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Abstract We establish the weak (1,1) boundedness of the Littlewood—Paley—Stein square function associ-
ated with the Dunkl heat flow, which is generated by the non-local Dunkl Laplacian. Our proof relies on
precise integral estimates for derivatives of the Dunkl heat kernel, combined with the technique of Caldrén—
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where dimension-free LP boundedness for the same square functions was proved.
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1 Introduction to main results

In this section, we aim to recall some necessary basics on the Dunkl operator and then present
the main results of this work. The Dunkl operator, initially introduced by C.F. Dunkl in the
seminal paper!’l (see also [15]), has been studied intensively. For a general overview on its
development and more details, refer to the survey papers® 33 and the monographs('* 18],

Consider the d-dimensional Euclidean space R? endowed with the standard inner product
(-,-) and the induced norm | - |. For every a € R?\ {0}, define

(a,z)
oz

Tl =x — 2 z € RY,
where 7, is the so-called reflection operator with respect to (abbrev w.r.t.) the hyperplane
orthogonal to a.

Let "R denote the root system, which is a finite subset of R? \ {0} and satisfies that, for
every a € R, ro(R) = R and aRNR = {a, —a}, where aR := {ab: b € R}. Without loss of
generality, we may assume that |a| = /2 for all @ € RR. Let G be the reflection (or Weyl) group
generated by the family of finitely many reflection operators {r, : « € $®}. Note that G is a
finite subgroup of the orthogonal group O(d), i.e., the group of d x d orthogonal matrices, and
{ro.: a € R} C G (see e.g. [18, Theorem 6.2.7] for a proof). Let 94 be an arbitrary chosen
positive subsystem such that SR can be written as the disjoint union of R4 and —9R,, where
*9%_;_ = {70[ S %4_}

Let k. : & — Ry be the multiplicity function such that it is G-invariant, i.e., Kgo = Kq for
every g € G and every a € fR.

Let ¢ € R Define the (non-local) Dunkl operator D¢ along ¢ associated with the root
system R and the multiplicity function k as follows:

f(@) — frax)

1/md d
o fECI®Y, wer,

Def(2) = 0cf(x) + > Kala,§)

aERy
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where 0 denotes the directional derivative along £. It is important to mention that, for every
£,n € RY, D, o D¢ = D¢ o D,,. However, due to the existence of difference parts, the Leibniz
rule and the chain rule may not hold for Dg.

Let {e; : j = 1,---,d} be the standard orthonormal basis of RY, and write D; instead
of D, for short, j = 1,--- ,d. We denote V,, = (D1,---,Dy4) and A, = 2?21 D? the Dunkl
gradlent operator and the Dunkl Laplacian, respectively. By a straightforward calculation, for
every f € C?(R%),

IWERIVERED SE (Chei I ) S

aENRy

Obviously, when x = 0, then Vg = V and Ay = A, the standard gradient operator and the
Laplacian on R?, respectively.

Similar as the Laplacian case, define the carré du champ (i.e.,squared (modulus) of the
(vector) field in English) T" (see e.g. [6]) by

I(f,9) = = [Au(f9) — fALg — gAcf].  f.g€ C*(RY).

DN | =

Set T'(f) = I'(f, f) for convenience. It is easy to see that, for every f,g € C?(R?) and = € R,

I(f,9)(2) = (V£ () b 3 R @ fan)lol) —glraz)) )

2 I
e, (o, z)

and hence I'(f) > 0. Let

= 3 ke

aERL

From!* IRemark 1.4(1)]LZ2020), we have the following pointwise inequality, i.e.,
IVefl? < (1 +200(f),  feC*RY, (1.2)

and in general, the converse inequality is not true (see [30, Theorem 3.5]).
The natural measure associated with the Dunkl operator is w,.%;, where for every = € R,

IT )P,

aER

and %, stands for the Lebesgue measure on RY. Let p, = w..%;. For each p € [1,00], we
denote the LP-space on R? w.r.t. . by LP(u.) := LP(R?, ) and the corresponding norm by
| -l 27 (u,)- It is well known that A, is an essentially self-adjoint operator defined on a suitable
domain in L?(p).

Let H,(t) := e!®~, t > 0, be the Dunkl heat flow, which is self-adjoint in L?(yu,). For 1 <
p < 00, (Hg(t))i>o0 can be extended uniquely to a strongly continuous contraction semigroup
in LP(u,), for which, with some abuse of notation, we keep the same notation. See [31, 33, 34]
for further properties for the Dunkl heat flow.

We are concerned with square functions corresponding to the Dunkl heat flow. For f €
C>(R%) and = € R?, we define the vertical Littlewood-Paley—Stein (abbrev LPS) square func-
tions by

1/2

() = ([0 a) "
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oo ) 1/2
Vo (N = ([ 1vm0fFw )"
oo ) 1/2
Vol = ([ IVH0 @) ar) "

and the horizontal LPS square function by
o0 5 1/2
HN@ = ([ oo @ )"

0

It is easy to see that, being initially defined on C°(R?), operators Vr, Vv, , Vy and H are all
sublinear.

In this work, we concentrate on the study of weak (1, 1) boundedness of the square functions
defined above. From (1.2) and the definition of I', we see that, for every f € C°(R%), both
Vv, (f) and Vy(f) are controlled by Vr(f) in the pointwise sense. Since the Dunkl heat flow
{H,.(t) }+>0 is a symmetric diffusion semigroup in the sense of [37, page 65|, H is always bounded
in LP(u,) for all p € (1,00) as a particular example of Corollary 1 on page 120 of [37]. So, it is
more interesting to us to study the weak (1,1) boundedness of Vr and H.

With these preparations in hand, we can present our main results in the following theorems.
The first one is on the vertical LPS square function.

Theorem 1.1. The operator Vr is weak (1,1) bounded.
The second one is on the horizontal LPS square function.
Theorem 1.2. The operator H is weak (1,1) bounded.

We remark that bounds in Theorems 1.1 and 1.2 are dimension-dependent, due to the
approach we employed.

It is well known that the square function, which corresponds to the quadratic variation of
martingales, is one of the most fundamental objects in harmonic analysis and plays important
roles in probability theory; see e.g. the survey paper(®8! and the books!*”> 39, Despite extensive
studies on LPS square functions in various settings in the literature, we recall known results
in the Dunkl setting here. For LP boundedness (1 < p < o0), see [35] and [29] in the one-
dimensional case, and see [1, 36] and the recent!' 27 in the multidimensional case. We should
point out that the results in [27] are dimension-free, although restricted to the Z¢ case when
p > 2. However, the weak (1,1) boundedness seems not widely studied. We mention that, the
approach via the vector-valued Calderén—Zygmund theory, which crucially depends on pointwise
Dunkl heat kernel estimates and is different from the approach employed below, should imply
the weak (1, 1) boundedness; see the proof of [19, Proposition 3.1] for more details.

We should point out that the LPS associated with Markovian jump processes is getting
increasing attention in recent years. As for the study on LP boundedness (1 < p < co) of LPS
square functions associated with pure jump Lévy processes, we should mention the paper!”, and
see also the recent works(?> 26] for further extensions to non-local pure jump Dirichlet forms
(with killing) on metric measure spaces. The recent paper(?!! showed the LP boundedness
(1 < p < 00) of LPS square functions associated with the fractional discrete Laplacian on the
one-dimensional lattice, where the underlying graph is not locally finite. However, we notice
that the Markovian jump process corresponding to the Dunkl Laplacian, the so-called Dunkl
process, is in general not a Lévy process; see e.g. [20, 27, 34] for further studies on the Dunkl
process.

For the proof of our Theorems 1.1 and 1.2, the overall idea is motivated by the study on
LPS square functions associated with the (local) Laplace—Beltrami operator on Riemannian
manifolds in % which mainly depends on the Caldrén-Zygmund decomposition and integral
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estimates on derivatives of the heat kernel. However, in the present Dunkl setting, we need
some new ideas to overcome difficulties caused by the non-local nature. Recently, a different
type of integral bounds on Dunkl gradient of the corresponding kernel has been employed in
[3] to prove the weak (1,1) boundedness of the Riesz transform associated with the Dunkl-
Schrodinger operator —A, + V with 0 < V € leoc(]Rd) and the Dunkl gradient operator V,;
see also [2] for more details on the Dunkl-Schrédinger operator. To mention in passing, an
interesting question for future research is how to extend our approach used below to study the
weak (1,1) boundedness of LPS square functions associated with Dunkl-Schrédinger operators.

The present article is organized as follows. In Section 2, we recall necessary known facts
and establish several lemmata that are important to prove our main results. In Section 3, we
present the proofs of our main results.

We should point out that the constants ¢, C,C’,C”,---, used in what follows, may vary
from one location to another.

2 Preparations

In this section, we recall necessary known facts, present some preliminary results and establish
the crucial integral bounds of derivatives of the Dunkl heat kernel, which will be used to prove
the main results. Let B(x,r) denote the open ball in R¢ with center z € R? and radius
r > 0 wr.t. the Euclidean distance | - — - |, and for every g € G and every A C R, let
gA={gr eR?: x € A}.

Let d, = d + 2x. It is known that p, is G-invariant, i.e., for every g € G and every ball
B C RY, p1,,(9B) = pu(B), and the volume comparison property (see e.g. [5, (3.2)]) holds: there
is a constant 6 > 1 such that, for every z € R% and every 0 < r < R < oo,

r

LRy < u(B(x, R)) <o(Hy". (21)

0 = u(B(x,r))

0
In particular, u, satisfies the volume doubling property. However, generally speaking, . is not
Ahlfors regular. We remark that we do not use the left inequality of (2.1) in the proof below.
Let ¢ € R? and let Lip,,.(R%) be the space of locally Lipschitz continuous function on R¢
w.r.t. the Euclidean distance. With respect to pu,, the following integration-by-parts formula
holds: for every u € C1(R?) and every v € C}(RY),

/ vDeudpy, = 7/ uDev dpu. (2.2)
R4 R

See [17, Lemma 2.9] and [33, Proposition 2.1]. It is easy to see that (2.2) holds true when C'*(R9)
is replaced by Lip,,.(R?). Although we may not expect that the Dunkl operator satisfies the
Leibniz rule in general, the following particular case is useful (see e.g. [33, (2.1)] and see [18,
Proposition 6.4.12] for the general situation): for every u,v € C*(R%) with at lest one of them
being G-invariant,

D¢ (uv) = vDeu + uDgv. (2.3)
For every x € R%, let G(z) = {gx : g € G}, which denotes the G-orbit of z. Let

) = i - ) ) € Rd7
p(x,y) I;gglx 9y T,y

which is the distance between G-orbits G(z) and G(y). Note that p is also G-invariant in each
variable by definition. However, p may fail to be a pseudo-distance on R? in the sense of [8,
page 66] or a quasi-distance in the sense of [39, Section 2.4]. Consequently, the triple (R, p, f1,c)
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generally does not constitute a space of homogeneous type in the classical sense studied in
harmonic analysis. Nevertheless, the following simple observation will prove useful. Given any
point xo € RY, we let p,,(-) = p(zo, ).

Lemma 2.1. For an arbitrarily fized point zo € R?,
|V e, (2)] <1, fir-a.e. © € R
Proof. By the definition of p, we have
P20 (¥) = Puo () < ly =2, y,z€RY,

which implies that p.,(-) is Lipschitz continuous with respect to | - — - | with Lipschitz constant
1. Then, by the well known Rademacher theorem, p,,(-) is differentiable almost everywhere
with respect to .%; furthermore,

Vpu, ()] <1, Z-ae. xR
Since pu, is clearly absolutely continuous with respect to £, we complete the proof. O

Let hi(x,y) be the Dunkl heat kernel of H(t), which is a C'°° function of all variables
x,y € R and t > 0, and satisfies that

8tht(x7y) = Anht('7y)(x)a T,y € Rdv t> Oa
ht(xay):ht(yam) >O7 IayeRd7t>Ov

and, moreover, there exist positive constants ¢, C such that

2
p(:”;y) ) 2,y € R > 0. (2.4)

C
hale,y) < s exp -
(ey) < Vieyt) AT °
Here and in what follows, we use the notation

V(x,y,r) = max {u,.i (B(sc, 7‘)) s i (B(y, 7’)) }

Recently, the estimate on time derivative of the Dunkl heat kernel is established, i.e., for every
nonnegative integer m, there exist positive constants ¢, C' such that

2
|07 he (2, 9) ] exp ( - Cp(x,y) )7 z,y €RY, t>0. (2.5)

e Sy

"V (x,y,t t
See e.g. [5, 33] for the above estimates and more details on the Dunkl heat kernel. The proof
of (2.5) employs the integral representation of the Dunkl translation operator first obtained in
the paper(®?! (see also [13, Lemma 3.4]). However, we shall give a remark here.

Remark 2.2. Although p may not be a true metric,the analyticity of the mapping ¢t — h:(x,y),
combined with the kernel estimate (2.4) and the right-hand inequality of (2.1), allows us to
derive (2.5) via an alternative approach. Specifically, we may apply the general result from [11,
Theorem 4] alongside (2.4) to establish the desired bound.

Let |G| denote the order of the reflection group G. For z € R? and r > 0, define
Bf(z,r) = {y € R": p(z,y) <r},

where Bf(z,0) := {y € RY: p(z,y) = 0} and it is at most a finite subset of R%. From the
volume comparison property (2.1) and the Dunkl heat kernel estimate (2.4), we can immediately
obtain the following lemma. The proof is standard and short, and we present it here for the
sake of completeness (see e.g. the proof of [9, Lemma 2.1]).
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Lemma 2.3. For every 0 > 0, there exists a positive constant C, depending on |G| and §, such
that
)2

/ exp ( - 25@) dpe(x) < Cp (Bly, v/35))e /%,
RI\BP (y,r) $
for every s >0, r >0 and y € R?.
Proof. Let
1= /Rd e=0r(@4)*/s dpg (), 5>0, yeR™

Then

oo

I= / e~V /s 4y, (2)
n=0" B? (y,(n+1)v/s)\B? (y,n\/5)

< e (B (y, (n+ 1)V5).
n=0

Since for any x € R? and any r > 0,

B(x,r) = |J{yeR: o —gyl <r} =] gBa.r),
9geG geG

we have, by the G-invariance of u, and the right inequality of (2.1),
e 2
1<) e ue(Ugea 9By, (n +1)v/5))
n=0
e 2
<> e Gk (B(y, (n+ 1)Vs))
n=0

<GS e (n+ 1) e (B(y, V5))

n=0

<Cux(B(y,Vs)),

for some constant C > 0. Thus
2
/ exp ( _ 26@) d/,l/,g(l') S 6—57‘2/81 S C/J/H(B(y, \/g))e—csrz/s7
R\ BP (y,r) S

which completes the proof of Lemma 2.3. O

The next result is on integral estimates of the gradient of the Dunkl heat kernel, which is
motivated by [10, Lemma 3.3]. However, here the gradient is induced by the carré-du-champ
operator I'. Due to the lack of the Leibniz rule and the chain rule for the general Dunkl
Laplacian, the method used in the aforementioned reference is no longer directly applicable.

Lemma 2.4. For every nonnegative integer m and every small enough € > 0, there exists a
positive constant ce y, such that

m plz.y)* Cem
/]Rd F(An hs(~,y))(x) exp (267) dpw(z) < s2mtly, (B(y, \/g)) ) (2.6)
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and

e—et/s

m . ) ex Gp(m,y)Q x Ce,m
/Rd\Bp(y,\/{) F(AH hs( 7y)>( ) p( 5 )d,um( ) < 32m+1uﬁ(3(y’ \/g))7 (2.7)

forally e R%, s >0, t>0.

Proof. Let z,y € R% €,5,R > 0 and let m be a nonnegative integer. For every o € R, we
denote a = (a1, -+ ,q). For convenience, we let

F@) =00 ha(m,y),  n(x) = e2re’/s,
Then, it is clear that f € C*°(R?) and 7 € Lip,,.(R?). Take

]

gbR(a:):min{ (3_E> } z € RY,

where for any a € R, a* := max{a,0}. Then, 0 < ¢g < 1 on RY, ¢p = 1 on B(0,2R),
¢r = 0 outside B(0,3R); moreover, ¢p is Lipschitz continuous with respect to |- — - |, G-
invariant, increasing as R grows up and |V¢g| < 1/R. Note that n is G-invariant. Hence, nog
is G-invariant and it is clear that n¢r € Lip;,.(R?). Set

_ _ 2
J = /Rd T(f)ndus, Jr = /Rd L(f)ndr dp,
and
1
JR,I = 5 /]Rd AK(fQ)ngb% dﬂm JR,Q = _/]Rd f<vmf7vn(77¢)§%)>dﬂm

By (2.2) and (2.3), we have
JRl***Z/ 8;(no%) dps
_ 1 . — fA(rax)
= Z/Rd Z @ J (o, ) }

a€ERy ’

O7(2)0n () + 1(2)0; &% ()] dpuw ()

/ s o + 5 5 ot 9 L] 5 )
- [, s vk + 5 3w Vo) HOT LD ) o)
and
Ina=- [ (11, Tn(w) + 3 rolesVate) P =T ) o
)

- [ (1Y@, Toha) + 2 kol V()

aER
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Then

_1 [f(x) = flraz)]®
Jr1— JRo2 —§/Rd Z M<%W($)>T¢R(w) dpw(z)

a€ERy ’

43 [0 wata e L ) 0

aERy <Oz7l'>
=:Ar + Bg. (2.8)

Applying (2.5), by the same method used to prove [5, (4.12)], we obtain the following
estimate, i.e., there exist constants ¢, C > 0 such that

x,yERd7 s> 0.

[f(@) = fram)]” c o [ P )
[{a, x)] §82m+1/2uK(B(y,\/§))2 p( ¢ )’

s
Since 0 < ¢r < 1 and |[V¢g| < 1/R, by Lemma 2.1 and Lemma 2.3, we derive that, for any
small enough € > 0,

c z, z,y)? z,y)?
|Ag| < 3 / p(zY) exp <2€p( ) ) exp ( - CM) dpie ()
32m+1/2ﬂn(3(ya \/g)) Rd S s S
c p(a,y)°
< exp ( — (C" — 2¢) dp ()
s2m iy, (B(y,v/5))° /RL‘ ( § )
c
< , 2.9
s27 1, (B(y, /5)) (2.9)
and
Bal < ‘ e (- @202 ap o)
R4 /2, (Bly, v5))° e .
c
< : 2.10
T Rs?m 20, (B(y, v/5)) (210
which tends to 0 as R — oco. Thus, from (2.8) and (2.9), we have
c
| JR,1| <[JR2| +[Ar| + Br| < |JR,2 +|Bg|. (2.11)

T @iy, (Bly, v/5))

To estimate Jg 2, we deduce that

el =| [ FO95. V)bt [ F9t TR

2
S/ IfIIanIIVn|¢?zduK+E/ |FIIV e fIndr dis
R4 Rd

=:Jr21 + JRr2,2.

For the estimation of Jr 2 1, we have
2

Jr21 < /Rd |f($)||vnf($)|w eXp (26@

C /p(xay)Q
<> / A @ITs @) exp (2 o) dpe (o)

)6h(@) dpela)
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" 2 1/2
< ([ @R e ap )
« (/Rd ‘vnf(x)|2e2ep(z7y)2/s¢%(1’) dﬂn(iﬂ))lm,

where we employed Lemma 2.1 and 0 < ¢ < 1 again in the second inequality, and the Cauchy—
Schwarz inequality in the last inequality. By Lemma 2.3 and (2.5), it is easy to see that, for
any small enough €’ > 0,

c

2™ 1 (B(y,v/5))

" 2
[ 1f@pe sl ap @) <
Rd
By the pointwise inequality (1.2), we have

[ D f @R ) () < (1+ 2 Tn

Hence
Jr2,1 < Vr .
V5 L (B(y, v/5)

For the estimation of Jg 22, we have

Iz < ([ 1Pndn) ([ 19usnohan)

([ a1 +20 [ T@ndhan)

2(1 +2x) / 9 1 c

< TR dpe + =Jg <

= R2 Rd |f| nag 2 R > R2S2m'u,ﬁ (B(y, \/g))
where we used (1.2), Lemma 2.3, (2.5) and Young’s inequality. Combing the estimates of Jg 21
and Jg 22, we obtain

1/2

1
—J
+2 R,

cv IR - + L. (2.12)

\/82’”*1%(3(1/7 \/g)) * RQS%”MH(B(?J, \/g)) 2

|JR2| <

By applying (2.5) and Lemma 2.3 again, we get that, for small enough e,

| [ (At an,

< / |07 by (2, )| O s (2, ) |20 Ay ()
Rd
C

< .
~ s2mty, (B(y, v/s))

Thus, combing (2.11), (2.12) and (2.13), we have

(2.13)

Te =g [ AP mhdus = [ FO o d
C
S2m+1,u.~c (B(ya \/g))
_ C } C\/E
=2y, (B(y, v5)) 2 \/82m+1,m (B(y.v/3))

<|Jra|+
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C
+ + |BR|.
R2s>" 1, (B(y,\/5))

By (2.10) and the monotone convergence theorem, letting R — 0o, we obtain

) o . eVJ
— S2m+1/1% (B(y, \/g)) \/52m+1/1n (B(y7 \/g))

b

which immediately implies that

C
< .
= s2mtly, (B(y,/5))

We complete the proof of (2.6).
Finally, for every t > 0,

2

D(AT () (@) exp (2220

/ ) ()
R\ B (y,V/t)

=Ly PO @0 (35 Y (= L

—et/s
Sefet/s!] < > 106 ,
s2m+ u,{(B(y, \/§))

which completes the proof of (2.7). O

Now we should give a remark on the proof of Lemma 2.4.

Remark 2.5. Recently, the following pointwise estimate on space-time derivative of the Dunkl
heat kernel is established in [5, Theorem 4.1(c)]: for every j = 1,--- ,d and every nonnegative
integer m, there exist positive constants ¢, C' such that

2
m c p(z,y
D07 e (-, y)| () < Y P exp(—c ( . ) ) zy €RY, >0, (2.14)

Applying the same method used to obtain (2.14) (see the proof of [5, Theorem 4.1(c)]), we
can obtain the following pointwise derivative bound on the Dunkl heat kernel, i.e., for every
nonnegative integer m, there exist positive constants ci, co such that

z, )2
p(z,y) )

DAL () (@) € —tt :

_ zyeRY t>0. (215
TRV (2, V1) ! 219

exp ( — 2

By the pointwise bound (1.2), we note that the converse inequality of (1.2) generally fails,
which highlights that (2.15) is indeed stronger than (2.14). Applying Lemma 2.3, we then
deduce Lemma 2.4. This approach proves particularly straightforward in our setting. However,
in other settings of curved spaces, pointwise gradient kernel bounds seem not easy to get, which
demand geometric conditions usually, for instance, Ricci curvature lower bounds on Riemannian
manifolds; see e.g. [12, 21, 28, 40] and see also [22, 23] for the more general setting of metric
measure spaces with Riemannian curvature-dimension conditions, namely RCD spaces. Our
approach to prove Lemma 2.4 has the advantage that we may establish the integral bound
on the gradient of the kernel, say (2.6) and (2.7), even without the pointwise gradient kernel
bound.
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In order to obtain the weak (1, 1) boundedness of the horizontal square function H, we need
the following lemma, which can be easily verified by applying Lemma 2.3 with the estimate
(2.5) in hand. So details of the proof are left to interested readers..

Lemma 2.6. For every nonnegative integer m and every small enough € > 0, there exists a
positive constant Ce ,, such that

Lo o 1R @ P e
(Y,

forally e R%, s >0,t>0.

We also need the next “maximum principle” between the Dunkl heat flow and the Hardy—
Littlewood maximum operator, presented in the following lemma. Let L{ (p) denote the
class of locally integrable functions on R? w.r.t. p,. For every f € Li (), recall that the
Hardy-Littlewood maximum operator associated with p, is defined by

Ir) = Ssu ; z z T d.
M) =sp s [ W), weR

Lemma 2.7. For everyt > 0, x € R and every nonnegative function v from L (1),

sup ( )< C Z 1nf (v)(9y),

yEB(m,\/f) gGG

p($7y)2 . Ce,m e—et/s
)dﬂn( ) < szmuH(B(y, \/§)>7

for some constant C > 0.
Proof. Let y € B(z,/t). By (2.4), we have

—cp(y,2)?/t e—clgy— z|?/t
e

(Hi(t)v)(y) < C/Rd m v(2) dpn(z) < CZ/d m”(z) dpn(2)-

For any fixed g € G, let Ey = B(gz,4v/t) and E; = B(gx, 2]"*‘1\/5)\B(ggc7 29\/t),forj =2,3,---.
Since y € B(z, V1), we see that |y — x| < v/t, and 29Vt < |gz — 2| < 291/t for any 2z € E; and
any 7 =1,2,---. Then the triangle inequality implies that

gy — 2| 2 |2 =gz = |g(y —2)| = |z —ga| = ly —a[ 227"V,  j=12--.
Thus, for every y € B(x,/t), since
B(gx, 2T'Vt) € B(gy, 2TVt + |g(z —y)|) C Blgy, 27 T*V1),
we have

,C4J 1
(Hy <CZ Z/ K—))v(z) dp(2)

geG j—1 gy7

—c4d 7t :U’H (gya 2j+2ﬁ))
<C2 Z 1 (B(gy, V1))

geG j=1
1

X - v(2z) dpg(z
BT Dy ")

<CN N e U it M(v)(g2)

g€ =1 2€B(z,V/t)

<C inf  M(v)(gz),
gEZG zeB(w,\/Z)

where the right inequality of (2.1) is applied. The proof is completed. O
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3 Proofs of the Main Results

In this section, we devote to prove our main theorems. Theorem 1.2 can be proved by applying

the same method employed in the proof of Theorem 1.1. The main difference lies in Part III

in the Proof of Theorem 1.1 below, where Lemma 2.6 shall be employed instead of Lemma 2.4.

Due to this, we decide to omit the details of the proof for Theorem 1.2 to save some space.
Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Let f € L*(u,.) and A > 0. By the Caderén—Zygmund decomposition,
we have

=g+ bi=tg+b,

and the following assertions hold: there exists a positive constant ¢ such that
(a) |g(z)| < e for pe-ae. x € R,

(b) there exists a sequence of balls {B;}; in R? with B; = B(z;,;) such that r; € (0,1],
z; € RY, and b; is supported in B; with [|b;||11(,.,.) < cAuw(B;) for each 4,

(€) 32 e(Bi) < eATHIf L ()
(d) every point of R? is contained in at most finitely many balls B;.

We shall prove that
c
we({z € RY: Vo(f)(z) > A}) < X||f||L1(M)~ (3.1)

By (b) and (c), we immediately get |[b]|z1(,,.) < >_; 1billor(ue) < ellfllz1(u,), and hence,

9L uy < el FllLruu)-
We divide the proof into four parts, i.e., Part I-VI below.

Part I. By the sublinearity of f — Vr(f) and the decomposition of f, we have

e ({z € RY: Vo(f)(@) > A})
<t (fr € RY: Ve(9)(@) 2 A/2}) + pa(f € RY: Vo (b)(2) 2 A/2}). 3.2)

Since Vr is bounded in L?(u,) (see [27, Theorem 2.4]), by (a) and Chebyshev’s inequality, we
get

c c c
we({z € RT: Vr(g)(x) > A/2}) < pHVF(g)H%Z(HK) < §||9||%2(M) < X||f||L1(uK,)~ (3-3)
Part II. Let t; = 72 for each i and let I be the identity map. Since
Vr(bi) = Vr (Hi(t:)bi + [I — Ho(t:)]b;) < Ve (Hi(t:)bi) + Ve ([ — Hio(t:)]bi),
we have

Ve (b) = vp(Zbi) < VF(ZHH(ti)bi) + 2 Ve ([ — He(t)]b).

Then

e ({z € R Vr(d)(x) > A/2})
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<MH({xeRd. VF(ZH )( )>)\/4})
+ e ({w e RY: S Ve (L - Halt))br) (@) = Ma}). (3.4)
By the L? boundedness of Vr (see e.g. [27]) and Chebyshev’s inequality again,
uﬁ({xeRd VF(ZH )( >)\/4})
S AOAC IS PIEAD

L2 (pr) Lz(u )

where

|32 o

_J/Rd DIAGILE
‘Z/ |0 He (i )u dpue

HUHL2(“ )*1
< S il (sup Hiet) ).

HuHsz) 1

2
L2ne) nuHLa(

By (b), (c), Lemma 2.7 and the G-invariance of u,, we have, for every u € L?(ju,) with
lullL2(u) =1,

an 124 () (supH ) <CAZMN : Z;Qé M(u)(gz)
€G
<C)\ZZ/ M (u)(gx) dpy(x)

i geG

<C)\Z \/,uﬁ U B ||M ||LZ(#h

geG

<en/ AL ()

where we used the fact that M is bounded in L?(y,,) (see e.g. Theorem 1(c) on page 13 of [39])
since (R4, |- — -, u,) is clearly a homogeneous space according to (2.1). Hence

po({z R VF(ZH ) @) = A/4}) < S1F s (3.5)

Part ITI. Tt remains to estimate the last term of (3.4). For notational simplicity, for each
I, we let 2B = BP(x1,2y/%;) and (2B/)¢ = R?\ 2B/ in the following proof. Then

,u({:v cRY: va([l — Ho(t)]bi)(z) > )\/4})
<ZMN (2B )+um({x € ni(2BY)" Zvr (I = Ho(t:)]b:) () > )\/4})
::Z'u“ 2Bl + J. (3.6)
l
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Note that 2B = |J ¢gB(x1,2v/1;). Since p,, is G-invariant, by (c) and the right inequality in
geG
(2.1), we derive that

Y un(2B]) <Y |Gl (B, 2v/))
1 1
c
< 16125 (Bet, 1)) < S5l (37)
1
Since b; is supported in B; for each i by (b), it is easy to see that

4
J <—- / Vr([I — H.(t;)]b;) dpk

35 oo LT, 10 = a0 ) ) 85) e

=L S () e, () @) ds) (@) 1s(0) e ),

where the last inequality can be check directly by the explicit express of I" (see (1.1)). For each
i and every y € R?, let

o 1/2
Jz(y) = /(QBf)C </O F(he(vy) - h€+t;(7y))(gj) dS) d,u,.g(fﬂ) (38)
Then

TS5 [ HOI) o) (39

So, by (b) and (c), it suffices to prove that, there exists a positive constant ¢ such that, for each

?,

sup J;(y) < e
yEDB;

For m =0,1,2,--- and y € R?, let
(m+1)t; 1/2
o= [ ([ T b)) @) ds) " o)
(QB;))‘" mt;

It suffices to estimate J™ for each m = 0,1,2,---. The conclusions are stated in the following
two claims, whose proofs are presented at the end of this section.

Claim (1). There exists a constant ¢ > 0 such that

Jm(y)§%7 yeBi, m=1,2,---. (3.10)
m

Claim (2). There exists a constant C' > 0 such that
Jy) <C2%? yeB,. (3.11)

Thus, combining (3.10) and (3.11) together, we obtain that for each ¢,

sup Ji(y) < Z sup J;"(y) < c(l + Z #) </,

YyEB: m=0YEB: m=1
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which together with (3.6) and (3.7) implies that
c
,u({x eRY: S Vp (I - Halt)]bi)(2) > )\/4}> < SISl - (3.12)
Part IV. Therefore, putting (3.2), (3.3), (3.4), (3.5) and (3.12) together, we obtain (3.1).
The proof of Theorem 1.1 is completed. O
Finally, we need to prove the two claims in Part III above.

Proof of Claim (1). By the Cauchy-Schwarz inequality, we get
(m~+1)t; 2 1/2
plz, z;) /
Jm :/ / T (hs(-y) — hose, (-, exp (26250 gs
0= o (L Tl = ) ) exp (28578 ) ds)

p('r’mi)Q
X exp ( - 57mti ) dpg (2)

< jim(y)(/(zBp)c exp ( — 25%) dpw(z ))1/2, (3.13)

K3

where we have set

e = [ [ 00— b ) @esp (52570 s, o)

mti

Now we estimate J/”. Lemma 2.3 implies that

N2
/ exp ( - 25M) dpi(z) < cp(B(ai, \/mti))e_‘s/(m‘/g). (3.14)
(ZBf)c mti
Since
we have

jzm(y) :/ /(mﬂ)ti F(/gs—kti Aghy(s,y) du) () exp (26%) ds dpu(x)

K2

/Rd/(mﬂ / s+ti L(Aghu(- ) () du) exp (26/)(:;7?)2) ds dp, ()

K3

=t /"fm+1)t1/ss+tl (/RdF(A"”"h“("y))( ) exp (25P(mtz) )dun( )) du ds.

where we applied the Cauchy—Schwarz inequality in the second inequality and Fubini’s theorem
in the last equality. Since s <u < s+1t;, mt; < s < (m+ 1)t;, we get t; L< (m+2)u~!. Since
y € By, and for every g € G, |gz — ;| < |gx — y| + |y — 24|, we have

p(z,x:) < plz,y) + |y — 2| < p(z,y) + Vi

Jf”(y) <t; /(mﬂ)tj/:ﬂi[/w F(A,{hu(~,y))(x) exp (25W> dun(ac)} du ds
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(erl)ti s+t; 2
Scti/ / [/ L(Axhu(-,y))(x) exp (125M> dun(m)} du ds.
mt; s R4 U

Applying (2.6) in Lemma 2.4, we deduce that, for small enough § > 0,

_ (m+1)tL s+t; 1
JiM(y) <ct; / ——— _ duds
s udu(B(y, Vu))
1

) (m~+1)t;
SCti / ——— ds
mt; SSM(B(yv \/g))

< ‘ :
m?u(B(y, v/mt;))
Thus, combining (3.13), (3.14) and (3.15) with the fact that
B(z;,v/mt;) C B(y,v/mt; + |z; —y|) C B(y, (vVm + 1)t;), y € By,

we have that, by (2.1), there exists a constant ¢ > 0 such that

p(Bwi, \/thi))e—Mmm)l P
m3u(B(y, v/mt;))
¢ (14+/m\dx/2 .
~m3/2 ( \/m ) = W’

mti

() <

for every y € B, and m =1,2,--- .

Q.H. LI

(3.15)

O

Proof of Claim (2). Similar as the argument carried out for J/™(y) in the proof of CLamM (1)

above, we have

exp ( - 25P(=’C;fi$i)2> dp,i(m))l/z,

2w < 2w ( [

(2Bf)°

where we have let

B t; p(x,lm)2
Rw= [ [ 000 ) e (57575) dodine).

2

Now we estimate J°. Again, by Lemma 2.3, we have

N2
/ exp ( - 25@) dp () < cp(By).
(2B0)¢ i

Note that y € B;. Since for every g € G, |gz — z;| < |gz — y| + |y — x;|, we have

p(z, ;) < p(z,y) + |y — x| < plz,y) + V1.

It is clear that for every @ € (2Bf)¢, 2/t; < p(z,x;) < p(z,y) + /Ti; hence, p(z,y)
which clearly implies that (2Bf)¢ C R?\ B*(y, v/#;). Hence

(xv xi)Q

N ti ps+t;
JP (y) Sti/o / /(23p) ' L(Axhy(-y)) () exp (25%) dpg(z) du ds

ti ps+t; 2 2 2t1
<o [ [ (@b @ess (282882 4 0) du ds
0oJs Jepr)e t

%

>V,
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ti pstt; l)( )2
Scti/ / / I'(Axhu(-,y)) () exp (85 ) dpy(z) du ds.
0Js  JRABe(y,vE) u

By (2.7), for small enough ¢ > 0, we have

Ce—ct,;/u

F<Anhu('7y))(x) exp (85@> dpe(z) < m

/Rd\BP(y,\/E)

Hence

-0 t; ps+t; efcti/u
JO(y) <cti / / T quds
0Js  ulnu(B f ))

c s+t 3 «(B(y, V1)) —
" 25, (B(y, V) // (B(y,f)) dud

c 3+d /2 etifu g g
t2un(B(y, / / dud

c

=~ (B(y. V)’

where the last inequality is due to the fact that Ry > ¢+ t3+9</2¢=¢ is hounded.
Thus, by the right inequality in (2.1), since B; C B(y, vt; + |y — z;|) C B(y, 2v/t;) for every
y € B;, we arrive at

B:) 1/2
Jo(y) < C _ x(Bi) N2 g, € B,
=< (bt vi) ’

for some constant C' > 0. O
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