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the complex Grassmannian G(2,6) with constant
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ABSTRACT. We completely classify all noncongruent linearly full totally unrami-
fied constantly curved holomorphic two-spheres in G(2, 6) with constant square norm
of the second fundamental form. They turn out to be homogeneous.
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1 Introduction

Motivated by Calabi’s rigidity principle about holomorphic isometric embedding from one
complex manifold into the complex projective space in [3], one can study the holomorphic
isometric embedding from one complex manifold into the complex Grassmannian. A
holomorphic isometry starting from Riemann sphere S? with metric of constant curvature
is also called a constantly curved holomorphic two-sphere. In differential geometry, the
question of classification of noncongruent constantly curved holomorphic two-spheres in
the complex Grassmannians is an important and difficult problem. More interestingly, it
has close contact with the Grassmannian sigma models in theoretical physics (for example,
see [9]).

We denote by grg the Fubini-Study metric of constant holomorphic sectional curvature
4. From Calabi’s rigidity principle (cf. [3]; see also [27], Sec.5 in [1]), we know that if
¢ : 8% = (CP", grs) is a linearly full (the image does not lie in some subspace C* for
k < n+1) constantly curved holomorphic immersion of degree d, then d = n and ¢ is the
well-known Veronese embedding (up to U(n + 1)) defined by

9=y 00)-]

It is interesting that Vo(n) (z) can generate the harmonic sequence VO("), Vl(n), - ,Vn(n) in
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CP"™, where Vi(n) = [fio, -+, fip . -, fin] With f;, being explicitly given by
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k

Such a map V;(n) : 52 — CP" is a conformal minimal immersion with constant curvature
and constant Kéhler angle, which are given by

O VN O kL S
: n+2i(n—1)’ E n+ 2i(n — 1)
This harmonic sequence is well known as Veronese sequence (cf. [1], Sec.5).
We denote by dszg(m’m +n) the standard Kéhler metric of complex Grassmannian G(m, m+
n) (m < n), which can also be induced from grg by the Pliicker embedding. Chi-Zheng [7]
classified the constantly curved holomorphic two-spheres of degree 4 in (G (2,4), dsZG(Q’ 2

into two families (up to U(4)) by using the method of moving frames and Cartan’s theory
of higher order invariants (cf.[19]). This result means that the constantly curved holomor-

phic two-spheres in (G (m,m +n), dsé( ) are more complicated. Li-Yu [23] (see [22]

m,m+n)
for a detailed proof) showed that if ¢ : S? — ((2,4) is a linearly full constantly curved
holomorphic immersion of degree d, then d = 2,3,4 and ¢ is explicitly characterized (up
to U(4)). For the case of G(2,5), Jiao-Peng ([20], [21]) proved that if ¢ : S? — G(2,5)
is a non-singular constantly curved holomorphic immersion, then d = 1,2,3,4,5 and ¢ is
explicitly characterized (up to U(5)) by using Pliicker embedding.

Delisle-Hussin-Zakrzewski [9] recovered the known classification results in G(2,4) and
G(2,5) mentioned above from the viewpoint of Grassmannian sigma models, and proposed
two conjectures, which we refer to as DHZ conjectures in the following.

Conjecture 1. If ¢ : S — G(m,m +n) is a constantly curved holomorphic immersion
of degree d, then d < mn.

Conjecture 2. For m,n fized, the holomorphic immersion ¢ can be constructed for
1<d<mn.

Until now, there are few results about these two problems. Under the assumption of
homogeneity (the image is an orbit of an isometry subgroup of the target space), Peng-
Xu [26] and Fei [10] independently used the representations of SU(2) to give a complete
classification of linearly full constantly curved holomorphic two-spheres of degree d in
G(2,n+2) and obtained that d takes n or 2n. Delisle-Hussin-Zakrzewski ([9], Proposition
1) declared that d < 6 for G(2,5). Recently the second named author gave some detailed
discussions in [17]. Interestingly, Chi-Xie-Xu [8] constructed many non-homogeneous and
singular (in Jiao-Peng’s sense) constantly curved holomorphic two-spheres of degree 6 in
G(2,5) and described the moduli space of such two-spheres.

S.S. Chern et al.([4], [5]) showed the interest of the study of compact minimal sub-
manifolds on the unit sphere S"™ with constant square norm of the second fundamental
form, which led to the famous Chern conjecture for discreteness of such constant values.
N. Mok et al.([24], [25]) indicated that the second fundamental form can be used as a tool
for studying the non-totally geodesic holomorphic isometric embeddings of the Poincaré
disk into bounded symmetric domains. Inspired by these works, the second fundamental



forms are expected to play an important role for studying constantly curved holomorphic
two-spheres in G(m, m+n). Recently, the first and third named authors and Xu ([29],[13])
applied the method of moving frames and harmonic sequences to completely classify con-
stantly curved holomorphic two-spheres in G(2, N) and G(3, N) with the square norm of
the second fundamental form satisfying a certain pinching condition.

The current article is an attempt to study linearly full constantly curved holomorphic
two-spheres of degree d in G(2, n+2) with constant square norm of the second fundamental
form. For the reducible case, the first named author, Jiao and Xu in [12] and the second
named author in her Ph.D. Thesis [16] showed that d = n with ¢ = VO("H) ® Vl(nH) (up

to U(n+2)) or d = 2n with ¢ = Vo(n) @wv (up to U(n+2)), where v is a non-zero constant
vector. Notice that no assumption with respect to the second fundamental form is needed,
and these two holomorphic curves are both homogeneous.

For the irreducible case, we have the Gauss equation (cf.[10],[14])

S
K=4—8maAﬂ%r? (1.1)

where K = 4/d, S is the square norm of the second fundamental form, and | det A1|2¢2$2
is a global defined (2,2)-form (see section 2). The key idea is to transform the condition
of S being constant into the one that |det A;|? is a constant. Notice that S involving
the second derivative of the holomorphic mapping is hard to compute, while |det A1|? is
only related to the first derivative of the holomorphic mapping. This makes it possible to
calculate explicitly. Thus by solving algebraic equations in the congruence class, we get
the following main theorem.

Theorem 1.1 Let ¢ : S? — G(2,n + 2) be a linearly full irreducible constantly curved
holomorphic two-sphere of degree d = 4 with constant square norm of the second funda-
mental form S. Then n = 4 and the corresponding holomorphic two-spheres are given as
follows, up to U(6),

1 0 [t—2[% Viz /3L |t 2 542

0 1 /3—1tz2 0 0

with S = t> — 4t + 6. Here when t = 3, ¢ = Vo(l) &) VO(3) with S = 3; when t = 2,
0=V e V® with 5 =2.

CG((2,6), 0<t<3 (1.2

Applying Theorem 1.1 and appropriate harmonic sequences, we obtain the classifica-
tion theorem of constantly curved holomorphic two-spheres in G(2, 6) with constant square
norm of the second fundamental form, as follows.

Theorem 1.2 Let ¢ : S? — G(2,6) be a linearly full constantly curved holomorphic two-
sphere of degree d with constant square norm of the second fundamental form.

(1) If ¢ is reducible, then d = 4 with ¢ = V()( ) @ V15) (up to U(6)), or d = 8 with
p= V( ey (up to U(6)), where v is a non-zero constant vector.

(2) If @ s irreducible and totally unramified, then d = 4 and @ is unitary congruent to

(1.2).



Remark 1.3 It follows from Theorem 1.2 that DHZ’s conjecture 1 is true for G(2,6) in
the case of totally unramified and constant square norm of the second fundamental form.

Recently, we [11] give a local rigidity characterization of all homogeneous holomor-
phic two-spheres in G(2, N) in terms of a new global invariant x defined by the square
norm of (1,0) part of the second order covariant differential of the first 0-transform for
a holomorphic curve in G(2, N). Specifically, we showed that a linearly full irreducible
constantly curved holomorphic two-sphere in G(2, N) with constant square norm of the
second fundamental form and s vanishing identically is unitary congruent to

Vb(") o (COS ev*l(”) + <in (9‘/0(”—2)) or Vb(nl) o VE](nZ)’
where 0 € (0,5], N = 2n or N = n; + n2 + 2. By virtue of the explicit expression
given by (1.2) and straightforward calculations, we checked that the embedding (1.2) has

vanishing k for each ¢, which concludes that the holomorphic curve given by (1.2) is unitary
congruent to the homogeneous one

VO(S) & (cos 6V1(3) + sin 01/0(1))

and the correspondence between the two parameters is that ¢ = 3sin?#. Therefore, the
classification results of Theorem 1.2 tell us that

Theorem 1.4 A linearly full totally unramified constantly curved holomorphic two-sphere
in G(2,6) with constant square norm of the second fundamental form must be homoge-
neous.

The requirement that a constantly curved holomorphic two-sphere is totally unramified
is a somehow strong assumption. Thus one is optimistic about generalizing Theorem 1.4
to any complex Grassmannian, which deserves further investigation. In addition, whether
is the assumption that the constantly curved holomorphic two-sphere is totally unramified
in Theorem 1.2 and Theorem 1.4 necessary? Since the condition of constant square norm
of the second fundamental form leads to that the constantly curved holomorphic two-
sphere is unramified, then can one construct an example of non-homogeneous constantly
curved holomorphic two-sphere with constant square norm of the second fundamental form
satisfying that the second element of the harmonic sequence has ramified points?

This paper is organized as follows. In section 2, we give a characterization of constantly
curved holomorphic two-sphere in G(2,n + 2) with constant square norm of the second
fundamental form in terms of a system of algebraic equations. In section 3, we firstly solve
the algebraic system to prove Theorem 1.1. Applying this result, together with the theory
of harmonic sequence, we verify Theorem 1.2.

Acknowledgments The authors would like to gratitude the referee for valuable com-
ments and suggestions. This work is supported by National Key R&D Program of China
No. 2022YFA1006600 and NSF in China Nos. 12071352, 12071338, 11401481, 11301273,
11971237. The first named author was also supported by the Research Enhancement Fund
of Xi’an Jiaotong-Liverpool University (REF-18-01-03). The third named author was al-
so supported by the NSF of the Jiangsu Higher Education Institutions of China (Grant
No. 17KJA110002, No. 19KJA320001) and the Natural Science Foundation of Jiangsu
Province (BK20181381).



2 Constantly curved holomorphic two-spheres in G(2,n + 2)

Let ¢ : S2 — G(2,n + 2) be a linearly full constantly curved holomorphic two-sphere of
degree d. Let p(0) = Zy € G(2,n+2). We choose a rectangular coordinate system in C**2
such that the extended matrix Zy = (I2,0). Then on the neighborhood of Z, denoted by
Vz,, we can write
p(2) = [I2, F(2)],
Fi(z)
where F(z) = (Fg(z)

Let

) is a 2 x n matrix-valued holomorphic function satisfying F'(0) = 0.

(n+2)(n+1)

PL: (G204 2), dstonig)) = (CPY,grs) (N = ;

—1)

be the standard Pliicker embedding, which is a holomorphic isometric embedding (cf.
[15]). Then Plo g : S? — CPY given by

Plop=[viAv]=[1 F» —F FIAF]

is a constantly curved holomorphic two-sphere, which may be not linearly full. It follows
from Calabi’s rigidity theorem (cf. [3]; see also [27], Sec.5 in [1]) that there exists a

constant matrix U € U(N + 1) such that Ployp = Vo(d) -U, where Vo(d) : 82 - CPV is the
holomorphic Veronese embedding given by

Vi@ =1 /e - O o D 0 - 0]

We immediately conclude that d < N and
14+ R4 B>+ | AR =1+ 22)4 (2.1)
Moreover, we have the Gauss equation (cf. [10],[14])

K:4—8|detA1]2—§, (2.2)
where K = 4/d, S is the square norm of the second fundamental form, and | det A1|2q§2$2
is a globally defined (2, 2)-form specified as follows. Here, ¢ is a local unitary coframe of
(1,0) type with respect to the induced metric ds? = @*(dsé(27n+2)).
Fl(Z)
Let o = |Is F|, F(z) =
¥ [ 2 ] (2) |:F2(Z)

VL1 ‘ . Let e3, e4 be a unitary basis of the orthogonal projection plane ¢+ (9,¢).

]. Set vy =[1 0 Fi],vo=1[0 1 F2}761:|%|’

(va,v1)

v2—1

€9 = T (og,01) |
_ {vo,v1)

‘Uz (w1v) Ut
Then we have

0.e1 = ar1e1 + aj2ex + aizes + ajséq,
0.e2 = asi1e1 + aen + agzes + azey.

It follows that )
| det A1|2¢2$ = |a13a24 — a14a23|2dz2d22.



If | det Ay \2¢2$2 is identically equal to zero on S2, then ¢ is called reducible. If | det A; ]2¢2$2
is not identically equal to zero on S2, then ¢ is called 4rreducible(see sec.3 in [2] for general
harmonic map). In the latter case, | det A1]2¢2$2 has isolated zeros, which is called ram-
ified points; the order of zeros is called multiplicity of the corresponding ramified points.
In particular, if | det A1\2¢2$2 has no zeros, then ¢ is called unramified. Similarly, we can
give the definition of unramified minimal two-sphere. If every element of the harmonic
sequence generated by ¢ is unramified, then ¢ is called totally unramified (cf. [18]).

Now we give a characterization of constantly curved holomorphic two-spheres with
constant square norm of the second fundamental form as follows:

Theorem 2.1 Let ¢ : S? — G(2,n + 2) be a linearly full constantly curved holomorphic
two-sphere of degree d with constant square norm of the second fundamental form. Locally,
set

=l 70 = )

where F(z) is a 2 x n matriz-valued holomorphic function satisfying F(0) = 0. Then
14+ |F> 4 |R> 4 |FL AR = (1 + 22)4, (2.3)
and

|0, FI A, Fy > 4|0, Fi N0, Fo AF1 | +|0, FL N0, Fa NFy | +|0, FL N, Fa AFLAFy |2 = ¢(14-22) 2474,
(2.4)
where ¢ is a non-negative constant.

Proof: If S is constant, then | det A1|? is constant by (2.2). Here |v; Avg|? = (1 +22)? and

e1 A ey = 2% On the one hand
[v1 Ava| ’

82(61 A 62) = 0,e1 Neg+e1 A0ye

= (a11 +ax)er Aex — aizes A es — ajsea A ey + aszer A es + agaeq A ey,
which means
0.(e1 Nea) N Oy(e1 A eg) = 2(—azazy + ajgazs)er Aea Aes A ey.
On the other hand,

—2v1 Avg A O,v1 A 0,09
’Ul VAN ’U2|2

82(61 A 62) A 8Z(61 AN 62) =

Since the induced metric is ds?® = ¢p¢ = ﬁdzd?, then we have
|1)1 Avg A Ozv1 A 831)2|2

d2(1 4 22204

|det A1]* =

Setting | det A1|?> = ¢/d?, where c is a non-negative constant, we get

lur Avg A Doy A Bvg]® = ¢(1 + 22)24 74 (2.5)



A straightforward calculation verifies (2.4). Furthermore we have

16¢ 8
S=8—— ——.
dz d
N al®)
Let FF= ) An2%, Ay = %a , Wy = [ (@) ag‘”‘)} Then we have
a=1 a2
N N
= Z aq )za, = Zaga)z"‘
a=1 a=1
Set
2N A 2N ‘
FiNFy = ZV}'Z], 0, F1 N0, Fy = ZR]'ZJ_Q.
j=2 =
A straightforward calculation shows
2N N
0.FNO.Fy NFL=) Y R A al® o2 ZS P72,
j=2 a=1
2N N
0.FLNO.Fa NFr =) ) R, A al®) o2 Zsz 2,
j=2 a=1
2N ‘
O.FINO.Fy ANFLANFy = Y Ry AVt 2 = Z X,2P 72
G k=2
Set ) )
Ry 0 0 0
Rs 0 0 0
(1) M(; g Ry Sy Ty 0
v=|. . .= B S T 0
Do : Rg Se Ts X6
0 Wqg Wy ) . . )
[ Roda—2 S2da—2 Taa—2 Xoda—2]
Then we see that U € CA+D*V+1) and Q € C@d=-3x((3)+2(5)+(1).
Applying Theorem 2.1, we know that (2.3) is equivalent to
UU* = A4, (2.6)
where * denotes conjugate transpose and
d d
Al :dla’g{17 (1)7 ) (d)}v
and (2.4) is equivalent to
QA" = Asg, (2.7)



where

i 2d — 4 2d — 4
Agzdl&g{C,( ) >C,~-,<2d_4>c}.

In order to determine the linearly full constantly curved holomorphic two-spheres of
degree d in G(2,n+2) with constant square norm of the second fundamental form, we need
to solve (2.6) and (2.7), modulo extrinsically the ambient unitary U(n + 2)-congruence.
Considering the case of d = 4, we can get our main result.

3 Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1 Substituting d = 4 into (2.6) and (2.7) respectively yields

1 0 0
0O Wy o0
U= |0 Wo Va|, UU* = diag{1,4,6,4,1) (3.1)
0 Ws V3
0 Wy Vy
and
Ry, 0 0 O
Ry 0 0 O
Q=1|Ry Sy Ty 0|, QQ*=diag{c,4c,6¢c,4c,c}. (3.2)
Ry S5 15 O

Rs Se¢ Ts Xg

In the following, we will discuss (3.1) and (3.2) by case I: Wy = 0 = W3, case II: Wy =
0, W3 # 0 and case I1I: Wy # 0 respectively.

Case I: Wy = 0 = W3. In this case, from (3.1) and (3.2), we get V3> = 4 and
|R3|? = 4c respectively. Since R3 = 2V3, then we obtain ¢ = 4. Using (3.1) and (3.2)
again, we have |W;|? = |Rz|? = 4, which implies

D2 1602 = 4, [ A a2 = 4. (3:3)

In the congruent class, using the singular-value decomposition of complex matrix Ay, we
can take

agl):<a§11) 000 - 0),ag>:<0 o) 00 .. 0),
(2 _ ([ (2 2 2 2 2 (2 _ [ (2 2 2 2 2
ap - = (agl) a§2) ag:s) ag4) agn))’QQ = (agl) agz) ag3) a§4) agn))’

where agll) > a%) > 0. It follows from (3.3) that
agll) = a%) = V2. (3.4)
From (3.4), together with (W7, Ws) = 0 by (3.1), we obtain

al? +al? = 0. (3.5)



Since V3 = ag A aé )+ ag A aé ), then |V3|2 = 4 gives us |a1 A a( )+ a§2) A agl)\Q = 4.
Combining this with (3.4) and (3.5), we have
2 2 2 2 2
@+ Jag”? — 20 ~ a3 P~ Ja3)* =2 (3.6)

It follows from Vo = Ry that |V5|? = 4. Since |Wa|? + [Va]? = 6 by (3.1), then we get
[Wa|? =2, ie.,
0 + 105" = 2. (3.7)

Substituting (3.7) into (3.6) yields
2 2 2
20y [+ Jay)[* + a3 =0,

which implies

o =0=of) = ol =) 39

From (3.1), we know |V4|> =1, i.e., ]a§2) A agz)P = 1. Combining this with (3.7) yields
2 2 2 2
@7 =10 =1 (a}?. o) =0. (39)
Hence using (3.8) and (3.9), we can take, in the congruent class,
dV"=(v2 000 - 0),a"=(0 v2Z 00 - 0,
ag):(o 010 - 0),a§2):(0 00 1 - 0).

Then in this case, ¢ is congruent to

_[10\/52 0 22 0

2 2
01 0 V2 0 zQ]_%()@%()CG(Q’G)‘

Case II: Wy = 0,W3 #£ 0. In this case, we have V5 = ag ) A a(3) =0 and V5 =

(2) A aé) + a( YA a§2) = 0. From (3.1), it follows that (W, W3) = 0. Then in the
congruent class, we can take

ag3):<ag31) Oo0 o0 --- 0),@&3):0,
a§2)=(a§21) a2 0@ 4@ ... a@)’aéz):(ag? 000 - 0)7
1 _ 1 1 1 1 1) _ 1 1 1 1 1
i’ = (0 o) o) o) o al)).a) = () o) ol af) ).

where aﬁ) > 0. From (3.1) and (3.2), we get (Vo, V4) =0 and (Ra, R4) = 0 respectively.
Since Ry = Vo = agl) /\agl)7 Vi = a( )/\ag ) —i—ag )/\agl) and Ry = 4a(2) /\a( )+3a(3) /\aél)

then we get

)

and
<a§1) A agl), agz) A a§2)> =0,



which implies by using <a§1), a§3)> =0 and <a§1)7 ag2)> = 0 respectively,
<a§1), a§1)> aéll)aﬁ) =0, (3.10)
and L
<a§1), a52)> agll)ag) =0. (3.11)
In (3.1), we have (W, Wy) =0, i.e.,
(al?, af?) +afy o) = 0. (3.12)

It follows from (3.11) and (3.12) that
<a§1), a§2)> =0= agl)ag). (3.13)

Claim: aéll) =0.
Otherwise if agll) # 0, then <agl), ag1)> = 0 by (3.10) and a§21) = 0 by (3.13). The

latter tells us agQ) =0. In (3.1), we have |V4|?> = 1. Since V; = agg) A aél), then
|a§3) A agl)|2 =1. (3.14)

In (3.2), we have |Rs|? + |S5|? + |T5|? = 4c. Since R5 = T5 =0, S5 = —2a§1) A agl) A a§3),
then
V2108 A alV)2 = (3.15)

It follows from (3.14) and (3.15) that
a2 = c. (3.16)
In (3.1) and (3.2), we have |W;|? = 4 and |Ra|? = c respectively, i.e.,
0+ Jag P = 4, [af" e = c. (3.17)

Combining (3.16) and (3.17), we obtain |a§1)]2 =1 and \a§1)|2 = c¢ = 3. From (3.1) and
(3.2), we obtain [Ws3|? +|V3]? = 4 and |R3|? = 4c = 12 respectively. Using these, together
with Rg = 2V3, we get |W3|? = 1, i.e., \a§3)|2 = 1. Substituting this and ]agl)\g =1 into
(3.14) yields <ag ), agl)> = 0, which shows aﬁ)agl) = 0. It follows that agl) = 0, which

contradicts our assumption. Hence we verify agl) =0.
Now we know <a§3), agl)> = <a§2), a§1)> = 0. The latter gives us <a§2), agl)> =0 by
(Way, Wp) =01in (3.1).
From (3.1) and (3.2), we get (V3, Vi) =0 and (R3, R4) = 0 respectively. Since R3 =
2Vs = 2a§1)/\a§2)+2a§2)/\a§1), Vi= a§2)/\a§2)+a§3)Aagl) and Ry = 4a§2)/\a§2)+3a53)/\a51)

then we get

)

10



and
<a§1) A ag )+ a(2) A agl), ag3) A agl)> =0,

which implies, respectively,

1 2) (2
<aé ), ag )> agl)aél) =0, (3.18)
and - _
(1 3 1 1 2) (3
‘G’Q )| a1 all) <a§ )7 ag )> aél)agl) =0. (3.19)
In the following, we will discuss this case from two subcases of agl) = 0 and ag) #0
respectively.

Subcase II1: If agzl) = 0, i.e., aéQ) = 0, then since agl) is non-zero due to that ¢ is

unramified, we obtain aﬁ) = 0 by using (3.19). It follows from the proof of the above

Claim, we know that (3.14), (3.15) and (3.17) become, respectively,

¥ PlasV? = 1. (3.20)
1 1 3
|a§ ) A aé )|2]ag )|2 =c. (3.21)
1 1 (1
0" + 105" = 4, Jai" A g P = (3.22)
In light of (3.20)-(3.22), we assert immediately that |a ]2 \ |2 1 and \al | =3.

On the one hand, since |W3|2+|V3|? = 4, then we get by |[W3|? = ]a( )\2 = 1 that |V3]? = 3,
which implies |Rg\2 = 4|V3|? = 12. In terms of this, together with |R3|? = 4c, we get ¢ = 3.
Substituting it into (3.22) yields ]a(ll) A aél)P = 3. Combining this with \agl)\Q = 3 and
|a2 |2 = 1, we obtain <a§1), ag1)> =0.

On the other hand, since |W3|? + V5|2 = 6 and \V2|2 = 3, then we have ‘WQP =3,
ie. |a1 |2 = 3. In light of this, together with |V3|? = |a A aél > =3 and |a2 |2 =1, we

obtain that <a§2), a;1)> = 0. Hence in the congruent class, we can take

=01 000 - 0),d =0,
a®=0 Vv3 00 - 0),a =0,
aV=0 0 v3 0 - 0),a=0 001 - 0.

Then in this subcase, ¢ is congruent to

(10 2 V822 VB2 0] ) 3
_[0 1o 0 0 2~V @WTcdR6).

Subcase II2: If ag) # 0, then we first claim aﬁ) = 0. Otherwise if aﬁ) # 0,
then (3.18) leads to <a§1),a§2)> = 0. Combining this with <a§1),a§ )> = <a§1),aé2)> =
<agl), a;2)> =0, we find (Va, V3) = 0, which implies (Wy, W3) = 0 by applying (Wa, W3) +

(Va,V3) = 0in (3.1). It follows that aﬁ) = 0, which is a contradiction. Thus we verify

aﬁ) =0.

11



Now (3.19) yields <a§ ),a§>> = 0. In (3.1), we have [W;|? = 4 and [W3|? + V3|2 = 4

i.e.,
a4 [a$|? = 4 (3.23)
and 3 1 2 2 1
@l + |at Play 2 + o) A al))? = 4. (3.24)

In (3 2) we know ‘R2|2 = c and |f€6|27L |S@|2 + ‘T6|2+ ‘X@‘Q =c. Since Rg =15 =0, Sg =
—ag ) A a(Ql) A a(?’) and Xg = agl) A agl) A a?) A ag), then

jafVPlasV]? = c (3.25)

and (1 3 1 2
o 0§V (1ol + ol Pl 2) = c. (3.26)

Observing (3.23)-(3.26), we find that \agl)\Q, ]agl)P and ]an)\Z + |0L1 2 |a21 2, \aQ A a1 ]2
are respectively the roots of equation 2?2 — 4z + ¢ = 0. Then the following two cases
wil happen: () af"1? = |af |2 o fa “)\ a5? 2, a5V 2 = Jag” A af 2, or (ii) [af"]? =
6 A 0P 2, o2 = oD + o lad ’| :

Set |a§1)]2 =10 <t < 4). Then |a2 |2 =4—t=¢% ie, c=4t—t> It follows from
|W5|2+|V3]? = 4 and |R3|?* = 4|V3]? = 4c that [W3]? =4 —c, i.e., |aﬁ)|2 =4—c=(t—2)%
If (i) happens, then ’(1521)‘2 = 1— %< Using |Rs]* + |S5]> + |T5|*> = 4c in (3.2) and
Rs =0, S5 = —2a(11) A agl) A a§3) + 2a§1) A a§2) ( ) JI5 = 2a(1) A a(2) A ag), we get
\a(l 1|V4 \2 —|— ]a(l) Aa 2)]2|a§21)]2 = ¢. Combining this Wlth V4> = 1 by (3.1), we obtain
\Q—i- |a2 ? ‘%1 |2 = c. Then

t+(4—1) <1—4;C> —c

which implies ¢ = 2. It follows that agsl) = 0, which contradicts W3 # 0. So this case of (i)
will not happen.
If (ii) happens, then we get

\ ay

2|2 = %_426:%—1:3—t,0<t<3,t7&2. (3.27)
Using |Wa|? + V2|2 = 6 in (3.1), we have
0y + lagy > + lai” Plag”” = 6,
which gives us by (3.25) and (3.27)
P2 =6—c—(3—t)=t2—3t+3. (3.28)

Since <a§1), a(12)> 0= <a§1), a;1)>, then in the congruent class, we can take

a®=(t=2/ 000 0 - 0),aY =0,
a§2>=(o 0 a2 o o ... 0),6@2(\/@ 0000 - 0,
adV=@0 vio oo - 0,a"=(00 Vit 00 - 0),
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where agg) e C, a(2) > 0. It follows from ]al )]2 lay S a1 \2 that t = |aﬁ)]2|a%)|2, which
implies

a1y = m (329)
Then (3.28) and (3.29) tell us

t B-1E2-1)?
4—t 4—t

a2 = a2 = 1al)P =2 -3t +3— (3.30)

On the other hand, substituting V; = a§2) A ag ) 4 a(13) A agl) into |V4|? = 1 leads to

2 2 3 1 2) (1) (3) (2 3) (2
|a§ )’2|a§1)’2 + !agl)\Qlaé )’2 - a§3)ag3)a§1)aé1) - ag3) g?))agl) o)) = =1,
which yields by a straightforward calculation

3 -

— yt — 9. (3.31)

a13+ 13 ) =2

Comparing (3.30) and (3.31), we find

2 3—1 2
Re afy = Vit 2= a3,
(2) 3—t
=4/ —t —2|.
a3 V4—t| |

Thus in this subcase, ¢ is congruent to

|0 =212 Viz (/3 - |z 522
0 1 V/3—-tz2 0 V4 = 0

Case III: W4 #£ 0. We will prove that there does not exist this case by contradiction.

which implies a%) € R and

C G(2,6), 0 <t<3,t#2.

Suppose that this case happens, then we have Vg = a§4) A a(24) =0and V7 = a§3) A agl) =+
a,(14) A ags) = 0. From (3.1), it follows that (W7, W) = 0. Then in the congruent class, we
can take

a§4>:(aﬁ> 000 - 0),a§4)=0,
= (D o D o )=l 000 )
agz):<a§2l) a2 g @ a&f) @ (gg sy a%) af) - aéi?)
o =(0 af o o o al).af = (o) o o) o) o af)),
where aﬁ) > 0. Since V5 = ag2) ( ) + g ) aéQ) + a§4) A agl) = 0, then we get R5 =
60 A0l 4+ 60 A a? + 40P A gl) 2 54>Aag> Substituting this and Ry = a{") Aab"

into (Ra, Rs) =0 in (3.2), we obtain

(" naf?.af na®) =0,

13



which implies by using <a§1), a§4)> = 0 that
1 1 1) (4
(o, o) oD =0 3

Similarly from Vg = (3) ( ) 4 a(4) A a( ) = = 0, we know Rg = 9ag A aég) + 8a(4) A ag ) =
(3) A aé ) Substltutmg thls and Ry = a(l) A aé ) into (R2, Rg) =01in (3.2), we get

(ol naf,af naf?) =0,
which implies by <a§1), ag3)> = 0 that

1 3 1) (3
(o, o) o =0, (3.59)
In (3.2), we have (W, W3) =0, i.e.,
(ald, o) + o =0 530
It follows from (3.33) and (3.34) that
<a§1), a§3)> 0= agl)ag) (3.35)

Claim 1: al}) = 0.

Otherwise if agll) # 0, then <a§1), a§1)> = 0 by (3.32) and ag? = 0 by (3.35). The latter

tells us ag)’) = (0. Then by using Vg = a(4)/\a(2) 0 we have a§2) = ag21 /a ﬁ ag4). This gives

us <a§1), aé2)> 0. At this time, since Ry = a( )/\a(2 ) and Ry = 4a( )/\a(2) +3a§3) /\agl),
then (Rg, R4) =0 in (3.2) gives

1(af? na" 0l naf) +3 (ol A0l naf) =0, (3.36)
It follows from <agl), a53)> = <a§1), a;1)> = 0 that

<a§1) nas af? A a§1)> =0. (3.37)
Substituting (3.37) into (3.36) yields

< (1)/\ () (2)/\ ()>:0’
which implies by <a§1), agz)> = 0, that

<a§1), ag )> a(l)ag) =0. (3.38)
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On the other hand, in (3.1), we have (W, Ws) =0, i.e.,

1 2 1) (2
<a§ )7 g )> gl)aél) =0. (3.39)
It follows from (3.38) and (3.39) that
(af?, o) =0=aflaf?, (3.40)
which means ag) = 0 by agl) # 0, i.e. ag ) = 0. Now by using V5 = ag A aél) =0, we

have ag ) =

= a21 /a11 g ). And Va, V3, V4 reduce to, respectively,

Va = agl) A agl), Vs = a§2) A agl), Vy = agg) A agl).

Observing that (Va, Vi) = (Va, V4) = 0. Substituting this into (W, W3) + (Va, V3) =0
and (Wa, Wy) + (Va, Vi) = 0 in (3.1) respectively yields (Wa, W3) = (Wa, Wy) = 0,
ie., aﬁ) = 0, <a§2), a§3)> = 0. This just gives us (V3, Vi) = 0. Substituting it into
(W3, Wa) + (Vs, Vi) = 01in (3.1) yields (W3, Wy) =0, i.e., ald = 0.

Since Rs = T5 = 0 and S5 = —Qagl) A agl) A ag?’), then |R5|2 + |S5|% + |T5|? = 4c in
(3.2) leads to |R2|2|(L§3)|2 = ¢, which implies |a§3)]2 =1by |R2|> = cin (3.2). This tells us
|[W3|? = 1. Substituting it into |W3|? + |V3|> = 4 in (3.1) yields |V3]?> = 3. On the other
hand, it follows from |R3|? = 4|V3|2 = 4c in (3.2) that |V3]?> = c. Hence we get ¢ = 3,
which implies |V5|? = 3. Substituting it into |[Wa|? + |V2|? = 6 in (3.1) yields |[W3|? = 3,
ie., |a§2)|2 = 3. Using this and |V3|? = ]a§2)\2|ag)]2 = 3 leads to ]agl)\Q = 1. In terms of
this, together with ]a&S)P = 1, we obtain |V4|? = \agg) A aél)IQ = 1. Substituting it into
[Wy|? + [V4]? = 1 in (3.1) yields |Wy|? = 0, which contradicts Wy # 0. Hence we verify
a211 =0.

Now we know <a§4), agl)> = <ag3), a§1)> = 0. The latter gives us <a§3), agl)> =0 by
(W3, Wi) =01in (3.1).

Since Vg = a§3) /\aé )—i—ag )/\aé ) = (ag)/aﬁ) . ag?’) (2)> /\ag ) = = 0, then there exists
A € C such that

=a 1)/a —l—)\ (4 ) (3.41)

which implies <a§1), a52)> = 0 by using <a§1), a§3)> =0= <a§1), a§4)>. From (3.41), we

have V5 = a?) A agg) + agg) A ag) + a§4) A agl) = (ag?i)/aﬁ) : agz) + )\agg) — agl)) A ag4) =0,
then there exists ¢ € C such that

agl) = ag)/aﬁ (2) + )\ag )+ ua§4). (3.42)
Applying (3.41) and (3.42), a straightforward calculation shows

Vi = ()/\ag)—l—a@)/\aé)—kag)/\aé)
= ( /(;L11 ag)—i—)\a@)—i-,ua(?’)) (4).
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From this, together with Vo = agl) A agl) and <a1 , a1 > < § ) a! > = 0, we find
(Va, V4) = 0. Substituting it into (Wy, Wy) 4+ (Va, Vi) =01in (3.1) y 1elds (Wa, Wy) =0,
which leads to <a§2), a§4)> =0, i.e., agzl) =0.

On the other hand, combining (Va, Vi) =0 and (Rg, R4) = 0 in (3.2), we obtain

< M aad, o A a§2)> =0. (3.43)

In terms of this, together with <a§1), aé2)> =0, we get

<a§1), a§2)> <ag ), ag2)> =0. (3.44)
Since (Wy, Wa) =0 in (3.1), then

<a§1)7 a§2)> + <aé1), ag)> =0. (3.45)
It follows from (3.44) and (3.45) that

<a§1), a52)> = <ag), ag2)> =0, (3.46)

which implies respectively by (3.41) and (3.42)
(al!, a§?) =0 (3.47)

and
a21)/a11 < (1)7 a§3)> =0. (3.48)

It is worth noting that <a§1), aga)> =0 for (a,1) # (1,1).
Claim 2: a{¥ = 0.
Otherwise if a21) # 0, then <a§1), a§3)> = 0 by (3.48). Since Sy = —agl) A agl) A

a(12), T, = —ag )/\a( )/\a(2) and Sg = a( )/\a(l)/\a(4)+a§1)/\a§’)/\a§2)—a?)/\agl)/\a(f), Ts =
a(13) A aél) A a§2) (1) A a(2) A a( ) , then a straightforward calculation shows
(Sa, S¢) = 0= (Ty, Tp).

From (R4, Rg) + (Ss, Sg) + (T4, Ts) = 0 in (3.2), we have (R4, Rg) = 0, which implies
< @ A a§2), (13) A aé3)> =0, i.e.,

2 3 2
<ag), ag)> ()agl)_o
Since (Rg, R3) =0, then (Va, V3) = 0, which means (Ws, W3) =0, i.e.,

(o7, o)+ oDl =0
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So that we obtain o @

<a1 » 01 >: 0= ay .
Since < (A ag )+ a§2) A aél), a?) A ag2)> =0, then by (R3, R4) = 0 we have (V3, V}) =
0, which implies (W3, Wy) = 0, i.e., <a§3), a(14)> = 0. Hence we get aﬁ) = 0. Using
ag) =0= aﬁ) in (3.41), we know A =0, i.e.,

(2)

3
ay —a21)/a11 : ()-

Then by agl) 0= aﬁ) in (3.42), we have u =0, i.e.,

1 2
aé )= a21)/a11 : ( )
Since Vy = agl) A ags) and
Rs 2&%4) A a(l) , 895 =0,1T5 = —2a§1) A agl) A a§3),

then using [Wy|? + |V4|? = 1 in (3.1) and |Rs5|? + |S5]2 + |T5|* = 4c in (3.2), we obtain
4 1 3 4 1 1 1 3
a2 + oV PlaS) 2 = 1, faly Plal” 2 + ol 2las” PlaSy|? = e,

Wthh implies |CL2 |2 = c. Substituting this into |Ra|? = |a |2]ag1)|2 = cin (3.2) yields
|a1 |2 = 1. From |W;|? = |a(1)\2 + |a 1)|2 =41n (3.1), we have |c121 \2 =3, Which implies
c = 3. It follows that |V5|?> = |Rz|?> = 3, which leads to |W3|? = |a |2 + |a |2 =3 by
[Wa|? + |V2|?> = 6 in (3.1). On the other hand, that |R3|? = 4]a§1)\ |a52)]2 =12 in (3.2)

and |a§1)]2 =1 tells us \ag)\Q = 3, which shows \ag2)|2 =0, ie., agl) = 0. It contradicts
\agl)|2 = 3. Thus we verify ag) =0.

At this time, equations (3.41) and (3.42) reduce to

o — (1)

O, o2 = el o2 +

21 /an "y

Since V3 = a(l) (2) + a(2) A agl), Vi = a?) Aa (2) + a§3) A agl), then We observe that
(V3, Vi) = 0, which 1mphes (W5, Wy) =0, ie. agl) = 0. So that a /a
Since Vo = Ry = a(ll) A ag ), then using \VQ\Q |R2|? = cin (3.2) ylelds

1 1
ot Pla’ 2 = c. (3.49)

From [W5|2 + |V5|2 = 6 in (3.1), we know that |[Ws|?2 =6 — ¢, i.e.,

aP P+ 1aP =6—c 3.50
|aj 21
Because Ry = 4a§2) A aéz), Sy = (1) A a; A ag ),T4 —agl) A agl) A ag), then applying

|R4|? + [S4]? + |Tyu|? = 6¢ in (3.2) gwes us
2 2 1 1 2 1 1 2
16[a$? 2 ? + [alV 12108 PlalP 2 + (ol 2 al) 2108 2 = e (3.51)
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Substituting (3.49) and (3.50) into (3.51) leads to

2 2
ai”PPlagy > = T, (3.52)

which implies |V4|? = %. From this, together with [Wy|? + |[V4]? = 1 in (3.1), we get

2

~ 15 (3.53)

’an ‘
which means that 0 < ¢ < 4 by aﬁ) > 0. On the other hand, since R5 = —2a§4) /\agl), Sy =
2a§1) A agQ) A a§2),T5 = 2a§1) A agz) A aéZ), then it follows from |Rs5|? + |S5| + |T5|> = 4c in
(3.2) that

a{ Plas” 2 + laf! Pla Plasy 2 + a8 Plat? 2aly)|? = e (3.54)

Now substituting (3.52), (3.53) and [W3|2 = |a{" 2 + |a$”|? = 4 into (3.54) yields

L — 3.55

‘aQ ‘ C+ 47 ( ° )

which implies |a§1)\2 . + 16. Then it follows from (3.49) that ot 64‘3) = ¢, which contradicts
that 0 < ¢ < 4. Thus there does not exist the case of Wy # 0. a

Proof of Theorem 1.21t is enough to consider the irreducible case. Assume that ¢ generates
the following harmonic sequence (cf. [2],[6])

"

Al Al Al Al
oﬁfozfﬂ)flgﬂﬂ)%goy (3.56)

where rank(yp ) = rank(y, ) = 2 and (rank(£2), rank(£3)> = (1,1) or (2,0). We will prove
d = 4 in the above two cases.
If (rank(gﬂ,rank(gﬁ) = (1,1), then ¢, = ifgz)l, Py = L(;”) belong the following

harmonic sequence in CP™

A A’ A A’ Al
f(()m) (m f(m) f(m) f(m)

(m)
0 L& fpim A Fom I Dngy pmy - Ingy gm) J (3.57)

for m = 5,4, 3.
When m = 5, we have a diagram below about the harmonic sequence in CP® (cf. [2]),

[P ==y = [0 —=0.

§2*>§4:ié5)*>£2:41

[\

€1 ————>¢€3
It follows that

vy Avg ADsvy A Doy = h(2) £V A O FP A O2F) A 93P
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where h(z) is a polynomial. Notice that fés) A 8zf(§5) A 8§fé5) A 8§fé5) is the 3-osculating
curve o3 of fés). It follows from (2.5) that h is a non-zero constant and o3 has constant
curvature. Using Y.B. Shen’s result ([28], Theorem 6.2), we know the harmonic sequence
(3.57) in CP® is the Veronese sequence, up to U(6). Then we obtain by (2.5) and (3.24)
in [1]
2d —4 =6 =38,

where 5§5) is the degree of g3. It follows that d = 6. In this case, there exist polynomials
Py, Py, P35 such that

o1 Avg = PfS) N + Pofs? A 021D + PraL f§Y n 2.
We choose a rectangular coordinate system in C% such that
féB) = ¢1 + VBzes + V102265 + V102%¢4 + V5265 + 2%¢.

A straightforward calculation shows that the degree of fé5) A O, fé5), f(§5) A 02 (55) and
0, fé5) A O? fé5) is 8, 7 and 6 respectively, and

fé5) A 8Zfé5) = VBer Aex + 2v10z6 A €3 + 3v102%€1 A eg + 4V52%6; A €5 + 52%¢1 A €6
+\/%Z262 N €3 + 2\/%2’362 N €4+ 152462 N €5 + 4\/52562 N €g
+10z%€3 A €4 + 2v/502%€5 A €5 + 3v1025€3 A g
+1/5025¢4 A €5 + 2v/1027e4 A €6 + \/52865 A €g,

fé5) A 82 (55) = 2V/10e A €3 + 6v10ze1 A eq + 12v52%€¢; A €5 + 202361 A eg
+2v502¢€5 A €3 + 61502263 A €4 + 602365 A €5 + 205245 A €6
+4Oz3e3 N€eqg+ 10\/%2’463 N €5+ 18\/@2’563 N €g
+6v/502%€4 A €5 + 14v102%4 A €6 + 8\/5z7e5 A €6,

0.1 N2 FD = 2V/B0eg A €3 + 6VB0z€x A €4 + 602%€2 A €5 + 207523 A €
+602%e5 A €4 + 16V502%€3 A €5 + 30v/102% €5 A €5
+12v/502%4 A €5 + 30V 102%¢4 A €6 + 20V525€5 A €.

Since [v1 A v2] is a constantly curved holomorphic curve of degree 6, then under the
standard basis €; A€;, 1 < i < j < 6 in the lexicographic order, we can write v A
vy = PHVO(6), where P is a polynomial, VO(G) = (1,v62,V152%,1/2023, /1524, /62°, 26)T
and H = (Haj)a=0,- 14,j=0,-- 6 15 @ 15 x 7 matrix whose column vectors are mutually
orthonormal. A straightforward calculation shows

\/gpl = P(Hoo + .. -I—Hoﬁzﬁ), 2V 10zP, +2vV10P; = P(Hlo =+ +H16Z6),

V5022 Py 4+ 2v/502P; + 2v/50P; = P(Hsg + - - - + Hs62%),
which implies P|Pj(j = 1,2,3). Set P; = PP;, then we have

PO no. £ + Byt A 02580 + PaoL P 250 = HVO.

19



It follows from the above formulas that the degree of P, Py, P;is0,1,2 respectively. Set
Py = P19 # 0, Py = Poo + p212 and P3 = p3g + P31z + Ps222, then that the terms of 27, 28
in v; A v are vanishing tells us

P10 + 7p21 + 15ps2 = 0, (3.58)
D10 + 8p21 + 20p32 = 0, (3.59)
and
2pag + bp31 = 0. (3.60)
From (3.58) and (3.59), we get
a1 = — 1o, fas = —p (3.61)
b21 = 41010, P32 = 201010- .
At this time H is given by
Hypo O 0 0 0 0 0
Hyy Hi;p O 0 0 0 0
0 Hy Hyp 0 0 0 0
0 0 Hs» Hsg 0 0 0
0 0 0 Hys Hyy 0 0
Hsy Hs1 Hso 0 0 0 0
0 Hg1 Hgo Hgs 0 0 0
H = 0 0 H7s Hrs H7y 0 0
0 0 0 Hgs Hygy Hgs 0
0 0 Hygpo Hg3 Hoyy 0 0
0 0 0 Hyps His Hios 0
0 0 0 0 Hua Huips Hig
0 0 0 0  Higu Hizs Hiogp
0 0 0 0 0 Hizs Hizg
0 0 0 0 0 0 Hisg

Using (3.61), we know that HiiHso # 0. Since the column vectors of H are mutually
orthonormal, then HsgHss = 0, which implies Hsg = 0, i.e., psg = 0. From HigHi1 = 0,
we have Hjg = 0, i.e., poo = 0. Substituting this into (3.60) yields p3; = 0. Now H
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becomes

Ho O 0 0 0 0 0

0 H; 0 0 0 0 0

0 0 Hy 0 0 0 0

0 0 0 Hs 0 0 0

0 0 0 0 Hy 0 0

0 0 Hp 0 0 0 0

0 0 0 Heg 0 0 0
H=|0 0 0 0 Hy 0 0

0 0 0 0 0 Hg O

0 0 0 0 Hy 0 0

0 0 0 0 0 Hyps O

0 0 0 0 0 0 Hyg

0 0 0 0 0 0 Hyg

0o 0 0 0 0 0 0

o 0 0 0 0 0 0

Since Hyy = v5p1o and Hyp = 32@1510, then it follows from |Hgl? = 1 that |p1o]? = %,
which implies that [Hy1|? = 3. It contradicts that [H11|> = 1. Thus there does not exist
the case of m = 5.

When m = 4, the trivial bundle S? x C® over S? has a decomposition S? x C® =
52 x C% @ S? x C. In this case, the diagram reduces to

EQ*)@L:igl)

[\

€1 ———>¢€3

ey = gy = 1) 0

)

where spanc {e1, e2,e3} = spanc {vo, 54),f1(4)} with v9 = (0,0,0,0,0,1). Similarly we
get
2d — 4 =6{" =6,

which implies d = 5. In this case, there exist polynomials P;, P», P3 such that
v Avg = Pt Avg + P, £P Mg + Pof$Y Ao f Y.
We choose a rectangular coordinate system in C® such that
f(§4) =€ + 2z€9 + \/62263 + 2234 + 2tes.

A straightforward calculation shows that the degree of f0(4) Avg, O fé4) Avg and fé4) AO, fé4)
is 4, 3 and 6 respectively, and

fé4) ANvg = €1 Neg+ 2z€2 N €g + \/62263 N €6 + 22’364 N €6 + 2465 N €g,
3zf(§4) Ay = 269 A €6 + 2V 62¢e3 A €6 + 62264 A €6 + 42565 A €,
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0(4) A Bzfé4) = 261 Neg+ 2\/6261 N €3+ 62261 N €yq + 42361 N €5
+2\/62262 N €3+ 82362 N €q + 62462 N €5
+2\/62463 N €4 + 2\/62’563 N €5 + 22’664 N €5.

Since [v; A vg] is a constantly curved holomorphic curve of degree 5, then under the
standard basis ¢; A€j, 1 <4 < j < 6 in the lexicographic order, we can write v1 A vy =
PHVO(E’), where P is a polynomial, V0(5) = (1,\/52',@22, \/ﬁz?’,\/gz‘l,zﬁ)T and H =
(Haj)a=0,-- 14,j=0,.. 5 is a 15 x 6 matrix whose column vectors are mutually orthonormal.
A similar discussion shows that P|P;(j = 1,2,3). Set P; = P15j, then we have

Pt Ao+ BoaL £ Ao + PafSY n o5 = BV,

It follows from the above formulas that P; = 0. So ¢ = span {vo,f’l fé4) + P, fé4)},

which implies that ¢ is reducible. Hence there does not exist the case of m = 4.
When m = 3, then the trivial bundle §% x C® over S? has a decomposition S? x C° =
5?2 x C* @ S? x C2. In this case, we have

2d — 4 =6 =4,

which implies d = 4.
If (rank(gZ), rank(f?))) = (2,0), then we choose a local unitary frame e = {e1,--- ,es}
along ¢ so that

v, = spanfer, ea}, p, = spanfes, es}, p, = span{es, e}

Under such frame, the pull back of (right invariant) Maurer-Cartan forms which are de-
noted by w = (wap) are

D Ao
—Ajg Q. A
—A50 Q3

Notice that the unitary frame we choose is determined up to a transformation of the
group U(2) x U(2) x U(2), so |det A;| (i = 1,2) are global invariants of analytic type on
S? vanishing only at isolated points, and away from their zeros, they satisfy (cf. [7], [12])

Alog|det Ay| = 2K — 4Ly + 2L, (3.62)

Alog ‘ det A2| =2K +2L1 —4Lo, (363)

where K = 4/d, L; = trA; A (i = 1,2) are also globally defined invariants on S? with
L1 =1, and A is Laplace-Beltrami operator with respect to d- dség. It follows from (3.62)
and (3.63) that
6(4—d)
i
Since ¢ is totally unramified, then |det A1 |?| det A3| has no zeros on S2?. Applying the
maximum principle to (3.64), we get d = 4. The conclusion follows from Theorem 1.1.
O

Alog | det A1]?|det Ay| = (3.64)
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Remark 3.1 In the irreducible case of Theorem 1.2, the condition of constant square
norm of the second fundamental form is necessary. Jiao [18] gave an example of irreducible
constantly curved holomorphic two-sphere of d =4 in G(2,6), as follows,

1., V31,2 _9 2
10\/52 2\ﬁz 2\fZ 0

-3

— 3.65
Tlo1 o o PR (3.65)
with
et A 2 112 + 102427 + 11762222 + 3762323 + 312121
1 =

1024(1 + 2z)* ’

which is not a constant.
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