ON AUTOMORPHISM GROUPS OF SMOOTH HYPERSURFACES

SONG YANG, XUN YU AND ZIGANG ZHU

ABSTRACT. We show that smooth hypersurfaces in complex projective spaces with automor-
phism groups of maximum size are isomorphic to Fermat hypersurfaces, with a few exceptions.
For the exceptions, we give explicitly the defining equations and automorphism groups.
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1. INTRODUCTION

The purpose of this paper is to study smooth hypersurfaces in complex projective spaces with
large automorphism groups. Let F' € C[zy,...,Z,42] be a smooth homogeneous polynomial of
degree d > 3 and let Xz C P"*! denote the smooth hypersurface defined by F, where n > 1. An
automorphism f € Aut(Xrg) of X is called linear with respect to the embedding X < P*+!
if f extends to an automorphism of P"*! ie., f is given by a linear change of homogeneous
coordinates. The automorphism group Aut(Xp) is finite and equal to its subgroup Lin(Xp)
of linear automorphisms if (n,d) # (1,3),(2,4) (see [MM63, Theorems 1 and 2] for n > 2 and
[Cha78, Theorem 2| for n = 1). We use Aut(F') to denote the group of linear transformations
that preserve F' and Z,42q to denote the subgroup of the general linear group GL(n + 2,C)
consisting of d scalar matrices. Then clearly Z, 124 is a normal subgroup of Aut(F’) and the
following exact sequence gives a basic relation between Lin(Xp) and Aut(F):

1 = Zpt94 — Aut(F) — Lin(Xp) — 1. (1.1)

Bounding the size of Aut(Xp), Lin(Xp) or Aut(F) is almost the same thing and has a
long history (see [OS78, Section 6] for some historical remarks). Bott-Tate and Orlik-Solomon
showed that there exists an upper bound for the order |Aut(F')| depending only on n and d
(see [OST78, Corollary (2.7)]). Finding an effective bound in terms of n and d is important. We
use X} to denote the Fermat hypersurface in P+ of degree d defined by Fermat polynomial
Fro=af+af+--- 429, Itis known that Aut(X7) is isomorphic to a semidirect product
CH % Sppp and [Aut(X7)| = d*F1 - (n + 2)Vif (n,d) # (1,3),(2,4) (see [HS80, Page 147),
[Shi88]). By a classical theorem of Hurwitz, the automorphism group of a complex curve of
genus g > 2 is of order at most 84(g — 1). This implies that for a plane curve Xy with d > 4,
|Aut(Xp)| < 42(d—3)d. Automorphism groups of plane curves have been extensively studied by
many people. For n =1 and d > 4, plane curves X with maximum |Aut(Xg)| are isomorphic
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to Fermat curves X} (resp. Klein quartic, resp. Wiman sextic) if d # 4,6 (resp. d = 4,
resp. d = 6) (see [Pam13, Theorem 1|, [Har19, Theorem 2.5] and references therein). Andreotti
[And50] was the first to establish explicit bounds for the order of the automorphism group of
varieties of general type in higher dimensions. For n > 2, Howard—Sommese [HS80, Theorem
2] proved that there is a constant k, depending only on n such that |Aut(Xp)| < ky, - d**! if
(n,d) # (2,4). Xiao ([Xia94, Theorem 1], [Xia95, Theorem 2|) proved that a minimal smooth
projective surface S of general type has at most 422K§ automorphisms. Consequently, for a
surface Xp C P3 with d > 5, |Aut(Xr)| < 42%(d — 4)?d. For 2 < n < 5, Fermat cubic n-
fold has the largest possible order for the automorphism group among all smooth cubic n-folds
(see [Seg42, §100], [Hos97, Theorem 5.3], [Dol12, Theorem 9.5.8] for n = 2; [WY20, Theorem
1.1] for n = 3; [LZ22, Corollary 6.14], [YYZ23, Theorem 1.2] for n = 4; [YYZ23, Theorem
1.1] for n = 5). Fermat quintic 3-fold has the largest possible order for the automorphism
group among all smooth quintic 3-folds ([OY19, Theorem 2.2]). For some partial results on
abelian subgroups of automorphism groups of smooth hypersurfaces of arbitrary dimension,
see for instance [CS95, Theorem 0.1}, [Sza96, Bézout Lemma|, [GL11, Theorem 2.6], [GL13],
[Zhe22, Theorem 4.8], [GLM23]. However, to the best of our knowledge, for n > 2 except
(n,d) =(2,3),(2,4),(3,3),(4,3),(5,3) and (3,5), the maximum order |Aut(Xp)| is still unknown
(see e.g. [Huy23, Chapter 1, Remark 3.20], [GLMV24, Remark 2.11], [Ess24, Question 3.9]) and
the classification of groups of linear automorphisms of hypersurfaces is in a rudimentary state as
also mentioned in [Dol19, Page 6]. Our main result is to completely classify smooth hypersurfaces

with automorphism groups of maximum order, which in particular gives an optimal upper bound
for |Aut(Xp)|.

Theorem 1.1. Fiz integers n > 1, d > 3 with (n,d) # (1,3),(2,4). Let X C P"* be a smooth
hypersurface of degree d with mazimum |Aut(X)|. Then

|Aut(X)| = d"™ - (n+2)! and X is isomorphic to Fermat hypersurface X5

with the following exceptions:

(n,d) Aut(X) |[Aut(X)| X is isomorphic to Xp

(1,4) PSL(2,7) 168 F = a3xs + a3xs + 2z

(1,6) As¢ 360 F = 102323 + 9(2f + 23)as — 45232323 — 135212205 4 2725

(2,6) C6.(S3 x C2) 6912 F =28z + x5z + 23z + 2523

(2,12) Ci2.(AZ2xC2) 86400 F=aitzs + 112528 — 2123t + 23tes + 112828 — z32l!

(4,6) PSU(4,3).C> 6531840 F= 3 2%+ > 15zjzi— > 30z7ziz;+240V/—3212203242576

1<i<6 1<i£j<6 1<i<j<k<6
(4,12) C?%.(A3%S3) 186624000 F = zilzo+11a828 —ziodt +2ilwa+ 112528 —zaxd! +oilas +112828 — 2528t

The sextic F' and its automorphism group in the case (n,d) = (4,6) were given by Todd
[Tod50, Section 6]. It seems that Xp in the cases (n,d) = (2,6),(2,12),(4,12) in the table
above are previously unknown. It is known that automorphism groups of smooth hypersurfaces of
general type are equal to their birational automorphism groups. Hacon-M°Kernan—Xu [HMX13,
Theorem 1.1] showed that the number of birational automorphisms of a variety of general type
X is bounded from above by ¢ - vol(X, Kx), where ¢ is a constant that only depends on the
dimension of X, and they asked for finding an explicit bound for the constant ¢ ([HMX13,
Question 1.2]). As a direct consequence of Theorem 1.1, we obtain the optimal values of such
constants for smooth hypersurfaces of general type.

Corollary 1.2. Let X C P! be a smooth hypersurface of general type, where n > 2. Then
[Aut(X)| < (n+2)!(n+3)" - vol(X, Kx).

Moreover, the equality holds if and only if X is isomorphic to Fermat hypersurface X}/, 5.
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Next we briefly explain the ideas of the proof of Theorem 1.1. In fact, we completely classify
smooth hypersurfaces Xp with [Aut(Xr)| > |Aut(X})| (Theorem 7.5), which clearly implies
Theorem 1.1. In order to prove Theorem 7.5, by the exact sequence (1.1), it suffices to classify
X with |[Aut(F)| > [Aut(F})|. A famous theorem of Jordan [Jor78] says that, for every integer
r > 1, there exists a constant depending only on r such that any finite subgroup of the general
linear group GL(r,C) has an abelian normal subgroup of index at most this constant. Collins
[Col07, Theorems A, B and D] gave the optimal values J(r) of such constants for all r» > 1.
By Jordan’s Theorem, as a finite linear group in GL(n + 2,C), Aut(F') has a normal abelian
subgroup N of index at most J(n + 2), and |Aut(F)| is bounded from above by the product
|N|-J(n + 2). Hence bounding the size of N leads to an upper bound of |Aut(F)|. The known
bounds for |Aut(F')| or |Aut(Xr)| mentioned previously are obtained in this way or a similar way
(see [OST8, Corollary 2.7], [HS80, §3]). However, it is often that when the index [Aut(F') : N]
gets bigger, the size of N gets smaller. Thus the product of J(n+2) and the largest possible value
for | N| rarely gives an optimal bound for |Aut(F')| (see Remark 7.6). To overcome this difficulty,
we introduce two new notions, canonical bound (Definition 3.6) and Fermat-test ratio (Definition
4.5). Roughly speaking, canonical bounds integrate bounding the size of abelian subgroups of
Aut(F) with bounding the size of certain primitive groups called primitive constituents (see
Set-up 3.2) of Aut(F), which turns out to be quite effective in our study of bounding |Aut(F)|.
More precisely, based on complete reducibility of linear representations of finite groups and
the classical notion of primitive (projective) linear groups (see Section 3), we introduce two
associated exact sequences (3.1)-(3.2) for any finite linear group. Combining the associated
exact sequences with our bound for the order of abelian subgroups of Aut(F") (Theorem 3.5),
we show that |Aut(F)| is at most the canonical bound B(Aut(F')) of Aut(F) (Lemma 3.7). We
say an invertible matrix A is semi-permutation if A is a diagonal matrix up to permutation of
columns. Using Theorem 3.5, we immediately get an optimal bound for |Aut(F')| in the case
Aut(F') consisting of semi-permutations (Theorem 3.9).

To handle the case Aut(F') consisting of not only semi-permutations, we use both canonical
bounds and Fermat-test ratios. As a consequence of Jordan’s theorem, for each integer r > 1,
there are only finitely many finite primitive groups in PGL(r, C) (up to conjugation), and Collins
[Col08a, Theorem A] determined the maximum order JC(r) among such groups using the well-
known classification of finite simple groups. Based on the definition of Fermat-test ratio and
the explicit values of JC(r), we show that Fermat-test ratios have many nice properties (see
Section 4) which are crucial for our classification. In particular, using Fermat-test ratios, we
quickly prove that Theorem 7.5 holds if n > 26 or d > 18 (Theorem 4.14). Sections 5, 6 and 7
are devoted to the proof of Theorem 7.5 for the remaining (finitely many) pairs (n, d) satisfying
n < 25 and d < 17. For such pairs of (n,d), we classify X with [Aut(F)| > |Aut(F})| in three
steps:

(1) Aut(F) are primitive linear groups (Theorem 6.1);
(2) Aut(F') are imprimitive linear groups (Theorem 7.1);
(3) Aut(F) are reducible linear groups (Theorem 7.4).

In these steps, our classification is based on known classifications of finite primitive linear groups
in small degrees (see Section 6) and close relations among smoothness and shape of the defining
polynomial F', canonical bounds, and Fermat-test ratios (see Section 5). Especially, we show
that the existence of monomials in F' closely related to different primitive constituents of Aut(F)
considerably reduce the order |Aut(F')| (Lemmas 5.4, 5.5, 5.6, 5.7), which plays a key role in
steps (2) and (3).

After our paper appeared on arXiv, Louis Esser and Jennifer Li informed us that they are
now obtaining a similar result to our Theorem 1.1 but in a different method [EL24]. Both results
rely on Collins’ work on bounding the size of finite primitive complex linear groups, though the
approaches employed are otherwise different.
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We conclude the introduction by posing a question closely related to our work. Collins [ColO8b,
Theorems A and A’] obtained the optimal values of modular analogues of Jordan constants for fi-
nite linear groups. Dolgachev—Duncan [DD19, Theorem 1.1] classified all possible automorphism
groups of smooth cubic surfaces over an algebraically closed field of arbitrary characteristic. It
would be interesting to study an analogue of Theorem 1.1 in positive characteristic.

Question 1.3. Let £ be an algebraically closed field of characteristic p > 0 and let integers
n>1,d> 3 with (n,d) # (1,3),(2,3),(2,4). Classify smooth hypersurfaces X C P{™! of degree
d with maximum |Aut(X)|.

Acknowledgements. We would like to thank Professors Keiji Oguiso and Zhiwei Zheng for
valuable conversations. We would also like to thank the referees for helpful comments and
suggestions. This work is partially supported by the National Natural Science Foundation of
China (No. 12171351, No. 12071337, No. 11921001).

2. NOTATION AND CONVENTIONS

(2.1) Let W be a complex vector space of dimension r > 1. Let W* denote the dual vector
space of W and S(W*) be the symmetric algebra of W*. Each element in S(W*) can be viewed
as a complex-valued function on W. Then GL(W) acts from the left (resp. right) on W (resp.
S(W*)) via (f,w) — f(w) (resp. (F,f)— f(F)). Here f(F) is given by f(F)(w) = F(f(w))
for any w € W. Note that the action of GL(W) on W induces an action of GL(W') on P(W)
given by (f, [w]) — [f(w)]. Two elements F, F’ in S(W*) are called isomorphic to each other if
they lie in the same orbit under the action of GL(WW) on S(W*).

(2.2) If we choose a basis (e1,...,e,) of W, we have the dual basis (e}, ...,es) of W*. Then
elements f € GL(W) (resp. w € W, resp. F € S(W*)) may be naturally viewed as matri-
ces A = (ajj) € GL(r,C) (resp. vectors (wi,...,w,) € C", resp. polynomials F(x1,...,2,) €
Clz1,...,zy]). Under such identifications, the actions of GL(r,C) on C" and Cl[z1, ..., x,| men-

tioned above are given by

(A, (w,...,wp)) — (Zaliwi, e ,Zam-wi) and (F,A)— A(F) := F( Zauxi, el Za”xi)
] =1 i=1 i=1

respectively. We call (e1,...,e,) (resp. (e7,...,e})) the underlying basis of C" = W (resp.

»ET

C™ =2 W*). This means that we identify the e;’s with the standard basis of C". In particular, in
this paper, we always assume that the underlying bases of W and W* are dual to each other, and
if we choose a new basis (e}) as the underlying basis of W, it is understood that the underlying
basis of W* is changed to the dual basis (e}”).

(2.3) We say the underlying basis (e;) of W is compatible with a decomposition W = Wi @- - - @& W
if enyqoign; 145 € Wifor 1 <i <s, 1 <j <ny, where n; = dim(W;) and ng = 0. In this case,
for any integer d > 0, the space of d-forms S (W*) C S(W*) admits a decomposition
SUW*) = D SE(WT) @ S%2(W5) @ --- @ S* (W),
k1tko+-+ks=d
which induces a decomposition

F = Z F(klak27~--»k5)
k1+ko+-+ke=d
for any d-form F € S4W*). We call F(kih2e0ks) the Sk (W) @ SF2(W5) @ - @ Sk (W)-

component of F.

(2.4) Note that if A1, A2 € GL(r, C), we have (A1 A2)(F) = A2(A1(F)). We often use the notions
of forms and homogeneous polynomials interchangeably. The automorphism group Aut(F') of a
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homogeneous polynomial F' € C[xy,...,x,| of degree d > 1 is given by
Aut(F) :={A € GL(r,C) | A(F) = F}.
We say F' is smooth if (0,...,0) is the only solution for g—i =... = ngr = 0. In particular,

if » > 3, a smooth form F defines a smooth hypersurface Xp C P! of dimension r» — 2. We
denote by 7 : GL(r,C) — PGL(r,C) the projection map. For a subgroup H of GL(r,C) (resp.
PGL(r,C)), we say H preserves F if H = G (resp. H = 7(G)) for some subgroup G C Aut(F).
In this case, we call F' an H -invariant form of degree d. We say a monomial m of degree d is in
F (or m € F) if the coefficient of m is not zero in the expression of F'. As in [OY19, Definition
4.4], for a finite subgroup H; C PGL(r,C), we say H; admits a lifting (resp. an F-lifting) if
there exists H; C GL(r,C) (resp. H; C Aut(F)) such that Hy & 7(H,) and =(H,) = Hj.

(2.5) If Fy,...,Fy € Clzy,...,2z,] and a > 0, we use (F1,..., Fg)* - Clz1,...,x,] to denote the
a-th power of the ideal in C[zy,...,x,| generated by Fi,...,Fy. For a group G, we denote
by Z(G1) its center. We use N.H to denote a finite group which fits in a short exact sequence
1— N — N.H— H — 1. Some symbols frequently used in this paper are as follows:

&, the primitive k-th root e of unity, where k is a positive integer;
I, the identity matrix of rank n;
Z.q the subgroup of GL(r,C) of order d generated by the scalar matrix {g1,;
C, the cyclic group of order n;
Sy the symmetric group of degree n;
A, the alternating group of degree n;
@, the quaternion group of order n.

3. ABELIAN SUBGROUPS AND CANONICAL BOUNDS

In this section, we introduce two associated exact sequences (3.1)-(3.2) for any finite linear
group using primitive groups in §3.1. In §3.2, we show an upper bound for the size of abelian
subgroups of automorphism groups Aut(F') of smooth forms F' (Theorem 3.5), introduce the
notion of canonical bound for |Aut(F')| (Definition 3.6 and Lemma 3.7), and prove that Fermat
forms have the largest automorphism groups among smooth forms with automorphism groups
consisting of semi-permutations (Theorem 3.9).

3.1. Primitive constituents and associated exact sequences. First, we recall the notion
of primitive linear groups (for more details, see e.g., [Bli17, Col07, Col08a]).

Definition 3.1. Let p : G — GL(r,C) be an irreducible linear representation of a finite group
G. We say p is primitive (resp. imprimitive) if C" cannot (resp. can) be decomposed as a direct
sum of proper subspaces permuted under the action of G. A finite subgroup in GL(r, C) is called
primitive (resp. irreducible) if the underlying representation is primitive (resp. irreducible). We
call a finite subgroup H C PGL(r,C) primitive if H = ﬂ(ﬁ ) for some finite primitive subgroup
H c GL(r,C).

A normal abelian subgroup of a finite primitive linear group G is contained in the center
Z(G) of G (see [Col08a, Lemma 1]). Let H be a finite primitive subgroup in GL(r, C) and H :=
7(H) C PGL(r,C). Since the center Z(H) C H is a subgroup of Z(GL(r,C)) = {\I, | A € C*},
we have H & H /Z (I:j ). Using primitive groups, we introduce two exact sequences associated to
finite linear groups. For this purpose and later use, we fix some notations.

Set-up 3.2. Let G be a finite subgroup of GL(r, C) with » > 1. Then C" admits a decomposition
Cr=Vi®- - ®V,, as a direct sum of irreducible G-stable subspaces for some integer m > 1.
For each 1 <7 < m, there is an integer k; > 1 and a decomposition V; = Wi © --- & Wy, as a
direct sum of subspaces permuted (transitively) under the action of G such that

Stabg(Wij) == {g € G | g(Wi;) = Wi;}



6 SONG YANG, XUN YU AND ZIGANG ZHU

acts primitively (but not necessarily faithfully) on Wj; (see [Col07, Lemma 1]). Such per-
mutations form transitive subgroups K; (i = 1,...,m) of Si,, and there is a natural group
homomorphism ; : G — K;. Let s := ki + -+ + kp,. The dimensions r;; of the subspaces W;;
are called subdegrees of G. Let

Hz'j = {[h] ’ h = g‘Wij,g S Stabg(Wij)} C PGL(WZJ)
We call the H;;’s the primitive constituents of G (of degree r;;) belonging to V;.

Definition 3.3. Under Set-up 3.2, we call the intersection
P .= ﬂ Stabg(Wij)

SO x) >

the principal subgroup of G. Consider the group homomorphism

¢:G—>K1X"'XKT)’L7 g'—>(¢1(9)aa¢m(g))

Note that Ker(y)) = P. Then we call the following exact sequence the first associated exact
sequence of G

1—P—G - K xx K. (3.1)
Let ﬁij = {h | h = glw,;,g € Stabg(W;;)}. Then we have surjective group homomorphisms

(;52']' : Stabg(Wij) — Hij; g +— g|Wij and Tij - Hz'j — Hij, h +— [h] Thus, -?Iij and Hz'j are
primitive subgroups of GL(W;;) and PGL(W;;) respectively. Consider the group homomorphism

¢:P—>H11X"'XH11€1 X"'XHmkmv g'_>([g|W11]a'--7[Q‘Wlk1]7"-7[g|kam])‘

Let N := Ker(¢). Then we call the following exact sequence the second associated exact sequence
of G

1—>N—>Pi>H11X-"><H1k1X"‘XHmkm. (32)

Clearly, the decomposition of the V;’s as in Set-up 3.2 guarantees the existence of the first
and second associated exact sequences, which is a key point of our approach. After choosing a
basis for each W;;, we obtain a basis of C" and we may identify GL(W;;) (resp. PGL(W;;)) with
GL(r;5,C) (resp. PGL(r;j,C)). Then each element A in P can be viewed as a block diagonal
matrix A = diag(Aq1,..., Amk,,) with blocks A;; € GL(r;;,C). Note that IV is abelian and its
elements are of the form diag(A11lry,, AM120r55 - - -5 Ak Ly, )» Where Ay are non-zero complex
numbers.

Definition 3.4. Under Set-up 3.2, let [(G) := (r],...,r.) be the s-tuple of positive integers
such that r{ > 74 > --- > 7. and there exists a permutation o € Sy satisfying (r;(l), . ,r;(s)) =
(r11,712y - -+ s Tmk,, ). We call [(G) the subdegree sequence of G (of length s) and the s-tuple
(Hi1, Hiz,s - o Hy(—1), Himk,, ) @ primitive-constituent sequence of G. The m-tuple of integers

(k1,...,kp) is called an intrinsic multiplicity sequence of G.

Throughout the paper, for any finite subgroup of GL(r,C), we fix a primitive-constituent
sequence once and for all.

3.2. Abelian subgroups and canonical bounds. It is known that for a smooth homogeneous
polynomial F'(x1,...,xz,) of degree d > 3, every abelian subgroup of Aut(F') has order at most
d" (see [HS80, Lemma 3.1], [Sza96, Abelian Lemma]). The following more refined bound for
abelian subgroups of the automorphism groups of smooth forms plays a key role in our study.

Theorem 3.5. Let F' = F(x1,...,x,) be a smooth homogeneous polynomial of degree d > 3,
where r > 2. Fiz positive integers r1,...,Tm with Y ;. 7 =1, where 1 <m < r. Let N C
Aut(F) be an abelian subgroup generated by matrices of the form diag(A I, AoLry, ... s Amy,.).
Then |N| < d™.
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Proof. We prove the theorem by adapting the proof of [Sza96, Bézout Lemma|. If » = 2, then
|IN| < d™ by direct calculation. If r > 3, then X := Xp C P""! is a smooth hypersurface
of degree d. Fix z = (a1 : --- : ar) € X with a; # 0 for all i. Let T C PGL(r,C) be
the (abelian) subgroup generated by all invertible diagonal matrices. The stabilizer T, of z is
trivial and we identify T" with the orbit Tx of x via the T action. We set U = X NT and
we have Lin(X)NT = oy Us™!. Let H C T be the subgroup generated by all matrices
of the form diag(Nj I, oIy, .-, Aoy I, ), where i € C* (1 < i < m). Let Y C P"~2 denote
the closure of the orbit Hx of x. Note that Y = P™ 1. Then Lin(X) N H=Lin(X)NT N
H=(,cy (Us™' N H). The cardinality of (\,c;; (Us™* N H) is at most that of (., (Us™ ' NY).
The finiteness of [,/ (Us~ ! NY) implies that for m — 1 general points g, s1, ..., Sm_2, the
intersection ﬂ?iaz (Us; ' NY) is already finite. The cardinality of this intersection is at most
deg(ﬂ;’;_oz(X 571 NY)). By applying Bézout’s Theorem ([Ful98, Example 8.4.6]), we obtain
[Lin(X) N H| < d™ . Then |N| < d-|r(N)| < d™ since n(N) C (Lin(X) N H). O

The proof, using the ideas in [CS95] and [Sza96], is suggested by a referee. A longer proof of
Theorem 3.5 without using Bézout’s Theorem can be found in [YYZ24, Theorem 3.4]. Now we
are ready to introduce a bound for the size of groups of automorphisms of smooth forms.

Definition 3.6. Let G be a subgroup of the automorphism group Aut(F') of a smooth form
F = F(x1,...,x,) of degree d > 3, where r > 1. Let (Hy,...,Hs) be a primitive-constituent
sequence of G with an intrinsic multiplicity sequence (k1, ..., ky,). We define the canonical bound

of G by
B(G,F)=d*-[[ |- ][ k"
i=1 j=1

To simplify notation, we often use B(G) to denote B(G, F') if there is no confusion.

Combining Theorem 3.5 with the two associated exact sequences (3.1) and (3.2) of finite linear
groups, we have the following observation.

Lemma 3.7. Let F' = F(x1,...,x,) be a smooth form of degree d > 3, where r > 1. If G is a
subgroup of Aut(F'), then |G| < B(G, F).

The following example gives an illustration for computing canonical bounds.

Example 3.8. Following [OY19, Example 2.1 (17)], let F = ((xl + x2) (2 + 453) T )arg +
(= (a7 + 23) + (24 4€3) 2123) 24 + 2324 + zizs + 22 and the subgroup G of Aut(F)

& 0000\ [~ & 0 00 /-1 000 0
N 0 & 0 00 R & 0 00 0 100 0
G = 0O 0 01 o0f, 0 0 & o0 0,0 010 0f).

0 0 100 0 0 0 & 0 0 001 0

0 0 0 01 0 o 0 0 1 0 0 0 0 &

We denote by (e1, es,e3,e4,e5) the of C°. Then using notations in Set-up 3.2, we have C° =
VieVe@ Vs, Vi = Wiy, Vo = Wa1 @ Wa, V3 = Wiy, where Vi = (e1,e2), Va = (es, €4), V3 = (e5),
W1 = (e3), Waa = (eq). The linear group G has 4 primitive constituents H;;j. Moreover,
S, = Hy, C PGL(2,C), |Hai| = |Has| = |Hs1| = 1, the subdegree sequence {(G) = (2,1,1,1),
and G has an intrinsic multiplicity sequence (1,2,1). Then we have B(G,F) = 5*.24.2 =
30000 > 480 = ]é|, as predicted by Lemma 3.7.

We say an invertible matrix A is semi-permutation if A is a diagonal matrix up to permutation
of columns. Note that up to linear change of coordinates, a finite linear group consists of semi-
permutation matrices if its subdegree sequence is (1,...,1). Using Theorem 3.5, we obtain an
optimal bound for the size of semi-permutation automorphism groups of smooth forms.



8 SONG YANG, XUN YU AND ZIGANG ZHU

Theorem 3.9. Let F' = F(z1,...,x,) be a smooth form of degree d > 3 and r > 2. If Aut(F)
consists of semi-permutations, then |Aut(F)| < d" - rl. The equality occurs if and only if F is
isomorphic to the Fermat form Fg_Q =a{+af+-- +ad

Proof. We identify S, with the group of all permutations of the coordinates x1, ..., z,. Let Ny C
Aut(F') be the (abelian) subgroup consisting of all diagonal matrices in Aut(F'). Since Aut(F')
only has semi-permutations, /NV; is normal in Aut(F") and the quotient group Q1 := Aut(F')/N; is
isomorphic to a subgroup of S;.. Then by Theorem 3.5, we have |Aut(F')| < d"-r! and the equality
holds only if | N1| = d” and Q1 = S,. We assume now |Aut(F)| = d"-r!. If2¢ € F, then 2¢ € F for
alli e {1,2,....,7} by Q1 = S,. Thus, for every A = diag(\1, ..., ;) € N1, we have )\g =1 for all
i by A(F) = F. Then Ny = {diag(\1, ..., \s)| \d = --- = M = 1}, which implies that {z¢}1<;<,
are the only monomials preserved by Ny and F' is a Fermat form, up to replacing x; by their non-
zero multiples. If z¢ ¢ F, then by [OY19, Proposition 3.3] and Q1 = S,., we have x?_lx]’ € F for
all 4,j with ¢ # j. Then N1 C Ny := {diag(\1, ..., A\r)| /\ffl)\j =1 for all 4, j with ¢ # j}, which
is a contradiction since d" = |N7| < |Na| < d" by direct computation. O

4. FERMAT-TEST RATIOS AND PROOF OF MOST CASES

A famous theorem of Jordan [Jor78] states that, for every integer r > 1, there exists a constant
such that any finite subgroup of GL(r,C) has an abelian normal subgroup of index at most this
constant. Consequently, for each integer r > 1, there are only finitely many finite primitive
groups in PGL(r,C) (up to conjugation), and Collins [Col08a, Theorem A] determined the
maximum order JC(r) among such groups. Note that JC(r) = J(r) for » > 71, but JC(r) and
J(r) are often different for r < 71 (see [Col07, Theorems A, B and D]). In §4.1, based on canonical
bounds and the values of JC(r), we introduce the notion of Fermat-test ratio (Definition 4.5)
and we show that Fermat-test ratios have many nice properties which will be frequently used in
our study. In §4.2; using Fermat-test ratios, we quickly prove that our main result Theorem 1.1
holds if n > 26 or d > 18 (Theorem 4.14).

4.1. Fermat-test ratios. As a generalization of subdegree sequences of linear groups, the fol-
lowing concepts will be used in the definition of Fermat-test ratios.

Definition 4.1. Let s be a positive integer. We call an s-tuple I = (r], ..., %) of positive integers

’1°s

i a subdegree sequence of length s if r} > r}, > ... > rl. The integers r} are called subdegrees of
l. The total degree v(l) of I is defined by v(l) =} + -+ + r.. Suppose [ has exactly m distinct
subdegrees 1 > 19 > -+ > 1., where m > 1. We call r’flré” . --rﬁ;ﬂ the exponential type of [,
where k; are the multiplicities of r; in I. We call (kq, ..., k,,) the multiplicity sequence of [. We
often denote [ by its exponential type if there is no confusion. Clearly, we have two equations:
o(l) = Y riki, s = > ki For a subdegree sequence | = (ry,...,r}), if H = (Hy,..., Hy)
is an s-tuple of finite primitive subgroups H; C PGL(r},C), we call [(H) := | the subdegree
sequence of H.

In practice, we often use H to denote a primitive-constituent sequence.

Example 4.2. Let G be as in Example 3.8. Then the subdegree sequence [(G) = (2,1,1,1) has
the exponential type 2'13, and the multiplicity sequence of I(G) is (1,3) which is different from
the intrinsic multiplicity sequence (1,2,1) of G. The total degree v(I(G)) is 5.

Remark 4.3. We allow ¥ to appear in the exponential type of [ even if r is not a subdegree
of I. Under such convention, the equations in Definition 4.1 still hold. For example, by [ being
the subdegree sequence of the exponential type 5°322°13 we mean | = (3,3,1,1,1).

For later use, we define sum/difference between subdegree sequences.
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Definition 4.4. Let [; and Il be two subdegree sequences of exponential types ri'ry?---rim

m
and 7"}1’17“32 . -'rf,;", where a;,b; >0, m > 1,71 > -+ > rp > 1. We denote by 1 + 1o the subdegree
sequence of the exponential type r‘f1+b1 TSQH’Z <o op@mtbm If q; > b; for all i, we denote by 1 — I

the subdegree sequence of the exponential type ri”*blrgrb coplm=bm

We recall the values of the function JC(r) ([Col08a, Theorem A]). For r = 10,11 or r > 13,
JC(r) = (r + 1)!; for the remaining cases, JC(r) is as follows:

T 1 2 3 4 ) 6 7 8 9 12
JC(r) 1 60 360 25920 25920 6531840 1451520 348364800 4199040 448345497600

Now we give the definition of Fermat-test ratios which is crucial for our classification of smooth
hypersurfaces with large automorphism groups.

Definition 4.5. Let I = (r},...,r.) be a subdegree sequence of length s > 1 with the exponential

’rt s

type T]flT§2 e rfnm and total degree r > 1. For an integer d > 3, we define the Fermat-test ratio
of the pair (I,d) by
S m
d* - [T IC(ry) - TI k!
i=1 j=1
R(l,d) = T

Let H = (Hy,...,Hs) be an s-tuple of finite primitive subgroups H; C PGL(r},C) with the
subdegree sequence [(H) = . We define the Fermat-test ratio of the pair (H,d) by

d* - T1 |Hil - T] k!
=1 7j=1

R(H,d) =

dr-r!
Let F' = F(x1,...,z,) be a smooth form of degree d > 3, where r > 1. We call R(I(Aut(F)),d)
the Fermat-test ratio of F', denoted by R(F).

The following simple fact is useful for our study.

Lemma 4.6. Let ky, ...,k be positive integers with m > 1. Then HTzl kil < (k14 +kn)l
The equality occurs if and only if m = 1.

By Lemmas 3.7, 4.6 and definition of Fermat-test ratios, we have the following observation.

Lemma 4.7. Let F = F(x1,...,z,) be a smooth form of degree d > 3 and r > 1. Let H :=

(Hi,...,Hs) be a primitive-constituent sequence of Aut(F') with r1 > -+ > rs, where r; is the
degree of H;. Then we have
F)-|H; B(Aut(F Aut(F
pry s BEVUHL | o BlA(E) | |u(F)]

- JC(ry) a-rl = dr-r!
In particular, if |Aut(F)| > d" - r!, then R(F) > R(H,d) > 1.
By Definition 4.5, we find some basic properties of Fermat-test ratios.

Lemma 4.8. Let | be a subdegree sequence of length s > 1. Let d,d’ be integers at least 3. Then
R(l,d)/R(l,d") = (d'/d)*D=*. In particular, if d > d', then R(l,d) < R(l,d').

The properties of Fermat-test ratios in Lemmas 4.9, 4.10 and 4.12 make computing/bounding

values of Fermat-test ratios quite feasible.
Lemma 4.9. Let 1, lo be subdegree sequences and let d > 3 be a positive integer. Then we have
(1) (U(ll+l2)) ‘R(li+12,d) > R(l1,d)-R(la,d). The equality occurs if and only if the subdegrees

v(l1)
of l1 and ly are disjoint;
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(2) Suppose the subdegrees of 11 and la are disjoint. Let I, be a subdegree sequence. If
v(l2) > v(l}) and R(l2,d) < R(ly,d), then R(l1 + l2,d) < R(ly +15,d); and
(3) Let s; be the length of l; (i = 1,2). Suppose s1 > s2 and v(ly) < v(l2). If R(l1,d) >
R(l2,d), then R(ly,d+ 1) > R(la,d+1).
Proof. We only give the proof of case (1) and the other cases are similar. Suppose the exponential
typeof | :=l1+15 is r]flré” . -r,’i;". Then we may write [; = r]flrgz e rfn;” and Iy = r’fl 7"52 . -7‘7%,
where k] > 0, k/ > 0 and k; = k] + k > 0. From Lemma 4.6, we conclude that k;! > k! - k/'!
and the equality holds if and only if &} - k! = 0. By Definition 4.5, we have

B oI v(l)! T ki 1
A0 = R DR ) -G T gt = B DRG0 Gy
1= vl1
and the equality holds if and only if &} - £/ = 0 for all ¢ (i.e., the subdegrees of [; and Iy are
disjoint). O
Lemma 4.10. Let | be a subdegree sequence containing ro > 1 with multiplicity kg > 1. Then,
ford >3, R(l,d) > R(l+ (r9),d) holds if one of the following conditions is true:
(1) 7o =2 and ko > 5;
(2) 1o =4 and ko > 2;
(3) ro =3 orrg >5.

In particular, if | is of exponential type 7”80 with ro ¢ {2,3,4,5,6,8}, then R(l,d) < 1.

Proof. Let lo be the subdegree sequence of the exponential type 7“150. We set [ :=1—1s. By (1)
in Lemma 4.9 we have

(O350 YR(L+ (ro), d) = R(l,d)R(l2 + (ro),d), (\D)R(I,d) = R(lx,d)R(ls, d).

ko+1)ro koro
Then the ratio
v RO OoLd) (i) RO t(ro)d) _ v JCGo)kt1)
T (D - | To—1 ’ ’
R(l,d) (o) Rlizd) (0(l) + ro)! dro
Since A decreases as v(l1) increases or d increases, we may take v(l;) = 0 and d = 3. Then
(roko)! . (ko + 1)JC(r0) _ (roko)! . JC(rop) (4 2)
- (T’Q(ko + 1))' 3ro—1 (To(ko + 1) — 1)' 7-037’0—1 ' )

We notice that the value in the right hand side of the inequality decreases as kg increases. By
(4.2),if ro = 2, kg = 5, we have A < %’g% = 19 < 1. Thus (1) follows. Similarly, one may check

if (ro, ko) = (3,1), (4,2), (5,1), (6,1), (7,1), (8,1), (9,1), (12,1), we have A < 1.
T0
For 7o = 10,11 or 79 > 13, we have A < 3(%0:2«!0 < gﬁ’;ﬂ : :20 < 1. By Lemma 4.8 and

Definition 4.5, we find that R((r9),d) < R((r¢),3) < 1 for 1o = 7, or rg > 9. Therefore,

R(rgo,d)<1ifr0:7or ro > 9. O

Remark 4.11. For the proof of Lemma 4.12, we record the values of some Fermat-test ratios.
R(2'3,3) = 16000000000/12649365729, R(3',3) = 20/3, R(3%,3) = 200/189, R(4',3) = 40,
R(4%,3) = 320/7, R(43,3) = 2560/231, R(5',3) = 8/3, R(6',3) = 112/3, R(62,3) = 896/297,
R(8',3) = 320/81.

Lemma 4.12. Let d > 3 and m > 1 be integers. Let Iy be a subdegree sequence of exponential
type rlfl---r,’f;” with r; > 1, k; > 0 and R(rfi,d) > 1 foralll < i < m. Then we have
R(l1,d) < R(l},d), where

4! ifv(lh) =4 and d =3
I} is of exponential type { 2% with a = v(l1)/2 if v(ly) is even and (v(l1),d) # (4,3)
2% with a = (v(ly) —1)/2 if v(ly) is odd.
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In particular, if v(l1) > 28, we have R(l1,d) < 1.

Proof. By Lemma 4.10, we have r; € {2,3,4,5,6,8} for all . Then we may assume [; is of
exponential type 8696549439329 with a; > 0. Furthermore, as R(2'4,3), R(3%,3), R(4%,3),
R(5%,3), R(62,3), and R(82,3) are all less than 1, applying Lemmas 4.8 and 4.10, we have ag < 1,
ag < 2,a5 <1, a4 <3, a3 <3, ay <13. By calculations, we observe R(5'3',3) < R(2%,3),
R(5'3%,3) < R(27,3), R(3',3) < R(2',3), R(32,3) < R(2%,3), R(33,3) < R(2%,3), R(4%,3) <
R(2%,3), R(43,3) < R(2%,3), R(5%,3) < R(22,3), R(6%,3) < R(23,3), R(6%,3) < R(2%,3) and
R(8%,3) < R(2%,3).

If ag # 1, then by Lemma 4.9 (2)-(3) and replacing subdegrees 3,4, 5,6,8 by 2 with suitable
multiplicities (e.g. replacing 5'3" by 2%), we have R(l1,d) < R(2%,d) with a}, = w (resp. ah =
v(lliz)_l) when v(l;) is even (resp. odd).

If a4 = 1, then similar to the previous case, we have R(l1,d) < R(4'2%, d) with by = W
(resp. by = %) when v(l;) is even (resp. odd). Since the ratio R(4'2"2 d)/R(2%2%2,d)

= m, we find that R(4'2%2 d) < R(2%2%2,d) unless (bg,d) = (0,3). Thus, we have

R(ly,d) < R(2%2%2 d) unless (v(l1),d) = (4,3).
Moreover, since R(2'4,d) < 1 for d = 3, by Lemmas 4.8 and 4.10, we have R(l1,d) < 1 for all
l; satisfying v(l;) > 28. O

Remark 4.13. For later use, here we present (in decreasing order) the values R(l,3) for all
possible I} with v(l}) < 26 in Lemma 4.12: R(2° 3) = 20000/189, R(2%,3) = 200000,/2079,
R(2%,3) = 2000/21, R(27,3) = 2000000/27027, R(23,3) = 200/3, R(2%,3) = 4000000/81081,
R(4',3) = 40, R(22,3) = 100/3, R(2°,3) = 40000000/1378377, R(2'°, 3) = 400000000,/26189163,
R(2',3) = 10, R(2'%,3) = 4000000000/549972423, R(2'2,3) = 40000000000/12649365729,
R(2'3,3) = 16000000000/12649365729.

4.2. Proof of most cases. Next we use Fermat-test ratios to prove that our main result
Theorem 1.1 holds for all possible pairs (n,d) except only finitely many cases.

Theorem 4.14. Let F = F(x1,...,2n42) be a smooth form of degree d, where n > 1, d > 3.
Suppose that Xr is not isomorphic to the Fermat hypersurface in P! of degree d. If n > 26
or d > 18, then |Aut(Xp)| < d"™' - (n+2)\.

Proof. Suppose the subdegree sequence | := [(Aut(F)) of Aut(F) is of exponential type r’fl R i
with m > 1 and k; > 0 for all 2. By Theorem 3.9, we may assume r; > 1. Then by Lemma 4.7,
it suffices to show R(l,d) < 1. Let A := {i| r; > l,R(rfi,d) > 1,1 <i<m}. We define [; to be
the sum of all the subdegree sequences of exponential types rfj (j€A). Let lo :=1—1;.

Case n > 26. If [ =13 or | = Iy, then by Lemmas 4.12 and 4.9 (1), R(l,d) < 1. Then we may
assume that | # l1,l2 and v(l1) < 28. Since n + 2 = v(l; + l2) > 28, by Lemmas 4.9 (1), 4.12

and Remark 4.13, we have
R(ly.d)- Rla.d) _ R(4.d) _ R(4.d) _ R(4,3)
v(l1+1 — (v(li+1 — 28 — 28
( (vl(ll)z)) ( (yl(l1)2)) (’U(ll)) (U(ll))
Case d > 18. By Lemma 4.8, it suffices to show R(l,18) < 1. For positive integers ro > 1
and ko > 0, from Lemma 4.10, we conclude that R(TISO, 18) > 1 if and only if (ro, ko) = (2, 1).
Thus, by Lemma 4.12, either /1 = [} of exponential type 2! or I = I, which implies R(l,18) < 1
by Lemma 4.9 (1) again (in fact, if { =’ = 2!, then R(l,18) = R(21’1§l)_~'_§(12’18) < R(ﬁlés) < 1;if

("3~ (%)
I =1, then R(1,18) < [[i<;<m R(rfi, 18) < 1 since R(Tfi, 18) < 1 for all r; > 1). This completes
the proof of the theorem. O

R(l1+l2,d): < 1.

By similar arguments in the proof of Theorem 4.14 and running some local computations, we
obtain additional properties of Fermat-test ratios, which will be used in the subsequent sections.
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Lemma 4.15. Let a > 0 be the multiplicity of 1 in a subdegree sequence |l and d > 3. Then
(1) R(l,d) < 106;
(2) Ifl has at least two distinct subdegrees, then R(l,d) < 60;
(3) If a>2 (resp. a>1), then R(l,d) <3 (resp. R(l,d) < 11).

To get the bounds in (1), (2), (3), it suffices to consider the case d = 3 by Lemma 4.8. Note
that 106 is a uniform bound for Fermat-test ratios.

Remark 4.16. Let d > 3, a > 2. Let [ be a subdegree sequence containing 1 and a with R :=
R(l,d) > 1. Then a € {2,3,4,6}. Moreover, if a = 3 (resp. 6), then (I,d, R) = (3'2'1!,3,10/9),
(3'11,3,5/3) (resp. (6'1',4,81/64), (6'12,3,4/3), (6'211,3,40/27), (6'1',3,16/3)).

5. REFINED BOUNDS VIA SPECIAL MONOMIALS

In this section, based on canonical bounds, we derive several refined upper bounds for the
size of automorphism groups of smooth forms containing monomials involving different primitive
constituents (Lemmas 5.4, 5.5, 5.6, 5.7). The motivation for such bounds is to control the size
of the automorphism group Aut(F') of a smooth form F' when Aut(F’) is not primitive and they
will be frequently used in Section 7.

Smoothness of a polynomial F' sometimes implies existence of monomials of special shape.

Lemma 5.1. Let F = F(x1,...,Tk1q) be a smooth form of degree d > 3 with k > 2 and a > 0.

We write F = F| + Fy, where Fy € Clzy,...,x;] and Fy € (Tk41, ..., Thta) - Cl1, ..., Trea] are
forms of degree d. Suppose Fy is not smooth. Then Fy & (Tpi1,...,Tkra)? Clw1, ..., 2pia]. In
particular, there exist integers dy,...,d; > 0 and a monomial m € F' with m = :Uclll - ajzk CThyj
for some 1 < j<a.

Proof. Since F7 is not smooth, we may assume all partial derivatives of F} vanishes at (1,0,...,0)
€ C*. Then by direct computation, if F5 € (211, .., 2Zria)?-Cl21,. .., Tria), all partial deriva-
tives of F vanishes at (1,0,...,0) € C**% a contradiction. Therefore, Fy ¢ (Tpy1,...,Thia)>
Clx1, ..., Tkrq], which implies the last statement in the lemma. (I

The following lemma will be used in the proof of Lemmas 5.4 and 5.5.

Lemma 5.2. Let F' = F(x1,...,2n42) be a form of degree d > 3 with n > 1 and G be a finite
subgroup of Aut(F). Suppose the underlying basis of C"*2 is compatible with a decomposition
C"*2 = Vi @ Vi, where V; are G-stable subspaces of dimension n; > 1 (i = 1,2). If the G-space
Vy is irreducible and the S*Y(V;") @ SY(Vy)-component FU4=LD of F is not zero, then we have

Fld=11) _ Fllxrn-‘rl S F7/12xn1+n27
where F! = F/(x1,...,2y,) are ng C-linearly independent forms of degree d — 1.
Proof. Recall that F(4=1D ¢ §4-1(V*) @ SY(V5"). Let W} be the minimal subvector space of V5
such that F(@=L1) ¢ §-1(V) @ S1(W3). Since F4=LY =£ 0, we have W5 # 0. Since G preserves
F and V; (i = 1,2) are G-stable, we have G preserves F (@=11) " which implies W4 is G-stable.
From the irreducibility of V5, we get that V5" is also irreducible under the (right) action by G.
Then W4 = V5, which implies a decomposition of F' (@=11) as in the lemma. (I

For our purposes and conventions, we recall some notations in Set-up 3.2.
Set-up 5.3. Let F' = F(z1,...,2,) be a smooth form of degree d > 3 with » > 3. Let G be
a subgroup of Aut(F). Let Vi, Wy, Ky, ki, rij, Hij, m, s, P, Hij, ¢ij, w5, &, N be as in Set-up 3.2
and Definition 3.3. Let H;j := ¢;;(P) and H;; := m;;(H;;). We assume that the underlying basis
of C" is compatible with the decomposition C" = @; ;W;;. The decomposition
SUCT) = D ST W) @ STM(W) @ @ ST (W, )
22,5 dij=d
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naturally induces a decomposition

F= S Flndecdng) ¢ g(Cr),
Z@j dij:d

We use Fj; to denote the component (possibly being zero) in Sd(W;;-).

Note that Hw and H;; are normal subgroups of ﬁij and H;; respectively, since ¢;; and m;;
are surjective and P is normal in G. Clearly primitive constituents H;; of G preserve F;;. In the
following lemmas and their proofs, we adopt the notations in Set-up 5.3. From the associated
exact sequences (3.1) and (3.2), we have

Gl < B(G,F) IN| _|P/N|

T ILISK K] ds o T [ Hil

Lemma 5.4. Suppose m > 2 and let V| := ®;45Vi. If there is a monomial m € S4~1(V/*)
SY(Vy) in F, then

(5.1)

B(G, F)

R((G),d) - d" - 7!
|G‘ — ‘H2 ‘k:2

JC(TQl)k2

Proof. For all 1 <4 <m and for all 1 < j < k;, we have the following commutative diagram:

<

6ilP = wylH
p—"7 H;; Ty HlJ

Lo

Staba(Wi;) —22s Hy 2% Hj; .

Note that the three injections are inclusions of normal subgroups. Consider the exact sequence
1—)N—)P—)HU X"'XH1k1 X Hsq X---XH3k1 X"'XHmlx"’XHmkm>

where the last morphism is given by g — ([g|Wi1l, - .., [g|Wik ], [91Wail,- - .. [g|Wink, ]) and N is
defined as its kernel. In order to prove the lemma, it suffices to show N C N. Recall that the
underlying basis (e, ...,e,) of C" is compatible with the decomposition C" = @; jW;;. For any

A= diag()\lllru,...,/\lklr Agl,Agg,...,Ang,)\glIml,...,/\mka ) S N,

1ky? Tmkm
B = diag(BH,...,Blkl,...,Bml,...,Bmkm) S P,

we have the commutator C' = [A, B] is the identity matrix, by C(F) = F, the shape of A,
B and Lemma 5.2. In fact, from the decomposition C" = V{ @ Va, we have a decomposition
F = ch‘lzo F;, where F; € S4(V{*) ® S{(Vy). By the existence of the monomial m, we have
Fy # 0. Then by Lemma 5.2, we have Fi = 37, <;cp, 1<, Fijij, where Ff; € ST (V/{*) are
ko - 191 C-linearly independent forms of degree d — 1 and {xz;;} forms a basis of V5. Since the
commutator C' = diag([rn, .. le y [Agl, Bgl] [AQQ, BQQ], ceey [Ag]@, BQkQ], L«31, ces 7Ikam> and
C(F) = F, we infer that C’(Fl) F1 and [Ag;, Bai| = I, for all i.

Therefore, we have ¢9;(A) € Z(Iffgj) for any 1 < j < ko. Since ﬁlgj < ﬁQj, we have
Z(ng) < ng Then by primitivity of HQJ, we have

Z(HQj) - Z(HQj) C <{)\IT2j’)\ € (CX}>

Thus Azj; € ({A,;|A € C*}) for any 1 < j < kp. Therefore, A € N and N = N. Then

|P/N| = |P/N| < % and the lemma follows from (5.1). O
<j<kg 11127

By similar arguments in Lemma 5.4, we obtain the following lemma using (5.1).
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Lemma 5.5. Suppose 1 < a < m and k, > 2. If there is a monomial m € STH W) @ SH (W)
i F', then one of the following statements holds:

B(G,F R(I(G),d)-d"-r!
(1) ko =2 and |G| < ZiEH) < HUGAL,

ol
(2) ka >3and\G]<2|Ha|)§ RUG

Note that the spaces @(; j)x(a,2)Wij and Woa are Stabg(Waz)-stable subspaces of C". Since
Wao is an irreducible Stabg(W,2)-stable subspace, we can apply Lemma 5.2 as in the proof
of Lemma 5.4 to prove that N is equal to the kernel of the morphism P — H(Z-J)#ag) H;j;,

~ ([glWy)). From this, we have |P/N| < Ll iy Lemma 5.5 (1) and (2). For ko > 3,

if [Sk, : Ko] > 2, then (2) follows; if [Sg, : K4] = 1, then ‘—]\i' < 2 L (similar to the proof of
Lemma 5.7 (2)) and we are done by (5.1).

Lemma 5.6. Let 1 < i3 < m, 1 < ji1 < ki, 0 < di < d. Suppose there is a monomial
m e SH(W; . ) @SN (D, i) 200, Wisi,) in F. Then Hy,j, contains a normal subgroup H;, j,

1171 1272
preserving a non-zero form of degree di and

B(G,F) _ R((G),d) |Hiy|-d -r!
[Hi1j1 :Hiljl] N JC(T’iljl)

Proof. Without loss of generality, we assume (i1,71) = (1,1). Consider the exact sequence

G| <

1—>N11—)P—)H12X~"XHU€1XH21X~"><H2k2X"-XHmlx-'-XHmkm, (52)

where the last morphism is given by g = ([g|Wha], ..., [g|Wik,], [g|Wa1], ..., [9|Wint,,]) and Ni
is defined as its kernel. Let Hyj := w11 0 ¢11(IN11). Then Hyp < Hyp and we have the exact
sequence

1—)N—>N11—>ﬁ[11—)1. (53)
From the exact sequences (3.1), (3.2), (5.2), (5.3) and by Theorem 3.5, we have
| N1 Hz kil H” ’Hw‘ < ‘NHH11| Hz kil H” ‘H1]| d’ H ki 'sz |HZJ’
| H11] B |H11 B [Hii : Hu]

G| < |P[]] k! <

which implies the inequalities in the lemma by definitions of canonical bounds and Fermat-test
ratios. From the existence of m, we infer that Hy; preserves a non-zero form of degree d;. [

Lemma 5.7. Let 1 <i1 <m, 1 < j1 < k;; and r;,5, > 2. We define

A = {(i2, j2)| (i2, j2) # (i1,41), 3 a monomial m € S Y (W )@ ST (WS . ) in F}.

111 12]2

Let ¢ be the cardinality of A. If the form Fj ;, is either zero or not smooth, then ¢ # 0 and the
following statements hold:

(1) 6] < Tty < BECLDC for all (i, jo) € A;

1232| R JC(Ttizjdr |
(2) 6] < BEp) < MGG,
(3) If c =1, riyj, =1 for (iz,j2) € A and G contains L, 4, then F; ;, is not zero and H;,j,
admits an Fj, j, -lifting preserving some non-zero form of degree d — 1.

Proof. We may assume (i1,j1) = (1,1). We choose a basis of C" compatible with the decompo-
sition C" = @; ;W;;. By the smoothness of F' and Lemma 5.1, we have ¢ # 0. The statement
(1) is a direct consequence of Lemmas 5.4 and 5.5.

For (2), let A = diag()\nIru, Ceey Alkllﬁkl , )\21L~21, ceey )‘mllelv ceey )\mkarmkm) € N. By
A(F) = F, we get N7 \iyjo = -+ = M\ jopy = 1, where A = {(i2, jo), - .., (ics1, Jer1) }-
Thus, \iyj, = -+ = Xiy1jers, Which implies |[N| < d*=(=1 by Theorem 3.5. From this, we
obtain the inequalities in (2) using the associated exact sequences (3.1) and (3.2).
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For (3), we define W' := @y jr)£(1,1),(3ia,jo) Wirj', Where A = {(i2,j2)}. Let a := ryj =1
and b := dim(W’). Since r =ri1+a+b> (a+1)+a+0b, we have 2a + b < r — 1. If the
S4(Wy,)-component Iy of F is zero, then we have

Fe Y SUWi,)eSThWhow™)+ Y S s oW,

in2) igja
1<di<d 2<ds<d
which contradicts the smoothness of F by [OY19, Lemma 3.2]. Therefore, Fy; # 0. Since
the S4=1 (W) ® SH(W; ;,)-component Fiy4,5, of F is not zero, we write Fiiiyj, = Fiy - L.,
where F{; € S41(Wy) and ng]z € Sl(W;;JQ) By A = {(i2,j2)}, we have Wi1 & Wiy,
is Stabg(Wi1)-stable. Let M := {(g91,92)| o1 = 9|Wi1,92 = 9|Wi,jn,9 € Stabg(Wi1)}. If
A = (M1, A2) € M, then by A(F) = F, we have \{ = A97')\y = 1 and \; = X\y. Consider
the surjective homomorphisms ¢; : M — Hi1, (91,92) — [91] and w9 : M — fIm-Q =~ Oy,
(91,92) — g2. For any (g1,1) € Ker(yz), we have g; preserves both Fi; and Fii4,j,, which
implies that ¢1|Ker(p2) : Ker(¢2) — Hip is injective. Clearly |Hy1| = |M|/d = |Ker(yp2)|. Thus
{g1] (91,1) € Ker(p2)} = Hy; is a desired Fi-lifting of Hyp. This completes the proof of the
lemma. O

6. PRIMITIVE GROUPS OF AUTOMORPHISMS

Finite linear groups in small dimensions have been completely classified (see e.g. [Fei70] for a
survey). In particular, all finite primitive subgroups in PGL(r, C) for small r are known. Based
on this, we derive the following theorem which is the main result of this section.

Theorem 6.1. Fix integersn > 1,d > 3. Let F = F(x1,...,Tp+2) be a smooth form of degree
d > 3 with primitive Aut(F) and |Aut(F)| > d"*2 - (n+2)!. Then up to isomorphism, F is as
follows:

(n,d) Lin(Xp) Lin(Xg)| F

(1,4) PSL(2,7) 168 rixe + 2323 + 232)

(1,6) C3xSL(2,3) 216 2§ + 2§ + 2§ — 10(c3ad + 2323 + 2323)

(1,6) A 360 102323 4 9(xb + 23)x3 — 45230323 — 135z, 025 + 2728

(2,4) C3.8s 1920 ot + x5+ x5+ xf + 1201 x0m324

(4,6) PSU(4,3).C2 6531840 > ol Y 1saiai— Y 30z7aiai+240V 312273747576
1<i<6 1<i#j<6 1<i<j<k<6

Besides the values of JC(r), our proof of Theorem 6.1 relies on explicit list of the finite
primitive subgroups in PGL(r,C) for r € {2,3,4,5,6,8}, see Blichfeldt [Blil7] for r < 4 (see
also [CS19, Appendix A] for diagrams indicating inclusions between groups in the case r = 4);
Brauer [Bra67, §9] for r = 5; Lindsey [Lin71, §3] for r = 6; Feit [Fei76, §2] for r = 8. For ease
of reference, we present a list of finite primitive groups H in PGL(r,C) with |H| > 3"~!r! and
r€{2,3,4,5,6} (see Table 1).

r |H| H r |H| H r  |H| H r |H | H

2 12 Ay 3 360 As 4 1920 C3.85 |4 25920 PSP(4,3)

2 24 Sy 4 720 AsxAs |4 1920 C5.8s |5 25920 PSP(4,3)
2 60 As 4 720 Se 4 2520 Az 6 604800 HaJ

3 60 As 4 960 C35xAs|4 3600 A2 6 3265920 PSU(4,3)
3 72 C2 % Qs 4 960 CyxAs|4 5760 CjxAs |6 6531840 PSU(4,3).Co
3 168  PSL(2,7) |4 1152 SixCz: |4 7200 AZ2xCs

3 216 C3xSL(2,3) |4 1440 Sy x As |4 11520 C3.Se

TABLE 1. Large finite primitive groups H C PGL(r, C)

Before presenting the proof of the theorem, we first give two lemmas.
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Lemma 6.2. Let H C GL(r,C) be a finite primitive subgroup and H := W(ﬁ) If H= H, then
the following statements hold:

(1) H admits a faithful linear representation of degree r;

(2) H has no non-trivial solvable normal subgroups;

(3) For each prime p, H has no subgroups isomorphic to Cy.

Proof. (1) is clear. By H = 7(H), we have |Z(H)| = 1. For (2), we suppose N is a non-trivial
solvable normal subgroup of H. Since N is solvable, N has a non-trivial characteristic abelian
subgroup, say Ni. Then Nj is a normal abelian subgroup of H, which implies Ny C Z (fl ) by
primitivity of H, a contradiction. Consequently, the statement (2) is true. For (3), we suppose
that H has a subgroup, say Hi, isomorphic to Cj for some prime p. Since Hy C GL(r,C), we

infer that A := diag(&p,...,¢p) € Hi. Thus, A € Z(H), a contradiction. Hence (3) is true. [

By a theorem of Schur, for a finite group G, there is a finite group SC(G) such that SC(G) is
a central extension of the Schur multiplier H2(G, C*) by G and every projective representation
of G can be lifted to SC(G) (see [Rot95, Chapter 7]). We call SC(G) a Schur cover group of G.
If G is perfect (i.e., G is equal to its commutator subgroup), then SC(G) is perfect and unique
up to isomorphism (see [Rot95, Corollary 11.12]).

Lemma 6.3. Let H C PGL(r,C) be a finite perfect subgroup preserving a form F = F(x1,...,x,)
of degree d > 3. Then the Schur cover group SC(H) of H admits a linear representation
p: SC(H) — GL(r,C) such that p(SC(H)) C Aut(F) and n(p(SC(H))) = H. Moreover, if
(r,d) = (4,6) and F is smooth, then p(SC(H)) has no elements A of order 5 with tr(A) = —1.

Proof. The group SC(H) has a representation p : SC(H) — GL(r, C) such that 7(p(SC(H))) =
H. Since H preserves F, we get a character x : SC(H) — C* satisfying p(¢)(F) = x(g)F for
all g € SC(H). On the other hand, SC(H) is perfect since H is perfect, which implies x
is trivial. Thus, p(SC(H)) preserves F. For the last statement in the lemma, we suppose
A = diag(&5,€2,63,€3) € Aut(F). Then by A(F) = F, we have 25z, ¢ F for any 1 < i < 4,
which contradicts smoothness of F'. g

We are now ready to prove the main result of this section.

Proof of Theorem 6.1. The primitivity of Aut(F') implies the only primitive constituent H of
Aut(F)is m(Aut(F)) = Aut(F)/Z(Aut(F)), where Z(Aut(F)) = Cy. Hence, we have |Aut(F)| =
B(Aut(F)) =d-|H| and |H| > d""(n + 2)!. Since |H| < JC(n + 2), it suffices to consider the
cases where (n,d) is one of the following: (1,3), (1,4), (1,5), (1,6), (1,7), (2,3), (2,4), (2,5),
(2,6), (2,7), (2,8), (2,9), (2,10), (3,3), (4,3), (4,4), (4,5), (4,6), (6.3).

For (n,d) equal to (1,4), (1,5), (1,6), and (1,7), the results are already known, see [Pam13]
and [Har19]; for (n,d) = (1,6) and |Lin(Xg)| = 216, see also [BB22]; for (n,d) = (1, 3), see e.g.
[YYZ23, Lemma 3.12]. For 2 < n < 4, Fermat cubic n-fold has the largest possible order for the
automorphism group among all smooth cubic n-folds (see [Seg42], [Hos97], [Dol12] for n = 2;
[WY20] for n = 3; [LZ22], [YYZ23] for n = 4). For the case (n,d) = (2,4), F' with primitive
Lin(Xr) of order > 43 - 4! = 1536 is unique (up to isomorphism) and |Lin(Xz)| = 1920 (see
[Burb5, Exercise 6, Chap. XVII], [AOT24, Theorem A and Corollary B]).

Cases (n,d) = (2,5),(2,7),(2,9),(4,5),(6,3). Since n + 2 and d are coprime, by [GLM23,
Theorem 3.5, there is a (primitive) subgroup H C Aut(F) with H = 7(H) = H. Thus, H
satisfies Lemma 6.2 (1)-(3). However, no such H exists by Table 1 and [Fei76, Theorem A].

For (n,d) = (2,6), we may assume |H| > 63-4! = 5184. We then need to consider H to be one
of the following groups: A% x Cy, Cj x Ag, C4.Sg, PSP(4,3). Suppose H = A% x Cy. Then H has
a perfect subgroup Hy & A2. The Schur cover group of As (resp. A%) is SL(2,5) (resp. SL(2,5)?)
of order 120 (resp. 14400). From the character table of SL(2,5) (see [CCNPW, Page 2]), we
infer that for each irreducible representation p : SL(2,5)? — GL(4,C), there is A € p(SL(2,5)?)
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with A of order 5 and tr(A) = —1, which contradicts Lemma 6.3. Thus, H 2 A2 x Cy. Similarly,
we have H % C3 x Ag, C3.Ss, PSP(4,3) by choosing Hy as Ag, Ag, PSP (4, 3) respectively.

For (n,d) = (2,8),(2,10), we may assume |H| > 8 - 4! = 12288. Thus we only need to
consider H = PSP(4, 3), which preserves no forms of degree d = 8,10 by the Molien’s series of
its Schur cover (see [ST54, Page 287]), a contradiction by Lemma 6.3.

For (n,d) = (4,4), since |H| > 4°-6! = 737280, we have H = PSU(4, 3) or H = PSU(4, 3).C».
As in the previous cases, these two groups can be ruled out by the Molien’s series of the Schur
cover of PSU(4,3) (see [Tod50, Page 86]) and the fact PSU(4, 3) < PSU(4, 3).Cs.

For (n,d) = (4,6), there is a unique form F = F(x1,...,x¢) of degree 6 with primitive
m(Aut(F)) = PSU(4, 3).Cs of order 6531840 ([Tod50, §3, §4]). Smoothness of F' can be verified
by Magma ([BCP97]). O

Forms preserved by finite primitive groups in PGL(2, C) are known (see [MBD16, §105]).

Lemma 6.4. Let H C PGL(2,C) be a finite primitive group preserving a form F = F(x1,x2)
of degree d > 1. If H = Ay (resp. Sy, resp. As), then d > 4 (resp. d > 6, resp. d = 12 or
d > 20). Moreover, if (H,d) = (A4,4) (resp. (S4,6), resp. (As,12)), then F is isomorphic to
the smooth form x} + 2v/—=3x222% + x5 (resp. xiwy + 23w, resp. xilas + 112825 — x2dt).

7. PROOF OF THE MAIN THEOREM

In this section, using Theorem 6.1 and the refined bounds in Section 5, we classify smooth
forms with large imprimitive or reducible automorphism groups in §7.1 and §7.2 (Theorems 7.1
and 7.4). In §7.3, combining these results, we prove a stronger form (Theorem 7.5) of Theorem
1.1.

For a smooth form F' of degree d > 3 in r > 1 variables, we define Rp := |Aut(F)|/(d" - r!).

7.1. Imprimitive Aut(F'). Recall that by an imprimitive finite linear group we mean that it is
irreducible and not primitive. Now we classify smooth forms with large imprimitive automor-
phism groups.

Theorem 7.1. Let F = F(x1,...,Tp42) be a smooth form of degree d, where n > 1, d > 3.
Suppose Aut(F) is imprimitive and F is not isomorphic to Fermat form Fy. If |Aut(F)| >

d"2 . (n +2)!, then up to isomorphism, F is as follows:

n,d) Aut(F) [Aut(F)| F

2,6) Cg.(Sf x Co) 41472 3w + adwy + adas + 2has

2,12) C%.(A2xC2) 1036800 eles + 112828 — zyadt + eileg + 112528 — zaxd?
4,1

,12) C3,.(A3 % S3) 2239488000 wi'wa4 112825 —zizdt +odtes + 112525 —xszit +wilwe + 110828 — 2528t

(
(
(
(

Proof. Since Aut(F') is imprimitive and F' is not isomorphic to the Fermat form, [(Aut(F)) is
of exponential type r* with » > 2 and k > 2, and Aut(F') has a primitive-constituent sequence
H = (Hi,...,Hy) with H; ¢ PGL(r,C) and H; = H; for 1 < 4,5 < k. By Lemma 4.7,
we have R(H,d) > 1. By direct calculation (see (4.1)), we get |H;| > d"~!-rl. In fact,

R(H,d) = % > 1 implies |H;| > d"~! - 7! since (rk)! > (r!)* - k!. It suffices to consider
two cases: r > 3 and r = 2.

Case r > 3. If Hy preserves a smooth form Fj(x1,...,z,) of degree d, then by Theorem 6.1,
we have (r,d, |H1|) = (3,4,168), (3,6,360), (4,4,1920), (6,6,6531840). By direct calculation,
we have R(#H,d) < 1, a contradiction. Thus, H; preserves no smooth forms of degree d. Since
JC(r) > 106 for r > 3, by Lemmas 5.1, 5.5 and 4.15, we get |Aut(F)| < d"™? - (n + 2)!,
a contradiction. In fact, we may write F' = F; + F5, where F} € Clzy,...,z,] and Fy €
(Trg1y- -y Tnt2) - Clxy, ..., xp4o] are forms of degree d with H; preserving Fj. Then F) is not
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smooth and by Lemma 5.1, there exist integers di,...,d, > 0 and a monomial m € F with
m =g . gl - Zpyj for some 1 < j <n+2—r. Thus, by Lemmas 5.5 and 4.15 (1), we have

R(I(Aut(F)),d) -d"™2 - (n+2)! 106 -d"*2 - (n + 2)!
JC(r) < JC(r)

Case r = 2. If Hy preserves no smooth forms of degree d, then |Aut(F)| < d"*2 - (n + 2)!
by similar arguments as in case r > 3. Thus, we may assume Hj preserves a smooth form
Fi(z1,...,2,) of degree d. By Lemma 6.4, if H; = Ay, Sy, A5, then H; preserves no smooth
forms in 2 variables of degree less than 4,6,12 respectively. If Hy = A4, then d > 4 and
R(H,d) < 1, a contradiction. If Hy = Sy, then d > 6 and R(H,d) > 1 implies (k,d) = (2,6).
Then R(H,d) = 4/3 and F can be expressed as Fi(x1,z2) + Fo(xs,x4) + F', where F; are
preserved by H; and F’ is in the intersection of the two ideals (z1,x2) - Clx1, z2, 3, z4] and
(w3,24) - Clw1, 29, 3, 24]. If F' # 0, then by Lemma 5.6, H; has a normal subgroup H; and

|Aut(F)| < <d™?.(n+2)\.

|[Aut(F)| < %, where Hj is a normal subgroup of H; and H; preserves a non-zero form
1-411
of degree j for some j € {1,2,3,4,5}. Then
| < |Aut(F)| < B(Aut(F), F) _ R(H,d) 4

Td2(n+2)! T g2 (n42) - [Hy : Hy]  [Hy:Hy  3-[Hy: H

and H 1 = Hy = S,, which contradicts Lemma 6.4. Thus, F’ = 0. Therefore, F' is unique up to
isomorphism by Lemma 6.4. If Hy = As, then d = 12 or d > 20 by Lemma 6.4. So R(H,d) > 1
implies (k,d) = (2,12), (3,12). Similar to the case H; = S4, we have the uniqueness of F. O

As a consequence of Theorems 6.1, 7.1 and Lemma 6.4, we have the following result.

Proposition 7.2. Let F' = F(x1,...,2z,) be a smooth form of degree d > 3, where r > 2.

Suppose Aut(F') is irreducible and Rp = % > 1. Then either Rp = 5/2 or Rp < 25/12.

Moreover, Rg = 5/2 if and only if (r,d) = (2,12) and Aut(F)/Z(Aut(F)) = As.
7.2. Reducible Aut(F'). The following lemma will be used to prove Theorem 7.4.

Lemma 7.3. Let ni,...,ny, be positive integers, where m > 2. Suppose ¢; (1 < i < m) are
rational numbers satisfying ¢; = 5/2 (resp. qi = 1) if n; > 2 (resp. n; =1). If (71;11:17% >1,

then m = 2 and n1 = ny = 2.

Proof. We may assume ni > ng > --- > n,,. We write

. IT%y @i - na! _@mlng! ga-(matn)ng! gmo1gm(na -+ nmo1)!nm!
(it ) (n+n2)! (n1+ne +ng)! (ng+ -+ npy)!
By the formula above, if n,, =1 or m > 3 or n; > 2, then all fractions on the right side are less
than 1, a contradiction to ¢ > 1. Thus, we have m =2, ny =ny =2 and ¢ = %. O

Next we show that smooth homogeneous polynomials of reducible automorphism groups have
fewer automorphisms than Fermat polynomials.

Theorem 7.4. Let F = F(x1,...,x,) be a smooth form of degree d > 3, where r > 3. If Aut(F)
is reducible, then |Aut(F)| < d"-rl.

Proof. To prove the theorem by contradiction, we suppose Rp = |A;f_(f)| > 1. Let G :=

Aut(F). By Theorem 3.9, we may assume at least one subdegree of G is larger than 1. Let
Vi, Wij, ki, rij, Hij, m, Fi; be as in Set-up 5.3. Recall that C" =V @ --- @V, Vi = Wi 1 & --- @
Wik,, Hij C PGL(W;;), and dim(Wj;;) = 7;;. We define 8 to be 1 (resp. 2) if I(G) has at least
two different subdegrees (resp. all subdegrees of G are the same). From the definitions, we have
B(G,F) < R(I(G),d)-d" - r!

|Hij|* = B-JIC(ri)*

(7.1)
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for any pair (7,7) and any 1 < k < k;. By Lemmas 4.7 and 4.15, we obtain R(I(G),d) < 605. If
there is a monomial
1 d—1

me S (Wi;) @S (@W272*1W1232>
in F' with r;,;, > 2, then by Lemma 5.4, we have
B(G,F) < R(I(G),d)-d"-r!
|Hipj, M0 = B+ JC(ryy )M
a contradiction. From now on, we may assume that such monomial m does not exist. Without
loss of generality, we assume 7;; > ry; whenever ¢ < i'. Then there exists a positive integer
m1 < m such that r;; > 2 for i« <my and r;; = 1 for i > m;. We set

Fii= > Fy (i=1,2,...,m) and Fp 4 = > Fldinsdizedmpy,)
1<i<k;

[Aut(F)| < <d" -7,

Zi>7n1,1§j§ki dl]:d

If m; = m, by definition F;,,,4+1 = 0. Then Lemma 5.1 implies that F,,+1 is smooth if m; < m.
It suffices to consider two cases: (1) Fj; are smooth for all pairs (4, 7) with i < my; (2) Fjj, is
not smooth for some pair (i1, j1) with i; < m;.

Case (1). Note that V; (i = 1,...,m;) are irreducible G-stable subspaces of dimension r; :=
dim(V;) = ri1k; and the irreducible linear groups G; := p;(G) preserve the smooth forms F; of
degree d. Here p; : G — GL(V;) is given by g — ¢|V;. Let V' := @®;>p, Vi and p' : G — GL(V') be
given by g — g|V'. Let Gy 41 := P/ (G). Thenr =r1+- - rp, +7m,+1, where rp,, 41 := dim(V’).
By Proposition 7.2, we have Ry, = [Aut(Fy)] < 5/2 (i = 1,2,...,mq). Clearly, G; C Aut(F})

d"i-r; '
(1t =1,2,...,m1 +1). Since Gy,,+1 consists of semi- permutatlons by r;; = 1 for i > my, by
slightly adapting Theorem 3.9, we have Q := W'i’fiﬂ < 1. Then by Lemma 7.3 and
| <oty = AP _ (Gl [Gal -+ G| (G| (T R i)+ (Q )
- a-r! - a-r! (Tl + ) ’

we have m; = m = 2, r; = ro = 2 and r = 4. Thus by Proposition 7.2 again, we infer that
Hi1 = H9y = Aj and d = 12. Then we may write F' = Fy(x1, x2) + Fa(x3, 24) + F' (21, 22, 23, 74),
where
o c @ Sd1 (Vl*) ® 512_d1 (V2*)
1<d; <11
If F’ is zero, then Aut(F) is irreducible (see Theorem 7.1), a contradiction. If F’ # 0, then by

Lemma 5.6, Hy; has a normal subgroup Hy; and |Aut(F)| < R(Z(G)’lfc)'(‘g“"drﬂ = 5"H1114|fr'ﬂ,

where Hi; is a normal subgroup of Hy; and Hy; preserves a non-zero form of degree j for some
1 < j < 11. Since Hyp = As is a simple group, we have H11 is either Hy; or trivial. From this
and Lemma 6.4, we infer that H11 is trivial and Rp < 135 44 < 1, a contradiction. This proves
case (1).

Case (2). Let A and ¢ be as in Lemma 5.7. Recall that

A = {(i2, j2)| (ia, jo) # (i1, 1), I a monomial m € S*(W7;) © ST (Wy,;,) in F}

11.71 12.72

and c is the cardinality of A. Then ¢ > 0. If there is a pair (is,j2) € A with 7y, > 2,
then Mp < 1 by Lemma 5.7 (1) and the inequality (7.1). So we may assume 74, j, = 1 for
all (ig,72) € A. If ¢ > 2, then by Lemmas 4.15 (3) and 5.7 (2), we have R(I(G),d) < 3 and
Rp < R(l( )4 < 1, which is impossible. Thus we have ¢ = 1 and H;, ;, admits an Fj ; -lifting
preservmg some non-zero form F| of degree d — 1. Since I(Aut(F')) contains r; ; > 2 and 1,
by Lemma 4.15 (3) and Remark 4.16, we have r;,;, = 2, 3, 4, 6 and R({(G),d) < 11, 2, 11, 6
respectively. By Lemma 4.7, we have

R(Z(G)’ d) ’ |HT‘z‘1j1 | JC(Tilji)

1<Rp < d |H, |>-—Tnn)
SRS TGy = e
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From this, we have |H;, ;| > 60/11, 360/2, 25920/11, 6531840/6 if r;,;, = 2, 3, 4, 6 respectively.
On the other hand, H;, ;, admitting an F;, j -lifting implies that H;, ;, satisfies Lemma 6.2 (1)-(3),
which is impossible by Table 1 (see [CCNPW] for character tables of finite simple groups). [

7.3. A stronger form of the main theorem. Now we prove the following theorem, which in
particular completes the proof of Theorem 1.1.

Theorem 7.5. Fiz integers n > 1, d > 3 with (n,d) # (1,3),(2,4). Let X C P" be a smooth
hypersurface of degree d with |Aut(X)| > d"*' - (n + 2)!. If X is not isomorphic to Fermat
hypersurface X}, then X is isomorphic to one of the following smooth hypersurfaces Xp:

(n,d) Aut(Xr) [Aut(Xp)| F

(1,4) PSL(2,7) 168 r3x0 + 2323 + Ti11

(1,6) C2% % SL(2,3) 216 28 4+ 2§ + 2§ — 10(2323 + 2323 + 23a?)

(1,6) As 360 102323 4 9(af + 23)x3 — 45230323 — 135z @028 + 2728

(2,6) Cs.(S7 % C2) 6912 zixe + x3xy + xas + xias

(2,12) 012.(14% x C2) 86400 eleo + 112828 — zyadt + eileg + 112528 — zaxd?

(4,6) PSU(4,3).Co 6531840 ooal+ Y 1sxiai— Y 30x7alzi 4240/ 3117273747576
1<i<6 1<i#j<6 1<i<j<k<6

(4,12) C%.(A2 % S3) 186624000 zi'zwe+1laSal—zios! 423t e+ 112528 — 2sai' + bl we+ 11250 — wsad!

Proof. Let Fyy be a defining polynomial of X. Based on the exact sequence (1.1), by [MM63] and
[Cha78], we have |Aut(X)| = |Lin(X)| = |Aut(Fp)|/d. Thus, |Aut(Fp)| > d"*2 - (n + 2)!, which
implies Aut(Fp) is irreducible by Theorem 7.4. Then the conclusion of the theorem follows from
Theorems 3.9, 6.1, 7.1. O

Remark 7.6. Let Xy C P"*! be a smooth hypersurface of degree d > 3 defined by F. If
n+2 > 71, then J(n 4+ 2) = (n + 3)! by [Col07, Theorem A] (note that this bound can be
achieved by Sp,+3). On the other hand, by Theorem 3.5, the optimal upper bound for the size
of an abelian subgroup in Aut(F) is d"*2. Thus the product J(n + 2) - d"*2 = d"*2 . (n + 3)!
gives an upper bound for |Aut(F)|, which gives an upper bound d"*! . (n + 3)! for |Aut(Xp)|.
However, this bound for |Aut(Xp)| is larger than the optimal bound d"*1-(n+2)! = |[Aut(X7)|.

Remark 7.7. By Lefschetz hyperplane theorem, the Picard group of a smooth hypersurface
X of dimension at least 3 is the same as for projective space. Hence Aut(X) = Lin(X). A
smooth hypersurface X in P"*! of degree d = 1 (resp. 2) is isomorphic to P" (resp. Fermat
quadric X§) with infinite automorphism group. Smooth cubic curves are elliptic curves and
their automorphism groups are infinite. The automorphism group of a generic quartic surface
is finite, but there are many smooth quartic surfaces with infinite automorphism groups. The
automorphism group of Fermat quartic X? is infinite, and its finite subgroup Lin(X?) = C3 x Sy
determines X7 uniquely among all K3 surfaces ([Ogu05, Theorem 1.2 (i)]).
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