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Abstract

In this paper, an optimal control problem governed by the forward fractional Feynman-Kac equa-
tion is considered, which describes functional distributions of anomalous diffusion and encounters
significant challenges arise from the time-space coupled nonlocal operator and its non-commutativity
with the Laplacian. First, we investigate the well-posedness of the continuous optimal control prob-
lem, derive the first-order optimality conditions and establish the regularity estimates of the solu-
tion. Then, the Riemann-Liouville fractional substantial derivative in the equation is approximated
by using the backward Euler convolution quadrature formula, and a temporal semi-discrete scheme
is proposed for the optimal control problem. Moreover, we rigorously analyze the ¢2(L?(£2)) and
£>°(L?(£2)) error estimates of the proposed semi-discrete scheme, which exhibits almost optimal
convergence of O(7 ), relying only on the regularity assumptions on the data and without extra
assumptions on the solution of the optimality system. Finally, we perform the numerical experiments
by using the inexact alternating direction method of multipliers (ADMM) algorithm and the piece-
wise linear finite element method. The numerical results demonstrate the validity of our numerical
scheme and verify the theoretical convergence order.
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stantial derivative, convolution quadrature, error estimate
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1 Introduction

Anomalous diffusion in non-Brownian motion is a widespread phenomenon in various fields, including
physics, chemistry, biology, finance and others [9, 21, 22, 26, 27, 28, 34]. The functional of anomalous
diffusion has also attracted great interests in the community, see [2, 4, 32] and the references therein.
Analogous to Brownian motion, the functional of anomalous diffusion is defined as A = f(f V(z(s))ds,
where x(t) is the trajectory of non-Brownian particle and V' (z) a prescribed function associated with
specific applications [2, 4]. Let u(x, A, t) be the joint probability density function (PDF) of finding the
particle on (z, A) at time ¢, Which obeys the power—law waiting time, Carmi et.al in [2, 32] derived that
the governing equation of u(x, p,t) fo (z, A, t)e”PAdA with positive functional A is the forward
fractional Feynman-Kac equation as follows

O, p,t) = ADyTu(x, p, t) — pV (x)u(z, p, t), (1.1)

which is in Laplace space. D; ~®* with o € (0, 1) refers to the left-sided Riemann-Liouville fractional
substantial derivative [2, 7, 17], which is defined by

t

D} u(x, p,t) = L [0 + pV ()] / (t — ) tem =PV @)y (2 p, 5)ds, (1.2)
I'(a) 0
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with T'(s) = fooo t>~le~tdt being the Euler-gamma function, and A represents the Laplace operator.
If the functional A is not necessarily positive determined by the function V' (z), then u(x,p,t) :=
f j;o u(z, A, t)e”PAdA refers to the Fourier transform of u(z, A, ), and the corresponding governing
equation is a variant of (1.1) with p replaced by —ip [2], where i is the imaginary unit.

It is evident that the operators A and D;~*% can not commutate with each other provided that pV ()
is not a constant function. If the term AD, ~““v in (1.1) is replaced by D; ~** Au, then it corresponds
to the backward fractional Feynman-Kac equation [2, 32]

dyu(x, p,t) = D}~  Au(x, p,t) — pV (z)u(z, p,t), (1.3)

with u(x, A, t) being the PDF of A at ¢ in the process started at x. For « = 1, (1.1) reduces to the classical
Feynman-Kac equation describing the functional distribution of normal Brownian motion, which is a
Schrodinger-like equation derived by Kac [15] in 1949 by using the Feynman’s path integral method. For
pV(x) =0and o € (0,1), D;~*" in (1.1) becomes the Riemann-Liouville derivative D}~ defined by
(2.5), then it leads to the time-fractional diffusion equation Jyu — ADg*au = 0 simulating anomalous
diffusion phenomena in physics [21, 22, 34].

In this work, we concentrate on an optimal control problem governed by the forward fractional
Feynman-Kac equation as follows

: 1 2 Y2
qféll}ild J(u,q) = §||U - Ud||L2(o,T;L2(Q)) + §||qHL2(0,T;L2(Q))’ (1.4)
where ug : (0,T) — L?(f2) is a given target function, and v > 0 is a penalty constant. The state variable
u and the control variable ¢ satisfy the forward fractional Feynman-Kac equation

dpu(x,t) — ADF ™ u(z, t) + pV (@)u(x, t) = f(z,t) + q(z,t), (z,t) € Qx (0,7,
u(z,t) =0, (x,t) € 92 x (0,T], (1.5
u(z,0) =0, x €€,

where u(x,t) := u(z, p,t) depends on the complex constant p € C, f : (0,7] — L?(f2) is a given
source term, €2 is a bounded convex polygonal domain in R™ (n = 1,2,3) with boundary 052, and the
function V() is bounded in 2. The control set U, is given by

Uwi = {q € L*(0,T; L*(Q)) :a < ¢ < b ae. inQ x [0, 7]}, (1.6)

with a,b € Rand a < b.

The numerical investigations of the fractional Feynman-Kac equations are relatively limited, com-
pared with that of subdiffusion equations. The significant challenges on theoretical and numerical anal-
ysis come from the time-space coupled nonlocal derivative involved in the governing equation and the
non-commutativity of D; " and the Laplace operator (i.e., D; ** - A # A - D;~®%). In [3], finite
difference approximations were established for fractional substantial derivatives based on the Lubich
method [20], which were further applied to numerically solving the forward and backward fractional
Feynman-Kac equations [5]. In [6], a first-order time-stepping method was provided to solve the for-
ward fractional Feynman-Kac equation (1.1) with error estimates in the measure norm depending only
on the measure of the initial data. Recently, [24] built the regularity of the solution for (1.5), and de-
veloped the error estimates for a fully discrete scheme constructed by convolution quadrature and finite
element method. Some numerical studies for the backward fractional Feynman-Kac equation were also
presented in [13, 29, 30].

In the past decade, there exist generous literatures on optimal control problems governed by frac-
tional partial differential equations, both in terms of theoretical issues and numerical algorithms, we can
refer to [1, 12, 14, 19, 23, 33, 35, 36] and the references therein. However, to the best of our knowledge,
the optimal control problems of the fractional Feynman-Kac equations have not yet been considered in
previous works. Compared with the optimal control problems governed by some time-fractional dif-
fusion equations, the problem (1.4)-(1.5) encounters significant challenges in theoretical and numerical



analysis due to the time-space coupled nonlocal derivative D; ~*** and the non-commutativity of D; ~**

and the Laplace operator A in (1.5). Moreover, the coupling of the optimality conditions (2.10)-(2.12)
reduces the regularity of the solution to the optimal control problem (1.4)-(1.5). To fill this gap, we
dedicate to investigating the well-posedness of the optimal control problem (1.4)-(1.5), deriving the first-
order optimality conditions and the regularity of its solution with less regularity assumptions on the data.
Based on this, a temporal semi-discrete scheme is further proposed and analyzed rigorously. The almost
optimal convergence order of O(7|In 7|) in time is proved only depending on regularity assumptions on
the data without additional regularity requirements on the exact solutions.

The structure of the rest of this paper is as follows. Some preliminaries and essential lemmas are
introduced and proved in Section 2, the optimality conditions and the regularity results of the solution
to the optimal control problem (1.4)-(1.5) are also derived. In Section 3, we propose a semi-discrete
scheme in time for (1.4)-(1.5) by using the backward Euler convolution quadrature formula to approxi-
mate the Riemann-Liouville fractional substantial derivative in time. The temporal error estimates both
in £2(L%(Q)) and ¢>°(L?(£2)) norms of the proposed semi-discrete scheme are rigorously established in
Section 4. In Section 5, some numerical results are provided in order to validate the effectiveness and
the theoretical convergence order of our proposed numerical scheme, where the discrete optimal control
problem is solved by an inexact ADMM algorithm [8]. We conclude this work with some discussions in
the final section.

2 Optimality conditions and regularity

2.1 Preliminaries

Throughout this paper, the notations (-, -) and || - || denote the inner product and norm in L?(2), the latter
also stands for the operator norm from L?(€2) to L?(€). We additionally introduce the Hilbert space
H?(Q) = H}(Q)NH?(Q) endowed with the norm |- HHQ(Q) := [|A-||in [31], where H?(Q) = W22(Q)
is the standard Sobolev space.

By [17, Proposition 7], the Laplace transform of the left-sided Riemann-Liouville fractional substan-
tial derivative with o € (0, 1) and u(z,0) = 0 is

—

D™ Tu(€) = B(E) ™ a(¢), @.1)
where ‘7’ means taking the Laplace transform and
B(&) =&+ pV (). 2.2)

In the following, we introduce two essential lemmas for establishing the regularity results for the
solutions.

Lemma 2.1 ([10]). For any £ € £y := {£ € C\{0} : |arg&| < 0 < m} with 6 € (0, 7), we have the
resolvent estimates

Ie—a)" < Clel™, (2.3)
IA7(€ = A)7H| < ClE[7, y € (0,1, 2.4)
Lemma 2.2 ([6]). Let 3(&) be defined in (2.2) and V (x) bounded in Q. By choosing 0 € (5, 7) suffi-

ciently close to 5 and £ > 0 sufficiently large (depending on |p|||V (z)|| o)), we have the following
results.

(1) Forallz € Qand § € 39, :={£ € C: [§] > k,|arg&| < 0}, it holds that 3(€) € X3r » and

4

N|x

Crlgl < [B()] < Calel,

where C1,Cy are positive constants. Thus 3(£)'~% and B(€)*~1 are both C(Q) valued analytic
function of § € Xg ..



(2) The operator (B(£)® — A)~! : L2(Q) — L%(Q) is well-defined, bounded, and analytic for z €
20 k> Satisfying

1(B(E)* — A)H < ClEI™?, VEE Ty,
JIABE)* - AT <O, VEET,.

The left-sided Riemann-Liouville fractional derivative [25] is defined by
1 t
D} %u(z,t) = at/ (t — ) tu(x, s)ds, o€ (0,1), (2.5)
['(a) 0

and BDg_O‘ denotes the right-sided Riemann-Liouville fractional derivative [25] by

T
Bpl=ey(z,t) = —F(la)at/t (s —t)*12(x, s)ds, ac€(0,1).

It is indicated in [18, Lemma 2.3] that the left- and right-sided Riemann-Liouville fractional derivatives
satisfy the fractional integration by parts formula, that is

T T
/ Dy~ u(x,t) - z(x,t)dt = / u(@,t) - "Dy 2 (x, t)dt, (2.6)
0 0

and we can also derive the similar result for the fractional substantial derivative given by (1.2) in the
following lemma.

Lemma 2.3. For o € (0,1), we have

T T
/ D} u(z,t) - z(z, t)dt = / w(x,t) - PD 0 2 (z, t)dt, (2.7)
0 0
where BDI 4% is the adjoint operator of D1 4T and given by
BDtI_a’mz(m, t) = etPV@Bpl-a (e*t"’v(x)z(:c, t)). (2.8)

Proof. As mentioned in [17], the fractional substantial derivative (1.2) satisfies
Dtl_a’xu(x, t) = eitpv(m)Dtl_o‘ (etpv(x)u(x, t)) 2.9

Then we have from (2.6) that

/Dlax (x,t) - z(z, t)dt =

T
"tV (@) pl- (e tpV(x)u(x,t)) - z(x,t)dt

ethV (@ x,t) - BDtl_" (e_tpv(x)z(x, t))dt

!

u(z,t) - BD} " 2 (a, t)dt,

I
c\c\qc\

which completes the proof. O

2.2 Optimality conditions

In this subsection, the well-posedness of the continuous optimal control problem (1.4)-(1.5) and the
first-order optimality conditions are established.



Theorem 2.4. Let g € U,q be the solution to the optimal control problem (1.4)-(1.5), andu € L*(0,T; L*(Q2))
the corresponding state variable determined by (1.5). Then there exists an adjoint state z € L*(0, T; L*(Q))
such that (u, z, q) satisfies the following optimality conditions

du— ADF ™ u+ pV(x)u= f+q, inQx (0,T], u=0, ondQ x (0,7, (2.10)
—0z—PDI T Az 4 pV (2)z = u—ug, inQ x [0,T), z=0, ondQ x [0,T), (2.11)

with u(-,0) = 0, z(-,T) = 0, and the variational inequality

T
J(q)(v—q)= / /(7q + 2)(v — q)dxdt >0, Vv € Uy. (2.12)
0o Ja

Proof. Let J(q) := J(u(q),q). The first-order necessary optimality condition of the optimal control
problem (1.4)-(1.5) reads

T T
F@e-0= [ [(@-uwdu@izdt+ [ [ g0~ gdedt >0, Yo e U,
0o Ja 0o Ja
where du(q) = lim._,o[u(q + €(v — q)) — u(q)]/e, it satisfies zero boundary and initial values, and
d6u(q) — AD; ™ 5u(q) + pV (x)0u(q) = v — q. (2.13)

Then we obtain from the adjoint equation (2.11), the perturbation equation (2.13) and the property (2.7)
in Lemma 2.3 that

/OT/Q(u — ug)éu(q)dxdt = /OT/Q (= iz — PDI% Az 4 oV (2)2) du(q)dadt

T
_ /0 /Q 2(Bbulq) — AD}**6u(q) + pV (x)du(q))dadt

- /0 ' R

which implies the variational inequality (2.12). O

From Theorem 2.4, it deduces that the objective functional J(-) in (1.4) is strongly convex with
respect to the control variable ¢, and

T®)p—a) = T(@®—a) > = dliz20r.r200) (2.14)

for any p,q € L?(0,T; L?(£2)). Then the continuous optimal control problem (1.4)-(1.5) has a unique
solution. The variational inequality (2.12) yields that

q= PUad< - iz) (2.15)

where Py, (-) denotes the pointwise projection onto the admissible set U, 4, denoted by
Py,,(v(t)) = max {a, min{v(t),b}}. (2.16)
As stated in [16, Corollary 2.4], the projection Py, (-) is nonexpansive, i.e.,
[P0 (v) = Poa ()l g2y < v = wllmo ez, ¥ o,w e HY(0,T; L),
which implies the following estimate

”PUad(U)HHl(O,T;L2(Q)) < HUHHl(o,T;L?(Q)) +C, Vve H1(07T§ L2(Q))- (2.17)

5



2.3 Solution representations and regularity

In this subsection, we present the integral representations of the solutions to the optimality system (2.10)-
(2.12), and establish the corresponding regularity results.

Lemma 2.5. The solutions to the state and adjoint equations (2.10)-(2.11) are represented by

t
ut) = [ B =s)(76s) + ale0))ds, .18
T
z(+,t) = /t F(s—t)(u(-,s) —ud(~,s))ds, (2.19)
respectively, where the operators E(-) and F(-) mapping from L?(2) to L*(QY) are given by
Blo = o [ B (50— 8) e, Vo e 12(9), (2.20)
Lo
F(t)v := i (B — A) 1B ude, Ve LX), (2.21)
271 Fe,n

B(§) is given by (2.2), and Ty ; refers to

Lgp={2€C:|z| =k, |argz| <O} U{z€C: 2| >k, |argz| =6}.

- B(&)*~L if pV (z) is not a constant function,

Note that B(€)°*7' - (B()* = A) ™ # (B(&)* - 4)
thus the operator E(-) significantly differs from F(-).

Proof. We first consider to derive (2.18). By (2.1) and taking the Laplace transform of (2.10), it yields
that

a(€) = BEOL(BE™ — A)TH(F(E) +d(6)). (2.22)

Then by the rule of inverse Laplace transform £~ (f§)(t) = fg L)t — s)L7(§)(s)ds and the
definition of E'(-) in (2.20), we obtain (2.18) by utilizing Cauchy’s integral formula and theorem.

Letn =T — 14, P('JI) = Z('vT - 77) = Z('vt)’ ﬂ('an) = u('vT - 77) = u('vt) and ﬁd('aﬁ) =
ug(+, T —n) = uq(,t). By (2.8), (2.9) and variable changing, we have

—0,2(t) = Oyp(n), "Dy~ Az(t) = Dy " Ap(n).
Then the adjoint equation (2.11) becomes
Oyp(n) — Dy~ Ap(n) + pV (x)p(n) = (u — @a)(n), n € (0,T], with p(0) = 0.

Hence, by the approach of Laplace transform, it follows that

o) = | " F(n - )@ — ag)(r)dr.

which leads to (2.19) by settingr =T — sandn =1 —t. O

Lemma 2.6. Let V(x) € W°(Q). The operators E(-) and F(-) given by (2.20) and (2.21) satisfy the
following estimates

IE@| <C, [AE@®I < Ct™, (2.23)
IE@I <O, [AF@®)] <t (224



Proof. The estimates ||E(t)|| < C, ||F(t)|| < C and ||AF(t)|| < Ct™“ can be easily obtained from
(2.20) and (2.21) by using Lemma 2.2.

Next, we consider the estimate for [|AE(t)||. As V(z) € W2°°(), it follows from Lemma 2.2 and
[31, Lemma 3.1] that

1B(E)* 0l g2y = 1ABE)* )]
< (ABE)* ol + 2V (B(E)*) - Vol + [18(6)* Av||
< O1E[* oll gy V€ € Do,

where |£| > & is applied. Then we have from Lemma 2.2 that
186)* M 212y < ClEI*T,
15 ) oy < 5507 ~8) | < €
which implies that ||AE(t)|| < Ct~2. O

Now, we start to analyze the regularity of the solutions to the optimality conditions (2.10)-(2.12), the
results are stated in the following theorem.

Theorem 2.7. Let (u, z, q) be the solutions to the system (2.10)-(2.12). Suppose that f,uy € L*(0,T; L*(Q)),
V(x) € W2(Q) and the real part Re(pV (z)) > 0. Then we have

lull 07522 (0) + lull 20,712 (0)) < CIF + dllrz0,1029))5 (2.25)
2z 0.rc2@) + 12l 207 0200)) < Cliw = vallz20,702(0)) (2.26)
lall 70,1220 < Cllu — wallz2(0,7:22(0)) + C- (2.27)

Proof. By (2.23) in Lemma 2.6, we can easily obtain the estimate of  in (2.18) that

t
Ju(®) |2 < C /0 I(f +a)(s)]ds, (2.28)

which implies ||ulz2(0.1;2(0)) < CIIf + qllL2(0,7;02())- In addition, it also follows from (2.23) in
Lemma 2.6 that

t
) sy < € [ (6= + o)z
Then we have from Young’s inequality for convolution that
lull 20 7:12(0)) < OIS+ dllz20,7;02(0))-
Similarly, we can derive from (2.19), (2.21) and Lemma 2.2 that
12l 20,7522 (0)) + 121l 20 7 172(02)) < Cllw = wallp2(0,7;22(02))- (2.29)

Next, it remains to derive the estimate [|ul|g1(0,7;22(0)) < CIf + qllz2(0,7;22(0))- We extend u to
be zero for t < 0 and f, ¢ to be zero for ¢ € R\[0,7]. Let F and £ denote the Fourier and Laplace
transforms, respectively, it holds Fv(w) = Lv(§) with ¢ = iw and w € R. Then it follows from (2.22)
that

(8 + pV (2))u = L7 BE) Lul€) } (1)
— F Y (iw+ pV (@) ((lw + pV(2)* — A) ' F(f + ¢) (@) } (1)

Let p = a + bi, it has iw + pV (z) = aV(z) + i(w + bV (x)), then |arg(iw + pV (x))*| < T due to
aV(x) = Re(pV (z)) > 0. Then we have from Lemma 2.1 and the Plancherel formula that

10 + pV (@))ull z20.1;22(0)) < 10 + pV (2))ull 2r.22(02))

7



= |7 (iw + pV (@) ((iw + pV (2))* — A) T F(f + D 2 ko220
= [[iew + pV (@) (G + pV (@) = A) " F(F + | yozpo(

< CIF(f + Ol 2w 2 )

=C|f +dlle2wsz2 )

= C|If + qllz20,m;22(0)-

Further, it holds that

10wl L2 0,7;22(02)) < 10 + oV (2))ull 220,702 (02)) + 1PV (%) ull 200,722 (02))
< CIf +dllz20,m52200) + ClliullL20,m;220))
< CIIf + qllz20,m52(0))-

Thus, we obtain the estimate (2.25). By the similar approach, (2.26) can also be derived. Finally, (2.27)
is deduced from (2.15) and (2.17). O]

3 Temporal semi-discrete scheme

In this section, we propose a temporal semi-discrete scheme for solving the optimal control problem
(1.4)-(1.5) by using the backward Euler convolution quadrature to approximate the Riemann-Liouville
fractional substantial derivative, then derive the corresponding optimality conditions and the representa-
tions of the discrete solutions.

We divide the time interval [0, 7] into a uniform partition with a step size 7 = T/N, i.e., t, =
nr, n = 0,1,--- ,N. The Riemann-Liouville fractional substantial derivative D, ~““u(z, ,) can be
approximated [3, 6, 29] by

1

n
Di_a@Un = — Z bng:ja)e_tnijV(I)U]’, n= 17 27 e 7N7 (31)
j=1

71

where the coefficients {bg-l_a)} are determined by the recursive formula bg = 1, b; = b;_1 - =
1,2,---, and satisfy the power series expansion:

oo

1

(5-(0) ™ = g N, VI <1 e a0 = T (62)
§=0
As Qpu + pV (z)u = e~V @) gy (e!?V (®)y,), we approximate it by
DLap .= ¢~ tntV @ P (etnrV @y = U1 G_Tiv(x)U"_l, (3.3)
where D, denotes the standard backward Euler difference operator D,.U" .= U"=U""1 " Then we

-
propose a temporal semi-discrete scheme for the optimal control problem (1.4)-(1.5) as follows

N

min J(Q) =

T
o Um — 2 n—1)2 34
in =3 (I — gl + 1 ) (34)

n=1

subject to

{D}xm —ADI7erpyn = 4 Qnl 2€Q, n=1,2,--- N, 55)

UOZO, ze€Q, and U" =0, 2€09Q, n=0,1,---,N,
where f* =1 [’ ftdt, vy = %ft:fl ug(+,t)dt, and

T o1 Jtp—

u={Q=(@" ") ra<@ ' <b =12 N}

8



3.1 Optimality conditions

In this subsection, we derive the optimality conditions of the temporal semi-discrete problem (3.4)-(3.5).

The adjoint operations of those in (3.1) and (3.3), denoted by BDL™*%Zn=1 and BDL* zn~1 re-
spectively, can be regarded as the temporal difference approximations of BDl T 2(x,ty_1) and (—0; +
pV(x))z(x,t,—1), and given by

N
I 1 “o) s -
A = DI (3.6)

BDl,a:Zn—l — etn—1PV($)BD (e—tn71pV($)Zn_1) _ Z”*l _ e*TPV(x)Zn
T . T

; (3.7

T

with BD, zn—1 .= w By using the above definitions and after simple calculations, we can obtain

the following equalities:

N N
TZ (Zn—l’D}_—oc,zUn) _ TZ (Zn 1 Zb (1- oc e tn— JpV(z)U])
n=1 n=1

N N 1 |
=T Z Z (Tl—a bﬁllija) tn— ij(:t)Zn_l7 U]>

N
( Z b(ll_a)eftjfan(a:)ijH Un)

L \i=a =~ j—n
N
— Y (Bt et ), (3.8)
n=1
N ~ N Un — e~ mPV(x)n—1
7_; (Zn—l’D}_,xUn) — T; (Zn—l’ € - )
N o U N . e~ TPV (Z)n
S ()3 ()
N zn—1 e—TpV(z)Zn .
- TnZl( )
N
n=1

where U° = 0 and Z" = 0 are applied. Furthermore, we denote
U=U"p", 2=(2""05 Q=@ o (3.10)

Theorem 3.1. The temporal semi-discrete problem (3.4)-(3.5) admits a unique solution (U, Q) and an
adjoint state Z such that (U, Z, Q) satisfies the optimality system

DL2y™ — ADI=*eym™ = fm 4+ Q1 zeQ, U'=0, z € o, (3.11)
BpLegn=t _Bpl-aengn=l _pyn _ % zeQ, Z" 1 =0, z € 99, (3.12)

n=1

forn=1,2,--- N withU® =0, ZN = 0, and the variational inequality
(YQ" P+ 2" v —Q" ) >0, Voe L*(Q), a <v < b (3.13)

Moreover, the variational inequality further yields

Q"' =Py, (- iZ“)- (3.14)



Proof. The temporal semi-discrete problem (3.4)-(3.5) has a unique solution (U, Q) due to the strong
convexity of the functional J(-) in (3.4). Next, we derive the first-order necessary optimality conditions.

Forany v € U, and 6Q := v — Q, the convexity of U, shows Q +€/Q € U], for 0 < e < 1.
Since Q is the minimizer of the problem (3.4)-(3.5), then we have

N N
! _ n__ ,n n n—1 n—1
J(Q)éQ_T;/g(U u)oU da:+7';/ﬂny sQ" 'z > 0,

where 6U™ = limc_ (U™(Q"! + e6Q"™1) — U™(Q"1)) /€ satisfies
DL*sU™ — ADL 7 sU™ = QL.

Hence, multiplying U™ on both sides of (3.12) and summing up yield that

N N
TZ / (U" — uy)oU"dx = TZ/ zm Qe
n=1 Q n=1 Q
where (3.8) and (3.9) are applied, thus it further derives (3.13). ]

3.2 Solution representations

In this subsection, we derive the solution representations for the temporal semi-discrete scheme (3.11)-
(3.12) and establish the corresponding stability results.

Lemma 3.2. Let U", Z"~ ! be the solutions to the temporal semi-discrete scheme (3.11)-(3.12), and
define

FeeWDl g =" QEDg 1y =Q" ", n=1,2,--- N, (3.15)
U('7t)‘(tn_1,tn] = Unu udT('7 t)’(tn_l,tn] = ugv n = 17 27 o 7N‘ (316)
Then we have
tn
Un = E™(tn — 5)(f-(-,8) + Q(-, 8))ds, (3.17)
0
T
VA / F7(s = tp-1)(U(+,8) — uar (-, 5))ds, (3.18)
tn—1
and
E"(tjv = L eﬁti&(e”ﬁ(ﬁ))a”(57(6*75(9)‘1 —A) lwde (3.19)
2mi Jry esT — 1 ’
F(tyv = ! ott_ST (6:(e~™PE) — A) 5, (e POy Ty, (3.20)

- 27Ti Fg 667— -1

where I'y . is given by

s

gﬁ:{zE(C:|z\:n, \argz\ﬁ@}U{zG(C:liSMS |argz|:9}.

Tsinf’
Note that if pV' (z) # C, then
5, (e POy (5, (e POy — A)—l £ (8,(e” PO _ A)_l -5, (e T8Oy,

it indicates that the operator E7 () is essentially different from F'7 (t).

10



Proof. By (3.1) and (3.3), we can obtain that

i(Di—a,xUn)Cn =6, ( —1pV(x 1 aZUnCn

n=1

Z Dl acUn n _ 5T(e—TpV(ac)C) Z un¢r.

n=1 n=1
Let U(¢) = Y one, U™, multiplying (3.11) by ¢ and summing n from 1 to oo yield that

0(C) _ 5T(e—TpV(a:)C)a—1 (57_(6—7721/ -1 Z Qn 1
n=1
Using Cauchy’s integral formula and theorem, we derive that
n — L gtné —7B(§)ya—1 ) —mB(€)\a _ A -1 S n n—1 —gtnd
U 9 - e T(e ) ( T(e ) ) ;(f + Q )6 5

It also follows from the definitions of f-(-,¢) and Q(-,¢) in (3.15) that

X tn tn
f=(,6) Z/ (fr(t) + Q1)) e Stdt = 2/ (f"+ Q" e tdt

th—1 tn—1

7_

an+Qn1

which directly leads to (3.17). 3
Next, we derive (3.18). Let Z(¢) := S0 zn=I¢N=n = 7% ZN=m=1¢m it has from (3.6)
and (3.7) that

N
Z (BD}_—a,acZn—l)CN—n _ 5T(€—Tp\/(w)<)1—a2(c)’
T
D (D7 = 6 ().

By multiplying ¢!V~ on both sides of (3.12) and summing n from —oo to IV, we obtain that

N
Z(¢) = (6:(e7™V@ ) — A) o (V@) TINI(C), M(C) = Y (U —ul)N T,

n=—0oo

and by Cauchy’s integral formula and theorem, it implies

Zn1 = % STt (5, (e 8O — A) 5 (eI N (e E)de. (3.21)
™ g,

U(,t) = U(-,T —t) and @g,(-,t) = ug, (-, T — t), it yields from the definition of U(-, s) and
5) in (3.16) that the Laplace transform of U (-, t) — g4, (-, ) satisfies

udT('7

S

(75) - ﬁdT('vf) = /OOO (U(',T - t) - udT(-,T — t))e_gtdt

T
= / (U(-,s) — uar (-, s))efg(T*S)ds

— 00

11



— Z (U™ — uly)e=STtn) 1—e ¥
n=-—00 f
~ 1—e¢7
= M(e¢T ,
(e™7) ¢
which leads to (3.18) by using (3.21). ]

To obtain the stability results in Lemma 3.4 for the discrete scheme (3.11)-(3.12), we first introduce
a preliminary lemma in the following.

Lemma 3.3 ([6, 29]). Let 3(&) be given by (2.2) and V (x) bounded in . By choosing 0 € (5, )

sufficiently close to 5 and k > O sufficiently large (depending on |p|||V ()| oo () ). there exists a positive
constant T, such that the following estimates hold for T < T,.

(1) Forallx € Qand ¢ € 2 o we have 5:(e7™P9) € Z%’T,Cm and

C1lé] < 16, (e7™9)] < Calél,

where .
br={6€C: || >k, |arg&l <0, Im(¢)] < — Re(§) s r+ 1},

Im(€) and Re(&) stand for the imaginary and real parts of &, respectively.

(2) The operator (6,;(e”™PE)> — A)=1 . L2(Q) — L3(Q) is well-defined, bounded, and analytic
with respect to & € 257 .» satisfying

IAG (e POy —A) Y <0, vEesy,,
1(6(e7 ) —A) Y| < Ol VE € B,

(3) Forall x € Q and real number =, it holds that
[67(e Y — B(€)] < Cr|EPT, VE €Ty,

The discrete time-space ¢2(L?(£2)) inner product and norm are introduced as follows for further
analysis.

N
[V7W] = TZ(Un7wn)7 Vv = (vn)flvzlﬂ w = (wn)71¥=1 € LQ(Q)N7
n=1

N

, Vv= (")l e L)Y

N
IVl = VEvovT = (73 107132y

With above results and the integral representations of the solutions in (3.17)-(3.18), the discrete system
(3.11)-(3.12) satisfies the following stability results.

Lemma 3.4. Let U™ and Z" ! be the solutions to the system (3.11)-(3.12) given by (3.17) and (3.18),
respectively. Then we have

U1l < Cllit- + Qlll, (3.22)
I1Z][] < ClIIU = aa-], (3.23)

where £, = (f")2_, and ug, = (u?)N_,.

12



Proof. By Lemma 3.3, we have

157 (el < / ] | e T 18 (e O) T (5, TIO) — &) e

<c /F 1S e - olldgd < Ol (.24
0,k

where it utilizes the following estimate [11, Lemma 3.4]:
Colélr < |1 — &7 < Cuf¢|r, VEeTy,. (3.25)

Then it derives from (3.17) that

tn
HU”II<C/ VE (tn — )] - 1+ 8) + Q- s Hds<c/ 1+ 8) + QC 5)]lds.

With the definition of f(-,¢) and Q(, ) in (3.15), we obtain (3.22) by

IIIUHI2<CTZ(/O 1008 + Q8 ds)
<CTZZ/ 1F7009) + QCs) s

nljl

—CTZZ 17+ Q7 |*ds

n=1j=1"7ti-1

< ClIf- + QllI*.

By the similar approach, we can derive the estimate (3.23). O

4 Error estimates

In this section, the £2(L?(€2)) and ¢°°(L?(f2)) error estimates of the proposed temporal semi-discrete
scheme (3.4)-(3.5) are rigorously established without the regularity requirement on the solutions of the
optimality system. The main results are stated in the following theorems.

Theorem 4.1 (¢2(L?(2)) error). Let (u,z,q) and (U™, Z"~1, Q") be the solutions of the problems
(2.10)-(2.12) and (3.11)-(3.13), respectively. If f,ug € L*(0,T;L*(Q)), V(z) € W2*>(Q) and
Re(pV (z)) > 0, then we have

lfa = Ul + l[lz = Z[|| + [lla - Q| < Clr,

where u = (u(-,t,))N_1, 2 = (2(, tn-1))2_1, @ = (q(-,tn—1))2_1, I- = In(2), and the constant C is
independent of n, T.

Theorem 4.2 (/>°(L?(Q)) error). Let (u,z,q) and (U™, Z"~1, Q") be the solutions of the prob-

lems (2.10)-(2.12) and (3.11)-(3.13), respectively. If f,uq € H*(0,T; L*(Q)), V(z) € W?>(Q) and
Re(pV(x)) > 0, then we have

n _ mn—1 _ n—1 <
max {[u(tn) = U + [|2(tn-1) = 2" + lla(tn-1) = Q"7 I} < Cli,

where |, = ln(%), and the constant C' is independent of n, 7.

13



4.1 Some lemmas

To prove the error estimate in Theorem 4.1, we first derive some lemmas in this subsection.

Lemma 4.3. Let E(-) and E7(-) be given by (2.20) and (3.19), respectively, and

tn
K" := / (E(tn —s) — E"(tn — 5)) (f(-,8) + q(-, 5))ds.
0
Then we have
(B2l < Cler,
where |, = ln(%) and the constant C' is independent of n, T.

Proof. From (2.20) and (3.19), we obtain

Kn:/n (Bi(tn — 8) + Ba(tn — 5)) (f (-, 5) +q(:, 5))ds,
0

where

Bilt) = 5. RO Balt) = 55 [ e Ba(e)ae,

2711 FG,N\Fg,,i 1

with

ST
By (3.25), Lemmas 2.2 and 3.3, it holds that
IB1(&)]| < CIEI™", VE €Ty, and [|[Ba(§)] < ClEIT, VE TG,
In addition, we have || B1(¢)|| < Cr for any £ € T,/\I'j .. and
1B26) = [[(BE©)°" — 67O 1) (B(6)* — &)
+ ][0 (TP T [(B(e)™ = A) T = (8-(e7HO) — A) ]|
oo e (- )|

< O7le|*lel™ + Ol He T rle| e ™ + Clel e ¢l
=Cr, V§ely,,

where it applies Lemma 3.3 and the following estimate

ér
1
‘ efT — 1

| = 6.6 — )| < Clelr, Ve Ty,
which is obtained by using [11, Lemma 3.4]. Combining (4.2) and (4.3), we obtain

IB1(€)]] < O C|¢]7, YE €T\l € € (0,1),
|B2(&)|| < CT7el¢| ™, VE €Ty, €€ (0,1).

Then we derive from (4.1) that
IB1(#)]| < Cr'=t 079, Vee (0,1), te (0,T],

|Bo(t)|| < Cri =t~ 079) vee (0,1), t € (0,T).

14
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Moreover, it obtains from (2.23) and (3.24) that
tn—1
K" < / [B1(tn — ) + Ba(tn — )| - [[f (-, 5) + q(-, s)||ds
0

tn
+/‘IW@W—ﬁ—EWm—@HMﬂw@+ﬂw$Ms

tn—1

[t (4T —s)lE —(1—e
<or [T (bt 7= )01 8) (- 5)ds

tn1+7—8)l—¢

tn
+#*/)<%+T—@*F%uu@+qhﬂws

tn—1

T
<O [ gt T = 0SS FaC9ds €€ 0.1 @)
0

Then, by using the following two inequalities [12]

T
1I§nna§XN/0 1, >s(th +7—9) ds < Ce (t, +7)° < Ce 7, 4.7
N T
sup T Z 1, ss(tn +7—5)" 179 < sup / (t+7—s)"179dt < Cet, (4.8)
s€(0,7) =1 s€(0,T) Js—1

we can derive that

I = (- }jnKﬂn)5

N 2
<O(r 3| [ tglta 79 001100) + e 9)las])

n=1

N T
<or' (T Z/ Lt >s)(tn +7 — 5)_(1_6)(13
n=1 0
r 1 2
[t 7= 970N+ a0 Pas)

N T

—C*EGf%EZA Ve (b +7 = )07 £ 8) + (-, )] %ds)
n=1

1

<or (e [Tt +aoas)

<o e + a2z
<Orl ¢ = Cl,T,

D=

[NIES

[NIE

where € = [ is taken with I, = In(1/7). O

Lemma 4.4. Let E"(-) and f.(-,t) be defined by (3.19) and (3.15), respectively,
tn
L" .= E7(tn — 5)(f(-,8) — f+(-,5))ds

0

Then we have

L")zl < Cler,

where | = In(1/7) and the constant C'is independent of n, T.
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Proof. We have from (3.15) and f™ = % ftnn,l f(-,t)dt in (3.5) that
tj tj 1 (U
/ E7(tn —tj—1)fr(-,8)ds = / E7(t, — tj_l)/ f(,w)dwds
ti—1 ti—1 T tji—1

N /tj ET(tn — tj-1)f (-, 5)ds.

ti—1

Then it follows from (3.24) that
Iz = |32 L =959 = sl
-I= / (Bt = 9) = B (b~ t5)) (Fo9) — )|
j=17ti-1

n t;
<> / E (tn — ) = B (by — t;- )| - [ £ 8) = fo (-, 9)]|ds
j=1"7%i-1

ti—1

n—1 ..
< Z/ L Ot — 5) " £ 8) = fr (-, 8)ds
j=1"1
tn
+ /t (IET(tn = s)| + I BT (tn = ;) )£ (-5 8) = fr(, 9)llds
n—1
tnfl tn
<or = [T =9 0N ) = s+ [ ) = o)
tn—1
where we use the following estimate

1B (ta — ) = E7(ta — ;1)

<o [ |t _ ettty ‘ ng
an esT —1

) ‘57(6—%(5))&—1, ) H(dT(e‘Tﬁ(f))O‘ _ A)*H - |dé|
<C [ eI = e e g
<C et eg e fdg
o .
< CT1_€<tn — 8)_(1_6), S € (tj_l,tj).

Similar to the estimate of K™ in Lemma 4.3, we have

T
1L < CTH/O Litsa(tn +7 = 8) O f (- 8) = fr (-, 9)[ds, € € (0,1),
which further yields
LM < Ot et f - Frll2o,m:2(0)) < Crivte < Clt.

The proof is completed.

Lemma 4.5. Let E7(-) be defined by (3.19) and
in

J" = 0 E7(t, — S)(Q('7S) —q- (- 5))d3>
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where ¢ (-, t)|i1,,_1 t,) = q(, tn—1) forn =1,2,--- | N. Then we have
(Tl < O,

where C'is a constant independent of n, T.

Proof. 1t obtains from (3.24) that
tn
17701 [ UB (= )1 oG 5) = g 5) s

< c/o" lg(-,8) — ar(:, 5)]|ds

=C la(-s) —a(- tj—1)llds
;/ q qi-,lj—1

ti1

n tj S
<> [0 [ ot o)lagas
j=1 tji—1 Jtj—1
t

<or / " 10sa(-, $)|ds. “.9)
0

Recalling the prior regularity estimate of ¢ obtained in Theorem 2.7, then we have

N tn 9
n\N )12 2 . $)lds
NP <cry (/0 0sa(-,s)]lds)

n=1
T
< or? /0 10sq(-, 5)|%ds

2 2
< Ot \lalli 01,20
< C7r2,

which completes the proof. 0

With the estimates in Lemmas 4.3, 4.4 and 4.5, we can derive the following lemma.

Lemma 4.6. Let u be the solution to the state equation (2.10), and U(q) = (U(q)™))_; with U(q)"
being the solution to the following semi-discrete equation

{Dl"”U(Q)” —ADI U (g = f" 4+ ¢, z€Q, n=1,2,--,N,

0 n (4.10)
U(g)) =0, 2€Q, and U(q)" =0, x €09, n=0,1,---,N,

where f* =L ['" £ t)dt and ¢ = (-, tn_1). Then we have

T Jin—1
[lu—U(q)ll| < Cl;T. “.11)

Proof. We have from the solution representations in (2.18) and (3.17) that

tn

u(tn) = U(q)" = ; E(tn —s)(f(-,s) +q(-5))ds

-/, E"(tn — 5)(fr(,s) + ¢-(-,8))ds
=K"+L"+J", (4.12)
where K", L™ and J™ are given in Lemmas 4.3, 4.4 and 4.5, respectively, and
FrCo Ot = ™ @GOty = 4" = a(1tn1),
forn =1,2,--- , N. By Lemmas 4.3, 4.4 and 4.5, we obtain the result (4.11). ]
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By the similar approach as above, the following estimate can also be derived.

Lemma 4.7. Let z be the solution to the adjoint equation (2.11), and Z(u) := (Z(u)""HN_, with
Z(u)"1 being the solution to the following equation
BD}_,IZ(u)n—l _ BD}_—a,zAZ(u)n—l R u’crll? r€Q, n=N,---,1, @13)
ZwWN =0, €Q, and Zw)" =0, x € 9Q, n=N,---,1,0, '
where u" = u(-, t,) and ulj = ti"_l uq(-, t)dt. Then we have
|z — Z(u)||| < Cl,. (4.14)
Proof. By (2.19) and (3.18), we have
T
2(rtamt) — Z(u)™? :/ F(s — tuoy) (u(-,5) — ua(-,))ds
tn—1
T
—/ FT(s—tn_l)(uT(-,s) —udT(-,s))ds
tn—1
T
:/ (F(s —tn-1) — F7(s — tn—1)) (u(-,s) — ua(-,s))ds
tn—1
T
+/ F7(s —tn—1)(u(-,s) — ur(-, 5))ds
tn—1
T
—/ FT(s—tn_l)(ud(-,s) —udT(-,s))ds,
th—1
where ur ()] (1, _1,60) = u" = u(-,tn) and ugr (- )|, 1] = vy forn =1,2,--- , N. Analogous to
the proofs of Lemmas 4.3, 4.4 and 4.5, we can obtain the result (4.14). ]

4.2 Proof of Theorem 4.1

Based on the lemmas in the above subsection, we can demonstrate the proof of Theorem 4.1.

Proof of Theorem 4.1. As q(-,tp,—1) = PUad(—%z(-, tn—1)) due to (2.15), we have
('.)/Q(‘vtn—l) + Z(',tn_1)7’l) - Q('vtn—l)) 2 07 Vo S L2(Q)7 a S v S b.
Then it follows from the above variational inequality and (3.13) that

ha,a-Ql=-[zd-Q]-[va+2Q—-d] < —[z,q-Q],
—[1Qa-Ql=[2,9-Q]-[YQ+Z,q-Q]<[Z,q—Q],

which further leads to
Yla—QlI? =~[a,a— Q] — 7[Q,q — Q]

< —[z,a-Q]+[Z,q-Q]
=[Z-2Z(U(q)),q - Q] +[Z(U(q)) — 2,9 — Q],

where U(q) = (U(q)™))_; with U(g)"™ being the solution to (4.10), and Z(U(q)) = (Z(U(q))™)X

n=1

(
with Z(U(q))" being the solution to (4.13) replacing ™ by U(q)". Then by (3.8) and (3.9), we deduce

[Z - Z(U(q)),a - Q] = [Z - Z(U(q)), (D" — AD;=**)(U(q) — U)]
=[("Dy* — PD;=**A)(Z — Z(U(q))), U(q) — U]
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= —[I[U(q) - UJ|I* <0,

which implies that
lla—Qlll < Cll|Z(U(q)) — =l

< Cll1Z2(U(q)) = Z(w)|[| + Cll|Z(u) — 2|

(4.15)
< CllU(a) —ulll + C[[[Z(a) — 2|
< Clrr,
where the estimates in Lemmas 3.4, 4.6 and 4.7 are applied.
It follows from Lemma 3.4 that
11U(q) = Ul|| < Cllla - QJll
Then the result in Lemma 4.6 leads to
[lu = Ul < [[[la = T(q)[[ + [[[U(q) = Ul|| < [[lu—-U(q)lll + Cllla—- Q|| < Clr.
By using the triangle inequality, Lemmas 3.4 and 4.7, we obtain
Iz = Z[[] < |||z — Z{w)|[] + [[[Z(w) - Z[|
< |llz = Z(w]|l + Cllju - U] (4.16)
< Cl,.
The proof is completed. O

4.3 Proof of Theorem 4.2

Proof of Theorem 4.2. We first estimate max<,<n |[u(t,)—U"| by splitting u(t,,) — U™ into two parts:
u(tn) —U(q)™ and U(q)" — U™, where U(q)" is the solution to (4.10).

For u(t,) — U™, we need to analyze each term in (4.12). By using (4.6), (4.7) and the Sobolev
imbedding H'(0,T) < L>(0,T), we can obtain

T
n|| < 1—e N —(1—¢) . .
s 7 < 07 i [ 2oyt 7 = OO + a8 s
<O € f + dllze o)
< CL|f + allaro,1:02(9))

where ¢ € H'(0,T; L?(Q) has been proved in Theorem 2.7. From the definition of L™ in Lemma 4.4
and the estimate (3.24), it follows that

tn
nl < T _ . . — .
w1271 < max [ 1B (6= 9 1C.5) = 9l

1<n<N

T
SC/ Hf('as)_fT('73)Hd3

f(,8)— i/:jl f(-,r)ders

]:1 tjfl

N oot ot
¢ O f(-
- j;/tjl /tjl 10 f (-, €)[|d&ds

< Ot flla0,7522(9)-
In addition, the estimate (4.9) directly leads to

JY < C ; '
1glauSXNII | < C7llqll 10,2200
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Then the above estimates and (4.12) imply that

— < . .
1r§r71%XN |lu(tn) — U(q)"|| < Cle7 4.17)

It obtains from the solution representation (3.17), the estimates (3.24) and (4.15) that

tn
n_ | < T _ . . _ .
1g;waXNIIU(q) u"|| _@%XN/O |E™(tn — s)|| - [lg- (-, 8) — Q(-, 5)||ds

T
SOA\Whﬁ—Qhﬁws
=07 laCt-) - @7

< Clla—-Qlll <Cl;r. (4.18)
Thus, the estimates (4.17) and (4.18) imply that

[u = Ullgoo(r2(0)) : = | max, |u(tn) — U]
< . n n_ym
< 1I§T}1€igXN{HU(tn) U™l + lU(@™ = U™}
< Cl,.

By the similar approach as above, we can also derive

|12 = Zl~ (12()) = max, [[2(tn-1) — Z" Y < Cl,r.

With the contraction property of the projection Py, ,(-) (see [16, Corollary 2.4]) given by (2.16), we
obtain from (2.15) and (3.14) that

ld = Qlleeo(r2(02)) : =  max, lq(tn—1) — Q"

1 1
= max [P, (= Z2tar) = Pua( = 2@

< C max |2(te-) = 27|

The proof is completed. O

5 Numerical results

In this section, we verify the theoretical error estimates of the proposed temporal discrete scheme for the
optimal control problem governed by the forward fractional Feynman-Kac equation through numerical
experiments. We solve the discrete optimal control problem (3.4)-(3.5) by the inexact alternating direc-
tion method of multipliers (ADMM) algorithm [8] with the piecewise linear finite element discretization
in space, where the Lagrange penalty parameter is taken as 1 and the tolerance is 1.0 x 107°.

Example 5.1. We consider the problem (1.4)-(1.5) in one-dimensional case. Let Q2 = (0,1), T =1, v =
1, V(z) = x and p = 1. The exact solutions are chosen as

u(z,t) = e Ptx(l — x),
z(x,t) = (1 — t)x(1 — x),
q(z,t) = max{—0.1, min{—z(z,t),—0.01} },

with f and ug being calculated by (2.10) and (2.11) correspondingly to the exact solutions.
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We let o = 0.2,0.5,0.8 and choose 7 = 1/8,1/16, 1/32, 1/64 to solve the problem (3.4)-(3.5) with
the finite element mesh of equal subintervals in 2 = (0, 1) and the mesh size h = 1/64. In Table 1, the
2(L2(2)) errors || [u—"Ul]|, |||lz— Z|||, |||qa— Q||| and the numerical convergence orders in time direction
are presented for Example 5.1, which is consistent with the theoretical order of O(7) in Theorem 4.1.
In addition, it can be observed that our numerical scheme is effective, and the convergence order is
not affected by the fractional order o.. Table 2 provides the £°°(L?((2)) errors and the corresponding
numerical convergence orders for Example 5.1, which also confirms the theoretical estimate in Theorem
4.2.

Table 1: The ¢2(L?(£2)) errors and numerical convergence orders for Example 5.1.
a (L*Q)error 7=1/8 7=1/16 7=1/32 7=1/64 Order

[lu—UJ]|  1.67¢-03 826e-04 4.02-04 195¢-04 ~ 1.03(1.0)
02  |z—2Z||  2.64e-03 133e-03 6.65¢-04 3.3le-04 =~ 1.00(1.0)
lla— Q||  202e-03 10le-03 473¢-04 2.14e-04 =~ 1.08(1.0)
[lu—UJ|[  273e03 136e-03 6.75¢-04 334c-04 ~ 1.01(1.0)
05  ||z—2Z||  3.85e-03 193e-03 9.6le-04 4.76e-04 = 1.00 (1.0)
lla— Q||  3.3le-03 167e-03 8.19-04 4.03e-04 =~ 1.01(1.0)
[lu—UJ|[  4.69¢-03 237¢-03 1.19e-03 5.96e-04 ~ 0.99 (1.0)
08  ||z—2Z||  7.04e-03 3.57e-03 1.80e-03 9.04e-04 ~ 0.9 (1.0)
lla— Q||  5.04e-03 25803 131e-03 6.6le-04 =~ 0.98(1.0)

Table 2: The £>°(L?(€2)) errors and numerical convergence orders for Example 5.1.
a  ®(L*(Q))error T=1/8 7=1/16 7=1/32 7=1/64 Order

[u—Ullpoo2i) 302603 1.63e-03 8.40e-04 4.20e-04 = 0.95(1.0)
02 ||z — Zlljerregy 483603 2.71e-03  1.42e03  7.16e-04 = 0.92(1.0)
la = Qllir2iy  4.82e-03  2.67e-03  121e-03  5.89%-04 = 1.01(1.0)
[u—Ulle(z2() 425603 2.09e-03 1.04e-03 5.16e-04 = 1.01(1.0)
0.5 ||z — Zllporr2() 7.00e-03 3.53e-03 1.74e-03  8.64e-04 = 1.01(1.0)
la — Qllpe(r2)) 6.98e-03 3.46e-03 1.72e-03 8.53e-04 ~ 1.01(1.0)
[u—Ull~(z2() 5.85¢-03 3.01e-03 1.53e03 7.72¢04 ~ 097 (1.0)
08 [z~ Zlpo(r2() 949e-03 4.94e-03 2.51e-03  1.27e-03 =~ 0.97 (1.0)
la — Qllpe(r2(y) 948e-03  4.93e-03  251e03 127e-03 097 (1.0)

Example 5.2. The optimal control problem (1.4)-(1.5) in two-dimensional case is considered with ) =
(0,1)2, T=1,v=1, V(x1,22) = 1 + 72 and p = 1. We set the exact solutions as

u= e_tp(mﬁm)tm(l —x1)w2(1 — 22),
z =PI (1 — )y (1 — 2)aa(1 - 29),

¢ = max{—0.1,min{—z, —0.01}},
and evaluate f and ug by (2.10), (2.11) and the exact solutions.

In Example 5.2, we choose 7 = 1/8,1/16,1/32,1/64 to solve the problem (3.4)-(3.5) with o =
0.2,0.5,0.8, and the domain © = (0, 1)? is partitioned into a uniform symmetric finite element triangu-
lation mesh with the mesh size h = 1/32. The errors ||[u—Ul||, |||z—Z||| and |||q — Q||| are list in Table
3 together with numerical convergence orders in time direction, where a first order convergence order
is shown. From the numerical results, we observe that our numerical scheme is efficient, the numerical
convergence order is also not affected by the fractional order «, and the numerical results confirm the
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theoretical analysis in Theorem 4.1 as well. In Table 4, the £°°(L?(Q)) errors and the corresponding
numerical convergence orders are presented for Example 5.2, which shows the similar observations as in
one dimensional case.

Table 3: The ¢?(L?(£2)) errors and numerical convergence orders for Example 5.2.
a (L*Q)error 7=1/8 7=1/16 7=1/32 7=1/64 Order

llu—Ul||  3.36e-04 1.69-04 83le-05 4.00e-05 =~ 1.02(1.0)
02 ||z—2|| 1.12¢-03  5.54e-04 2.65e-04 1.20e-04 ~ 1.08(1.0)
lla— Q|  1.10e-03 5.09-04 2.4le-04 1.06e-04 =~ 1.12(1.0)
[lu—U|[  3.95¢-04 2.00e-04 9.96e-05 4.95¢-05 ~ 1.00(1.0)
05  |lz—2| 1.09e-03  5.52¢-04 2.73e-04 134e-04 ~ 1.01(1.0)
lla— Q|  1.02e-03 4.46e-04 2.18e-04 1.05e-04 ~ 1.09 (1.0)
[lu—U[|[ 62304 3.19¢-04 162e-04 8.16e-05 ~ 0.98 (1.0)
08  |lz—2| 1.61e-03  8.35¢-04 4.30e-04 2.25¢-04 ~0.95(1.0)
lla— Q|  149e-03 7.14e-04 3.69e-04 1.94e-04 ~ 0.98 (1.0)

Table 4: The ¢/>°(L?(€2)) errors and numerical convergence orders for Example 5.2.

a  (®L*Q))error T=1/8 T=1/16 7=1/32 7=1/64 Order
Ju—Ulo2i)) 500e04 29904 1.62e-04 832e-05 = 0.86(1.0)
02 |z—Zfo2) 152e-03 835¢-04 4.64c-04 242e-04 ~0.88(1.0)
g — Qllpe(reiy) 152603 7.43e-04  3.52e04  1.55¢-04 =~ 1.10(1.0)
[u—Ull~(2)) 7-81c04 423c04 2.11c-04 1.04e-04 =~ 0.97 (1.0)
05 |z— ZHgoo(Lz(Q)) 2.14e-03  1.20e-03  6.13e-04 3.02¢-04 ~0.94(1.0)
la — Qlleero) 1.87¢-03  8.69e-04 4.23e-04 2.16e-04 = 1.04(1.0)
Ju— U2y 108603 553¢-04 285c-04 1.44e04 ~0.97 (1.0)
0.8 |z— ZHKOO(LQ(Q)) 3.03e-03 1.55e-03  8.13e-04 4.18¢-04 ~0.95(1.0)
la— Qllp~(z2)) 25803 1.38e-03  7.12¢-04 3.64e-04 =~ 0.94(1.0)

6 Conclusion

The forward fractional Feynman-Kac equation governs the joint probability density function of function-
als in anomalous diffusion. This paper analyzes and approximates an optimal control problem governed
by the forward fractional Feynman-Kac equation by a temporal semi-discrete scheme. Significant chal-
lenges are encountered in the theoretical analysis due to the time-space coupled nonlocal fractional sub-
stantial derivative in the equation. We establish the well-posedness, optimality conditions and solution
regularity of the problem. Then we discretize the Riemann-Liouville fractional substantial derivative in
time by using the backward Euler convolution quadrature formula and propose a temporal semi-discrete
scheme for the optimal control problem. Based on the regularity results of the solution, we rigorously
estimate the /2(L?(Q2)) and £°°(L?(2)) discretization errors in time, and the theoretical convergence
order of O(7) is verified by some numerical examples. Due to the challenges as mentioned, the error
analysis of the finite element method in space for the considered optimal control problem still confronts
many difficulties.
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