −Uh|‖ 9.5288E-04 2.3690E-04 5.7849E-05 1.3876E-05 2.03 (2.0)
‖|zh −Zh|‖ 2.8092E-03 7.3280E-04 1.9346E-04 5.2271E-05 1.92 (2.0)
‖|qh −Qh|‖ 2.8092E-03 7.3280E-04 1.9346E-04 5.2271E-05 1.92 (2.0)

0.70
‖|uh −Uh|‖ 1.4006E-03 3.4003E-04 8.2500E-05 1.9979E-05 2.04 (2.0)
‖|zh −Zh|‖ 2.5076E-03 6.4431E-04 1.6911E-04 4.5804E-05 1.92 (2.0)
‖|qh −Qh|‖ 2.5076E-03 6.4431E-04 1.6911E-04 4.5804E-05 1.92 (2.0)

0.90
‖|uh −Uh|‖ 1.5531E-03 3.6841E-04 8.9197E-05 2.1787E-05 2.05 (2.0)
‖|zh −Zh|‖ 2.3271E-03 5.9800E-04 1.5806E-04 4.3190E-05 1.92 (2.0)
‖|qh −Qh|‖ 2.3271E-03 5.9800E-04 1.5806E-04 4.3190E-05 1.92 (2.0)

6 Conclusion

In this paper, we concentrate on higher order approximation in time of the optimal control problem gov-
erned by a time-fractional diffusion equation. A Crank-Nicolson scheme is designed for the optimal
control problem and the corresponding optimality conditions are derived simultaneously. The optimal
solutions are represented by using techniques based on the Laplace transform and Cauchy’s integral for-
mula. Then we rigorously analyze the temporal error estimate of the proposed scheme. Some numerical
results are reported to verify the efficiency of our method by applying the conjugate gradient method
to the fully discretized optimization problem without control constraints, which is consistent with the
theoretical assertion.
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search patterns of wandering albatrosses. Nature, 381(6581):413–415, 1996.

[31] N. von Daniels, M. Hinze, and M. Vierling. Crank-Nicolson time stepping and variational discretization of
control-constrained parabolic optimal control problems. SIAM J. Control Optim., 53(3):1182–1198, 2015.

[32] T. Wang, B. Li, and X. Xie. Discontinuous Galerkin method for a distributed optimal control problem
governed by a time fractional diffusion equation. Comput. Math. Appl., 128:1–11, 2022.

[33] W. Wyss. The fractional diffusion equation. J. Math. Phys., 27(11):2782–2785, 1986.

[34] X. Ye and C. Xu. Spectral optimization methods for the time fractional diffusion inverse problem. Numer.
Math. Theory Methods Appl., 6(3):499–516, 2013.

[35] X. Ye and C. Xu. A space-time spectral method for the time fractional diffusion optimal control problems.
Adv. Difference Equ., 2015:156–175, 2015.

[36] X. Ye and C. Xu. A posteriori error estimates of spectral method for the fractional optimal control problems
with non-homogeneous initial conditions. AIMS Math., 6(11):12028–12050, 2021.

[37] Y.-N. Zhang, Z.-Z. Sun, and H.-W. Wu. Error estimates of Crank-Nicolson-type difference schemes for the
subdiffusion equation. SIAM J. Numer. Anal., 49(6):2302–2322, 2011.

[38] Z. Zhou and W. Gong. Finite element approximation of optimal control problems governed by time fractional
diffusion equation. Comput. Math. Appl., 71(1):301–318, 2016.

[39] Z. Zhou and C. Zhang. Time-stepping discontinuous Galerkin approximation of optimal control problem
governed by time fractional diffusion equation. Numer. Algorithms, 79(2):437–455, 2018.

[40] W. P. Ziemer. Weakly differentiable functions: Sobolev spaces and functions of bounded variation. Springer-
Verlag, New York, 1989.

26


	Introduction
	Preliminaries
	Continuous problem
	Semidiscrete Galerkin scheme

	Fully discrete Crank-Nicolson scheme
	Optimality conditions and solution representations

	Error estimates
	Error estimate of |uh-Uh(qh)|
	Error estimate of |zh-Zh(uh)|
	Fully discrete error estimates

	Numerical results
	Conclusion

