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Robust Sparse Unmixing via Continuous Mixed
Norm to Address Mixed Noise
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Abstract—Sparse unmixing, a critical task in hyperspectral
image interpretation, aims to identify an optimal subset of end-
members from a predefined library and estimate the fractional
abundances for each pixel. However, in real-world scenarios,
various types of noise significantly degrade the performance of
conventional sparse unmixing methods that usually rely on `2-
norm loss function. To address this issue, this letter proposes
a robust sparse unmixing method based on the continuous
mixed norm (CMN), which exhibits resilience to mixed noise,
particularly non-Gaussian impulsive noise. By adopting CMN as
the reconstruction loss function, we formulate both the standard
sparse unmixing problem and its augmented version with total
variation (TV) regularizer for spatially piecewise smoothness.
The corresponding algorithms are derived using the alternating
direction method of multipliers (ADMM). Experiments on both
synthetic and real hyperspectral datasets validate the effective-
ness and robustness of the proposed method in handling diverse
and mixed noise conditions over comparing methods. The code
is available at: https://github.com/JinchengGao/CMNSU

Index Terms—Sparse unmixing, continuous mixing norm
(CMN), robust method, alternating direction method of multi-
pliers (ADMM).

I. INTRODUCTION

HYPERSPECTRAL imagery (HSI), which provides abun-
dant spectral information about ground objects under

scrutiny, has gained significant attention within the remote
sensing community [1]. Due to the limited spatial resolution
of imaging sensors, each observed pixel in a hyperspectral
image is typically a mixture of several pure materials, known
as endmembers. Spectral unmixing seeks to identify these
endmembers and estimate their corresponding fractional abun-
dances in each pixel based on a specific mixing model.

While nonlinear models are gaining relevance, the linear
mixture model (LMM) remains the most widely studied due
to its simplicity and computational efficiency. It represents
each pixel as a linear combination of several endmembers,
weighted by their corresponding abundances. Unsupervised
unmixing methods simultaneously estimate both endmembers
and abundances. However, they may extract endmembers that
do not correspond to any actual signatures in the spectral
library. Sparse unmixing, a semi-supervised approach, ad-
dresses this issue by incorporating a predefined endmember
library into the unmixing process [1]. Since only a small
subset of endmembers contributes to the mixture, the resulting
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abundances are sparse relative to the full spectral library, which
often contains hundreds of signatures.

In this context, sparsity in abundances is enforced through
sparsity-promoting regularizers in the loss function. The well-
known SUnSAL enforces sparsity using `1 norm regularization
on the abundance [2]. Since only a small subset of endmem-
bers from the library are active during unmixing, row sparsity
in the abundance matrix is further enforced using the `2,1
norm [3] and `2,0 norm [4]. Additionally, spatial correlation
is leveraged to enhance abundance estimation. For example,
SUnSAL-TV incorporates total variation (TV) regularization
to produce spatially smoother abundance maps [5]. To improve
unmixing efficiency, MUA [6] employs multiscale spatial reg-
ularization in both segmentation and original image domains.
Spatial-spectral information is explored in S2WS [7] through
a weighting strategy, while LGSU [8] jointly considers global
sparsity and superpixel-guided local sparsity priors. Recently,
many unsupervised unmixing networks have explored the
spectral-spatial priors on abundance using advanced network
architectures such as CNNs and Transformers [9]. Note that
the majority of methods rely on the `2 norm as the recon-
struction loss function and perform well for low-noise HSIs
affected by Gaussian noise without outliers. However, their
unmixing performance deteriorates in the presence of more
complex noise scenarios.

In real HSIs, in addition to Gaussian noise, images are often
affected by various types of impulsive noise, such as shot noise
and dead lines/strips [10], [11], which significantly degrade
unmixing performance. To address the non-Gaussian noise
and outliers, several alternative reconstruction loss functions
have been proposed in sparse unmixing, extending beyond
the traditional `2 norm. Notable examples include the `2,1
norm [12], [13], correntropy [14], and an adaptive σ-norm loss
that combines both `2 and `2,1 norms [15]. More recently, the
log-cosh loss has been considered effective for handling non-
Gaussian noise [16]. In [17], JSTV introduces an additional
term to the loss to handle spatially sparse noise, further
enhancing robustness against mixed noise.

In theory, impulsive noise can be effectively characterized
using stable distributions, particularly the symmetric alpha-
stable (SαS) distribution [18]. In practice, however, loss
functions based on `p norms are commonly used to model
noise using the generalized Gaussian distribution (GGD),
defined as f(x;α, β) = α

2βΓ(1/α) exp
(
−
(
|x|
β

)α)
, where x

represents the noise vector, Γ(·) is the Gamma function, α
is the shape parameter, and β is the scale parameter. Statis-
tically, `2-norm minimization with least squares corresponds
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to maximum likelihood estimation (MLE) under Gaussian
noise assumptions (α = 2), while the `1-norm corresponds
to Laplace noise (α = 1), demonstrating effectiveness against
impulsive noise [19].

However, accurate noise modeling in real HSIs remains
challenging due to their complex and mixed characteristics.
The impulsive characteristics of non-Gaussian noise cannot be
sufficiently captured by single-distribution assumptions, lead-
ing to non-trivial norm selection and performance degradation
in sparse unmixing. This motivates the use of the continuous
mixing norm (CMN), which integrates multiple error norms
to address heavy-tailed noise and shows robustness against
impulsive noise in adaptive filtering and signal recovery [18],
[20]. When handling GGD-modeled noise with unknown α,
CMN achieves near-optimal recovery [18]. Its inherent capac-
ity to address heavy-tailed mixed noise correlates with real
HSI degradation patterns, establishing CMN as a robust loss
function for sparse unmixing.

In this letter, we propose two robust sparse unmixing
methods based on the Continuous Mixing Norm (CMN)
to address the challenges posed by non-Gaussian impulsive
noise, especially in mixed noise scenarios. Unlike previous
reconstruction loss functions that rely on fixed or combined
norms [12], [13], [15] or complex loss functions [14], [16], our
method defines the reconstruction loss by integrating `p norms
by a uniform probability distribution between 1 and 2. This
integration allows the model to dynamically adapt to varying
noise characteristics, offering enhanced robustness against
impulsive noise commonly present in HSIs. To be precise,
we first integrate CMN into sparse unmixing, formulating
the problem in two versions: the standard form (CMNSU)
and a TV-regularized version (CMNSU-TV) to enforce spatial
consistency in the abundance maps. The corresponding opti-
mization problems are solved using the nonconvex ADMM
framework, with closed-form update rules derived for each
variable. Experiments on both synthetic and real images vali-
date the effectiveness of the proposed method, showcasing its
robustness in handling mixed noise conditions.

The letter is organized as follows. Section II presents
the proposed robust sparse unmixing method using CMN.
Section III presents the experimental results. Finally, Section
IV concludes the letter.

II. PROPOSED ROBUST SPARSE UNMIXING USING
CONTINUOUS MIXED NORM

Let Y ∈ RL×N represent an observed hyperspectral image
composed of N pixels across L spectral bands, where each
column of Y corresponds to a pixel. In the context of sparse
unmixing, we assume that endmember matrix E, provided a
priori, is a spectral library containing R spectral signatures.
Since only a few of the signatures in E are likely to contribute
to the observed spectra for each pixel, the abundance matrix
X is typically sparse.

Rather than relying on fixed-norm loss functions, e.g., the `2
norm [5] or `2,1 norm [12], we propose using CMN, integrat-
ing p between 1 and 2, characterized by a uniform distribution

λ(p) = 1, to define the reconstruction loss function in sparse
unmixing. This leads to the following optimization problem:

min
X≥0

∫ 2

1

‖Y − EX‖pp dp+ µ‖X‖1, (1)

where
∫ 2

1
‖X‖pp dp ,

∑
i,j

∫ 2

1
|Xi,j |p dp provides a robust re-

construction function and the second term enforces sparsity in
the abundance matrix. Additionally, we enforce the abundance
nonnegativity constraint to ensure physical interpretability.

In parallel to SUnSAL-TV [5], we further consider a TV-
regularized version to promote spatially piecewise smoothness
in the abundance, yielding the following optimization problem:

min
X≥0

∫ 2

1

‖Y − EX‖pp dp+ µ‖X‖1 + ηTV(X), (2)

where TV(·) denotes the total-variation operator.
The use of CMN as the reconstruction loss function of-

fers advantages by enhancing robustness of unmixing while
avoiding assumptions about the noise distribution, in contrast
to fixed `p norms. By employing a uniform distribution of
p values from 1 to 2, this mixed norm flexibly adapts to a
variety of noise characteristics. Notably, in `p norm problems
with p ∈ (0, 2], the value of p reflects the impulsive nature of
the noise, with smaller p values suited highly impulsive noise.
However, as p approaches 0, the optimization problem be-
comes increasingly nonconvex and nonsmooth, complicating
the minimization process [21]. As a result, we consider CMN
with p ∈ (1, 2] as a practical balance between robustness and
computational feasibility.

A. ADMM for CMNSU

We apply ADMM [22] to solve the optimization problem
in (1), and the resulting CMNSU algorithm is summarized
in Algorithm (1). The main innovation is using ADMM to
solve the non-convex problem derived from CMN. A matrix-
based surrogate function generalizes the original vector-based
CMN [18], enabling more efficient optimization within the
ADMM framework. Despite the complexity of CMN, each
subproblem has a closed-form solution, ensuring computa-
tional efficiency for tackling real HSIs.

By introducing auxiliary variables V1,V2,V3,V4, the prob-
lem (1) is reformulated as

min
X,{Vi}4i=1

∫ 2

1

‖V1‖pp dp+ µ‖V3‖1 + ι+(V4) (3)

s.t. V1 = EV2 − Y, V2 = X,V3 = X,V4 = X,

where ι+(·) is the indicator function for the nonnegative
orthant R+. The augmented Lagrangian function is

L(X,V1, V2, V3, V4) =

∫ 2

1

‖V1‖pp dp+ µ‖V3‖1 + ι+(V4)+

γ

2

(
‖V1− EV2+ Y + Λ1/γ‖2F +

4∑
i=2

‖Vi−X+ Λi/γ‖2F
)

(4)

where γ > 0 and {Λi/γ}4i=1 are Lagrange multipliers.
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The V1-problem is

min
V1

C(V1) +
γ

2

(
‖V1 − EV2 + Y +

Λ1

γ
‖2F ), (5)

where C(X)
4
=
∫ 2

1
‖X‖pp dp. To solve (5), we need to find

a surrogate function CS(X,X
′
) for C(X), i.e., CS(X,X) =

C(X) and CS(X,X
′
) > C(X), for X 6= X ′, by following the

similar strategy presented in [18].

Lemma 1. For any 0 < p ≤ q and x′, |x|p has a surrogate
function given by (|x|q

(
p
q |x
′|p−q

)
+
(

1− p
q

)
|x′|p [18].

Using Lemma (1), we have

C(X) =
∑
i,j

∫ 2

1

|Xij |p dp

6
∑
i,j

∫ 2

1

|Xij |q
(
p

q

∣∣X ′ij∣∣p−q)+

(
1− p

q

) ∣∣X ′ij∣∣p dp
=
∑
i,j

|Xij |q φ(q)
1,2(X ′ij) +

∑
i,j

ψ
(q)
1,2(X ′ij) = CS(X,X ′). (6)

Letting q = 2, φ(q)
1,2(X ′ij) is computed by integration as

φ
(2)
1,2

(
X ′ij
)

=
|X ′ij |2(2 log |X ′ij | − 1)− |X ′ij |(log |X ′ij | − 1)

2|X ′ij |2 log2 |X ′ij |
.

(7)

By combining (6) and (7), we define the surrogate function
for C(V1) as CS(V1, V

k
1 ) =

∑
i,j φ

(2)
1,2(V k

1,ij)V
2
1,ij , where k

denotes the iteration number. Consequently, the V1-problem
in (5) transforms into a quadratic problem, which admits a
closed-form solution

V k+1
1 =

(
γ(EV k2 − Y ) + Λk1

)
/
(

2φ
(2)
1,2(V k

1,ij) + γ
)
. (8)

The remaining sub-problems associated with the Lagrangian
function (4) can be efficiently solved using either closed-form
solutions or the soft-thresholding operator.

The V2-problem is quadratic, yielding the following closed-
form solution

V k+1
2 = (ETE+I)−1

(
Xk + E>V k

1 + E>
Λk

1

γ
− Λk

2

γ
+ E>Y

)
.

(9)
The V3-problem combines a quadratic term with `1 regular-

ization, which is addressed by the soft-thresholding operator

V k+1
3 = softµ/γ

(
Xk − Λk1/γ

)
, (10)

where softµ/γ = sign(µ) max{|µ| − γ, 0} represents the
element-wise application of the soft-thresholding operator.

The sub-problem for V4 is formulated as

min
V4

γ

2
‖V4 −X + Λ4/γ‖2F + ι+(V4),

with the first-order optimality condition γ(V4−X + Λ4/γ) =
0. Considering the non-negativity constraint, the solution is
further projected onto the non-negative orthant, resulting in

V
(k+1)
4 = max (X − Λ4/γ, 0) . (11)

The X-problem is quadratic, admiting a closed-form solu-
tion given by

Xk+1 = (V k2 + V k3 + V k4 )/3 + (Λk2 + Λk3 + Λk4)/3γ. (12)

Algorithm 1 Pseudocode for CMNSU algorithm.
Input: Y,E and parameters µ, γ > 0.
Output: X̂

1: Initialize X0, {V 0
i ,Λ

0
i }4i=1, k = 0.

2: while stopping criterion is not satisfied do
3: Update {V k+1

i }4i=1 and Xk+1 by (8)-(12)
4: Λk+1

1 = Λk
1 + γ(V k

1 − EV k
2 + Y )

5: Λk+1
i = Λk

i + γ(V k
i −Xk), i = 2, 3, 4

6: k = k + 1
7: end while
8: return X̂ = Xk+1

Algorithm 2 Pseudocode for CMNSU-TV algorithm.
Input: Y,E and parameters µ, η, γ > 0.
Output: X̂

1: Initialize X0, {V 0
i ,Λ

0
i }5i=1, k = 0.

2: while stopping criterion is not satisfied do
3: Update {V k+1

i }4i=1 and Xk+1 by (8)-(11) and (13)
4: Update V k+1

5 by V k+1
5 = ∇Xk+1

5: Λk+1
1 = Λk

1 + γ(V k
1 − EV k

2 + Y )
6: Λk+1

i = Λk
i + γ(V k

i −Xk), i = 2, 3, 4

7: Λ
(k+1)
5 = Λ

(k)
5 + γ(V k

5 −∇Xk)
8: k = k + 1
9: end while

10: return X̂ = Xk+1

B. ADMM for CMNSU-TV

We apply the ADMM to solve the problem in (2), resulting
in Algorithm (2). To this end, the optimization problem is
reformulated as

min
X,{Vi}5i=1

∫ 2

1

‖V1‖pp dp+ µ‖V3‖1 + ι+(V4) + ηTV(V 5)

s.t. V1 = EV2 − Y, V2 = X,V3 = X,V4 = X,V5 = ∇X.

In particular, the X-problem is expressed as

arg min
X

4∑
i=2

‖Vi −X + Λi/γ‖2F + ‖V5 −∇X + Λ5/γ‖2F ,

which is solved using Fast Fourier Transform (FFT), denoted
as F , by transforming the problem into the frequency domain

X(k+1) = F−1
(F (∑4

i=2 (Vi + Λi/γ) +∇V5 +∇Λ5/γ
)

3 + F(∆)

)
.

(13)

III. EXPERIMENTS

The proposed CMNSU and CMNSU-TV algorithms are
evaluated on two synthetic datasets, DC1 and DC2, as well
as a real Cuprite image. Six state-of-the-art sparse unmixing
methods are selected for comparision, including SUnSAL [2],
SUnSAL-TV [5], MUA SLIC [6], LGSU [8], JSTV [17], and
S2WS [7]. We employ the signal-to-reconstruction error (SRE)
as a metric to evaluate the unmixing performance, which is
defined as SRE = 10 log10

[
E(‖X‖2F )

E(‖X−X̂‖2F )

]
, where X and X̂

represent the ground truth (GT) and estimated abundance,
respectively, and E(·)denotes the expectation function.

To find the optimal parameters for the competing meth-
ods, for each experiment, the parameters are tuned within
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the range [1e−5, 1e5], as specified in their respective pa-
pers. For CMNSU, we tune µ and η from the set
{1e−5, 5e−5, . . . , 1e2}; for CMNSU-TV, we tune µ and η
within the same set and λ within {1e−2, 5e−2, . . . , 1e2}. The
parameters that yield the highest SRE values are used for
comparison.

A. Simulation Results on DC1 and DC2

For the endmember library E1 used in the experiments on
synthetic datasets, we employ a collection of 240 materials
from the USGS spectral library, ensuring that the angle be-
tween any two endmembers exceeds 4.44◦.

DC1 contains 5 endmembers selected from E1 and consists
of 75 × 75 pixels. Its abundance maps are generated by
square regions uniformly distributed across a background in
five rows. DC2 includes 9 endmembers chosen from E1 and
consists of 100 × 100 pixels, with abundance maps sampled
from a Dirichlet distribution, centered around a Gaussian
random field [6]. Finally, both datasets were corrupted by three
complex mixed-noise scenarios to simulate real hyperspectral
image conditions, as outlined in [11].
• Noise Case 1 (Non-i.i.d. Gaussian Noise): Each band

is corrupted by Gaussian noise, with the signal-to-noise
ratio (SNR) randomly sampled between 25 dB and 35 dB
for each band.

• Noise Case 2 (Gaussian + Impulse Noise): Building upon
Case 1, an additional 5% impulse noise is introduced to
each band, further corrupting the data.

• Noise Case 3 (Gaussian+Impulse+Deadlines): Extending
Case 2, 30% of the bands are randomly selected and
corrupted by deadlines, as described in [10].
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Fig. 1. Abundance map of End #1, estimated by different unmixing methods
on DC1. (Top to Bottom): Noise case 1, Noise case 2, and Noise case 3.

Table I presents the unmixing performance measured by
SRE for DC1 and DC2. Table I presents the unmixing per-
formance measured by SRE for DC1 and DC2. In Noise case
1, which involves non-i.i.d Gaussian noise, MUA and S2WS
demonstrated superior unmixing performance due to their
advanced spatial-spectral regularization techniques. CMNSU
achieved comparable SRE to SUnSAL, while CMNSU-TV
underperformed relative to SUnSAL-TV. This suggests that
CMN-based sparse unmixing methods can match the perfor-
mance of the `2-based reconstruction loss function in Gaussian
noise scenarios. In Noise cases 2 and 3, which involve more
impulsive and heavy-tailed noise types, the performance of
the competing methods significantly declined. In contrast, the
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Fig. 2. Abundance map of End #1, estimated by different unmixing methods
on DC2. (Top to Bottom): Noise case 1, Noise case 2, and Noise case 3.

proposed CMNSU outperformed SUnSAL, and CMNSU-TV
achieved the highest SRE across both datasets. These results
highlight the robustness of the proposed method in handling
heavy-tailed, impulsive mixed noise.

Figures 1 and 2 visualize the abundance maps of a sin-
gle endmember from both datasets, obtained using the GT,
SUnSAL-TV, MUA-SLIC, JSTV, S2WS, and the proposed
CMNSU-TV, under each of the three noise cases. Visually, the
abundance maps by CMNSU-TV are least affected by noise
and most closely align with the GT. This is particularly evident
in Noise Cases 2 and 3 on DC2, where CMNSU-TV preserves
the spatial structure despite the heavy-tailed impulsive noise.
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Fig. 3. Abundance maps of Alunite, Buddingtonite, and Chalcedony, esti-
mated by the different unmixing methods on Cuprite.

B. Experimental Results on Cuprite

We evaluate the performance of the proposed method on
the real Cuprite dataset, which consists of 250 × 190 pixels
captured by the AVIRIS sensor. For analysis, 187 out of 224
spectral bands are retained. The endmember library E2 used
in this experiment is the complete USGS spectral library,
containing 498 endmembers, with the same bands retained as
those in the dataset. The parameters for CMNSU-TV are set
as µ = 1e−1, η = 1e−3, and γ = 1e− 1.

Figure 3 compares the abundance maps for Alunite, Bud-
dingtonite, and Chalcedony, where the GT is the mineral
distribution map generated by Tricorder 3.3 [16]. While similar
abundance maps are produced, the CMNSU-TV exhibits better
alignment with the GT compared to the competing methods,
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TABLE I
COMPARISON OF SRES (DB) ON DC1 AND DC2

SUnSAL SUnSAL-TV MUA JSTV LGSU S2WS CMNSU CMNSU-TV

DC1
1 7.63 14.37 15.70 13.09 14.43 17.63 9.24 13.85
2 2.38 8.22 8.29 11.43 3.84 4.75 7.65 12.64
3 1.88 7.00 6.19 11.44 2.99 3.78 7.20 11.60

DC2
1 9.96 17.13 17.36 7.17 19.94 21.32 9.65 14.60
2 2.79 6.97 8.44 7.42 3.73 4.11 7.56 12.98
3 2.25 4.64 4.45 6.27 3.60 3.87 6.83 12.26

TABLE II
COMPARISON OF RUNNING TIME (IN SECONDS) ON CUPRITE.

SUNSAL Sunsal-TV MUA JSTV LGSU S2WS CMNSU CMNSU-TV
69 494 12 1229 400 763 231 908

particularly in preserving spatial structure and effectively han-
dling noise, especially for Chalcedony. TABLE II reports the
running time of the comparing methods. The longer running
times of CMNSU and CMNSU-TV are attributed to the
complexity of the CMN-based reconstruction loss function.
However, by utilizing ADMM and closed-form solutions,
both methods maintain a comparable computational efficiency
feasible for practical applications.

IV. CONCLUSION

In this letter, we propose utilizing the continuous mixing
norm as the reconstruction loss function for robust sparse
unmixing in hyperspectral images, effectively addressing the
challenges posed by complex mixed noise types, particularly
non-Gaussian impulsive noise. We consider both the standard
sparse unmixing problem and a TV-regularized version, solv-
ing the resulting optimization problems using the ADMM.
Experiments on both synthetic and real images demonstrate
the robustness of our approach in managing various noise
scenarios. Future work will extend the continuous mixing
norm as a robust reconstruction loss function to nonlinear
unmixing models [23], [24], as well as to other restoration
tasks in HSIs, such as denoising and reconstruction.
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