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Abstract. We derive a blow-up formula for holomorphic Koszul–Brylinski homologies of

compact holomorphic Poisson manifolds. As applications, we investigate the invariance of

the E1-degeneracy of the Dolbeault–Koszul–Brylinski spectral sequence under Poisson blow-

ups, and compute the holomorphic Koszul–Brylinski homology for del Pezzo surfaces and two

complex nilmanifolds with holomorphic Poisson structures.
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1. Introduction

Historically, Poisson structures arise from classical mechanics. In mathematics, the Poisson

structures emerge from many fields, such as generalized complex geometry, geometric repre-

sentation theory, integrable systems, and algebraic geometry. In many situations, the Poisson

structures are actually holomorphic; see [7, 19, 25, 16, 20, 8, 11] etc.. The study of Poisson

structures from the viewpoint of algebraic geometry can be traced back at least to Bondal [4]

and Polishchuk [29]. More generally, we refer the readers to [32] for an introduction to the

algebraic geometry of holomorphic Poisson structures. The purpose of this paper is to study

holomorphic Poisson structures from an algebro-geometric point of view, and we focus on the

homological aspects of compact holomorphic Poisson manifolds.

Let (X,OX) be a complex manifold or a scheme of finite type over the complex number field

C. By a Poisson structure on X, we mean a C-bilinear sheaf morphism:

{−,−} : OX ×OX −→ OX

which satisfies the usual axioms for a Poisson bracket, and we call (X, {−,−}) a holomorphic

Poisson manifold or a Poisson scheme. In particular, holomorphic Poisson structures are closely
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related to generalized complex geometry. On the one hand, a holomorphic Poisson structure

naturally defines a generalized complex structure of special type; see [17]. On the other hand, by

Bailey’s local classification theorem of generalized complex structures, each generalized complex

manifold is locally equivalent to the product of a symplectic manifold and a holomorphic Poisson

manifold; see [2]. We refer the readers to [18, 19, 15, 25, 16, 9, 17, 5, 3] and references therein

for more results on the applications of holomorphic Poisson structures in generalized complex

geometry and the relationships with other geometries.

Assume that (X, {−,−}) is a compact holomorphic Poisson manifold of complex dimension

n, and let π ∈ H0(X,∧2TX) be the holomorphic Poisson bi-vector field determined by the

given Poisson bracket. For a cohomological study of the Poisson structure of X, we have the

holomorphic Lichnerowicz–Poisson cohomology H•(X,π) defined to be the hypercohomology

of the sheaf complex

0 // OX
bπ
// TX

bπ
// ∧2TX

bπ
// ∧3TX

bπ
// · · ·

bπ
// ∧nTX // 0 ,

where the differential operator bπ(−) = [π,−]S is the adjoint action of π with respect to the

Schouten bracket; see [27, 25]. This cohomology has been widely studied; see, for example,

[22, 14, 11, 8, 30, 31, 21] and references therein. Dually, from a homological point of view, we

have the so called holomorphic Koszul–Brylinski complex:

0 // Ωn
X

∂π
// Ωn−1

X

∂π
// Ωn−2

X

∂π
// Ωn−3

X

∂π
// · · ·

∂π
// OX

// 0 ,

where ∂π = [ιπ, ∂]. The hypercohomology of the sheaf complex above, denoted by H•(X,π), is

called the holomorphic Koszul–Brylinski homology of X. Most notably, there exists a holomor-

phic version of Evens–Lu–Weinstein duality for H•(X,π), which is a generalization of Serre

duality for Dolbeault cohomology; see [37, Theorem 4.4]. Furthermore, there is a canoni-

cal Fröhlicher-type spectral sequence, called the Dolbeault–Koszul–Brylinski spectral sequence

(see Definition 5.6), which converges to H•(X,π). However, it is not so easy to compute the

holomorphic Koszul–Brylinski homology for a specific holomorphic Poisson manifold.

In algebraic and complex geometry, the blow-up transformation plays a central role in the

study of algebraic varieties and complex manifolds. In the Poisson category, it was Polishchuk

[29] who first gave the construction of blow-ups for Poisson schemes. Polishchuk’s construc-

tion of blow-up transformations for Poisson schemes adapts to holomorphic Poisson manifolds

without any essential changes. Our starting point is to understand the homological aspect of

holomorphic Poisson manifolds under a Poisson blow-up transformation. Particularly, if the

holomorphic Poisson structure π is trivial, then the holomorphic Koszul–Brylinski homology is

isomorphic to the Hochschild homology of the complex manifold X:

Hk(X, 0) ∼=
⊕

p−q=n−k

Hq(X,Ωp
X) ∼= HHn−k(X).

The blow-up formula for the Hochschild homology has been established in [33]. To be more

specific, suppose Z ⊂ X is a closed complex manifold of codimension c ≥ 2 and X̃ is the

blow-up of X along Z, then there exists an isomorphism of Hochschild homologies

HHn−k(X̃) ∼= HHn−k(X)⊕HHn−k(Z)
⊕c−1.

So a natural question that arises now is:
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Question. For a non-trivial holomorphic Poisson structure, can we describe explicitly the

variance of the holomorphic Koszul–Brylinski homology under a Poisson blow-up?

Using a sheaf-theoretic approach, we establish a blow-up formula for holomorphic Koszul–

Brylinski homology as follows.

Theorem 1.1. Suppose (X,π) is a compact holomorphic Poisson manifold of complex dimen-

sion n ≥ 2, and (Z, π|Z) ⊂ (X,π) is a closed holomorphic Poisson submanifold of codimension

c ≥ 2 with trivial transverse Poisson structure. Let φ : X̃ → X be the blow-up of X along Z

with exceptional divisor E := φ−1(Z), and let π̃ be the unique holomorphic Poisson structure

on X̃ such that φ is a Poisson morphism, i.e., φ⋆π̃ = π. Then there exists an isomorphism of

holomorphic Koszul–Brylinski homologies:

Hk(X̃, π̃) ∼= Hk(X,π)⊕
(
Hk−1(E, π̃|E)/ρ⋆Hk−c(Z, π|Z)

)
for any 0 ≤ k ≤ 2n. Furthermore, if Z satisfies the ∂∂̄-lemma, then we get

Hk(X̃, π̃) ∼= Hk(X,π)⊕Hk−c(Z, π|Z)⊕c−1.

In particular, there exists an isomorphism

Hk(X̃, π̃) ∼= Hk(X,π)

for 0 ≤ k ≤ c− 1 or 2n− c+ 1 ≤ k ≤ 2n.

Observe that the first page of the Dolbeault–Koszul–Brylinski spectral sequence of the holo-

morphic Poisson manifold (X,π) is the Dolbeault cohomology:

Es,t
1 = Ht(X,Ωn−s

X ) ∼= Hn−s,t

∂̄
(X) =⇒ Hn−s+t(X,π).

The study of the degeneracy of the Dolbeault–Koszul–Brylinski spectral sequence at E1-page

may be of independent interest. As an application of Theorem 1.1, we investigate the invariance

of such degeneracy under Poisson blow-ups.

Theorem 1.2. With the assumption of Theorem 1.1, if Z satisfies the ∂∂̄-lemma then the

Dolbeault–Koszul–Brylinski spectral sequence for (X̃, π̃) degenerates at E1-page if and only if it

does so for (X,π) and (Z, π|Z).

It is worth noting that if X is a projective manifold or Kähler manifold then the closed

complex submanifold Z automatically satisfies the ∂∂̄-lemma, and therefore both Theorem 1.1

and Theorem 1.2 are applicable to these situations.

This paper is organized as follows. In § 2, we review some basics on holomorphic Poisson

manifolds and the holomorphic Koszul–Brylinski homology. We devote § 3 to Poisson blow-ups

and modifications. In § 4 we derive the Poisson projective bundles formula for holomorphic

Koszul–Brylinski homology, a key part of the proof of the main theorems. In § 5, the proofs

of the main theorems are given. In § 6, the holomorphic Koszul–Brylinski homologies of some

compact holomorphic Poisson manifolds are computed. Finally, the Appendix A gives the

Hodge diamond of a six-dimensional complex nilmanifold in § 6.3.
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2. Preliminaries

In this section, we review some basic facts on holomorphic Poisson manifolds and the Koszul–

Brylinski homology of holomorphic Poisson manifolds.

2.1. Holomorphic Poisson manifolds. Let X be a complex manifold and let OX be its

structure sheaf (i.e., the sheaf of holomorphic functions), Ωp
X be the sheaf of holomorphic

p-forms, TX be the sheaf of holomorphic vector fields.

Definition 2.1. A complex manifold X is called a holomorphic Poisson manifold if X admits

a holomorphic bi-vector field π ∈ H0(X,∧2TX) such that [π, π]S = 0, where [−,−]S is the

Schouten bracket.

Such a holomorphic bi-vector field π is called the holomorphic Poisson bi-vector field of the

holomorphic Poisson manifold X, and the holomorphic Poisson manifold X is also denoted

by (X,π). In particular, for any open subset U ⊂ X, the ring OX(U) is equipped with a

Poisson bracket {−,−} via π such that for any open subset V ⊂ U of X, the restriction map

OX(U) // OX(V ) is a morphism of Poisson algebras; the holomorphic Poisson bi-vector field

π induces a sheaf morphism π♯ : Ω1
X → TX by contraction with π. For any fixed point p ∈ X,

Rank(π)|p is defined to be the rank of the linear map π♯|p. Naturally, Rank(π)|p is even and

the following theorem describes the local structure of a holomorphic Poisson structure (c.f. [26,

Theorem 1.25]).

Theorem 2.2 (Weinstein’s splitting theorem). Let (X,π) be a holomorphic Poisson manifold

and p is an arbitrary point of X. Suppose Rank(π)|p = 2r. Then there exists a neighborhood U

of p with holomorphic coordinates {z1, · · · , zs, zs+1, · · · , zs+2r} centered at p, such that on U ,

π =
∑

1≤i,j≤s

ϕij(z1, · · · , zs)
∂

∂zi
∧ ∂

∂zj
+

r∑
i=1

∂

∂zs+i
∧ ∂

∂zs+r+i

where the functions ϕij are holomorphic functions of (z1, · · · , zs) satisfying ϕij(p) = 0. Such a

local coordinate {z1, · · · , zs, zs+1, · · · , zs+2r} is called a splitting coordinate centered at p.

A holomorphic map f : Y → X of holomorphic Poisson manifolds (Y, πY ) and (X,πX) is

a Poisson morphism if and only if f⋆(πY |p) = πX |f(p) for every p ∈ Y ; in this case, we write

f⋆πY = πX . In particular, let ȷ : Z ↪→ X be a closed complex submanifold of holomorphic

Poisson manifold X. Suppose that Z is also a holomorphic Poisson, then we say that Z is a

closed holomophic Poisson submanifold of X if the inclusion ȷ is a Poisson morphism.
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Analogous to the real case, there are some intrinsic restrictions on the existence of holo-

morphic Poisson submanifolds in a holomorphic Poisson manifold. For example, due to Wein-

stein’s splitting theorem, one can prove that each holomorphic symplectic leaf(which is hyper-

Kähler) is a Poisson submanifold, and every holomorphic Poisson submanifold is the union

of some symplectic leaves. Therefore, if the holomorphic Poisson bi-vector field of X is in-

duced by a holomorphic symplectic form, then only open subsets of X are Poisson subman-

ifolds. More precisely, consider a closed holomorphic Poisson submanifold ȷ : (Z, π|Z) ↪→
(X,π), for any p ∈ Z, we can choose a neighborhood U of p in X with splitting coordinates

{z1, · · · , zs, zs+1, · · · , zs+2r} centered at p satisfying

π|U =
∑

1≤i,j≤s

ϕij(z1, · · · , zs)
∂

∂zi
∧ ∂

∂zj
+

r∑
i=1

∂

∂zs+i
∧ ∂

∂zs+r+i
,

such that there exists a neighborhood V = U ∩ Z = {z1 = 0, · · · , zc = 0} ⊂ U of p in Z

satisfying

(π|Z)|V =
∑

c+1≤i,j≤s

ȷ∗ϕij
∂

∂zi
∧ ∂

∂zj
+

r∑
i=1

∂

∂zs+i
∧ ∂

∂zs+r+i
.

2.2. Koszul–Brylinski homology. Koszul–Brylinski homology is introduced independently

by Koszul [24] and Brylinski [6]. Let (X,π) be a holomorphic Poisson manifold. The Koszul–

Brylinski operator of (X,π) on the sheaves of holomorphic forms is given as follows:

∂π := [ιπ, ∂] : Ω
p
X −→ Ωp−1

X ,

where Ωp
X is the sheaf of holomorphic p-forms, ∂ is the Dolbeault operator and ιπ is the

contraction operator with respect to holomorphic Poisson bi-vector field π.

Lemma 2.3. Let (X,π) be a holomorphic Poisson manifold. Then we have ιπ∂̄ = ∂̄ιπ and

∂̄∂π + ∂π∂̄ = 0

Proof. To prove the first statement, it suffices to verify the assertion on an arbitrary coordinate

neighborhood of X. Let (U ; z1, · · · , zn) be a coordinate neighborhood of X. Locally, the

holomorphic Poisson bi-vector field can be expressed as π =
∑

i,j cij
∂
∂zi

∧ ∂
∂zj
, where cij are

holomorphic functions on U . By definition, for any smooth (p, q)-form α = fdzk1 ∧ · · · ∧ dzkp ∧
dz̄l1 ∧ · · · ∧ dz̄lq on U , we have

(ιπ∂̄ − ∂̄ιπ)α =
∑
i,j

cij · ι ∂
∂zi

∧ ∂
∂zj

(∑
s

∂f

∂z̄s
dz̄s ∧ dzk1 ∧ · · · ∧ dzkp ∧ dz̄l1 ∧ · · · ∧ dz̄lq

)
−∂̄

(∑
i,j

fcij · ι ∂
∂zi

∧ ∂
∂zj

(dzk1 ∧ · · · ∧ dzkp) ∧ dz̄l1 ∧ · · · ∧ dz̄lq
)

= (−1)p
∑
s

∑
i,j

∂f

∂z̄s
cij · ι ∂

∂zi
∧ ∂

∂zj

(dzk1 ∧ · · · ∧ dzkp) ∧ dz̄s ∧ dz̄l1 ∧ · · · ∧ dz̄lq

−
∑
s

∑
i,j

∂f

∂z̄s
dz̄s ∧ cij · ι ∂

∂zi
∧ ∂

∂zj

(dzk1 ∧ · · · ∧ dzkp) ∧ dz̄l1 ∧ · · · ∧ dz̄lq)

= 0.

Equivalently, we get ∂̄π := [ιπ, ∂̄] = ιπ∂̄ − ∂̄ιπ = 0.
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For the second statement, since [∂̄, ∂] = ∂̄∂ + ∂∂̄ = 0, by the first statement, we have that

∂̄∂π + ∂π∂̄ = [∂̄, ∂π] = [∂̄, [ιπ, ∂]] = [[∂̄, ιπ], ∂] + [ιπ, [∂̄, ∂]] = 0, and the lemma is proved. □

According to the Cartan formulae, we have ∂2π = 0, and

∂π(α ∧ β) = (∂πα) ∧ β + (−1)kα ∧ (∂πβ) + (−1)k[α, β]∂π

for any α ∈ Ωk
X and β ∈ Ωl

X . Here [−,−]∂π is a graded Lie bracket on Ω•
X obtained by Leibniz

rule via

[α, β]∂π := Lπ♯(α)β − Lπ♯(β)α− ∂(π(α, β)), ∀ α, β ∈ Ω1
X . (2.1)

The holomorphic Koszul–Brylinski complex of X is the sheaf complex:

0 // Ωn
X

∂π
// · · ·

∂π
// Ωs+1

X

∂π
// Ωs

X

∂π
// Ωs−1

X

∂π
// · · ·

∂π
// OX

// 0. (2.2)

Definition 2.4. Let (X,π) be a holomorphic Poisson manifold. The k-th holomorphic Koszul–

Brylinski homology of (X,π) is defined to be

Hk(X,π) := Hk(X, (Ω•
X , ∂π)), (2.3)

the k-th hyperchomology of the holomorphic Koszul–Brylinski complex.

Proposition 2.5. Suppose (X,π) is a holomorphic Poisson manifold. Then its holomorphic

Koszul–Brylinski complex admits a fine resolution which is the total complex of the Koszul–

Brylinski double complex (A•,•
X , ∂π, ∂̄), where Ap,q

X is the sheaf of (p, q)-forms on X. In par-

ticular, the Koszul–Brylinski homology is isomorphic to the hypercohomology of the associated

total complex.

Proof. Since the sheaf complex Ap,•
X gives rise to a fine resolution of Ωp

X , the assertion follows

from the fact that the Koszul–Brylinski operator ∂π commutes with ∂̄; see also [37, Theorem

5.1]. □

This proposition immediately yields the natural morphism of Koszul–Brylinski homology

under Poisson morphisms.

Corollary 2.6. Suppose that f : (Y, πY ) → (X,πX) is a Poisson morphism of holomorphic

Poisson manifolds. Then the pullback of differential forms naturally induces a morphism of the

holomorphic Koszul–Brylinski homologies

f⋆ : Hk(X,πX) −→ Hk(Y, πY ).

Proof. Note that on the space of (p, q)-forms, we have

f⋆ ◦ ∂πX = f⋆ ◦ ∂f⋆πY
= ∂πY ◦ f⋆ and f⋆ ◦ ∂̄ = ∂̄ ◦ f⋆.

Hence, the corollary follows immediately from Proposition 2.5. □

By a result of Stiénon [37, Theorem 6.4], the holomorphic Evens–Lu–Weinstein pairing on

the holomorphic Koszul–Brylinski homology is non-degenerate. More precisely, if (X,π) is a

compact holomorphic Poisson manifold of complex dimension n, then there is an isomorphism

H2n−k(X,π) ∼= Hk(X,π) (2.4)
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for 0 ≤ k ≤ 2n. In the dual aspect, there exists a holomorphic Lichnerowicz–Poisson complex

(∧•TX , bπ):

0 // OX

bπ
// · · ·

bπ
// ∧s−1TX

bπ
// ∧sTX

bπ
// ∧s+1TX

bπ
// · · ·

bπ
// ∧nTX // 0

where bπ(−) = [π,−]S . The k-th hyperchomology of (∧•TX , bπ) is called the k-th holomorphic

Lichnerowicz–Poisson cohomology, i.e.,

Hk(X,π) := Hk(X, (∧•TX , bπ)).

Assume that X admits a holomorphic volume form ω ∈ Γ(X,Ωn
X). Then there is the natural

morphism of sheaves

ι(−)ω : ∧sTX −→ Ωn−s
X

for each s ∈ {0, 1, · · · , n}. However, it does not induce a morphism of sheaf complexes between

(∧•TX , bπ) and (Ω•
X , ∂π). The reason lies in the fact that the diagram

∧sTX

bπ
��

ι(−)ω
// Ωn−s

X

∂π
��

∧s+1TX
ι(−)ω

// Ωn−s−1
X

is not commutative in general. This motivates the following definition.

Definition 2.7 (c.f. [38, 7]). A holomorphic Poisson manifold (X,π) is called unimodular if

there is a holomorphic volume form ω such that the morphism ι(−)ω induces a morphism of

sheaf complexes from (∧•TX , bπ) to (Ω•
X , ∂π).

Equivalently, a holomorphic Poisson manifold (X,π) is unimodular if and only if ∂πω = 0, or

the modular vector field, introduced by Weinstein [38] and Brylinski–Zuckerman [7], vanishes.

In particular, we have

Proposition 2.8 ([37, Proposition 4.7]). If the holomorphic Poisson manifold (X,π) is uni-

modular, then there is an isomorphism

Hk(X,π) ∼= H2n−k(X,π),

for any k ∈ Z, where n = dimCX.

3. Blow-ups and modifications in the Poisson category

In this section, we give a rapid review on the blow-ups and modifications in the holomorphic

Poisson category.

3.1. Poisson blow-ups. Given a complex manifold X and a closed complex submanifold

ȷ : Z ↪→ X with complex codimension c ≥ 2. Let φ : X̃ → X be the blow-up of X along Z.

Then the holomorphic map

φ : X̃ − E //X − Z

is biholomorphic, where E := φ−1(Z) is the exceptional divisor, which is the projective bundle

of the normal bundle of Z in X. Moreover, we have a commutative diagram
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E

ρ:=φ|E
��

� � ȷ̃
// X̃

φ

��

Z �
� ȷ

// X.

(3.1)

In the Poisson category, if X is a holomorphic Poisson manifold and Z is a closed holomor-

phic Poisson submanifold of X, then the existence of the holomorphic Poisson structure on

the complex blow-up X̃ is not an unconditional result. In fact, there exist some restrictions

on the existence of the holomorphic Poisson structure on X̃. Let us recall the result which

was originally studied by Polishchuk [29]. Assume (Z, π|Z) is a closed holomorphic Poisson

submanifold of (X,π). Then for any point z ∈ Z, the conormal space N∗
zZ is a Lie algebra

induced by the bracket (2.1), or equivalently, the normal space NzZ admits a linear Poisson

structure which defines the transverse Poisson structure πN ∈ Γ(Z,N∗Z ⊗ ∧2NZ).

Definition 3.1. The transverse Poisson structure πN of a closed holomorphic Poisson sub-

manifold (Z, π|Z) in (X,πX) is said to be degenerate if, for any point z ∈ Z, the map

∧3N∗
zZ −→ S2N∗

zZ

α ∧ β ∧ γ 7−→ [α, β]γ + [β, γ]α+ [γ, α]β

is identically to zero.

It follows from [29, Proposition 8.1] that a degenerate Lie algebra is either abelian or iso-

morphic to the Lie algebra Span{e1, · · · , ec−1, f} with Lie bracket [ei, ej ] = 0, [f, ei] = ei.

Example 3.2 (c.f. [32, § 2.5.2]). Let π be a holomorphic Poisson bi-vector field on C2, and

BloC2
φ
// C2 the blow-up of C2 at the origin o = (0, 0) ∈ C2. Choose coordinates z1, z2, and

suppose {z1, z2} = f(z1, z2) for some holomorphic function f . Set

u = φ∗(z1), and v =
φ∗(z2)

φ∗(z1)
= φ∗(z−1

1 z2).

Suppose we can define a holomorphic Poisson bracket on BloC2 which is compatible with the

one determined by π on C2; then

{u, v} = {φ∗(z1), φ
∗(z−1

1 z2)} = φ∗{z1, z−1
1 z2} = φ∗(z−1

1 f(z1, z2))

= u−1f(u, uv) = u−1(f(0, 0) + ug(u, v)),

where g is holomorphic near the locus u = 0. Therefore the holomorphic Poisson bracket given

by {z1, z2} = f(z1, z2) on C2 can be lifted to BloC2 if and only if f(0, 0) = 0.

Now, let us return to the construction of Poisson blow-ups. The blow-up of a Poisson

scheme was originally clarified in the work of Polishchuk [29]. Here, we review the blow-up of

holomorphic Poisson manifolds along closed holomorphic Poisson submanifolds; see also [15,

Section 2].

Proposition 3.3 ([29, Propositions 8.2 & 8.3] or [3, Proposition 3.15]). Let (X,π) be a holo-

morphic Poisson manifold. Suppose ȷ : (Z, π|Z) ↪→ (X,π) is a closed holomorphic Poisson

submanifold. If the associated transverse Poisson structure πN vanishes, then the following

statements hold:
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(i) there exists a unique holomorphic Poisson structure π̃ on X̃ such that φ is Poisson

morphism (i.e., φ⋆π̃ = π);

(ii) E is a holomorphic Poisson manifold such that φ|E : E → Z is a Poisson morphism;

(iii) the diagram (3.1) of holomorphic Poisson manifolds is commutative.

3.2. Poisson modifications. This subsection is devoted to the study of the behavior of the

holomorphic Koszul–Brylinski homology under Poisson modifications of compact holomorphic

Poisson manifolds. Recall that a modification of compact complex manifolds is a holomorphic

map ψ : Y → X of compact complex manifolds satisfying:

(i) dim Y = dim X; and

(ii) there is an analytic subset S ⊂ X of codimension ≥ 2 such that the restriction

ψ : Y − ψ−1(S) −→ X − S

is biholomorphic.

Definition 3.4. A Poisson modification is a Poisson morphism ψ : (Y, πY ) → (X,πX) of

compact holomorphic Poisson manifolds (X,πX) and (Y, πY ) such that ψ is also a modification

of compact complex manifolds.

Note that the holomorphic Poisson blow-ups are important examples of Poisson modifica-

tions. To study the behavior of the holomorphic Koszul–Brylinski homology under Poisson

modifications of compact holomorphic Poisson manifolds, we need to reinterpret the Koszul–

Brylinski homology in terms of currents. Let (X,π) be a holomorphic Poisson manifold, and

Cs,t
X be the sheaf of (s, t)-currents on X. Then the operators ∂π and ∂̄ naturally induce the dual

operators ∂⋆π and ∂̄⋆ acting on Cs,t
X , respectively. Since ∂⋆π commutes with ∂̄⋆, we obtain a double

complex (C•,•
X , ∂⋆π, ∂̄

⋆). In particular, there exists a natural morphism of double complexes

τX : (A•,•
X , ∂π, ∂̄) ↪→ (C•,•

X , ∂⋆π, ∂̄
⋆). (3.2)

Denote by HC
k (X,π) the k-hypercohomology of the total complex of the double complex

(C•,•
X , ∂⋆π, ∂̄

⋆).

Lemma 3.5. The natural morphism τX induces an isomorphism

τX : Hk(X,π) −→ HC
k (X,π),

for any k ∈ Z.

Proof. To prove the assertion, it suffices to verify that (A•,•
X , ∂π, ∂̄) is quasi-isomorphic to

(C•,•
X , ∂⋆π, ∂̄

⋆) under the morphism τX . By the spectral sequence theory for double complexes,

there exists a sequence {Er, dr} for (A•,•
X , ∂π, ∂̄) such that

E1 = H•(A•,•
X , ∂̄) = H•,•

∂̄
(X) =⇒ E∞ = H•(X,π).

Similarly, the double complex {C•,•
X , ∂⋆π, ∂̄

⋆} admits a spectral sequence (Ẽr, d̃r) satisfying

Ẽ1 = H•(C•,•
X , ∂̄⋆) =⇒ Ẽ∞ = HC

• (X,π).

Observe that (3.2) induces a morphism of spectral sequences

τX,r : {Er, dr} −→ {Ẽr, d̃r}.
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Since the natural inclusion τX : (Ap,•
X , ∂̄) ↪→ (Cp,•

X , ∂̄⋆) is a quasi-isomorphism, we get that the

induced map τX,1 : E1 → Ẽ1 is an isomorphism and therefore E∞ ∼= Ẽ∞ under τX . This

implies that (3.2) is a quasi-isomorphism and the proof is completed. □

We are ready to present the following comparison theorem for holomorphic Koszul–Brylinski

homology under Poisson modifications.

Theorem 3.6. Let f : (Y, πY ) → (X,πX) be a Poisson modification of compact holomorphic

Poisson manifolds. Then the natural morphism

f⋆ : Hk(X,πX) −→ Hk(Y, πY )

is injective, for any k ∈ Z.

Proof. Since f is a Poisson morphism, by definition, we have f⋆πY = πX . This implies

f⋆ ◦ ∂πX = ∂πY ◦ f⋆ and f⋆ ◦ ∂⋆πY
= ∂⋆πX

◦ f⋆. (3.3)

In particular, we obtain a diagram

(Γ(X,A•,•
X ), ∂πX , ∂̄)

f⋆

��

� � τX
// (Γ(X, C•,•

X ), ∂⋆πX
, ∂̄⋆)

(Γ(Y,A•,•
Y ), ∂πY , ∂̄)

� � τY
// (Γ(Y, C•,•

Y ), ∂⋆πY
, ∂̄⋆).

f⋆

OO

(3.4)

However, it is not a priori clear that the diagram (3.4) is commutative. We now show the

commutativity of (3.4). As f is a modification of compact complex manifolds, its degree is 1;

moreover, f is a biholomorphism outside of two sets with Lebesgue measure zero. As a result,

let α be a differential k-form on X, then we have

⟨f⋆ ◦ τY ◦ f⋆(α), β⟩ =

∫
X
(f⋆ ◦ τY ◦ f⋆(α)) ∧ β

=

∫
Y
f⋆(α ∧ β) =

∫
X
α ∧ β

= ⟨τX(α), β⟩,

where β is an arbitrary differential (2n−k)-form on X. It follows that τX(α) = f⋆ ◦ τY ◦f⋆(α);
see the proof of [13, Theorem 12.9]. Combining it with (3.3) yields that (3.4) is a commutative

diagram. Applying Lemma 3.5 to X and Y , we obtain two natural isomorphisms

τY : Hk(Y, πY ) −→ HC
k (Y, πY ) and τX : Hk(X,πX) −→ HC

k (X,πX).

Consequently, we obtain a commutative diagram

Hk(X,πX)

f⋆

��

τX

≃
// HC

k (X,πX)

Hk(Y, πY )
τY

≃
// HC

k (Y, πY ).

f⋆

OO

and hence the morphism

f⋆ : Hk(X,πX) −→ Hk(Y, πY )

is injective. □
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4. Comparison under Poisson projective bundles

The purpose of this section is to establish the following projective bundle formula for holo-

morphic Koszul–Brylinski homology.

Theorem 4.1. Suppose (Z, π) is a compact holomorphic Poisson manifold. Let ρ : E → Z

be the projective bundle of a holomorphic vector bundle of rank c ≥ 2 on Z. If Z satisfies the

∂∂̄-lemma and π̃ is a holomorphic Poisson structure on E such that ρ⋆π̃ = π, then there is an

isomorphism of Koszul–Brylinski homology as C-vector spaces:

Hk+1−c(Z, π)
⊕ c ∼= Hk(E, π̃),

for any k ∈ Z.

To illustrate the basic idea of the proof of the theorem above, we consider the case of

dimC Z = 2 and c = 3. Consider the first Chern class of the tautological line bundle over E:

h = c1(OE(1)) ∈ H1,1

∂̄
(E).

Set As,t
Z := Γ(Z,As,t

Z ) be the space of differential (s, t)-forms. Observe that Hk(E, π̃) is equal

to the k-th total cohomology of the double complex G = (A•,•
E , ∂π̃, ∂̄), whereas Hk−2(Z, π)

⊕ 3

is the k-th total cohomology of the double complex

L =

( 2⊕
i=0

A•,•
Z [−2 + i,−i], ∂π, ∂̄

)
.

According to the standard spectral sequence theory for double complexes, we have a spectral

sequence {(G•,•
r , dr)} associated to G such that

G•,•
1 = H•,•

∂̄
(E) =⇒ H•(E, π̃).

Similarly, for the double complex L, there exists a spectral sequence {(L•,•
r , d̄r)} satisfying

L•,•
1 =

2⊕
i=0

H•,•
∂̄

(Z)[−2 + i,−i] =⇒ H•−2(Z, π)
⊕3.

Note that there exists a well-defined map of bi-graded C-vector spaces (see the figure below):

Ψ :=

2∑
i=0

hi ∧ ρ⋆(−) :

2⊕
i=0

A•,•
Z [−2 + i,−i] −→ A•,•

E .

Since ∂π̃ is not a derivation, it does not commute with Ψ and therefore Ψ can not give rise to

a morphism between the double complexes G and L. Recall that a compact complex manifold

X satisfies the ∂∂̄-lemma, if the equation

ker ∂ ∩ ker ∂̄ ∩ im d = im ∂∂̄

holds for the double complex (A•,•
X , ∂, ∂̄) (cf. [12]). Under the assumption that Z satisfies the

∂∂̄-lemma, it is noteworthy that Ψ induces a morphism Ψ1 : G•,•
1 → L•,•

1 which commutes with

the differentials d1 and d̄1. Consequently, we get a well-defined morphism of spectral sequences

Ψr : (G•,•
r , dr) −→ (L•,•

r , d̄r).

In particular, by the projective bundle formula of Dolbeault cohomology, we conclude that Ψ1

is an isomorphism, and so is the Ψ∞.
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0

0

0

0 0 0

0 0 0

A2,0
Z A2,1

Z A2,2
Z 0

A1,0
Z A1,1

Z A1,2
Z 0

A0,0
Z A0,1

Z A0,2
Z 0

A4,0
E A4,1

E A4,2
E A4,3

E A4,4
E 0

A3,0
E A3,1

E A3,2
E A3,3

E A3,4
E 0

A2,0
E A2,1

E A2,2
E A2,3

E A2,4
E 0

A1,0
E A1,1

E A1,2
E A1,3

E A1,4
E 0

A0,0
E A0,1

E A0,2
E A0,3

E A0,4
E 0

0 0 0 0 0

0

0

0

0

0

0 0 0 0 0

We here state some facts which is necessary for the proof of Theorem 4.1.

Proposition 4.2. Let (X,π) be a holomorphic Poisson manifold. Then for any d-closed forms

α and β on X, the bracket [α, β]∂π is d-exact.

Proof. Let dπ := ιπd− dιπ = ∂π + ∂̄π. According to a result by Sharygin–Talalaev [36, Lemma

5], the Lie bracket

[α, β]dπ = (−1)k
(
dπ(α ∧ β)− (dπα) ∧ β − (−1)kα ∧ (dπβ)

)
, α ∈ Ak

X , β ∈ Al
X ,

associated to dπ is d-exact if both α and β are d-closed. Due to the Lemma 2.3, we obtain

that ∂̄π is zero, and hence we get dπ = ∂π. Therefore we in fact have [α, β]dπ = [α, β]∂π , and

consequently the Proposition holds. □

We are now in a position to give the proof of Theorem 4.1.

Proof of Theorem 4.1. Using the same notations as above, the morphism of the first pages

Ψ1 : (G•,•
1 , d1 = ∂π) → (L•,•

1 , d̄1 = ∂π̃) is explicitly expressed as:

Ψ1 =
c−1∑
i=0

hi ∧ ρ⋆(−) :
c−1⊕
i=0

(
H•,•

∂̄
(Z)[−c+ 1 + i,−i], ∂π

)
−→

(
H•,•

∂̄
(E), ∂π̃

)
. (4.1)

We claim that Ψ1 commutes with ∂π and ∂π̃. Note that if the ∂∂̄-lemma holds on Z, it also

holds on E (cf. [1, Corollary 12]). Since h is a d-closed real (1, 1)-form on E, it follows from

Proposition 4.2 that [h, h]∂π̃ is d-exact. On the one hand, since ∂h = 0, we get

∂([h, h]∂π̃) = [∂h, h]∂π̃ + [h, ∂h]∂π̃ = 0. (4.2)

On the other hand, since [h, h]∂π̃ is d-exact, it follows from (4.2) that

0 = d([h, h]∂π̃) = ∂̄([h, h]∂π̃). (4.3)

From the ∂∂̄-lemma, we obtain [h, h]∂π̃ = ∂∂̄β for some β on E. This implies that [h, h]∂π̃
represents a zero class in H1,2

∂̄
(E) and therefore we get

0 = [∂π̃h
i] ∈ H i−1,i

∂̄
(E).
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For any [α] ∈ H•,•
∂̄

(Z), we have ∂α ∈ ker ∂̄ ∩ im ∂. Since Z satisfies the ∂∂̄-lemma, there exists

ξ on Z such that ∂α = ∂∂̄ξ. Put α̃ = α − ∂̄ξ. Then we get [α] = [α̃] and ∂α̃ = 0. In what

follows, we always choose the ∂-closed representatives of the Dolbeault cohomology classes in

H•,•
∂̄

(Z). Let [α] ∈ H•,•
∂̄

(Z), then we have

∂π̃(Ψ1([α])) = ∂π̃(
c−1∑
i=0

[hi ∧ ρ⋆(α)])) =
c−1∑
i=0

[∂π̃(h
i ∧ ρ⋆(α))]

=

c−1∑
i=0

[(∂π̃h
i) ∧ ρ⋆(α) + hi ∧ (∂π̃ ◦ ρ⋆(α)) + [hi, ρ⋆(α)]∂π̃ ].

Note that ∂π̃h
i is ∂̄-exact and α is ∂̄-closed. We obtain that [(∂π̃h

i) ∧ ρ⋆(α)] = 0. Consider

γ := [hi, ρ⋆(α)]∂π̃ . From Proposition 4.2, we know that γ is d-exact. Notice that both h and α

are ∂-closed. This implies ∂γ = [∂hi, ρ⋆(α)]∂π̃ + [hi, ∂ρ⋆(α)]∂π̃ = 0. Furthermore, we get that γ

is ∂̄-closed. By the ∂∂̄-lemma on E, we get γ = ∂∂̄η for some η on E. This implies [γ] = 0 in

the Dolbeault cohomology group. Consequently, we are led to the conclusion

∂π̃(Ψ1([α])) =

c−1∑
i=0

[hi ∧ ∂π̃(ρ⋆(α))] =
c−1∑
i=0

[hi ∧ ρ⋆(∂π(α))] = Ψ1(∂π([α])).

The morphism Ψ1 induces the morphism between the second pages of the spectral sequences:

Ψ2 = H(Ψ1) : G•,•
2

∼= H(G•,•
1 , d1) −→ H(L•,•

1 , d̄1) ∼= L•,•
2 .

Assume that Ψr : G•,•
r −→ L•,•

r commutes with the differentials dr and d̄r, where r ≥ 2. Then

we get the induced morphism of the (r + 1)-pages:

Ψr+1 = H(Ψr) : G•,•
r+1

∼= H(G•,•
r , dr) −→ H(L•,•

r , d̄r) ∼= L•,•
r+1.

We claim that Ψr+1 commutes with dr+1 and d̄r+1. Suppose α ∈ Ap,q
Z represents a class in

Gp,q
r+1; equivalently, α is a cocycle in Gp,q

j for all 1 ≤ j ≤ r. Without loss of generality, we

assume that α is ∂-closed. Since α lives to Gp,q
r+1, by the ∂∂̄-lemma, it can be extended to a

zig-zag of length r + 1 such that the tail is ∂-exact. Denote the tail by ∂β and then we get

dr+1([α]r+1) = [∂π∂β]r+1. Observe that the form α̃ := hi∧ρ⋆α represents a class in Lp,q
1 . Using

the ∂∂̄-lemma again, the form α̃ can be extended to a zig-zag of length (r + 1) which has the

tail η̃ := hi ∧ ρ⋆(∂β)+∂γ̃, where γ̃ is a form on E. This implies that α̃ lives to Lp,q
r+1 and hence

we get

d̄r+1(Ψr+1([α]r+1)) = d̄r+1([α̃]r+1) = [∂π̃α̃]r+1.

Via a straightforward computation, we have

∂π̃η̃ = (∂π̃h
i) ∧ ρ⋆(∂β) + hi ∧ ∂π̃ρ⋆(∂β) + [hi, ρ⋆(∂β)]∂π̃ + ∂π̃∂γ̃

= hi ∧ ρ⋆(∂π∂β)− ∂
(
(∂π̃h

i) ∧ ρ⋆β
)
− ∂([hi, ρ⋆β]∂π̃)− ∂∂π̃γ̃

:= hi ∧ ρ⋆(∂π∂β) + ∂ζ̃.

Note that both ∂π̃η̃ and ∂π∂β are ∂̄-closed, and so is the form ∂ζ̃. Due to the ∂∂̄-lemma, we

get ∂ζ̃ = ∂∂̄ω̃ for some ω̃ on E. This implies that ∂π̃η̃ and hi ∧ ρ⋆(∂π∂β) represent the same

class in L1, i.e., [∂π̃η̃]1 = [hi ∧ ρ⋆(∂π∂β)]1 and therefore we get

d̃r+1(Ψr+1([α]r+1)) = [∂π̃η̃]r+1 = [hi ∧ ρ⋆(∂π∂β)]r+1 = Ψr+1(dr+1([α]r+1)).



14 X. CHEN, Y. CHEN, S. YANG, AND X. YANG

Inductively, we obtain a morphism of spectral sequences

Ψr : (G•,•
r , dr) −→ (L•,•

r , d̄r).

Thanks to the projective bundle formula for Dolbeault cohomology, we get that Ψ1 is an

isomorphism. By a result on the convergence of spectral sequences [28, Theorem 3.4], for all r,

1 < r ≤ ∞, Ψr : G•,•
r → L•,•

r is an isomorphism, and this completes the proof. □

Example 4.3. Suppose (X,πX) and (Pn, πPn) are two holomorphic Poisson manifolds. Then

the product manifold E = X × Pn can be thought of as the projectivization of the trivial

vector bundle X ×Cn+1 → X. In particular, if we view E as the product of Poisson manifolds

X and Pn, then the associated product Poisson structure π̃E on E satisfying that the two

projections ρ1 : E → X and ρ2 : E → Pn are Poisson maps with involution property (cf. [26,

Proposition 2.5]). Notice that the first Chern class [hE ] of the tautological line bundle over

E is the pullback of the first Chern class [hPn ] of the tautological line bundle over Pn via ρ⋆2,

hence by the involution property of π̃E , for any α ∈ A•,•
X ,

[hiE , ρ
⋆
1(α)]∂π̃E = [ρ⋆2(h

i
Pn), ρ⋆1(α)]∂π̃E = 0.

This means in this special case, the map Ψ is a well-defined morphism between the double

complexes G and L. With the classical argument, Ψ induces an isomorphism

Hk(E, π̃E) ∼= Hk−n(X,πX)⊕(n+1),

for any integer k ≥ 0. Especially, if X is a point, then we have

Hk(Pn, πPn) =

{
Cn+1, k = n,

0, k ̸= n.

Assume that X = P1 and n = 1. The moduli space of holomorphic Poisson structures on

E = P1 × P1 is isomorphic to C9 (cf. [22, Proposition 2.2]). Consider the projective bundle

ρ : E → P1. Let πE be an arbitrary holomorphic Poisson structure on E. The holomorphic

Koszul–Brylinski homology of (E, πE) has been computed by Stiénon [37, Theorem 7.2], and

here we present a new proof of his result by applying the projective bundle formula (Theorem

4.1). For the dimension reason, each holomorphic bivector field on P1 is zero. Thus we get

ρ⋆(πE) = 0. As a corollary, we obtain

Hk(E, πE) ∼= Hk−1(P1, π = 0)⊕2 ∼=
[ ⊕
p−q=2−k

Hq(P1,Ωp
P1)

]⊕2
.

A straightforward computation shows Hk(E, πE) = 0 when k = 0, 1, 3, 4. When k = 2, we have

H2(E, πE) ∼= H1(P1, π = 0)⊕2 ∼= C4,

since H1(P1, π = 0) ∼= H0,0

∂̄
(P1)⊕H1,1

∂̄
(P1) ∼= C2.

5. Comparison under Poisson blow-ups

The main purpose of this section is to prove the blow-up formula for holomorphic Koszul–

Brylinski homology of compact holomorphic Poisson manifolds.
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5.1. Relative Koszul–Brylinski homology. Let X be a compact complex manifold and

ȷ : Z ↪→ X a closed complex submanifold of codimension c. Consider the natural morphism

ȷ⋆ : Ωs
X −→ ȷ∗Ω

s
Z

which is defined as follows:

ȷ⋆(V ) : Γ(V,Ωs
X) −→ Γ(V, ȷ∗Ω

s
Z)

α 7−→ (ȷV ∩Z)
⋆α,

where V ⊂ X is an open subset and ȷV ∩Z : V ∩ Z ↪→ V is the holomorphic inclusion. We also

define the sheaf morphism

ȷ⋆ : Ap,q
X −→ ȷ∗Ap,q

Z .

in a similar way.

Definition 5.1 ([34, 39]). The kernel sheaves

Ks
X,Z := ker

(
ȷ⋆ : Ωs

X → ȷ∗Ω
s
Z

)
and

Kp,q
X,Z := ker

(
ȷ⋆ : Ap,q

X → ȷ∗Ap,q
Z

)
are called the s-th relative Dolbeault sheaf and (p, q)-th relative Dolbeault sheaf with respect to

Z.

There exist two natural short exact sequences

0 // Ks
X,Z

// Ωs
X

ȷ⋆
// ȷ∗Ω

s
Z

// 0 (5.1)

and

0 // Kp,q
X,Z

// Ap,q
X

ȷ⋆
// ȷ∗Ap,q

Z
// 0, (5.2)

where Kp,•
X,Z is a fine resolution of Kp

X,Z . Consider the holomorphic Poisson manifold (X,π)

together with the holomorphic Poisson submanifold (Z, π|Z). Then we have

Lemma 5.2. There exists a short exact sequence of sheaf complexes on X:

0 // (K•
X,Z , ∂π)

// (Ω•
X , ∂π)

ȷ⋆
// ȷ∗(Ω

•
Z , ∂π|Z )[−c] // 0, (5.3)

where c = codimCZ.

Proof. Since ȷ⋆◦ιπ = ιπ|Z ◦ȷ
⋆ and ȷ⋆◦∂ = ∂◦ȷ⋆, we have ȷ⋆◦∂π = ∂π|Z ◦ȷ

⋆. Hence, for any k ∈ Z,
there is a well-defined induced operator ∂π : Kk

X,Z → Kk−1
X,Z , i.e., (K

•
X,Z , ∂π) is a well-defined

sheaf complex. Moreover, by the short exact sequence (5.1), there is a commutative diagram

of short exact sequences of sheaves

0 // Kk
X,Z

∂π
��

// Ωk
X

∂π
��

ȷ⋆
// ȷ∗Ω

k
Z

∂π|Z
��

// 0

0 // Kk−1
X,Z

// Ωk−1
X

ȷ⋆
// ȷ∗Ω

k−1
Z

// 0.

The lemma follows immediately from the above commutative diagram. □
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Definition 5.3. The sheaf complex (K•
X,Z , ∂π) is called the relative Koszul–Brylinski complex

of (X,π) with respect to (Z, π|Z), and its k-th hypercohomology

Hk(X,Z;π) := Hk(X, (K•
X,Z , ∂π))

is called the k-th relative Koszul–Brylinski homology of (X,π) with respect to (Z, π|Z).

Taking the hypercohomology of the short exact sequence (5.3), we get a long exact sequence:

· · · // Hk(X,Z;π) // Hk(X,π) // Hk−c(Z, π|Z) // Hk+1(X,Z;π) // · · ·

Similarly to Proposition 2.5, we have the following:

Proposition 5.4. The relative Koszul–Brylinski complex (K•
X,Z , ∂π) is quasi-isomorphic to the

total sheaf complex of the double sheaf complex (K•,•
X,Z , ∂π, ∂̄).

Proof. As we mentioned above, for each p ∈ Z, the relative Dolbeault sheaf Kp
X,Z admits a fine

resolution Kp,•
X,Z . Then the proposition follows. □

5.2. Proof of Theorem 1.1. Given a compact holomorphic Poisson manifold (X,π) with a

holomorphic Poisson closed submanifold ȷ : (Z, π|Z) ↪→ (X,π) with complex codimension c ≥ 2.

Let φ : X̃ → X be the blow-up of X along Z with exceptional divisor E := φ−1(Z). Suppose

that the transverse Poisson structure πN = 0. Due to Proposition 3.3, we get a commutative

diagram for the blow-up in the holomorphic Poisson category:

(E, π̃|E)

ρ=φ|E
��

� � ȷ̃
// (X̃, π̃)

φ

��

(Z, π|Z) �
� ȷ

// (X,π).

(5.4)

The following lemma plays a crucial role in the proof Theorem 1.1.

Lemma 5.5. The pullback φ⋆ naturally induces an isomorphism

φ⋆ : Hk(X,Z;π)
≃−→ Hk(X̃, E; π̃).

for any k ∈ Z.

Proof. Note that there exists a natural morphism of bounded double complexes

φ⋆ :
(
Γ(X,K•,•

X,Z), ∂π, ∂̄)
)
−→

(
Γ(X̃,K•,•

X̃,E
), ∂π̃, ∂̄)

)
.

Furthermore, we have two spectral sequences:

• {Er, dr}, associated to (Γ(X,K•,•
X,Z), ∂π, ∂̄)) , converges to the relative Koszul–Brylinski

homology H•(X,Z;π) with the E1-page given by

Ep,q
1 = Hq(X,Kn−p

X,Z );

• {Ẽr, d̃r}, associated to (Γ(X̃,K•,•
X̃,E

), ∂π̃, ∂̄)), converges to the relative Koszul–Brylinski

homology Hk(X̃, E; π̃) with the Ẽ1-page given by

Ẽp,q
1 = Hq(X̃,Kn−p

X̃,E
).
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For any r ≥ 1, the morphism φ⋆ induces a morphism of the spectral sequences

φ⋆
r : Er −→ Ẽr

and hence a morphism of relative Koszul–Brylinski homologies

φ⋆ : Hk(X,Z;π) −→ Hk(X̃, E; π̃).

Due to [34, Lemma 4.5], the pullback of differential forms induces an isomorphism

φ⋆ : Hq(X,Kn−p
X,Z ) −→ Hq(X̃,Kn−p

X̃,E
),

for any 0 ≤ p, q ≤ n. It follows that φ⋆
1 : E1 → Ẽ1 is an isomorphism. Consequently, by the

standard result in the spectral sequence theory, we get that φ⋆
r is isomorphic for any r > 1 and

therefore the assertion holds. □

Now we are in the position to prove the blow-up formula of holomorphic Koszul–Brylinski

homology.

Proof of Theorem 1.1. For the pairs of compact holomorphic Poisson manifolds (X,Z) and

(X̃, E), we have two short exact sequences of sheaf complexes

0 // (K•
X,Z , ∂π)

// (Ω•
X , ∂π)

ȷ⋆
// ȷ∗(Ω

•
Z , ∂π|Z )[−c] // 0 (5.5)

and

0 // (K•
X̃,E

, ∂π̃) // (Ω•
X̃
, ∂π̃)

ȷ̃⋆
// ȷ̃∗(Ω

•
E , ∂π̃|E )[−1] // 0 . (5.6)

We next establish a commutative diagram of long exact sequences of holomorphic Koszul–

Brylinski homology associated to (5.5) and (5.6). Observe that each complex in (5.5) and (5.6)

admits a natural fine resolution. For the pair (X,Z), by the short exact sequence (5.2), we

have the two commutative diagrams of short exact sequences of fine sheaves:

0 // Kp,q
X,Z

∂̄
��

// Ap,q
X

∂̄
��

ȷ⋆
// ȷ∗Ap,q

Z

∂̄
��

// 0

0 // Kp,q+1
X,Z

// Ap,q+1
X

ȷ⋆
// ȷ∗Ap,q+1

Z
// 0

and

0 // Kp,q
X,Z

∂π
��

// Ap,q
X

∂π
��

ȷ⋆
// ȷ∗Ap,q

Z

∂π|Z
��

// 0

0 // Kp−1,q
X,Z

// Ap−1,q
X

ȷ⋆
// ȷ∗Ap−1,q

Z
// 0.

As a consequence, there is a short exact sequence of double complexes:

0 //
(
Γ(X,K•,•

X,Z), ∂π, ∂̄
)

//
(
Γ(X,A•,•

X ), ∂π, ∂̄
) ȷ⋆

//
(
Γ(Z,A•,•

Z )[−c, 0], ∂π|E , ∂̄
)

// 0.

Similarly, for the pair (X̃, E) we have a short exact sequence:

0 //
(
Γ(X̃,K•,•

X̃,E
), ∂π̃, ∂̄

)
//
(
Γ(X̃,A•,•

X̃
), ∂π̃, ∂̄

) ȷ̃⋆
//
(
Γ(E,A•,•

E )[−1, 0], ∂π̃|E , ∂̄
)

// 0.
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Moreover, the blow-up morphism φ naturally induces a commutative diagram of short exact

sequences:

0 Γ(X,Kp,q
X,Z) Γ(X,Ap,q

X ) Γ(Z,Ap,q
Z ) 0

0 Γ(X,Kp−1,q
X,Z ) Γ(X,Ap−1,q

X ) Γ(Z,Ap−1,q
Z ) 0

0 Γ(X̃,Kp,q

X̃,E
) Γ(X̃,Ap,q

X̃
) Γ(E,Ap,q

E ) 0

0 Γ(X̃,Kp−1,q

X̃,E
) Γ(X̃,Ap−1,q

X̃
) Γ(E,Ap−1,q

E ) 0

ȷ⋆

ȷ̃⋆

ȷ⋆

ȷ̃⋆

∂π ∂π ∂π

∂π̃ ∂π̃ ∂π̃

φ⋆ φ⋆ ρ⋆

φ⋆ φ⋆ ρ⋆

Therefore, we obtain a commutative diagram of double complexes

0 //
(
Γ(X,K•,•

X,Z), ∂π, ∂̄
)

φ⋆

��

//
(
Γ(X,A•,•

X ), ∂π, ∂̄
)

φ⋆

��

ȷ⋆
//
(
Γ(Z,A•,•

Z )[−c, 0], ∂π|E , ∂̄
)

ρ⋆

��

// 0

0 //
(
Γ(X̃,K•,•

X̃,E
), ∂π̃, ∂̄

)
//
(
Γ(X̃,A•,•

X̃
), ∂π̃, ∂̄

) ȷ⋆
//
(
Γ(E,A•,•

E )[−1, 0], ∂π̃|E , ∂̄
)
// 0.

(5.7)

The commutative diagram (5.7) above yields a commutative diagram of long exact sequences

of Koszul–Brylinski homologies:

· · · // Hk(X,Z;π)

φ∗

��

// Hk(X,π)

φ⋆

��

// Hk−c(Z, π|Z)

ρ⋆

��

// Hk+1(X,Z;π)

φ⋆

��

// · · ·

· · · // Hk(X̃, E; π̃) // Hk(X̃, π̃) // Hk−1(E, π̃|E) // Hk+1(X̃, E; π̃) // · · · .

(5.8)

In the above diagram, by Lemma 5.5, for any l ∈ Z, the morphism

φ⋆ : Hl(X,Z;π)
≃−→ Hl(X̃, E; π̃)

is an isomorphism. Moreover, by Theorem 3.6, both the second and third vertical arrows

in (5.8) are injective. Finally, by a standard diagram-chasing in (5.8), we get the following

isomorphisms of finite dimensional C-vector spaces:

Hk(X̃, π̃) ∼= Hk(X,π)⊕
(
Hk−1(E, π̃|E)/ρ⋆Hk−c(Z, π|Z)

)
Furthermore, if Z satisfies the ∂∂̄-lemma, then by Theorem 4.1,

Hk(X̃, π̃) ∼= Hk(X,π)⊕Hk−c(Z, π|Z)⊕c−1.

This completes the proof of Theorem 1.1. □

5.3. Degeneracy of the Dolbeault–Koszul–Brylinski spectral sequence. Let (X,π) be

a holomorphic Poisson manifold of complex dimension n. Consider the Koszul–Brylinski double

complex (Γ(X,A•,•
X ), ∂π, ∂̄). Inspired by the Fröhlicher (or Hodge–de Rham) spectral sequence

of complex manifolds, we introduce the following:
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Definition 5.6. The Fröhlicher-type spectral sequence associated to the double complex

(Γ(X,A•,•
X ), ∂π, ∂̄) satisfying

Es,t
1 := Hn−s,t

∂̄
(X) =⇒ Hn−s+t(X,π), (5.9)

is called the Dolbeault–Koszul–Brylinski spectral sequence of (X,π).

As mentioned before, for a compact complex manifoldX with the trivial holomorphic Poisson

structure π, the Dolbeault–Koszul–Brylinski spectral sequence degenerates at E1-page and we

have

Hk(X,π = 0) ∼=
⊕

p−q=n−k

Hq(X,Ωp
X) ∼=

⊕
p−q=n−k

Hp,q

∂̄
(X).

Analogously to the Hodge–de Rham spectral sequence, in general, the Dolbeault–Koszul–

Brylinski spectral sequence (5.9) does not degenerate at E1-page (see for example in §§6.3.2).
We have the following result.

Lemma 5.7. Let (X,π) be a compact holomorphic Poisson manifold of complex dimension n.

Then its Dolbeault–Koszul–Brylinski spectral sequence degenerates at E1-page if and only if∑
p−q=n−k

dimC Hp,q

∂̄
(X) = dimCHk(X,π),

for any 0 ≤ k ≤ 2n.

Proof. Observe that for a compact holomorphic Poisson manifold the holomorphic Koszul–

Brylinski homology groups are finite-dimensional; moreover, the following inequality holds

dimC Hk(X,π) ≤
∑

p−q=n−k

dimC Hp,q

∂̄
(X)

for any 0 ≤ k ≤ 2n. By definition, the E1-degeneracy of the Dolbeault–Koszul–Brylinski

spectral sequence is equivalent to the condition

dimC Hk(X,π) =
∑

p−q=n−k

dimC Hp,q

∂̄
(X),

for any 0 ≤ k ≤ 2n. □

We are ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2. By the blow-up formula for Dolbeault cohomology [33, Theorem 1.2],

we have ∑
p−q=n−k

dimC Hp,q

∂̄
(X̃) =

∑
p−q=n−k

[
dimC Hp,q

∂̄
(X) +

c−1∑
i=1

dimC Hp−i,q−i

∂̄
(Z)

]
.

Consequently, by Theorem 1.1, we get

dimC Hk(X̃, π̃)−
∑

p−q=n−k

dimC Hp,q

∂̄
(X̃)

=

[
dimC Hk(X,π)−

∑
p−q=n−k

dimC Hp,q

∂̄
(X)

]

+(c− 1) dimC Hk−c(Z, π|Z)−
∑

p−q=n−k

[c−1∑
i=1

dimC Hp−i,q−i

∂̄
(Z)

]
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=

[
dimC Hk(X,π)−

∑
p−q=n−k

dimC Hp,q

∂̄
(X)

]

+(c− 1)

[
dimC Hk−c(Z, π|Z)−

∑
s−t=(n−c)−(k−c)

dimC Hs,t

∂̄
(Z)

]
for 0 ≤ k ≤ 2n. If the Dolbeault–Koszul–Brylinski spectral sequence degenerates at E1-

pages for (X,π) and (Z, πZ), then it immediately follows that the Dolbeault–Koszul–Brylinski

spectral sequence degenerates at E1-pages for (X̃, π̃). Conversely, if the Dolbeault–Koszul–

Brylinski spectral sequence degenerates at E1-pages for (X̃, π̃), then we obtain the following

equalities

0 = dimC Hk(X,π)−
∑

p−q=n−k

dimC Hp,q

∂̄
(X)︸ ︷︷ ︸

≤0

+ (c− 1)

[
dimC Hk−c(Z, π|Z)−

∑
s−t=(n−c)−(k−c)

dimC Hs,t

∂̄
(Z)

]
,

︸ ︷︷ ︸
≤0

which implies that the E1-degeneracy holds for (X,π) and (Z, π|Z). □

6. Examples

In this section, as applications of the main theorems, we compute the Koszul–Brylinski

homology for some special holomorphic Poisson manifolds, such as del Pezzo surfaces and

Iwasawa manifolds.

6.1. del Pezzo surfaces. Recall that a del Pezzo surface is a smooth Fano surface which is

exactly one of the following: P1 × P1, P2 and blow-up of P2 at r (1 ≤ r ≤ 8) generic points

(denoted by Mr). The holomorphic Koszul–Brylinski homology of P1 × P1 has been computed

in Example 4.3; see also [37, Theorem 7.2]. We now consider the rest cases. Define the space

V 2
r = {holomorphic bi-vector fields on P2 vanishing at the blow-up points of Mr}.

By a result of Kodaira [23, page 225], the blow-up transformation φ : Mr → P2 induces an

isomorphism from the space of holomorphic bi-vector fields on Mr to the space V 2
r . Equiva-

lently, the holomorphic Poisson structures π on P2 vanishing at the blow-up points of Mr are

one-one corresponding to the holomorphic Poisson structures π̃ on Mr such that φ is a Poisson

morphism.

In general, given a holomorphic Poisson structure π on Pn, the E1-page of the Dolbeault–

Koszul–Brylinski spectral sequence of (Pn, π) is

Es,t
1 = Ht(Pn,Ωn−s) =

{
C, s+ t = n,

0, otherwise.

Via a direct checking we get dr ≡ 0 for any r ≥ 1. This implies that the Dolbeault–Koszul–

Brylinski spectral sequence of (Pn, π) degenerates at E1-page, and therefore we obtain

Hk(Pn, π) =

{
Cn+1, k = n,

0, k ̸= n.
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Consider the Poisson blow-up φ : (Mr, π̃) → (P2, π). From the blow-up formula in Theorem

1.1, we get

Hk(Mr, π̃) =

{
Cr+3, k = 2,

0, k ̸= 2.

6.2. Iwasawa manifolds. To begin with, let us recall some basic facts on complex nilman-

ifolds. Let G be a complex nilpotent Lie group with Lie algebra g whose complexification is

gC := g ⊗R C, and let H be a discrete subgroup of G. Suppose M = G/H is the associated

nilmanifold endowed with a left-invariant complex structure J and a left-invariant holomorphic

Poisson bi-vector field π. Then there exists a natural inclusion of complexes

i :
(
∧p,•g∗C, ∂̄

)
↪→

(
Γ(M,Ap,•

M ), ∂̄
)
, (6.1)

for any p ≥ 0. Set n := dimC M .

Lemma 6.1. If the map (6.1) is a quasi-isomorphism, then the total cohomology of the double

complex (∧•,•g∗C, ∂π, ∂̄) is isomorphic to H•(M,π).

Proof. Observe that (6.1) induces a morphism of double complexes

i :
(
∧•,•g∗C, ∂π, ∂̄

)
−→

(
Γ(M,A•,•

M ), ∂π, ∂̄
)
. (6.2)

On the one hand, we know that (∧•,•g∗C, ∂π, ∂̄) admits a spectral sequence {Ẽr, d̃r} converging

to the corresponding total cohomology such that the Ẽ1-page states as

Ẽp,q
1 = Hq(∧n−p,•g∗C, ∂̄).

On the other hand, the Dolbeault–Koszul–Brylinski spectral sequence {Er, dr} converges to

the holomorphic Koszul–Brylinski homology H•(M,π) and has the Ẽ1-page

Ep,q
1 = Hq(M,Ωn−p

M ).

For any r ≥ 1, the inclusion (6.2) induces a morphism of the spectral sequences

i⋆r : Ẽr −→ Er.

Since (6.1) is a quasi-isomorphism, i.e., i⋆1 : Ẽ1 → E1 is an isomorphism, by the standard result

in the spectral sequence theory, i⋆r is an isomorphism for any r ≥ 2. This implies that the

total cohomology of double complex (∧•,•g∗C, ∂π, ∂̄) is isomorphic to the holomorphic Koszul–

Brylinski homology H•(M,π). □

Remark 6.2. A result of Sakane [35, Theorem 1] states that if a complex nilmanifold is

complex parallelisable (i.e., the holomorphic tangent bundle is holomorphically trivial), then

the inclusion (6.1) is a quasi-isomorphism.

Next we consider a concrete example. Let H(3;C) be the Heisenberg Lie group:

H(3;C) =


 1 z1 z2

0 1 z3

0 0 1

∣∣∣∣∣z1, z2, z3 ∈ C

 ⊂ GL(3;C).

As a complex manifold, H(3;C) is isomorphic to C3. Consider the discrete group G3 :=

Gl(3;Z[
√
−1]) ∩H(3;C), where Z[

√
−1] = {a+ b

√
−1 | a, b ∈ Z} is the Gaussian integers. The



22 X. CHEN, Y. CHEN, S. YANG, AND X. YANG

left multiplication gives rise to a natural G3-action on H(3;C), and the corresponding faithful

G3-action on C3 is given by

(a1, a2, a3) · (z1, z2, z3) := (z1 + a1, z2 + a1z3 + a2, z3 + a3),

where a1, a2, a3 ∈ Z[
√
−1]. Such a G3-action yields a monomorphism f : G3

// Aff(C3).

Here Aff(C3) is the affine transformation group of C3. Therefore, such a G3-action is properly

discontinuous. Furthermore, the G3-quotient space

I3 := C3/G3

is a compact complex Calabi–Yau threefold, called the Iwasawa manifold, which is non-Kähler,

non-formal, and complex parallelisable.

Denote by (g∗C)
1,0 the space of left-invariant holomorphic differential forms on H(3;C). Then

(g∗C)
1,0 has a basis:

w1 = dz1, w
2 = dz2 − z1dz3, w

3 = dz3,

satisfying the structure equations: 
w1 = 0,

dw3 = 0,

dw2 = −w1 ∧ w3.

The dual basis of Lie algebra of left-invariant holomorphic vector fields on H(3;C), denoted by

g1,0C , is

X1 =
∂

∂z1
, X2 =

∂

∂z2
, X3 =

∂

∂z3
+ z1

∂

∂z2
with the structure equations [X1, X2] = [X2, X3] = 0, [X1, X3] = X2.

Note that each left-invariant holomorphic bi-vector field π on I3 is of the form π = c1X1 ∧
X2+ c2X1 ∧X3+ c3X2 ∧X3, where c1, c2 and c3 are constants. In particular, a direct checking

shows that [π, π] = 0 holds if and only if c2 = 0. Since π is left-invariant and I3 is complex

parallelisable, by Lemma 6.1, the holomorphic Koszul–Brylinski homology of (I3, π) can be

computed in terms of the total cohomology of the double complex (∧•,•g∗C, ∂π, ∂̄). Observe

that π is the linear combination of two compatible Poisson bi-vector fields π12 = X1 ∧X2 and

π23 = X2 ∧ X3. Since ∂π12 = ∂π23 = 0 we get ∂π = 0. It follows that the Dolbeault–Koszul–

Brylinski spectral sequence of (I3, π) degenerates at E1-page and therefore the Koszul–Brylinski

homology H•(I3, π) can be read off from the Hodge diamond of I3 (see figure below).

1

3 2

3 6 2

1 6 6 1

2 6 3

2 3

1

(Hodge diamond of I3)

As a result, we have the following table which records the holomorphic Koszul–Brylinski

homology of (I3, π).
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k 0 1 2 3 4 5 6

Hk(I3, π) C C5 C11 C14 C11 C5 C

Note that (I3, π) is a unimodular holomorphic Poisson manifold. Due to Proposition 2.8 and

the isomorphism (2.4), the holomorphic Koszul–Brylinski homology of (I3, π) is isomorphic to

its Lichnerowicz–Poisson cohomology H•(I3, π). So we obtain the following table.

k 0 1 2 3 4 5 6

Hk(I3, π) C C5 C11 C14 C11 C5 C

6.3. A six-dimensional complex nilmanifold. Motivated by the construction of the Iwa-

sawa manifold, we consider the nilpotent Lie group

G =

A =

 1 z1 z2 z3

0 1 z4 z5

0 0 1 z6

0 0 0 1

∣∣∣∣∣z1, z2, · · · , z6 ∈ C

 ⊂ GL(4;C).

As a complex manifold, G is isomorphic to the complex vector space C6. Consider the discrete

subgroup H := Gl(4;Z[
√
−1]) ∩ G. Analogously, the left multiplication defines a natural H-

action on G and the corresponding faithful H-action on C6 is given by

(a1, a2, a3, a4, a5, a6) · (z1, z2, z3, z4, z5, z6)

= (z1 + a1, z2 + a1z4 + a2, z3 + a1z5 + a2z6 + a3, z4 + a4, z5 + a4z6 + a5, z6 + a6).

Therefore, this H-action is properly discontinuous, and the associated H-quotient space

I6 := C6/H

is a compact complex manifold with complex dimension 6. Let (g∗C)
1,0 be the space of left-

invariant holomorphic differential forms on G. Then a basis of (g∗C)
1,0 is given by

w1 = dz1, w2 = dz2 − z1dz4, w3 = dz3 − z1dz5 + (z1z4 − z2)dz6,

w4 = dz4, w5 = dz5 − z4dz6, w6 = dz6.

The structure equations are 
dw1 = dw4 = dw6 = 0,

dw2 = −w1 ∧ w4,

dw3 = −w1 ∧ w5 − w2 ∧ w6,

dw5 = −w4 ∧ w6.

Dually, Lie algebra of left-invariant holomorphic vector fields of G, denoted by g1,0C , has a basis:

X1 =
∂

∂z1
, X2 =

∂

∂z2
, X3 =

∂

∂z3
,

X4 =
∂

∂z4
+ z1

∂

∂z2
, X5 =

∂

∂z5
+ z1

∂

∂z3
, X6 =

∂

∂z6
+ z2

∂

∂z3
+ z4

∂

∂z5
.

The only non-trivial relations of the dual basis are

[X1, X4] = X2, [X1, X5] = X3 = [X2, X6], [X4, X6] = X5.
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It follows that I6 is a complex parallelisable, non-Kähler, Calabi–Yau manifold with dimension

6.

Now we consider some special holomorphic Poisson structures on I6 given by left-invariant

holomorphic bi-vector fields. Akin to the Iwasawa manifold, the holomorphic Koszul–Brylinski

homology of I6 can be computed in terms of the total cohomology of the double complex

(∧•,•g∗C, ∂π, ∂̄). For the simplicity, we write wi1···ipj̄1···j̄q = wi1 ∧ · · · ∧ wip ∧ wj̄1 ∧ · · · ∧ wj̄q , for

any 1 ≤ p, q ≤ 6. We study the holomorphic Koszul–Brylinski homology of I6 with respect to

the following three holomorphic Poisson bi-vector fields:

π1 = X2 ∧X3, π2 = X1 ∧X6, and π3 = X1 ∧X3.

6.3.1. Computation of H•(I6, π1). We claim that the the Dolbeault–Koszul–Brylinski spectral

sequence of (I6, π1) degenerates at E1-page. Observe that the only possible elements which are

not ∂π1-closed are of the form w23i1···ip−2j̄1···j̄q . However, a straightforward computation shows

∂π1w
23i1···ip−2j̄1···j̄q = (ιπ1 ◦ ∂ − ∂ ◦ ιπ1)w

23i1···ip−2j̄1···j̄q

= ιπ1(w
23 ∧ ∂wi1···ip−2j̄1···j̄q)− ∂wi1···ip−2j̄1···j̄q

= ∂wi1···ip−2j̄1···j̄q − ∂wi1···ip−2j̄1···j̄q

= 0.

This implies that the holomorphic volume form ω123456 is ∂π1-closed, which means (I6, π1) is

unimodular, and the Dolbeault–Koszul–Brylinski spectral sequence of (I6, π1) degenerates at

E1-page. Consequently, we get

Hk(I6, π1) =
⊕

6−(p−q)=k

Hp,q

∂̄
(I6). (6.3)

From the isomorphism (2.4), we have

Hk(I6, π1) ∼= H12−k(I6, π1).

From the Hodge diamond of I6 (see Appendix A) and Proposition 2.8, we get the following

table recording the holomorphic Koszul–Brylinski homology of (I6, π1) up to degree 6 (the rest

are obtained by the holomorphic Evens–Lu–Weinstein duality).

k 0 1 2 3 4 5 6

Hk(I6, π1) C C9 C38 C101 C191 C274 C308

H12−k(I6, π1) C C9 C38 C101 C191 C274 C308

Remark 6.3. If the Dolbeault–Koszul–Brylinski spectral sequence for a holomorphic Poisson

manifold degenerates at the E1-page, then we can read off its holomorphic Koszul–Brylinski

homology from the Hodge diamond using the same method as in the computation of H•(I6, π1).
However, the E1-degeneracy of the Dolbeault–Koszul–Brylinski spectral sequence is not a nec-

essary condition for a holomorphic Poisson manifold.
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6.3.2. E1-non-degeneracy for (I6, π2). Consider the holomorphic Poisson manifold (I6, π2). Ob-

serve that (g∗C)
6,0 = ⟨w123456⟩ and ∂π2ω

123456 = 0; we obtain

H0(I6, π2) = ⟨[w123456]⟩ ∼= C.

On the one hand, note that (g∗C)
5,0 = ⟨w23456, w13456, w12456, w12356, w12346, w12345⟩, and we

have

∂π2w
23456 = ∂π2w

12456 = ∂π2w
12345 = 0,

∂π2w
13456 = −w2456,

∂π2w
12356 = w1345 − w2346,

∂π2w
12346 = −w1245.

On the other hand, since

(g∗C)
6,1 = ⟨w1234561̄, w1234562̄, w1234563̄, w1234564̄, w1234565̄, w1234566̄⟩,

the following equalities hold:

∂π2 |(g∗C)6,1 = 0 and ker ∂̄ ∩ (g∗C)
6,1 = ⟨w1234561̄, w1234564̄, w1234566̄⟩.

Consequently, we get

H1(I6, π2) = ⟨[w23456], [w12456], [w12345], [w1234561̄], [w1234564̄], [w1234566̄]⟩ ∼= C6.

Assuming that the Dolbeault–Koszul–Brylinski spectral sequence of (I6, π2) degenerates at the
E1 page, we get

H1(I6, π2) = H5,0

∂̄
(I6)⊕H6,1

∂̄
(I6). (6.4)

Notice that H5,0

∂̄
(I6) ∼= C6 and H6,1

∂̄
(I6) ∼= C3 (see Appendix A). This leads to a contradiction

to the equality (6.4), and therefore the Dolbeault–Koszul–Brylinski spectral sequence of (I6, π2)
does not degenerate at the E1-page.

6.3.3. Computation of H•(I6, π3). A direct computation shows that the non-trivial ∂π3-closed

monomials are given by:

(1) On (g∗C)
5,q, ∂π3w

12356j̄1···j̄q = −w1456j̄1···j̄q ;

(2) On (g∗C)
4,q,

∂π3w
1235j̄1···j̄q = −w145j̄1···j̄q ,

∂π3w
1236j̄1···j̄q = −w146j̄1···j̄q ,

∂π3w
2356j̄1···j̄q = w456j̄1···j̄q ;

(3) On (g∗C)
3,q,

∂π3w
123j̄1···j̄q = −w14j̄1···j̄q ,

∂π3w
235j̄1···j̄q = w45j̄1···j̄q ,

∂π3w
236j̄1···j̄q = w46j̄1···j̄q ;

(4) On (g∗C)
2,q, ∂π3w

23j̄1···j̄q = w4j̄1···j̄q .

It follows that (I6, π3) is unimodular, and the Dolbeault–Koszul–Brylinski spectral sequence of

(I6, π3) does not degenerate at the E1-page. By Lemma 6.1 and Proposition 2.8, we have the

following table.
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k 0 1 2 3 4 5 6

Hk(I6, π3) C C8 C31 C78 C143 C202 C226

H12−k(I6, π3) C C8 C31 C78 C143 C202 C226

6.3.4. Poisson blow-up of (I6, π3). Take

Γ2 =

A =

 1 z1 z2 z3

0 1 a23 a24

0 0 1 a34

0 0 0 1

∣∣∣∣∣z1, z2, z3 ∈ C, a23, a24, a34 ∈ Z[
√
−1]

 .

Then Y2 := Γ2/H is a 3-dimensional Kählerian nilmanfold. Furthermore, (Y2, π3|Y2 = X1∧X3)

is a closed holomorphic Poisson submanifold of (I6, π3) whose transverse Poisson structure

vanishes. One can check that ∂π3|Y2 = 0 and thus the Dolbeault–Koszul–Brylinski spectral

sequence of (Y2, π3|Y2) degenerates at the E1-page. Note that the Hodge diamond of Y2 is

1

3 3

3 9 3

1 9 9 1

3 9 3

3 3

1

As a corollary, we get the holomorphic Koszul–Brylinski homology of (Y2, π3|Y2) as follows:

k 0 1 2 3 4 5 6

Hk(Y2, π3|Y2) C C6 C15 C20 C15 C6 C1

Let φ : BlY2I6 → I6 be the blow-up of I6 along Y2. By Proposition 3.3, the holomorphic

Poisson structure π3 can be lifted to a unique holomorphic Poisson structure π̃3 on BlY2I6.
By Theorem 1.1, we get the the following table recording the holomorphic Koszul–Brylinski

homology of (BlY2I6, π̃3).

k 0 1 2 3 4 5 6

Hk(BlY2I6, π̃3) C C8 C31 C80 C155 C232 C266

Appendix A. Hodge diamond of I6

Note that I6 is complex parallelisable. As mentioned in the main text, the Dolbeault coho-

mology of I6 can be computed by means of left-invariant forms ([35, Theorem 1]). Consider

the associated double complex (∧•,•g∗C, ∂, ∂̄). By Leibniz rule, we have

∂̄wi1···ipj̄1···j̄q = (−1)pwi1···ip ∧ ∂̄wj̄1···j̄q .

In particular, we get hi,j =
(
6
i

)
· h0,j , where hi,j := dimCH

j(∧i,•g∗C, ∂̄) is the Lie algebra

Hodge number. For this reason, to compute the Hodge diamond of I6, we only need to com-

pute h0,0, h0,1, · · · , h0,6. Since I6 is a compact complex manifold we have H0,0

∂̄
(I6) ∼= C. The

monomials in (g∗C)
0,j which are not ∂̄-closed are stated as follows:
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(1) On (g∗C)
0,1, since

∂̄w2̄ = −w1̄4̄, ∂̄w3̄ = −w1̄5̄ − w2̄6̄, ∂̄w5̄ = −w4̄6̄,

we get

H0,1

∂̄
(I6) = ⟨[w1̄], [w4̄], [w6̄]⟩ ∼= C3.

(2) On (g∗C)
0,2, since

∂̄w1̄3̄ = w1̄2̄6̄, ∂̄w1̄5̄ = w1̄4̄6̄, ∂̄w2̄3̄ = w1̄3̄4̄ − w1̄2̄5̄,

∂̄w2̄6̄ = −w1̄4̄6̄, ∂̄w3̄6̄ = −w1̄5̄6̄, ∂̄w3̄4̄ = w1̄4̄5̄ + w2̄4̄6̄,

∂̄w2̄5̄ = −w1̄4̄5̄ + w2̄4̄6̄, ∂̄w3̄5̄ = w2̄5̄6̄ + w3̄4̄6̄,

we get

H0,2

∂̄
(I6) = ⟨[w1̄2̄], [w1̄6̄], [w2̄4̄], [w4̄5̄], [w5̄6̄]⟩ ∼= C5.

(3) On (g∗C)
0,3, since

∂̄w1̄2̄5̄ = −w1̄2̄4̄6̄, ∂̄w1̄3̄4̄ = −w1̄2̄4̄6̄, ∂̄w2̄3̄4̄ = w1̄2̄4̄5̄,

∂̄w2̄5̄6̄ = −w1̄4̄5̄6̄, ∂̄w3̄4̄5̄ = −w2̄4̄5̄6̄, ∂̄w3̄4̄6̄ = w1̄4̄5̄6̄,

∂̄w1̄3̄5̄ = −w1̄2̄5̄6̄ − w1̄3̄4̄6̄, ∂̄w2̄3̄5̄ = w1̄3̄4̄5̄ − w2̄3̄4̄6̄, ∂̄w2̄3̄6̄ = w1̄3̄4̄6̄ − w1̄2̄5̄6̄,

we get

H0,3

∂̄
(I6) = ⟨[w1̄2̄4̄], [w1̄3̄4̄], [w1̄3̄6̄], [w2̄4̄5̄], [w3̄5̄6̄], [w4̄5̄6̄]⟩ ∼= C6.

(4) On (g∗C)
0,4, since

∂̄w1̄2̄3̄5̄ = w1̄2̄3̄4̄6̄, ∂̄w1̄3̄4̄5̄ = wi1···ip1̄2̄4̄5̄6̄, ∂̄w2̄3̄4̄6̄ = w1̄2̄4̄5̄6̄, ∂̄w2̄3̄5̄6̄ = w1̄3̄4̄5̄6̄,

we get

H0,4

∂̄
(I6) = ⟨[w1̄2̄3̄4̄], [w1̄2̄3̄6̄], [w1̄3̄5̄6̄], [w2̄3̄4̄5̄], [w3̄4̄5̄6̄]⟩ ∼= C5.

(5) Since ∂̄|(g∗C)0,5 = ∂̄|(g∗C)0,6 = 0, we have

H0,5

∂̄
(I6) = ⟨[w1̄2̄3̄4̄5̄], [w1̄2̄3̄5̄6̄][w2̄3̄4̄5̄6̄]⟩ ∼= C3 and H0,6

∂̄
(I6) = ⟨[w1̄2̄3̄4̄5̄6̄]⟩ ∼= C.

By the discussion in the above, we obtain the Hodge diamond of I6 as follows:

1

6 3

15 18 5

20 45 30 6

15 60 75 36 5

6 45 100 90 30 3

1 18 75 120 75 18 1

3 30 90 100 45 6

5 36 75 60 15

6 30 45 20

5 18 15

3 6

1
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