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TransDNA: A Deep Transfer Learning Network
for Sequence Reconstruction in DNA-Based

Data Storage
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Abstract—DNA is a promising storage medium, offering advantages in high density, long durability, and low maintenance cost.
However, information recovery in DNA storage systems is challenged by errors arising during synthesis, amplification, and sequencing
phases. A key challenge in decoding is sequence reconstruction, which involves recovering the original reference sequence from a set
of noisy copies. While recent research has explored deep learning-based methods for this task, the high cost of synthesis and
sequencing results in a limited availability of training samples. To overcome this challenge, we propose TransDNA, a deep transfer
learning network specifically designed for sequence reconstruction in DNA storage. It consists of an encoder, a domain-specific
decoder, and a domain-invariant feature extractor, with alternating domain alignment and domain-specific reconstruction mechanisms.
By transferring knowledge from a larger source dataset, TransDNA significantly enhances the reconstruction success rate on two target
datasets from real DNA storage experiments, outperforming the base model without transfer learning and several comparative
methods. Notably, TransDNA surpasses the SDG method in both reconstruction success rate and training efficiency. These results
demonstrate the effectiveness of TransDNA as the first transfer learning approach applied to the DNA sequence reconstruction task.
The source code is available at: https://github.com/qinyunnn/TransDNA.

Index Terms—DNA storage, Sequence reconstruction, Deep transfer learning, Domain adaptation, MMD loss.
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1 INTRODUCTION

DNA has emerged as a promising storage medium, of-
fering advantages in terms of storage density, mainte-

nance costs, and durability over traditional storage medium
[1], [2]. Recent advancements in synthesis, sequencing tech-
nologies, and interdisciplinary research in biology and
information technology have significantly contributed to
the progress in DNA storage [3]. Existing studies have
investigated the robustness, scalability, and feasibility of
the complete workflow for DNA storage in the laboratory
settings [4], [5], [6], [7], [8], [9]. As illustrated in Fig.1, a
typical workflow of DNA storage system involves five steps.
Binary information is first encoded into DNA sequences
(encoding), which are then synthesized into DNA molecules
(synthesis). These DNA molecules are stored either in vitro
or in vivo (storage). Next, the stored DNA is sequenced by
PCR (sequencing), and finally, the sequences are converted
back into binary information (decoding) [2], [7].

In a DNA-based data storage system, the process of
encoding converts the original information into DNA se-
quences, referred to as references. Each reference undergoes
amplification by synthesis and polymerase chain reaction
(PCR), resulting in the generation of multiple replicated
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Fig. 1: Workflow of DNA storage system.

copies, termed reads, which are prone to errors. Errors
present in the reads primarily arise from insertion, dele-
tion and substitution (IDS) of a few bases during different
phases of DNA storage system, including synthesis, stor-
age, and sequencing. Additionally, long-term preservation
and PCR-based strand copying may lead to DNA breaks
and rearrangements [9]. To retrieve information from the
sequencing file, the decoding process typically involves two
steps: clustering and sequence reconstruction. A clustering
algorithm [10], [11] is utilized to group reads originating
from the same reference into clusters. Subsequently, the
focus of this work lies in sequence reconstruction, which
aims to infer the reference from a set of noisy reads [12].

Recently, the sequence reconstruction problem in DNA
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storage has emerged as a prominent area of research [12],
[13], [14]. Bitwise Majority Alignment (BMA) has gained
significant attention [13], [14]. Typically, the BMA-based
methods align multiple reads and then applies a majority
voting strategy to determine the symbol at each index.
While highly effective for clusters with low IDS rates, these
methods exhibit sensitivity to cluster size. When the number
of reads is small, it is difficult to restore the sequence
perfectly by majority voting. More recently, algorithms pro-
posed in [12] decode the original reference by globally ana-
lyzing the cluster of reads and applying dynamic program-
ming techniques, which are used to address the shortest
common supersequence and longest common subsequence
problems. Another category of reconstruction methods rely
on statistical inference [15], [16], [17]. These methods assume
an IDS channel associated with a particular DNA storage
system. In this context, a single reference is assumed to
pass through the channel several times, independently and
repeatedly, generating multiple noisy observations. The de-
coding algorithms are derived by comparing the a posteriori
probabilities (APPs) of all possible symbols at each index
position across all observed reads [15], [16]. Nevertheless,
these methods suffer a high computational burden, partic-
ularly when dealing with large clusters comprising more
than ten reads. Moreover, the channel parameters employed
for decoding is inaccurate, as the actual IDS error rates
associated to the DNA storage system are inaccessible.

The advent of deep neural networks (DNN), exem-
plified by Transformer [18], has exhibited the capability
to effectively learn and extract semantic information from
DNA sequences. Several studies have been devoted to deep
learning-based algorithms for sequence reconstruction. Bar-
Lev et al. [19] introduced a scalable and robust sequence re-
construction approach that employs fast pseudo-clustering
and combines convolution and Transformer blocks for effec-
tive error correction. Nahum et al. [20] investigated a DNN-
based algorithm for the single-read reconstruction, utiliz-
ing an encoder-decoder architecture composed of multiple
Transformer blocks. More recently, we proposed in [21] a
robust multi-read reconstruction model that considers se-
quence reliability within clusters. This method leverages an
attention mechanism to score the sequences within clusters
and employs Conformer blocks to correct IDS errors.

Current DNN models for sequence reconstruction are
typically large-scale, necessitating a substantial amount of
samples as the foundation for model training. However,
accessing DNA storage data is costly and time-consuming,
constrained by the expenses associated with synthesis and
sequencing, as well as experimental limitations. Synthesiz-
ing a single base currently costs around 10−3 dollars, and
storing 1 TB of data amounts to approximately 1 billion
dollars [22]. Insufficient training samples may result in
overfitting issues during network training.

In response to this challenge, Bar-Lev et al. [19] pioneered
the use of Synthetic Data Generator (SDG) [23] for train-
ing the sequence reconstruction network. By injecting the
statistical IDS error rates into a reference sequence, SDG
generates multiple noisy copies for the sequence. These
generated sequences, along with the reference are then
utilized to form the labeled training clusters. Experimental
results demonstrate that the synthesized data generated by

SDG can effectively replace real experimental data in model
training. This is attributed to the capability of SDG to in-
finitely generate data conforming to a specific error pattern
based on the provided parameters. By far, SDG stands as
the exclusive solution for addressing the issue of limited
training samples in sequence reconstruction networks.

An important question arises: Is it possible to directly
employ publicly available DNA storage datasets for training se-
quence reconstruction models? Transfer learning is a potential
strategy. It exploits the correlation between data or tasks,
involves transferring knowledge from the source domain
to facilitate more effective model training in the target do-
main [24]. Several studies have explored pre-trained DNA
language models with transfer learning for different se-
quence analysis tasks [25], [26], [27]. For instance, Ji et al. [25]
developed DNABERT, a pre-trained bidirectional encoder
model based on BERT, to acquire global and transferable
understanding of genomic DNA sequences. Luo et al. [26]
proposed iEnhancer-BERT, a pre-trained DNA language
model comprising a BERT layer for feature extraction and
a CNN layer for classification task. These works have en-
hanced the accuracy and efficiency of sequence analysis by
leveraging pre-trained models fine-tuned for specific tasks.

However, as of now, transfer learning remains unex-
plored in the context of addressing the challenge of limited
training samples in DNA storage-based sequence recon-
struction tasks. The challenge is two-fold. Firstly, there is
variation in the lengths of references and reads obtained
from different experiments, attributed to the specific en-
coding methods designed. This necessitates an adaptive
sequence reconstruction model that can accommodate the
varying input and output lengths. Secondly, specific exper-
imental datasets exhibit distinct error rates due to factors
such as the instruments used for synthesis and sequencing,
as well as storage conditions. The resulting distribution
discrepancy between the source and target domains poses
additional challenges for transfer learning.

In this paper, we propose TransDNA, the first transfer
learning-based model specifically designed to address the
sample scarcity problem in the sequence reconstruction task
for DNA storage. TransDNA offers an innovative alterna-
tive to synthetic training data strategy using SDG [19],
effectively tackling the challenge of limited labeled samples
in sequence reconstruction. The major contributions are as
follows:

• Exploration of transfer learning for small sample
sequence reconstruction: This is the first application
of the transfer learning to address the challenge of lim-
ited training samples in DNA storage-based sequence
reconstruction. By leveraging knowledge from source
datasets, TransDNA demonstrates its effectiveness in
enhancing sequence reconstruction performance in tar-
get datasets despite limited data.

• Positive knowledge transfer by domain adaptation:
TransDNA adopts the concept of domain adaptation by
employing Maximum Mean Discrepancy (MMD) loss
to align the source and target domain by a domain-
invariant feature extractor. This efficiently mitigates the
distribution discrepancy between the domains, enhanc-
ing the overall performance of the model.
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• Error correction capacity for IDS errors and adaptive
input/output lengths: The proposed model effectively
corrects IDS errors due to the robust feature extraction
capabilities of the Conformer block within the encoder.
Additionally, the model can handle varying input and
output lengths through the use of an autoregressive
LSTM in the decoder. This flexibility allows for adaptive
customization to different source and target datasets,
even those from distinct experiments.

2 METHODS

2.1 Problem formulation

Use Σ = {A,C,G, T} to denote the four DNA nucleotides.
Assume a reference x ∈ ΣL of length L pass through
a DNA storage channel, generating t noisy copies y =
{Y1, Y2, ...., Yt} ∈ C, where each Yi ∈ ΣLi represents a copy
of varying length. Sequence reconstruction aims at finding
a mapping

F : C → ΣL

such that d(x,F(y)) is minimized, where d(·, ·) represents a
distance metric, e.g., edit distance or Hamming distance.

Now, consider the task of enhancing sequence recon-
struction on a small DNA storage dataset, referred to as
the target domain DT , by leveraging knowledge from a
larger DNA storage dataset, known as the source domain
DS , through transfer learning. Let PS and PT denote the
distributions of the source and target domains, respectively,
where PS 6= PT . Consider a set of nS labeled samples
(ySj , x

S
j )
nS

j=1
from the source domain DS and nT labeled

samples (yTj , x
T
j )
nT

j=1
from the target domain DT , with

nS � nT .
The main goal of sequence reconstruction is to minimize

the expected value of the loss function on the target domain,
expressed by

RT (F) = E(y,x)∼PT (y,x)[L
(
x,F∗(y)

)
], (1)

with the estimation form given by

1

nT

nT∑
j=1

[L
(
xTj ,F∗(yTj )

)
]. (2)

Here, L(·) is the loss function based on some distance
metric that measures the inconsistency between the actual
reference sequence and the one predicted by the improved
mapping function F∗ after transfer learning [28].

2.2 Model overview

TransDNA is designed to address the training sample
scarcity issue in the sequence reconstruction task for DNA
storage, leveraging advanced techniques in transfer learning
and domain adaptation. As depicted in Fig.2, the framework
of TransDNA consists of three main components:

1) Encoder: The Conformer-based encoder plays a pivotal
role in extracting high-level features from sequence
clusters. By employing a hybrid approach combining
convolutions and self-attention mechanisms, it effec-
tively captures IDS error patterns and models both local
and global dependencies within clusters.

2) Domain-specific Decoders: Utilizing autoregressive
Long Short-Term Memory (LSTM) networks, the
domain-specific decoders are capable to handle
variable-length sequences and model long-term depen-
dencies in sequential DNA data. They operate indepen-
dently in both the source and target domains.

3) Domain-invariant Feature Extractor: Composed of 1D
covolution layers, the domain-invariant feature extrac-
tor primarily aligns the encoder outputs from both
domains, avoiding negative transfer effects stemming
from distribution discrepency.

As illustrated in Algorithm 1, TransDNA genearlly alter-
nates between two stages: In the first stage, domain align-
ment is performed to establish compatibility between two
domains, where domain adaptation by Maximum Mean
Discrepancy (MMD) loss is performed. The second stage
focuses on domain-specific reconstruction, leveraging the
aligned domains to achieve precise sequence reconstruction
in each specifc domain.

2.3 Network structure

2.3.1 Data Preprocessing

The input to the model consists of a cluster of reads with an
unfixed sequence number, and each read may have varying
sequence lengths. Before fed to the network, each sequence
in the cluster undergoes one-hot encoding according to
different nucleotides and is then padded to a uniform
length of ki (i = S or T ), where shorter sequences are
zero-padded at the end to match the specified length. The
resulting sequences are subsequently summed across the
index positions. Consequently, the input to the model is a
matrix with dimensions 4 × ki, where each column is a 1-
D vector denoting the confidence of the corresponding base
at that particular index position. The reference sequence,
which has a pre-fixed length of Li, is encoded as a 4 × Li
matrix using one-hot encoding. Accounting for the possibil-
ity of insertions in the sequence, we set ki ≥ Li + 1. As
sequences whose lengths differed from the reference length
by more than 5 were excluded from analysis, we also have
ki ≤ Li + 5.

Upon inputting the data into the model, convolutional
up-sampling is performed using kernels of diverse sizes.
This step transforms the input into a feature matrix with an
expanded feature dimension of 64 × ki. The utilization of
convolution kernels of various sizes enables the extraction
of features at multiple scales.

2.3.2 Encoder (E)

As shown in Fig.2 (b), we employ a single Conformer
block without the post layer norm as the encoder E to
achieve a shared representation across all domains. The
Conformer [29], originally designed for speech recognition
tasks, combines convolutional layers with self-attention to
efficiently capture both local details and global depen-
dencies within sequence data, surpassing Transformer and
CNN counterparts in speech-related tasks. It features two
macaron-like feed-forward layers with residual connec-
tions of weight 1/2, interleaved with Multi-Headed Self-
Attention (MHSA) and convolution operations.
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Fig. 2: Overview of TransDNA. (a) Network structure of TransDNA. It consists of an encoder, a domain-invariant feature
extractor, and two domain-specific decoders. (b) Conformer-based encoder. The input to TransDNA is a matrix of size 4×ki
(i=S or T ). After convolution up-sampling, the feature becomes a 64×ki matrix, which is fed into the Conformer-encoder
block. The encoder output is also a 64× ki matrix. (c) Source/Target domain decoder. Each decoder incorporates < cls >
token (start of the sentence) and < sep > token (sentence separation), with < cls >=< sep >. During training, the label is
fed as a whole in the time direction. During inference, the < cls > token serves as the initial input, and the output from
each time step is used as the input for the subsequent step. (d) Domain-invariant feature extractor. This module aligns the
encoder outputs from two domains to 64× 1 vectors.

For sequence reconstruction tasks, we choose the Con-
former block as the encoder for its powerful feature extrac-
tion capabilities and ability to model IDS patterns within
sequences. The hybrid architecture of Conformer effectively
captures both local and global features, essential for han-
dling IDS errors. Convolutional layers extract local fea-
tures and positional offsets, crucial for identifying insertion
and deletion patterns. The MHSA with positional encod-
ing ensures accurate retention of positional information
across the network. Furthermore, the hierarchical structure
in Conformer further enhances feature extraction across
multiple scales. This comprehensive approach empowers
the Conformer-based encoder to capture high-level fea-
tures within clusters and effectively handle positional shifts
caused by base insertions and deletions.

In the encoder, the MHSA employs the scaled-dot prod-
uct as the basis for its calculations, as described in [18]:

Attention(Q,K, V ) = Softmax(
Q>K√
dk

)V (3)

where Q,K, V denote the query, key and value matrices,
respectively, and dk is the scaling factor that equal to the
feature dimension of queries and keys. For the h-head
attention mechanism, the feature vectors are transformed
h times using (3) before concatenating them, expressed by

MHSA(Y ) = W>Concat(head1,head2, ...,headh), (4)

headi = Attention(WQ
i Y,W

K
i Y,W

V
i Y ) (5)

where Y ∈ Rd×ki (i = S or T ), is the input to MHSA,
WQ
i ,W

K
i ,W

V
i ∈ Rdk×d for i = 1, 2, ...h. The matrix

W ∈ Rhdk×d maps the concatenated feature back to the
original dimension d × ki. In MHSA, the relative position
encoding from Transformer-XL [30] is applied to model
the relative positional relationships of bases in a sequence,
following [29].

In practical implementation, we set h = 8, d = 64 and
dk = d/h = 8, while retaining most parameter settings
from Conformer-S [29]. Specifically, we reduced the encoder
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dimension from d = 144 in Conformer-S to d = 64 in
our encoder. This adjustment is based on the premise that
a smaller dimension is sufficient for capturing the feature
space of DNA sequences, given that the four nucleotide
bases represent a less complex feature space compared to
the original Automatic Speech Recognition (ASR) task.

In convolution module, we perform two pointwise con-
volutions and a 1-D depthwise convolution with kernel size
of 16. In addition, each feed-forward module (FFN) is a fully
connected network with two linear layers. Specifically, we
fix the coefficients of the FFN layer to 1/2, following the
original Conformer paper [29]. A theoretical explanation for
setting the half-step residual connection in the Transformer
architectures is provided in Macron-Net [31] from the per-
spective of Ordinary Differential Equations (ODEs).

In general, for the feature Ỹ (after convolution mod-
ules) fed to the conformer block, the corresponding output
Yconformer is expressed as follows, considering the half-step
residual connection:

Y
′

= Ỹ +
1

2
FFN(Ỹ ) (6)

Y
′′

= Y
′
+ MHSA(Y

′
) (7)

Y
′′′

= Y
′′

+ Conv(Y
′′
) (8)

Yconformer = Y
′′′

+
1

2
FFN(Y

′′′
) (9)

2.3.3 Domain-specific Decoder (DS and DT)
The domain-specific decoder in our model comprises a
source domain decoder DS and a target domain decoder
DT, sharing the same structure as depicted in Fig.2 (c). This
design ensures consistent sequence reconstruction across
domains. To capture contextual dependencies in sequen-
tial DNA data, we employ an autoregressive LSTM (Long
Short-Term Memory) as the decoder. The reason for this
choice is three-fold. Firstly, due to the variation in the
length of references obtained from different experiments,
the decoder must be capable of handling variable-length
sequences. The autoregressive LSTM is known for the ability
to generate sequences with continuous semantic informa-
tion, making it well-suited for reconstructing references of
varying lengths [32]. Secondly, in our transfer learning con-
text with limited training samples, a simpler decoder with
fewer parameters, such as LSTM, is more preferable over a
Transformer decoder. This choice mitigates overfitting and
improves generalization, particularly in the target domain
where data is scarce. Lastly, our Conformer-based encoder
is advantageous in feature extraction for DNA sequences,
making a simple network like LSTM sufficient for effective
decoding.

During training, the LSTM employs teacher forcing,
namely the input at each time step is the true label from the
ground-truth sequence, rather than the generated output.
This facilitates faster convergence and enhances the accu-
racy of the generated sequences. During inference, the input
at each time step is the output from the previous time step,
and the model generates the prediction for the next time step
based on this output, as shown by the arrows in Fig.2 (c).

Regarding the impact of sequence length in transfer learning
between different domains, the source and target domains
share only the encoder while using separate decoders.

Specifically, the input to the decoder is a 5 × (Li + 1)
matrix, where Li is the reference length specific to that
domain, and each column corresponds to the symbol at a
specific index position. Here, we introduce a new symbol
< cls > and < sep > to mark the start and end of the
generated sequence, where <cls>=<sep>. After passing
through the LSTM block, it produces an output matrixOlstm
with dimensions of 64× (Li+1). The output of the encoder,
denoted as Oencoder , is truncated in length from 64 × ki to
64 × (Li + 1). Then, Olstm and Oencoder are concatenated
into a 128× (Li + 1) matrix, which is subsequently mapped
to a 5× Li matrix by a linear layer.

For each decoder Di (i=S or T ), the corresponding loss
function is defined as the expectation value of cross-entropy
LCE , computed over the probability distribution of samples
specific to that domain, expressed by

Lidecoder = E(y,x)∼Pi(y,x)[LCE
(
xi,Di(E(yi)

)
], (10)

with LCE being the cross-entropy loss given by

LCE = −
Li∑
l=1

xil logF(yil), (11)

with xil being one-hot label vector recording the actual
base category for the l-th position, while F(yil) being the
predicted probability vector for the read cluster yi at the
l-th position.

2.3.4 Domain-invariant Feature Extractor (F)

To address distribution discrepancies between source and
target domains, such as those arising from variations in
error rates, sequence lengths, or encoding methods, we ap-
ply domain adaptation technique by minimizing Maximum
Mean Discrepancy (MMD) loss. This technique aligns the
distributions across domains, which is crucial as significant
gaps can hinder the extraction of common features and lead
to negative transfer effects. The domain-invariant feature
extractor F, as depicted in Fig.2 (d), ensures consistency
between outputs from both domains, thereby mitigating the
risk of negative transfer.

Specifically, this module aligns the encoder outputs from
two domains. It comprises two 1-D convolution layers that
take the output of the encoder as input. The first convolution
employs a kernel size of 3 to transform the output of
encoder, namely E(yj) into a 64×ki/4 matrix. Subsequently,
the output is processed by a 1-D convolution with a kernel
size of 5, which transforms it into a 64× 1 vector.

To achieve domain alignment, we employ the well-
known MMD as the metric to measure the the discrepancy
between two domains in high-dimensional spaces [33], [34].
It utilizes the kernel method to map samples from both
domains into the feature space and computes the differences
between the mapped samples, quantifying the distribution
discrepancy. Let φ(·) be a nonlinear function mapping the
samples from the input space to the reproducing kernel
Hilbert space (RKHS) endowed by some kernel κ(·, ·). Math-



6

ematically, MMD is formulated as

MMDH(PS , PT ) = ‖ES [φ(yS)]− ET [φ(yT )]‖2H, (12)

where ‖ · ‖H is the associated norm.
An unbiased estimate of (12) computes the squared

distance between the empirical kernel mean embeddings,
given by

ˆMMDH(PS , PT ) =

∥∥∥∥∥∥∥
1

nS

∑
yS
j ∈DS

φ(ySj )−
1

nT

∑
yT
j ∈DT

φ(yTj )

∥∥∥∥∥∥∥
2

H

,

(13)
where the inner product can be evaluated by the kernel
trick, with 〈φ(yi), φ(yj)〉 = κ(yi, yj), (i, j=S or T ). There-
fore, the MMD loss for domain alignment is given by

Lmmd = ˆMMDH(F(E(yS)),F(E(yT ))), (14)

where the commonly-used Gaussian kernel of the form
κ(yS , yT ) = exp

(
−‖y

S−yT ‖2
2σ2

)
is adopted.

2.4 Training process and loss function
To improve training efficiency, we have implemented a pre-
training strategy aimed at accelerating convergence during
model training. At the beginning of training, the encoder E
and source-domain decoder DS are jointly pre-trained using
the entire source domain dataset and then fine-tuned. Pre-
training benefits downstream tasks by learning generalized
features, reducing reliance on labeled data, and improving
generalization. In contrast, the target domain decoder DT

and domain-invariant feature extractor F are trained from
scratch with randomly initialized parameters.

Following pre-training, the source and target domain
data are sequentially passed through the encoder E and
domain-invariant feature extractor F. The MMD loss in (14)
is calculated to align the distributions of the source and
target domains.

Subsequently, the reconstruction losses for both domains
are independently evaluated. The source domain data is
processed by the source-domain decoder DS to compute
the source domain reconstruction loss, as defined in (10).
Similarly, the target domain data is processed by the target-
domain decoder DT to calculate the target domain recon-
struction loss using (10).

As a result, the total loss function of TransDNA consists
of three parts, namely the decoder losses for both the source
and target domains, as well as the MMD loss between them.
It is expressed by

Ltotal = LSdecoder + LTdecoder + α× Lmmd (15)

where α is an adjustable parameter weighting the impor-
tance of MMD loss. In this study, we emprically set α = 0.5
in all the experiments. An analysis of the parameter sensi-
tivity of α is provided in Section 3.8.

We employ the Adam optimizer [35] with β1 = 0.9 and
β2 = 0.98, and apply L2 regularization with weight decay
of 1e − 4. Dropout is applied after each convolution layer
with a probability of 0.1. The initial learning rate is set to
0.001, and an exponentially decaying learning rate strategy
is employed. Algorithm 1 outlines the training algorithm for
TransDNA.

Algorithm 1 Training algorithm for TransDNA

Input: source labeled dataset (ySj , x
S
j )
nS

j=1
, target labeled

dataset (yTj , x
T
j )
nT

j=1
, pre-trained encoder E and source-

domain decoder DS, randomly initialized target domain
decoder DT and domain-invariant feature extractor F.
Output: well-trained encoder E∗, decoder DS∗ and DT∗, and

domain-invariant feature extractor F∗.
1: Give the number of training iterations Q
2: for q in 1:Q do
3: Draw m samples (ySj , x

S
j )
m

j=1
from the source

dataset.
4: Draw n samples (yTj , x

T
j )
n

j=1
from the target dataset.

5: Input the sampled data from both domains into the
encoder in turn to obtain E(ySj ) and E(yTj ).

6: Feed E(ySj ) and E(yTj ) into the domain-invariant
feature extractor to obtain F(E(ySj )) and F(E(yTj )), re-
spectively, and computes the MMD loss by (14).

7: Feed E(ySj ) and E(yTj ) into the domain-specific de-
coder to obtain DS(E(ySj )) and DT(E(yTj )), respectively,
and compute their corresponding reconstruction losses
by (10).

8: Update E, F, DS and DT by minimizing the total loss
in (15).

9: end for
10: E∗ = E, F∗ = F, DS∗ = DS, DT∗ = DT.

3 RESULTS

3.1 Data preparation

To evaluate the performance of TransDNA when data
availability is limited, experiments were conducted using
five publicly available DNA storage datasets of different
sizes. TABLE 1 provides a description of the datasets used
in this study. Three larger datasets, namely ‘id20 [7]’,
‘P10 5 BDDP210000009 [9]’ and ‘PE AYB [4]’, were used
as source datasets. Two smaller datasets, namely ‘Sequenc-
ing data first dimension [36]’ and ‘SRR9701379 [37]’, were
chosen as target datasets.

Each dataset consists of two files. The first file contains
a list of references encoded using the original information,
while the second file stores the sequencing outcomes in a
disordered manner. To prepare labeled clusters for super-
vised learning, we paired each read with its most compa-
rable reference using the Burrows-Wheeler-Alignment Tool
(BWA) [38] on both files. For double-end sequencing re-
sults, sequences were merged using the Paired-End reAd
mergeR (PEAR) [39]. Default parameters for both tools were
employed to ensure consistency across experiments and
minimize variability due to parameter tuning. It is note-
worthy that a small fraction of reads that were excessively
long or short, even after alignment, were removed from the
analysis. Specifically, sequences differing from the reference
length by more than 5 bases were excluded. Due to the
inherent redundancy and the typical 1-2% error rate in next-
generation sequencing, this exclusion minimally impacts
overall performance and generalizability, as most reads fall
within the acceptable range and contribute effectively to
the analysis. For each source dataset, half of the clusters
are used as the training set, and the other half are used
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as the testing set. Similarly, for each target dataset, half
of the clusters are designated as the training set, with the
remaining half reserved for the testing set.

3.2 Compared Methods

To evaluate the effectiveness of our transfer learning-based
approach for small-sample sequence reconstruction tasks,
we conducted a comparative analysis involving TransDNA
and following five methods:

• Base model without transfer learning: We removed
the domain-invariant feature extractor and one decoder
from the TransDNA structure, resulting in an encoder-
decoder model for sequence reconstruction. This base
model serves as a benchmark for comparison.

• Synthetic training data strategy using SDG [19]: Bar-
Lev et al. utilized SDG [23] to generate a synthetic
dataset with 1.5M labeled clusters for training their
network. Following [19], the training set for each tar-
get dataset was utilized to compute IDS error rates.
References in quantities of 0.5M, 1M, and 1.5M, with
sequence lengths matching those of the target dataset
were then generated. These error rates and references
were input into the SDG to generate synthetic train-
ing data in the form of labeled clusters. The size of
each cluster is randomly determined, with a maximum
number of up to 30, to simulate real scenarios in DNA
storage.

• Iterative Reconstruction [12]: This algorithm begins
by correcting insertion and substitution errors within
a cluster using the error vector majority algorithm. It
then addresses deletion errors through the pattern-path
algorithm. If the cluster includes at least one sequence
with the same length as the reference, the algorithm
identifies and returns the sequence that minimizes the
edit distance within the cluster. In cases where the clus-
ter contains a sequence differing in length by one from
the reference, the algorithm returns the most frequently
occurring sequence.

• BMA Lookahead [13]: This is an enhancement to the
BMA algorithm. For any sequence where the current
symbol mismatches with the majority symbol, a look-
ahead window is utilized to inspect the subsequent 2
(or more) symbols. Subsequently, the symbols within
the look-ahead window are compared against the sym-
bols elected through voting, determining their correct-
ness.

• RobuSeqNet [21]: Our previous work, RobuSeqNet,
is a deep learning-based multi-sequence reconstruction
model designed for DNA storage. It is robust to noisy
clusters with contaminated sequences resulting from
DNA breakage and rearrangement, as well as noisy
reads with IDS errors. The model features an encoder-
decoder structure, and its attention module reduces the
impact of contaminated sequences on reconstruction
accuracy by automatically scoring the reads within a
cluster.

We employed the commonly-used success rate [19], [21]
as the evaluation metric for comparing the performance of

different sequence reconstruction methods, defined by

success rate =
#{ predicted sequence = input reference }

#{ input reference }
.

(16)
This metric measures the proportion of sequences that are
perfectly reconstructed without any errors at any position,
out of all the references.

3.3 Results
The reconstruction performances of all compared methods
are presented in Table 2. As observed, TransDNA sur-
passes all other methods on both target datasets, achiev-
ing a reconstruction success rate of over 98.2% for ‘Se-
quencing data first dimension [36]’, and over 97.5% for
‘SRR9701379 [37]’ by transferring positive knowledge from
each of the source datasets. Specifically, Iterative Recon-
struction [12] and BMA Lookahead [13] exhibit inferior
performance compared to the base model on target dataset
‘Sequencing data first dimension [36]’. However, on target
dataset ‘SRR9701379 [37]’, Iterative Reconstruction [12] out-
performs the base model by 1.42% in terms of success rate.
RobuSeqNet [21], which is trained from scratch using only
the training set in the target domain, outperforms the base
model on both target domains but shows slightly inferior
performance compared to TransDNA.

Compared to the base model trained using only the
training set in the target domain, both TransDNA and its
primary counterpart synthetic training data strategy using
SDG [19] achieved improved success rates. Specifically, on
the target dataset ‘Sequencing data first dimension [36]’,
TransDNA increased the success rate by approximately
1.2%, while the synthetic training data strategy [19] yielded
an improvement of approximately 0.5%. Similarly, on the
target dataset ‘SRR9701379 [37]’, TransDNA significantly
improved the success rate by approximately 2.2%, while the
synthetic training data strategy [19] demonstrated a modest
improvement of approximately 0.6%.

Additionally, increasing the amount of training data gen-
erated by SDG from 0.5M to 1.5M resulted in only marginal
improvements in the success rate for the synthetic training
data strategy. This suggests that the performance gains of
the SDG method reach saturation when the training data ex-
ceeds a certain quantity. The results indicate that TransDNA
has a superior boosting effect on the two target datasets
compared to the synthetic training data strategy using SDG.
Furthermore, TransDNA offers a cost-effective and flexible
alternative to SDG, requiring a smaller training set. For
instance, the largest source dataset, ‘id20 [7]’, consists of
hundreds of thousands of samples, which is significantly
smaller than the millions of training samples required by
the SDG method [19] to achieve satisfactory results.

Lastly, given that the target dataset ‘Sequenc-
ing data first dimension [36]’ is approximately 2.76 times
larger than ‘SRR9701379 [37]’, it is reasonable to infer that
TransDNA demonstrates more significant improvements for
smaller target datasets, as to be examined next in Section 3.4.

3.4 Effectiveness with varying target dataset size
To examine the impact of target dataset size on the advan-

tage of TransDNA over the base model, we randomly sam-
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TABLE 1: Description of the source and target datasets.

Source Target

id20 [7] P10 5 BDDP210000009 [9] PE AYB [4]
Sequencing data
first dimension [36]

SRR9701379 [37]

Reference number 607150 210000 153335 11826 4355
Designed length 150 200 183 196 143

Synthesis Twist Bioscience Twist Bioscience Agilent SurePrint IDT Microarray Synthesizer
Sequencing Ilumina NextSeq Ilumina Illumina HighSeq Ilumina MiSeq MiniSeq

References aligned
to reads

596669 209185 153331 11751 4355

Missing clusters 10481 815 4 75 0
Reads aligned to

references
14486345 15256705 69510060 2687556 943113

TABLE 2: Comparison of sequence reconstruction performance.

Target Source Success rate

Base
model

SDG
(0.5M)

SDG
(1M)

SDG
(1.5M)

Iterative
Reconstruction [12]

BMA
Lookahead [13]

RobuSeqNet [21] TransDNA

Sequencing data
first dimension [36]

id20 [7]
97.15%

97.61% 97.63% 97.61% 98.27%
P10 5

BDDP210000009 [9] 97.65% 97.68% 97.68% 96.44% 96.54% 97.65% 98.26%

PE AYB [4] 97.51% 97.43% 97.48% 98.33%

SRR9701379 [37]
id20 [7]

95.42%
96.01% 96.06% 96.20% 97.62%

P10 5
BDDP210000009 [9] 95.97% 95.92% 96.15% 96.84% 93.37% 96.84% 97.62%

PE AYB [4] 95.97% 96.01% 96.06% 97.53%

TABLE 3: Impact of target dataset size on the performance advantage of TransDNA over the base model.

Target Sampling
(%)

Target
set size

Target train
set size

Test set
size

Base
model

Success rate

id20 [7] P10 5 BDDP210000009 [9] PE AYB [4]

SRR9701379 [37]

10% 435 216 219 89.95% 94.98% 94.98% 95.43%
20% 871 443 428 90.65% 95.09% 95.79% 94.16%
30% 1306 650 656 93.29% 95.73% 95.58% 95.73%
40% 1742 875 867 91.79% 96.66% 96.67% 97.12%
50% 2177 1093 1084 94.19% 95.48% 95.11% 95.48%
60% 2613 1312 1301 93.85% 96.77% 96.69% 96.69%
70% 3048 1529 1519 94.73% 97.30% 97.30% 96.97%
80% 3484 1752 1732 95.03% 97.17% 97.11% 97.34%
90% 3919 1965 1954 96.11% 96.93% 96.88% 96.93%
100% 4355 2172 2183 95.42% 97.62% 97.62% 97.53%

ple a certain percentage of samples from the target dataset
’SRR9701379 [37]’ to simulate smaller target datasets. TA-
BLE 3 provides the sampling details and the corresponding
test results. We observe that TransDNA demonstrates more
pronounced improvements in success rate for smaller sam-
ple sizes. For example, when sampling 10% of the target
training data, TransDNA achieves a 5.48% improvement in
success rate compared to the base model. However, this
improvement reduces to 2.2% when the network is trained
using the full target training data. These findings confirm
the effectiveness of TransDNA in enhancing sequence re-
construction especially for smaller datasets.

3.5 Ablation study on domain alignment

To demonstrate the necessity of the domain alignment
phase, we conducted an ablation study by comparing the
performance of TransDNA with and without the domain-
invariant feature extractor F. We utilized three source
datasets and two target datasets for this evaluation. As
shown in TABLE 4, excluding this module resulted in a

decrease in the success rate by approximately 0.1-0.2%.
This demonstrates the crucial role of domain alignment in
obtaining domain-invariant feature representations, which
are essential for successful sequence reconstruction.

3.6 Wrong prediction analysis

Fig. 3 depicts the frequency histogram of the edit dis-
tances between erroneous predictions and their correspond-
ing reference sequences. In this analysis, ‘id20 [7]’ was
selected as the source dataset, and the results include both
target datasets. As illustrated, the majority of erroneous
predictions exhibit small edit distances from their orig-
inal references, while a smaller proportion of erroneous
predictions have larger edit distances. TABLE 5 provides
distributions on the error types in incorrectly predicted
sequences for the two target domains. In the target dataset
‘Sequencing data first dimension [36]’, substitution errors
were the most prevalent. In contrast, for the target dataset
‘SRR9701379 [37]’, the distribution of the three types of
errors was more evenly spread.
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TABLE 4: Ablation study on domain alignment.

Target Source Success rate

with F w/o F

Sequencing data first dimension [36]
id20 [7] 98.27% 98.16%

P10 5 BDDP210000009 [9] 98.26% 98.13%
PE AYB [4] 98.33% 98.07%

SRR9701379 [37]
id20 [7] 97.62% 97.34%

P10 5 BDDP210000009 [9] 97.62% 97.34%
PE AYB [4] 97.53% 97.30%

TABLE 5: Error type distribution for incorrect predictions
using ‘id20 [7]’ as the source dataset.

Target Insertion Deletion Substitution

Sequencing data
first dimension [36]

0.26 0.26 0.48

SRR9701379 [37] 0.35 0.35 0.30

Fig. 3: Frequency histograms of the edit distances between
erroneous predictions and their corresponding references.

3.7 Latent feature analysis

To validate the effectiveness of positive knowledge transfer,
Fig. 4 visualizes the latent features of the encoder E for
the target dataset ‘SRR9701379 [37]’ alongside each of the
three source datasets using UMAP embeddings [40], both
before (in (a)-(c)) and after (in (d)-(f)) transfer learning. The
UMAP method [40] reduces the high-dimensional features
extracted by the encoder to two dimensions for easier visu-
alization.

Furthermore, we employ the inter-class distance to quan-
titatively evaluate the compactness of latent features be-
tween each pair of target-source datasets, before and after
transfer learning. Given two classes of latent features CS and
CT corresponding to source domain DS and target domain
DT , respectively, the inter-class distance between them is
defined by

dinter−class(CS , CT ) =
1

|CS | · |CT |
∑

∀x∈CS ,∀y∈CT

d(x, y), (17)

where |Ci| denotes the number of samples in class Ci, for
i = S, T , and d(·, ·) represents the Euclidean distance

between latent featrues x and y. These latent features,
with dimensions 64 × 1, are output by the encoder E (of
dimension 64 × ki) followed by a pooling operation across
sequence dimension ki. TABLE 6 reports the inter-class
distances between the target dataset ‘SRR9701379 [37]’ and
three source datasets before and after transfer learning, as
well as the relative reduction percentage (RRP).

Both visually and quantitatively, all three pairs of target-
source datasets exhibit feature alignment after transfer
learning, leading to more convergent feature distributions
between the two domains. Specifically, before transfer learn-
ing, the target dataset is significantly dissimilar to the
original representations of the source datasets ‘id20 [7]’
and ‘P10 5 BDDP210000009 [9]’, indicating a pronounced
effect of distribution alignment achieved through transfer
learning. On the other hand, as the original distributions of
the target dataset ‘SRR9701379 [37]’ and the source dataset
‘PE AYB [4]’ are similar, the feature alignment effect of
transfer learning is less pronounced.

TABLE 6: Inter-class distances and relative reduction per-
centages (RRP) between the target dataset ‘SRR9701379 [37]’
and three source datasets, before and after transfer learning.

Source Inter-class distance

Before After RRP

id20 [7] 7.96 2.38 70.1%
P10 5 BDDP210000009 [9] 20.93 13.40 36.0%
PE AYB [4] 16.04 14.69 8.4%

3.8 Parameter sensitivity
We investigate the sensitivity of the parameter α in (15),
which balances the trade-off between the reconsturction
losses and the MMD loss in TransDNA. Candidate value set
α = {0.01, 0.05, 0.1, 0.5, 1, 1.5, 2} is considered. The source
dataset chosen is ‘id20 [7]’, and the target datasets are ‘Se-
quencing data first dimension [36]’ and ‘SRR9701379 [37]’.
As illustrated in Fig. 5, the success rate on both target
datasets initially increases slightly before decreasing, with a
peak around α = 0.5. Therefore, we empirically set α = 0.5
in our experiments.

4 DISCUSSION

In this study, we proposed TransDNA, a transfer learning-
based sequence reconstruction model for DNA storage. By
utilizing the principles of transfer learning, we alleviated the
issue of training sample scarcity in deep learning-based se-
quence reconstruction algorithms, providing an alternative
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(a) (b) (c)

(d) (e)
(f)

Fig. 4: Latent features visualization using UMAP embeddings, before and after transfer learning. Sampled from target
dataset ‘SRR9701379 [37]’ (red) and each source dataset, namely ‘id20 [7]’ (blue), ‘P10 5 BDDP210000009 [9]’ (green), and
‘PE AYB [4]’ (purple).

Fig. 5: Effect of the parameter α on the perfor-
mance of TransDNA. Success rates for transferring the
source dataset ‘id20 [7]’ to target datasets ’Sequenc-
ing data first dimension [36]’ (red) and ‘SRR9701379 [37]’
(blue) are shown.

solution to synthetic training data strategy using SDG [19],
particularly in situations where training data is limited.

TransDNA leveraged the power of transfer learning and
domain adaptation to align the data distributions between
the source and target domains. By minimizing the MMD
loss between domain-invariant features extracted from the
two domains, TransDNA effectively mitigated the distribu-
tion discrepancy and facilitated positive knowledge transfer
from the source domain to the target domain.

In addition to the domain-invariant feature extractor, the
model included a Conformer block and an autoregressive

LSTM, which enhanced its robustness and adaptability. The
Conformer block adeptly captured position shifts caused
by IDS errors, while the autoregressive LSTM enabled the
generation of sequences of varying lengths.

Experiments with five public datasets showed that
TransDNA outperformed several state-of-the-art sequence
reconstruction methods, including the synthetic training
data strategy using SDG [19]. Specifically, compared to a
base model without transfer learning, TransDNA improved
the sequence reconstruction success rate by up to 1.2%
and 2.2% on two respective target datasets. These results
highlight the effectiveness of transfer learning as an effective
approach for mitigating the challenges of limited training
samples in DNA sequence reconstruction tasks.

However, TransDNA has two limitations: it necessitates
retraining with each new source-target dataset pair due to
the need for model adaptation for optimal performance on
novel data, and it is currently confined to single-source
domain transfer learning. Future work will aim to extend
TransDNA to multi-source transfer learning, integrating
knowledge from multiple source datasets to improve both
performance and robustness, and to more effectively tackle
the challenges of information recovery in DNA storage.
Additionally, the transfer learning techniques in TransDNA
have potential applications beyond DNA sequence recon-
struction, such as in quality control, variant detection, and
mutation prediction in DNA sequencing. Applying these
techniques is expected to enhance the efficiency and ac-
curacy of these genomic tasks using large-scale sequencing
datasets.
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5 CONCLUSION

In conclusion, TransDNA presents a promising solution
for sequence reconstruction in DNA storage by leverag-
ing transfer learning. It not only addresses the scarcity of
training data but also exhibits error correction capabilities
for IDS errors. Our findings demonstrate the potential of
transfer learning strategies to enhance the performance of
deep learning models in DNA sequence reconstruction,
particularly in scenarios with limited training samples.
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