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HUAIQIAN LI AND BINGYAO WU

(Communicated by Zhen-Qing Chen)

Abstract. We estimate the rate of convergence for the Kantorovich (or
Wasserstein) distance between empirical measures of i.i.d. random variables
associated with the Laguerre model of order α on (0,∞)N and their common
law, which is not compactly supported and has no rotational symmetry. Com-
pared with the Gaussian case, our result is sharp provided the parameter α
and the dimension N are chosen in a specified regime.

1. Introduction

Let M be a Polish space and let (Zn)n∈N be a sequence of i.i.d. M-valued random
variables with common distribution m. Define the empirical measures associated
with (Zn)n∈N as

mn =
1

n

n∑
k=1

δZk
, n ∈ N,

where δ· stands for the Dirac measure. It is well known that, by the Glivenko–
Cantelli theorem (see e.g. Theorem 7.1 on page 53 of [20]), almost surely, the
sequence of random probability measures (mn)n∈N converges weakly tom as n → ∞.
So, what about the rate of convergence and in what sense?

Let d be the metric on M inducing the given topology of M and let P(M) be
the class of all Borel probability measures on M. For every p ∈ [1,∞), define the
(pseudo) Kantorovich (or Wasserstein) distance Wp : P(M) × P(M) → [0,∞] as
the infimum

Wp(μ, ν) := inf
π∈Π(μ,ν)

(∫
M×M

d(x, y)p π(dx, dy)
)1/p

, μ, ν ∈ P(M),
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3620 HUAIQIAN LI AND BINGYAO WU

where Π(μ, ν) is the class of all Borel probability measures on the product space
M×M with marginals μ and ν, respectively. For p ∈ [1,∞), let

Pp(M) =
{
μ ∈ P(M) :

∫
M

d(x, o)p μ(dx) < ∞
}
,

where o is an arbitrary point in M. It is well known that, for each p ∈ [1,∞), con-
vergence in the Kantorovich distance Wp implies the weak convergence of sequences
from Pp(M) in general, and if M is compact, then Wp metrizes the weak topology;
see e.g. [24, Theorem 6.9 and Corollary 6.13]. See also [24] for more details on the
Kantorovich distance and its connection to the optimal transport theory.

So, it is natural to consider the (often challenging) problem of quantifying the
rate of convergence of Wp(mn,m) as n → ∞.

It is reasonable to see that a solution to this problem involves the distribution m

and also the geometry and topology of the space (M, d). Being a classic subject with
numerous applications, this kind of problem has attracted intensive investigation;
see e.g. [1,2,4,7,8] for the i.i.d. case, [8,22] for the Markov chain case, also [13–15,
25, 26, 28, 29] for the case of continuous-time (subordinated) diffusion processes on
compact or noncompact Riemannian manifolds with or without boundary and [27]
for the non-symmetric case, and even [9] for the case of (non-Markovian) fractional
Brownian motions on the flat torus and [16] for the subordinated case.

The aim of the present work is to quantify the Kantorovich distance between
empirical measures of i.i.d. random variables associated with the Laguerre model
and their common distribution. The motivation comes from recent studies on the
i.i.d. case associated with the Ornstein–Uhlenbeck (abbrev. OU) or Hermite model
[11,12] and the Jacobi model [30], respectively. The OU case corresponding to the
standard Gaussian distribution which is rotationally symmetric and the Jacobi case
corresponding to the Beta distribution which has compact support. However, the
Laguerre case corresponding to the exponential distribution which has neither the
compact support nor the rotational symmetry.

We should mention that, the Laguerre model is naturally associated with the
Laguerre polynomial, which is one of the four classes of classical orthogonal poly-
nomials and plays an important role in physics and mathematics; see [10]. More-
over, being a typical example of the Sturm–Liouville operator, the Laguerre model
has been studied intensively in analysis and probability; see e.g. [3, 18, 19, 21] and
references therein.

In Section 2, we recall the Laguerre model and introduce the main results, and
in Section 3, we present proofs of our main results.

2. Preliminaries and main results

We begin with the introduction of the Laguerre model; see [3, 18, 19] for more
details.

Let N ∈ N and R> = (0,∞). Let α = (α1, · · · , αN ) be a multi-index from
(−1,∞)N . For each x ∈ R

N
> , we always write x = (x1, · · · , xN ). Consider the

probability measure given by

μα(dx) =

N∏
i=1

xαi
i e−xi

Γ(1 + αi)
dx,
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ASYMPTOTICS OF LAGUERRE MODEL 3621

where Γ(·) stands for the Gamma function and dx denotes the Lebesgue measure
on R

N . The Laguerre (differential) operator of type α, denoted by

Lα =

N∑
i=1

[
xi∂

2
xi

+ (αi + 1− xi)∂xi

]
,

is non-positive and symmetric in L2(RN
> , μα), and Lα has a self-adjoint extension

in L2(RN
> , μα) which is denoted by the same notation.

Let N0 = {0} ∪N. Consider the N -dimensional Laguerre polynomials of type α,
i.e.,

Lα
n(x) =

N∏
i=1

Lαi
ni
(xi),

for every n = (n1, · · · , nN ) ∈ N
N
0 and every x = (x1, · · · , xN ) ∈ R

N
> , where for each

i = 1, · · · , N , Lαi
ni
(xi) is a one-dimensional Laguerre polynomial with degree ni of

type αi given by

Lα
ni
(xi) =

1

ni!
x−αi
i exi

dni

dxni
i

(
xni+αi
i e−xi

)
.

For every n ∈ N
N
0 with n = (n1, · · · , nN ), set n! :=

∏N
i=1 ni! and |n| := n1+· · ·+nN .

Let

lαn(x) =
√
n!

N∏
i=1

Lαi
ni
(xi)

Γ(1 + αi + ni)
, x = (x1, · · · , xN ) ∈ R

N
> ,

be the normalized Laguerre polynomials. It is well known that the family {lαn :
n ∈ N

N
0 } is an orthonormal basis of L2(RN

> , μα), and each lαn is an eigenfunction of
−Lα with corresponding eigenvalue |n|, i.e.,

−Lαlαn = |n|lαn , n ∈ N
N
0 .

The Laguerre semigroup generated by Lα is denoted by {Pα
t }t≥0, which is known

to be a symmetric diffusion semigroup in the sense of Stein [23, page 65] (see .e.g.
[18]) and can be represented by

Pα
t f(x) =

∫
RN

>

pαt (x, y)f(y)μ
α(dy), f ∈ Lp(RN

> , μα), t > 0,

for all p ∈ [1,∞], where {pαt }t>0 is the Laguerre kernel given by

pαt (x, y) =
∑
k∈NN

0

lαk (x)l
α
k (y)e

−|k|t, x, y ∈ R
N
> , t > 0.

Indeed, pαt (x, y) is strictly positive and infinitely differentiable w.r.t. (t, x, y) in
(0,∞)× R

N
> × R

N
> , and more precisely (see e.g. [10, page 78]),

pαt (x, y) =

N∏
k=1

Γ(1 + αk)
exp

[
− e−t

1−e−t (xk + yk)
]

(1− e−t)(e−txkyk)αk/2
Iαk

(
2
√
e−txkyk

1− e−t

)

=:
N∏

k=1

pαk
t (xk, yk), (t, x, y) ∈ R

1+2N
> ,
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where for each λ ∈ R, Iλ is the modified Bessel function of the first kind (also called
Bessel function of imaginary argument) with order λ, defined as

Iλ(x) =

∞∑
j=0

1

Γ(j + 1)Γ(λ+ j + 1)

(x
2

)λ+2j

, x ∈ R>;

see e.g. [10, Section 5.7]. Moreover, by [17, (4.5) and (4.6)], for each k = 1, · · · , N ,
there exists constants Ck, ck > 0 depending only on αk such that

(2.1) ckφt(xk, yk) ≤ pαk
t (xk, yk) ≤ Ckφt(xk, yk), (t, xk, yk) ∈ R

3
>,

where
(2.2)

φt(x, y) :=

⎧⎨
⎩

1
(1−e−t)α+1 exp

(
− e−t(x+y)

1−e−t

)
, 0 < xy < (1−e−t)2

4e−t ,

(4e−txy)−α/2−1/4

e(1−e−t)1/2
exp

(
− e−t(x+y)−2(e−txy)1/2

1−e−t

)
, xy ≥ (1−e−t)2

4e−t .

Indeed, (2.2) comes from standard estimates on the modified Bessel function of the
first kind.

Now consider the case when N = 1. Let α ∈ (−1,∞). It is easy to see that, for
every f ∈ C2(R>), the carré du champ associated with Lα is given as follows, i.e.,

Gα(f)(x) :=
1

2

[
Lα(f2)− 2fLαf

]
(x) = x

[
f ′(x)

]2
, x ∈ R>.

Then (R>, μ
α,Gα) is a Markov Triple; see [3] for more details. It is easy to see that

the intrinsic metric induced by the Markov Triple (R>, μ
α,Gα) is given by

	(x, y) =

∣∣∣∣
∫ y

x

1√
t
dt

∣∣∣∣ = 2|
√
x−√

y|, x, y ∈ R>.

Let p ∈ [1,∞) and let P(RN
> ) be the class of all Borel probability measures on R

N
> .

On the product space R
N
> , we endow the metric

	N (x, y) =
( N∑

j=1

	(xj , yj)
2
)1/2

, x = (x1, · · · , xN ) ∈ R
N
> , y = (y1, · · · , yN ) ∈ R

N
> .

We use 	N (0, ·) to denote the distance to the boundary {0} of R
N
> . Obviously,

	N = 	 when N = 1. For every μ, ν ∈ P(RN
> ), recall the (pseudo) Kantorovich

distance of order p between μ and ν, i.e.,

Wp(μ, ν) =
(

inf
γ∈Π(μ,ν)

∫
RN

>×RN
>

	N (x, y)p γ(dx, dy)
)1/p

∈ [0,∞],

where Π(μ, ν) is the set of all couplings of μ and ν, i.e., the set of Borel probability
measures γ on R

N
> ×R

N
> with marginals γ(A×R

N
> ) = μ(A) and γ(RN

> ×B) = ν(B)
for all Borel subsets A,B of RN

> . In what follows, we concentrate on the quadratic
Kantorovich distance W2.

The main result is presented in the next theorem. In what follows, we employ
the notation a 	 b, which means that a ≤ cb for some positive constant c > 0, and
c may be either numerical or depend only on the parameters N,α but never on n.
And we write a 
 b if both a 	 b and b 	 a hold. For every α = (α1, · · · , αN ) ∈ R

N ,
set α� := α1 + · · ·+ αN .
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Theorem 2.1. Let n ∈ N, α ∈ [−1/2,∞)N and X1, · · · , Xn be independent random
variables on R

N
> with common distribution μα. Set

μn =
1

n

n∑
j=1

δXj
.

Then, for every large enough n,

E
[
W2(μn, μ

α)2
]
	

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

logn
n1/(α�+N) , α� ∈ (1−N,∞),

(logn)2

n , α� = 1−N,

(logn)2(α�+N)−1

n , α� ∈ (1/2−N, 1−N),

log log n
n , α� = 1/2−N.

(2.3)

Some remarks are in order.

Remark 2.2. Compared with the main result in [11], for the case when N = 1
and α = −1/2, the rate (log log n)/n in (2.3) coincides with the one-dimensional
OU case, and for the case when N = 2 and α = (α1, α2) = (−1/2,−1/2), the rate
(logn)2/n in (2.3) coincides with the two-dimensional OU case. We should mention
that the rate (log n)2/n is sharp for the OU case in the critical two-dimension
situation which is obtained recently in [6]; refer also to the aforementioned paper
for the precise renormalized limit. However, when N ≥ 3, the result in (2.3)
contains an extra factor log n which is worse than the OU case in [12, Theorem
1.1].

Remark 2.3. The ultra-contractivity, which plays an important role in [2,26,28–30],
fails for {Pα

t }t>0. Indeed, for every t > 0,

‖Pα
t ‖L1(RN

> ,μα)→L∞(RN
> ,μα) := sup

‖f‖
L1(RN>,μα)

≤1

‖Pα
t f‖L∞(RN

> ,μα)

= sup
(x,y)∈R2N

>

pαt (x, y) = ∞.

Consider the N = 1 case. Applying (2.2), we have for any x ≥ 1−e−t

2e−t/2 ,

φt(x, x) =
(4e−tx2)−α/2−1/4

e(1− e−t)1/2
exp

(2e−t/2x(1− e−t/2)

1− e−t

)
,

and hence
sup

(x,y)∈R2
>

φt(x, y) ≥ sup
x≥ 1−e−t

2e−t/2

φt(x, x) = ∞,

which together with (2.1) clearly implies that sup(x,y)∈R2
>
pαt (x, y) = ∞.

Due to technical issues, we are not able to obtain reasonable upper bound esti-
mates on E[Wp(μn, μ

α)p] for other p’s at the moment. The problem seems much
more complicated than the OU case. So we leave it for future study.

3. Proofs of the main result

In this section, we present the proof of the main theorem. The proof is based on
the standard truncation argument and the PDE approach introduced in [5,11] and
[2], respectively.
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3624 HUAIQIAN LI AND BINGYAO WU

Proof of Theorem 2.1. Let R > 0 and let BR = B1
R × · · · × BN

R , where for each
k = 1, · · · , N , Bk

R := {y ∈ R> : 	(0, y) < R}, i.e., Bk
R = {y ∈ R> : y < R2/4}.

Set

μα
R =

1BR

μα(BR)
μα.

Let Y1, · · · , Yn be independent random variables with common distribution μα
R and

be also independent of X1, · · · , Xn. For each j = 1, · · · , n, define

Xj,R =

{
Xj , Xj ∈ BR,

Yj , Xj ∈ R
N
> \BR.

Then X1,R, · · · , Xn,R are independent with common distribution μα
R. Set

μn,R =
1

n

n∑
j=1

δXj,R
.

Let

fn,R,t(·) =
1

n

n∑
j=1

pαt (Xj,R, ·),

and denote μn,R,t = fn,R,tμ
α.

In order to estimate E
[
W2(μn, μ

α)2
]
, the idea is simply to write

E
[
W2(μn, μ

α)2
]
	E

[
W2(μn, μn,R)

2
]
+ E

[
W2(μn,R, μn,R,t)

2
]
+ E

[
W2(μn,R,t, μ

α)2
]
,

(3.1)

by applying the triangular inequality, and then estimate each term in the right
hand side of (3.1) which is presented respectively in Part (1)–(3).

Part (1). Estimate E
[
W2(μn, μn,R)

2
]
. By the convexity of W2

2 (see e.g. [24,

Theorem 4.8]) or by noticing that 1
n

∑n
j=1 δXj

(dx)δXj,R
(dy) ∈ Π(μn, μn,R), we

have

W2(μn, μn,R)
2 ≤ 1

n

n∑
j=1

	N (Xj , Xj,R)
2

=
1

n

n∑
j=1

	N (Xj , Yj)
21RN

>\BR
(Xj)

≤ 2

n

n∑
j=1

[
	N (0, Xj)

2 + 	N (0, Yj)
2
]
1RN

>\BR
(Xj).

Then

E
[
W2(μn, μn,R)

2
]
≤ 4

∫
RN

>\BR

	N (0, x)2 μα(dx)

= 16

∫
RN

>\BR

(x1 + · · ·+ xN )

N∏
j=1

x
αj

j e−xj

Γ(1 + αj)
dx1 · · ·dxN

=: f(R), R > 0.

Let

h(R) =
N∏
j=1

∫ ∞

R2/4

x
αj+1
j e−xj

Γ(1 + αj)
dxj , R > 0.
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Noting that BR = B1
R × · · · × BN

R , we may easily check that, as R → ∞, both
functions R �→ f(R) and R �→ h(R) have the same order. For each j ∈ {1, · · · , N},
it is easy to see that the integral∫ ∞

R2/4

x
αj+1
j e−xj dxj

has the order of R as R2(αj+1)e−R2/4 when R tends to ∞. Hence, as a function

of R, E
[
W2(μn, μn,R)

2
]
has at most the order R2(α�+N)e−R2/4 as R → ∞, where

α� := α1 + · · ·+ αN as before.
Now choosing R = 2(C log n)1/2 for some large enough constant C > 0, we derive

that there exists a constant c > 1 such that

E
[
W2(μn, μn,R)

2
]
	 1

nc
,(3.2)

for every large enough n.

Part (2). Estimate E
[
W2(μn,R, μn,R,t)

2
]
. Let

π̂(dx, dy) =
1

n

n∑
j=1

δXj,R
(dx)pαt (Xj,R, y)μ

α(dy), t > 0.

It is easy to check that π̂ ∈ Π(μn,R, μn,R,t) for every t > 0. Then

W2(μn,R, μn,R,t)
2 ≤ 1

n

n∑
j=1

W2

(
δXj,R

, pαt (Xj,R, ·)μα
)2

≤ 1

n

n∑
j=1

∫
RN

>

	N (Xj,R, y)
2pαt (Xj,R, y)μ

α(dy).

Hence

E
[
W2(μn,R, μn,R,t)

2
]

≤ 1

n

n∑
j=1

∫
RN

>

∫
RN

>

	N (x, y)2pαt (x, y)μ
α
R(dx)μ

α(dy)

≤ 1

μα(BR)

∫
RN

>

∫
RN

>

	N (x, y)2pαt (x, y)μ
α(dx)μα(dy)

=
4

μα(BR)

N∑
j=1

∫
R>

∫
R>

|√xj −
√
yj |2pαj

t (xj , yj)μ
αj (dxj)μ

αj (dyj)

=:
4

μα(BR)

N∑
j=1

Ij(t).

For convenience, we omit the subscript j in the expression of Ij and write

I(t) =

∫
R>

∫
R>

|
√
x−√

y|2pαt (x, y)μα(dx)μα(dy).
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3626 HUAIQIAN LI AND BINGYAO WU

Let φ(x) =
√
x, x ∈ R>. Then, for every t > 0,

I(t) =

∫
R>

∫
R>

|φ(x)− φ(y)|2pαt (x, y)μα(dx)μα(dy)

= 2

∫
R>

∫
R>

[
φ2(x)− φ(x)φ(y)

]
pαt (x, y)μ

α(dx)μα(dy)

= 2
[ ∫

R>

Pα
t (φ

2) dμα −
∫
R>

(Pα
t/2φ)

2 dμα
]

= 2
[ ∫

R>

φ2 dμα −
∫
R>

(Pα
t/2φ)

2 dμα
]

= −2

∫ t/2

0

( d

ds

∫
R>

(Pα
s φ)

2 dμα
)
ds

= −4

∫ t/2

0

∫
R>

(Pα
s φ)Lα(Pα

s φ) dμ
αds

= 2

∫ t/2

0

∫
R>

Gα(Pα
s φ) dμ

αds

≤ 2

∫ t/2

0

∫
R>

e−sPα
s G

α(φ) dμαds

= 2

∫ t/2

0

e−s ds

∫
R>

Gα(φ) dμα

≤ 1− e−t/2 ≤ t

2
,

where in the second equality we used the symmetry pαt (x, y) = pαt (y, x), in the
third equality we used the semigroup property of (Pα

t )t>0, in the fourth equality
we used the invariance of Pα

t w.r.t. μα, and in the first inequality we employed the
Bakry–Ledoux gradient estimate, i.e.,

Gα(Pα
s φ) ≤ e−sPα

s G
α(φ), s > 0,

since Lα satisfies the curvature-dimension condition CD(1/2,∞) when α ∈
[−1/2,∞) (see e.g. [3]).

Thus, for every t > 0 and for all large enough R > 0 such that μα(BR) ≥ 1/2,

E
[
W2(μn,R, μn,R,t)

2
]
≤ 2Nt

μα(BR)
≤ 4Nt.(3.3)

Part (3). Estimate E
[
W2(μn,R,t, μ

α)2
]
. This part is more technical. By [11, The-

orem 2] (see also [2] and [26]), i.e.,

W2(hμ
α, μα)2 ≤ 4

∫
RN

>

Gα
(
(−Lα)−1(h− 1)

)
dμα, h ≥ 0, μα(h) = 1,

Licensed to Seoul National University. Prepared on Fri Nov 21 02:07:59 EST 2025 for download from IP 147.46.181.172.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ASYMPTOTICS OF LAGUERRE MODEL 3627

we have

E
[
W2(μn,R,t, μ

α)2
]
≤ 4E

[ ∫
RN

>

Gα
(
(−Lα)−1[fn,R,t − 1]

)
(y)μα(dy)

]
(3.4)

= 4E
[ ∫

RN
>

(fn,R,t − 1)

∫ ∞

0

Pα
s (fn,R,t − 1) ds dμα

]

= 4E

∫ ∞

0

∫
RN

>

[
Pα
s/2(fn,R,t − 1)

]2
dμα ds

= 8E

∫ ∞

0

∫
RN

>

[
Pα
s (fn,R,t − 1)

]2
dμα ds.

Let y ∈ R
N
> . Set

g(y) :=
1

n

n∑
j=1

(
pαt (Xj,R, y)− E[pαt (Xj,R, y)]

)
, b(y) := E[pαt (Xj,R, y)]− 1.

Recalling that

fn,R,t =
1

n

n∑
j=1

pαt (Xj,R, ·),

we have

fn,R,t(y)− 1 = g(y) + b(y).(3.5)

Since

b(y) =

∫
RN

>

pαt (x, y)μ
α
R(dx)− 1(3.6)

=
1

μα(BR)

∫
R

N
>

[1BR
− μα(BR)]p

α
t (x, y)μ

α(dx)(3.7)

=
1

μα(BR)
Pα
t [1BR

− μα(BR)](y),(3.8)

we have

Pα
s b(y) =

1

μα(BR)
Pα
t+s[1BR

− μα(BR)](y).

By the invariance of (Pα
t )t>0 w.r.t. μα, it is immediate to see

μα(Pα
s b) =

1

μα(BR)

∫
RN

>

Pα
t+s[1BR

− μα(BR)] dμ
α = 0.

Hence, by this and (3.6), we have

μα[(Pα
t+s1BR

)2] =

∫
RN

>

μα(BR)
2(1 + Pα

s b)
2 dμα(3.9)

= μα(BR)
2
(
1 +

∫
RN

>

(Pα
s b)

2 dμα
)
.(3.10)
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Since X1, · · · , Xn are independent and have the common distribution μα, we derive

E
[
(Pα

s g(y))
2
]
= E

{( 1

n

n∑
j=1

[
pαt+s(Xj,R, y)− Epαt+s(Xj,R, y)

])2}

=
1

n
E
(
[pαt+s(X1,R, y)− Epαt+s(X1,R, y)]

2
)

=
1

n

[ ∫
RN

>

pαt+s(x, y)
2 μα

R(dx)−
(∫

RN
>

pαt+s(x, y)μ
α
R(dx)

)2]

=
1

n

[ ∫
RN

>

pαt+s(x, y)
2 μα

R(dx)−
1

μα(BR)2
(
Pα
t+s1BR

(y)
)2]

.

Hence, by (3.9), the symmetry and the semigroup property, we deduce that

∫
RN

>

E
[
(Pα

s g(y))
2
]
μα(dy)

(3.11)

=
1

n

∫
RN

>

∫
RN

>

pαt+s(x, y)
2 μα

R(dx)μ
α(dy)− 1

n

∫
RN

>

(
1 +

∫
RN

>

(Pα
s b)

2 dμα
)
dμα

(3.12)

≤ 1

n

∫
RN

>

[pα2(t+s)(x, x)− 1]μα
R(dx)−

1

n

∫
RN

>

(Pα
s b)

2 dμα.

(3.13)

Combining (3.5) and (3.11), we obtain∫
R

N
>

E
[
Pα
s (fn,R,t − 1)(y)

]2
μα(dy)(3.14)

=

∫
RN

>

E
[
(Pα

s g(y))
2 + (Pα

s b(y))
2
]
μα(dy)(3.15)

≤ 1

n

∫
RN

>

(
pα2(t+s)(x, x)− 1

)
μα
R(dx) +

(
1− 1

n

)∫
RN

>

(Pα
s b)

2 dμα.(3.16)

Since b has mean zero, by the Poincaré inequality implied by the curvature-
dimension condition CD(1/2,∞), we have∫

RN
>

(Pα
s b)

2 dμα ≤ e−s

∫
RN

>

b2 dμα, s > 0.

Note that, by (3.6),∫
R

N
>

b2 dμα =
1

μα(BR)2

∫
R

N
>

(
Pα
t [1BR

− μα(BR)]
)2

dμα

≤ 1

μα(BR)2

∫
RN

>

(
1BR

− μα(BR)
)2

dμα

=
1− μα(BR)

μα(BR)
.

Hence ∫
RN

>

(Pα
s b)

2 dμα ≤ e−s 1− μα(BR)

μα(BR)
, s > 0.
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As above, letting R = 2
√
C log n, we have some constant c > 1 such that

1− μα(BR) 	
1

nc
,

for every large enough n. Hence, together with (3.14), there exists a constant c > 1
such that ∫

R
N
>

E
[
Pα
s (fn,R,t − 1)(y)

]2
μα(dy)(3.17)

	 1

n

∫
RN

>

(
pα2(t+s)(x, x)− 1

)
μα
R(dx) +

1

nc
e−s, t, s > 0,(3.18)

for every large enough n.
Thus, combining with (3.4) and (3.17), we have some constants C > 0, c > 1

such that

E
[
W2(μn,R,t, μ

α)2
]
	 1

n

∫ ∞

0

∫
RN

>

(
pα2(t+s)(x, x)− 1

)
μα
R(dx) ds+

1

nc

=
1

2n

∫ ∞

2t

∫
RN

>

(
pαs (x, x)− 1

)
μα
R(dx) ds+

1

nc
, t > 0,

(3.19)

for R = 2
√
C log n and every large enough n.

Now we shall estimate∫ ∞

2t

∫
RN

>

(
pαs (x, x)− 1

)
μα
R(dx) ds.

Let x = (x1, · · · , xN ) ∈ R
N
> . By (2.1) and (2.2), it is easy to see that, for each

j = 1, · · · , N ,

p
αj

t (xj , xj) 	

⎧⎨
⎩

1
(1−e−t)αj+1 exp

(
− 2e−txj

1−e−t

)
, 0 < xj ≤ 1−e−t

2e−t/2 ,

(4e−tx2
j )

−αj/2−1/4

e(1−e−t)1/2
exp

(
− 2e−txj−2(e−tx2

j )
1/2

1−e−t

)
, xj >

1−e−t

2e−t/2 .

(3.20)

Recalling that

pαt (x, x) =
N∏
j=1

p
αj

t (xj , xj),

we have, for any large enough R > 0,∫
BR

pαt (x, x)dμ
α(x)

	
∫
B1

R×···×BN
R

( N∏
j=1

p
αj

t (xj , xj)x
αj

j e−xj

)
dx1 · · · dxN

=

N∏
j=1

∫
Bj

R

p
αj

t (xj , xj)x
αje−xj dxj

=
N∏
j=1

(∫ 1−e−t

2e−t/2

0

p
αj

t (xj , xj)x
αje−xj dxj +

∫ R2

4

1−e−t

2e−t/2

p
αj

t (xj , xj)x
αj

j e−xjdxj

)
.

(3.21)
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We need to estimate the two terms in the parentheses of (3.21), and, for sim-
plicity, we omit the subscript j here. According to (3.20), on the one hand, it is
easy to get that

∫ 1−e−t

2e−t/2

0

pαt (x, x)x
αe−x dx

	 1

(1− e−t)α+1

∫ 1−e−t

2e−t/2

0

exp
(
− 2e−tx

1− e−t

)
xαe−x dx

=
1

(1− e−t)α+1

∫ 1−e−t

2e−t/2

0

xα exp
(
− (1 + e−t)x

1− e−t

)
dx,

(3.22)

and on the other hand, when α ∈ [− 1
2 ,∞), we have

∫ R2

4

1−e−t

2e−t/2

pαt (x, x)x
αe−x dx

	
∫ R2

4

1−e−t

2e−t/2

(4e−tx2)−α/2−1/4

e(1− e−t)1/2
exp

(
− 2e−tx− 2(e−tx2)1/2

1− e−t

)
xαe−x dx

	 et(α/2+1/4)

(1− e−t)1/2

(1− e−t

e−t/2

)−α−1/2
∫ R2

4

1−e−t

2e−t/2

xα exp
(
− (1 + e−t − 2e−t/2)x

1− e−t

)
dx

	 1

(1− e−t)α+1

∫ R2

4

1−e−t

2e−t/2

xα exp
(
− (1 + e−t − 2e−t/2)x

1− e−t

)
dx.

(3.23)

Combining (3.22) and (3.23) with (3.21), for α ∈ [−1/2,∞)N , we have the following
estimate, i.e.,

∫
BR

pαt (x, x)μ(dx)

	
N∏
j=1

1

(1− e−t)αj+1

∫ R2

4

0

x
αj

j exp
(
− (1 + e−t − 2e−t/2)xj

1− e−t

)
dxj

=

N∏
j=1

1

(1− e−t)αj+1

∫ 1+e−t−2e−t/2

1−e−t
R2

4

0

( 1− e−t

1 + e−t − 2e−t/2

)αj+1

x
αj

j e−xj dxj

	
N∏
j=1

1

(1− e−t)αj+1θ2(αj+1)
μαj (Bj

θR)

=
1

(1− e−t)α�+Nθ2(α�+N)
μα(BθR),
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where θ := 1−e−t/2
√
1−e−t

and it obviously belongs to (0, 1) for every t > 0. Thus,

∫
RN

>

[pαt (x, x)− 1]μα
R(dx) =

1

μα(BR)

∫
BR

pαt (x, x)μ
α(dx)− 1

	 1

(1− e−t)α�+Nθ2(α�+N)
· μ

α(BθR)

μα(BR)
− 1.

(3.24)

If θR ≤ 1, then t ≤ 2 log(R
2+1

R2−1 ) ≤
8
R2 for large enough R > 0. Then

1

(1− e−t)α�+Nθ2(α�+N)

μα(BθR)

μα(BR)
− 1 	 (θR)2(α�+N)

(1− e−t)α�+Nθ2(α�+N)

	 R2(α�+N)

tα�+N
,

(3.25)

where we used the fact that μα(BR) ≥ 1/2 for large enough R > 0 and

μα(BθR) =

N∏
j=1

∫ (θR)2/4

0

x
αj

j e−xj

Γ(1 + αj)
dxj

	
N∏
j=1

(θR)2(αj+1) = (θR)2(α�+N).

If θR > 1, then e−t/2 < R2−1
R2+1 ∈ (0, 1), t > 0. Hence

μα(BθR)− (1− e−t/2)2(α�+N)μα(BR)

=
[
μα(BθR)− μα(BR)

]
+
[
1− (1− e−t/2)2(α�+N)

]
μα(BR)

≤ μα(BR)
[
1− (1− e−t/2)2(α�+N)

]
≤ 2(α� +N)μα(BR)e

−t/2.

Then

1

(1− e−t)α�+Nθ2(α�+N)

μα(BθR)

μα(BR)
− 1

=
1

(1− e−t/2)2(α�+N)

μα(BθR)

μα(BR)
− 1

=
μα(BθR)− (1− e−t/2)2(α�+N)μα(BR)

(1− e−t/2)2(α�+N)μα(BR)

≤ 2(α� +N)e−t/2

(1− e−t/2)2(α�+N)
.

(3.26)
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Combining (3.24), (3.25) and (3.26) with T = 2 log(R
2+1

R2−1 ) ≤
8
R2 for large enough

R > 0 and T 
 t, we obtain that, when α� +N > 1,

J :=

∫ ∞

2t

∫
RN

>

[ps(x, x)− 1] dμα
R(x)ds

=

∫ T

2t

∫
RN

>

[ps(x, x)− 1] dμα
R(x)ds+

∫ ∞

T

∫
R>

[ps(x, x)− 1] dμα
R(x)ds

	
∫ T

2t

R2(α�+N)

sα�+N
ds+

∫ ∞

T

e−s/2

(1− e−s/2)2(α�+N)
ds

	 R2(α�+N)

tα�+N−1
+R4(α�+N)−2;

when α� +N = 1,

J 	 R2 log

(
1

t

)
+R2;

when α� +N ∈ (1/2, 1),

J 	 R2(α�+N)T 1−α�−N +R4(α�+N)−2 	 R4(α�+N)−2;

when α� +N = 1/2,

J 	 R
√
T + log

(
1

T

)
	 1 + logR2.

Thus, together with (3.19), we deduce that

E
[
W2(μn,R,t, μ

α)2
]
	 1

n
J +

1

nc

	

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
nc + 1

n

[
R2(α�+N)

tα�+N−1 +R4(α�+N)−2
]
, α� ∈ (1−N,∞),

1
nc + 1

n

[
R2 log

(
1
t

)
+R2

]
, α� = 1−N,

1
nc + 1

nR
4(α�+N)−2, α� ∈ (1/2−N, 1−N),

1
nc + 1

n

(
1 + logR2

)
, α� = 1/2−N,

(3.27)

which finishes the proof of Part (3).
Finally, combining (3.1) with the estimates in (3.2), (3.3) and (3.27) together,

we arrive at
(3.28)

E
[
W2(μn, μ

α)2
]
	

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
nc +t+ 1

n

[
R2(α�+N)

tα�+N−1 +R4(α�+N)−2
]
, α�∈(1−N,∞),

1
nc +t+ 1

n

[
R2 log

(
1
t

)
+R2

]
, α�=1−N,

1
nc +t+ 1

nR
4(α�+N)−2, α�∈(1/2−N, 1−N),

1
nc +t+ 1

n

(
1+logR2

)
, α�=1/2−N,

for any R 

√
log n and large n. Optimizing (3.28) in t > 0, we complete the proof

of (2.3) for every large enough n. �
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