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1 Introduction

Motivated by Calabi’s rigidity principle about holomorphic isometric embedding from one
complex manifold into the complex projective space in [3], one can study the holomorphic
isometric embedding from one complex manifold into the complex Grassmannian. A
holomorphic isometry starting from Riemann sphere S2 with metric of constant curvature
is also called a constantly curved holomorphic two-sphere. In differential geometry, the
question of classification of noncongruent constantly curved holomorphic two-spheres in
the complex Grassmannians is an important and difficult problem. More interestingly, it
has close contact with the Grassmannian sigma models in theoretical physics (for example,
see [9]).

We denote by gFS the Fubini-Study metric of constant holomorphic sectional curvature
4. From Calabi’s rigidity principle (cf. [3]; see also [27], Sec.5 in [1]), we know that if
ϕ : S2 → (CPn, gFS) is a linearly full (the image does not lie in some subspace Ck for
k < n+ 1) constantly curved holomorphic immersion of degree d, then d = n and ϕ is the
well-known Veronese embedding (up to U(n+ 1)) defined by

V
(n)

0 (z) =

[
1,

√(
n

1

)
z, · · · ,

√(
n

n

)
zn

]
.

It is interesting that V
(n)

0 (z) can generate the harmonic sequence V
(n)

0 , V
(n)

1 , · · · , V (n)
n in
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CPn, where V
(n)
i = [fi,0, · · · , fi,p , · · · , fi,n] with fi,p being explicitly given by

fi,p(z) =
i!

(1 + zz̄)i

√(
n

p

)
zp−i

∑
k

(−1)k
(

p

i− k

)(
n− p
k

)
(zz̄)k.

Such a map V
(n)
i : S2 → CPn is a conformal minimal immersion with constant curvature

and constant Kähler angle, which are given by

K
(n)
i =

4

n+ 2i(n− i)
, cosα

(n)
i =

n− 2i

n+ 2i(n− i)
.

This harmonic sequence is well known as Veronese sequence (cf. [1], Sec.5).
We denote by ds2

G(m,m+n) the standard Kähler metric of complex GrassmannianG(m,m+

n) (m ≤ n), which can also be induced from gFS by the Plücker embedding. Chi-Zheng [7]

classified the constantly curved holomorphic two-spheres of degree 4 in
(
G(2, 4), ds2

G(2,4)

)
into two families (up to U(4)) by using the method of moving frames and Cartan’s theory
of higher order invariants (cf.[19]). This result means that the constantly curved holomor-

phic two-spheres in
(
G(m,m+ n), ds2

G(m,m+n)

)
are more complicated. Li-Yu [23] (see [22]

for a detailed proof) showed that if ϕ : S2 → G(2, 4) is a linearly full constantly curved
holomorphic immersion of degree d, then d = 2, 3, 4 and ϕ is explicitly characterized (up
to U(4)). For the case of G(2, 5), Jiao-Peng ([20], [21]) proved that if ϕ : S2 → G(2, 5)
is a non-singular constantly curved holomorphic immersion, then d = 1, 2, 3, 4, 5 and ϕ is
explicitly characterized (up to U(5)) by using Plücker embedding.

Delisle-Hussin-Zakrzewski [9] recovered the known classification results in G(2, 4) and
G(2, 5) mentioned above from the viewpoint of Grassmannian sigma models, and proposed
two conjectures, which we refer to as DHZ conjectures in the following.
Conjecture 1. If ϕ : S2 → G(m,m + n) is a constantly curved holomorphic immersion
of degree d, then d ≤ mn.
Conjecture 2. For m,n fixed, the holomorphic immersion ϕ can be constructed for
1 ≤ d ≤ mn.

Until now, there are few results about these two problems. Under the assumption of
homogeneity (the image is an orbit of an isometry subgroup of the target space), Peng-
Xu [26] and Fei [10] independently used the representations of SU(2) to give a complete
classification of linearly full constantly curved holomorphic two-spheres of degree d in
G(2, n+2) and obtained that d takes n or 2n. Delisle-Hussin-Zakrzewski ([9], Proposition
1) declared that d ≤ 6 for G(2, 5). Recently the second named author gave some detailed
discussions in [17]. Interestingly, Chi-Xie-Xu [8] constructed many non-homogeneous and
singular (in Jiao-Peng’s sense) constantly curved holomorphic two-spheres of degree 6 in
G(2, 5) and described the moduli space of such two-spheres.

S.S. Chern et al.([4], [5]) showed the interest of the study of compact minimal sub-
manifolds on the unit sphere Sn+p with constant square norm of the second fundamental
form, which led to the famous Chern conjecture for discreteness of such constant values.
N. Mok et al.([24], [25]) indicated that the second fundamental form can be used as a tool
for studying the non-totally geodesic holomorphic isometric embeddings of the Poincaré
disk into bounded symmetric domains. Inspired by these works, the second fundamental
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forms are expected to play an important role for studying constantly curved holomorphic
two-spheres in G(m,m+n). Recently, the first and third named authors and Xu ([29],[13])
applied the method of moving frames and harmonic sequences to completely classify con-
stantly curved holomorphic two-spheres in G(2, N) and G(3, N) with the square norm of
the second fundamental form satisfying a certain pinching condition.

The current article is an attempt to study linearly full constantly curved holomorphic
two-spheres of degree d in G(2, n+2) with constant square norm of the second fundamental
form. For the reducible case, the first named author, Jiao and Xu in [12] and the second

named author in her Ph.D. Thesis [16] showed that d = n with ϕ = V
(n+1)

0 ⊕ V (n+1)
1 (up

to U(n+ 2)) or d = 2n with ϕ = V
(n)

0 ⊕ v (up to U(n+ 2)), where v is a non-zero constant
vector. Notice that no assumption with respect to the second fundamental form is needed,
and these two holomorphic curves are both homogeneous.

For the irreducible case, we have the Gauss equation (cf.[10],[14])

K = 4− 8| detA1|2 −
S

2
, (1.1)

where K = 4/d, S is the square norm of the second fundamental form, and | detA1|2φ2φ
2

is a global defined (2, 2)-form (see section 2). The key idea is to transform the condition
of S being constant into the one that | detA1|2 is a constant. Notice that S involving
the second derivative of the holomorphic mapping is hard to compute, while | detA1|2 is
only related to the first derivative of the holomorphic mapping. This makes it possible to
calculate explicitly. Thus by solving algebraic equations in the congruence class, we get
the following main theorem.

Theorem 1.1 Let ϕ : S2 → G(2, n + 2) be a linearly full irreducible constantly curved
holomorphic two-sphere of degree d = 4 with constant square norm of the second funda-
mental form S. Then n = 4 and the corresponding holomorphic two-spheres are given as
follows, up to U(6),

ϕ =

[
1 0 |t− 2|z3

√
tz

√
3−t
4−t |t− 2|z2

√
t

4−tz
2

0 1
√

3− tz2 0
√

4− tz 0

]
⊂ G(2, 6), 0 < t ≤ 3 (1.2)

with S = t2 − 4t + 6. Here when t = 3, ϕ = V
(1)

0 ⊕ V
(3)

0 with S = 3; when t = 2,

ϕ = V
(2)

0 ⊕ V (2)
0 with S = 2.

Applying Theorem 1.1 and appropriate harmonic sequences, we obtain the classifica-
tion theorem of constantly curved holomorphic two-spheres in G(2, 6) with constant square
norm of the second fundamental form, as follows.

Theorem 1.2 Let ϕ : S2 → G(2, 6) be a linearly full constantly curved holomorphic two-
sphere of degree d with constant square norm of the second fundamental form.

(1) If ϕ is reducible, then d = 4 with ϕ = V
(5)

0 ⊕ V
(5)

1 (up to U(6)), or d = 8 with

ϕ = V
(4)

0 ⊕ v (up to U(6)), where v is a non-zero constant vector.
(2) If ϕ is irreducible and totally unramified, then d = 4 and ϕ is unitary congruent to
(1.2).

3



Remark 1.3 It follows from Theorem 1.2 that DHZ’s conjecture 1 is true for G(2, 6) in
the case of totally unramified and constant square norm of the second fundamental form.

Recently, we [11] give a local rigidity characterization of all homogeneous holomor-
phic two-spheres in G(2, N) in terms of a new global invariant κ defined by the square
norm of (1, 0) part of the second order covariant differential of the first ∂-transform for
a holomorphic curve in G(2, N). Specifically, we showed that a linearly full irreducible
constantly curved holomorphic two-sphere in G(2, N) with constant square norm of the
second fundamental form and κ vanishing identically is unitary congruent to

V
(n)

0 ⊕
(

cos θV
(n)

1 + sin θV
(n−2)

0

)
or V

(n1)
0 ⊕ V (n2)

0 ,

where θ ∈ (0, π2 ], N = 2n or N = n1 + n2 + 2. By virtue of the explicit expression
given by (1.2) and straightforward calculations, we checked that the embedding (1.2) has
vanishing κ for each t, which concludes that the holomorphic curve given by (1.2) is unitary
congruent to the homogeneous one

V
(3)

0 ⊕
(

cos θV
(3)

1 + sin θV
(1)

0

)
and the correspondence between the two parameters is that t = 3 sin2 θ. Therefore, the
classification results of Theorem 1.2 tell us that

Theorem 1.4 A linearly full totally unramified constantly curved holomorphic two-sphere
in G(2, 6) with constant square norm of the second fundamental form must be homoge-
neous.

The requirement that a constantly curved holomorphic two-sphere is totally unramified
is a somehow strong assumption. Thus one is optimistic about generalizing Theorem 1.4
to any complex Grassmannian, which deserves further investigation. In addition, whether
is the assumption that the constantly curved holomorphic two-sphere is totally unramified
in Theorem 1.2 and Theorem 1.4 necessary? Since the condition of constant square norm
of the second fundamental form leads to that the constantly curved holomorphic two-
sphere is unramified, then can one construct an example of non-homogeneous constantly
curved holomorphic two-sphere with constant square norm of the second fundamental form
satisfying that the second element of the harmonic sequence has ramified points?

This paper is organized as follows. In section 2, we give a characterization of constantly
curved holomorphic two-sphere in G(2, n + 2) with constant square norm of the second
fundamental form in terms of a system of algebraic equations. In section 3, we firstly solve
the algebraic system to prove Theorem 1.1. Applying this result, together with the theory
of harmonic sequence, we verify Theorem 1.2.
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No. 2022YFA1006600 and NSF in China Nos. 12071352, 12071338, 11401481, 11301273,
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of Xi’an Jiaotong-Liverpool University (REF-18-01-03). The third named author was al-
so supported by the NSF of the Jiangsu Higher Education Institutions of China (Grant
No. 17KJA110002, No. 19KJA320001) and the Natural Science Foundation of Jiangsu
Province (BK20181381).
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2 Constantly curved holomorphic two-spheres in G(2, n+ 2)

Let ϕ : S2 → G(2, n + 2) be a linearly full constantly curved holomorphic two-sphere of
degree d. Let ϕ(0) = Z0 ∈ G(2, n+2). We choose a rectangular coordinate system in Cn+2

such that the extended matrix Z0 = (I2,0). Then on the neighborhood of Z0 denoted by
VZ0 , we can write

ϕ(z) = [I2, F (z)],

where F (z) =

(
F1(z)
F2(z)

)
is a 2×n matrix-valued holomorphic function satisfying F (0) = 0.

Let

Pl :
(
G(2, n+ 2), ds2

G(2,n+2)

)
→
(
CPN , gFS

)
(N =

(n+ 2)(n+ 1)

2
− 1)

be the standard Plücker embedding, which is a holomorphic isometric embedding (cf.
[15]). Then Pl ◦ ϕ : S2 → CPN given by

Pl ◦ ϕ = [v1 ∧ v2] =
[
1 F2 −F1 F1 ∧ F2

]
is a constantly curved holomorphic two-sphere, which may be not linearly full. It follows
from Calabi’s rigidity theorem (cf. [3]; see also [27], Sec.5 in [1]) that there exists a

constant matrix U ∈ U(N + 1) such that Pl ◦ϕ = V
(d)

0 ·U , where V
(d)

0 : S2 → CPN is the
holomorphic Veronese embedding given by

V
(d)

0 (z) =
[
1
√(

d
1

)
z · · ·

√(
d
k

)
zk · · ·

√(
d
d

)
zd 0 · · · 0

]
.

We immediately conclude that d ≤ N and

1 + |F1|2 + |F2|2 + |F1 ∧ F2|2 = (1 + zz̄)d. (2.1)

Moreover, we have the Gauss equation (cf. [10],[14])

K = 4− 8| detA1|2 −
S

2
, (2.2)

where K = 4/d, S is the square norm of the second fundamental form, and | detA1|2φ2φ
2

is a globally defined (2, 2)-form specified as follows. Here, φ is a local unitary coframe of
(1, 0) type with respect to the induced metric ds2 = ϕ∗(ds2

G(2,n+2)).

Let ϕ =
[
I2 F

]
, F (z) =

[
F1(z)
F2(z)

]
. Set v1 =

[
1 0 F1

]
, v2 =

[
0 1 F2

]
, e1 = v1

|v1| ,

e2 =
v2− 〈v2,v1〉〈v1,v1〉

v1∣∣∣v2− 〈v2,v1〉〈v1,v1〉
v1

∣∣∣ . Let e3, e4 be a unitary basis of the orthogonal projection plane ϕ⊥(∂zϕ).

Then we have

∂ze1 = a11e1 + a12e2 + a13e3 + a14e4,

∂ze2 = a21e1 + a22e2 + a23e3 + a24e4.

It follows that
| detA1|2φ2φ

2
= |a13a24 − a14a23|2dz2dz̄2.
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If |detA1|2φ2φ
2

is identically equal to zero on S2, then ϕ is called reducible. If | detA1|2φ2φ
2

is not identically equal to zero on S2, then ϕ is called irreducible(see sec.3 in [2] for general

harmonic map). In the latter case, | detA1|2φ2φ
2

has isolated zeros, which is called ram-
ified points; the order of zeros is called multiplicity of the corresponding ramified points.

In particular, if |detA1|2φ2φ
2

has no zeros, then ϕ is called unramified. Similarly, we can
give the definition of unramified minimal two-sphere. If every element of the harmonic
sequence generated by ϕ is unramified, then ϕ is called totally unramified (cf. [18]).

Now we give a characterization of constantly curved holomorphic two-spheres with
constant square norm of the second fundamental form as follows:

Theorem 2.1 Let ϕ : S2 → G(2, n + 2) be a linearly full constantly curved holomorphic
two-sphere of degree d with constant square norm of the second fundamental form. Locally,
set

ϕ =
[
I2 F

]
, F (z) =

[
F1(z)
F2(z)

]
where F (z) is a 2× n matrix-valued holomorphic function satisfying F (0) = 0. Then

1 + |F1|2 + |F2|2 + |F1 ∧ F2|2 = (1 + zz̄)d, (2.3)

and

|∂zF1∧∂zF2|2+|∂zF1∧∂zF2∧F1|2+|∂zF1∧∂zF2∧F2|2+|∂zF1∧∂zF2∧F1∧F2|2 = c(1+zz̄)2d−4,
(2.4)

where c is a non-negative constant.

Proof: If S is constant, then |detA1|2 is constant by (2.2). Here |v1∧ v2|2 = (1 + zz̄)d and
e1 ∧ e2 = v1∧v2

|v1∧v2| . On the one hand,

∂z(e1 ∧ e2) = ∂ze1 ∧ e2 + e1 ∧ ∂ze2

= (a11 + a22)e1 ∧ e2 − a13e2 ∧ e3 − a14e2 ∧ e4 + a23e1 ∧ e3 + a24e1 ∧ e4,

which means

∂z(e1 ∧ e2) ∧ ∂z(e1 ∧ e2) = 2(−a13a24 + a14a23)e1 ∧ e2 ∧ e3 ∧ e4.

On the other hand,

∂z(e1 ∧ e2) ∧ ∂z(e1 ∧ e2) =
−2v1 ∧ v2 ∧ ∂zv1 ∧ ∂zv2

|v1 ∧ v2|2
.

Since the induced metric is ds2 = φφ = d
(1+zz̄)2

dzdz̄, then we have

|detA1|2 =
|v1 ∧ v2 ∧ ∂zv1 ∧ ∂zv2|2

d2(1 + zz̄)2d−4
.

Setting |detA1|2 = c/d2, where c is a non-negative constant, we get

|v1 ∧ v2 ∧ ∂zv1 ∧ ∂zv2|2 = c(1 + zz̄)2d−4. (2.5)
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A straightforward calculation verifies (2.4). Furthermore we have

S = 8− 16c

d2
− 8

d
.

2

Let F =
N∑
α=1

Aαz
α, Aα =

[
a

(α)
1

a
(α)
2

]
, Wα =

[
a

(α)
1 a

(α)
2

]
. Then we have

F1 =

N∑
α=1

a
(α)
1 zα, F2 =

N∑
α=1

a
(α)
2 zα.

Set

F1 ∧ F2 =

2N∑
j=2

Vjz
j , ∂zF1 ∧ ∂zF2 =

2N∑
j=2

Rjz
j−2.

A straightforward calculation shows

∂zF1 ∧ ∂zF2 ∧ F1 =
2N∑
j=2

N∑
α=1

Rj ∧ a(α)
1 zj+α−2 =

3N∑
p=4

Spz
p−2,

∂zF1 ∧ ∂zF2 ∧ F2 =
2N∑
j=2

N∑
α=1

Rj ∧ a(α)
2 zj+α−2 =

3N∑
p=4

Tpz
p−2,

∂zF1 ∧ ∂zF2 ∧ F1 ∧ F2 =

2N∑
j,k=2

Rj ∧ Vkzj+k−2 =

4N∑
p=6

Xpz
p−2.

Set

U =


1 0 0
0 W1 0
...

...
...

0 Wd Vd

 , Q =



R2 0 0 0
R3 0 0 0
R4 S4 T4 0
R5 S5 T5 0
R6 S6 T6 X6
...

...
...

...
R2d−2 S2d−2 T2d−2 X2d−2


.

Then we see that U ∈ C(d+1)×(N+1) and Q ∈ C(2d−3)×((n2)+2(n3)+(n4)).
Applying Theorem 2.1, we know that (2.3) is equivalent to

UU∗ = Λ1, (2.6)

where ∗ denotes conjugate transpose and

Λ1 = diag

{
1,

(
d

1

)
, · · · ,

(
d

d

)}
,

and (2.4) is equivalent to
QQ∗ = Λ2, (2.7)
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where

Λ2 = diag

{
c,

(
2d− 4

1

)
c, · · · ,

(
2d− 4

2d− 4

)
c

}
.

In order to determine the linearly full constantly curved holomorphic two-spheres of
degree d in G(2, n+2) with constant square norm of the second fundamental form, we need
to solve (2.6) and (2.7), modulo extrinsically the ambient unitary U(n + 2)-congruence.
Considering the case of d = 4, we can get our main result.

3 Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1 Substituting d = 4 into (2.6) and (2.7) respectively yields

U =


1 0 0
0 W1 0
0 W2 V2

0 W3 V3

0 W4 V4

 , UU∗ = diag {1, 4, 6, 4, 1} (3.1)

and

Q =


R2 0 0 0
R3 0 0 0
R4 S4 T4 0
R5 S5 T5 0
R6 S6 T6 X6

 , QQ∗ = diag {c, 4c, 6c, 4c, c} . (3.2)

In the following, we will discuss (3.1) and (3.2) by case I: W4 = 0 = W3, case II: W4 =
0,W3 6= 0 and case III: W4 6= 0 respectively.

Case I: W4 = 0 = W3. In this case, from (3.1) and (3.2), we get |V3|2 = 4 and
|R3|2 = 4c respectively. Since R3 = 2V3, then we obtain c = 4. Using (3.1) and (3.2)
again, we have |W1|2 = |R2|2 = 4, which implies

|a(1)
1 |

2 + |a(1)
2 |

2 = 4, |a(1)
1 ∧ a

(1)
2 |

2 = 4. (3.3)

In the congruent class, using the singular-value decomposition of complex matrix A1, we
can take

a
(1)
1 =

(
a

(1)
11 0 0 0 · · · 0

)
, a

(1)
2 =

(
0 a

(1)
22 0 0 · · · 0

)
,

a
(2)
1 =

(
a

(2)
11 a

(2)
12 a

(2)
13 a

(2)
14 · · · a

(2)
1n

)
, a

(2)
2 =

(
a

(2)
21 a

(2)
22 a

(2)
23 a

(2)
24 · · · a

(2)
2n

)
,

where a
(1)
11 ≥ a

(1)
22 > 0. It follows from (3.3) that

a
(1)
11 = a

(1)
22 =

√
2. (3.4)

From (3.4), together with 〈W1, W2〉 = 0 by (3.1), we obtain

a
(2)
11 + a

(2)
22 = 0. (3.5)
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Since V3 = a
(1)
1 ∧ a

(2)
2 + a

(2)
1 ∧ a

(1)
2 , then |V3|2 = 4 gives us |a(1)

1 ∧ a
(2)
2 + a

(2)
1 ∧ a

(1)
2 |2 = 4.

Combining this with (3.4) and (3.5), we have

|a(2)
1 |

2 + |a(2)
2 |

2 − 2|a(2)
11 |

2 − |a(2)
21 |

2 − |a(2)
12 |

2 = 2. (3.6)

It follows from V2 = R2 that |V2|2 = 4. Since |W2|2 + |V2|2 = 6 by (3.1), then we get
|W2|2 = 2, i.e.,

|a(2)
1 |

2 + |a(2)
2 |

2 = 2. (3.7)

Substituting (3.7) into (3.6) yields

2|a(2)
11 |

2 + |a(2)
21 |

2 + |a(2)
12 |

2 = 0,

which implies

a
(2)
11 = 0 = a

(2)
21 = a

(2)
12 = a

(2)
22 . (3.8)

From (3.1), we know |V4|2 = 1, i.e., |a(2)
1 ∧ a

(2)
2 |2 = 1. Combining this with (3.7) yields

|a(2)
1 |

2 = |a(2)
2 |

2 = 1,
〈
a

(2)
1 , a

(2)
2

〉
= 0. (3.9)

Hence using (3.8) and (3.9), we can take, in the congruent class,

a
(1)
1 =

(√
2 0 0 0 · · · 0

)
, a

(1)
2 =

(
0
√

2 0 0 · · · 0
)
,

a
(2)
1 =

(
0 0 1 0 · · · 0

)
, a

(2)
2 =

(
0 0 0 1 · · · 0

)
.

Then in this case, ϕ is congruent to

ϕ =

[
1 0

√
2z 0 z2 0

0 1 0
√

2z 0 z2

]
= V

(2)
0 ⊕ V (2)

0 ⊂ G(2, 6).

Case II: W4 = 0,W3 6= 0. In this case, we have V6 = a
(3)
1 ∧ a(3)

2 = 0 and V5 =

a
(2)
1 ∧ a(3)

2 + a
(3)
1 ∧ a(2)

2 = 0. From (3.1), it follows that 〈W1, W3〉 = 0. Then in the
congruent class, we can take

a
(3)
1 =

(
a

(3)
11 0 0 0 · · · 0

)
, a

(3)
2 = 0,

a
(2)
1 =

(
a

(2)
11 a

(2)
12 a

(2)
13 a

(2)
14 · · · a

(2)
1n

)
, a

(2)
2 =

(
a

(2)
21 0 0 0 · · · 0

)
,

a
(1)
1 =

(
0 a

(1)
12 a

(1)
13 a

(1)
14 · · · a

(1)
1n

)
, a

(1)
2 =

(
a

(1)
21 a

(1)
22 a

(1)
23 a

(1)
24 · · · a

(1)
2n

)
,

where a
(3)
11 > 0. From (3.1) and (3.2), we get 〈V2, V4〉 = 0 and 〈R2, R4〉 = 0 respectively.

Since R2 = V2 = a
(1)
1 ∧a

(1)
2 , V4 = a

(2)
1 ∧a

(2)
2 +a

(3)
1 ∧a

(1)
2 and R4 = 4a

(2)
1 ∧a

(2)
2 + 3a

(3)
1 ∧a

(1)
2 ,

then we get 〈
a

(1)
1 ∧ a

(1)
2 , a

(3)
1 ∧ a

(1)
2

〉
= 0,

and 〈
a

(1)
1 ∧ a

(1)
2 , a

(2)
1 ∧ a

(2)
2

〉
= 0,
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which implies by using
〈
a

(1)
1 , a

(3)
1

〉
= 0 and

〈
a

(1)
1 , a

(2)
2

〉
= 0 respectively,

〈
a

(1)
1 , a

(1)
2

〉
a

(1)
21 a

(3)
11 = 0, (3.10)

and 〈
a

(1)
1 , a

(2)
1

〉
a

(1)
21 a

(2)
21 = 0. (3.11)

In (3.1), we have 〈W1, W2〉 = 0, i.e.,〈
a

(1)
1 , a

(2)
1

〉
+ a

(1)
21 a

(2)
21 = 0. (3.12)

It follows from (3.11) and (3.12) that〈
a

(1)
1 , a

(2)
1

〉
= 0 = a

(1)
21 a

(2)
21 . (3.13)

Claim: a
(1)
21 = 0.

Otherwise if a
(1)
21 6= 0, then

〈
a

(1)
1 , a

(1)
2

〉
= 0 by (3.10) and a

(2)
21 = 0 by (3.13). The

latter tells us a
(2)
2 = 0. In (3.1), we have |V4|2 = 1. Since V4 = a

(3)
1 ∧ a

(1)
2 , then

|a(3)
1 ∧ a

(1)
2 |

2 = 1. (3.14)

In (3.2), we have |R5|2 + |S5|2 + |T5|2 = 4c. Since R5 = T5 = 0, S5 = −2a
(1)
1 ∧ a

(1)
2 ∧ a

(3)
1 ,

then
|a(1)

1 |
2|a(3)

1 ∧ a
(1)
2 |

2 = c. (3.15)

It follows from (3.14) and (3.15) that

|a(1)
1 |

2 = c. (3.16)

In (3.1) and (3.2), we have |W1|2 = 4 and |R2|2 = c respectively, i.e.,

|a(1)
1 |

2 + |a(1)
2 |

2 = 4, |a(1)
1 |

2|a(1)
2 |

2 = c. (3.17)

Combining (3.16) and (3.17), we obtain |a(1)
2 |2 = 1 and |a(1)

1 |2 = c = 3. From (3.1) and
(3.2), we obtain |W3|2 + |V3|2 = 4 and |R3|2 = 4c = 12 respectively. Using these, together

with R3 = 2V3, we get |W3|2 = 1, i.e., |a(3)
1 |2 = 1. Substituting this and |a(1)

2 |2 = 1 into

(3.14) yields
〈
a

(3)
1 , a

(1)
2

〉
= 0, which shows a

(3)
11 a

(1)
21 = 0. It follows that a

(1)
21 = 0, which

contradicts our assumption. Hence we verify a
(1)
21 = 0.

Now we know
〈
a

(3)
1 , a

(1)
2

〉
=
〈
a

(2)
2 , a

(1)
2

〉
= 0. The latter gives us

〈
a

(2)
1 , a

(1)
1

〉
= 0 by

〈W2, W1〉 = 0 in (3.1).
From (3.1) and (3.2), we get 〈V3, V4〉 = 0 and 〈R3, R4〉 = 0 respectively. Since R3 =

2V3 = 2a
(1)
1 ∧a

(2)
2 +2a

(2)
1 ∧a

(1)
2 , V4 = a

(2)
1 ∧a

(2)
2 +a

(3)
1 ∧a

(1)
2 and R4 = 4a

(2)
1 ∧a

(2)
2 +3a

(3)
1 ∧a

(1)
2 ,

then we get 〈
a

(1)
1 ∧ a

(2)
2 + a

(2)
1 ∧ a

(1)
2 , a

(2)
1 ∧ a

(2)
2

〉
= 0,
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and 〈
a

(1)
1 ∧ a

(2)
2 + a

(2)
1 ∧ a

(1)
2 , a

(3)
1 ∧ a

(1)
2

〉
= 0,

which implies, respectively, 〈
a

(1)
2 , a

(2)
1

〉
a

(2)
11 a

(2)
21 = 0, (3.18)

and

|a(1)
2 |

2a
(2)
11 a

(3)
11 −

〈
a

(1)
1 , a

(1)
2

〉
a

(2)
21 a

(3)
11 = 0. (3.19)

In the following, we will discuss this case from two subcases of a
(2)
21 = 0 and a

(2)
21 6= 0

respectively.

Subcase II1: If a
(2)
21 = 0, i.e., a

(2)
2 = 0, then since a

(1)
2 is non-zero due to that ϕ is

unramified, we obtain a
(2)
11 = 0 by using (3.19). It follows from the proof of the above

Claim, we know that (3.14), (3.15) and (3.17) become, respectively,

|a(3)
1 |

2|a(1)
2 |

2 = 1. (3.20)

|a(1)
1 ∧ a

(1)
2 |

2|a(3)
1 |

2 = c. (3.21)

|a(1)
1 |

2 + |a(1)
2 |

2 = 4, |a(1)
1 ∧ a

(1)
2 |

2 = c. (3.22)

In light of (3.20)-(3.22), we assert immediately that |a(3)
11 |2 = |a(1)

2 |2 = 1 and |a(1)
1 |2 = 3.

On the one hand, since |W3|2 + |V3|2 = 4, then we get by |W3|2 = |a(3)
11 |2 = 1 that |V3|2 = 3,

which implies |R3|2 = 4|V3|2 = 12. In terms of this, together with |R3|2 = 4c, we get c = 3.

Substituting it into (3.22) yields |a(1)
1 ∧ a

(1)
2 |2 = 3. Combining this with |a(1)

1 |2 = 3 and

|a(1)
2 |2 = 1, we obtain

〈
a

(1)
1 , a

(1)
2

〉
= 0.

On the other hand, since |W2|2 + |V2|2 = 6 and |V2|2 = 3, then we have |W2|2 = 3,

i.e., |a(2)
1 |2 = 3. In light of this, together with |V3|2 = |a(2)

1 ∧ a
(1)
2 |2 = 3 and |a(1)

2 |2 = 1, we

obtain that
〈
a

(2)
1 , a

(1)
2

〉
= 0. Hence in the congruent class, we can take

a
(3)
1 =

(
1 0 0 0 · · · 0

)
, a

(3)
2 = 0,

a
(2)
1 =

(
0
√

3 0 0 · · · 0
)
, a

(2)
2 = 0,

a
(1)
1 =

(
0 0

√
3 0 · · · 0

)
, a

(1)
2 =

(
0 0 0 1 · · · 0

)
.

Then in this subcase, ϕ is congruent to

ϕ =

[
1 0 z3

√
3z2

√
3z 0

0 1 0 0 0 z

]
= V

(1)
0 ⊕ V (3)

0 ⊂ G(2, 6).

Subcase II2: If a
(2)
21 6= 0, then we first claim a

(2)
11 = 0. Otherwise if a

(2)
11 6= 0,

then (3.18) leads to
〈
a

(1)
2 , a

(2)
1

〉
= 0. Combining this with

〈
a

(1)
1 , a

(2)
1

〉
=
〈
a

(1)
1 , a

(2)
2

〉
=〈

a
(1)
2 , a

(2)
2

〉
= 0, we find 〈V2, V3〉 = 0, which implies 〈W2,W3〉 = 0 by applying 〈W2,W3〉+

〈V2, V3〉 = 0 in (3.1). It follows that a
(2)
11 = 0, which is a contradiction. Thus we verify

a
(2)
11 = 0.
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Now (3.19) yields
〈
a

(1)
1 , a

(1)
2

〉
= 0. In (3.1), we have |W1|2 = 4 and |W3|2 + |V3|2 = 4,

i.e.,

|a(1)
1 |

2 + |a(1)
2 |

2 = 4 (3.23)

and
|a(3)

11 |
2 + |a(1)

1 |
2|a(2)

21 |
2 + |a(2)

1 ∧ a
(1)
2 |

2 = 4. (3.24)

In (3.2), we know |R2|2 = c and |R6|2 + |S6|2 + |T6|2 + |X6|2 = c. Since R6 = T6 = 0, S6 =

−a(2)
1 ∧ a

(1)
2 ∧ a

(3)
1 and X6 = a

(1)
1 ∧ a

(1)
2 ∧ a

(2)
1 ∧ a

(2)
2 , then

|a(1)
1 |

2|a(1)
2 |

2 = c (3.25)

and
|a(2)

1 ∧ a
(1)
2 |

2
(
|a(3)

11 |
2 + |a(1)

1 |
2|a(2)

21 |
2
)

= c. (3.26)

Observing (3.23)-(3.26), we find that |a(1)
1 |2, |a

(1)
2 |2 and |a(3)

11 |2 + |a(1)
1 |2|a

(2)
21 |2, |a

(1)
2 ∧ a

(2)
1 |2

are respectively the roots of equation x2 − 4x + c = 0. Then the following two cases

will happen: (i) |a(1)
1 |2 = |a(3)

11 |2 + |a(1)
1 |2|a

(2)
21 |2, |a

(1)
2 |2 = |a(1)

2 ∧ a(2)
1 |2, or (ii) |a(1)

1 |2 =

|a(1)
2 ∧ a

(2)
1 |2, |a

(1)
2 |2 = |a(3)

11 |2 + |a(1)
1 |2|a

(2)
21 |2.

Set |a(1)
1 |2 = t(0 < t < 4). Then |a(1)

2 |2 = 4 − t = c
t , i.e., c = 4t − t2. It follows from

|W3|2 + |V3|2 = 4 and |R3|2 = 4|V3|2 = 4c that |W3|2 = 4− c, i.e., |a(3)
11 |2 = 4− c = (t−2)2.

If (i) happens, then |a(2)
21 |2 = 1 − 4−c

t . Using |R5|2 + |S5|2 + |T5|2 = 4c in (3.2) and

R5 = 0, S5 = −2a
(1)
1 ∧ a(1)

2 ∧ a(3)
1 + 2a

(1)
1 ∧ a(2)

1 ∧ a(2)
2 , T5 = 2a

(1)
2 ∧ a(2)

1 ∧ a(2)
2 , we get

|a(1)
1 |2|V4|2 + |a(1)

2 ∧ a
(2)
1 |2|a

(2)
21 |2 = c. Combining this with |V4|2 = 1 by (3.1), we obtain

|a(1)
1 |2 + |a(1)

2 |2|a
(2)
21 |2 = c. Then

t+ (4− t)
(

1− 4− c
t

)
= c,

which implies t = 2. It follows that a
(3)
11 = 0, which contradicts W3 6= 0. So this case of (i)

will not happen.
If (ii) happens, then we get

|a(2)
21 |

2 =
4− t
t
− 4− c

t
=
c

t
− 1 = 3− t, 0 < t < 3, t 6= 2. (3.27)

Using |W2|2 + |V2|2 = 6 in (3.1), we have

|a(2)
1 |

2 + |a(2)
21 |

2 + |a(1)
1 |

2|a(1)
2 |

2 = 6,

which gives us by (3.25) and (3.27)

|a(2)
1 |

2 = 6− c− (3− t) = t2 − 3t+ 3. (3.28)

Since
〈
a

(1)
1 , a

(2)
1

〉
= 0 =

〈
a

(1)
1 , a

(1)
2

〉
, then in the congruent class, we can take

a
(3)
1 =

(
|t− 2| 0 0 0 0 · · · 0

)
, a

(3)
2 = 0,

a
(2)
1 =

(
0 0 a

(2)
13 a

(2)
14 0 · · · 0

)
, a

(2)
2 =

(√
3− t 0 0 0 0 · · · 0

)
,

a
(1)
1 =

(
0
√
t 0 0 0 · · · 0

)
, a

(1)
2 =

(
0 0

√
4− t 0 0 · · · 0

)
,
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where a
(2)
13 ∈ C, a(2)

14 > 0. It follows from |a(1)
1 |2 = |a(1)

2 ∧ a
(2)
1 |2 that t = |a(2)

14 |2|a
(1)
23 |2, which

implies

a
(2)
14 =

√
t

4− t
. (3.29)

Then (3.28) and (3.29) tell us

|a(2)
13 |

2 = |a(2)
1 |

2 − |a(2)
14 |

2 = t2 − 3t+ 3− t

4− t
=

(3− t)(2− t)2

4− t
. (3.30)

On the other hand, substituting V4 = a
(2)
1 ∧ a

(2)
2 + a

(3)
1 ∧ a

(1)
2 into |V4|2 = 1 leads to

|a(2)
1 |

2|a(2)
21 |

2 + |a(3)
11 |

2|a(1)
2 |

2 − a(2)
13 a

(1)
23 a

(3)
11 a

(2)
21 − a

(2)
13 a

(1)
23 a

(3)
11 a

(2)
21 = 1,

which yields by a straightforward calculation

a
(2)
13 + a

(2)
13 = 2

√
3− t
4− t

|t− 2|. (3.31)

Comparing (3.30) and (3.31), we find

Re a
(2)
13 =

√
3− t
4− t

|t− 2| = |a(2)
13 |,

which implies a
(2)
13 ∈ R and

a
(2)
13 =

√
3− t
4− t

|t− 2|.

Thus in this subcase, ϕ is congruent to

ϕ =

[
1 0 |t− 2|z3

√
tz

√
3−t
4−t |t− 2|z2

√
t

4−tz
2

0 1
√

3− tz2 0
√

4− tz 0

]
⊂ G(2, 6), 0 < t < 3, t 6= 2.

Case III: W4 6= 0. We will prove that there does not exist this case by contradiction.

Suppose that this case happens, then we have V8 = a
(4)
1 ∧ a

(4)
2 = 0 and V7 = a

(3)
1 ∧ a

(4)
2 +

a
(4)
1 ∧ a

(3)
2 = 0. From (3.1), it follows that 〈W1, W4〉 = 0. Then in the congruent class, we

can take

a
(4)
1 =

(
a

(4)
11 0 0 0 · · · 0

)
, a

(4)
2 = 0,

a
(3)
1 =

(
a

(3)
11 a

(3)
12 a

(3)
13 a

(3)
14 · · · a

(3)
1n

)
, a

(3)
2 =

(
a

(3)
21 0 0 0 · · · 0

)
,

a
(2)
1 =

(
a

(2)
11 a

(2)
12 a

(2)
13 a

(2)
14 · · · a

(2)
1n

)
, a

(2)
2 =

(
a

(2)
21 a

(2)
22 a

(2)
23 a

(2)
24 · · · a

(2)
2n

)
,

a
(1)
1 =

(
0 a

(1)
12 a

(1)
13 a

(1)
14 · · · a

(1)
1n

)
, a

(1)
2 =

(
a

(1)
21 a

(1)
22 a

(1)
23 a

(1)
24 · · · a

(1)
2n

)
,

where a
(4)
11 > 0. Since V5 = a

(2)
1 ∧ a

(3)
2 + a

(3)
1 ∧ a

(2)
2 + a

(4)
1 ∧ a

(1)
2 = 0, then we get R5 =

6a
(2)
1 ∧a

(3)
2 +6a

(3)
1 ∧a

(2)
2 +4a

(4)
1 ∧a

(1)
2 = −2a

(4)
1 ∧a

(1)
2 . Substituting this and R2 = a

(1)
1 ∧a

(1)
2

into 〈R2, R5〉 = 0 in (3.2), we obtain〈
a

(1)
1 ∧ a

(1)
2 , a

(1)
2 ∧ a

(4)
1

〉
= 0,
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which implies by using
〈
a

(1)
1 , a

(4)
1

〉
= 0 that

〈
a

(1)
1 , a

(1)
2

〉
a

(1)
21 a

(4)
11 = 0. (3.32)

Similarly from V6 = a
(3)
1 ∧ a

(3)
2 + a

(4)
1 ∧ a

(2)
2 = 0, we know R6 = 9a

(3)
1 ∧ a

(3)
2 + 8a

(4)
1 ∧ a

(2)
2 =

a
(3)
1 ∧ a

(3)
2 . Substituting this and R2 = a

(1)
1 ∧ a

(1)
2 into 〈R2, R6〉 = 0 in (3.2), we get〈

a
(1)
1 ∧ a

(1)
2 , a

(3)
1 ∧ a

(3)
2

〉
= 0,

which implies by
〈
a

(1)
1 , a

(3)
2

〉
= 0 that

〈
a

(1)
1 , a

(3)
1

〉
a

(1)
21 a

(3)
21 = 0. (3.33)

In (3.2), we have 〈W1, W3〉 = 0, i.e.,〈
a

(1)
1 , a

(3)
1

〉
+ a

(1)
21 a

(3)
21 = 0. (3.34)

It follows from (3.33) and (3.34) that〈
a

(1)
1 , a

(3)
1

〉
= 0 = a

(1)
21 a

(3)
21 . (3.35)

Claim 1: a
(1)
21 = 0.

Otherwise if a
(1)
21 6= 0, then

〈
a

(1)
1 , a

(1)
2

〉
= 0 by (3.32) and a

(3)
21 = 0 by (3.35). The latter

tells us a
(3)
2 = 0. Then by using V6 = a

(4)
1 ∧a

(2)
2 = 0 we have a

(2)
2 = a

(2)
21 /a

(4)
11 ·a

(4)
1 . This gives

us
〈
a

(1)
1 , a

(2)
2

〉
= 0. At this time, since R2 = a

(1)
1 ∧a

(1)
2 and R4 = 4a

(2)
1 ∧a

(2)
2 + 3a

(3)
1 ∧a

(1)
2 ,

then 〈R2, R4〉 = 0 in (3.2) gives

4
〈
a

(1)
1 ∧ a

(1)
2 , a

(2)
1 ∧ a

(2)
2

〉
+ 3

〈
a

(1)
1 ∧ a

(1)
2 , a

(3)
1 ∧ a

(1)
2

〉
= 0. (3.36)

It follows from
〈
a

(1)
1 , a

(3)
1

〉
=
〈
a

(1)
1 , a

(1)
2

〉
= 0 that〈

a
(1)
1 ∧ a

(1)
2 , a

(3)
1 ∧ a

(1)
2

〉
= 0. (3.37)

Substituting (3.37) into (3.36) yields〈
a

(1)
1 ∧ a

(1)
2 , a

(2)
1 ∧ a

(2)
2

〉
= 0,

which implies by
〈
a

(1)
1 , a

(2)
2

〉
= 0, that

〈
a

(1)
1 , a

(2)
1

〉
a

(1)
21 a

(2)
21 = 0. (3.38)
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On the other hand, in (3.1), we have 〈W1, W2〉 = 0, i.e.,〈
a

(1)
1 , a

(2)
1

〉
+ a

(1)
21 a

(2)
21 = 0. (3.39)

It follows from (3.38) and (3.39) that〈
a

(1)
1 , a

(2)
1

〉
= 0 = a

(1)
21 a

(2)
21 , (3.40)

which means a
(2)
21 = 0 by a

(1)
21 6= 0, i.e., a

(2)
2 = 0. Now by using V5 = a

(4)
1 ∧ a

(1)
2 = 0, we

have a
(1)
2 = a

(1)
21 /a

(4)
11 · a

(4)
1 . And V2, V3, V4 reduce to, respectively,

V2 = a
(1)
1 ∧ a

(1)
2 , V3 = a

(2)
1 ∧ a

(1)
2 , V4 = a

(3)
1 ∧ a

(1)
2 .

Observing that 〈V2, V3〉 = 〈V2, V4〉 = 0. Substituting this into 〈W2, W3〉+ 〈V2, V3〉 = 0
and 〈W2, W4〉 + 〈V2, V4〉 = 0 in (3.1) respectively yields 〈W2, W3〉 = 〈W2, W4〉 = 0,

i.e., a
(2)
11 = 0,

〈
a

(2)
1 , a

(3)
1

〉
= 0. This just gives us 〈V3, V4〉 = 0. Substituting it into

〈W3, W4〉+ 〈V3, V4〉 = 0 in (3.1) yields 〈W3, W4〉 = 0, i.e., a
(3)
11 = 0.

Since R5 = T5 = 0 and S5 = −2a
(1)
1 ∧ a

(1)
2 ∧ a

(3)
1 , then |R5|2 + |S5|2 + |T5|2 = 4c in

(3.2) leads to |R2|2|a(3)
1 |2 = c, which implies |a(3)

1 |2 = 1 by |R2|2 = c in (3.2). This tells us
|W3|2 = 1. Substituting it into |W3|2 + |V3|2 = 4 in (3.1) yields |V3|2 = 3. On the other
hand, it follows from |R3|2 = 4|V3|2 = 4c in (3.2) that |V3|2 = c. Hence we get c = 3,
which implies |V2|2 = 3. Substituting it into |W2|2 + |V2|2 = 6 in (3.1) yields |W2|2 = 3,

i.e., |a(2)
1 |2 = 3. Using this and |V3|2 = |a(2)

1 |2|a
(1)
2 |2 = 3 leads to |a(1)

2 |2 = 1. In terms of

this, together with |a(3)
1 |2 = 1, we obtain |V4|2 = |a(3)

1 ∧ a
(1)
2 |2 = 1. Substituting it into

|W4|2 + |V4|2 = 1 in (3.1) yields |W4|2 = 0, which contradicts W4 6= 0. Hence we verify

a
(1)
21 = 0.

Now we know
〈
a

(4)
1 , a

(1)
2

〉
=
〈
a

(3)
2 , a

(1)
2

〉
= 0. The latter gives us

〈
a

(3)
1 , a

(1)
1

〉
= 0 by

〈W3, W1〉 = 0 in (3.1).

Since V6 = a
(3)
1 ∧a

(3)
2 +a

(4)
1 ∧a

(2)
2 =

(
a

(3)
21 /a

(4)
11 · a

(3)
1 − a

(2)
2

)
∧a(4)

1 = 0, then there exists

λ ∈ C such that
a

(2)
2 = a

(3)
21 /a

(4)
11 · a

(3)
1 + λa

(4)
1 , (3.41)

which implies
〈
a

(1)
1 , a

(2)
2

〉
= 0 by using

〈
a

(1)
1 , a

(3)
1

〉
= 0 =

〈
a

(1)
1 , a

(4)
1

〉
. From (3.41), we

have V5 = a
(2)
1 ∧ a

(3)
2 + a

(3)
1 ∧ a

(2)
2 + a

(4)
1 ∧ a

(1)
2 =

(
a

(3)
21 /a

(4)
11 · a

(2)
1 + λa

(3)
1 − a

(1)
2

)
∧ a(4)

1 = 0,

then there exists µ ∈ C such that

a
(1)
2 = a

(3)
21 /a

(4)
11 · a

(2)
1 + λa

(3)
1 + µa

(4)
1 . (3.42)

Applying (3.41) and (3.42), a straightforward calculation shows

V4 = a
(1)
1 ∧ a

(3)
2 + a

(2)
1 ∧ a

(2)
2 + a

(3)
1 ∧ a

(1)
2

=
(
a

(3)
21 /a

(4)
11 · a

(1)
1 + λa

(2)
1 + µa

(3)
1

)
∧ a(4)

1 .
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From this, together with V2 = a
(1)
1 ∧ a(1)

2 and
〈
a

(4)
1 , a

(1)
1

〉
=
〈
a

(4)
1 , a

(1)
2

〉
= 0, we find

〈V2, V4〉 = 0. Substituting it into 〈W2, W4〉+ 〈V2, V4〉 = 0 in (3.1) yields 〈W2, W4〉 = 0,

which leads to
〈
a

(2)
1 , a

(4)
1

〉
= 0, i.e., a

(2)
11 = 0.

On the other hand, combining 〈V2, V4〉 = 0 and 〈R2, R4〉 = 0 in (3.2), we obtain〈
a

(1)
1 ∧ a

(1)
2 , a

(2)
1 ∧ a

(2)
2

〉
= 0. (3.43)

In terms of this, together with
〈
a

(1)
1 , a

(2)
2

〉
= 0, we get〈

a
(1)
1 , a

(2)
1

〉〈
a

(1)
2 , a

(2)
2

〉
= 0. (3.44)

Since 〈W1, W2〉 = 0 in (3.1), then〈
a

(1)
1 , a

(2)
1

〉
+
〈
a

(1)
2 , a

(2)
2

〉
= 0. (3.45)

It follows from (3.44) and (3.45) that〈
a

(1)
1 , a

(2)
1

〉
=
〈
a

(1)
2 , a

(2)
2

〉
= 0, (3.46)

which implies respectively by (3.41) and (3.42)〈
a

(1)
1 , a

(1)
2

〉
= 0 (3.47)

and

a
(3)
21 /a

(4)
11

〈
a

(1)
2 , a

(3)
1

〉
= 0. (3.48)

It is worth noting that
〈
a

(1)
1 , a

(α)
i

〉
= 0 for (α, i) 6= (1, 1).

Claim 2: a
(3)
21 = 0.

Otherwise if a
(3)
21 6= 0, then

〈
a

(1)
2 , a

(3)
1

〉
= 0 by (3.48). Since S4 = −a(1)

1 ∧ a(1)
2 ∧

a
(2)
1 , T4 = −a(1)

1 ∧a
(1)
2 ∧a

(2)
2 and S6 = a

(1)
1 ∧a

(1)
2 ∧a

(4)
1 +a

(1)
1 ∧a

(3)
2 ∧a

(2)
1 −a

(2)
1 ∧a

(1)
2 ∧a

(3)
1 , T6 =

a
(3)
1 ∧ a

(1)
2 ∧ a

(2)
2 − a

(1)
1 ∧ a

(2)
2 ∧ a

(3)
2 , then a straightforward calculation shows

〈S4, S6〉 = 0 = 〈T4, T6〉 .

From 〈R4, R6〉+ 〈S4, S6〉+ 〈T4, T6〉 = 0 in (3.2), we have 〈R4, R6〉 = 0, which implies〈
a

(2)
1 ∧ a

(2)
2 , a

(3)
1 ∧ a

(3)
2

〉
= 0, i.e.,

〈
a

(2)
1 , a

(3)
1

〉
a

(2)
21 a

(3)
21 = 0.

Since 〈R2, R3〉 = 0, then 〈V2, V3〉 = 0, which means 〈W2, W3〉 = 0, i.e.,〈
a

(2)
1 , a

(3)
1

〉
+ a

(2)
21 a

(3)
21 = 0.
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So that we obtain 〈
a

(2)
1 , a

(3)
1

〉
= 0 = a

(2)
21 .

Since
〈
a

(1)
1 ∧ a

(2)
2 + a

(2)
1 ∧ a

(1)
2 , a

(2)
1 ∧ a

(2)
2

〉
= 0, then by 〈R3, R4〉 = 0 we have 〈V3, V4〉 =

0, which implies 〈W3, W4〉 = 0, i.e.,
〈
a

(3)
1 , a

(4)
1

〉
= 0. Hence we get a

(3)
11 = 0. Using

a
(2)
21 = 0 = a

(3)
11 in (3.41), we know λ = 0, i.e.,

a
(2)
2 = a

(3)
21 /a

(4)
11 · a

(3)
1 .

Then by a
(1)
21 = 0 = a

(2)
11 in (3.42), we have µ = 0, i.e.,

a
(1)
2 = a

(3)
21 /a

(4)
11 · a

(2)
1 .

Since V4 = a
(1)
1 ∧ a

(3)
2 and

R5 = −2a
(4)
1 ∧ a

(1)
2 , S5 = 0, T5 = −2a

(1)
1 ∧ a

(1)
2 ∧ a

(3)
2 ,

then using |W4|2 + |V4|2 = 1 in (3.1) and |R5|2 + |S5|2 + |T5|2 = 4c in (3.2), we obtain

|a(4)
11 |

2 + |a(1)
1 |

2|a(3)
21 |

2 = 1, |a(4)
11 |

2|a(1)
2 |

2 + |a(1)
1 |

2|a(1)
2 |

2|a(3)
21 |

2 = c,

which implies |a(1)
2 |2 = c. Substituting this into |R2|2 = |a(1)

1 |2|a
(1)
2 |2 = c in (3.2) yields

|a(1)
1 |2 = 1. From |W1|2 = |a(1)

1 |2 + |a(1)
2 |2 = 4 in (3.1), we have |a(1)

2 |2 = 3, which implies

c = 3. It follows that |V2|2 = |R2|2 = 3, which leads to |W2|2 = |a(2)
1 |2 + |a(2)

2 |2 = 3 by

|W2|2 + |V2|2 = 6 in (3.1). On the other hand, that |R3|2 = 4|a(1)
1 |2|a

(2)
2 |2 = 12 in (3.2)

and |a(1)
1 |2 = 1 tells us |a(2)

2 |2 = 3, which shows |a(2)
1 |2 = 0, i.e., a

(1)
2 = 0. It contradicts

|a(1)
2 |2 = 3. Thus we verify a

(3)
21 = 0.

At this time, equations (3.41) and (3.42) reduce to

a
(2)
2 = a

(2)
21 /a

(4)
11 · a

(4)
1 , a

(1)
2 = a

(2)
21 /a

(4)
11 · a

(3)
1 + µa

(4)
1 .

Since V3 = a
(1)
1 ∧ a(2)

2 + a
(2)
1 ∧ a(1)

2 , V4 = a
(2)
1 ∧ a(2)

2 + a
(3)
1 ∧ a(1)

2 , then we observe that

〈V3, V4〉 = 0, which implies 〈W3, W4〉 = 0, i.e., a
(3)
11 = 0. So that a

(1)
2 = a

(2)
21 /a

(4)
11 · a

(3)
1 .

Since V2 = R2 = a
(1)
1 ∧ a

(1)
2 , then using |V2|2 = |R2|2 = c in (3.2) yields

|a(1)
1 |

2|a(1)
2 |

2 = c. (3.49)

From |W2|2 + |V2|2 = 6 in (3.1), we know that |W2|2 = 6− c, i.e.,

|a(2)
1 |

2 + |a(2)
21 |

2 = 6− c. (3.50)

Because R4 = 4a
(2)
1 ∧ a

(2)
2 , S4 = −a(1)

1 ∧ a
(1)
2 ∧ a

(2)
1 , T4 = −a(1)

1 ∧ a
(1)
2 ∧ a

(2)
2 , then applying

|R4|2 + |S4|2 + |T4|2 = 6c in (3.2) gives us

16|a(2)
1 |

2|a(2)
21 |

2 + |a(1)
1 |

2|a(1)
2 |

2|a(2)
1 |

2 + |a(1)
1 |

2|a(1)
2 |

2|a(2)
21 |

2 = 6c. (3.51)
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Substituting (3.49) and (3.50) into (3.51) leads to

|a(2)
1 |

2|a(2)
21 |

2 =
c2

16
, (3.52)

which implies |V4|2 = c2

16 . From this, together with |W4|2 + |V4|2 = 1 in (3.1), we get

|a(4)
11 |

2 = 1− c2

16
, (3.53)

which means that 0 < c < 4 by a
(4)
11 > 0. On the other hand, since R5 = −2a

(4)
1 ∧a

(1)
2 , S5 =

2a
(1)
1 ∧ a

(2)
1 ∧ a

(2)
2 , T5 = 2a

(1)
2 ∧ a

(2)
1 ∧ a

(2)
2 , then it follows from |R5|2 + |S5|2 + |T5|2 = 4c in

(3.2) that

|a(4)
11 |

2|a(1)
2 |

2 + |a(1)
1 |

2|a(2)
1 |

2|a(2)
21 |

2 + |a(1)
2 |

2|a(2)
1 |

2|a(2)
21 |

2 = c. (3.54)

Now substituting (3.52), (3.53) and |W1|2 = |a(1)
1 |2 + |a(1)

2 |2 = 4 into (3.54) yields

|a(1)
2 |

2 =
4c

c+ 4
, (3.55)

which implies |a(1)
1 |2 = 16

c+4 . Then it follows from (3.49) that 64c
(c+4)2

= c, which contradicts

that 0 < c < 4. Thus there does not exist the case of W4 6= 0. 2

Proof of Theorem 1.2 It is enough to consider the irreducible case. Assume that ϕ generates
the following harmonic sequence (cf. [2],[6])

0
A′′ϕ0←− ϕ

0
= ϕ

A′ϕ0−→ ϕ
1

A′ϕ1−→ ϕ
2

A′ϕ2−→ ϕ
3

A′ϕ3−→ 0, (3.56)

where rank(ϕ
0
) = rank(ϕ

1
) = 2 and

(
rank(ϕ

2
), rank(ϕ

3
)
)

= (1, 1) or (2, 0). We will prove

d = 4 in the above two cases.
If
(

rank(ϕ
2
), rank(ϕ

3
)
)

= (1, 1), then ϕ
2

= f (m)
m−1

, ϕ
3

= f (m)
m

belong the following

harmonic sequence in CPm

0

A′′
f
(m)
0←− f (m)

0

A′
f
(m)
0−→ f (m)

1

A′
f
(m)
1−→ · · ·

A′
f
(m)
m−2−→ f (m)

m−1

A′
f
(m)
m−1−→ f (m)

m

A′
f
(m)
m−→ 0 (3.57)

for m = 5, 4, 3.
When m = 5, we have a diagram below about the harmonic sequence in CP 5 (cf. [2]),

e2

##

// e4 = f (5)
3

// ϕ
2

= f (5)
4

// ϕ
3

= f (5)
5

// 0.

e1

OO

// e3

OO

It follows that

v1 ∧ v2 ∧ ∂zv1 ∧ ∂zv2 = h(z)f
(5)
0 ∧ ∂zf (5)

0 ∧ ∂2
zf

(5)
0 ∧ ∂3

zf
(5)
0 ,
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where h(z) is a polynomial. Notice that f
(5)
0 ∧ ∂zf (5)

0 ∧ ∂2
zf

(5)
0 ∧ ∂3

zf
(5)
0 is the 3-osculating

curve σ3 of f
(5)
0 . It follows from (2.5) that h is a non-zero constant and σ3 has constant

curvature. Using Y.B. Shen’s result ([28], Theorem 6.2), we know the harmonic sequence
(3.57) in CP 5 is the Veronese sequence, up to U(6). Then we obtain by (2.5) and (3.24)
in [1]

2d− 4 = δ
(5)
3 = 8,

where δ
(5)
3 is the degree of σ3. It follows that d = 6. In this case, there exist polynomials

P1, P2, P3 such that

v1 ∧ v2 = P1f
(5)
0 ∧ ∂zf (5)

0 + P2f
(5)
0 ∧ ∂2

zf
(5)
0 + P3∂zf

(5)
0 ∧ ∂2

zf
(5)
0 .

We choose a rectangular coordinate system in C6 such that

f
(5)
0 = ε1 +

√
5zε2 +

√
10z2ε3 +

√
10z3ε4 +

√
5z4ε5 + z5ε6.

A straightforward calculation shows that the degree of f
(5)
0 ∧ ∂zf (5)

0 , f
(5)
0 ∧ ∂2

zf
(5)
0 and

∂zf
(5)
0 ∧ ∂2

zf
(5)
0 is 8, 7 and 6 respectively, and

f
(5)
0 ∧ ∂zf (5)

0 =
√

5ε1 ∧ ε2 + 2
√

10zε1 ∧ ε3 + 3
√

10z2ε1 ∧ ε4 + 4
√

5z3ε1 ∧ ε5 + 5z4ε1 ∧ ε6
+
√

50z2ε2 ∧ ε3 + 2
√

50z3ε2 ∧ ε4 + 15z4ε2 ∧ ε5 + 4
√

5z5ε2 ∧ ε6
+10z4ε3 ∧ ε4 + 2

√
50z5ε3 ∧ ε5 + 3

√
10z6ε3 ∧ ε6

+
√

50z6ε4 ∧ ε5 + 2
√

10z7ε4 ∧ ε6 +
√

5z8ε5 ∧ ε6,

f
(5)
0 ∧ ∂2

zf
(5)
0 = 2

√
10ε1 ∧ ε3 + 6

√
10zε1 ∧ ε4 + 12

√
5z2ε1 ∧ ε5 + 20z3ε1 ∧ ε6

+2
√

50zε2 ∧ ε3 + 6
√

50z2ε2 ∧ ε4 + 60z3ε2 ∧ ε5 + 20
√

5z4ε2 ∧ ε6
+40z3ε3 ∧ ε4 + 10

√
50z4ε3 ∧ ε5 + 18

√
10z5ε3 ∧ ε6

+6
√

50z5ε4 ∧ ε5 + 14
√

10z6ε4 ∧ ε6 + 8
√

5z7ε5 ∧ ε6,

∂zf
(5)
0 ∧ ∂2

zf
(5)
0 = 2

√
50ε2 ∧ ε3 + 6

√
50zε2 ∧ ε4 + 60z2ε2 ∧ ε5 + 20

√
5z3ε2 ∧ ε6

+60z2ε3 ∧ ε4 + 16
√

50z3ε3 ∧ ε5 + 30
√

10z4ε3 ∧ ε6
+12
√

50z4ε4 ∧ ε5 + 30
√

10z5ε4 ∧ ε6 + 20
√

5z6ε5 ∧ ε6.

Since [v1 ∧ v2] is a constantly curved holomorphic curve of degree 6, then under the
standard basis εi ∧ εj , 1 ≤ i < j ≤ 6 in the lexicographic order, we can write v1 ∧
v2 = PHV

(6)
0 , where P is a polynomial, V

(6)
0 = (1,

√
6z,
√

15z2,
√

20z3,
√

15z4,
√

6z5, z6)T

and H = (Hαj)α=0,··· ,14,j=0,··· ,6 is a 15 × 7 matrix whose column vectors are mutually
orthonormal. A straightforward calculation shows

√
5P1 = P (H00 + · · ·+H06z

6), 2
√

10zP1 + 2
√

10P2 = P (H10 + · · ·+H16z
6),

√
50z2P1 + 2

√
50zP2 + 2

√
50P3 = P (H50 + · · ·+H56z

6),

which implies P |Pj(j = 1, 2, 3). Set Pj = PP̃j , then we have

P̃1f
(5)
0 ∧ ∂zf (5)

0 + P̃2f
(5)
0 ∧ ∂2

zf
(5)
0 + P̃3∂zf

(5)
0 ∧ ∂2

zf
(5)
0 = HV

(6)
0 .
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It follows from the above formulas that the degree of P̃1, P̃2, P̃3 is 0, 1, 2 respectively. Set
P̃1 = p̃10 6= 0, P̃2 = p̃20 + p̃21z and P̃3 = p̃30 + p̃31z + p̃32z

2, then that the terms of z7, z8

in v1 ∧ v2 are vanishing tells us

p̃10 + 7p̃21 + 15p̃32 = 0, (3.58)

p̃10 + 8p̃21 + 20p̃32 = 0, (3.59)

and
2p̃20 + 5p̃31 = 0. (3.60)

From (3.58) and (3.59), we get

p̃21 = −1

4
p̃10, p̃32 =

1

20
p̃10. (3.61)

At this time H is given by

H =



H00 0 0 0 0 0 0
H10 H11 0 0 0 0 0

0 H21 H22 0 0 0 0
0 0 H32 H33 0 0 0
0 0 0 H43 H44 0 0
H50 H51 H52 0 0 0 0

0 H61 H62 H63 0 0 0
0 0 H72 H73 H74 0 0
0 0 0 H83 H84 H85 0
0 0 H92 H93 H94 0 0
0 0 0 H10,3 H10,4 H10,5 0
0 0 0 0 H11,4 H11,5 H11,6

0 0 0 0 H12,4 H12,5 H12,6

0 0 0 0 0 H13,5 H13,6

0 0 0 0 0 0 H14,6



.

Using (3.61), we know that H11H52 6= 0. Since the column vectors of H are mutually
orthonormal, then H50H52 = 0, which implies H50 = 0, i.e., p̃30 = 0. From H10H11 = 0,
we have H10 = 0, i.e., p̃20 = 0. Substituting this into (3.60) yields p̃31 = 0. Now H
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becomes

H =



H00 0 0 0 0 0 0
0 H11 0 0 0 0 0
0 0 H22 0 0 0 0
0 0 0 H33 0 0 0
0 0 0 0 H44 0 0
0 0 H52 0 0 0 0
0 0 0 H63 0 0 0
0 0 0 0 H74 0 0
0 0 0 0 0 H85 0
0 0 0 0 H94 0 0
0 0 0 0 0 H10,5 0
0 0 0 0 0 0 H11,6

0 0 0 0 0 0 H12,6

0 0 0 0 0 0 0
0 0 0 0 0 0 0



.

Since H00 =
√

5p̃10 and H11 = 3
√

10
2 p̃10, then it follows from |H00|2 = 1 that |p̃10|2 = 1

5 ,
which implies that |H11|2 = 3

2 . It contradicts that |H11|2 = 1. Thus there does not exist
the case of m = 5.

When m = 4, the trivial bundle S2 × C6 over S2 has a decomposition S2 × C6 =
S2 × C5 ⊕ S2 × C. In this case, the diagram reduces to

e2

##

// e4 = f (4)
2

// ϕ
2

= f (4)
3

// ϕ
3

= f (4)
4

// 0,

e1

OO

// e3

OO

where spanC {e1, e2, e3} = spanC

{
v0, f

(4)
0 , f

(4)
1

}
with v0 = (0, 0, 0, 0, 0, 1). Similarly we

get

2d− 4 = δ
(4)
2 = 6,

which implies d = 5. In this case, there exist polynomials P1, P2, P3 such that

v1 ∧ v2 = P1f
(4)
0 ∧ v0 + P2∂zf

(4)
0 ∧ v0 + P3f

(4)
0 ∧ ∂zf (4)

0 .

We choose a rectangular coordinate system in C5 such that

f
(4)
0 = ε1 + 2zε2 +

√
6z2ε3 + 2z3ε4 + z4ε5.

A straightforward calculation shows that the degree of f
(4)
0 ∧v0, ∂zf

(4)
0 ∧v0 and f

(4)
0 ∧∂zf

(4)
0

is 4, 3 and 6 respectively, and

f
(4)
0 ∧ v0 = ε1 ∧ ε6 + 2zε2 ∧ ε6 +

√
6z2ε3 ∧ ε6 + 2z3ε4 ∧ ε6 + z4ε5 ∧ ε6,

∂zf
(4)
0 ∧ v0 = 2ε2 ∧ ε6 + 2

√
6zε3 ∧ ε6 + 6z2ε4 ∧ ε6 + 4z3ε5 ∧ ε6,
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f
(4)
0 ∧ ∂zf (4)

0 = 2ε1 ∧ ε2 + 2
√

6zε1 ∧ ε3 + 6z2ε1 ∧ ε4 + 4z3ε1 ∧ ε5
+2
√

6z2ε2 ∧ ε3 + 8z3ε2 ∧ ε4 + 6z4ε2 ∧ ε5
+2
√

6z4ε3 ∧ ε4 + 2
√

6z5ε3 ∧ ε5 + 2z6ε4 ∧ ε5.

Since [v1 ∧ v2] is a constantly curved holomorphic curve of degree 5, then under the
standard basis εi ∧ εj , 1 ≤ i < j ≤ 6 in the lexicographic order, we can write v1 ∧ v2 =

PHV
(5)

0 , where P is a polynomial, V
(5)

0 = (1,
√

5z,
√

10z2,
√

10z3,
√

5z4, z5)T and H =
(Hαj)α=0,··· ,14,j=0,··· ,5 is a 15× 6 matrix whose column vectors are mutually orthonormal.
A similar discussion shows that P |Pj(j = 1, 2, 3). Set Pj = PP̃j , then we have

P̃1f
(4)
0 ∧ v0 + P̃2∂zf

(4)
0 ∧ v0 + P̃3f

(4)
0 ∧ ∂zf (4)

0 = HV
(5)

0 .

It follows from the above formulas that P̃3 = 0. So ϕ = span
{
v0, P̃1f

(4)
0 + P̃2∂zf

(4)
0

}
,

which implies that ϕ is reducible. Hence there does not exist the case of m = 4.
When m = 3, then the trivial bundle S2 ×C6 over S2 has a decomposition S2 ×C6 =

S2 × C4 ⊕ S2 × C2. In this case, we have

2d− 4 = δ
(3)
1 = 4,

which implies d = 4.

If
(

rank(ϕ
2
), rank(ϕ

3
)
)

= (2, 0), then we choose a local unitary frame e = {e1, · · · , e6}
along ϕ so that

ϕ
0

= span{e1, e2}, ϕ1
= span{e3, e4}, ϕ2

= span{e5, e6}.

Under such frame, the pull back of (right invariant) Maurer-Cartan forms which are de-
noted by ω = (ωAB) are  Ω1 A1φ

−A∗1φ̄ Ω2 A2φ
−A∗2φ̄ Ω3

 .

Notice that the unitary frame we choose is determined up to a transformation of the
group U(2)× U(2)× U(2), so |detAi| (i = 1, 2) are global invariants of analytic type on
S2 vanishing only at isolated points, and away from their zeros, they satisfy (cf. [7], [12])

∆ log |detA1| = 2K − 4L1 + 2L2, (3.62)

∆ log |detA2| = 2K + 2L1 − 4L2, (3.63)

where K = 4/d, Li = trAiA
∗
i (i = 1, 2) are also globally defined invariants on S2 with

L1 = 1, and ∆ is Laplace-Beltrami operator with respect to d ·ds2
S2 . It follows from (3.62)

and (3.63) that

∆ log | detA1|2| detA2| =
6(4− d)

d
. (3.64)

Since ϕ is totally unramified, then | detA1|2|detA2| has no zeros on S2. Applying the
maximum principle to (3.64), we get d = 4. The conclusion follows from Theorem 1.1.
2
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Remark 3.1 In the irreducible case of Theorem 1.2, the condition of constant square
norm of the second fundamental form is necessary. Jiao [18] gave an example of irreducible
constantly curved holomorphic two-sphere of d = 4 in G(2, 6), as follows,

ϕ =

[
1 0 1√

2
z
√

31
2
√

7
z2 9

2
√

7
z2 0

0 1 0 0
√

7√
2
z 1

2z
2

]
(3.65)

with

|detA1|2 =
112 + 1024zz̄ + 1176z2z̄2 + 376z3z̄3 + 31z4z̄4

1024(1 + zz̄)4
,

which is not a constant.
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