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ABSTRACT. We derive a blow-up formula for holomorphic Koszul-Brylinski homologies of
compact holomorphic Poisson manifolds. As applications, we investigate the invariance of
the Ej-degeneracy of the Dolbeault—Koszul-Brylinski spectral sequence under Poisson blow-
ups, and compute the holomorphic Koszul-Brylinski homology for del Pezzo surfaces and two

complex nilmanifolds with holomorphic Poisson structures.
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1. INTRODUCTION

Historically, Poisson structures arise from classical mechanics. In mathematics, the Poisson
structures emerge from many fields, such as generalized complex geometry, geometric repre-
sentation theory, integrable systems, and algebraic geometry. In many situations, the Poisson
structures are actually holomorphic; see [7, [19, 25, 16, 20, 8, 11] etc.. The study of Poisson
structures from the viewpoint of algebraic geometry can be traced back at least to Bondal [4]
and Polishchuk [29]. More generally, we refer the readers to [32] for an introduction to the
algebraic geometry of holomorphic Poisson structures. The purpose of this paper is to study
holomorphic Poisson structures from an algebro-geometric point of view, and we focus on the
homological aspects of compact holomorphic Poisson manifolds.

Let (X, Ox) be a complex manifold or a scheme of finite type over the complex number field
C. By a Poisson structure on X, we mean a C-bilinear sheaf morphism:

{—,—}:OXxOX—>OX

which satisfies the usual axioms for a Poisson bracket, and we call (X, {—, —}) a holomorphic
Poisson manifold or a Poisson scheme. In particular, holomorphic Poisson structures are closely
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related to generalized complex geometry. On the one hand, a holomorphic Poisson structure
naturally defines a generalized complex structure of special type; see [I7]. On the other hand, by
Bailey’s local classification theorem of generalized complex structures, each generalized complex
manifold is locally equivalent to the product of a symplectic manifold and a holomorphic Poisson
manifold; see [2]. We refer the readers to [18], 19, [15], 25, 16}, @, 17, 5, B] and references therein
for more results on the applications of holomorphic Poisson structures in generalized complex
geometry and the relationships with other geometries.

Assume that (X, {—, —}) is a compact holomorphic Poisson manifold of complex dimension
n, and let 7 € H°(X,A?Tx) be the holomorphic Poisson bi-vector field determined by the
given Poisson bracket. For a cohomological study of the Poisson structure of X, we have the
holomorphic Lichnerowicz—Poisson cohomology H®(X, ) defined to be the hypercohomology
of the sheaf complex

br br br br br
0 Ox Tx N Tx — N Ty — - — A™Tx — 0,

where the differential operator b(—) = [m, —|g is the adjoint action of 7= with respect to the
Schouten bracket; see [27), 25]. This cohomology has been widely studied; see, for example,
[22] 14, [1T1], 8, 30}, BT, 21] and references therein. Dually, from a homological point of view, we
have the so called holomorphic Koszul-Brylinski complex:

Or

0oy Ty qut O

10) 0, 1?)
-2 ™ -3 ™ ™
02 T Ox 0,

where 0 = [ir, 0]. The hypercohomology of the sheaf complex above, denoted by He(X, 1), is
called the holomorphic Koszul-Brylinski homology of X. Most notably, there exists a holomor-
phic version of Evens—Lu-Weinstein duality for He(X, ), which is a generalization of Serre
duality for Dolbeault cohomology; see [37, Theorem 4.4]. Furthermore, there is a canoni-
cal Frohlicher-type spectral sequence, called the Dolbeault—-Koszul-Brylinski spectral sequence
(see Definition [5.6]), which converges to He(X,w). However, it is not so easy to compute the
holomorphic Koszul-Brylinski homology for a specific holomorphic Poisson manifold.

In algebraic and complex geometry, the blow-up transformation plays a central role in the
study of algebraic varieties and complex manifolds. In the Poisson category, it was Polishchuk
[29] who first gave the construction of blow-ups for Poisson schemes. Polishchuk’s construc-
tion of blow-up transformations for Poisson schemes adapts to holomorphic Poisson manifolds
without any essential changes. Our starting point is to understand the homological aspect of
holomorphic Poisson manifolds under a Poisson blow-up transformation. Particularly, if the
holomorphic Poisson structure 7 is trivial, then the holomorphic Koszul-Brylinski homology is
isomorphic to the Hochschild homology of the complex manifold X:

Hy(X,00= @ HIUX,0%)=HH, 4(X).
p—g=n—k
The blow-up formula for the Hochschild homology has been established in [33]. To be more
specific, suppose Z C X is a closed complex manifold of codimension ¢ > 2 and X is the
blow-up of X along Z, then there exists an isomorphism of Hochschild homologies

HH,_1(X) = HH, 4(X) @ HH,,_(Z)®".

So a natural question that arises now is:
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Question. For a non-trivial holomorphic Poisson structure, can we describe explicitly the

variance of the holomorphic Koszul-Brylinski homology under a Poisson blow-up?

Using a sheaf-theoretic approach, we establish a blow-up formula for holomorphic Koszul-
Brylinski homology as follows.

Theorem 1.1. Suppose (X, ) is a compact holomorphic Poisson manifold of complex dimen-
sionn > 2, and (Z,m|z) C (X, ) is a closed holomorphic Poisson submanifold of codimension
c > 2 with trivial transverse Poisson structure. Let o : X — X be the blow-up of X along Z
with exceptional divisor E := ¢~ 1(Z), and let 7 be the unique holomorphic Poisson structure
on X such that @ is a Poisson morphism, i.e., p,m = w. Then there exists an isomorphism of
holomorphic Koszul-Brylinski homologies:

Hy(X,7) 2 Hy(X,7) & (Hir (B, 7|) /0" Hi-o( Z72) )
for any 0 < k < 2n. Furthermore, if Z satisfies the 00-lemma, then we get
Hy(X,7) = Hp(X, 1) ® Hy_o(Z, 7| 2) 2L
In particular, there exists an isomorphism
Hy,(X,7) = H,(X,T)
forO<k<c—1lor2n—c+1<k<2n.

Observe that the first page of the Dolbeault—Koszul-Brylinski spectral sequence of the holo-
morphic Poisson manifold (X, ) is the Dolbeault cohomology:

Byt = HY(X, Q%) =2 HYY(X) = Hyp_ gt (X, 7).

The study of the degeneracy of the Dolbeault—-Koszul-Brylinski spectral sequence at Ei-page
may be of independent interest. As an application of Theorem|[I.1] we investigate the invariance
of such degeneracy under Poisson blow-ups.

Theorem 1.2. With the assumption of Theorem if Z satisfies the 00-lemma then the
Dolbeault—Koszul-Brylinski spectral sequence for (X', 7) degenerates at E1-page if and only if it
does so for (X, ) and (Z,7|z).

It is worth noting that if X is a projective manifold or Kéhler manifold then the closed
complex submanifold Z automatically satisfies the 90-lemma, and therefore both Theorem [1.1
and Theorem are applicable to these situations.

This paper is organized as follows. In §[2| we review some basics on holomorphic Poisson
manifolds and the holomorphic Koszul-Brylinski homology. We devote §[3] to Poisson blow-ups
and modifications. In § we derive the Poisson projective bundles formula for holomorphic
Koszul-Brylinski homology, a key part of the proof of the main theorems. In §[] the proofs
of the main theorems are given. In §[6] the holomorphic Koszul-Brylinski homologies of some
compact holomorphic Poisson manifolds are computed. Finally, the Appendix [A] gives the
Hodge diamond of a six-dimensional complex nilmanifold in §[6.3]



4 X. CHEN, Y. CHEN, S. YANG, AND X. YANG

Acknowledgements. The last three authors would like to thank the School of Mathematics of
Sichuan University and Tianyuan Mathematical Center in Southwest China for the hospitalities
during the winter of 2021. The second author is very grateful to Professor Zhuo Chen for
many useful discussions. This work is partially supported by the National Nature Science
Foundation of China (Nos. 11890660, 11890663, 12126309, 12126354, 12171351), the Scientific
and Technological Research Program of Chongqing Municipal Education Commission (Grant
No. KJQN202201108), and the Natural Science Foundation of Tianjin (No. 20JCQNJC02000).

2. PRELIMINARIES

In this section, we review some basic facts on holomorphic Poisson manifolds and the Koszul—-
Brylinski homology of holomorphic Poisson manifolds.

2.1. Holomorphic Poisson manifolds. Let X be a complex manifold and let Ox be its
structure sheaf (i.e., the sheaf of holomorphic functions), Q% be the sheaf of holomorphic
p-forms, Tx be the sheaf of holomorphic vector fields.

Definition 2.1. A complex manifold X is called a holomorphic Poisson manifold if X admits
a holomorphic bi-vector field 7 € H°(X,A*Tx) such that [r,7]s = 0, where [—, —]g is the
Schouten bracket.

Such a holomorphic bi-vector field 7 is called the holomorphic Poisson bi-vector field of the
holomorphic Poisson manifold X, and the holomorphic Poisson manifold X is also denoted
by (X, 7). In particular, for any open subset U C X, the ring Ox(U) is equipped with a
Poisson bracket {—, —} via m such that for any open subset V' C U of X, the restriction map
Ox(U)— Ox(V) is a morphism of Poisson algebras; the holomorphic Poisson bi-vector field
7 induces a sheaf morphism 7* : QL — Tx by contraction with . For any fixed point p € X,
Rank(7)|, is defined to be the rank of the linear map 7*|,. Naturally, Rank(r)|, is even and
the following theorem describes the local structure of a holomorphic Poisson structure (c.f. [26),
Theorem 1.25]).

Theorem 2.2 (Weinstein’s splitting theorem). Let (X, ) be a holomorphic Poisson manifold
and p is an arbitrary point of X. Suppose Rank(r)|, = 2r. Then there exists a neighborhood U
of p with holomorphic coordinates {z1,- - ,zs,Zs41," - , Zs+or} centered at p, such that on U,

0 0 0 0
™ = Z (bij(zl,”',zs)af’zi/\aizjﬁ-z A

1<i,j<s = Ozsti Ozstrei

where the functions ¢;; are holomorphic functions of (z1,--- , zs) satisfying ¢;;(p) = 0. Such a

local coordinate {z1, -+ ,zs, 2541, "+ , Zs+2r} 15 called a splitting coordinate centered at p.

A holomorphic map f : Y — X of holomorphic Poisson manifolds (Y, 7y) and (X, 7x) is
a Poisson morphism if and only if fi(my|,) = 7x|s(p) for every p € Y3 in this case, we write
fsmy = wx. In particular, let y : Z — X be a closed complex submanifold of holomorphic
Poisson manifold X. Suppose that Z is also a holomorphic Poisson, then we say that Z is a

closed holomophic Poisson submanifold of X if the inclusion 7 is a Poisson morphism.
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Analogous to the real case, there are some intrinsic restrictions on the existence of holo-
morphic Poisson submanifolds in a holomorphic Poisson manifold. For example, due to Wein-
stein’s splitting theorem, one can prove that each holomorphic symplectic leaf(which is hyper-
Kaéhler) is a Poisson submanifold, and every holomorphic Poisson submanifold is the union
of some symplectic leaves. Therefore, if the holomorphic Poisson bi-vector field of X is in-
duced by a holomorphic symplectic form, then only open subsets of X are Poisson subman-
ifolds. More precisely, consider a closed holomorphic Poisson submanifold j : (Z,7|z) —
(X, m), for any p € Z, we can choose a neighborhood U of p in X with splitting coordinates
{21, , 25, Zs+1, "+ , Zs+2r } centered at p satisfying

0 0 "9 0
Tl = Z ¢ij(217”‘728)872i/\872j+z A

)
1<i,j<s = Ozsti Ozsrri

such that there exists a neighborhood V.=UNZ = {2 =0,---,2. =0} C U of pin Z
satisfying
0

0zs i

o= Y rounl ey 2
28 g, 9. ,
c+1<i,j<s Oz 0z i=1 Ozsti
2.2. Koszul-Brylinski homology. Koszul-Brylinski homology is introduced independently
by Koszul [24] and Brylinski [6]. Let (X, 7) be a holomorphic Poisson manifold. The Koszul-
Brylinski operator of (X, 7) on the sheaves of holomorphic forms is given as follows:

Or = [tr, 8] : QB — O,

where Q. is the sheaf of holomorphic p-forms, 9 is the Dolbeault operator and ¢ is the
contraction operator with respect to holomorphic Poisson bi-vector field 7.

Lemma 2.3. Let (X,7) be a holomorphic Poisson manifold. Then we have 1,0 = Oix and

00, + 0,0 =0

Proof. To prove the first statement, it suffices to verify the assertion on an arbitrary coordinate
neighborhood of X. Let (U;z1,---,2,) be a coordinate neighborhood of X. Locally, the
holomorphic Poisson bi-vector field can be expressed as m = Zl j Cija%i A C%j, where ¢;; are
holomorphic functions on U. By definition, for any smooth (p, ¢)-form a = fdz, A--- Adzg, A
dzy A--- ANdz, on U, we have

=~ = 0
(120 — Oup)a = ZCij'Li/\i( —fdzs/\dzkl/\---Adzkp/\dzllA---Adzlq)

Oz; Bz]- B 828

i?j
~0(Y_ feijtppo (dow Aos N, Ndzy Ao Adz,)
. i J
Z?]
R - _
= (1) Zzgcij-LaiAai(dzkl/\--~/\dzkp)/\dzs/\dzll/\-~~/\dzlq
s g 0 ® vy
of . _ _
—ZZECZZL@/\CM'L%Aai(dzkl/\"'/\dzkp)/\dzll A---Ndz,)
s 1] s B
= 0.

Equivalently, we get O := [tr,0] = 170 — Otz = 0.
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For the second statement, since [0,8] = 00 + 00 = 0, by the first statement, we have that
00y + 0:0 = [0,0:] = [0, [tr,0]] = [[0, tx], D] + [tx, [0, ]] = 0, and the lemma is proved. O

According to the Cartan formulae, we have 92 = 0, and

Ox(a A B) = (8ra) A B+ (1) A (9:8) + (—1)*[ev, Bla,

for any o € Q% and B € Q4. Here [, —]s, is a graded Lie bracket on Q% obtained by Leibniz
rule via
[, Blo, = Lrs(a)B — Lysgya — O(m(a, B)), Vo, B € k. (2.1)
The holomorphic Koszul-Brylinski complex of X is the sheaf complex:
OHQ’}(ﬁw--iﬁﬁyliQ}iQ}‘li-ui(’)X—m. (2.2)

Definition 2.4. Let (X, 7) be a holomorphic Poisson manifold. The k-th holomorphic Koszul-
Brylinski homology of (X, ) is defined to be

Hk?(Xvﬂ-) = Hk(Xa( 3(7871'))7 (23)
the k-th hyperchomology of the holomorphic Koszul-Brylinski complex.
Proposition 2.5. Suppose (X, 7) is a holomorphic Poisson manifold. Then its holomorphic
Koszul-Brylinski complex admits a fine resolution which is the total complex of the Koszul-
Brylinski double complex (A}',&r,g), where AG? is the sheaf of (p,q)-forms on X. In par-

ticular, the Koszul-Brylinski homology is isomorphic to the hypercohomology of the associated

total complez.

Proof. Since the sheaf complex AX® gives rise to a fine resolution of (2%, the assertion follows
from the fact that the Koszul-Brylinski operator 0, commutes with J; see also [37, Theorem
5.1]. O

This proposition immediately yields the natural morphism of Koszul-Brylinski homology

under Poisson morphisms.

Corollary 2.6. Suppose that f : (Y,ny) — (X,7x) is a Poisson morphism of holomorphic
Poisson manifolds. Then the pullback of differential forms naturally induces a morphism of the

holomorphic Koszul-Brylinski homologies
i Hy( X, mx) — Hi(Y,7my).
Proof. Note that on the space of (p, ¢)-forms, we have
[ 00r, = f 00n, =0 of and ff0d=0o f*.
Hence, the corollary follows immediately from Proposition [2.5 U

By a result of Stiénon [37, Theorem 6.4], the holomorphic Evens-Lu—~Weinstein pairing on
the holomorphic Koszul-Brylinski homology is non-degenerate. More precisely, if (X, ) is a
compact holomorphic Poisson manifold of complex dimension n, then there is an isomorphism

Hon_ (X, 7) 2 Hy(X, ) (2.4)
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for 0 < k < 2n. In the dual aspect, there exists a holomorphic Lichnerowicz—Poisson complex
(A.Tx, bﬁ):

b b b b b .
0— Ox — -+ — N1y — AT — ATy — -0 —5 A"Tx —0

where by (—) = [r, —]s. The k-th hyperchomology of (A*7Tx,br) is called the k-th holomorphic
Lichnerowicz—Poisson cohomology, i.e.,

A (X, 7)== HX, (A Tx, br)).
Assume that X admits a holomorphic volume form w € I'(X, Q% ). Then there is the natural
morphism of sheaves
L(—yw : /\STX — Qg{—s
for each s € {0,1,--- ,n}. However, it does not induce a morphism of sheaf complexes between
(A*Tx,br) and (2%, 0r). The reason lies in the fact that the diagram

Y)W _
NTx —— Q} s

.| |»

s+1, o Qr—s—1
A x — Uy

is not commutative in general. This motivates the following definition.
Definition 2.7 (c.f. [38,[7]). A holomorphic Poisson manifold (X, ) is called unimodular if

there is a holomorphic volume form w such that the morphism ¢(_yw induces a morphism of
sheaf complexes from (A*7Tx,br) to (2%, 0x).

Equivalently, a holomorphic Poisson manifold (X, 7) is unimodular if and only if 0w = 0, or
the modular vector field, introduced by Weinstein [38] and Brylinski—Zuckerman [7], vanishes.

In particular, we have

Proposition 2.8 ([37, Proposition 4.7]). If the holomorphic Poisson manifold (X, ) is uni-

modular, then there is an isomorphism
Hy(X,m) = H*F(X, ),

for any k € Z, where n = dim¢ X.

3. BLOW-UPS AND MODIFICATIONS IN THE POISSON CATEGORY

In this section, we give a rapid review on the blow-ups and modifications in the holomorphic
Poisson category.

3.1. Poisson blow-ups. Given a complex manifold X and a closed complex submanifold
7: Z < X with complex codimension ¢ > 2. Let ¢ : X — X be the blow-up of X along Z.
Then the holomorphic map

0: X—-E—X-2Z
is biholomorphic, where E := ¢~1(Z) is the exceptional divisor, which is the projective bundle
of the normal bundle of Z in X. Moreover, we have a commutative diagram
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p—1 X

Wj y (3.1)

71 . x.

In the Poisson category, if X is a holomorphic Poisson manifold and Z is a closed holomor-
phic Poisson submanifold of X, then the existence of the holomorphic Poisson structure on
the complex blow-up X is not an unconditional result. In fact, there exist some restrictions
on the existence of the holomorphic Poisson structure on X. Let us recall the result which
was originally studied by Polishchuk [29]. Assume (Z,7|z) is a closed holomorphic Poisson
submanifold of (X, 7). Then for any point z € Z, the conormal space N} Z is a Lie algebra
induced by the bracket , or equivalently, the normal space N,Z admits a linear Poisson
structure which defines the transverse Poisson structure ny € I'(Z, N*Z @ A2NZ).

Definition 3.1. The transverse Poisson structure 7y of a closed holomorphic Poisson sub-
manifold (Z,7|z) in (X, 7x) is said to be degenerate if, for any point z € Z, the map
NN*Z — S®N;Z
aNBANy — o, Bly+ [B,7]e+ [y, 008
is identically to zero.

It follows from [29, Proposition 8.1] that a degenerate Lie algebra is either abelian or iso-
morphic to the Lie algebra Span{er,--- ,e.—1, f} with Lie bracket [e;, e;] = 0, [f, e;] = e;.
Example 3.2 (c.f. [32, §2.5.2]). Let 7 be a holomorphic Poisson bi-vector field on C2, and

¢
Bl,C2 — C? the blow-up of C? at the origin o = (0,0) € C2. Choose coordinates z1, z2, and
suppose {z1, 22} = f(z1, 22) for some holomorphic function f. Set
©*(22)
©*(21)

Suppose we can define a holomorphic Poisson bracket on Bl,C? which is compatible with the

u=¢"(z1), and v = = *(2] ' 22).

one determined by 7 on C?; then

{uv} = {¢"(21),¢" (27 ' 22)} = ™ {21, 27 22} = ©7 (o7 ' (21, 22))
= u” f(u,uw) = u" (£(0,0) + ug(u,v)),

where g is holomorphic near the locus u = 0. Therefore the holomorphic Poisson bracket given
by {21, 22} = f(21, 22) on C? can be lifted to Bl,C? if and only if f(0,0) = 0.

Now, let us return to the construction of Poisson blow-ups. The blow-up of a Poisson
scheme was originally clarified in the work of Polishchuk [29]. Here, we review the blow-up of
holomorphic Poisson manifolds along closed holomorphic Poisson submanifolds; see also [15),
Section 2].

Proposition 3.3 (|29, Propositions 8.2 & 8.3] or [3, Proposition 3.15]). Let (X, 7) be a holo-
morphic Poisson manifold. Suppose ) : (Z,n|Z) — (X,m) is a closed holomorphic Poisson
submanifold. If the associated transverse Poisson structure wy wvanishes, then the following

statements hold:
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(i) there exists a unique holomorphic Poisson structure T on X such that @ is Poisson
morphism (i.e., p T = T);
(ii) E is a holomorphic Poisson manifold such that ¢|g : E — Z is a Poisson morphism;
(iii) the diagram of holomorphic Poisson manifolds is commutative.

3.2. Poisson modifications. This subsection is devoted to the study of the behavior of the
holomorphic Koszul-Brylinski homology under Poisson modifications of compact holomorphic
Poisson manifolds. Recall that a modification of compact complex manifolds is a holomorphic
map ¢ : Y — X of compact complex manifolds satisfying:

(i) dim Y = dim X; and
(ii) there is an analytic subset S C X of codimension > 2 such that the restriction
Y:Y -y HS) — X -8
is biholomorphic.
Definition 3.4. A Poisson modification is a Poisson morphism v : (Y,my) — (X,7x) of

compact holomorphic Poisson manifolds (X, 7x) and (Y, my) such that 1 is also a modification
of compact complex manifolds.

Note that the holomorphic Poisson blow-ups are important examples of Poisson modifica-
tions. To study the behavior of the holomorphic Koszul-Brylinski homology under Poisson
modifications of compact holomorphic Poisson manifolds, we need to reinterpret the Koszul—
Brylinski homology in terms of currents. Let (X, 7) be a holomorphic Poisson manifold, and
C‘;(’t be the sheaf of (s,t)-currents on X. Then the operators 9, and d naturally induce the dual
operators 0% and 9* acting on C;t, respectively. Since 9% commutes with 9%, we obtain a double

complex (C$°, 9%, 0%). In particular, there exists a natural morphism of double complexes
mx 1 (AY, 0r,0) — (CX°, 0%, 0%). (3.2)

Denote by H kc (X, 7) the k-hypercohomology of the total complex of the double complex
(CX*, 05, 0).

Lemma 3.5. The natural morphism tx induces an isomorphism
Tx  Hp(X,m) — H,?(X,ﬂ),
for any k € Z.

Proof. To prove the assertion, it suffices to verify that (A}',&T,é) is quasi-isomorphic to
(C%®,0%,0%) under the morphism 7x. By the spectral sequence theory for double complexes,
there exists a sequence {E,,d, } for (A%", 0x,0) such that

Ey = H*(AY,0) = Hy*(X) = Es = Ho(X, 7).
Similarly, the double complex {C%°, d%,0*} admits a spectral sequence (E,,d,) satisfying
Ey = H*(C}®,0") = Eo = HE (X, 7).
Observe that induces a morphism of spectral sequences
X {Er,dv} — {Ep,d;}
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Since the natural inclusion 7y : (A%®,0) < (CK°®,0*) is a quasi-isomorphism, we get that the
induced map 7x1 : E1 — Fy is an isomorphism and therefore F,, = Eoo under 7x. This
implies that (3.2)) is a quasi-isomorphism and the proof is completed. O

We are ready to present the following comparison theorem for holomorphic Koszul-Brylinski

homology under Poisson modifications.

Theorem 3.6. Let f: (Y,7my) — (X,7x) be a Poisson modification of compact holomorphic
Poisson manifolds. Then the natural morphism

[ Hy(X,nx) — Hp(Y,y)
is injective, for any k € 7Z.
Proof. Since f is a Poisson morphism, by definition, we have f,my = mx. This implies
fF00ry = 0Ony o f* and fio00;, =05, o fu (3.3)

In particular, we obtain a diagram

TX

(D(X, AY"), Ory, 0) ——— (T(X,CY"), 0%, 0%)

f*J fﬂ (3.4)

(D(Y, AL®), Ory, 0) ——— (T(Y,C3°), 02, , 0%).

TY 3 s Uy s

However, it is not a priori clear that the diagram is commutative. We now show the
commutativity of . As f is a modification of compact complex manifolds, its degree is 1;
moreover, f is a biholomorphism outside of two sets with Lebesgue measure zero. As a result,
let a be a differential k-form on X, then we have

(foomy o f*(a),f) = /X (foomy o f*(a) A B

- /Yf*(a/\ﬁ)=/XaAﬁ
= (1x(a),B),

where (3 is an arbitrary differential (2n — k)-form on X. It follows that 7x () = fyioTy o f*();
see the proof of [13, Theorem 12.9]. Combining it with (3.3)) yields that (3.4]) is a commutative
diagram. Applying Lemma 3.5/ to X and Y, we obtain two natural isomorphisms

v Hy(Y,my) — HE (Y, my) and 7y : Hiy(X,7x) — HY (X, 7x).
Consequently, we obtain a commutative diagram
Hy (X, mx) ——— HE(X,7x)
‘| A
Hy (Y, my) ——— H (Y, my).

and hence the morphism
f*:fﬂx)(ﬂﬂx)——%fﬂAYZWy)

is injective. O



HOLOMORPHIC KOSZUL-BRYLINSKI HOMOLOGIES OF POISSON BLOW-UPS 11

4. COMPARISON UNDER POISSON PROJECTIVE BUNDLES

The purpose of this section is to establish the following projective bundle formula for holo-
morphic Koszul-Brylinski homology.

Theorem 4.1. Suppose (Z,m) is a compact holomorphic Poisson manifold. Let p : E — Z
be the projective bundle of a holomorphic vector bundle of rank ¢ > 2 on Z. If Z satisfies the
00-lemma and 7 is a holomorphic Poisson structure on E such that p, = m, then there is an
isomorphism of Koszul-Brylinski homology as C-vector spaces:

I{kJrlfC(Z7ﬂ—)69 ‘= Hk<E7 7~T),
for any k € Z.

To illustrate the basic idea of the proof of the theorem above, we consider the case of
dimc Z = 2 and ¢ = 3. Consider the first Chern class of the tautological line bundle over E:

h=c(0p(1) € Hy'(E).

Set A‘;t =T(Z, A;t) be the space of differential (s,t)-forms. Observe that Hy(FE,7) is equal
to the k-th total cohomology of the double complex G = (A%°, 0z, 0), whereas Hy_o(Z,m)®3
is the k-th total cohomology of the double complex

2
L= (@ A [-2 + i, —i], On, 5).
i=0
According to the standard spectral sequence theory for double complexes, we have a spectral
sequence {(Gr®,d,)} associated to G such that
gr* = HE;"(E) = Hl.(E,7).

Similarly, for the double complex L, there exists a spectral sequence {(£y®, d,)} satisfying
2
LY =P H(Z)[-2+1i,—i] = He (2, )%
i=0
Note that there exists a well-defined map of bi-graded C-vector spaces (see the figure below):
2 2
U= hAp (=) PAY[-2+i,—i] — A"
i=0 i=0

Since J% is not a derivation, it does not commute with W and therefore ¥ can not give rise to
a morphism between the double complexes G and L. Recall that a compact complex manifold
X satisfies the 90-lemma, if the equation

ker O Nker 9 Nimd = im 99

holds for the double complex (A%*,8,0) (cf. [12]). Under the assumption that Z satisfies the
00-lemma, it is noteworthy that ¥ induces a morphism ¥ : G* — L3* which commutes with
the differentials d; and d;. Consequently, we get a well-defined morphism of spectral sequences

U, : (Gr*,d,) — (L2*,d,).

In particular, by the projective bundle formula of Dolbeault cohomology, we conclude that Wy
is an isomorphism, and so is the W.
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0 0 0 0 0
t t t t
0 AP— A% — A%% e A% A% 0
0 0 0 0 ARt~ Ap'— AP+ AP~ Ap'—~0
Pt
0+ AR~ A% —~ A% 0 01 A0 A2 A2 423 p240
[ Pt
0t A~ AY'—~ A% 0 0— A0 AB s A2 AR g3
oot A
0t A0~ AZ'—~ A2 0 0— AP~ Ap't AP~ AP~ AG 0
bt et ottt
0 0 0 0 0 0 0 0

We here state some facts which is necessary for the proof of Theorem

Proposition 4.2. Let (X, m) be a holomorphic Poisson manifold. Then for any d-closed forms
a and f on X, the bracket [a, (s, is d-exact.

™

Proof. Let dy := trd — diy = Ox + Or. According to a result by Sharygin-Talalaev [36, Lemma
5], the Lie bracket

o, Bla, = (=1)*(dr(a A B) — (dra) A B — (=1)Fa A (deB)), € A, B € A,

associated to d, is d-exact if both o and (8 are d-closed. Due to the Lemma [2.3] we obtain
that O, is zero, and hence we get d, = 0,. Therefore we in fact have |a, 8]4, = [, Bs,, and

e

consequently the Proposition holds. O
We are now in a position to give the proof of Theorem [£.1]

Proof of Theorem[].1]. Using the same notations as above, the morphism of the first pages
Uy (GY°,dy = 0r) — (L7°,dy = 07) is explicitly expressed as:

|
—

[

DHG* (Z) e+ 1+i,=i],0n) — (H3*(E),05).  (41)

7

c—1
W= SR ()
=0

Il
=)

We claim that ¥; commutes with 9; and dz. Note that if the 00-lemma holds on Z, it also
holds on E (cf. [I, Corollary 12]). Since h is a d-closed real (1,1)-form on F, it follows from
Proposition that [h, hls, is d-exact. On the one hand, since 0h = 0, we get

a([h’ h]aﬁ-) = [ahv h]aﬁ + [hv 3h]8ﬁ =0. (42)
On the other hand, since [h, h]g. is d-exact, it follows from (4.2)) that

0= d([h7 h]aﬁ-) = a([h7 h]aﬁ)' (4'3)

From the d0-lemma, we obtain [h, h]y. = I8 for some  on E. This implies that [k, h]s.
represents a zero class in H é’Q(E) and therefore we get

0= [0zh"] € Hy ().
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For any [o] € H{;"(Z ), we have da € ker Nim d. Since Z satisfies the d0-lemma, there exists
¢ on Z such that da = 00¢. Put & = a — 9¢. Then we get [a] = [@] and 0& = 0. In what
follows, we always choose the 0-closed representatives of the Dolbeault cohomology classes in
H*(Z). Let [a] € H*(Z), then we have

o0
c—1 c—1
0:(U1([a))) = 9=(D_[A Ap (@) =Y _[10x(h' A p* ()]
=0 1=0
c—1
= D [@=h") A p*(@) + B A (D5 0 p* () + [B, p* ()], ].
1=0

Note that 0zh' is d-exact and « is O-closed. We obtain that [(0zh?) A p*(a)] = 0. Consider
v := [h%, p*(a)]s,. From Proposition we know that v is d-exact. Notice that both h and «
are O-closed. This implies 9y = [0h?, p*(a)]s. + [h?, Dp* ()]s, = 0. Furthermore, we get that ~
is O-closed. By the d0-lemma on E, we get v = 901 for some i on E. This implies [y] = 0 in
the Dolbeault cohomology group. Consequently, we are led to the conclusion

Ox(Vi(la])) = i[hi A Oz(p" ()] = i[hi AP (0r(a))] = W1(9x([a])).
=0 =0

The morphism W; induces the morphism between the second pages of the spectral sequences:
Uy =H(Vy):Gy* 2 H(GY®, d1) — H(LY®,dy) = L5°.

Assume that ¥, : Go* — L£3* commutes with the differentials d, and cz,«, where r > 2. Then
we get the induced morphism of the (r 4+ 1)-pages:

Uppr = H(U,) : Gty = HGY® dy) — H(LY®,d,) = £33,

We claim that ¥,,; commutes with d,;+; and Jr+1- Suppose a € A%q represents a class in

P¥1; equivalently, a is a cocycle in GI' for all 1 < j < 7. Without loss of generality, we

P,q
r+

zig-zag of length r + 1 such that the tail is J-exact. Denote the tail by 08 and then we get
dr1([a]r41) = [0208]r+1. Observe that the form & := h' A p*« represents a class in £, Using

assume that a is O-closed. Since « lives to G, by the 00-lemma, it can be extended to a

the 90-lemma again, the form & can be extended to a zig-zag of length (r + 1) which has the
tail 77 := h' A p*(08) + 87, where 7 is a form on E. This implies that & lives to £/, and hence
we get
dr1(Vri1([a)ri1)) = dra([@]r1) = [07a)r41.
Via a straightforward computation, we have
Ol = (0xh") A p*(OB) + h' A Ozp*(9B) + [h', p*(9B)]o, + 0207

— 1A (9:08) — O((9xh) A p*B) — ([, p*Bla,) — D0=

= hiAp*(0:08) + 8C.
Note that both 037 and 9,08 are O-closed, and so is the form 85 . Due to the 00-lemma, we
get 8¢ = A for some @ on E. This implies that 97 and h? A p*(0.00) represent the same
class in £y, i.e., [0z7]1 = [h* A p*(0:08)]1 and therefore we get

dr1(Yrs1([a]r1)) = [0z7]]r41 = [hi AP (0x08)]r+1 = ¥ria (drga([0dri1))-
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Inductively, we obtain a morphism of spectral sequences
U, 2 (G2, d,) — (L2, d,).

Thanks to the projective bundle formula for Dolbeault cohomology, we get that ¥y is an
isomorphism. By a result on the convergence of spectral sequences [28, Theorem 3.4], for all r,
1<r<oo,VU,:Gr* — L>* is an isomorphism, and this completes the proof. O

Example 4.3. Suppose (X, 7x) and (P", 7pn) are two holomorphic Poisson manifolds. Then
the product manifold F = X x P" can be thought of as the projectivization of the trivial
vector bundle X x C"*! — X. In particular, if we view E as the product of Poisson manifolds
X and P, then the associated product Poisson structure 7 on E satisfying that the two
projections p; : E — X and py : E — P™ are Poisson maps with involution property (cf. [26],
Proposition 2.5]). Notice that the first Chern class [hg] of the tautological line bundle over
E is the pullback of the first Chern class [hpn| of the tautological line bundle over P™ via p3,
hence by the involution property of 7g, for any o € A;&',

[l p1(@)]os, = [p5(hin), pi(@)]a,, = 0.

This means in this special case, the map V¥ is a well-defined morphism between the double

complexes G and L. With the classical argument, ¥ induces an isomorphism
Hy(B,7p) 2 Hy_n(X, mx)® D),
for any integer k > 0. Especially, if X is a point, then we have

Ctl k=n,

Hi (B, mpr) = { 0 k#n

Assume that X = P! and n = 1. The moduli space of holomorphic Poisson structures on
E = P! x P! is isomorphic to C? (cf. [22, Proposition 2.2]). Consider the projective bundle
p: E — P'. Let mg be an arbitrary holomorphic Poisson structure on E. The holomorphic
Koszul-Brylinski homology of (E,7g) has been computed by Stiénon [37, Theorem 7.2], and
here we present a new proof of his result by applying the projective bundle formula (Theorem
4.1). For the dimension reason, each holomorphic bivector field on P! is zero. Thus we get

p«(mg) = 0. As a corollary, we obtain

@2
Hy(E,mp) = Hy A (Pr =02 = | B HIP',05,)]
p—q=2—k

A straightforward computation shows Hy(E,7g) = 0 when k = 0,1,3,4. When k = 2, we have
Hy(E,7p) = H (P, 7 = 0)%2 = C4,

since Hy (P, 7 =0) = HY'(P!) @ Hy'(P') = C2.

5. COMPARISON UNDER POISSON BLOW-UPS

The main purpose of this section is to prove the blow-up formula for holomorphic Koszul—
Brylinski homology of compact holomorphic Poisson manifolds.
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5.1. Relative Koszul-Brylinski homology. Let X be a compact complex manifold and
J:Z — X a closed complex submanifold of codimension c¢. Consider the natural morphism

T Q% — 587
which is defined as follows:
7FV): TV, Q%) — D(V,2.07%)
a — (vnz)'a,

where V' C X is an open subset and jynz : VN Z < V is the holomorphic inclusion. We also
define the sheaf morphism
AR s g ALY
in a similar way.
Definition 5.1 ([34, 39]). The kernel sheaves
K.z = ker (5 : Q% — 2.0%)

and

/Cgé?z = ker (5% : AR? — 5, ADT)
are called the s-th relative Dolbeault sheaf and (p, q)-th relative Dolbeault sheaf with respect to
Z.

There exist two natural short exact sequences

0 — Kz — Q% — .05 — 0 (5-1)
and
0 — KR, — MRS 5 g, AT — 0, (5.2)

where K5°, is a fine resolution of K% ,. Consider the holomorphic Poisson manifold (X, )
together with the holomorphic Poisson submanifold (Z, 7|z). Then we have

Lemma 5.2. There exists a short exact sequence of sheaf complexes on X :

*

[ ] [ ‘7 [ ]
0— (ICXZ,@W) — (Q%,0r) — j*(QZ,aﬂz)[—c] — 0, (5.3)
where ¢ = codimc 7.

Proof. Since j*oir = t5|,07" and 7700 = doy*, we have 7*00r = O, 07*. Hence, for any k € Z,

there is a well-defined induced operator O : lC'}Q 5 — Kk e, (K% 2> 0r) is a well-defined
sheaf complex. Moreover, by the short exact sequence (5.1), there is a commutative diagram
of short exact sequences of sheaves

*

J

0—» /C’;%,z k. 705 0

e ]

0— K5} — oft D08t o

The lemma follows immediately from the above commutative diagram. O
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Definition 5.3. The sheaf complex (K% z,0x) is called the relative Koszul-Brylinski complex
of (X, ) with respect to (Z,7|z), and its k-th hypercohomology

Hy(X, Z;m) == H'(X, (K% 7, 0x))
is called the k-th relative Koszul-Brylinski homology of (X, ) with respect to (Z,7|z).
Taking the hypercohomology of the short exact sequence , we get a long exact sequence:
= Hy (X, Zym) — Hyp(X, 7)) — Hy—o(Z,7|2) — Hp(X, Z5m) — -+
Similarly to Proposition [2.5] we have the following:

Proposition 5.4. The relative Koszul-Brylinski complex (’CB(,Z’ Orx) 1s quasi-isomorphic to the
total sheaf complex of the double sheaf complex (K%, Ox, D).

Proof. As we mentioned above, for each p € Z, the relative Dolbeault sheaf K% , admits a fine
resolution ICS’&'Z. Then the proposition follows. O

5.2. Proof of Theorem n Given a compact holomorphic Poisson manifold (X, 7) with a
holomorphic Poisson closed submanifold j : (Z, 7|z) < (X, 7) with complex codimension ¢ > 2.
Let ¢ : X — X be the blow-up of X along Z with exceptional divisor E := ¢~1(Z). Suppose
that the transverse Poisson structure mn = 0. Due to Proposition |3.3] we get a commutative

diagram for the blow-up in the holomorphic Poisson category:

(B, #5)—— (X,7)
P:SO|EJ Jp (5.4)
(Z, 7| z) —— (X, 7).
The following lemma plays a crucial role in the proof Theorem
Lemma 5.5. The pullback ©* naturally induces an isomorphism
©* : Hy(X, Z;7) — Hy(X, E; 7).
for any k € Z.
Proof. Note that there exists a natural morphism of bounded double complexes
o*: (T(X,K%S,), 07, 0)) — (F(X,ic;gE),aﬁ,é)).
Furthermore, we have two spectral sequences:
e {E,,d,}, associated to (I'(X, IC;{Z), Or,)) , converges to the relative Koszul-Brylinski
homology He(X, Z; ) with the Ej-page given by
EY = HI(X, K 7);

° {Er, cir}, associated to (F(X, IC;% E)
homology Hk(X , E; ) with the El—page given by

,0%,0)), converges to the relative Koszul-Brylinski

B = H9(X, KT,
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For any r > 1, the morphism ¢* induces a morphism of the spectral sequences
o~ E, — E,
and hence a morphism of relative Koszul-Brylinski homologies
©* : Hy(X, Z;7) — Hy(X, E; 7).
Due to [34, Lemma 4.5], the pullback of differential forms induces an isomorphism
" HI(X, K 5) — HQ(X,IC"X’;),
for any 0 < p,q < n. It follows that ¢} : By — E) is an isomorphism. Consequently, by the

standard result in the spectral sequence theory, we get that ¢ is isomorphic for any » > 1 and
therefore the assertion holds. ([

Now we are in the position to prove the blow-up formula of holomorphic Koszul-Brylinski

homology.

Proof of Theorem[1.1]. For the pairs of compact holomorphic Poisson manifolds (X, Z) and
(X, E), we have two short exact sequences of sheaf complexes

*

0 — (K%.z2:0r) — (2%, 8x) — 3.(2, 8y, ) [—c] — 0 (5.5)
and
0 — (K% 1 05) — (%, 05) = 1u(2,0,) 1] — 0. (5.6)

We next establish a commutative diagram of long exact sequences of holomorphic Koszul-
Brylinski homology associated to and . Observe that each complex in and
admits a natural fine resolution. For the pair (X, Z), by the short exact sequence , we
have the two commutative diagrams of short exact sequences of fine sheaves:

*

J

A

1 1 7 1
0 — KRISH — ARTTH = 5, AR — 0

and

*

J

0 — KB, —— AR L ) AT 0

R

-1 —1,q 7 —1
0 — K5 bt — Az L apte

As a consequence, there is a short exact sequence of double complezes:

0 — (D(X,K%), 0r, ) — (D(X, AY), 8r,0) — (D(Z, AY")[~c, 0], Opy ., D) — 0.
Similarly, for the pair (X' , E) we have a short exact sequence:
0 — (D(X,K%",),05,8) — (D(X, A%), 05,0) —5 (D(E, A")[~1,0], 0. ) — 0.
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Moreover, the blow-up morphism ¢ naturally induces a commutative diagram of short exact

sequences:
*
0 T(X, K5E) DX AR ———— T(Z. A" —— 0
(P* OW 90*: w p*: 071'
| | *
0 (X, KR %) — DX, MG e T(Z, A7) ——— 0
o y ©* ; p*
- - ok
0 T K -4+ - (X, AR -1 (B, A 0
Ox Ox O
v P—1a % -1, J -1,
0 DX, KS 5 L(X, A1) I(E, A M) ——— 0

Therefore, we obtain a commutative diagram of double complexes

*

0 = (D(X,K%,),0r,0) — (D(X, AY), 87,0) > (T(Z,A3")[~¢,0], 8y, 8) — 0

v*l w*l P*J (5.7)

0— (N(X,K% ), 05,0) — (D(X, A%), 05,) = (D(B, AY)[~1,0], 05, 8) = 0.

lgo

The commutative diagram (5.7)) above yields a commutative diagram of long exact sequences

of Koszul-Brylinski homologies:
o — Hi (X, Zym) — Hip(X,7) — Hy—o(Z,7|z) — Hp1 (X, Zymw) — - -
w*l @*J p*J' w*l (5.8)
oo — Hy(X, By %) — Hy(X, %) — Hy_ (B, 7|g) — Hpr (X, E;7) — -+ .
In the above diagram, by Lemma [5.5] for any [ € Z, the morphism
" Hi(X, Z;7) — H(X, E;7)

is an isomorphism. Moreover, by Theorem both the second and third vertical arrows
in (5.8) are injective. Finally, by a standard diagram-chasing in (5.8)), we get the following
isomorphisms of finite dimensional C-vector spaces:

Hy(X,7) = Hy(X,m) © (Hy 1 (B, 7|p)/p" Hy—o(Z, 7))
Furthermore, if Z satisfies the d9-lemma, then by Theorem [4.1
Hy(X,7) =2 Hy(X,7) & Hy_o(Z, 7| 7).
This completes the proof of Theorem O

5.3. Degeneracy of the Dolbeault—Koszul-Brylinski spectral sequence. Let (X, 7) be
a holomorphic Poisson manifold of complex dimension n. Consider the Koszul-Brylinski double
complex (I'(X, A%"), 0, 0). Inspired by the Fréhlicher (or Hodge-de Rham) spectral sequence
of complex manifolds, we introduce the following:
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Definition 5.6. The Frohlicher-type spectral sequence associated to the double complex
(T(X, AY"), Ox, 0) satisfying

Byt = HY (X)) = Hyoop(X, ), (5.9)
is called the Dolbeault—Koszul-Brylinski spectral sequence of (X, ).

As mentioned before, for a compact complex manifold X with the trivial holomorphic Poisson
structure 7, the Dolbeault—Koszul-Brylinski spectral sequence degenerates at Fi-page and we
have

HX =0~ H HX XK= P HIX).
p—g=n—k p—g=n—k
Analogously to the Hodge-de Rham spectral sequence, in general, the Dolbeault—Koszul—-
Brylinski spectral sequence does not degenerate at Ej-page (see for example in §.

We have the following result.

Lemma 5.7. Let (X, ) be a compact holomorphic Poisson manifold of complex dimension n.

Then its Dolbeault—Koszul-Brylinski spectral sequence degenerates at E1-page if and only if
Z dime H2Y(X) = dime Hy(X, ),
p—q=n—k
for any 0 < k < 2n.

Proof. Observe that for a compact holomorphic Poisson manifold the holomorphic Koszul—-
Brylinski homology groups are finite-dimensional; moreover, the following inequality holds
dime Hy(X,m) < Y dimg HYI(X)
p—q=n—Fk
for any 0 < k < 2n. By definition, the Ej-degeneracy of the Dolbeault—Koszul-Brylinski
spectral sequence is equivalent to the condition

dime Hy(X,m) = Y dimg H2Y(X),
p—q=n—k
for any 0 < k < 2n. |

We are ready to give the proof of Theorem

Proof of Theorem[1.3. By the blow-up formula for Dolbeault cohomology [33, Theorem 1.2],
we have

c—1
> dime HPY(X) = ) [dim@ HPY(X)+ ) dime H 7' (Z)).

p—q=n—k p—q=n—k i=1

Consequently, by Theorem [I.1] we get
dime Hy(X,7)— Y dime HZY(X)
p—q=n—k

= Jame moem — Y dime m90x)]

p—gq=n—k

c—1
+(e—1)dimg Hy—o(Z,7lz) = > [Z dime HZ"17'(2)

p—q=n—k ~i=1
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— [dimc Hy(X,m)~ »_ dimg ng(X)]

p—g=n—k

+(c—1) [dim(c Hy ol Z,7|7) — > dime H'(Z)
s—t=(n—c)—(k—c)
for 0 < k < 2n. If the Dolbeault—-Koszul-Brylinski spectral sequence degenerates at FEi-
pages for (X, ) and (Z, ), then it immediately follows that the Dolbeault—Koszul-Brylinski
spectral sequence degenerates at Fi-pages for (X' , 7). Conversely, if the Dolbeault—-Koszul-
Brylinski spectral sequence degenerates at F-pages for (X ,7), then we obtain the following

equalities
0 = dime Hy(X,m)— ) dime HZY(X)
p—q=n—Fk
<0
+ (e—1) [dim(c Hi_o(Z,7|z) — > dime HY'(Z)|,

s—t=(n—c)—(k—c)
<o

which implies that the Fj-degeneracy holds for (X, 7) and (Z,7|z). O

6. EXAMPLES

In this section, as applications of the main theorems, we compute the Koszul-Brylinski
homology for some special holomorphic Poisson manifolds, such as del Pezzo surfaces and

Iwasawa manifolds.

6.1. del Pezzo surfaces. Recall that a del Pezzo surface is a smooth Fano surface which is
exactly one of the following: P! x P!, P? and blow-up of P? at (1 < r < 8) generic points
(denoted by M,.). The holomorphic Koszul-Brylinski homology of P! x P! has been computed
in Example see also [37, Theorem 7.2]. We now consider the rest cases. Define the space

V2 = {holomorphic bi-vector fields on P? vanishing at the blow-up points of M, }.

By a result of Kodaira [23, page 225], the blow-up transformation ¢ : M, — P? induces an
isomorphism from the space of holomorphic bi-vector fields on M, to the space V2. Equiva-
lently, the holomorphic Poisson structures 7 on P? vanishing at the blow-up points of M, are
one-one corresponding to the holomorphic Poisson structures © on M, such that ¢ is a Poisson
morphism.

In general, given a holomorphic Poisson structure = on P", the Ej-page of the Dolbeault—
Koszul-Brylinski spectral sequence of (P™, 1) is

Ef’t _ H%IP’”, Qn—s) _ C, s+t :.n,

0, otherwise.
Via a direct checking we get d. = 0 for any » > 1. This implies that the Dolbeault—-Koszul—-
Brylinski spectral sequence of (P, w) degenerates at Ej-page, and therefore we obtain

Cctl, k=n,
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Consider the Poisson blow-up ¢ : (M,,7) — (P2, 7). From the blow-up formula in Theorem
1] we get
(CrJr37 k=2,

6.2. Iwasawa manifolds. To begin with, let us recall some basic facts on complex nilman-
ifolds. Let G be a complex nilpotent Lie group with Lie algebra g whose complexification is
gc := g ®r C, and let H be a discrete subgroup of G. Suppose M = G/H is the associated
nilmanifold endowed with a left-invariant complex structure J and a left-invariant holomorphic

Poisson bi-vector field . Then there exists a natural inclusion of complexes
it (AP*gg,0) < (T(M,AR]),0), (6.1)
for any p > 0. Set n := dim¢ M.

Lemma 6.1. If the map (6.1)) is a quasi-isomorphism, then the total cohomology of the double
complex (A*°gs, Or, ) is isomorphic to He(M,T).

Proof. Observe that (6.1) induces a morphism of double complexes

it (A%°gE,07,0) — (T(M, A3}), 0x,0). (6.2)
On the one hand, we know that (A**gf, dr,0) admits a spectral sequence {E,, Jr} converging
to the corresponding total cohomology such that the Ej-page states as

P = HI(WPg2, D).
On the other hand, the Dolbeault—Koszul-Brylinski spectral sequence {E,,d,} converges to
the holomorphic Koszul-Brylinski homology He(M,7) and has the El—page
EP9 = HI(M, Q) ").

For any r > 1, the inclusion (6.2]) induces a morphism of the spectral sequences

i* B, —s E,.

T

Since (6.1]) is a quasi-isomorphism, i.e., 4] : E\, — Ej is an isomorphism, by the standard result

*

» is an isomorphism for any » > 2. This implies that the

in the spectral sequence theory, 7
total cohomology of double complex (A**gg, Or, 0) is isomorphic to the holomorphic Koszul-

Brylinski homology He(M, 7). O

Remark 6.2. A result of Sakane [35, Theorem 1] states that if a complex nilmanifold is
complex parallelisable (i.e., the holomorphic tangent bundle is holomorphically trivial), then
the inclusion ([6.1)) is a quasi-isomorphism.

Next we consider a concrete example. Let H(3;C) be the Heisenberg Lie group:

1 zZ1 22
H(3;C) = 0 1 23 ||z1,22,23 € C ) C GL(3;C).
0 0 1

As a complex manifold, H(3;C) is isomorphic to C3. Consider the discrete group Gz :=
GI(3; Z[v/—1]) N H(3; C), where Z[\/—1] = {a+ b/—1]| a,b € Z} is the Gaussian integers. The
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left multiplication gives rise to a natural Gs-action on H(3;C), and the corresponding faithful
Gs-action on C? is given by

(a1, a2,a3) - (21,22, 23) == (21 + a1, 22 + a123 + ag, 23 + az),

where a1,az2,a3 € Z[v/—1]. Such a Gs-action yields a monomorphism f : Gz — Aff(C3).
Here Aff(C?) is the affine transformation group of C3. Therefore, such a Gz-action is properly
discontinuous. Furthermore, the Gs-quotient space

I3 := C3/Gs

is a compact complex Calabi—Yau threefold, called the Iwasawa manifold, which is non-Kéhler,
non-formal, and complex parallelisable.
Denote by (g&)!? the space of left-invariant holomorphic differential forms on H(3; C). Then
(g5)"Y has a basis:
wh =dz, w?=dzy — 21dzs, WP = dzs,
satisfying the structure equations:
w! =0,
dw? =0,
dw? = —w!' Aw?.
The dual basis of Lie algebra of left-invariant holomorphic vector fields on H(3; C), denoted by
gé’o, is
0 0 0
Ton 2T T o o
with the structure equations [X1, Xo] = [X2, X3] =0, [X1, X3] = Xo.
Note that each left-invariant holomorphic bi-vector field 7 on I3 is of the form 7 = 1. X7 A

X1

Xo+ o X1 A X34 c3X9 A X3, where ¢q, co and c3 are constants. In particular, a direct checking
shows that [7, 7] = 0 holds if and only if co = 0. Since 7 is left-invariant and I3 is complex
parallelisable, by Lemma the holomorphic Koszul-Brylinski homology of (I3,7) can be
computed in terms of the total cohomology of the double complex (/\"'g("é,aﬂ,é). Observe
that 7 is the linear combination of two compatible Poisson bi-vector fields w92 = X7 A X5 and
ma3 = Xo A X3. Since Or,, = Oryy = 0 we get 0 = 0. It follows that the Dolbeault-Koszul-
Brylinski spectral sequence of (I3, 7) degenerates at F1-page and therefore the Koszul-Brylinski
homology H,e(I3,7) can be read off from the Hodge diamond of I3 (see figure below).

1
3 2
3 6 2
1 6 6 1
2 6 3
2 3
1

(Hodge diamond of I3)

As a result, we have the following table which records the holomorphic Koszul-Brylinski
homology of (I3, 7).
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k 0 1 2 3 4 5 6
Hls,m) | € | ¢ | ctt [ ¢4 | ctt | ¢

Note that (I3, 7) is a unimodular holomorphic Poisson manifold. Due to Proposition and
the isomorphism ([2.4)), the holomorphic Koszul-Brylinski homology of (I3, 7) is isomorphic to
its Lichnerowicz—Poisson cohomology H*® (I3, 7). So we obtain the following table.

k 0 1 2 3 4 5 6
Hk(Ig,7) | C cs | ¢t | ¢ | ct | 5 C

6.3. A six-dimensional complex nilmanifold. Motivated by the construction of the Iwa-

sawa manifold, we consider the nilpotent Lie group

1 2z 22 z3
0 1
G={A= % 2, 20, ,26 € C p € GL(4;C).
0o 0 1z
0o 0 0 1

As a complex manifold, G is isomorphic to the complex vector space CS. Consider the discrete
subgroup H := GIl(4;Z[v/—1]) N G. Analogously, the left multiplication defines a natural H-
action on G and the corresponding faithful H-action on C° is given by

(a1,a2,a3,a4,a5,a6) - (21, 22, 23, 24, 25, 26)
= (21 + a1,29 +a124 + ag,23 + a125 + a22¢ + a3, 24 + a4, 25 + a426 + a5, 26 + aﬁ).
Therefore, this H-action is properly discontinuous, and the associated H-quotient space
Ig := CS/H

is a compact complex manifold with complex dimension 6. Let (g¢ L0 be the space of left-

1.0 i5 given by

invariant holomorphic differential forms on G. Then a basis of (g¢)
wy = dz1, we = dzo — z1dzy, w3 = dzz — z1dzs + (2124 — 22)dzg,
wy = dzg, w5 = dzs — z4dzg, we = dzg.

The structure equations are

dwi = dwy = dwg = 0,

dwo = —w1 A wy,
dws = —wy1 A ws — wy N wg,
dws = —wy N\ we.

Dually, Lie algebra of left-invariant holomorphic vector fields of G, denoted by géo, has a basis:

0 0 0
Xi=—, Xo=—, Xzg=——
1 82’17 2 82’2, 3 62’3’
0 0 0 0 0 0 0
Xo=+217— Xs=n—+215—, Xe=—+2-—+2—.
4 82’4+Z18227 > 625+21823’ 6 8z6+22823+240Z5

The only non-trivial relations of the dual basis are

(X1, X4] = Xo, [X1, X5] = X3 = [Xo, X¢], [X4, Xe] = X5.
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It follows that Ig is a complex parallelisable, non-K&ahler, Calabi—Yau manifold with dimension
6.

Now we consider some special holomorphic Poisson structures on g given by left-invariant
holomorphic bi-vector fields. Akin to the Iwasawa manifold, the holomorphic Koszul-Brylinski
homology of Ig can be computed in terms of the total cohomology of the double complex
(A**gE, O, d). For the simplicity, we write Wit wdtda = it A Al Awdt A A wﬁl, for
any 1 < p,q < 6. We study the holomorphic Koszul-Brylinski homology of g with respect to

the following three holomorphic Poisson bi-vector fields:

T =XoANX3, m=X1ANXg and m3 =X AXs.

6.3.1. Computation of He(Ig,71). We claim that the the Dolbeault—Koszul-Brylinski spectral
sequence of (I, 71) degenerates at Ej-page. Observe that the only possible elements which are
not Oy,-closed are of the form w?31%-2J1""Ja, However, a straightforward computation shows

Oy W =20100 = (12 09 — 00 L) w201
= by (WP A Qi =2 ey gyt ie-2di s
— Qw201 e oyt in—2017
= 0.

This implies that the holomorphic volume form w!?3456 is 9,

-closed, which means (Ig, ) is
unimodular, and the Dolbeault-Koszul-Brylinski spectral sequence of (Ig, 1) degenerates at
FE;-page. Consequently, we get

Hy(ls,m)= €  HE (). (6.3)
6—(p—a)=k

From the isomorphism ([2.4)), we have
Hy(Is,m1) = Hi2—(Is, 71).

From the Hodge diamond of Is (see Appendix and Proposition we get the following
table recording the holomorphic Koszul-Brylinski homology of (Ig, 1) up to degree 6 (the rest
are obtained by the holomorphic Evens-Lu—Weinstein duality).

k 0 1 2 3 4 ) 6
Hk(HG 77'1) C CQ (C38 Cl()l (C191 CQM (3308
H12—k(]16 7.[.1) C CQ (C38 Cl()l (C191 (C274 CSOS

Remark 6.3. If the Dolbeault—Koszul-Brylinski spectral sequence for a holomorphic Poisson
manifold degenerates at the Fi-page, then we can read off its holomorphic Koszul-Brylinski
homology from the Hodge diamond using the same method as in the computation of H,(Ig, 7).
However, the F1-degeneracy of the Dolbeault—Koszul-Brylinski spectral sequence is not a nec-
essary condition for a holomorphic Poisson manifold.
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6.3.2. Ej-non-degeneracy for (Ig, ). Consider the holomorphic Poisson manifold (Ig, 72). Ob-
serve that (gi)%0 = (w!23456) and O,,w!?31%6 = 0; we obtain

HO(]I6,7T2) — <[w123456]> ~ .

On the one hand, note that (gi)>0 = (w2356 113456 12456 /12356 112346 1,12345) apq e

have

Oy w456 = 9 12456 — g 12345 —
By w3456 = /2456,

B, w1296 = 41345 _ 2346

B, w126 — _q)1245,

On the other hand, since
«\6,1 __ 7, 1234561 , 1234562 1234563 1234561 , 1234565 1234566
(g0)”" = (w LW , W LW , W , W )

the following equalities hold:
9r|(62)51 = 0 and ker d N (gh)%! = <w12345617w12345617w1234566>'

Consequently, we get
Hl(]Iﬁ 7T2) _ <[w23456] [w12456] [w12345] [w123456i] [w12345621] [w1234566]> ~ (6.

Assuming that the Dolbeault—Koszul-Brylinski spectral sequence of (Ig, 7m2) degenerates at the
FE1 page, we get

Hy(Ig, my) = H)'(Ig) & Hy' (). (6.4)
Notice that Hg’o(]lﬁ) =~ C% and Hg’l(]l6) =~ C3 (see Appendix . This leads to a contradiction
to the equality , and therefore the Dolbeault—Koszul-Brylinski spectral sequence of (Ig, )

does not degenerate at the Ej-page.

6.3.3. Computation of He(Ig,m3). A direct computation shows that the non-trivial dr,-closed
monomials are given by:

(1) On (g2)>4, Oryu! 250570 = _qp 45677

(2) On (gg)™,

w2391 ds = 14551

3

1236517q __ 146717,
s W J1°"Jq — Jq7

2356515q _ .. 45671-74.
aﬂsw J1da — =00 Jq7

*\3,
(3) OI] (g(C) qu
Dy 29100 = 140130
Dy 5100 45010y,

Dy w3071 0 — 4671l

(4) On (gz)21, Oy w2301 da = i1
It follows that (Ig, 73) is unimodular, and the Dolbeault—Koszul-Brylinski spectral sequence of
(I, m3) does not degenerate at the Fj-page. By Lemma and Proposition we have the
following table.
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k 0 1 2 3 4 5 6
Hk (H67 7T3) C (C8 (C31 (C78 (C143 (C202 (3226
HlQ—k(HG 7.[.3) C (C8 (C31 (C78 (C143 (C202 C226

6.3.4. Poisson blow-up of (Ig,m3). Take
z1 22 23

1 a23 a2
0 1 an 21, 22, 23 € C, a3, as4,a34 € Z[\/?l]

0 0 1

Then Y, :=I'y/H is a 3-dimensional Kahlerian nilmanfold. Furthermore, (Y2, 3]y, = X1 A X3)
is a closed holomorphic Poisson submanifold of (Ig,73) whose transverse Poisson structure
sly, = 0 and thus the Dolbeault—Koszul-Brylinski spectral
sequence of (Y, m3|y,) degenerates at the Ej-page. Note that the Hodge diamond of Y5 is

=< A=

oS O O =

vanishes. One can check that 0,

1
3 3
3 9 3
1 9 9 1
3 9 3
3 3
1

As a corollary, we get the holomorphic Koszul-Brylinski homology of (Y3, m3ly,) as follows:

k 0 1 2 3 4 5 6
H(Ya,msly,) | € | €8 [ ¢c5 [ ¢® | cb | ¢ | ¢t

Let ¢ : Bly,I¢ — I be the blow-up of I along Ys. By Proposition the holomorphic
Poisson structure 73 can be lifted to a unique holomorphic Poisson structure 73 on Bly,I.
By Theorem we get the the following table recording the holomorphic Koszul-Brylinski
homology of (Bly,Ig, 73).

k 0 1 2 3 4 5 6
Hk (BIYQ]I6) 7}3) C (CS CSI (CSO (Cl55 (3232 (C266

APPENDIX A. HODGE DIAMOND OF I

Note that Ig is complex parallelisable. As mentioned in the main text, the Dolbeault coho-
mology of I can be computed by means of left-invariant forms ([35, Theorem 1]). Consider
the associated double complex (A**gg, 0, d). By Leibniz rule, we have

Qi dida — (—1YPoyt e A Gt

In particular, we get h%J = (f) - %9, where h* := dimg¢ Hj(Ai"gE,g) is the Lie algebra
Hodge number. For this reason, to compute the Hodge diamond of Ig, we only need to com-
pute K00 p01 ... B06  Since I is a compact complex manifold we have Hg’o(]l(;) =~ C. The
monomials in (g§)%7 which are not d-closed are stated as follows:
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(1) On (g3)™!, since

Gu? — —w, Gu® = —wl — B, Gub = S,
we get
HY' (1) = {[w'], [w"], [w¥]) = C?
(2) On (g§)"?, since
Gl — 1% Gls = 110 5y _ T3 _ 15
611)26 _ _wﬂé’ 31036 _ _wi56, aw34 wﬂg + wﬂé’
G — 15 4 288 5,55 _ 256 4 306

5wi§5 _ _wIQZG’ 5wi:§1 _ _wiizlé" 5w§31 _ wiizﬁ’
w256 — _wIZLSG’ Juw3® — _w§156’ w36 — wifﬁf‘i’
Sl — 1256 _ wiSz‘lé’ G235 — 41345 _ wiéa‘lG’ G236 — 4, 1346 _ wiiS(s7
we get
Hg,?) (Ig) = ([wﬁi], [wi:_szl], [wii—’)éL [wﬂg], [w356']7 [w156]> o~ 6
(4) On (gz)%4, since
5w1§35 _ IQ?ZHS, 9 1345 i1~~ip1§41567 w2346 — iiZLSG, 5w§356 _ ,,,13456
we get,

Hg’5(]16) — <[w12345]7 [w12356] [w23456]> ~ (C3 and Hg’G(HG) — <[w123456]> ~ (.

By the discussion in the above, we obtain the Hodge diamond of I as follows:

1
6 3
15 18 )
20 45 30 6
15 60 (0] 36 5
6 45 100 90 30 3
1 18 75 120 (6] 18 1
3 30 90 100 45 6
5) 36 (0] 60 15
6 30 45 20
5 18 15
3 6



28

[

2]
3]

[4]

[10]
[11]
[12]
[13]
[14]

(15]
(16]

(17]
(18]
(19]

X. CHEN, Y. CHEN, S. YANG, AND X. YANG

REFERENCES

D. Angella, T. Suwa, N. Tardini, and A. Tomassini, Note on Dolbeault cohomology and Hodge structures
up to bimeromorphisms, Complex Manifolds 7 (2020) 194-214.

M. Bailey, Local classification of generalized complex structures, J. Differential Geom. 95 (2013), 1-37.
M. Bailey, G. R. Cavalcanti, and J. L. van der Leer Durdn, Blow-ups in generalized complex geometry,
Trans. Amer. Math. Soc. 371 (2019), 2109-2131.

A. Bondal, Non-commutative deformations and Poisson brackets on projective spaces, Preprint no. 67,
Max-Planck-Institut, Bonn 1993.

D. Broka and P. Xu, Symplectic realizations of holomorphic Poisson manifolds, to appear in Math. Res.
Lett. arXiv:1512.08847.

J.-L. Brylinski, A differential complex for Poisson manifolds, J. Differential Geom. 28 (1988), 93—-114.
J.-L. Brylinski and G. Zuckerman, The outer derivation of a complexr Poisson manifold, J. Reine Angew.
Math. 506 (1999), 181-189.

Z. Chen, A. Fino, and Y.-S. Poon, Holomorphic Poisson structure and its cohomology on nilmanifolds,
Differential Geom. Appl. 44 (2016), 144-160.

Z. Chen, M. Stiénon, and P. Xu, Geometry of Maurer—Cartan elements on compler Manifolds, Comm.
Math. Phys. 297 (2010), 169-187.

Y. Chen and S. Yang, On blow-up formula of integral Bott—Chern cohomology, Ann. Glob. Anal. Geom.
61 (2022), 57-67.

Z. Chen, D. Grandini, and Y.-S. Poon, Holomorphic Poisson cohomology, Complex Manifolds 2 (2015),
34-52.

P. Deligne, P. Griffiths, J. Morgan, and D. Sullivan, Real homotopy theory of Kdhler manifolds, Invent.
Math. 29 (1975), 245-274.

J-P. Demailly, Complex analytic and differential geometry, available at |https://www-fourier.ujf-
grenoble.fr/~demailly /manuscripts/agbook.pdf.

D. Fiorenza and M. Manetti, Formality of Koszul brackets and deformations of holomorphic Poisson
manifolds, Homology, Homotopy Appl. 14 (2012), 63-75.

B. Fu, Poisson resolutions, J. reine angew. Math. 587 (2005), 17-26.

R. Goto, Deformations of generalized complex and generalized Kdihler structures, J. Differential Geom. 84
(2010), 525-560.

M. Gualtieri, Generalized complex geometry, Ann. of Math. 174 (2011), 75-123.

N.J. Hitchin, Generalized Calabi- Yau manifolds, Quart. J. Math. 54 (2003), 281-308.

N.J. Hitchin, Instantons, Poisson structures and generalized Kdhler geometry, Comm. Math. Phys. 265
(2006), 131-164.

N.J. Hitchin, Deformations of holomorphic Poisson manifolds, Mosc. Math. J. 669 (2012), 567—591.

W. Hong, Poisson cohomology of holomorphic toric Poisson manifolds. I, J. Algebra 527 (2019), 147-181.
W. Hong and P. Xu, Poisson cohomology of Del Pezzo surfaces, J. Algebra 336 (2011), 378-390.

K. Kodaira, Complex manifolds and deformation of complex structures, Classics in Mathematics, Springer,
Berlin (2005).

J. L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, The mathematical heritage of Elie Cartan
(Lyon, 1984).

C. Laurent-Gengoux, M. Stiénon, and P. Xu, Holomorphic Poisson manifolds and holomorphic Lie alge-
broids, Int. Math. Res. Not. 2008, Art. ID rnn 088, 46 pp.

C. Laurent-Gengoux, A. Pichereau, and P. Vanhaecke, Poisson Structures, Grundlehren Math. Wiss. 347,
Springer, Heidelberg, (2013).

A. Lichnerowicz, Les variétés de Poisson et leurs algébres de Lie associées, J. Differential Geom. 12 (1977),
253-300.

J. McCleary, A user’s guide to spectral sequences, Second edition. Cambridge Studies in Advanced Math-
ematics, 58. Cambridge University Press, Cambridge, (2001).


https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf
https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf

HOLOMORPHIC KOSZUL-BRYLINSKI HOMOLOGIES OF POISSON BLOW-UPS 29

[29] A. Polishchuk, Algebraic geometry of Poisson brackets, Algebraic geometry, 7. J. Math. Sci. (New York),
84 (1997), 1413-1444.

[30] Y.-S. Poon and J. Simanyi, A Hodge-type decomposition of holomorphic Poisson cohomology on nilmani-
folds, Complex Manifolds 4 (2017), 137-154.

[31] Y.-S. Poon and J. Simanyi, Algebraic structure of holomorphic Poisson cohomology on nilmanifolds, Com-
plex Manifolds 6 (2019), 88-102.

[32] B. Pym, Constructions and classifications of projective Poisson varieties, Lett. Math. Phys. 108 (2018),
573-632.

[33] S. Rao, S. Yang, and X. Yang, Dolbeault cohomologies of blowing up complex manifolds, J. Math. Pures
Appl. 130 (2019), 68-92.

[34] S. Rao, S. Yang, and X. Yang, Dolbeault cohomologies of blowing up complex manifolds II: bundle-valued
case, J. Math. Pures Appl. 133 (2020), 1-38.

[35] Y. Sakane, On compact complex parallelisable solvmanifolds, Osaka J. Math. 13 (1976), 187-212.

[36] G. Sharygin and D. Talalaev, On the Lie-formality of Poisson manifolds, J. K-Theory 2 (2008) 361-384.

[37] M. Stiénon, Holomorphic Koszul-Brylinski Homology, Int. Math. Res. Not. 2011 (2011), 553-571.

[38] A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom. Phys. 23 (1997), 379-394.

[39] S. Yang and X. Yang, Bott-Chern blow-up formulae and the bimeromorphic invariance of the 8d-lemma
for threefolds, Trans. Amer. Math. Soc. 373 (2020), 8885-8909.

SCHOOL OF MATHEMATICS, SICHUAN UNIVERSITY, CHENGDU 610064, P. R. CHINA

Email address: xjchen@scu.edu.cn

SCHOOL OF SCIENCE, CHONGQING UNIVERSITY OF TECHNOLOGY, CHONGQING 400054, P.R. CHINA

Email address: youmingchen@cqut.edu.cn

CENTER FOR APPLIED MATHEMATICS AND KL-AAGDM, TiANJIN UNIVERSITY, TIANJIN 300072, P.R.
CHINA

Email address: syangmath@tju.edu.cn

DEPARTMENT OF MATHEMATICS, LANZHOU UNIVERSITY, LANZHOU 730000, P.R. CHINA

Email address: yangxd@lzu.edu.cn



	1. Introduction
	2. Preliminaries
	3. Blow-ups and modifications in the Poisson category
	4. Comparison under Poisson projective bundles
	5. Comparison under Poisson blow-ups
	6. Examples
	Appendix A. Hodge diamond of I6
	References

