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Abstract

We investigate the boundedness of “vertical” Littlewood—Paley—Stein square functions
for the nonlocal fractional discrete Laplacian on the lattice Z, where the underlying
graphs are not locally finite. When g € [2, 00), we prove the /7 boundedness of the
square function by exploring the corresponding Markov jump process and applying
the martingale inequality. When g € (1, 2], we consider a modified version of the
square function and prove its /¢ boundedness through a careful in on the generalized
carré du champ operator. A counterexample is constructed to show that it is necessary
to consider the modified version. Moreover, we extend the study to a class of nonlocal
Schrodinger operators for g € (1, 2].

Keywords Fractional discrete Laplacian - Square function - Schrédinger operator -
Jump process
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1 Introduction

In classical harmonic analysis, the Littlewood—Paley square function plays an impor-
tant role in the study of the boundedness of Riesz transform, the boundedness of
Fourier multipliers, the convergence of non-tangential maximal functions, and so on.
The pivotal status has led to the in-depth investigation of Littlewood—Paley square
functions in different settings and for diverse objectives. However, when it comes to
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applications on partial differential equations for instance, what kind of square function
we employ depends on the semigroup chosen. Consequently, it stimulates the intensive
study of specific square functions associated with a given semigroup. See e.g. [9, 21,
28-30]. Last but not the least, the probabilistic counterpart of square functions is the
(predictable) quadratic variation of martingales, which have been also investigated a
lot; refer to [4, 5, 22, 23, 26, 27, 32] for instance.

The motivation of the present work is two fold. On the one hand, the boundedness of
“horizontal” (i.e., derivative w.r.t. the time variable) Littlewood—Paley—Stein square
function for discrete Laplacian was proved in some weight /” space over the one-
dimensional lattice Z in [6], and the regularity and extension problems of the fractional
discrete Laplacian on Z was studied recently in [7]. On the other hand, the Littlewood—
Paley—Stein square function for pure jump Lévy process on R¢ was investigated in
[3], which was also extended recently to the more general setting of Dirichlet forms
of pure jump type on metric measure spaces in [18] and in the setting of nonlocal
Schrodinger type operators in [17]; see also the very recent papers [16, 19] in the
Dunkl setting where the corresponding jump process may not be a Lévy process.

So, it would be interesting to consider the “vertical” (i.e., derivative w.r.t. the space
variable) Littlewood—Paley—Stein square function for the fractional discrete Laplacian
on lattices. In contrast to related results appeared in the literature, such as Dungey’s
consideration on uniformly locally finite graphs (see [13]), the graphs underlying the
Markov chain generated by the fractional discrete Laplacian on Z are locally infinite
(see Remark 2.1 for details).

2 Preparations and main results

In this section, we aim to present the main results. For this purpose, we shall introduce
some notions and notations which will be frequently used below.

Let Z be the one-dimensional lattice endowed with the counting measure #. Let
q € [1, oo]. For convenience, we use [ to denote the standard space [ (Z, #) with the
norm

1

1flly = (Z|f(x>|‘1> . 1<g<oo,

XEZ

and

1 flloo := sup | f(x)].
X€Z

Note that for any p > g > 1, we have [7 C [P C [*°.
Recall that the discrete Laplacian on Z, denoted by A, is defined as

Au(j)=u(G+1) =2u(j)+u(j -1, jei,

for every function u : Z — R.
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There are a couple of ways to introduce the fractional discrete Laplacian; see e.g.
[2, 10, 14, 24, 25, 30, 31]. Here we choose the semigroup approach; see e.g. [7, 24,
30]. We always assume that 0 < s < 1. For any suitable function u# : Z — R, define
the fractional discrete Laplacian L := (—A)® on Z as

1 ® A dt
Lu:F(—s)/o (e u—u)tlj,

where I" denotes the Gamma function and sT"(—s) = —I'(1 — ). Indeed, we have the
following pointwise nonlocal formula, established recently in [7, Theorem 1.1], i.e.,
for every u € Dy,

Lu(j) =Y (u(j) —um)K,(j —m), jeL, 2.0

meZ

where

Dyi={u:7Z—>R: Z|u(m)|(1+|m|)—(1+2~v><oo ,

mez
and the kernel

_ #T/2+s)  T(m|—s)

= 7
A=) Tml+1+s "%

K, (m)

with the convention that K;(0) := 0; moreover, there exists a constant ¢; € [1, 00),
depending on s, such that

-1

Ks(m) < lmc— m e 7\ {0}. 2.2)

S N
|m|1+2s = |1+2s’
We remark that /' C D; for every s € (0, 1).

In the present situation, the operator — L generates a Markov chain with state space
Z and L can be also written in the following way: for any u € D,

Lu() =Y Kl (1. — pi.j)u(i). i€,
JjeZ

where 1; ; = 1ifi = j and 1; ; = O otherwise, and

1
pi,j = ——K
ST Kl

Note that the one-step transition probabilities of the Markov chain is given by the

infinite matrix (p; ;)i jez such that, for each (i, j) € 72, pi,j is the probability of
jumping from the point i to the point j in the next step. See also [7, Remark 1.2].
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As we have mentioned before that the graphs underlying the Markov chain
generated by — L with the state space Z are not locally finite.

Remark 2.1 Let s € (0, 1) and let the triple (V, E, w) be the undirected weighted
graph such that V = Z is the set of vertices and E is the set of edges with edge weight
w; ;= Ks(i—j)foreveryi, j € Z. Assume that the weight on the vertices is constant.
Then the graph Laplacian on (V, E, w) is expressed as (2.1). Note that the Markov
chain (p; ;)i jez above has arbitrarily long jumps. Indeed, forany i, j € Zwithi # j,
the probability to jump from i to j is p; ; which is comparable to |i — j |=(429) py
(2.2). Hence, the graph (V, E, w) is locally infinite (equivalently, K has unbounded
support), which is in contrast to Dungey’s setting in [13]. For some basics on the graph
theory, see e.g. [15].

In the discrete space, it seems that the most natural gradient operator is the difference
operator D, defined as

Df(x)=f(x+1) = fx), xeZ,

for every function f : Z — R. However, we also introduce the modulus of gradient
|V - | and the modulus of the modified gradient |V - | as candidates for the “gradient”
operator. For every f € Dy and every x € Z, define

VA = | Y Ky —0lf@) — P |

YEZ

IV f1(x) = > Ks(y = 0Lf () = fO)P
(YEZ: | f(OI=|f W}

In the present work, we are interested in Littlewood—Paley—Stein square functions
associated with [D - |, |V - | and ﬁ - |, respectively.

Lets € (0, 1) andlet (e ~*£),>¢ be the semigroup corresponding to L. The “vertical”
Littlewood—Paley—Stein square functions that we consider are defined as follows: for
any f € (! and any x € Z,

« :
G(f)(x) = ( f |Ve’Lf|2<x>dz) ,
0

1

G(H) = (foo ﬁe—’LfP(x)dt)z ,
0

H(f)(x) = ( / ~ |DeL f|2(x)dt)2 .
0

Let g € [1, 00]. Our aim is to establish the boundedness of the above square
functions in /9. We say that G is bounded in /7 if G extends to /9 and there exists a
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constant ¢, > 0, depending only on g, such that

IG(Hllg <cqllfllg, [ el

The same for G and H. The main result is presented in the following theorem.

Theorem 2.2 For every q € (1, 2], the square functions G and H are bounded in 14.
For every q € [2, 00), the square functions G, G and H are bounded in 1.

Some remarks on Theorem 2.2 are in order.

Remark 2.3 (1) For g € (1, 2), the square function G may not be bounded; see the
counterexample given in Section 3. So, in this case, considering the modified
version G is necessary.

(2) For g € (1,2], in order to highlight the flexibility of our method, we may
consider the Littlewood—Paley—Stein square function associated with a class of
nonlocal Schrédinger operators and prove the boundedness in /4 by adapting the
approach employed for the proof of Theorem 2.2; see Corollary 2.4.

(3) Consider the discrete Laplacian A and its semigroup (') +>0. Define the
“horizontal” Littlewood—Paley—Stein square function or g-function as

g(f) = (fomt\%emf(zdtf .

It is well known that, by the general result [30, Corollary 1 on page 120] for
Markov semigroups on metric measure spaces, g is bounded in /¢ for all 1 <
q < o00. In the recent paper [6], it is proved that g is bounded in the weighted /¢
space for all ¢ € (1, co), where the weight is of Muckenhoupt type.

Let U be a non-negative function defined on Z and s € (0, 1). Consider the nonlocal
Schrddinger operator on Z, i.e.,

Ly = (=A)° +U,

which is understood in the sense of quadratic forms. Assume that Ly generates a
strongly continuous, contractive, symmetric and sub-Markovian semigroup on /2,
denoted by (e_’LU)tEO. Note that (e_tLU),Zo is the so-called “symmetric diffusion
semigroup” without the conservation property in the sense of the second paragraph
on page 65 in [30]. As a consequence, (¢ ~"FV),~ o may be extended to a strongly con-
tinuous, positive and contractive semigroup on [? for all ¢ € [1, 0o). For simplicity,
we keep using the same notation. Then, for each g € [1, 00), we have the semigroup
domination, i.e.,

O<eMuf<e ™y >0, fell,

where li stands for the cone of nonnegative functions in /9. We refer to [11, 12] for a
comprehensive study on Schrodinger operators.
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For a suitable function f : Z — R, define the Littlewood—Paley—Stein square
function in this case as

1

Gu(f) = (/OO (IVe™tu £12 4 [VUe v ) dt>2 ,
0

Then we have the following result.

Corollary 2.4 For every q € (1,2], the square functions Guy is bounded in 14, i.e.,
there exists a constant c; > 0, depending only on q, such that

IGu(H)lly < cqllfllg, f el

In Section 3, we construct a concrete counterexample to show that G is not always
bounded in /7 for all ¢ € (1,2). In Section 4, we present the proofs for Theorem
2.2 when g € (1, 2] and Corollary 2.4. In Section 5, we prove Theorem 2.2 when
q € [2, 00).

In what follows, for convenience, we also use P; (resp. PIU) to denote e 'L (resp.
e~!Lu) for every t > 0.

3 A counterexample

Let (;);~0 be the heat kernel corresponding to A. It is known that

—2t T

e
hi(x,y) = -

21 cos(u) cos(lx — ylu)du, x,yeZ, t>0;

see e.g. [6].
Lets € (0, 1) and t > 0. We use i to denote the imaginary unit. Set

1 a+ioco s
—/ e? % dz, A>0,a>0,
fs,t()‘) = 2mi a—ioco

0, »<0O.
Then f; ;(A) > 0 for every A > 0. Let g € [1, oo]. For every u € [9, we have
o
Pru(x) =/ Fea)e*u(x) dr
0

= /00 S5t (V) Z hi(x,m)u(m)dr, x €Z.
0

mezZ

In addition, we have the formula
s o0
el = / e M f (Wdr, t>0,a>0. (3.1)
0
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For these facts, refer to [33, Section 9, Chapter IX] and [25] for instance.
Now take

0 7\ {1},
f(x)={1’ e sy
x=1.

k]

It is clear that f € [ for all ¢ € [1, oo], and

00 6’72)‘ T
P, f(x) =/ fs,,(x)—f e W cos(|x — 1|u)dudr, x €Z. (3.2)
0 kU 0

Assume that x € Z and x > 1. Then, by (3.2) and the first inequality in (2.2), we
have

G(f)*(x)
/ S P FG+y) — PFOPK, () dr
YEZ\O)
> _ [P f(x+y) — P f(0)]
> ) 1 d
—/(; Cs VEZZ\{O} |y|1+25
/ o |y|1+2s
2
(/ fs ,(,\)—/ e cos(|x + y — 1{u) — cos(|x — 1|u)]dudk> dt
o] 6—2 2
3/0 —Il—;cl”k < i fS,(A)—/O 2“°S<“>[1—cos(|x—1|u)]dudx) dr

o0
3/0 —|1—x|1+2é </ fs,(x)e—“kdx) dr
—1 00
— CS ( —),‘43) dt
|1_x|1+2s/(; e ’

where we employed (3.1) in the last equality.
In particular, take s = L Then, 4 fooo e’2‘/§t dr = «/5, and we immediately have

1
IG(f)(x)] = ﬂ xeZ x> 1
p— 2|1 |3/41 b .
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Thus

IGHIE =D IG(H @)

X€Z

> > 1G(Hm)

m=2

45 —1\ 4
- \/§C1/4 i 1
- 2 m3a/4’

m=1

It is clear that, for every g € (1, %], we have |G(f)|; = oo.
Let us note in passing that the above example also shows that the “local doubling”
property is necessary in the paper [13].

4 Thecase1<qg <2

In this section, we aim to prove the boundedness of G and H in I, forallg € (1, 2],
as well as Corollary 2.4. At first, let us give a brief description of the idea of proof.
Let M be a Riemannian manifold, Apg be the Laplace—Beltrami operator, Vy be
the gradient operator, and | - | be the length in the tangent space. Let g € (1, 2]. The
classic argument used by Stein (see [29, 30]) depends on the following chain rule

Amf? =q(q— D2V fl> —qf ' ' Amf,

for every 0 < f € C°°(M). However, this chain rule is no longer valid for fractional
discrete Laplacian (—A)*. Following the idea of Dungey [13] (in the setting of locally
finite graphs), we introduce the pseudo-gradient operator I'y, i.e.,

T (f) =qfLf — f7ILfY,

for suitable nonnegative functions f defined on Z, and consider

H,(f) = (/Omrq (e*fo) dt)l/z, 0<fel.

By adapting Stein’s argument, we may prove the / boundedness of H, ; see Proposition

4.2. Hence, in order to show the /9 boundedness of G, and H, the problem left is to

compare I, and |% -, [V -] and |D - |, which hinges on a deep understanding of I';.
Given f € [9, define the semigroup maximal function f* by

frx) :=suple L fl(x), xeZ.

t>0

Then we have the following lemma which is proved in [30, p. 73] for much more
general contractive, symmetric sub-Markovian semigroups.
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Lemma 4.1 For every g € (1, 00l, there exists a constant ¢, > 0 depending only on
q such that

”f*”q = Cq”f”q, q € (1, 00].

We have the following boundedness property for H,,.

Proposition4.2 Let g € (1, 2]. There exists a constant c; > 0 depending only on q
such that

IHg(N)llg < cqll fllgs 0= fel.
Proof Letq € (1,2]and 0 < f € I'. Setu, := P, f for every t > 0. We have

-2 -1
u;’ Lyup) = qu? Lu; — Lu;’

—1
= qui™ ( + L)u, — (3 + L)(uy).
Since (3; + L)u, = 0, we immediately get

Ty = —u; 4@ + L) ().

Then
(Hef)* = /0 ) dr
_ _/Oou,zfq(a, + L)) dr
< (f*())2‘qJ,
where

J(x) :=—/ (8;+L)u;1(x)dt20, x € Z.
0

According to the Holder’s inequality and Lemma 4.1, there exists a constant c/q >0
such that

D (Hef@)" <D )12 (1)1

X€Z X€Z

2-q)/2 q/2
< [Z f*(x)"} [Z J(x)}

XEL X€EZ

q/2
A T A |:Z J(x)i| :

XEZL
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By (2.1), for each g € 1,

> (Le)x) =0.

X€Z

Hence

o) = —/oo (Z a,u?(x)> dr
0

X€Z XEZL

= _/oo ) (Zu?(x)> dt
0

XEZ

@ =111

X€Z

IA

Combining the above estimates together, we finally arrive at

S (Hef ) <cllfllg. 0<fel,

X€EL
for some constant ¢; > 0 depending only on g. O

In order to control the modulus of difference operator |D - | and the modulus of
modified gradient |V - | by I';(-) pointwise, we need the following lemma which
provides an explicit expression for I'y.

Lemma4.3 Letg € (1,2]. Forevery0 < f € 1! and every x € Z,

Ty (f)(x)
=Y K = »[af @) = FO) = FEO7TI(f) = fF(0)9)]

YEZ

1 1 — 2—q
=qg— 1) K —y)(f(x)—f(y))Z/ SRACY 7 du.
vez 0 [(I—w)fx)+uf()]

4.1

Proof According to the definition of I, the first equation in (4.1) can be obtained by
simple calculation, and we are left to prove the second equation.

Consider the Taylor expansion of the function t — ¢7. For any s, t > O with s # f,
we have

t
11— 59 =qs?7 't —s5)+qlqg — 1)/ (t— 1)t %dr
s

1—u
(1 —u)s +ut]?>-4

1
— 457 (1 — )+ qlg — @ —s)2/0 [
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Let 0 < f e l! such that f(x) # f(y). Taking s = f(x) and t = f(y) in the above
equality, we have

af (@) = fFO) = O = F(1))
= O — F) —qf T FO) = FE]
1 1—u
= ) (g — 1 - 2 / d
FOMaq = DU = f@)* | s T r o™
(1 —u) f(x)>4 .
—u) f(x) + uf (y)]*4

1
= —1 - 2 /
q(q = D(f &) = f(») 1
Thus, by the first equality of (4.1), we obtain

Ty ()(x)
=q(g— 1Y Kix=pIfx)—fomP

YEZ

! (1= w) f(x)*1 du
o (1—u)f(x)+uf(y)*

O

The next lemma shows that we can bound |D f| by I'; (/) in the pointwise sense.

Lemma4.4 Foranyq € (1, 2],

0<IVFPx) < prp 2_1)F (H), 0<fel xel, 4.2)

and there exists a constant ¢y > 0 such that
IDFP@) < ¢ [Tg(HE+D+Te(H®], 0= fel' xeZ  (@43)

Proof We divide the proof into two parts. Let 0 < f € [! and x € Z.

(i) Proof of (4.2). For f(x) > f(y),wehave (1 —u) f(x) +uf(y) < f(x), u €
[0, 1]. Then

/1 (1 —u)f(x)*™4 / -wfw =1
b [A=wf ) +ufonra o f@re Y

and hence, according to Lemma 4.3,
qg—1) 2
LN 20— 3 K&=»{@=fo)

{yeZ: fO=f»m}

_1 ~
= %Wﬂzm.
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@i1) Proof of (4.3).If f(x +1) > f(x),then (1 —u) f(x) +uf(x) < f(x + 1) for
every u € [0, 1], and hence,

! 1
dui/ (1—u)du = —-.
0

1 A —u)fx+1)*1
/ 2

[(A=—wfx+ 1) +ufx)]>4
Thus, by (2.2), we obtain
IDf*(x) = [f(x+ 1) — f(x)]?
A—uw)fx+1)*1

1
_ 2
=2+ D = Sl /o =i+ D) +ur@mpa ™
< C;Fq(f)(x + 1), “4.4)

for some constant C; > 0.
Iffx)= f(x+D,then (1 —u)f(x+1)+uf(x) < f(x) forevery u € [0, 1],
and hence,
1
5

/1 (1 —u)f(x)>4
0

1
[(1 =) f(x) 4+ uf (x + D]>~4 du > /O (I —u)du =

Thus, by (2.2) again, we get

IDfI(x) = (f(x + 1) — f(x))? 1 .
o (1= u)f ()24
=2G 4D = 70) /0 (-0 /() +uf+ DI
< ATy (), 4.5)

for some constant ¢ > 0.
Putting (4.4) and (4.5) together, we finally have

IDfP(x) < cg(Tg(NHx + D +T(H), x€Z,

for some constant ¢; > 0. |

Now we are ready to prove the Littlewood—Paley—Stein estimate for G and H.

Proof of Theorem 2.2 on G and H.

Let g € (1,2]. Since I! is dense in /9, by standard approximation, it suffices to
assume f €I

(1) Boundedness for G. Similar as the proof of [18, Proposition 2.6], we may

assume that 0 < f e I!. Applying (4.2) and Proposition 4.2, we deduce that

~ oo q/2
IGHWIG =Y (fo IVPtf(x)|2dt>

X€Z

2 [ee] d q/2
< _ ', (P,
_E(q(q—l)/o JPHO) r)
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c1 Y (Hgf())*

X€Z

alflid, 0<fel,

IA

IA

for some constants ¢y, ¢y > 0 depending only on ¢, which finish the proof of
boundedness for G in /9.
(2) Boundedness for H. By the sublinear property of H, it is enough to prove the

case when 0 < f e I!. Since ¢ € (1, 2], by (4.3) and Proposition 4.2, we have

IHOIG =) (/O IDP;flz(x)dt)z

X€EZL

<)) (/0 [Tg(Pf)@ + 1) + Ty (P ()] dr) 2

X€Z

i~ g i~ g
<y, (fo rq(P,f)(x+1)dt> +(/O Fq(Ptf)(x)dt)

<calfld, o< fel,

for some constants c3, c4 > 0 depending only on ¢, which completes the proof of
boundedness for H in /9. ~ O
Now we turn to consider the boundedness of Gy. The idea of proof is similar to
the null potential case tackled above. So we give a brief description on the proof with
necessary adaption.
Letg € (1, 2]. We introduce the pseudo-gradient associated with Ly = (—A)*+U.
For any suitable function f > 0, let

Tou(f)=qfLuf — f> 9Ly f9.

Let P,U = e LU ¢ > 0. For any f € 19, define the semigroup maximal function
14 by

* U
JG =sup|P fl.
t>0
Since (P,U) ¢>0 1S a contractive, symmetric sub-Markovian semigroup, we also have

1f5llg < cqllifllg. f e,

for some constant ¢, > 0 depending only on g.
Consider

1

(Hguf)(x) = (/ rq,U(Pth)(x)dt>2 , xeZ 0< fel.
0
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Then, similar as the proof of Proposition 4.2, there exists a constant ¢, > 0, depending
only on ¢, such that

IHouflly < cqllfllg. 0= fell. (4.6)
Now we begin the proof of Corollary 2.4.

Proof of Corollary 2.4 Letq € (1,2]. By standard approximation, it suffices to assume
that f € I'. Due to the lack of sublinear property of GU, we may consider | f| instead
of f as the proof presented in [17, Section 3]. So we assume in addition that f > 0.
By the nonnegativity of U and (4.2), we have

0 < [VFPx) 4+ U@) £2(x)
2
TR (N + U £2(x)

2
=< mrq,U(f)(x), x € Z.

Combining this with (4.6), we derive that

- o q/2
IGuHIE =" ( /0 (IVPY f17(x) + NﬁPZUfF(x))dr)

X€Z

Z<—2 /OOF (PUf)( )ol)q/2
< t
=2 \yg—n )y Tt

2 q/2
= (—) > (Hguf) @)

(¢ =) =
cllflld, 0< fell,

IA

for some constant ¢, > 0 depending only on g. O

5Thecase2 < g< o0

In this section, we turn to prove the Littlewood—Paley—Stein estimate for G in /¢ for all
g € [2, 00). The idea of proof is motivated by [3] for R¢-valued Lévy processes (see
also the recent [19] where the Markov jump process allows to be not a Lévy process).
Refer to [1, 24] for more details on Lévy processes.

Let (X;)r>0 be the discrete Markov process generated by —L with state space Z.
Denote by (F;)>0 the natural filtration of the process (X;);>¢. Fix f € Mand T > 0.
Consider

My :=Pr_;f(X;)—Prf(Xog), 0<t<T.
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Then, as in [3, 17], we have the following result. For each x € Z, let E, be the
expectation of the process (X;);>0o with initial distribution §,, where 4. stands for the
Dirac measure.

Lemma 5.1 (M;, Fi)o<i<T is a square integrable martingale with My = 0, and

t
(M), = /O SO [Proof Ko+ ) — Proy FOOPK (0 ds, 1 €0, T],

VEZ
where (M); stands for the predictable quadratic variation of M;.

Proof The first assertion is clear. Let x € Zand 0 < < T. Then

E, (M?) = E:[(Pr—if (X) = Prf (X0))’]
= E[(Pr— )*(X0)] = 2Pr f(OEL[Pr—i £ (X)] + (Pr f)* (x)
= P (Pr—f)* (x) — (Pr f)* (x).

Hence, forany 0 <s <t < T, we have

E.(M? — M?) = P,(Pr— f)*(x) — Po(Pr— f)*(x)

t d 5
=/ d_Pu(PT—uf) (x) du
s du
t
= / (= LPy(Pr—uf)*(x) + Pul2Pr_y f(LPr_, )](x)) du
t
= [ P LPrap? 2P f L )@

t
_ / PIV Pr—u £ ()12 du
5

=E, (f |VP”f<Xu>|2du) :

Thus, {M}? — f(; |VPr_s f (X;) |*ds, F;},_, is a martingale, and

t>0

t
(M), = /0 |V Pr_s f(X)I*ds

t
- fo S Pry f(X, + ) — Pr_y fXOPK, () ds.

Y€EZ

O
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Let (ps):>0 be the heat kernel of (P;);~¢. For every f € ' and every x € Z, set

1/2
G*(f)(x):=f0 SIS G A W) — P@Pp DK dr |
¥,2€Z
and
. 1/2
G (f)(x) := /0 D AP+ y) = PP pi(x, K (y) di

V,2€Z

Note that, for every x € Z, as T — oo, we have G 1 (f)(x) increases to G, (f)(x).

Indeed, we have following crucial formula for G, 7 (f) which, loosely speaking,
expresses G 1 (f) as the conditional expectation of the predictable quadratic variation
of the martingale M; introduced above.

Lemma5.2 Let T > 0. For every f € 1!,

Gur(fP(x) =Y E:({(M)7|X7 = x)pr(z.%), x €L

€L

Proof Indeed, by Lemma 5.1, we have

ZE1(<M)T|XT = x)pr(z, x)

z€Z
T
=) E, f S IPr o f Xo+ ) = Proof (X)? Ko(y) ds| X7 = x | pr(z, %)
z€Z YEL

T
=2 (Z w/ﬂ S UPros fw+¥) = Pry f@) K () ds) pr(z,x)
€Z

X
weZ pr(z, x) YeEZ

T
= [ SR = PR 0K ) ds

weZ yeZ
=Gor()*(x), xeZ

Now we are ready to complete the proof of Theorem 2.2.

Proof of Theorem 2.20on G Let g € [2,00), T > 0 and f € I!. Clearly, ||(~;||q and
| H |4 is bounded by ||G||,. Hence, it suffices to prove that G is bounded in /9.

Denote the quadratic variation of M by [M]. Then, by [8, Remark 11.5.8] (see also
Lemma 6 on page 75 of [20] for the general case where T is a stopping time), there
exists some constant C; > 0 depending only on g such that

E ((M)?) <C,E ([M];) . 5.1
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According to Lemma 5.2, Jensen’s inequality, (5.1) and the Burkholder—Davis—Gundy
inequality (see e.g. [8, Theorem 11.5.5]), we obtain

[T

D Gur (NI =Y | D E.(M)r|Xr = x)pr(z, x)

X€Z x€Z \z€Z

=Y Y (<M>§|XT = x) pr(z, %)

x€Z zel

= ZEZ ((M)é)

Z€ZL

<¢, Y E, ([M]?)

Z€Z

< C) > E(IM7]9)

Z€Z

< Cy Y (Bl f XD + Prlf17(2)

€L

<207 Y 1f @I,

€L

where in the last two inequalities we applied the elementary inequality, i.e., (a +b)? <
C,’]”(aq + b%) for every a, b > 0, and the contraction property of P7 in [9, where
C,. C;, C;' are positive constants depending only on ¢. Taking T — oo, by the
monotone convergence theorem, we have

Y G () =2C) Y If W

X€ZL X€Z

We claim that G(f)(x) < ﬁG*(f)(x), x € 7Z. Indeed,

G*()(x) = /O SOIPf(x+y) = P f@)PK(y) de

yEZ

5/0 S P[Py ) — Py f )] Ko () de

YEZ

=f SN IP fa+ ) = Py @[ Py (x 9K, () dr
0

z€Z yel

- 2/(; ZZ|Ptf(Z+)’) — P f 1P pi(x, 2)K(y) de

z€Z yel
=2GX(f)(x), x €,
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where the inequality is due to that

|Pi(x +y) = P f Ol = PryalPrya f (4 ) = PrpplPrya f1(00)]
=1Pf P2 fC+y) = PipfOYO < PiplPrp f(+y) — P fOlX).

Thus, we arrive at

IG(Nllg < cqllfllg, £ el

for some constant ¢; > 0 depending only on g.

Finally, for every f € [9, by the density and Fatou’s lemma, we finish the proof of

the boundedness of G in /4 for all g € [2, 00). O
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