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1. Introduction and main results

Let Z, denote the set of non-negative integers. In this note, we are concerned with M/M/co queuing processes taking values in
Z,; for further background, see e.g. Gozlan et al. (2023), Chafai (2006), Asmussen (2003).

Let N =Z, \ {0} and let 4, u > 0. We consider the M/M/co queuing processes (X,)», on Z, with input (or arrival) rate 4 and
service rate u. In other words, (X,),»( is a continuous-time Markov chain with the infinitesimal generator M given by

Mfm) == A+ D= fW]+nulfr—1D = f)], neZ,,

for any function f : Z, — R, where f(-1) is identified as f(0). Let (4,);5, be the semigroup generated by M. For convenience, we
define the traffic intensity p = # and the function p = p, = e™#' for every > 0. It is well known that the stationary distribution of
(X))i>o 1s the Poisson law with parameter p, denoted by z,, where

o
7y(k) = e, kELy.
Recall that the discrete Laplacian 4, acting on function f : Z, — R, is defined as

Agf(m)=fin+ D+ f—1D=2f(n), neN.

In a recent work (Gozlan et al., 2023, Proposition 3.1), N. Gozlan et al. proved a semi-log-convexity property for the semigroup A4,.
Specifically, they proved that for every ¢ > 0 and every non-zero function f : Z, — [0, ), the following inequality holds:

2
Ayllog A, f1(n) > log [é (1 - ﬁ)] . neN. 1.1
p+pl—p
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It is easy to see that (1.1) is not sharp. Indeed, as r — oo, the right-hand side of (1.1) tends to —log(12), while the left-hand
side may vanish. This follows from the fact that for any n € Z, and any bounded f : Z, — [0, ), A, f(n) iy fZ f dz,. Due to
this discrepancy, the problem of improving (1.1) remains open, as noted in Gozlan et al. (2023, Remark 3.2). Recall that a function
h:Z, — [0,00) is called log-convex if for any n € N, A4jh(n) > 0, or equivalently, h(n)?> < h(n+ 1h(n—1). Inequality (1.1) provides a
lower bound for 4,(log 4, f), which is weaker than full log-convexity but retains a similar flavor—hence the term semi-log-convexity
for A,.

The inequality (1.1), including inequalities of this type in a broad sense, are of significant interest for several reasons. On the one
hand, they play a crucial role in the approach developed in Eldan and Lee (2018) to study Talagrand’s convolution conjecture (also
known as the L!-regularization effect) for the Ornstein-Uhlenbeck semigroup on R¢; see Lehec (2016) for the complete resolution
of this case. The original conjecture, formulated by Talagrand Talagrand (1989) for the Hamming (or Boolean) cube, remains open,
while recent work in Gozlan et al. (2023) has extended these investigations to other models including the M/M/co queue. On the
other hand, inequality (1.1) exhibits deep connections to non-local Li-Yau type inequalities investigated recently. For instance,
in Weber and Zacher (2023), such inequalities are established for the fractional Laplacian on R¢, with a related discrete model
discussed in Section 4 of the same paper, and in Li and Qian (2023), analogous results are derived for a class of non-local Schrodinger
operators on R, namely, Dunkl harmonic oscillators.

Our main contribution, contained in the following theorem, improves (1.1) by eliminating the extra constant 1—12

Theorem 1.1. For every non-zero function f : Z, — [0, ) and every t > 0,

2
Agllog A, £1(n) > log (1 - "—2> neN. (1.2)
[p+ p(1 - p)?]

Remark 1.2. Theorem 1.1 is sharp in the following sense: for every bounded function f : Z, — [0, o), both sides of (1.2) go to 0
ast — oo.

In the remaining part of this note, we aim to prove our main results.
2. Proofs of Theorem 1.1

We begin with some preliminary definitions. Let B(k, a) be the binomial law of parameters k € Z, and a € [0, 1], adopting the
conventions that B(k,0) = §, and B(k, 1) = §,, where §, stands for the Dirac measure at n. Recall that

k
_ k! . i
B(k,a) = Z;) T -9
It is well known that, by the discrete analog of the Mehler formula (see equation (3) on page 321 of Chafai (2006)), the law
of the M/M/o queue X, introduced above can be represented as the convolution of the binomial law and the Poisson law. More

precisely, for every 1 > 0 and every k € Z_,
Law(X,| Xo = k) = B(k, p;) * 7, , 21

where * denotes the discrete convolution, ¢, = 1 — p, and recall that p = % and p = p, = e # for every ¢ > 0. This decomposition
corresponds to the sum X, = Y, + Z,, where (Y});5y and (Z,)», are independent processes such that Law(Y,) = B(k,p,) and
Law(Z,) = 7). Consequently, the semigroup action admits the representation:

A f() =Ef (X)X =kl =Elf Y, + Z)], ke€Z,, (2.2)
for every function f : Z, — [0, o). Moreover, the process (X,),» is reversible with respect to the Poisson law z,:

PX,=il| Xg=pr,() =PX, =j | Xog=D)n,(D), i,j€ELZL,. (2.3)

To prove our main theorem, the next lemma is crucial.

Lemma 2.1. Lett > 0. Denote

G =P(X,=n|Xg=k), knezZ,, 2.9
and set

K™ =L<1—L>, nen.

n+1 [p(1 = p)? + pI?

Then, for every k € Z, and every n € N,

G () < KGi(n+ 1)G(n—1). (2.5)
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Remark 2.2. (1) Recall that a function 4 : Z, — [0, ) is called ultra-log-convex if the mapping Z, > n — h(n)n! is log-convex, or
equivalently, A(n)? < ""llh(n+ 1)h(n—1) for all n € N. According to this, since K € (%, o) clearly, we may interpret inequality (2.5)
as the semi-ultra-log-convexity of the function N 3 n — G, (n) for each fixed k € Z,. For further background on the log-convexity
and the ultra-log-convexity, including their various properties, applications and relationships, we recommend the interested reader
to the comprehensive review (Saumard and Wellner, 2014).

(2) Lemma 2.1 can be generalized as follows. Let Y and Z be independent random variables such that Law()?) = B(k,a) and
Law(Z) = b, where a,b € [0,1] and k € Z, . Define

H,(n) = [Bk,a) * m)(n), k.n€Z,,

and set

M= " <1_a—2) neN
n+1 [A-ab+al?)’ ’

Then
H,n?> <MH,(n+1)H(n—1), keZ, neN. (2.6)

The proof of (2.6) follows the same method as that used for (2.5). Furthermore, for a fixed ¢t > 0, if we take Law(Y,) = Law()7),
Law(Z,) = Law(Z), a = p and b = p(1 — p), then (2.6) reduces to (2.5).

Proof of Lemma 2.1. Fix ¢ > 0. Let ¥, and Z, be independent such that Law(Y,) = B(k, p) and Law(Z,) = =
clearly have

s(1-p- Then, by (2.2), we

Gk(n)=IP’(Y,+Z,=n), k.neZ,.

Now we prove (2.5) by induction.
(1) Let k = 0. Then, since P(Y, = 0) = 1 and Law(Z,) = z,,_,), by the independence, we have

Go(n) = P(Y, + Z, = n) = P(Y, = O)P(Z, = n)

_ [p(1 - p)]" o—P1-p)
n! ’

=P(Z, =n) neN.

Hence
Go(n+ DGy(n—1) _ p
Gy(n)? T+l
2
> ! <1_P—) K, neN.
n+1 [p(1 = p)? + p?

(2) Let k = 1. Then, since Law(Y;) = B(1, p) and Law(Z,) = Tp(1—p)s

by the independence, we obtain
G () =PY, = )P(Z, =n— 1)+ P(Y, = OP(Z, = n)
=pry_p(n = 1)+ (1 = )z, _p(n)

= <(1 -p) +PL> Me—p(l—m,

N.
a-p)  al "e

Hence

n+l n—1
G+ G- _ o (A=P+05) (0 -0+ 05

G (n)? n+1 ((l—p)+pL)2

p(1-p)

o (0t - ()

n+1 o \?
((1 _p)+pp(1—p>)

2
G
n+1 [p(1 = p)* + pI?
=K_1, neN.
(3) Let k =m € N\ {1}. Suppose that for any m > 2,

Gpi1(? < KG,_(n+1)G,,_(n—1), neN. 2.7)
We need to prove that
G,n)? < KG,(n+1)G,(n—1), neN. (2.8)

Below, we divide the proof of (2.8) into two parts according to that n=1 and n € N\ {1}.
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(i) Let n = 1. It suffices to prove that

G,(1)? £ KG,,(2)G,,(0).

For convenience, let b = p(1 — p). By the independence, we have

G,(0)=P(Y,+Z =0)=P(Y,=0)P(Z, =0)
=(1-pe”,
G,(H=P(V,+2Z=1)
P(Y,=1)P(Z,=0)+P(Y,=0)P(Z =1)
mp(1 = py"~'e™" + (1 = p)"be™",
G, =P(V,+ 2 =2)
=P(Yp=0)P(Z =2)+P(Y,=1)P(Z,=1)+P(¥,=2)P(Z,=0)

2 ~1
= 1=y e 4 mp(1 = gy het 4 MO 2

(1 _ p)m72e7b.
Hence, to show that (2.9) holds, it is equivalent to prove that

— n)2p2 _
[mp+ (1 - pBI® < K [M +mp(1 - pp+ =D 2

B

2 2

where
2
k=1 <1 - p—) .
2 [b(1 = p) + p)?
Let u = b(1 — p). Then, (2.10) can be rewritten as
(mp + u)2 (u2 + 2pu) <(u+ p)2 [uz + 2mpu + m(m — 1)p2] s

which is clearly equivalent to

(1 =mp*u® = mp*) 2 0.

By (2.7), G,,_1(1)* £ KG,,_,(2)G,,_,(0) for any m € N such that m > 2, which means that
Q@ =mlp’u® = (m=1)p*] 2 0.

Hence
pru? < (m—Dp* <mp*.

Thus, (2.11) holds for any m € N\ {1}, from which we conclude that (2.9) holds.
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(2.9)

(2.10)

(2.11)

(ii) Let n € N\ {1}. Let Y, = Y/ + ¢,, where Law(Y,) = B(m — 1, p) and Law(e,) = B(1, p) such that ¥/ and ¢, are independent and

also independent of Z, with Law(Z,) = x,(;_,. Then
G, =P, +Z =n=PY/ +¢,+Z =n)

n
= Y B + 2, = )Pe, =n—))
j=0

n
= Y P, + Z, = )Pe, = n— ),
j=1
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where the last equality is due to the fact that P(¢, = n) = 0 since n > 1. Thus, by the Cauchy-Schwarz inequality, we derive that

Gum) = Y B(Y] + Z, = )P(e, = n— j)
j=1

M:

VKPR, + 2, _j+1)2[P’(Y’+Z — =13 P, = n—j)
=1

1y 1
\/_(ZP(Y’JrZ —j+1)]P’(£,—n—j)>2<Z]P’(Yt’+Zt=j—1)]P’(£,=n—j)>2

<.
Il

<
J=1 Jj=1
n+l % n—1 %
= \/_<ZIP’(Y’+Z = j)P(e, —n—]+1)> <Z[P(Y/+Z, =j)Pe,=n—j— 1))
=2 Jj=0

n+l 1 n—1
< \/_<ZIF’(Y’+Z —j)]P’(e,—n—j+1)>2<2P(Y,,+Zf=j)lp(€;=”_j_l)

Jj=0 Jj=0
1 1
= VKB +Z,+e,=n+ DIPY +Z, +¢,=n— 1)

= VK G, (n+1)3G,(n—1)3.
Putting (i) and (ii) together, we prove (2.8).
Therefore, combining (1), (2) and (3) together, we complete the proof of (2.5). []

N———
|

Now we are ready to prove our main result.

Proof of Theorem 1.1. Letz > 0 and let f : N — [0, c0) be not identical to 0. By the proof of Gozlan et al. (2023, Proposition 3.5),
we have

AS+ DA (=1
Atf(n)2
Then, combining this with (2.2) and (2.3), we derive that
Aqllog A, f1(n)
(I, FUOPX, = k | Xg = n+ D) (X2, fFOPX, = k | X =n— 1))
(I, FOPX, = k| Xy = m)’

nt1 (Xrzo fm,(K)Gi(n + 1) (X2, f(R)7, (k)G (n = 1))

Ayllog A, f1(n) = log , neN.

= log

=log . - -
(Z f(m, (k)G (m)
n+1 (Zk o fUOm, (H\/WW)
=l nen, (2.12)
! (I f 007, ()G ()

where G (n) is defined in (2.4) and the Cauchy-Schwarz inequality is applied in the last inequality. Thus, by (2.5) and (2.12), we
immediately have

1 2
Ad[logA,f](n)Zlog(n: 1>:10g<1—[p(1_2Tp]2>, neN.
The proof is completed. []
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