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Abstract

DNA-based data storage offers an attractive alternative to
traditional media due to its exceptional density, durability,
and sustainability. However, errors introduced across the
DNA storage pipeline critically impede accurate sequence
reconstruction from noisy sequencing reads. This paper ad-
dresses the DNA sequence reconstruction problem by propos-
ing FedDNA, a novel Personalized Federated Learning (PFL)
framework based on Evidential Deep Learning (DEL), de-
signed for DNA storage environments. FedDNA quantifies
robust predictive uncertainty through a novel evidence fusion
mechanism that aggregates evidence from each noisy read in
a cluster, thereby enhancing client-level prediction reliabil-
ity. For efficient sequence modeling and reconstruction from
these noisy clusters, its architecture employs a convolution-
enhanced Mamba encoder and an LSTM decoder. To address
prohibitive centralized training costs, privacy concerns, and
data heterogeneity across diverse DNA storage data, FedDNA
integrates PFL and designs an innovative uncertainty-driven
personalized aggregation strategy based on epistemic and
aleatoric decomposition, for which we also provide rigor-
ous theoretical generalization bounds. Experimental results
demonstrate FedDNA achieves superior reconstruction per-
formance on DNA storage data with heterogeneity, highlight-
ing its potential for secure and efficient DNA storage systems.

Introduction

DNA, as an information carrier, offers high storage density,
exceptional durability, and low maintenance costs, making it
a promising alternative to conventional storage media (???).
The typical DNA data storage workflow involves encoding
binary data into DNA sequences (known as references), syn-
thesizing molecules, storing, retrieving via PCR amplifica-
tion and sequencing, and finally decoding. Each reference
produces numerous reads, which inevitably accumulate er-
rors—primarily insertions, deletions, and substitutions (IDS
errors)—during the pipeline of DNA storage. Recovering
original information from these noisy reads is critical, of-
ten involving an initial clustering step to group related reads
(??). This study focuses on the subsequent sequence recon-
struction, aiming to accurately infer the original reference
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Figure 1: Illustration of acute data heterogeneity across di-
verse DNA storage clients. (a) Depicts varying distributions
of read lengths using KDEs. (b) Reveals distinct clusters
of 5-mer sequence patterns, indicating profound intrinsic
content differences. (c) Presents probabilities of IDS errors,
highlighting diverse data quality. Collectively, these panels
provide compelling evidence of heterogeneity (in length,
content, and quality) that significantly challenges FL for
DNA sequence reconstruction

from its cluster of noisy reads. Addressing these IDS er-
rors during sequence reconstruction is paramount for reli-
able DNA data retrieval. While deep learning shows signif-
icant promise for DNA sequence reconstruction (???), its
practical application faces critical bottlenecks:

Problem 1: Data Scarcity and Privacy in DNA Sequence
Reconstruction. Acquiring large-scale, high-quality real
DNA data is prohibitively expensive and time-consuming
(e.g., $0.8-5M per GB), limited by high synthesis and se-
quencing costs and experimental resource constraints (?).
Furthermore, stringent data privacy policies severely restrict
data sharing and centralized model training among differ-
ent DNA storage data centers. The inherent biological na-



ture and extreme longevity of DNA as an information carrier
significantly amplify these privacy concerns. These substan-
tial impediments necessitate a novel, distributed paradigm.
Federated Learning (FL), which aims to collaboratively train
a shared model across multiple clients without directly ex-
changing local data while preserving data privacy, offers
a compelling strategy for DNA sequence reconstruction.
However, despite the inherent benefits for FL, its applica-
tion to the DNA storage scenario introduces another critical
challenge:

Problem 2: Data Heterogeneity in DNA Sequence Re-
construction via FL. Data heterogeneity poses a critical
and multifaceted challenge in DNA sequence reconstruction
via FL. Variances from diverse encoding, primer designs,
synthesis and sequencing instruments across DNA storage
datasets lead to significant distributional shifts. As illus-
trated in Figure 1, this severe heterogeneity fundamentally
impairs global model performance and generalization capa-
bilities in the FL process.

To overcome these challenges, we propose FedDNA, a
novel framework for DNA sequence reconstruction that
uniquely combines Personalized Federated Learning (PFL)
with an adaptive aggregation strategy. FedDNA is fun-
damentally guided by Deep Evidential Learning (DEL)
(?), which supports key innovations at both the client
and federated levels. At the client level, FedDNA inte-
grates a convolution-enhanced Mamba encoder with a two-
layer LSTM decoder. This efficient design supports effec-
tive sequence reconstruction, helping alleviate data scarcity.
Through this architecture, we leverage DEL to model in-
herent IDS errors and their associated uncertainty, enabling
robust prediction through evidence fusion. DEL quantifies
prediction uncertainty based on Dempster-Shafer Theory
(DST) (?) and features a novel post-hoc evidence fusion for
cluster of reads, enhancing local reconstruction. At the fed-
erated level, our PFL approach aggregates only encoder pa-
rameters, allowing clients to retain private decoders. Lever-
aging DEL’s efficacy in mitigating data heterogeneity (??),
we propose a novel adaptive aggregation strategy that dy-
namically adjusts federated weights via decomposed uncer-
tainty (aleatoric and epistemic) (?) from local estimates, pro-
viding more informed and robust global model learning,
supported by theoretical generalization bounds. The main
contributions of this paper are summarized as follows:

e We propose the first end-to-end deep neural network
framework for FL in DNA sequence reconstruction, pio-
neering this application domain. Our framework innova-
tively integrates a convolution-enhanced Mamba encoder
with a two-layer LSTM decoder, an architecture chosen
for its efficiency and ability to effectively process intri-
cate DNA storage data.

* We introduce a novel application of DEL to DNA se-
quence reconstruction for predictive uncertainty quantifi-
cation at the sequence level. Crucially, we design a post-
hoc evidence fusion mechanism that effectively combine
evidence from multiple reads within each cluster, en-
hancing prediction reliability.

* We propose an uncertainty-aware PFL framework, which

leverages DEL’s decomposed uncertainty (epistemic and
aleatoric components) to dynamically adjust client aggre-
gation weights. This enables more robust global model
learning despite data heterogeneity, for which we further
provide theoretical generalization error bounds.

Related Work
DNA Sequence Reconstruction

The problem of DNA-to-DNA reconstruction involves in-
ferring the original DNA reference sequence from a clus-
ter of its noisy reads. Traditional methods, including BMA
Lookahead (?), BMA Divider (?), and Iterative Reconstruc-
tion (?), primarily employ symbol-wise majority voting, of-
ten with sequence alignment. Though effective for low IDS
error rates, their performance critically depends on suffi-
cient reads. More recently, deep learning has enabled neu-
ral network-based methods to directly map noisy reads to
a reference. For instance, RobuSeqNet (?) used attention
and Conformer blocks, demonstrating resilience to noisy
reads, while DNAformer (?) proposed a twin-network com-
bining convolution and Transformer modules with a learn-
able alignment component. However, these models often en-
tail large parameter sizes, requiring extensive training data,
typically mitigated by massive samples from DNA storage
simulation tool (?).

Heterogeneous Federated Settings

Data heterogeneity is a key issue limiting FL. performance.
Various mitigation strategies have been proposed, primar-
ily categorized into three directions: (1) federated averag-
ing with optimized aggregation weights, exemplified by ap-
proaches like FedAWA (?), FedAW (?), and ConFREE (?);
(2) regularization methods to constrain local update drift,
such as FedProx (?) and MOON (?); and (3) PFL with cus-
tomized client models, such as FedPer (?) and pFedFDA (?),
which tailor models to each client’s specific data distribu-
tion. However, the aforementioned methods still face chal-
lenges in precisely evaluating the contribution of each client
or the degree of local model drift. To this end, recent re-
search has begun to explore the use of model uncertainty
as an effective metric to provide more reliable guidance for
federated aggregation.

DEL provides a feasible path for uncertainty-based aggre-
gation by modeling the output as a Dirichlet distribution and
jointly estimating the prediction and its uncertainty. RIPFL
leverages DEL-based uncertainty to guide reliability-aware
client selection, improving personalized model performance
(?). Similarly, FedEvi uses decomposed uncertainties to esti-
mate generalization gaps and client reliability, dynamically
adjusting aggregation weights for improved generalization
(?). However, these approaches do not fully exploit the rich
uncertainty decomposition provided by DEL, failing to com-
prehensively utilize the distinct contributions of epistemic
and aleatoric uncertainties from both local and global model
perspectives. Such partial uncertainty utilization becomes
critically pronounced in tasks like DNA sequence recon-
struction, where acute data heterogeneity across clients can



severely impair personalized performance if full model shar-
ing is enforced. For this reason, this paper introduces an
uncertainty-decomposed aggregation to guide the encoder
toward learning reliable shared representations, while keep-
ing the decoder private for personalized adaptation to this
task.

Methodology

To address the critical task of DNA sequence reconstruction,
this paper proposes the FedDNA framework, as illustrated
in Figure 2. Given the DNA alphabet ¥ = {A, C, G, T},
an original reference sequence y € X generates n noisy
copies. These noisy reads form a cluster X = {x®}7_ .
Here, (¥ denotes the numerical representation of each read,
which, to handle variable lengths from IDS errors, is one-hot
encoded and uniformly zero-padded to a fixed length L4,
resulting in a 4 X L,,q matrix. The objective is to learn a hy-
pothesis h € H, where H denotes the hypothesis class, that
reconstructs the original reference from a noisy read cluster:
h : X — Y. Formally, the optimization goal is to find the
optimal hypothesis h* that minimizes the expected recon-
struction error over the data distribution D:

W= argmin g, x)~p [(((X), y)], (1

where £(-, -) is a function that quantifies the discrepancy be-
tween the reconstructed sequence and the reference.

Built on a PFL architecture, FedDNA involves K clients.
A global model, comprising only a shared encoder 05, re-
sides on the central server and is collaboratively updated
through aggregation. For each client k, their personalized
model 8, = (OkE , ng ), comprises a private decoder 0,? and
alocal copy of the shared encoder, 0 E . Each communication
round, clients initialize their local encoder GkE with the cur-
rent global encoder Hg. Following local training, these up-
dated local encoders OkE are then uploaded to the server for
weighted aggregation, yielding the updated global encoder
Bg. This section details our methodology: an evidential deep
learning framework for DNA sequence reconstruction, fol-
lowed by its uncertainty-decomposed federated aggregation.

Evidential Deep Learning-based DNA Sequence
Reconstruction Framework

We elaborate on the key components of FedDNA: a core
Dirichlet-based evidential model, a novel encoder-decoder
architecture, and a specialized evidential fusion module.
Their detailed operation and training objectives are elabo-
rated in the following.

Dirichlet-based Evidential Model Central to FedDNA’s
robust uncertainty quantification, each client’s personalized
model 6 employs a DEL(?) approach, grounded in DST
.

For a C-class classification problem, conventional deep
neural networks typically use a softmax function, yielding
single-point class probability estimates p. This often leads to
overconfident or miscalibrated predictions, especially with
heterogeneous local data. Such point estimates struggle to

express epistemic uncertainty, potentially yielding high con-
fidence even for out-of-distribution or novel inputs. In con-
trast, DEL treats p as a random variable drawn from a
Dirichlet distribution Dir(p|c) parameterized by a:

C
1 ac—1 C
. =~ 1lees  peEA
P(p1.6) = Dis(pla) = | Blay L1

0, otherwise
(@)
where B(a) is the C-dimensional multinomial Beta func-
tion, and A¢ = {p| chzl pe=1and 0<p.<1} represents
the C'-dimensional unit simplex. In DEL, the network out-
puts non-negative evidence vectors e, defining Dirichlet pa-
rameters @ = e+ 1. Dirichlet strength S = > «. quantifies
total evidence and confidence. The belief mass vector b =
e/S, and uncertainty v = C'/ S, satisfying > b, + u = 1.
In this task, base prediction at each sequence position is a
4-class classification problem corresponding to the four nu-
cleotides. Client k£’s model 6}, reconstructs sequences from
read cluster X by outputting el(z) = f(x"|0); (via Soft-
plus) for each base [ in read (¥ € X Its Dirichlet param-
(@) (@)
l

eter is then «; © = e; + 1, thus the class probability vec-

tor pl(i) is drawn from Dir(pl(i)|al(i)). These per-read, per-
base evidence vectors quantify predictive uncertainty (given
by u; = 4/5; for each base 1), foundational for subsequent

sequence-level evidential fusion.

Encoder-Decoder Architecture The encoder adopts a
hybrid architecture combining convolutional layers with
Mamba, a recently proposed state space model capable of
capturing global contextual dependencies while preserving
linear computational complexity (?). This design effectively
leverages convolutional operations for local feature extrac-
tion and Mamba for long-range dependency modeling. The
integrated approach robustly captures complex features in
noisy DNA clusters, maintaining resilience against sequence
errors, including base substitutions and positional shifts
from insertions or deletions. Given the encoder’s strong
feature representation capability, we deliberately employ a
lightweight two-layer LSTM (?) as the sequence generation
module, avoiding overly deep or complex structures.

Evidential Fusion We propose a post-hoc evidential fu-
sion strategy to enhance prediction performance and uncer-

tainty representation. We obtain individual evidence vectors

el(i) by independently processing each read z*) through the

encoder and decoder. Unlike early fusion, to accurately cap-
ture and aggregate each sequence’s information, we aver-
age these vectors at each base position [, yielding the final
averaged evidence € = = > el(l). This fused evidence
€; then directly informs the probabilistic base prediction for
position /. From €;, we obtain the fused Dirichlet parameter
a;=¢€; + 1, the fused Dirichlet strength S; = 23:1 e, and
the fused uncertainty 7; =4/.S;. By integrating multi-source
evidence, this strategy improves both model accuracy and
uncertainty representation.

DEL-based Training Objectives To train our Dirichlet-
based evidential model, which performs sequence-level pre-
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Figure 2: Overview of the proposed FedDNA framework. (a) FedDNA architecture; (b) Uncertainty-decomposed federated
aggregation weights via evidential deep learning; (c) DNA sequence reconstruction framework.

dictions and aggregates losses from each DNA base position
[, the overall loss function comprises two main components:
a reconstruction loss and a Kullback-Leibler (KL) diver-
gence regularization term. It is defined as £(0) = £e.(0) +
v:lk1(0), where ; is the annealing coefficient and ¢ is the
index of the current training epoch.

For the reconstruction loss, we adopt the Bayesian
risk of the cross-entropy loss (?). Let CE(y,,p;) =
Zi:l —yiclog(pi.) denote the cross-entropy between the
ground-truth vector y; and the predicted probability vector
p; at position [. Here, p; is drawn from a Dirichlet distri-
bution parameterized by the fused Dirichlet parameters ;.
This loss is:

L 4
1 1 By —
EreC(e) = Z Z |:/ CE(yhpl)B(al) H plclC ! dpl

3

where y; is the one-hot encoded ground-truth vector for po-
sition [, with y;. = 1 if class c is the true class and y;. = 0
otherwise. ¥(+) denotes the digamma function.

The model’s Dirichlet output distribution is regularized
using a Kullback-Leibler (KL) divergence term (??). This
regularization mitigates overconfident predictions on mis-
classified samples by promoting high uncertainty when the
model lacks sufficient evidence:

L
1 . ~ .

t(6) = ¢ ZE_:IKL [Dir(p,|éu) || Dir(py[1)], @)
where 1 is the vector of ones, ¢&; is the adjusted Dirichlet
parameter vector for position [/, constructed as &; = y; ©
1+ (1 —1y;) ® @y, and I'(-) is the Gamma function.

Uncertainty-Decomposed Federated Aggregation

Our PFL model’s design addresses acute heterogeneity
in client DNA datasets (see Figure 1). Varying reference
lengths necessitate client-specific decoders. To achieve this
adaptability, while minimizing communication overhead,
FedDNA globally shares encoder parameters during feder-
ated training, with each client retaining its personalized de-
coder—a crucial choice given the decoder’s small parameter
footprint compared to the dominant encoder.

We propose an adaptive weight allocation for federated
aggregation that leverages epistemic and aleatoric uncertain-
ties from our DEL framework to refine the global model. We
denote the cluster sample as X' and the model parameters as
6. Specifically, for each client, uncertainties are quantified
by evaluating their local data X}, against two distinct model
configurations: (i) their personalized model ), = (0% ,07);
and (ii) a hybrid model formed by the global encoder and
their local decoder (0%, 05), with this quantification lever-
aging the Dirichlet-based evidential model’s output.

For each position [, we compute the expected probability

vector P(y,|X,0) 2 Py, where

Plyi=1]X,0) = / p(ie=1lp)p(p:| X, 6) dp;
5)

Here, @ is the fused Dirichlet parameter for class ¢ at posi-
tion ! (an element of &), and fjj. serves as the point estimate
for the expected probability of class c. This predictive prob-
ability distribution, P(y;|X, 8), quantifies total uncertainty
(Ut°taly via its Shannon entropy (?). The total uncertainty
is further decomposed into epistemic uncertainty (U“P*) and



aleatoric uncertainty (U¢) (2?):

HIP(y,|X,0)] = L[y, p,|X, 0] + Epp, 1 x.0)[HIP(y,]p))],

Utotal Uepi Uale

©)
For a sequence of length L, total, epistemic, and aleatoric
uncertainties are averaged across positions.

Epistemic Uncertainty Epistemic uncertainty (model un-
certainty) stems from insufficient evidence, reflecting un-
certainty in model parameter estimation. Crucially, this un-
certainty is reducible, diminishing with increasing training
samples as the model gains more evidence. Quantified by the
mutual information Z[y;, p;|X, 0], it measures uncertainty
reduction in true labels y, if the true p; were known, thereby
directly reflecting the Dirichlet distribution’s spread on the
simplex: higher values indicate broader opinions due to in-
sufficient evidence (?). For a cluster sample A and model
parameters 6, epistemic uncertainty is:

% > (Z pre [Y(@c +1) — (S + 1)]
—= > frelog me>.

UP(X,0) =
@)

Aleatoric Uncertainty Aleatoric uncertainty, or data un-
certainty, originates from the inherent ambiguity and ir-
reducible noise within the data itself. It is quantified as
the expected entropy over all possible predictive outcomes,
thereby reflecting the intrinsic complexity of the data and
representing an error source that cannot be eliminated
through learning. The aleatoric uncertainty for a cluster sam-
ple X under model parameters 6 is:

4
U“€(x,0) = ZZ[) V(S +1) —Y(@.+1)]. ®)

Adaptive Aggregation Weights Building on the decou-
pled uncertainties quantified in Eq. (7) and (8), we propose
an adaptive aggregation weighting strategy that assigns a
weight [y to each client k as follows:

epi
UG

Bk = U;P'i . (Ugle + Ugle)

; &)

where all uncertainty terms are computed as averages across
the batch of clusters in client k’s local data. Specifically,
UgP" and U2 are derived using model configuration (i),
while UZF" and U&/® are derived using the same local data
with model configuration (ii), as previously defined. Subse-
quently, these weights [3j, are normalized to obtain the final

aggregation coefficients \, = > B 5 During the encoder
j=1FJ

aggregation phase, the global encoder parameters 6 are up-
dated via a weighted sum of the local encoder parameters 95
from each client: £ = Z,{;l NeOF.

Each of the three uncertainty components in Eq. (9) car-
ries a modeling significance: A high U indicates a global
epistemic gap that client £’s local model might address, thus
warranting a higher aggregation weight. Conversely, a low

U signifies client k’s local model has effectively adapted
and offers highly confident predictions, which increases
its weight. Finally, a small combined aleatoric uncertainty
(U4 uge +U ,‘jle) reflects low inherent randomness and noise
in chent k’s batch of local clusters, ensuring more robust
updates and thereby a larger aggregation weight. In sum-
mary, this aggregation mechanism assigns higher weights to
clients whose local model is confident (low local epistemic
uncertainty), whose data is clean (low aleatoric uncertainty),
and where the global model is uncertain (high global epis-
temic uncertainty). By dynamically adjusting aggregation
weights based on these average uncertainty evaluations, this
strategy enhances global aggregation quality and improves
generalization robustness in heterogeneous environments.

Generalization Bound

We consider K clients, each with local distribution Dy, and
Sy is a sample of size my, with m = Zle my, M =
(ma,...,mg). Let G denote the family of the losses asso-
ciated to a hypothesis set H : G = {(X,y) — L(h(X),y) :
h € H}. Assume the loss function £(h(X),y) € [0, M]
is bounded. According to Eq. (9), the aggregation weights
are normalized as A\, A = (A1,...,Ax). Based on the
digamma difference inequality, we can assume that the un-

certainty upper bounds satisty: Uf?' < Ajc and Ujl® < 2—1.

Lemma 1 (Approximation of Aggregation Weights). Given
the upper bounds U," i< n% and U’ < i—i, the nor-
malized aggregation weight \j, satisﬁes the approximation
A = Tk e, where |ey| < B- 7% for some constant
B > 0 that depends only on Ay, As, and the class count C.

Lemma 2 (Bound on Aggregation Skewness). The skewness
s(A|lm) == 1+ Z,f:l W satisfies s(A||m) =
1+0 (=)

Theorem 1 (Generalization Bound with Uncertainty-based

Aggregation). With probability at least 1 — 6, the following
bound holds for all h € H:

Epa(h) < lsa(h) + 2R (G, \)

1 1 M (10)
+ M - %log(g)nLO( 25).

Where {p x(h) is the true weighted risk, {5 x(h) is the empirical
weighted risk, and R, (G, \) is the empirical Rademacher com-
plexity.

Building upon Lemma 1 and Lemma 2, alongside the es-
tablished FedAvg generalization bound (?), we derive The-
orem 1.

Experiments

Datasets Our approach is evaluated for DNA sequence
reconstruction on four real-world DNA storage datasets:
1d20 (?), P10_5_.BDDP210000009 (P10-5) (?), PE_LAYB (?),
and Sequencing_data_first_dimension (Seq_1D) (?). As illus-
trated in Figurel, high data heterogeneity, especially promi-
nent within Seq_1D, poses significant challenges for feder-
ated sequence reconstruction. Data preprocessing involved



| 1 Success Rate (%) I | Edit Error Rate (%)
Methods |  ID20 P10-5 PE_AYB Seq-1ID | Avg. || ID20 P10-5 PELAYB  Seq.1D | Avg.
FedAvg ]97.07+0.69 88.43+1.50 95.9240.54 87.78+0.55|92.30+0.55]0.10+0.01 0.22+0.02 0.20+0.03 0.36+0.00|0.224+0.01

FedProx |97.00+0.43 90.95+1.59 95.7240.90 89.73+0.51(93.354-0.53 || 0.10+£0.01 0.18+0.02 0.19£0.02 0.35+0.02|0.214+0.01
FedAWA [97.05+0.56 96.09+0.70 96.53+0.63 92.20+0.26|95.474+0.40({0.11£0.01 0.12+0.02 0.20£0.04 0.18+0.02|0.15+0.02
ConFREE |98.224+0.19 96.72+0.06 96.62+0.10 91.83+0.69 |95.854+0.20({0.09+0.01 0.08+£0.01 0.12+0.02 0.25+0.02|0.131+0.00

FedAW

98.08£0.22 96.2440.98 96.51+0.36 94.07£0.90|96.231+0.61 || 0.09£0.01 0.10£0.02 0.14£0.01 0.2640.12|0.15+0.03

FedEvi  |99.26+0.26 97.82+0.06 96.091+0.43 95.09+0.45|97.071+0.22 || 0.05£0.00 0.09£0.02 0.30£0.14 0.16+0.03|0.15+0.04

-FL 98.97£0.10 97.064+0.43 94.53+0.50 95.01£0.17]96.39+0.51|0.08£0.02 0.10£0.00 0.224+0.01 0.1940.04|0.15+0.01
FedDNA |99.50+0.02 97.96+0.06 96.89+0.19 97.26+0.26 | 97.91+0.10 || 0.05+0.01 0.06£0.05 0.23+0.04 0.15%0.02|0.12+0.02

Table 1: Performance comparison of FedDNA against six federated learning methods on four real-world DNA storage datasets,
showing Success Rate and Edit Error Rate. ‘~FL’ denotes the centralized variant of FedDNA.

—
o
S
|

100

80|

8
>
[9)
e ~

80
g g 70
< 70 2 60
c ©
2 < 50 |
& 60 | v f /
[} 25 26 27 28 29 30 $ 40 I 90.0 Y
E 5 vl 25 26 27 28 29 30
2 — FedAvg S 30 — FedAvg
© / FedProx a FedProx
O 40 FedAWA 20 FedAWA

—— ConFREE —— ConfREE

g —— FedAW 10 —— FedAW

3011 — FedE
° —— FedEvi edEvi
@ FedDNA 0 FedDNA

0 5 10 15 20 25 30 0 5 10 15 20 25 30

Communication Round Communication Round

(a) Base Classification Acc (b) Success Rate

Figure 3: Average client performance over 30 communica-
tion rounds. (a) Base Classification Accuracy. (b) Success
Rate.

aligning reads with BWA (?) for ground-truth labeling, then
filtering those whose lengths deviated from their reference
by over £5 bases. Finally, for each DNA cluster, 5 to 30
reads were randomly sampled as reconstruction input.

Metrics To evaluate the performance of DNA sequence
reconstruction, we adopt Success Rate (??) as the primary
metric:

#{prediction == reference}

Success Rate =
#{reference}

(1)

A successful prediction is defined by an exact, nucleotide-
level match between the predicted and reference sequences.
This strict, widely used criterion reflects information in-
tegrity pivotal for DNA storage.

Additionally, Edit Error Rate is reported as a supplemen-
tary metric, quantifying reconstruction accuracy via normal-
ized edit distance (?):

Edit Distance(prediction, reference)

Edit Error Rate =
1t brror Rate Length(reference)

12)

Baselines To evaluate the effectiveness of FedDNA, we
conduct comparative experiments against two classical FL
baselines FedAvg (?) and FedProx (?), alongside four
aggregation-based approaches FedAWA (?), ConFREE (?),
FedAw(?) and FedEvi (?). Direct model aggregation is

Methods | ID20 P10.5 PE_AYB Seq-1D | Avg.

BMA Look. |99.47 9740  95.82 96.13 | 97.21
BMA Divider | 99.48 97.70  95.70 96.62 | 97.38
Iter. Recon. 9945 97.85  96.14 9745 | 97.72
RobuSeqNet | 9590 96.04  94.02 94.52 | 95.12
FedDNA 99.50 97.96 96.89 97.26 | 97.90

Table 2: Success Rate(%) of FedDNA and four comparing
algorithms on four real-world DNA datasets.

infeasible for DNA sequence reconstruction due to vary-
ing client-specific reference lengths (L), which necessitates
variable-length decoder outputs. Therefore, all methods uti-
lize the same underlying network architecture and oper-
ate within a personalized FL framework, where only en-
coder parameters are globally aggregated to ensure fairness
and comparability. Notably, non-evidential methods employ
conventional softmax-based classification loss, whereas
FedDNA and FedEvi utilize loss functions from the DEL
framework.

Experimental Setup During federated training, each
client performs one local epoch per communication round,
for a total of 30 communication rounds. The local dataset
for each client is partitioned into a training set (1,000 clus-
ters), a validation set (1,000 clusters), and a test set (10,000
clusters). All experiments are repeated three times, and we
report the mean and standard deviation of the performance.

Performance Analysis

Comparison with FL. Algorithms Table 1 reports com-
parative experiments with the comparing FL. methods; re-
sults for each are from the model achieving minimum vali-
dation loss over 30 federated training rounds.

For the primary metric Success Rate, FedDNA con-
sistently achieves the best results across all datasets, av-
eraging 97.91%. This marks a 0.84% improvement over
the second-best FedEvi (97.07% average), an uncertainty-
based method. FedDNA substantially outperforms classi-
cal FL. methods like FedAvg and FedProx by over 4.5%,
and other advanced aggregation methods. Particularly on
two challenging datasets (PE_AYB and Seq-1D), FedDNA
significantly improves the success rate by 0.80% and
2.17%, respectively, compared to FedEvi. For Edit Error
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Figure 4: Heatmap of fused base-wise uncertainty in pre-
dicted DNA sequences. Color intensity ranges from blue
(low uncertainty) to red (high uncertainty). x indicate incor-
rect base predictions.

Rate, FedDNA likewise demonstrates top-tier accuracy, with
the lowest average rate (0.12%), followed by ConFREE
(0.13%). While FedEvi shows excellent results on ID20
(0.05%), FedDNA matches it on ID20 and achieves the
lowest rate on P10_5 (0.06%). Notably on PE_AYB, while
FedDNA'’s edit error rate (0.23%) is not lowest, its suc-
cess rate (96.89%) is highest. This indicates FedDNA'’s pre-
diction error distribution is more concentrated, prioritiz-
ing complete reconstruction for improved DNA storage in-
tegrity. Overall, these results demonstrate FedDNA’s supe-
rior evidential federated aggregation strategy in DNA se-
quence reconstruction. Given shared underlying network ar-
chitecture and PFL framework across methods, these sig-
nificant gains are directly attributable to our novel strat-
egy, effectively handling noise, uncertainty, and data hetero-
geneity for robust and precise sequence recovery. Moreover,
FedDNA significantly surpasses the local training baseline
(-FL) across all tested datasets, with performance gains
reaching 2.25% on challenging Seq-1D, highlighting sub-
stantial benefits of the FL framework.

Figure 3 shows average client performance (30 commu-
nication rounds). Figure 3(a) shows most methods achieve
very high base classification accuracy, directly driven by
low training loss and suggesting strong local model perfor-
mance. However, a notable divergence emerges in the more
critical success rate (Figure 3(b)). FedDNA surpasses all
baselines; FedEvi also performs strongly. These evidence-
based methods show a slight convergence delay in initial 10
rounds, yet ultimately achieve superior performance.

Comparison with Sequence Reconstruction Algorithms
We also compare FedDNA with SOTA DNA sequence re-
construction algorithms: BMA Lookahead (?), BMA di-
vider (?), Iterative Reconstruction (?), and RobuSeqNet (?).
Due to its large model size, RobuSeqNet tends to overfit on
small-scale datasets; we thus trained it using 10,000 clusters.
As Table 2 shows, FedDNA achieves the best average recon-
struction performance, obtaining the highest success rate on
1d20, P10_5, and PE_AYB, while Iterative Reconstruction
slightly outperforms it on Seq_1D.

Uncertainty-Based Analysis of Prediction Quality Us-
ing the ID20 dataset, we investigate the correlation between
fused base uncertainty (u;) and prediction errors. From
10,000 FedDNA-reconstructed sequences on the test set, se-
quences were ranked by summing their base-wise uncertain-

PHF DEL FAW‘ ID20 P10.5 PE_AYB Seq,lD‘ Avg.

- - | 7820 67.80 79.15 50.71 | 68.97
- 197.07 8843 9592 87.78 |92.30
- 199.07 97.86 95.81 93.81 | 96.64
v 19950 97.96 96.89 97.26 | 97.91

ANENENY

v
v

Table 3: Ablation study on Success Rate(%) of key compo-
nents within FedDNA. Components include: PHF (Post-hoc
Fusion module), DEL (Deep Evidential Learning), and FAW
(Federated Aggregation Weighting).

ties, and the top 100 were then systematically displayed by
sampling every fifth sequence, yielding 20 representative vi-
sualizations. Figure 4 reveals a strong positive correlation:
regions with higher uncertainty frequently correspond to in-
correct base predictions. This evidence supports DEL’s ef-
fectiveness and rationale for DNA sequence reconstruction.

Ablation Study Table 3 presents a systematic ablation
study validating FedDNA’s component efficacy. The base-
line model, directly processing noisy clusters, achieved a
mere average Success Rate of 68.97%, underscoring the
task’s inherent difficulty with small, high-noise real-world
data. Implementing Post-hoc Fusion led to a significant per-
formance leap, demonstrating the effectiveness of aggre-
gating independent evidence for noise mitigation and reli-
able sequence reconstruction. Integrating DEL further en-
hanced model robustness against conflicting or low-quality
data by quantifying prediction uncertainty, boosting Success
Rate by 4.34%. The complete model, with its decomposed-
uncertainty federated weighting, surpasses simple averag-
ing, confirming the superiority of our adaptive weighting.

Conclusion

This work proposes FedDNA, a novel deep learning frame-
work for DNA sequence reconstruction in privacy-sensitive
federated environments. FedDNA pioneers the applica-
tion of DEL, enabling precise reconstruction from noisy
read clusters and robust uncertainty quantification via a
convolutional-Mamba encoder with an LSTM decoder ar-
chitecture. Leveraging DEL’s ability to decompose predic-
tive uncertainty, we propose a novel uncertainty-aware adap-
tive aggregation strategy. This mechanism dynamically ad-
justs federated weights to mitigate client data heterogene-
ity, for which we provide theoretical generalization bounds.
Through extensive experiments, we demonstrate FedDNA
significantly enhances DNA sequence reconstruction perfor-
mance and reliability in federated settings, validating its ef-
ficacy in this challenging real-world application.
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