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Abstract

In this paper, an optimal control problem governed by the forward fractional Feynman-Kac equa-
tion is considered, which describes functional distributions of anomalous diffusion and encounters
significant challenges arise from the time-space coupled nonlocal operator and its non-commutativity
with the Laplacian. First, we investigate the well-posedness of the continuous optimal control prob-
lem, derive the first-order optimality conditions and establish the regularity estimates of the solu-
tion. Then, the Riemann-Liouville fractional substantial derivative in the equation is approximated
by using the backward Euler convolution quadrature formula, and a temporal semi-discrete scheme
is proposed for the optimal control problem. Moreover, we rigorously analyze the `2(L2(Ω)) and
`∞(L2(Ω)) error estimates of the proposed semi-discrete scheme, which exhibits almost optimal
convergence of O(τ | ln τ |), relying only on the regularity assumptions on the data and without extra
assumptions on the solution of the optimality system. Finally, we perform the numerical experiments
by using the inexact alternating direction method of multipliers (ADMM) algorithm and the piece-
wise linear finite element method. The numerical results demonstrate the validity of our numerical
scheme and verify the theoretical convergence order.
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1 Introduction

Anomalous diffusion in non-Brownian motion is a widespread phenomenon in various fields, including
physics, chemistry, biology, finance and others [9, 21, 22, 26, 27, 28, 34]. The functional of anomalous
diffusion has also attracted great interests in the community, see [2, 4, 32] and the references therein.
Analogous to Brownian motion, the functional of anomalous diffusion is defined as A =

∫ t
0 V (x(s))ds,

where x(t) is the trajectory of non-Brownian particle and V (x) a prescribed function associated with
specific applications [2, 4]. Let u(x,A, t) be the joint probability density function (PDF) of finding the
particle on (x,A) at time t, which obeys the power-law waiting time, Carmi et.al in [2, 32] derived that
the governing equation of u(x, ρ, t) :=

∫∞
0 u(x,A, t)e−ρAdA with positive functional A is the forward

fractional Feynman-Kac equation as follows

∂tu(x, ρ, t) = ∆D1−α,x
t u(x, ρ, t)− ρV (x)u(x, ρ, t), (1.1)

which is in Laplace space. D1−α,x
t with α ∈ (0, 1) refers to the left-sided Riemann-Liouville fractional

substantial derivative [2, 7, 17], which is defined by

D1−α,x
t u(x, ρ, t) =

1

Γ(α)

[
∂t + ρV (x)

] ∫ t

0
(t− s)α−1e−(t−s)ρV (x)u(x, ρ, s)ds, (1.2)
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with Γ(s) =
∫∞

0 ts−1e−tdt being the Euler-gamma function, and ∆ represents the Laplace operator.
If the functional A is not necessarily positive determined by the function V (x), then u(x, ρ, t) :=∫ +∞
−∞ u(x,A, t)e−iρAdA refers to the Fourier transform of u(x,A, t), and the corresponding governing

equation is a variant of (1.1) with ρ replaced by −iρ [2], where i is the imaginary unit.
It is evident that the operators ∆ andD1−α,x

t can not commutate with each other provided that ρV (x)
is not a constant function. If the term ∆D1−α,x

t u in (1.1) is replaced by D1−α,x
t ∆u, then it corresponds

to the backward fractional Feynman-Kac equation [2, 32]

∂tu(x, ρ, t) = D1−α,x
t ∆u(x, ρ, t)− ρV (x)u(x, ρ, t), (1.3)

with u(x,A, t) being the PDF of A at t in the process started at x. For α = 1, (1.1) reduces to the classical
Feynman-Kac equation describing the functional distribution of normal Brownian motion, which is a
Schrödinger-like equation derived by Kac [15] in 1949 by using the Feynman’s path integral method. For
ρV (x) ≡ 0 and α ∈ (0, 1), D1−α,x

t in (1.1) becomes the Riemann-Liouville derivative D1−α
t defined by

(2.5), then it leads to the time-fractional diffusion equation ∂tu −∆D1−α
t u = 0 simulating anomalous

diffusion phenomena in physics [21, 22, 34].
In this work, we concentrate on an optimal control problem governed by the forward fractional

Feynman-Kac equation as follows

min
q∈Uad

J(u, q) =
1

2
‖u− ud‖2L2(0,T ;L2(Ω)) +

γ

2
‖q‖2L2(0,T ;L2(Ω)), (1.4)

where ud : (0, T )→ L2(Ω) is a given target function, and γ > 0 is a penalty constant. The state variable
u and the control variable q satisfy the forward fractional Feynman-Kac equation

∂tu(x, t)−∆D1−α,x
t u(x, t) + ρV (x)u(x, t) = f(x, t) + q(x, t), (x, t) ∈ Ω× (0, T ],

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ],

u(x, 0) = 0, x ∈ Ω,

(1.5)

where u(x, t) := u(x, ρ, t) depends on the complex constant ρ ∈ C, f : (0, T ] → L2(Ω) is a given
source term, Ω is a bounded convex polygonal domain in Rn (n = 1, 2, 3) with boundary ∂Ω, and the
function V (x) is bounded in Ω̄. The control set Uad is given by

Uad =
{
q ∈ L2(0, T ;L2(Ω)) : a ≤ q ≤ b a.e. in Ω× [0, T ]

}
, (1.6)

with a, b ∈ R and a ≤ b.
The numerical investigations of the fractional Feynman-Kac equations are relatively limited, com-

pared with that of subdiffusion equations. The significant challenges on theoretical and numerical anal-
ysis come from the time-space coupled nonlocal derivative involved in the governing equation and the
non-commutativity of D1−α,x

t and the Laplace operator (i.e., D1−α,x
t · ∆ 6= ∆ · D1−α,x

t ). In [3], finite
difference approximations were established for fractional substantial derivatives based on the Lubich
method [20], which were further applied to numerically solving the forward and backward fractional
Feynman-Kac equations [5]. In [6], a first-order time-stepping method was provided to solve the for-
ward fractional Feynman-Kac equation (1.1) with error estimates in the measure norm depending only
on the measure of the initial data. Recently, [24] built the regularity of the solution for (1.5), and de-
veloped the error estimates for a fully discrete scheme constructed by convolution quadrature and finite
element method. Some numerical studies for the backward fractional Feynman-Kac equation were also
presented in [13, 29, 30].

In the past decade, there exist generous literatures on optimal control problems governed by frac-
tional partial differential equations, both in terms of theoretical issues and numerical algorithms, we can
refer to [1, 12, 14, 19, 23, 33, 35, 36] and the references therein. However, to the best of our knowledge,
the optimal control problems of the fractional Feynman-Kac equations have not yet been considered in
previous works. Compared with the optimal control problems governed by some time-fractional dif-
fusion equations, the problem (1.4)-(1.5) encounters significant challenges in theoretical and numerical
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analysis due to the time-space coupled nonlocal derivativeD1−α,x
t and the non-commutativity ofD1−α,x

t

and the Laplace operator ∆ in (1.5). Moreover, the coupling of the optimality conditions (2.10)-(2.12)
reduces the regularity of the solution to the optimal control problem (1.4)-(1.5). To fill this gap, we
dedicate to investigating the well-posedness of the optimal control problem (1.4)-(1.5), deriving the first-
order optimality conditions and the regularity of its solution with less regularity assumptions on the data.
Based on this, a temporal semi-discrete scheme is further proposed and analyzed rigorously. The almost
optimal convergence order of O(τ | ln τ |) in time is proved only depending on regularity assumptions on
the data without additional regularity requirements on the exact solutions.

The structure of the rest of this paper is as follows. Some preliminaries and essential lemmas are
introduced and proved in Section 2, the optimality conditions and the regularity results of the solution
to the optimal control problem (1.4)-(1.5) are also derived. In Section 3, we propose a semi-discrete
scheme in time for (1.4)-(1.5) by using the backward Euler convolution quadrature formula to approxi-
mate the Riemann-Liouville fractional substantial derivative in time. The temporal error estimates both
in `2(L2(Ω)) and `∞(L2(Ω)) norms of the proposed semi-discrete scheme are rigorously established in
Section 4. In Section 5, some numerical results are provided in order to validate the effectiveness and
the theoretical convergence order of our proposed numerical scheme, where the discrete optimal control
problem is solved by an inexact ADMM algorithm [8]. We conclude this work with some discussions in
the final section.

2 Optimality conditions and regularity

2.1 Preliminaries

Throughout this paper, the notations (·, ·) and ‖ ·‖ denote the inner product and norm in L2(Ω), the latter
also stands for the operator norm from L2(Ω) to L2(Ω). We additionally introduce the Hilbert space
Ḣ2(Ω) = H1

0 (Ω)∩H2(Ω) endowed with the norm ‖·‖Ḣ2(Ω) := ‖∆·‖ in [31], whereH2(Ω) = W 2,2(Ω)
is the standard Sobolev space.

By [17, Proposition 7], the Laplace transform of the left-sided Riemann-Liouville fractional substan-
tial derivative with α ∈ (0, 1) and u(x, 0) = 0 is

D̂1−α,x
t u(ξ) = β(ξ)1−αû(ξ), (2.1)

where ‘̂ ’ means taking the Laplace transform and

β(ξ) := ξ + ρV (x). (2.2)

In the following, we introduce two essential lemmas for establishing the regularity results for the
solutions.

Lemma 2.1 ([10]). For any ξ ∈ Σθ :=
{
ξ ∈ C\{0} : | arg ξ| ≤ θ < π

}
with θ ∈ (0, π), we have the

resolvent estimates

‖(ξ −∆)−1‖ ≤ C|ξ|−1, (2.3)

‖∆1−γ(ξ −∆)−1‖ ≤ C|ξ|−γ , γ ∈ [0, 1]. (2.4)

Lemma 2.2 ([6]). Let β(ξ) be defined in (2.2) and V (x) bounded in Ω̄. By choosing θ ∈ (π2 , π) suffi-
ciently close to π

2 and κ > 0 sufficiently large (depending on |ρ|‖V (x)‖L∞(Ω̄)), we have the following
results.

(1) For all x ∈ Ω and ξ ∈ Σθ,κ := {ξ ∈ C : |ξ| ≥ κ, | arg ξ| ≤ θ}, it holds that β(ξ) ∈ Σ 3π
4
,κ
2

and

C1|ξ| ≤ |β(ξ)| ≤ C2|ξ|,

where C1, C2 are positive constants. Thus β(ξ)1−α and β(ξ)α−1 are both C(Ω̄) valued analytic
function of ξ ∈ Σθ,κ.
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(2) The operator (β(ξ)α − ∆)−1 : L2(Ω) → L2(Ω) is well-defined, bounded, and analytic for z ∈
Σθ,κ, satisfying

‖(β(ξ)α −∆)−1‖ ≤ C|ξ|−α, ∀ ξ ∈ Σθ,κ,

‖∆(β(ξ)α −∆)−1‖ ≤ C, ∀ ξ ∈ Σθ,κ.

The left-sided Riemann-Liouville fractional derivative [25] is defined by

D1−α
t u(x, t) =

1

Γ(α)
∂t

∫ t

0
(t− s)α−1u(x, s)ds, α ∈ (0, 1), (2.5)

and BD1−α
t denotes the right-sided Riemann-Liouville fractional derivative [25] by

BD1−α
t z(x, t) = − 1

Γ(α)
∂t

∫ T

t
(s− t)α−1z(x, s)ds, α ∈ (0, 1).

It is indicated in [18, Lemma 2.3] that the left- and right-sided Riemann-Liouville fractional derivatives
satisfy the fractional integration by parts formula, that is∫ T

0
D1−α
t u(x, t) · z(x, t)dt =

∫ T

0
u(x, t) · BD1−α

t z(x, t)dt, (2.6)

and we can also derive the similar result for the fractional substantial derivative given by (1.2) in the
following lemma.

Lemma 2.3. For α ∈ (0, 1), we have∫ T

0
D1−α,x
t u(x, t) · z(x, t)dt =

∫ T

0
u(x, t) · BD1−α,x

t z(x, t)dt, (2.7)

where BD1−α,x
t is the adjoint operator of D1−α,x

t , and given by

BD1−α,x
t z(x, t) = etρV (x)BD1−α

t

(
e−tρV (x)z(x, t)

)
. (2.8)

Proof. As mentioned in [17], the fractional substantial derivative (1.2) satisfies

D1−α,x
t u(x, t) = e−tρV (x)D1−α

t

(
etρV (x)u(x, t)

)
. (2.9)

Then we have from (2.6) that∫ T

0
D1−α,x
t u(x, t) · z(x, t)dt =

∫ T

0
e−tρV (x)D1−α

t

(
etρV (x)u(x, t)

)
· z(x, t)dt

=

∫ T

0
etρV (x)u(x, t) · BD1−α

t

(
e−tρV (x)z(x, t)

)
dt

=

∫ T

0
u(x, t) · BD1−α,x

t z(x, t)dt,

which completes the proof.

2.2 Optimality conditions

In this subsection, the well-posedness of the continuous optimal control problem (1.4)-(1.5) and the
first-order optimality conditions are established.
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Theorem 2.4. Let q ∈ Uad be the solution to the optimal control problem (1.4)-(1.5), and u ∈ L2(0, T ;L2(Ω))
the corresponding state variable determined by (1.5). Then there exists an adjoint state z ∈ L2(0, T ;L2(Ω))
such that (u, z, q) satisfies the following optimality conditions

∂tu−∆D1−α,x
t u+ ρV (x)u = f + q, in Ω× (0, T ], u = 0, on ∂Ω× (0, T ], (2.10)

−∂tz − BD1−α,x
t ∆z + ρV (x)z = u− ud, in Ω× [0, T ), z = 0, on ∂Ω× [0, T ), (2.11)

with u(·, 0) = 0, z(·, T ) = 0, and the variational inequality

J ′(q)(v − q) =

∫ T

0

∫
Ω

(γq + z)(v − q)dxdt ≥ 0, ∀ v ∈ Uad. (2.12)

Proof. Let J(q) := J(u(q), q). The first-order necessary optimality condition of the optimal control
problem (1.4)-(1.5) reads

J ′(q)(v − q) =

∫ T

0

∫
Ω

(u− ud)δu(q)dxdt+

∫ T

0

∫
Ω
γq(v − q)dxdt ≥ 0, ∀ v ∈ Uad,

where δu(q) = limε→0[u(q + ε(v − q))− u(q)]/ε, it satisfies zero boundary and initial values, and

∂tδu(q)−∆D1−α,x
t δu(q) + ρV (x)δu(q) = v − q. (2.13)

Then we obtain from the adjoint equation (2.11), the perturbation equation (2.13) and the property (2.7)
in Lemma 2.3 that∫ T

0

∫
Ω

(u− ud)δu(q)dxdt =

∫ T

0

∫
Ω

(
− ∂tz − BD1−α,x

t ∆z + ρV (x)z
)
δu(q)dxdt

=

∫ T

0

∫
Ω
z
(
∂tδu(q)−∆D1−α,x

t δu(q) + ρV (x)δu(q)
)
dxdt

=

∫ T

0

∫
Ω
z(v − q)dxdt,

which implies the variational inequality (2.12).

From Theorem 2.4, it deduces that the objective functional J(·) in (1.4) is strongly convex with
respect to the control variable q, and

J ′(p)(p− q)− J ′(q)(p− q) ≥ γ‖p− q‖2L2(0,T ;L2(Ω)) (2.14)

for any p, q ∈ L2(0, T ;L2(Ω)). Then the continuous optimal control problem (1.4)-(1.5) has a unique
solution. The variational inequality (2.12) yields that

q = PUad

(
− 1

γ
z
)
, (2.15)

where PUad(·) denotes the pointwise projection onto the admissible set Uad, denoted by

PUad
(
v(t)

)
= max

{
a,min{v(t), b}

}
. (2.16)

As stated in [16, Corollary 2.4], the projection PUad(·) is nonexpansive, i.e.,

‖PUad(v)− PUad(w)‖H1(0,T ;L2(Ω)) ≤ ‖v − w‖H1(0,T ;L2(Ω)), ∀ v, w ∈ H1(0, T ;L2(Ω)),

which implies the following estimate

‖PUad(v)‖H1(0,T ;L2(Ω)) ≤ ‖v‖H1(0,T ;L2(Ω)) + C, ∀ v ∈ H1(0, T ;L2(Ω)). (2.17)
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2.3 Solution representations and regularity

In this subsection, we present the integral representations of the solutions to the optimality system (2.10)-
(2.12), and establish the corresponding regularity results.

Lemma 2.5. The solutions to the state and adjoint equations (2.10)-(2.11) are represented by

u(·, t) =

∫ t

0
E(t− s)

(
f(·, s) + q(·, s)

)
ds, (2.18)

z(·, t) =

∫ T

t
F (s− t)

(
u(·, s)− ud(·, s)

)
ds, (2.19)

respectively, where the operators E(·) and F (·) mapping from L2(Ω) to L2(Ω) are given by

E(t)v :=
1

2πi

∫
Γθ,κ

eξtβ(ξ)α−1
(
β(ξ)α −∆

)−1
vdξ, ∀ v ∈ L2(Ω), (2.20)

F (t)v :=
1

2πi

∫
Γθ,κ

eξt
(
β(ξ)α −∆

)−1
β(ξ)α−1vdξ, ∀ v ∈ L2(Ω), (2.21)

β(ξ) is given by (2.2), and Γθ,κ refers to

Γθ,κ =
{
z ∈ C : |z| = κ, | arg z| ≤ θ

}
∪
{
z ∈ C : |z| ≥ κ, | arg z| = θ

}
.

Note that β(ξ)α−1 ·
(
β(ξ)α − ∆

)−1 6=
(
β(ξ)α − ∆

)−1 · β(ξ)α−1 if ρV (x) is not a constant function,
thus the operator E(·) significantly differs from F (·).

Proof. We first consider to derive (2.18). By (2.1) and taking the Laplace transform of (2.10), it yields
that

û(ξ) = β(ξ)α−1
(
β(ξ)α −∆

)−1
(f̂(ξ) + q̂(ξ)). (2.22)

Then by the rule of inverse Laplace transform L−1(f̂ ĝ)(t) =
∫ t

0 L
−1(f̂)(t − s)L−1(ĝ)(s)ds and the

definition of E(·) in (2.20), we obtain (2.18) by utilizing Cauchy’s integral formula and theorem.
Let η = T − t, p(·, η) := z(·, T − η) = z(·, t), ū(·, η) = u(·, T − η) = u(·, t) and ūd(·, η) =

ud(·, T − η) = ud(·, t). By (2.8), (2.9) and variable changing, we have

−∂tz(t) = ∂ηp(η), BD1−α,x
t ∆z(t) = D1−α,x

η ∆p(η).

Then the adjoint equation (2.11) becomes

∂ηp(η)−D1−α,x
η ∆p(η) + ρV (x)p(η) = (ū− ūd)(η), η ∈ (0, T ], with p(0) = 0.

Hence, by the approach of Laplace transform, it follows that

p(η) =

∫ η

0
F (η − r)(ū− ūd)(r)dr,

which leads to (2.19) by setting r = T − s and η = T − t.

Lemma 2.6. Let V (x) ∈ W 2,∞(Ω). The operators E(·) and F (·) given by (2.20) and (2.21) satisfy the
following estimates

‖E(t)‖ ≤ C, ‖∆E(t)‖ ≤ Ct−α, (2.23)

‖F (t)‖ ≤ C, ‖∆F (t)‖ ≤ Ct−α. (2.24)
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Proof. The estimates ‖E(t)‖ ≤ C, ‖F (t)‖ ≤ C and ‖∆F (t)‖ ≤ Ct−α can be easily obtained from
(2.20) and (2.21) by using Lemma 2.2.

Next, we consider the estimate for ‖∆E(t)‖. As V (x) ∈W 2,∞(Ω), it follows from Lemma 2.2 and
[31, Lemma 3.1] that

‖β(ξ)α−1v‖Ḣ2(Ω) = ‖∆(β(ξ)α−1v)‖

≤ ‖(∆β(ξ)α−1)v‖+ 2‖∇(β(ξ)α−1) · ∇v‖+ ‖β(ξ)α−1∆v‖
≤ C|ξ|α−1‖v‖Ḣ2(Ω), ∀ ξ ∈ Γθ,κ,

where |ξ| ≥ κ is applied. Then we have from Lemma 2.2 that

‖β(ξ)α−1‖Ḣ2(Ω)→Ḣ2(Ω) ≤ C|ξ|
α−1,∥∥(β(ξ)α −∆

)−1∥∥
L2(Ω)→Ḣ2(Ω)

≤
∥∥∆
(
β(ξ)α −∆

)−1∥∥ ≤ C,
which implies that ‖∆E(t)‖ ≤ Ct−α.

Now, we start to analyze the regularity of the solutions to the optimality conditions (2.10)-(2.12), the
results are stated in the following theorem.

Theorem 2.7. Let (u, z, q) be the solutions to the system (2.10)-(2.12). Suppose that f, ud ∈L2(0, T ;L2(Ω)),
V (x) ∈W 2,∞(Ω) and the real part Re(ρV (x)) ≥ 0. Then we have

‖u‖H1(0,T ;L2(Ω)) + ‖u‖L2(0,T ;Ḣ2(Ω)) ≤ C‖f + q‖L2(0,T ;L2(Ω)), (2.25)

‖z‖H1(0,T ;L2(Ω)) + ‖z‖L2(0,T ;Ḣ2(Ω)) ≤ C‖u− ud‖L2(0,T ;L2(Ω)), (2.26)

‖q‖H1(0,T ;L2(Ω)) ≤ C‖u− ud‖L2(0,T ;L2(Ω)) + C. (2.27)

Proof. By (2.23) in Lemma 2.6, we can easily obtain the estimate of u in (2.18) that

‖u(t)‖L2(Ω) ≤ C
∫ t

0
‖(f + q)(s)‖ds, (2.28)

which implies ‖u‖L2(0,T ;L2(Ω)) ≤ C‖f + q‖L2(0,T ;L2(Ω)). In addition, it also follows from (2.23) in
Lemma 2.6 that

‖u(t)‖Ḣ2(Ω) ≤ C
∫ t

0
(t− s)−α‖(f + q)(s)‖L2(Ω)ds.

Then we have from Young’s inequality for convolution that

‖u‖L2(0,T ;Ḣ2(Ω)) ≤ C‖f + q‖L2(0,T ;L2(Ω)).

Similarly, we can derive from (2.19), (2.21) and Lemma 2.2 that

‖z‖L2(0,T ;L2(Ω)) + ‖z‖L2(0,T ;Ḣ2(Ω)) ≤ C‖u− ud‖L2(0,T ;L2(Ω)). (2.29)

Next, it remains to derive the estimate ‖u‖H1(0,T ;L2(Ω)) ≤ C‖f + q‖L2(0,T ;L2(Ω)). We extend u to
be zero for t < 0 and f , q to be zero for t ∈ R\[0, T ]. Let F and L denote the Fourier and Laplace
transforms, respectively, it holds Fv(ω) = Lv(ξ) with ξ = iω and ω ∈ R. Then it follows from (2.22)
that

(∂t + ρV (x))u = L−1
{
β(ξ)Lu(ξ)

}
(t)

= F−1
{

(iω + ρV (x))α
(
(iω + ρV (x))α −∆

)−1F(f + q)(ω)
}

(t).

Let ρ = a + bi, it has iω + ρV (x) = aV (x) + i(ω + bV (x)), then | arg(iω + ρV (x))α| ≤ π
2 due to

aV (x) = Re(ρV (x)) ≥ 0. Then we have from Lemma 2.1 and the Plancherel formula that

‖(∂t + ρV (x))u‖L2(0,T ;L2(Ω)) ≤ ‖(∂t + ρV (x))u‖L2(R;L2(Ω))
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=
∥∥F−1

{
(iω + ρV (x))α

(
(iω + ρV (x))α −∆

)−1F(f + q)
}∥∥

L2(R;L2(Ω))

=
∥∥(iω + ρV (x))α

(
(iω + ρV (x))α −∆

)−1F(f + q)
∥∥
L2(R;L2(Ω))

≤ C‖F(f + q)‖L2(R;L2(Ω))

= C‖f + q‖L2(R;L2(Ω))

= C‖f + q‖L2(0,T ;L2(Ω)).

Further, it holds that

‖∂tu‖L2(0,T ;L2(Ω)) ≤ ‖(∂t + ρV (x))u‖L2(0,T ;L2(Ω)) + ‖ρV (x)u‖L2(0,T ;L2(Ω))

≤ C‖f + q‖L2(0,T ;L2(Ω)) + C‖u‖L2(0,T ;L2(Ω))

≤ C‖f + q‖L2(0,T ;L2(Ω)).

Thus, we obtain the estimate (2.25). By the similar approach, (2.26) can also be derived. Finally, (2.27)
is deduced from (2.15) and (2.17).

3 Temporal semi-discrete scheme

In this section, we propose a temporal semi-discrete scheme for solving the optimal control problem
(1.4)-(1.5) by using the backward Euler convolution quadrature to approximate the Riemann-Liouville
fractional substantial derivative, then derive the corresponding optimality conditions and the representa-
tions of the discrete solutions.

We divide the time interval [0, T ] into a uniform partition with a step size τ = T/N , i.e., tn =
nτ, n = 0, 1, · · · , N . The Riemann-Liouville fractional substantial derivative D1−α,x

t u(x, tn) can be
approximated [3, 6, 29] by

D̄1−α,x
τ Un =

1

τ1−α

n∑
j=1

b
(1−α)
n−j e−tn−jρV (x)U j , n = 1, 2, · · · , N, (3.1)

where the coefficients {b(1−α)
j } are determined by the recursive formula b0 = 1, bj = bj−1 · α+j−2

j , j =
1, 2, · · · , and satisfy the power series expansion:

(
δτ (ζ)

)1−α
=

1

τ1−α

∞∑
j=0

b
(1−α)
j ζj , ∀ |ζ| < 1, ζ ∈ C, δτ (ζ) =

1− ζ
τ

. (3.2)

As ∂tu+ ρV (x)u = e−tρV (x)∂t(e
tρV (x)u), we approximate it by

D̄1,x
τ Un := e−tnρV (x)D̄τ (etnρV (x)Un) =

Un − e−τρV (x)Un−1

τ
, (3.3)

where D̄τ denotes the standard backward Euler difference operator D̄τU
n := Un−Un−1

τ . Then we
propose a temporal semi-discrete scheme for the optimal control problem (1.4)-(1.5) as follows

min
Q∈Uτad

J(Q) =
τ

2

N∑
n=1

(
‖Un − und‖2 + γ‖Qn−1‖2

)
(3.4)

subject to {
D̄1,x
τ Un −∆D̄1−α,x

τ Un = fn +Qn−1, x ∈ Ω, n = 1, 2, · · · , N,
U0 = 0, x ∈ Ω, and Un = 0, x ∈ ∂Ω, n = 0, 1, · · · , N,

(3.5)

where fn = 1
τ

∫ tn
tn−1

f(·, t)dt, und = 1
τ

∫ tn
tn−1

ud(·, t)dt, and

U τad =
{
Q =

(
Qn−1

)N
n=1

: a ≤ Qn−1 ≤ b, n = 1, 2, · · · , N
}
.
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3.1 Optimality conditions

In this subsection, we derive the optimality conditions of the temporal semi-discrete problem (3.4)-(3.5).
The adjoint operations of those in (3.1) and (3.3), denoted by BD̄1−α,x

τ Zn−1 and BD̄1,x
τ Zn−1, re-

spectively, can be regarded as the temporal difference approximations of BD1−α,x
t z(x, tn−1) and (−∂t+

ρV (x))z(x, tn−1), and given by

BD̄1−α,x
τ Zn−1 :=

1

τ1−α

N∑
j=n

b
(1−α)
j−n e−tj−nρV (x)Zj−1, (3.6)

BD̄1,x
τ Zn−1 := etn−1ρV (x)BD̄τ (e−tn−1ρV (x)Zn−1) =

Zn−1 − e−τρV (x)Zn

τ
, (3.7)

with BD̄τZ
n−1 := Zn−1−Zn

τ . By using the above definitions and after simple calculations, we can obtain
the following equalities:

τ

N∑
n=1

(
Zn−1, D̄1−α,x

τ Un
)

= τ

N∑
n=1

(
Zn−1,

1

τ1−α

n∑
j=1

b
(1−α)
n−j e−tn−jρV (x)U j

)

= τ
N∑
j=1

N∑
n=j

( 1

τ1−α b
(1−α)
n−j e−tn−jρV (x)Zn−1, U j

)

= τ

N∑
n=1

( 1

τ1−α

N∑
j=n

b
(1−α)
j−n e−tj−nρV (x)Zj−1, Un

)

= τ
N∑
n=1

(
BD̄1−α,x

τ Zn−1, Un
)
, (3.8)

τ
N∑
n=1

(
Zn−1, D̄1,x

τ Un
)

= τ
N∑
n=1

(
Zn−1,

Un − e−τρV (x)Un−1

τ

)
= τ

N∑
n=1

(
Zn−1,

Un

τ

)
− τ

N∑
n=1

(
Zn,

e−τρV (x)Un

τ

)
= τ

N∑
n=1

(Zn−1 − e−τρV (x)Zn

τ
, Un

)
= τ

N∑
n=1

(
BD̄1,x

τ Zn−1, Un
)
, (3.9)

where U0 = 0 and ZN = 0 are applied. Furthermore, we denote

U = (Un)Nn=1, Z = (Zn−1)Nn=1, Q = (Qn−1)Nn=1. (3.10)

Theorem 3.1. The temporal semi-discrete problem (3.4)-(3.5) admits a unique solution (U,Q) and an
adjoint state Z such that (U,Z,Q) satisfies the optimality system

D̄1,x
τ Un −∆D̄1−α,x

τ Un = fn +Qn−1, x ∈ Ω, Un = 0, x ∈ ∂Ω, (3.11)
BD̄1,x

τ Zn−1 − BD̄1−α,x
τ ∆Zn−1 = Un − und , x ∈ Ω, Zn−1 = 0, x ∈ ∂Ω, (3.12)

for n = 1, 2, · · · , N with U0 = 0, ZN = 0, and the variational inequality

(γQn−1 + Zn−1, v −Qn−1) ≥ 0, ∀ v ∈ L2(Ω), a ≤ v ≤ b. (3.13)

Moreover, the variational inequality further yields

Qn−1 = PUad
(
− 1

γ
Zn−1

)
. (3.14)
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Proof. The temporal semi-discrete problem (3.4)-(3.5) has a unique solution (U,Q) due to the strong
convexity of the functional J(·) in (3.4). Next, we derive the first-order necessary optimality conditions.

For any v ∈ U τad and δQ := v −Q, the convexity of U τad shows Q + εδQ ∈ U τad for 0 < ε � 1.
Since Q is the minimizer of the problem (3.4)-(3.5), then we have

J ′(Q)δQ = τ
N∑
n=1

∫
Ω

(Un − und )δUndx+ τ
N∑
n=1

∫
Ω
γQn−1δQn−1dx ≥ 0,

where δUn = limε→0

(
Un(Qn−1 + εδQn−1)− Un(Qn−1)

)
/ε satisfies

D̄1,x
τ δUn −∆D̄1−α,x

τ δUn = δQn−1.

Hence, multiplying δUn on both sides of (3.12) and summing up yield that

τ
N∑
n=1

∫
Ω

(Un − und )δUndx = τ
N∑
n=1

∫
Ω
Zn−1δQn−1dx,

where (3.8) and (3.9) are applied, thus it further derives (3.13).

3.2 Solution representations

In this subsection, we derive the solution representations for the temporal semi-discrete scheme (3.11)-
(3.12) and establish the corresponding stability results.

Lemma 3.2. Let Un, Zn−1 be the solutions to the temporal semi-discrete scheme (3.11)-(3.12), and
define

fτ (·, t)|(tn−1,tn] = fn, Q(·, t)|[tn−1,tn) = Qn−1, n = 1, 2, · · · , N, (3.15)

U(·, t)|(tn−1,tn] = Un, udτ (·, t)|(tn−1,tn] = und , n = 1, 2, · · · , N. (3.16)

Then we have

Un =

∫ tn

0
Eτ (tn − s)

(
fτ (·, s) +Q(·, s)

)
ds, (3.17)

Zn−1 =

∫ T

tn−1

F τ (s− tn−1)
(
U(·, s)− udτ (·, s)

)
ds, (3.18)

and

Eτ (t)v =
1

2πi

∫
Γτθ,κ

eξt
ξτ

eξτ − 1
δτ (e−τβ(ξ))α−1

(
δτ (e−τβ(ξ))α −∆

)−1
vdξ, (3.19)

F τ (t)v =
1

2πi

∫
Γτθ,κ

eξt
ξτ

eξτ − 1

(
δτ (e−τβ(ξ))α −∆

)−1
δτ (e−τβ(ξ))α−1vdξ, (3.20)

where Γτθ,κ is given by

Γτθ,κ =
{
z ∈ C : |z| = κ, | arg z| ≤ θ

}
∪
{
z ∈ C : κ ≤ |z| ≤ π

τ sin θ
, | arg z| = θ

}
.

Note that if ρV (x) 6= C, then

δτ (e−τβ(ξ))α−1 ·
(
δτ (e−τβ(ξ))α −∆

)−1 6=
(
δτ (e−τβ(ξ))α −∆

)−1 · δτ (e−τβ(ξ))α−1,

it indicates that the operator Eτ (t) is essentially different from F τ (t).
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Proof. By (3.1) and (3.3), we can obtain that

∞∑
n=1

(D̄1−α,x
τ Un)ζn = δτ (e−τρV (x)ζ)1−α

∞∑
n=1

Unζn,

∞∑
n=1

(D̄1,x
τ Un)ζn = δτ (e−τρV (x)ζ)

∞∑
n=1

Unζn.

Let Ũ(ζ) =
∑∞

n=1 U
nζn, multiplying (3.11) by ζn and summing n from 1 to∞ yield that

Ũ(ζ) = δτ (e−τρV (x)ζ)α−1
(
δτ (e−τρV (x)ζ)α −∆

)−1
∞∑
n=1

(fn +Qn−1)ζn.

Using Cauchy’s integral formula and theorem, we derive that

Un =
τ

2πi

∫
Γτθ,κ

eξtnδτ (e−τβ(ξ))α−1
(
δτ (e−τβ(ξ))α −∆

)−1
∞∑
n=1

(fn +Qn−1)e−ξtndξ.

It also follows from the definitions of fτ (·, t) and Q(·, t) in (3.15) that

f̂τ (·, ξ) + Q̂(·, ξ) =
∞∑
n=1

∫ tn

tn−1

(
fτ (·, t) +Q(·, t)

)
e−ξtdt =

∞∑
n=1

∫ tn

tn−1

(fn +Qn−1)e−ξtdt

=
eξτ − 1

ξ

∞∑
n=1

(fn +Qn−1)e−ξtn ,

which directly leads to (3.17).
Next, we derive (3.18). Let Z̃(ζ) :=

∑N
n=−∞ Z

n−1ζN−n =
∑∞

m=0 Z
N−m−1ζm, it has from (3.6)

and (3.7) that

N∑
n=−∞

(BD̄1−α,x
τ Zn−1)ζN−n = δτ (e−τρV (x)ζ)1−αZ̃(ζ),

N∑
n=−∞

(BD̄1,x
τ Zn−1)ζN−n = δτ (e−τρV (x)ζ)Z̃(ζ).

By multiplying ζN−n on both sides of (3.12) and summing n from −∞ to N , we obtain that

Z̃(ζ) =
(
δτ (e−τρV (x)ζ)α −∆

)−1
δτ (e−τρV (x)ζ)α−1M̃(ζ), M̃(ζ) :=

N∑
n=−∞

(Un − und )ζN−n,

and by Cauchy’s integral formula and theorem, it implies

Zn−1 =
τ

2πi

∫
Γτθ,κ

eξ(T−tn)
(
δτ (e−τβ(ξ))α −∆

)−1
δτ (e−τβ(ξ))α−1M̃(e−ξτ )dξ. (3.21)

Let Ū(·, t) = U(·, T − t) and ūdτ (·, t) = udτ (·, T − t), it yields from the definition of U(·, s) and
udτ (·, s) in (3.16) that the Laplace transform of Ū(·, t)− ūdτ (·, t) satisfies

ˆ̄U(·, ξ)− ˆ̄udτ (·, ξ) =

∫ ∞
0

(
U(·, T − t)− udτ (·, T − t)

)
e−ξtdt

=

∫ T

−∞

(
U(·, s)− udτ (·, s)

)
e−ξ(T−s)ds
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=
N∑

n=−∞

∫ tn

tn−1

(
U(·, s)− udτ (·, s)

)
e−ξ(T−s)ds

=
N∑

n=−∞

∫ tn

tn−1

(Un − und )e−ξ(T−s)ds

=

N∑
n=−∞

(Un − und )e−ξ(T−tn) 1− e−ξτ

ξ

= M̃(e−ξτ )
1− e−ξτ

ξ
,

which leads to (3.18) by using (3.21).

To obtain the stability results in Lemma 3.4 for the discrete scheme (3.11)-(3.12), we first introduce
a preliminary lemma in the following.

Lemma 3.3 ([6, 29]). Let β(ξ) be given by (2.2) and V (x) bounded in Ω̄. By choosing θ ∈ (π2 , π)
sufficiently close to π

2 and κ > 0 sufficiently large (depending on |ρ|‖V (x)‖L∞(Ω̄)), there exists a positive
constant τ∗ such that the following estimates hold for τ ≤ τ∗.

(1) For all x ∈ Ω̄ and ξ ∈ Στ
θ,κ, we have δτ (e−τβ(ξ)) ∈ Σ 3π

4
,C1κ

and

C1|ξ| ≤ |δτ (e−τβ(ξ))| ≤ C2|ξ|,

where
Στ
θ,κ =

{
ξ ∈ C : |ξ| ≥ κ, |arg ξ| ≤ θ, |Im(ξ)| ≤ π

τ
, Re(ξ) ≤ κ+ 1

}
,

Im(ξ) and Re(ξ) stand for the imaginary and real parts of ξ, respectively.

(2) The operator (δτ (e−τβ(ξ))α − ∆)−1 : L2(Ω) → L2(Ω) is well-defined, bounded, and analytic
with respect to ξ ∈ Στ

θ,κ, satisfying

‖∆(δτ (e−τβ(ξ))α −∆)−1‖ ≤ C, ∀ ξ ∈ Στ
θ,κ,

‖(δτ (e−τβ(ξ))α −∆)−1‖ ≤ C|ξ|−α, ∀ ξ ∈ Στ
θ,κ.

(3) For all x ∈ Ω̄ and real number γ, it holds that

|δτ (e−τβ(ξ))γ − β(ξ)γ | ≤ Cτ |ξ|γ+1, ∀ ξ ∈ Γτθ,κ.

The discrete time-space `2(L2(Ω)) inner product and norm are introduced as follows for further
analysis.

[v,w] = τ
N∑
n=1

(vn, wn), ∀ v = (vn)Nn=1, w = (wn)Nn=1 ∈ L2(Ω)N ,

‖|v|‖ =
√

[v,v] =
(
τ

N∑
n=1

‖vn‖2L2(Ω)

) 1
2
, ∀ v = (vn)Nn=1 ∈ L2(Ω)N .

With above results and the integral representations of the solutions in (3.17)-(3.18), the discrete system
(3.11)-(3.12) satisfies the following stability results.

Lemma 3.4. Let Un and Zn−1 be the solutions to the system (3.11)-(3.12) given by (3.17) and (3.18),
respectively. Then we have

‖|U|‖ ≤ C‖|fτ + Q|‖, (3.22)

‖|Z|‖ ≤ C‖|U− udτ |‖, (3.23)

where fτ = (fn)Nn=1 and udτ = (und )Nn=1.
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Proof. By Lemma 3.3, we have

‖Eτ (t)v‖ ≤ C
∫

Γτθ,κ

|eξt| ·
∣∣ ξτ

eξτ − 1

∣∣ · |δτ (e−τβ(ξ))α−1| · ‖(δτ (e−τβ(ξ))α −∆)−1v‖|dξ|

≤ C
∫

Γτθ,κ

|eξt| · |ξ|−1 · ‖v‖|dξ| ≤ C‖v‖, (3.24)

where it utilizes the following estimate [11, Lemma 3.4]:

C0|ξ|τ ≤ |1− eξτ | ≤ C1|ξ|τ, ∀ ξ ∈ Γτθ,κ. (3.25)

Then it derives from (3.17) that

‖Un‖ ≤ C
∫ tn

0
‖Eτ (tn − s)‖ · ‖fτ (·, s) +Q(·, s)‖ds ≤ C

∫ tn

0
‖fτ (·, s) +Q(·, s)‖ds.

With the definition of fτ (·, t) and Q(·, t) in (3.15), we obtain (3.22) by

‖|U|‖2 ≤ Cτ
N∑
n=1

(∫ tn

0
‖fτ (·, s) +Q(·, s)‖ds

)2

≤ Cτ
N∑
n=1

n∑
j=1

∫ tj

tj−1

‖fτ (·, s) +Q(·, s)‖2ds

= Cτ
N∑
n=1

n∑
j=1

∫ tj

tj−1

‖f j +Qj−1‖2ds

≤ C‖|fτ + Q|‖2.

By the similar approach, we can derive the estimate (3.23).

4 Error estimates

In this section, the `2(L2(Ω)) and `∞(L2(Ω)) error estimates of the proposed temporal semi-discrete
scheme (3.4)-(3.5) are rigorously established without the regularity requirement on the solutions of the
optimality system. The main results are stated in the following theorems.

Theorem 4.1 (`2(L2(Ω)) error). Let (u, z, q) and (Un, Zn−1, Qn−1) be the solutions of the problems
(2.10)-(2.12) and (3.11)-(3.13), respectively. If f, ud ∈ L2(0, T ;L2(Ω)), V (x) ∈ W 2,∞(Ω) and
Re(ρV (x)) ≥ 0, then we have

‖|u−U|‖+ ‖|z− Z|‖+ ‖|q−Q|‖ ≤ Clττ,

where u = (u(·, tn))Nn=1, z = (z(·, tn−1))Nn=1, q = (q(·, tn−1))Nn=1, lτ = ln( 1
τ ), and the constant C is

independent of n, τ .

Theorem 4.2 (`∞(L2(Ω)) error). Let (u, z, q) and (Un, Zn−1, Qn−1) be the solutions of the prob-
lems (2.10)-(2.12) and (3.11)-(3.13), respectively. If f, ud ∈ H1(0, T ;L2(Ω)), V (x) ∈ W 2,∞(Ω) and
Re(ρV (x)) ≥ 0, then we have

max
1≤n≤N

{
‖u(tn)− Un‖+ ‖z(tn−1)− Zn−1‖+ ‖q(tn−1)−Qn−1‖

}
≤ Clττ,

where lτ = ln( 1
τ ), and the constant C is independent of n, τ .
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4.1 Some lemmas

To prove the error estimate in Theorem 4.1, we first derive some lemmas in this subsection.

Lemma 4.3. Let E(·) and Eτ (·) be given by (2.20) and (3.19), respectively, and

Kn :=

∫ tn

0

(
E(tn − s)− Eτ (tn − s)

)(
f(·, s) + q(·, s)

)
ds.

Then we have
‖|(Kn)Nn=1|‖ ≤ Clττ,

where lτ = ln( 1
τ ) and the constant C is independent of n, τ .

Proof. From (2.20) and (3.19), we obtain

Kn =

∫ tn

0

(
B1(tn − s) +B2(tn − s)

)(
f(·, s) + q(·, s)

)
ds,

where
B1(t) =

1

2πi

∫
Γθ,κ\Γτθ,κ

eξtB̂1(ξ)dξ, B2(t) =
1

2πi

∫
Γτθ,κ

eξtB̂2(ξ)dξ, (4.1)

with

B̂1(ξ) = β(ξ)α−1
(
β(ξ)α −∆

)−1
,

B̂2(ξ) = β(ξ)α−1
(
β(ξ)α −∆

)−1 − ξτ

eξτ − 1
δτ (e−τβ(ξ))α−1

(
δτ (e−τβ(ξ))α −∆

)−1
.

By (3.25), Lemmas 2.2 and 3.3, it holds that

‖B̂1(ξ)‖ ≤ C|ξ|−1, ∀ ξ ∈ Γθ,κ, and ‖B̂2(ξ)‖ ≤ C|ξ|−1, ∀ ξ ∈ Γτθ,κ. (4.2)

In addition, we have ‖B̂1(ξ)‖ ≤ Cτ for any ξ ∈ Γθ,κ\Γτθ,κ, and

‖B̂2(ξ)‖ =
∥∥(β(ξ)α−1 − δτ (e−τβ(ξ))α−1

)(
β(ξ)α −∆

)−1∥∥
+
∥∥δτ (e−τβ(ξ))α−1

[(
β(ξ)α −∆

)−1 −
(
δτ (e−τβ(ξ))α −∆

)−1]∥∥
+
∥∥∥δτ (e−τβ(ξ))α−1

[(
δτ (e−τβ(ξ))α −∆

)−1
(

1− ξτ

eξτ − 1

)]∥∥∥
≤ Cτ |ξ|α|ξ|−α + C|ξ|α−1|ξ|−ατ |ξ|α+1|ξ|−α + C|ξ|α−1|ξ|−α|ξ|τ
= Cτ, ∀ ξ ∈ Γτθ,κ,

(4.3)

where it applies Lemma 3.3 and the following estimate∣∣∣1− ξτ

eξτ − 1

∣∣∣ = |δτ (e−ξτ )−1(δτ (e−ξτ )− ξ)| ≤ C|ξ|τ, ∀ ξ ∈ Γτθ,κ,

which is obtained by using [11, Lemma 3.4]. Combining (4.2) and (4.3), we obtain

‖B̂1(ξ)‖ ≤ Cτ1−ε|ξ|−ε, ∀ ξ ∈ Γθ,κ\Γτθ,κ, ε ∈ (0, 1), (4.4)

‖B̂2(ξ)‖ ≤ Cτ1−ε|ξ|−ε, ∀ ξ ∈ Γτθ,κ, ε ∈ (0, 1). (4.5)

Then we derive from (4.1) that

‖B1(t)‖ ≤ Cτ1−εt−(1−ε), ∀ ε ∈ (0, 1), t ∈ (0, T ],

‖B2(t)‖ ≤ Cτ1−εt−(1−ε), ∀ ε ∈ (0, 1), t ∈ (0, T ].
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Moreover, it obtains from (2.23) and (3.24) that

‖Kn‖ ≤
∫ tn−1

0
‖B1(tn − s) +B2(tn − s)‖ · ‖f(·, s) + q(·, s)‖ds

+

∫ tn

tn−1

‖E(tn − s)− Eτ (tn − s)‖ · ‖f(·, s) + q(·, s)‖ds

≤ Cτ1−ε
∫ tn−1

0

(tn + τ − s)1−ε

(tn−1 + τ − s)1−ε (tn + τ − s)−(1−ε)‖f(·, s) + q(·, s)‖ds

+ τ1−ε
∫ tn

tn−1

(tn + τ − s)−(1−ε)‖f(·, s) + q(·, s)‖ds

≤ Cτ1−ε
∫ T

0
1{tn>s}(tn + τ − s)−(1−ε)‖f(·, s) + q(·, s)‖ds, ε ∈ (0, 1). (4.6)

Then, by using the following two inequalities [12]

max
1≤n≤N

∫ T

0
1tn>s(tn + τ − s)−(1−ε)ds ≤ Cε−1(tn + τ)ε ≤ Cε−1, (4.7)

sup
s∈(0,T )

τ
N∑
n=1

1tn>s(tn + τ − s)−(1−ε) ≤ sup
s∈(0,T )

∫ T

s−τ
(t+ τ − s)−(1−ε)dt ≤ Cε−1, (4.8)

we can derive that

‖|(Kn)Nn=1|‖ =
(
τ

N∑
n=1

‖Kn‖2
) 1

2

≤ C
(
τ

N∑
n=1

τ2−2ε
[ ∫ T

0
1{tn>s}(tn + τ − s)−(1−ε)‖f(·, s) + q(·, s)‖ds

]2) 1
2

≤ Cτ1−ε
(
τ

N∑
n=1

∫ T

0
1{tn>s}(tn + τ − s)−(1−ε)ds

·
∫ T

0
1{tn>s}(tn + τ − s)−(1−ε)‖f(·, s) + q(·, s)‖2ds

) 1
2

≤ Cτ1−ε
(
ε−1τ

N∑
n=1

∫ T

0
1{tn>s}(tn + τ − s)−(1−ε)‖f(·, s) + q(·, s)‖2ds

) 1
2

≤ Cτ1−ε
(
ε−2

∫ T

0
‖f(·, s) + q(·, s)‖2ds

) 1
2

≤ Cτ1−εε−1‖f + q‖L2(0,T ;L2(Ω))

≤ Cτ1−εε−1 = Clττ,

where ε = l−1
τ is taken with lτ = ln(1/τ).

Lemma 4.4. Let Eτ (·) and fτ (·, t) be defined by (3.19) and (3.15), respectively,

Ln :=

∫ tn

0
Eτ (tn − s)

(
f(·, s)− fτ (·, s)

)
ds.

Then we have
‖|(Ln)Nn=1|‖ ≤ Clττ,

where lτ = ln(1/τ) and the constant C is independent of n, τ .
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Proof. We have from (3.15) and fn = 1
τ

∫ tn
tn−1

f(·, t)dt in (3.5) that∫ tj

tj−1

Eτ (tn − tj−1)fτ (·, s)ds =

∫ tj

tj−1

Eτ (tn − tj−1)
1

τ

∫ tj

tj−1

f(·, w)dwds

=

∫ tj

tj−1

Eτ (tn − tj−1)f(·, s)ds.

Then it follows from (3.24) that

‖Ln‖ =
∥∥∥ n∑
j=1

∫ tj

tj−1

Eτ (tn − s)
(
f(·, s)− fτ (·, s)

)
ds
∥∥∥

=
∥∥∥ n∑
j=1

∫ tj

tj−1

(
Eτ (tn − s)− Eτ (tn − tj−1)

)(
f(·, s)− fτ (·, s)

)
ds
∥∥∥

≤
n∑
j=1

∫ tj

tj−1

‖Eτ (tn − s)− Eτ (tn − tj−1)‖ · ‖f(·, s)− fτ (·, s)‖ds

≤
n−1∑
j=1

∫ tj

tj−1

Cτ1−ε(tn − s)−(1−ε)‖f(·, s)− fτ (·, s)‖ds

+

∫ tn

tn−1

(
‖Eτ (tn − s)‖+ ‖Eτ (tn − tj−1)‖

)
‖f(·, s)− fτ (·, s)‖ds

≤ Cτ1−ε
∫ tn−1

0
(tn − s)−(1−ε)‖f(·, s)− fτ (·, s)‖ds+

∫ tn

tn−1

‖f(·, s)− fτ (·, s)‖ds,

where we use the following estimate

‖Eτ (tn − s)− Eτ (tn − tj−1)‖

≤ C
∫

Γτθ,κ

∣∣eξ(tn−s) − eξ(tn−tj−1)
∣∣ · ∣∣∣ ξτ

eξτ − 1

∣∣∣
· |δτ (e−τβ(ξ))α−1| ·

∥∥(δτ (e−τβ(ξ))α −∆
)−1∥∥ · |dξ|

≤ C
∫

Γτθ,κ

|eξ(tn−s)| · |1− eξ(s−tj−1)| · |ξ|−1 · |dξ|

≤ C
∫

Γτθ,κ

|eξ(tn−s)| · τ1−ε|ξ|−ε · |dξ|

≤ Cτ1−ε(tn − s)−(1−ε), s ∈ (tj−1, tj).

Similar to the estimate of Kn in Lemma 4.3, we have

‖Ln‖ ≤ Cτ1−ε
∫ T

0
1{tn>s}(tn + τ − s)−(1−ε)‖f(·, s)− fτ (·, s)‖ds, ε ∈ (0, 1),

which further yields

‖|(Ln)Nn=1|‖ ≤ Cτ1−εε−1‖f − fτ‖L2(0,T ;L2(Ω)) ≤ Cτ1−εε−1 ≤ Clττ.

The proof is completed.

Lemma 4.5. Let Eτ (·) be defined by (3.19) and

Jn :=

∫ tn

0
Eτ (tn − s)

(
q(·, s)− qτ (·, s)

)
ds,
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where qτ (·, t)|[tn−1,tn) = q(·, tn−1) for n = 1, 2, · · · , N . Then we have

‖|(Jn)Nn=1|‖ ≤ Cτ,

where C is a constant independent of n, τ .

Proof. It obtains from (3.24) that

‖Jn‖ ≤
∫ tn

0
‖Eτ (tn − s)‖ · ‖q(·, s)− qτ (·, s)‖ds

≤ C
∫ tn

0
‖q(·, s)− qτ (·, s)‖ds

= C
n∑
j=1

∫ tj

tj−1

‖q(·, s)− q(·, tj−1)‖ds

≤ C
n∑
j=1

∫ tj

tj−1

∫ s

tj−1

‖∂ξq(·, ξ)‖dξds

≤ Cτ
∫ tn

0
‖∂sq(·, s)‖ds. (4.9)

Recalling the prior regularity estimate of q obtained in Theorem 2.7, then we have

‖|(Jn)Nn=1|‖2 ≤ Cτ
N∑
n=1

τ2
(∫ tn

0
‖∂sq(·, s)‖ds

)2

≤ Cτ2

∫ T

0
‖∂sq(·, s)‖2ds

≤ Cτ2‖q‖2H1(0,T ;L2(Ω))

≤ Cτ2,

which completes the proof.

With the estimates in Lemmas 4.3, 4.4 and 4.5, we can derive the following lemma.

Lemma 4.6. Let u be the solution to the state equation (2.10), and U(q) := (U(q)n)Nn=1 with U(q)n

being the solution to the following semi-discrete equation{
D̄1,x
τ U(q)n −∆D̄1−α,x

τ U(q)n = fn + qn−1, x ∈ Ω, n = 1, 2, · · · , N,
U(q)0 = 0, x ∈ Ω, and U(q)n = 0, x ∈ ∂Ω, n = 0, 1, · · · , N,

(4.10)

where fn = 1
τ

∫ tn
tn−1

f(·, t)dt and qn−1 = q(·, tn−1). Then we have

‖|u−U(q)|‖ ≤ Clττ. (4.11)

Proof. We have from the solution representations in (2.18) and (3.17) that

u(·, tn)− U(q)n =

∫ tn

0
E(tn − s)

(
f(·, s) + q(·, s)

)
ds

−
∫ tn

0
Eτ (tn − s)

(
fτ (·, s) + qτ (·, s)

)
ds

:= Kn + Ln + Jn, (4.12)

where Kn, Ln and Jn are given in Lemmas 4.3, 4.4 and 4.5, respectively, and

fτ (·, t)|(tn−1,tn] = fn, qτ (·, t)|[tn−1,tn) = qn−1 = q(·, tn−1),

for n = 1, 2, · · · , N . By Lemmas 4.3, 4.4 and 4.5, we obtain the result (4.11).
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By the similar approach as above, the following estimate can also be derived.

Lemma 4.7. Let z be the solution to the adjoint equation (2.11), and Z(u) := (Z(u)n−1)Nn=1 with
Z(u)n−1 being the solution to the following equation{

BD̄1,x
τ Z(u)n−1 − BD̄1−α,x

τ ∆Z(u)n−1 = un − und , x ∈ Ω, n = N, · · · , 1,
Z(u)N = 0, x ∈ Ω, and Z(u)n = 0, x ∈ ∂Ω, n = N, · · · , 1, 0,

(4.13)

where un = u(·, tn) and und = 1
τ

∫ tn
tn−1

ud(·, t)dt. Then we have

‖|z− Z(u)|‖ ≤ Clττ. (4.14)

Proof. By (2.19) and (3.18), we have

z(·, tn−1)− Z(u)n−1 =

∫ T

tn−1

F (s− tn−1)
(
u(·, s)− ud(·, s)

)
ds

−
∫ T

tn−1

F τ (s− tn−1)
(
uτ (·, s)− udτ (·, s)

)
ds

=

∫ T

tn−1

(
F (s− tn−1)− F τ (s− tn−1)

)(
u(·, s)− ud(·, s)

)
ds

+

∫ T

tn−1

F τ (s− tn−1)
(
u(·, s)− uτ (·, s)

)
ds

−
∫ T

tn−1

F τ (s− tn−1)
(
ud(·, s)− udτ (·, s)

)
ds,

where uτ (·, t)|(tn−1,tn] = un = u(·, tn) and udτ (·, t)|(tn−1,tn] = und for n = 1, 2, · · · , N . Analogous to
the proofs of Lemmas 4.3, 4.4 and 4.5, we can obtain the result (4.14).

4.2 Proof of Theorem 4.1

Based on the lemmas in the above subsection, we can demonstrate the proof of Theorem 4.1.

Proof of Theorem 4.1. As q(·, tn−1) = PUad(− 1
γ z(·, tn−1)) due to (2.15), we have(

γq(·, tn−1) + z(·, tn−1), v − q(·, tn−1)
)
≥ 0, ∀ v ∈ L2(Ω), a ≤ v ≤ b.

Then it follows from the above variational inequality and (3.13) that

[γq,q−Q] = −[z,q−Q]− [γq + z,Q− q] ≤ −[z,q−Q],

− [γQ,q−Q] = [Z,q−Q]− [γQ + Z,q−Q] ≤ [Z,q−Q],

which further leads to

γ‖|q−Q|‖2 = γ[q,q−Q]− γ[Q,q−Q]

≤ −[z,q−Q] + [Z,q−Q]

= [Z− Z(U(q)),q−Q] + [Z(U(q))− z,q−Q],

where U(q) = (U(q)n)Nn=1 with U(q)n being the solution to (4.10), and Z(U(q)) = (Z(U(q))n)Nn=1

with Z(U(q))n being the solution to (4.13) replacing un by U(q)n. Then by (3.8) and (3.9), we deduce

[Z− Z(U(q)),q−Q] = [Z− Z(U(q)), (D̄1,x
τ −∆D̄1−α,x

τ )(U(q)−U)]

= [(BD̄1,x
τ − BD̄1−α,x

τ ∆)(Z− Z(U(q))),U(q)−U]
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= −‖|U(q)−U|‖2 ≤ 0,

which implies that
‖|q−Q|‖ ≤ C‖|Z(U(q))− z|‖

≤ C‖|Z(U(q))− Z(u)|‖+ C‖|Z(u)− z|‖
≤ C‖|U(q)− u|‖+ C‖|Z(u)− z|‖
≤ Clττ,

(4.15)

where the estimates in Lemmas 3.4, 4.6 and 4.7 are applied.
It follows from Lemma 3.4 that

‖|U(q)−U|‖ ≤ C‖|q−Q|‖.

Then the result in Lemma 4.6 leads to

‖|u−U|‖ ≤ ‖|u−U(q)|‖+ ‖|U(q)−U|‖ ≤ ‖|u−U(q)|‖+ C‖|q−Q|‖ ≤ Clττ.

By using the triangle inequality, Lemmas 3.4 and 4.7, we obtain

‖|z− Z|‖ ≤ ‖|z− Z(u)|‖+ ‖|Z(u)− Z|‖
≤ ‖|z− Z(u)|‖+ C‖|u−U|‖
≤ Clττ.

(4.16)

The proof is completed.

4.3 Proof of Theorem 4.2

Proof of Theorem 4.2. We first estimate max1≤n≤N ‖u(tn)−Un‖ by splitting u(tn)−Un into two parts:
u(tn)− U(q)n and U(q)n − Un, where U(q)n is the solution to (4.10).

For u(tn) − Un, we need to analyze each term in (4.12). By using (4.6), (4.7) and the Sobolev
imbedding H1(0, T ) ↪→ L∞(0, T ), we can obtain

max
1≤n≤N

‖Kn‖ ≤ Cτ1−ε max
1≤n≤N

∫ T

0
1{tn>s}(tn + τ − s)−(1−ε)‖f(·, s) + q(·, s)‖ds

≤ Cτ1−εε−1‖f + q‖L∞(0,T ;L2(Ω))

≤ Clττ‖f + q‖H1(0,T ;L2(Ω)),

where q ∈ H1(0, T ;L2(Ω) has been proved in Theorem 2.7. From the definition of Ln in Lemma 4.4
and the estimate (3.24), it follows that

max
1≤n≤N

‖Ln‖ ≤ max
1≤n≤N

∫ tn

0
‖Eτ (tn − s)‖ · ‖f(·, s)− fτ (·, s)‖ds

≤ C
∫ T

0

∥∥f(·, s)− fτ (·, s)
∥∥ds

= C
N∑
j=1

∫ tj

tj−1

∥∥∥f(·, s)− 1

τ

∫ tj

tj−1

f(·, r)dr
∥∥∥ds

≤ C
N∑
j=1

∫ tj

tj−1

∫ tj

tj−1

‖∂ξf(·, ξ)‖dξds

≤ Cτ‖f‖H1(0,T ;L2(Ω)).

In addition, the estimate (4.9) directly leads to

max
1≤n≤N

‖Jn‖ ≤ Cτ‖q‖H1(0,T ;L2(Ω)).
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Then the above estimates and (4.12) imply that

max
1≤n≤N

‖u(tn)− U(q)n‖ ≤ Clττ. (4.17)

It obtains from the solution representation (3.17), the estimates (3.24) and (4.15) that

max
1≤n≤N

‖U(q)n − Un‖ ≤ max
1≤n≤N

∫ tn

0
‖Eτ (tn − s)‖ · ‖qτ (·, s)−Q(·, s)‖ds

≤ C
∫ T

0
‖qτ (·, s)−Q(·, s)‖ds

= Cτ
N∑
j=1

∥∥q(·, tj−1)−Qj−1
∥∥

≤ C‖|q−Q|‖ ≤ Clττ. (4.18)

Thus, the estimates (4.17) and (4.18) imply that

‖u−U‖`∞(L2(Ω)) : = max
1≤n≤N

‖u(tn)− Un‖

≤ max
1≤n≤N

{
‖u(tn)− U(q)n‖+ ‖U(q)n − Un‖

}
≤ Clττ.

By the similar approach as above, we can also derive

‖z− Z‖`∞(L2(Ω)) := max
1≤n≤N

‖z(tn−1)− Zn−1‖ ≤ Clττ.

With the contraction property of the projection PUad(·) (see [16, Corollary 2.4]) given by (2.16), we
obtain from (2.15) and (3.14) that

‖q−Q‖`∞(L2(Ω)) : = max
1≤n≤N

‖q(tn−1)−Qn−1‖

= max
1≤n≤N

∥∥PUad(− 1

γ
z(tn−1)

)
− PUad

(
− 1

γ
Qn−1

)∥∥
≤ C max

1≤n≤N
‖z(tn−1)− Zn−1‖

≤ Clττ.

The proof is completed.

5 Numerical results

In this section, we verify the theoretical error estimates of the proposed temporal discrete scheme for the
optimal control problem governed by the forward fractional Feynman-Kac equation through numerical
experiments. We solve the discrete optimal control problem (3.4)-(3.5) by the inexact alternating direc-
tion method of multipliers (ADMM) algorithm [8] with the piecewise linear finite element discretization
in space, where the Lagrange penalty parameter is taken as 1 and the tolerance is 1.0× 10−5.

Example 5.1. We consider the problem (1.4)-(1.5) in one-dimensional case. Let Ω = (0, 1), T = 1, γ =
1, V (x) = x and ρ = 1. The exact solutions are chosen as

u(x, t) = e−tρxtx(1− x),

z(x, t) = etρx(1− t)x(1− x),

q(x, t) = max{−0.1,min{−z(x, t),−0.01}},

with f and ud being calculated by (2.10) and (2.11) correspondingly to the exact solutions.
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We let α = 0.2, 0.5, 0.8 and choose τ = 1/8, 1/16, 1/32, 1/64 to solve the problem (3.4)-(3.5) with
the finite element mesh of equal subintervals in Ω = (0, 1) and the mesh size h = 1/64. In Table 1, the
`2(L2(Ω)) errors ‖|u−U|‖, ‖|z−Z|‖, ‖|q−Q|‖ and the numerical convergence orders in time direction
are presented for Example 5.1, which is consistent with the theoretical order of O(τ) in Theorem 4.1.
In addition, it can be observed that our numerical scheme is effective, and the convergence order is
not affected by the fractional order α. Table 2 provides the `∞(L2(Ω)) errors and the corresponding
numerical convergence orders for Example 5.1, which also confirms the theoretical estimate in Theorem
4.2.

Table 1: The `2(L2(Ω)) errors and numerical convergence orders for Example 5.1.

α `2(L2(Ω)) error τ = 1/8 τ = 1/16 τ = 1/32 τ = 1/64 Order

0.2
‖|u−U|‖ 1.67e-03 8.26e-04 4.02e-04 1.95e-04 ≈ 1.03 (1.0)
‖|z− Z|‖ 2.64e-03 1.33e-03 6.65e-04 3.31e-04 ≈ 1.00 (1.0)
‖|q−Q|‖ 2.02e-03 1.01e-03 4.73e-04 2.14e-04 ≈ 1.08 (1.0)

0.5
‖|u−U|‖ 2.73e-03 1.36e-03 6.75e-04 3.34e-04 ≈ 1.01 (1.0)
‖|z− Z|‖ 3.85e-03 1.93e-03 9.61e-04 4.76e-04 ≈ 1.00 (1.0)
‖|q−Q|‖ 3.31e-03 1.67e-03 8.19e-04 4.03e-04 ≈ 1.01 (1.0)

0.8
‖|u−U|‖ 4.69e-03 2.37e-03 1.19e-03 5.96e-04 ≈ 0.99 (1.0)
‖|z− Z|‖ 7.04e-03 3.57e-03 1.80e-03 9.04e-04 ≈ 0.99 (1.0)
‖|q−Q|‖ 5.04e-03 2.58e-03 1.31e-03 6.61e-04 ≈ 0.98 (1.0)

Table 2: The `∞(L2(Ω)) errors and numerical convergence orders for Example 5.1.

α `∞(L2(Ω)) error τ = 1/8 τ = 1/16 τ = 1/32 τ = 1/64 Order

0.2
‖u−U‖`∞(L2(Ω)) 3.02e-03 1.63e-03 8.40e-04 4.20e-04 ≈ 0.95 (1.0)
‖z− Z‖`∞(L2(Ω)) 4.83e-03 2.71e-03 1.42e-03 7.16e-04 ≈ 0.92 (1.0)
‖q−Q‖`∞(L2(Ω)) 4.82e-03 2.67e-03 1.21e-03 5.89e-04 ≈ 1.01 (1.0)

0.5
‖u−U‖`∞(L2(Ω)) 4.25e-03 2.09e-03 1.04e-03 5.16e-04 ≈ 1.01 (1.0)
‖z− Z‖`∞(L2(Ω)) 7.00e-03 3.53e-03 1.74e-03 8.64e-04 ≈ 1.01 (1.0)
‖q−Q‖`∞(L2(Ω)) 6.98e-03 3.46e-03 1.72e-03 8.53e-04 ≈ 1.01 (1.0)

0.8
‖u−U‖`∞(L2(Ω)) 5.85e-03 3.01e-03 1.53e-03 7.72e-04 ≈ 0.97 (1.0)
‖z− Z‖`∞(L2(Ω)) 9.49e-03 4.94e-03 2.51e-03 1.27e-03 ≈ 0.97 (1.0)
‖q−Q‖`∞(L2(Ω)) 9.48e-03 4.93e-03 2.51e-03 1.27e-03 ≈ 0.97 (1.0)

Example 5.2. The optimal control problem (1.4)-(1.5) in two-dimensional case is considered with Ω =
(0, 1)2, T = 1, γ = 1, V (x1, x2) = x1 + x2 and ρ = 1. We set the exact solutions as

u = e−tρ(x1+x2)tx1(1− x1)x2(1− x2),

z = etρ(x1+x2)(1− t)x1(1− x1)x2(1− x2),

q = max{−0.1,min{−z,−0.01}},

and evaluate f and ud by (2.10), (2.11) and the exact solutions.

In Example 5.2, we choose τ = 1/8, 1/16, 1/32, 1/64 to solve the problem (3.4)-(3.5) with α =
0.2, 0.5, 0.8, and the domain Ω = (0, 1)2 is partitioned into a uniform symmetric finite element triangu-
lation mesh with the mesh size h = 1/32. The errors ‖|u−U|‖, ‖|z−Z|‖ and ‖|q−Q|‖ are list in Table
3 together with numerical convergence orders in time direction, where a first order convergence order
is shown. From the numerical results, we observe that our numerical scheme is efficient, the numerical
convergence order is also not affected by the fractional order α, and the numerical results confirm the
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theoretical analysis in Theorem 4.1 as well. In Table 4, the `∞(L2(Ω)) errors and the corresponding
numerical convergence orders are presented for Example 5.2, which shows the similar observations as in
one dimensional case.

Table 3: The `2(L2(Ω)) errors and numerical convergence orders for Example 5.2.

α `2(L2(Ω)) error τ = 1/8 τ = 1/16 τ = 1/32 τ = 1/64 Order

0.2
‖|u−U|‖ 3.36e-04 1.69e-04 8.31e-05 4.00e-05 ≈ 1.02 (1.0)
‖|z− Z|‖ 1.12e-03 5.54e-04 2.65e-04 1.20e-04 ≈ 1.08 (1.0)
‖|q−Q|‖ 1.10e-03 5.09e-04 2.41e-04 1.06e-04 ≈ 1.12 (1.0)

0.5
‖|u−U|‖ 3.95e-04 2.00e-04 9.96e-05 4.95e-05 ≈ 1.00 (1.0)
‖|z− Z|‖ 1.09e-03 5.52e-04 2.73e-04 1.34e-04 ≈ 1.01 (1.0)
‖|q−Q|‖ 1.02e-03 4.46e-04 2.18e-04 1.05e-04 ≈ 1.09 (1.0)

0.8
‖|u−U|‖ 6.23e-04 3.19e-04 1.62e-04 8.16e-05 ≈ 0.98 (1.0)
‖|z− Z|‖ 1.61e-03 8.35e-04 4.30e-04 2.25e-04 ≈ 0.95 (1.0)
‖|q−Q|‖ 1.49e-03 7.14e-04 3.69e-04 1.94e-04 ≈ 0.98 (1.0)

Table 4: The `∞(L2(Ω)) errors and numerical convergence orders for Example 5.2.

α `∞(L2(Ω)) error τ = 1/8 τ = 1/16 τ = 1/32 τ = 1/64 Order

0.2
‖u−U‖`∞(L2(Ω)) 5.00e-04 2.99e-04 1.62e-04 8.32e-05 ≈ 0.86 (1.0)
‖z− Z‖`∞(L2(Ω)) 1.52e-03 8.35e-04 4.64e-04 2.42e-04 ≈ 0.88 (1.0)
‖q−Q‖`∞(L2(Ω)) 1.52e-03 7.43e-04 3.52e-04 1.55e-04 ≈ 1.10 (1.0)

0.5
‖u−U‖`∞(L2(Ω)) 7.81e-04 4.23e-04 2.11e-04 1.04e-04 ≈ 0.97 (1.0)
‖z− Z‖`∞(L2(Ω)) 2.14e-03 1.20e-03 6.13e-04 3.02e-04 ≈ 0.94 (1.0)
‖q−Q‖`∞(L2(Ω)) 1.87e-03 8.69e-04 4.23e-04 2.16e-04 ≈ 1.04 (1.0)

0.8
‖u−U‖`∞(L2(Ω)) 1.08e-03 5.53e-04 2.85e-04 1.44e-04 ≈ 0.97 (1.0)
‖z− Z‖`∞(L2(Ω)) 3.03e-03 1.55e-03 8.13e-04 4.18e-04 ≈ 0.95 (1.0)
‖q−Q‖`∞(L2(Ω)) 2.58e-03 1.38e-03 7.12e-04 3.64e-04 ≈ 0.94 (1.0)

6 Conclusion

The forward fractional Feynman-Kac equation governs the joint probability density function of function-
als in anomalous diffusion. This paper analyzes and approximates an optimal control problem governed
by the forward fractional Feynman-Kac equation by a temporal semi-discrete scheme. Significant chal-
lenges are encountered in the theoretical analysis due to the time-space coupled nonlocal fractional sub-
stantial derivative in the equation. We establish the well-posedness, optimality conditions and solution
regularity of the problem. Then we discretize the Riemann-Liouville fractional substantial derivative in
time by using the backward Euler convolution quadrature formula and propose a temporal semi-discrete
scheme for the optimal control problem. Based on the regularity results of the solution, we rigorously
estimate the `2(L2(Ω)) and `∞(L2(Ω)) discretization errors in time, and the theoretical convergence
order of O(τ) is verified by some numerical examples. Due to the challenges as mentioned, the error
analysis of the finite element method in space for the considered optimal control problem still confronts
many difficulties.
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