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 A B S T R A C T

We solve the problem left in the recent paper by N. Gozlan et al [Potential Analysis 58, 2023, 
123–158], establishing the semi-log-convexity of semigroups associated with M∕M∕∞ queuing 
processes on the set of non-negative integers. Our approach is global in nature and yields the 
sharp constant.

1. Introduction and main results

Let Z+ denote the set of non-negative integers. In this note, we are concerned with M∕M∕∞ queuing processes taking values in 
Z+; for further background, see e.g. Gozlan et al. (2023), Chafaï (2006), Asmussen (2003).

Let N = Z+ ⧵ {0} and let 𝜆, 𝜇 > 0. We consider the M∕M∕∞ queuing processes (𝑋𝑡)𝑡≥0 on Z+ with input (or arrival) rate 𝜆 and 
service rate 𝜇. In other words, (𝑋𝑡)𝑡≥0 is a continuous-time Markov chain with the infinitesimal generator  given by

𝑓 (𝑛) ∶= 𝜆[𝑓 (𝑛 + 1) − 𝑓 (𝑛)] + 𝑛𝜇[𝑓 (𝑛 − 1) − 𝑓 (𝑛)], 𝑛 ∈ Z+,

for any function 𝑓 ∶ Z+ → R, where 𝑓 (−1) is identified as 𝑓 (0). Let (𝐴𝑡)𝑡≥0 be the semigroup generated by . For convenience, we 
define the traffic intensity 𝜌 = 𝜆

𝜇  and the function 𝑝 = 𝑝𝑡 = 𝑒−𝜇𝑡 for every 𝑡 ≥ 0. It is well known that the stationary distribution of 
(𝑋𝑡)𝑡≥0 is the Poisson law with parameter 𝜌, denoted by 𝜋𝜌, where

𝜋𝜌(𝑘) =
𝜌𝑘

𝑘!
𝑒−𝜌, 𝑘 ∈ Z+.

Recall that the discrete Laplacian 𝛥d, acting on function 𝑓 ∶ Z+ → R, is defined as
𝛥d𝑓 (𝑛) = 𝑓 (𝑛 + 1) + 𝑓 (𝑛 − 1) − 2𝑓 (𝑛), 𝑛 ∈ N.

In a recent work (Gozlan et al., 2023, Proposition 3.1), N. Gozlan et al. proved a semi-log-convexity property for the semigroup 𝐴𝑡. 
Specifically, they proved that for every 𝑡 > 0 and every non-zero function 𝑓 ∶ Z+ → [0,∞), the following inequality holds: 

𝛥d[log𝐴𝑡𝑓 ](𝑛) ≥ log

[

1
12

(

1 −
𝑝2

[

𝑝 + 𝜌(1 − 𝑝)2
]2

)]

, 𝑛 ∈ N. (1.1)

I Partially supported by the National Key R&D Program of China (No. 2022YFA1006000).
∗ Corresponding author.
E-mail addresses: chenhuige@baicgroup.com.cn (H. Chen), huaiqian.li@tju.edu.cn (H. Li).
https://doi.org/10.1016/j.spl.2025.110432
Received 19 August 2024; Received in revised form 31 March 2025; Accepted 3 April 2025
vailable online 15 April 2025 
167-7152/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/stapro
https://www.elsevier.com/locate/stapro
https://orcid.org/0000-0002-8566-0459
mailto:chenhuige@baicgroup.com.cn
mailto:huaiqian.li@tju.edu.cn
https://doi.org/10.1016/j.spl.2025.110432
https://doi.org/10.1016/j.spl.2025.110432


H. Chen and H. Li Statistics and Probability Letters 223 (2025) 110432 
It is easy to see that (1.1) is not sharp. Indeed, as 𝑡 → ∞, the right-hand side of (1.1) tends to − log(12), while the left-hand 
side may vanish. This follows from the fact that for any 𝑛 ∈ Z+ and any bounded 𝑓 ∶ Z+ → [0,∞), 𝐴𝑡𝑓 (𝑛)

𝑡→∞
→ ∫Z+

𝑓 d𝜋𝜌. Due to 
this discrepancy, the problem of improving (1.1) remains open, as noted in Gozlan et al. (2023, Remark 3.2). Recall that a function 
ℎ ∶ Z+ → [0,∞) is called log-convex if for any 𝑛 ∈ N, 𝛥dℎ(𝑛) ≥ 0, or equivalently, ℎ(𝑛)2 ≤ ℎ(𝑛+1)ℎ(𝑛−1). Inequality (1.1) provides a 
lower bound for 𝛥d(log𝐴𝑡𝑓 ), which is weaker than full log-convexity but retains a similar flavor—hence the term semi-log-convexity 
for 𝐴𝑡.

The inequality (1.1), including inequalities of this type in a broad sense, are of significant interest for several reasons. On the one 
hand, they play a crucial role in the approach developed in Eldan and Lee (2018) to study Talagrand’s convolution conjecture (also 
known as the 𝐿1-regularization effect) for the Ornstein–Uhlenbeck semigroup on R𝑑 ; see Lehec (2016) for the complete resolution 
of this case. The original conjecture, formulated by Talagrand Talagrand (1989) for the Hamming (or Boolean) cube, remains open, 
while recent work in Gozlan et al. (2023) has extended these investigations to other models including the M∕M∕∞ queue. On the 
other hand, inequality (1.1) exhibits deep connections to non-local Li–Yau type inequalities investigated recently. For instance, 
in Weber and Zacher (2023), such inequalities are established for the fractional Laplacian on R𝑑 , with a related discrete model 
discussed in Section 4 of the same paper, and in Li and Qian (2023), analogous results are derived for a class of non-local Schrödinger 
operators on R𝑑 , namely, Dunkl harmonic oscillators.

Our main contribution, contained in the following theorem, improves (1.1) by eliminating the extra constant 1
12 . 

Theorem 1.1.  For every non-zero function 𝑓 ∶ Z+ → [0,∞) and every 𝑡 > 0, 

𝛥d[log𝐴𝑡𝑓 ](𝑛) ≥ log

(

1 −
𝑝2

[

𝑝 + 𝜌(1 − 𝑝)2
]2

)

, 𝑛 ∈ N. (1.2)

Remark 1.2. Theorem  1.1 is sharp in the following sense: for every bounded function 𝑓 ∶ Z+ → [0,∞), both sides of (1.2) go to 0
as 𝑡 → ∞.

In the remaining part of this note, we aim to prove our main results.

2. Proofs of Theorem  1.1

We begin with some preliminary definitions. Let (𝑘, 𝑎) be the binomial law of parameters 𝑘 ∈ Z+ and 𝑎 ∈ [0, 1], adopting the 
conventions that (𝑘, 0) = 𝛿0 and (𝑘, 1) = 𝛿𝑘, where 𝛿𝑛 stands for the Dirac measure at 𝑛. Recall that

(𝑘, 𝑎) =
𝑘
∑

𝑗=0

𝑘!
𝑗!(𝑘 − 𝑗)!

𝑎𝑗 (1 − 𝑎)𝑘−𝑗𝛿𝑗 .

It is well known that, by the discrete analog of the Mehler formula (see equation (3) on page 321 of Chafaï (2006)), the law 
of the M∕M∕∞ queue 𝑋𝑡 introduced above can be represented as the convolution of the binomial law and the Poisson law. More 
precisely, for every 𝑡 ≥ 0 and every 𝑘 ∈ Z+, 

Law(𝑋𝑡|𝑋0 = 𝑘) = (𝑘, 𝑝𝑡) ∗ 𝜋𝜌𝑞𝑡 , (2.1)

where ∗ denotes the discrete convolution, 𝑞𝑡 = 1 − 𝑝𝑡 and recall that 𝜌 = 𝜆
𝜇  and 𝑝 = 𝑝𝑡 = 𝑒−𝜇𝑡 for every 𝑡 ≥ 0. This decomposition 

corresponds to the sum 𝑋𝑡 = 𝑌𝑡 + 𝑍𝑡, where (𝑌𝑡)𝑡≥0 and (𝑍𝑡)𝑡≥0 are independent processes such that Law(𝑌𝑡) = (𝑘, 𝑝𝑡) and 
Law(𝑍𝑡) = 𝜋𝜌𝑞𝑡 . Consequently, the semigroup action admits the representation: 

𝐴𝑡𝑓 (𝑘) ∶= E[𝑓 (𝑋𝑡)|𝑋0 = 𝑘] = E[𝑓 (𝑌𝑡 +𝑍𝑡)], 𝑘 ∈ Z+, (2.2)

for every function 𝑓 ∶ Z+ → [0,∞). Moreover, the process (𝑋𝑡)𝑡≥0 is reversible with respect to the Poisson law 𝜋𝜌: 

P(𝑋𝑡 = 𝑖 ∣ 𝑋0 = 𝑗)𝜋𝜌(𝑗) = P(𝑋𝑡 = 𝑗 ∣ 𝑋0 = 𝑖)𝜋𝜌(𝑖), 𝑖, 𝑗 ∈ Z+. (2.3)

To prove our main theorem, the next lemma is crucial. 

Lemma 2.1.  Let 𝑡 > 0. Denote 
𝐺𝑘(𝑛) = P

(

𝑋𝑡 = 𝑛 ∣ 𝑋0 = 𝑘
)

, 𝑘, 𝑛 ∈ Z+, (2.4)

and set

𝐾−1 = 𝑛
𝑛 + 1

(

1 −
𝑝2

[𝜌(1 − 𝑝)2 + 𝑝]2

)

, 𝑛 ∈ N.

Then, for every 𝑘 ∈ Z+ and every 𝑛 ∈ N, 

𝐺𝑘(𝑛)2 ≤ 𝐾𝐺𝑘(𝑛 + 1)𝐺𝑘(𝑛 − 1). (2.5)
2 
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Remark 2.2. (1) Recall that a function ℎ ∶ Z+ → [0,∞) is called ultra-log-convex if the mapping Z+ ∋ 𝑛 ↦ ℎ(𝑛)𝑛! is log-convex, or 
equivalently, ℎ(𝑛)2 ≤ 𝑛+1

𝑛 ℎ(𝑛+1)ℎ(𝑛−1) for all 𝑛 ∈ N. According to this, since 𝐾 ∈ ( 𝑛+1𝑛 ,∞) clearly, we may interpret inequality (2.5) 
as the semi-ultra-log-convexity of the function N ∋ 𝑛 ↦ 𝐺𝑘(𝑛) for each fixed 𝑘 ∈ Z+. For further background on the log-convexity 
and the ultra-log-convexity, including their various properties, applications and relationships, we recommend the interested reader 
to the comprehensive review (Saumard and Wellner, 2014).

(2) Lemma  2.1 can be generalized as follows. Let 𝑌  and 𝑍 be independent random variables such that Law(𝑌 ) = (𝑘, 𝑎) and 
Law(𝑍) = 𝑏, where 𝑎, 𝑏 ∈ [0, 1] and 𝑘 ∈ Z+. Define

𝐻𝑘(𝑛) = [(𝑘, 𝑎) ∗ 𝜋𝑏](𝑛), 𝑘, 𝑛 ∈ Z+,

and set

𝑀−1 = 𝑛
𝑛 + 1

(

1 − 𝑎2

[(1 − 𝑎)𝑏 + 𝑎]2

)

, 𝑛 ∈ N.

Then 

𝐻𝑘(𝑛)2 ≤ 𝑀𝐻𝑘(𝑛 + 1)𝐻𝑘(𝑛 − 1), 𝑘 ∈ Z+, 𝑛 ∈ N. (2.6)

The proof of (2.6) follows the same method as that used for (2.5). Furthermore, for a fixed 𝑡 > 0, if we take Law(𝑌𝑡) = Law(𝑌 ), 
Law(𝑍𝑡) = Law(𝑍), 𝑎 = 𝑝 and 𝑏 = 𝜌(1 − 𝑝), then (2.6) reduces to (2.5).

Proof of Lemma  2.1.  Fix 𝑡 > 0. Let 𝑌𝑡 and 𝑍𝑡 be independent such that Law(𝑌𝑡) = (𝑘, 𝑝) and Law(𝑍𝑡) = 𝜋𝜌(1−𝑝). Then, by (2.2), we 
clearly have

𝐺𝑘(𝑛) = P
(

𝑌𝑡 +𝑍𝑡 = 𝑛
)

, 𝑘, 𝑛 ∈ Z+.

Now we prove (2.5) by induction.
(1) Let 𝑘 = 0. Then, since P(𝑌𝑡 = 0) = 1 and Law(𝑍𝑡) = 𝜋𝜌(1−𝑝), by the independence, we have

𝐺0(𝑛) = P(𝑌𝑡 +𝑍𝑡 = 𝑛) = P(𝑌𝑡 = 0)P(𝑍𝑡 = 𝑛)

= P(𝑍𝑡 = 𝑛) =
[𝜌(1 − 𝑝)]𝑛

𝑛!
𝑒−𝜌(1−𝑝), 𝑛 ∈ N.

Hence
𝐺0(𝑛 + 1)𝐺0(𝑛 − 1)

𝐺0(𝑛)2
= 𝑛

𝑛 + 1

≥ 𝑛
𝑛 + 1

(

1 −
𝑝2

[𝜌(1 − 𝑝)2 + 𝑝]2

)

= 𝐾−1, 𝑛 ∈ N.

(2) Let 𝑘 = 1. Then, since Law(𝑌𝑡) = (1, 𝑝) and Law(𝑍𝑡) = 𝜋𝜌(1−𝑝), by the independence, we obtain
𝐺1(𝑛) = P(𝑌𝑡 = 1)P(𝑍𝑡 = 𝑛 − 1) + P(𝑌𝑡 = 0)P(𝑍𝑡 = 𝑛)

= 𝑝𝜋𝜌(1−𝑝)(𝑛 − 1) + (1 − 𝑝)𝜋𝜌(1−𝑝)(𝑛)

=
(

(1 − 𝑝) + 𝑝 𝑛
𝜌(1 − 𝑝)

)

[𝜌(1 − 𝑝)]𝑛

𝑛!
𝑒−𝜌(1−𝑝), 𝑛 ∈ N.

Hence

𝐺1(𝑛 + 1)𝐺1(𝑛 − 1)
𝐺1(𝑛)2

= 𝑛
𝑛 + 1

(

(1 − 𝑝) + 𝑝 𝑛+1
𝜌(1−𝑝)

)(

(1 − 𝑝) + 𝑝 𝑛−1
𝜌(1−𝑝)

)

(

(1 − 𝑝) + 𝑝 𝑛
𝜌(1−𝑝)

)2

= 𝑛
𝑛 + 1

(

(1 − 𝑝) + 𝑝 𝑛
𝜌(1−𝑝)

)2
−
(

𝑝
𝜌(1−𝑝)

)2

(

(1 − 𝑝) + 𝑝 𝑛
𝜌(1−𝑝)

)2

≥ 𝑛
𝑛 + 1

(

1 −
𝑝2

[𝜌(1 − 𝑝)2 + 𝑝]2

)

= 𝐾−1, 𝑛 ∈ N.
(3) Let 𝑘 = 𝑚 ∈ N ⧵ {1}. Suppose that for any 𝑚 > 2, 

𝐺𝑚−1(𝑛)2 ≤ 𝐾𝐺𝑚−1(𝑛 + 1)𝐺𝑚−1(𝑛 − 1), 𝑛 ∈ N. (2.7)

We need to prove that 

𝐺𝑚(𝑛)2 ≤ 𝐾𝐺𝑚(𝑛 + 1)𝐺𝑚(𝑛 − 1), 𝑛 ∈ N. (2.8)

Below, we divide the proof of (2.8) into two parts according to that 𝑛 = 1 and 𝑛 ∈ N ⧵ {1}.
3 
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(i) Let 𝑛 = 1. It suffices to prove that 

𝐺𝑚(1)2 ≤ 𝐾𝐺𝑚(2)𝐺𝑚(0). (2.9)

For convenience, let 𝑏 = 𝜌(1 − 𝑝). By the independence, we have

𝐺𝑚(0) = P
(

𝑌𝑡 +𝑍𝑡 = 0
)

= P
(

𝑌𝑡 = 0
)

P
(

𝑍𝑡 = 0
)

= (1 − 𝑝)𝑚𝑒−𝑏,

𝐺𝑚(1) = P
(

𝑌𝑡 +𝑍𝑡 = 1
)

= P
(

𝑌𝑡 = 1
)

P
(

𝑍𝑡 = 0
)

+ P
(

𝑌𝑡 = 0
)

P
(

𝑍𝑡 = 1
)

= 𝑚𝑝(1 − 𝑝)𝑚−1𝑒−𝑏 + (1 − 𝑝)𝑚𝑏𝑒−𝑏,

𝐺𝑚(2) = P
(

𝑌𝑡 +𝑍𝑡 = 2
)

= P
(

𝑌0 = 0
)

P
(

𝑍𝑡 = 2
)

+ P
(

𝑌𝑡 = 1
)

P
(

𝑍𝑡 = 1
)

+ P
(

𝑌𝑡 = 2
)

P
(

𝑍𝑡 = 0
)

= (1 − 𝑝)𝑚 𝑏2

2
𝑒−𝑏 + 𝑚𝑝(1 − 𝑝)𝑚−1𝑏𝑒−𝑏 +

𝑚(𝑚 − 1)
2

𝑝2(1 − 𝑝)𝑚−2𝑒−𝑏.

Hence, to show that (2.9) holds, it is equivalent to prove that 

[𝑚𝑝 + (1 − 𝑝)𝑏]2 ≤ 𝐾
[

(1 − 𝑝)2𝑏2

2
+ 𝑚𝑝(1 − 𝑝)𝑏 +

𝑚(𝑚 − 1)
2

𝑝2
]

, (2.10)

where

𝐾−1 = 1
2

(

1 −
𝑝2

[𝑏(1 − 𝑝) + 𝑝]2

)

.

Let 𝑢 = 𝑏(1 − 𝑝). Then, (2.10) can be rewritten as

(𝑚𝑝 + 𝑢)2
(

𝑢2 + 2𝑝𝑢
)

≤ (𝑢 + 𝑝)2
[

𝑢2 + 2𝑚𝑝𝑢 + 𝑚(𝑚 − 1)𝑝2
]

,

which is clearly equivalent to 

(1 − 𝑚)(𝑝2𝑢2 − 𝑚𝑝4) ≥ 0. (2.11)

By (2.7), 𝐺𝑚−1(1)2 ≤ 𝐾𝐺𝑚−1(2)𝐺𝑚−1(0) for any 𝑚 ∈ N such that 𝑚 > 2, which means that

(2 − 𝑚)[𝑝2𝑢2 − (𝑚 − 1)𝑝4] ≥ 0.

Hence

𝑝2𝑢2 ≤ (𝑚 − 1)𝑝4 ≤ 𝑚𝑝4.

Thus, (2.11) holds for any 𝑚 ∈ N ⧵ {1}, from which we conclude that (2.9) holds.
(ii) Let 𝑛 ∈ N ⧵ {1}. Let 𝑌𝑡 = 𝑌 ′

𝑡 + 𝜀𝑡, where Law(𝑌 ′
𝑡 ) = (𝑚 − 1, 𝑝) and Law(𝜀𝑡) = (1, 𝑝) such that 𝑌 ′

𝑡  and 𝜀𝑡 are independent and 
also independent of 𝑍𝑡 with Law(𝑍𝑡) = 𝜋𝜌(1−𝑝). Then

𝐺𝑚(𝑛) = P(𝑌𝑡 +𝑍𝑡 = 𝑛) = P(𝑌 ′
𝑡 + 𝜀𝑡 +𝑍𝑡 = 𝑛)

=
𝑛
∑

𝑗=0
P(𝑌 ′

𝑡 +𝑍𝑡 = 𝑗)P(𝜀𝑡 = 𝑛 − 𝑗)

=
𝑛
∑

P(𝑌𝑡′ +𝑍𝑡 = 𝑗)P(𝜀𝑡 = 𝑛 − 𝑗),

𝑗=1

4 
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where the last equality is due to the fact that P(𝜀𝑡 = 𝑛) = 0 since 𝑛 > 1. Thus, by the Cauchy–Schwarz inequality, we derive that

𝐺𝑚(𝑛) =
𝑛
∑

𝑗=1
P(𝑌 ′

𝑡 +𝑍𝑡 = 𝑗)P(𝜀𝑡 = 𝑛 − 𝑗)

≤
𝑛
∑

𝑗=1

√

𝐾 P(𝑌 ′
𝑡 +𝑍𝑡 = 𝑗 + 1)

1
2 P(𝑌 ′

𝑡 +𝑍𝑡 = 𝑗 − 1)
1
2 P(𝜀𝑡 = 𝑛 − 𝑗)

≤
√

𝐾
( 𝑛
∑

𝑗=1
P(𝑌 ′

𝑡 +𝑍𝑡 = 𝑗 + 1)P(𝜀𝑡 = 𝑛 − 𝑗)
)

1
2
( 𝑛
∑

𝑗=1
P(𝑌 ′

𝑡 +𝑍𝑡 = 𝑗 − 1)P(𝜀𝑡 = 𝑛 − 𝑗)
)

1
2

=
√

𝐾
(𝑛+1
∑

𝑗=2
P(𝑌 ′

𝑡 +𝑍𝑡 = 𝑗)P(𝜀𝑡 = 𝑛 − 𝑗 + 1)
)

1
2
(𝑛−1
∑

𝑗=0
P(𝑌 ′

𝑡 +𝑍𝑡 = 𝑗)P(𝜀𝑡 = 𝑛 − 𝑗 − 1)
)

1
2

≤
√

𝐾
(𝑛+1
∑

𝑗=0
P(𝑌 ′

𝑡 +𝑍𝑡 = 𝑗)P(𝜀𝑡 = 𝑛 − 𝑗 + 1)
)

1
2
(𝑛−1
∑

𝑗=0
P(𝑌 ′

𝑡 +𝑍𝑡 = 𝑗)P(𝜀𝑡 = 𝑛 − 𝑗 − 1)
)

1
2

=
√

𝐾 P(𝑌 ′
𝑡 +𝑍𝑡 + 𝜀𝑡 = 𝑛 + 1)

1
2 P(𝑌 ′

𝑡 +𝑍𝑡 + 𝜀𝑡 = 𝑛 − 1)
1
2

=
√

𝐾 𝐺𝑚(𝑛 + 1)
1
2 𝐺𝑚(𝑛 − 1)

1
2 .

Putting (i) and (ii) together, we prove (2.8).
Therefore, combining (1), (2) and (3) together, we complete the proof of (2.5). □

Now we are ready to prove our main result.

Proof of Theorem  1.1.  Let 𝑡 > 0 and let 𝑓 ∶ N → [0,∞) be not identical to 0. By the proof of Gozlan et al. (2023, Proposition 3.5), 
we have

𝛥d[log𝐴𝑡𝑓 ](𝑛) = log
𝐴𝑡𝑓 (𝑛 + 1)𝐴𝑡𝑓 (𝑛 − 1)

𝐴𝑡𝑓 (𝑛)2
, 𝑛 ∈ N.

Then, combining this with (2.2) and (2.3), we derive that
𝛥d[log𝐴𝑡𝑓 ](𝑛)

= log

(
∑∞

𝑘=0 𝑓 (𝑘)P(𝑋𝑡 = 𝑘 ∣ 𝑋0 = 𝑛 + 1)
)(
∑∞

𝑘=0 𝑓 (𝑘)P(𝑋𝑡 = 𝑘 ∣ 𝑋0 = 𝑛 − 1)
)

(
∑∞

𝑘=0 𝑓 (𝑘)P(𝑋𝑡 = 𝑘 ∣ 𝑋0 = 𝑛)
)2

= log
⎡

⎢

⎢

⎣

𝑛 + 1
𝑛

⋅

(
∑∞

𝑘=0 𝑓 (𝑘)𝜋𝜌(𝑘)𝐺𝑘(𝑛 + 1)
)(
∑∞

𝑘=0 𝑓 (𝑘)𝜋𝜌(𝑘)𝐺𝑘(𝑛 − 1)
)

(
∑∞

𝑘=0 𝑓 (𝑘)𝜋𝜌(𝑘)𝐺𝑘(𝑛)
)2

⎤

⎥

⎥

⎦

≥ log

⎡

⎢

⎢

⎢

⎣

𝑛 + 1
𝑛

⋅

(

∑∞
𝑘=0 𝑓 (𝑘)𝜋𝜌(𝑘)

√

𝐺𝑘(𝑛 + 1)
√

𝐺𝑘(𝑛 − 1)
)2

(
∑∞

𝑘=0 𝑓 (𝑘)𝜋𝜌(𝑘)𝐺𝑘(𝑛)
)2

⎤

⎥

⎥

⎥

⎦

, 𝑛 ∈ N, (2.12)

where 𝐺𝑘(𝑛) is defined in (2.4) and the Cauchy–Schwarz inequality is applied in the last inequality. Thus, by (2.5) and (2.12), we 
immediately have

𝛥d[log𝐴𝑡𝑓 ](𝑛) ≥ log
( 𝑛 + 1

𝑛
𝐾−1

)

= log
(

1 −
𝑝2

[𝜌(1 − 𝑝)2 + 𝑝]2

)

, 𝑛 ∈ N.

The proof is completed. □
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