
ON AUTOMORPHISM GROUPS OF SMOOTH HYPERSURFACES
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Abstract. We show that smooth hypersurfaces in complex projective spaces with automor-
phism groups of maximum size are isomorphic to Fermat hypersurfaces, with a few exceptions.
For the exceptions, we give explicitly the defining equations and automorphism groups.
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1. Introduction

The purpose of this paper is to study smooth hypersurfaces in complex projective spaces with
large automorphism groups. Let F ∈ C[x1, . . . , xn+2] be a smooth homogeneous polynomial of
degree d ≥ 3 and let XF ⊂ Pn+1 denote the smooth hypersurface defined by F , where n ≥ 1. An
automorphism f ∈ Aut(XF ) of XF is called linear with respect to the embedding XF ↪→ Pn+1

if f extends to an automorphism of Pn+1, i.e., f is given by a linear change of homogeneous
coordinates. The automorphism group Aut(XF ) is finite and equal to its subgroup Lin(XF )
of linear automorphisms if (n, d) 6= (1, 3), (2, 4) (see [MM63, Theorems 1 and 2] for n ≥ 2 and
[Cha78, Theorem 2] for n = 1). We use Aut(F ) to denote the group of linear transformations
that preserve F and In+2,d to denote the subgroup of the general linear group GL(n + 2,C)
consisting of d scalar matrices. Then clearly In+2,d is a normal subgroup of Aut(F ) and the
following exact sequence gives a basic relation between Lin(XF ) and Aut(F ):

1→ In+2,d −→ Aut(F ) −→ Lin(XF )→ 1. (1.1)

Bounding the size of Aut(XF ), Lin(XF ) or Aut(F ) is almost the same thing and has a
long history (see [OS78, Section 6] for some historical remarks). Bott–Tate and Orlik–Solomon
showed that there exists an upper bound for the order |Aut(F )| depending only on n and d
(see [OS78, Corollary (2.7)]). Finding an effective bound in terms of n and d is important. We
use Xn

d to denote the Fermat hypersurface in Pn+1 of degree d defined by Fermat polynomial

Fnd := xd1 + xd2 + · · · + xdn+2. It is known that Aut(Xn
d ) is isomorphic to a semidirect product

Cn+1
d o Sn+2 and |Aut(Xn

d )| = dn+1 · (n + 2)! if (n, d) 6= (1, 3), (2, 4) (see [HS80, Page 147],
[Shi88]). By a classical theorem of Hurwitz, the automorphism group of a complex curve of
genus g ≥ 2 is of order at most 84(g − 1). This implies that for a plane curve XF with d ≥ 4,
|Aut(XF )| ≤ 42(d−3)d. Automorphism groups of plane curves have been extensively studied by
many people. For n = 1 and d ≥ 4, plane curves XF with maximum |Aut(XF )| are isomorphic
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to Fermat curves X1
d (resp. Klein quartic, resp. Wiman sextic) if d 6= 4, 6 (resp. d = 4,

resp. d = 6) (see [Pam13, Theorem 1], [Har19, Theorem 2.5] and references therein). Andreotti
[And50] was the first to establish explicit bounds for the order of the automorphism group of
varieties of general type in higher dimensions. For n ≥ 2, Howard–Sommese [HS80, Theorem
2] proved that there is a constant kn depending only on n such that |Aut(XF )| ≤ kn · dn+1 if
(n, d) 6= (2, 4). Xiao ([Xia94, Theorem 1], [Xia95, Theorem 2]) proved that a minimal smooth
projective surface S of general type has at most 422K2

S automorphisms. Consequently, for a
surface XF ⊂ P3 with d ≥ 5, |Aut(XF )| ≤ 422(d − 4)2d. For 2 ≤ n ≤ 5, Fermat cubic n-
fold has the largest possible order for the automorphism group among all smooth cubic n-folds
(see [Seg42, §100], [Hos97, Theorem 5.3], [Dol12, Theorem 9.5.8] for n = 2; [WY20, Theorem
1.1] for n = 3; [LZ22, Corollary 6.14], [YYZ23, Theorem 1.2] for n = 4; [YYZ23, Theorem
1.1] for n = 5). Fermat quintic 3-fold has the largest possible order for the automorphism
group among all smooth quintic 3-folds ([OY19, Theorem 2.2]). For some partial results on
abelian subgroups of automorphism groups of smooth hypersurfaces of arbitrary dimension,
see for instance [CS95, Theorem 0.1], [Sza96, Bézout Lemma], [GL11, Theorem 2.6], [GL13],
[Zhe22, Theorem 4.8], [GLM23]. However, to the best of our knowledge, for n ≥ 2 except
(n, d) = (2, 3), (2, 4), (3, 3), (4, 3), (5, 3) and (3, 5), the maximum order |Aut(XF )| is still unknown
(see e.g. [Huy23, Chapter 1, Remark 3.20], [GLMV24, Remark 2.11], [Ess24, Question 3.9]) and
the classification of groups of linear automorphisms of hypersurfaces is in a rudimentary state as
also mentioned in [Dol19, Page 6]. Our main result is to completely classify smooth hypersurfaces
with automorphism groups of maximum order, which in particular gives an optimal upper bound
for |Aut(XF )|.

Theorem 1.1. Fix integers n ≥ 1, d ≥ 3 with (n, d) 6= (1, 3), (2, 4). Let X ⊂ Pn+1 be a smooth
hypersurface of degree d with maximum |Aut(X)|. Then

|Aut(X)| = dn+1 · (n+ 2)! and X is isomorphic to Fermat hypersurface Xn
d

with the following exceptions:

(n, d) Aut(X) |Aut(X)| X is isomorphic to XF

(1, 4) PSL(2, 7) 168 F = x3
1x2 + x3

2x3 + x3
3x1

(1, 6) A6 360 F = 10x3
1x

3
2 + 9(x5

1 + x5
2)x3 − 45x2

1x
2
2x

2
3 − 135x1x2x

4
3 + 27x6

3

(2, 6) C6.(S
2
4 o C2) 6912 F = x5

1x2 + x5
2x1 + x5

3x4 + x5
4x3

(2, 12) C12.(A
2
5oC2) 86400 F = x11

1 x2 + 11x6
1x

6
2 − x1x

11
2 + x11

3 x4 + 11x6
3x

6
4 − x3x

11
4

(4, 6) PSU(4, 3).C2 6531840 F =
∑

1≤i≤6

x6
i+

∑
1≤i 6=j≤6

15x4
ix

2
j−

∑
1≤i<j<k≤6

30x2
ix

2
jx

2
k+240

√
−3x1x2x3x4x5x6

(4, 12) C2
12.(A

3
5oS3) 186624000 F = x11

1 x2+11x6
1x

6
2−x1x

11
2 +x11

3 x4+11x6
3x

6
4−x3x

11
4 +x11

5 x6+11x6
5x

6
6−x5x

11
6

The sextic F and its automorphism group in the case (n, d) = (4, 6) were given by Todd
[Tod50, Section 6]. It seems that XF in the cases (n, d) = (2, 6), (2, 12), (4, 12) in the table
above are previously unknown. It is known that automorphism groups of smooth hypersurfaces of
general type are equal to their birational automorphism groups. Hacon–McKernan–Xu [HMX13,
Theorem 1.1] showed that the number of birational automorphisms of a variety of general type
X is bounded from above by c · vol(X,KX), where c is a constant that only depends on the
dimension of X, and they asked for finding an explicit bound for the constant c ([HMX13,
Question 1.2]). As a direct consequence of Theorem 1.1, we obtain the optimal values of such
constants for smooth hypersurfaces of general type.

Corollary 1.2. Let X ⊂ Pn+1 be a smooth hypersurface of general type, where n ≥ 2. Then

|Aut(X)| ≤ (n+ 2)!(n+ 3)n · vol(X,KX).

Moreover, the equality holds if and only if X is isomorphic to Fermat hypersurface Xn
n+3.
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Next we briefly explain the ideas of the proof of Theorem 1.1. In fact, we completely classify
smooth hypersurfaces XF with |Aut(XF )| ≥ |Aut(Xn

d )| (Theorem 7.5), which clearly implies
Theorem 1.1. In order to prove Theorem 7.5, by the exact sequence (1.1), it suffices to classify
XF with |Aut(F )| ≥ |Aut(Fnd )|. A famous theorem of Jordan [Jor78] says that, for every integer
r ≥ 1, there exists a constant depending only on r such that any finite subgroup of the general
linear group GL(r,C) has an abelian normal subgroup of index at most this constant. Collins
[Col07, Theorems A, B and D] gave the optimal values J(r) of such constants for all r ≥ 1.
By Jordan’s Theorem, as a finite linear group in GL(n + 2,C), Aut(F ) has a normal abelian
subgroup N of index at most J(n + 2), and |Aut(F )| is bounded from above by the product
|N | · J(n+ 2). Hence bounding the size of N leads to an upper bound of |Aut(F )|. The known
bounds for |Aut(F )| or |Aut(XF )| mentioned previously are obtained in this way or a similar way
(see [OS78, Corollary 2.7], [HS80, §3]). However, it is often that when the index [Aut(F ) : N ]
gets bigger, the size of N gets smaller. Thus the product of J(n+2) and the largest possible value
for |N | rarely gives an optimal bound for |Aut(F )| (see Remark 7.6). To overcome this difficulty,
we introduce two new notions, canonical bound (Definition 3.6) and Fermat-test ratio (Definition
4.5). Roughly speaking, canonical bounds integrate bounding the size of abelian subgroups of
Aut(F ) with bounding the size of certain primitive groups called primitive constituents (see
Set-up 3.2) of Aut(F ), which turns out to be quite effective in our study of bounding |Aut(F )|.
More precisely, based on complete reducibility of linear representations of finite groups and
the classical notion of primitive (projective) linear groups (see Section 3), we introduce two
associated exact sequences (3.1)-(3.2) for any finite linear group. Combining the associated
exact sequences with our bound for the order of abelian subgroups of Aut(F ) (Theorem 3.5),
we show that |Aut(F )| is at most the canonical bound B(Aut(F )) of Aut(F ) (Lemma 3.7). We
say an invertible matrix A is semi-permutation if A is a diagonal matrix up to permutation of
columns. Using Theorem 3.5, we immediately get an optimal bound for |Aut(F )| in the case
Aut(F ) consisting of semi-permutations (Theorem 3.9).

To handle the case Aut(F ) consisting of not only semi-permutations, we use both canonical
bounds and Fermat-test ratios. As a consequence of Jordan’s theorem, for each integer r ≥ 1,
there are only finitely many finite primitive groups in PGL(r,C) (up to conjugation), and Collins
[Col08a, Theorem A] determined the maximum order JC(r) among such groups using the well-
known classification of finite simple groups. Based on the definition of Fermat-test ratio and
the explicit values of JC(r), we show that Fermat-test ratios have many nice properties (see
Section 4) which are crucial for our classification. In particular, using Fermat-test ratios, we
quickly prove that Theorem 7.5 holds if n ≥ 26 or d ≥ 18 (Theorem 4.14). Sections 5, 6 and 7
are devoted to the proof of Theorem 7.5 for the remaining (finitely many) pairs (n, d) satisfying
n ≤ 25 and d ≤ 17. For such pairs of (n, d), we classify XF with |Aut(F )| ≥ |Aut(Fnd )| in three
steps:

(1) Aut(F ) are primitive linear groups (Theorem 6.1);
(2) Aut(F ) are imprimitive linear groups (Theorem 7.1);
(3) Aut(F ) are reducible linear groups (Theorem 7.4).

In these steps, our classification is based on known classifications of finite primitive linear groups
in small degrees (see Section 6) and close relations among smoothness and shape of the defining
polynomial F , canonical bounds, and Fermat-test ratios (see Section 5). Especially, we show
that the existence of monomials in F closely related to different primitive constituents of Aut(F )
considerably reduce the order |Aut(F )| (Lemmas 5.4, 5.5, 5.6, 5.7), which plays a key role in
steps (2) and (3).

After our paper appeared on arXiv, Louis Esser and Jennifer Li informed us that they are
now obtaining a similar result to our Theorem 1.1 but in a different method [EL24]. Both results
rely on Collins’ work on bounding the size of finite primitive complex linear groups, though the
approaches employed are otherwise different.
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We conclude the introduction by posing a question closely related to our work. Collins [Col08b,
Theorems A and A′] obtained the optimal values of modular analogues of Jordan constants for fi-
nite linear groups. Dolgachev–Duncan [DD19, Theorem 1.1] classified all possible automorphism
groups of smooth cubic surfaces over an algebraically closed field of arbitrary characteristic. It
would be interesting to study an analogue of Theorem 1.1 in positive characteristic.

Question 1.3. Let k be an algebraically closed field of characteristic p > 0 and let integers
n ≥ 1, d ≥ 3 with (n, d) 6= (1, 3), (2, 3), (2, 4). Classify smooth hypersurfaces X ⊂ Pn+1

k of degree
d with maximum |Aut(X)|.

Acknowledgements. We would like to thank Professors Keiji Oguiso and Zhiwei Zheng for
valuable conversations. We would also like to thank the referees for helpful comments and
suggestions. This work is partially supported by the National Natural Science Foundation of
China (No. 12171351, No. 12071337, No. 11921001).

2. Notation and conventions

(2.1) Let W be a complex vector space of dimension r ≥ 1. Let W ∗ denote the dual vector
space of W and S(W ∗) be the symmetric algebra of W ∗. Each element in S(W ∗) can be viewed
as a complex-valued function on W . Then GL(W ) acts from the left (resp. right) on W (resp.
S(W ∗)) via (f, w) 7→ f(w) (resp. (F, f) 7→ f(F )). Here f(F ) is given by f(F )(w) = F (f(w))
for any w ∈ W . Note that the action of GL(W ) on W induces an action of GL(W ) on P(W )
given by (f, [w]) 7→ [f(w)]. Two elements F, F ′ in S(W ∗) are called isomorphic to each other if
they lie in the same orbit under the action of GL(W ) on S(W ∗).

(2.2) If we choose a basis (e1, . . . , er) of W , we have the dual basis (e∗1, . . . , e
∗
r) of W ∗. Then

elements f ∈ GL(W ) (resp. w ∈ W , resp. F ∈ S(W ∗)) may be naturally viewed as matri-
ces A = (aij) ∈ GL(r,C) (resp. vectors (w1, . . . , wr) ∈ Cr, resp. polynomials F (x1, . . . , xr) ∈
C[x1, . . . , xr]). Under such identifications, the actions of GL(r,C) on Cr and C[x1, . . . , xr] men-
tioned above are given by

(A, (w1, . . . , wr)) 7→
( r∑
i=1

a1iwi, . . . ,

r∑
i=1

ariwi
)

and (F,A) 7→ A(F ) := F
( r∑
i=1

a1ixi, . . . ,

r∑
i=1

arixi
)

respectively. We call (e1, . . . , er) (resp. (e∗1, . . . , e
∗
r)) the underlying basis of Cr ∼= W (resp.

Cr∗ ∼= W ∗). This means that we identify the ei’s with the standard basis of Cr. In particular, in
this paper, we always assume that the underlying bases of W and W ∗ are dual to each other, and
if we choose a new basis (e′i) as the underlying basis of W , it is understood that the underlying
basis of W ∗ is changed to the dual basis (e′i

∗).

(2.3) We say the underlying basis (ei) ofW is compatible with a decompositionW = W1⊕· · ·⊕Ws

if en1+···+ni−1+j ∈ Wi for 1 ≤ i ≤ s, 1 ≤ j ≤ ni, where ni = dim(Wi) and n0 = 0. In this case,

for any integer d ≥ 0, the space of d-forms Sd(W ∗) ⊂ S(W ∗) admits a decomposition

Sd(W ∗) =
⊕

k1+k2+···+ks=d
Sk1(W ∗1 )⊗ Sk2(W ∗2 )⊗ · · · ⊗ Sks(W ∗s ),

which induces a decomposition

F =
∑

k1+k2+···+ks=d
F (k1,k2,...,ks)

for any d-form F ∈ Sd(W ∗). We call F (k1,k2,...,ks) the Sk1(W ∗1 ) ⊗ Sk2(W ∗2 ) ⊗ · · · ⊗ Sks(W ∗s )-
component of F .

(2.4) Note that if A1, A2 ∈ GL(r,C), we have (A1A2)(F ) = A2(A1(F )). We often use the notions
of forms and homogeneous polynomials interchangeably. The automorphism group Aut(F ) of a
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homogeneous polynomial F ∈ C[x1, . . . , xr] of degree d ≥ 1 is given by

Aut(F ) := {A ∈ GL(r,C) | A(F ) = F}.
We say F is smooth if (0, . . . , 0) is the only solution for ∂F

∂x1
= · · · = ∂F

∂xr
= 0. In particular,

if r ≥ 3, a smooth form F defines a smooth hypersurface XF ⊂ Pr−1 of dimension r − 2. We
denote by π : GL(r,C) → PGL(r,C) the projection map. For a subgroup H of GL(r,C) (resp.
PGL(r,C)), we say H preserves F if H = G (resp. H = π(G)) for some subgroup G ⊂ Aut(F ).
In this case, we call F an H-invariant form of degree d. We say a monomial m of degree d is in
F (or m ∈ F ) if the coefficient of m is not zero in the expression of F . As in [OY19, Definition
4.4], for a finite subgroup H1 ⊂ PGL(r,C), we say H1 admits a lifting (resp. an F -lifting) if

there exists H̃1 ⊂ GL(r,C) (resp. H̃1 ⊂ Aut(F )) such that H̃1
∼= π(H̃1) and π(H̃1) = H1.

(2.5) If F1, . . . , Fk ∈ C[x1, . . . , xr] and a > 0, we use (F1, . . . , Fk)
a · C[x1, . . . , xr] to denote the

a-th power of the ideal in C[x1, . . . , xr] generated by F1, . . . , Fk. For a group G1, we denote
by Z(G1) its center. We use N.H to denote a finite group which fits in a short exact sequence
1→ N → N.H → H → 1. Some symbols frequently used in this paper are as follows:

ξk the primitive k-th root e
2πi
k of unity, where k is a positive integer;

In the identity matrix of rank n;
Ir,d the subgroup of GL(r,C) of order d generated by the scalar matrix ξdIr;
Cn the cyclic group of order n;
Sn the symmetric group of degree n;
An the alternating group of degree n;
Qn the quaternion group of order n.

3. Abelian subgroups and canonical bounds

In this section, we introduce two associated exact sequences (3.1)-(3.2) for any finite linear
group using primitive groups in §3.1. In §3.2, we show an upper bound for the size of abelian
subgroups of automorphism groups Aut(F ) of smooth forms F (Theorem 3.5), introduce the
notion of canonical bound for |Aut(F )| (Definition 3.6 and Lemma 3.7), and prove that Fermat
forms have the largest automorphism groups among smooth forms with automorphism groups
consisting of semi-permutations (Theorem 3.9).

3.1. Primitive constituents and associated exact sequences. First, we recall the notion
of primitive linear groups (for more details, see e.g., [Bli17, Col07, Col08a]).

Definition 3.1. Let ρ : G → GL(r,C) be an irreducible linear representation of a finite group
G. We say ρ is primitive (resp. imprimitive) if Cr cannot (resp. can) be decomposed as a direct
sum of proper subspaces permuted under the action of G. A finite subgroup in GL(r,C) is called
primitive (resp. irreducible) if the underlying representation is primitive (resp. irreducible). We

call a finite subgroup H ⊂ PGL(r,C) primitive if H = π(H̃) for some finite primitive subgroup

H̃ ⊂ GL(r,C).

A normal abelian subgroup of a finite primitive linear group G is contained in the center

Z(G) of G (see [Col08a, Lemma 1]). Let H̃ be a finite primitive subgroup in GL(r,C) and H :=

π(H̃) ⊂ PGL(r,C). Since the center Z(H̃) ⊂ H̃ is a subgroup of Z(GL(r,C)) = {λIr | λ ∈ C×},
we have H ∼= H̃/Z(H̃). Using primitive groups, we introduce two exact sequences associated to
finite linear groups. For this purpose and later use, we fix some notations.

Set-up 3.2. Let G be a finite subgroup of GL(r,C) with r ≥ 1. Then Cr admits a decomposition
Cr = V1 ⊕ · · · ⊕ Vm as a direct sum of irreducible G-stable subspaces for some integer m ≥ 1.
For each 1 ≤ i ≤ m, there is an integer ki ≥ 1 and a decomposition Vi = Wi1 ⊕ · · · ⊕Wiki as a
direct sum of subspaces permuted (transitively) under the action of G such that

StabG(Wij) := {g ∈ G | g(Wij) = Wij}
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acts primitively (but not necessarily faithfully) on Wij (see [Col07, Lemma 1]). Such per-
mutations form transitive subgroups Ki (i = 1, . . . ,m) of Ski , and there is a natural group
homomorphism ψi : G → Ki. Let s := k1 + · · ·+ km. The dimensions rij of the subspaces Wij

are called subdegrees of G. Let

Hij := {[h] | h = g|Wij , g ∈ StabG(Wij)} ⊂ PGL(Wij).

We call the Hij ’s the primitive constituents of G (of degree rij) belonging to Vi.

Definition 3.3. Under Set-up 3.2, we call the intersection

P :=
⋂

1≤i≤m,1≤j≤ki

StabG(Wij)

the principal subgroup of G. Consider the group homomorphism

ψ : G −→ K1 × · · · ×Km, g 7→ (ψ1(g), . . . , ψm(g)).

Note that Ker(ψ) = P . Then we call the following exact sequence the first associated exact
sequence of G

1 −→ P −→ G
ψ−−→ K1 × · · · ×Km. (3.1)

Let H̃ij := {h | h = g|Wij , g ∈ StabG(Wij)}. Then we have surjective group homomorphisms

φij : StabG(Wij) → H̃ij , g 7→ g|Wij and πij : H̃ij → Hij , h 7→ [h]. Thus, H̃ij and Hij are
primitive subgroups of GL(Wij) and PGL(Wij) respectively. Consider the group homomorphism

φ : P −→ H11 × · · · ×H1k1 × · · · ×Hmkm , g 7→ ([g|W11], . . . , [g|W1k1 ], . . . , [g|Wmkm ]).

Let N := Ker(φ). Then we call the following exact sequence the second associated exact sequence
of G

1 −→ N −→ P
φ−−→ H11 × · · · ×H1k1 × · · · ×Hmkm . (3.2)

Clearly, the decomposition of the Vi’s as in Set-up 3.2 guarantees the existence of the first
and second associated exact sequences, which is a key point of our approach. After choosing a
basis for each Wij , we obtain a basis of Cr and we may identify GL(Wij) (resp. PGL(Wij)) with
GL(rij ,C) (resp. PGL(rij ,C)). Then each element A in P can be viewed as a block diagonal
matrix A = diag(A11, . . . , Amkm) with blocks Aij ∈ GL(rij ,C). Note that N is abelian and its
elements are of the form diag(λ11Ir11 , λ12Ir12 , . . . , λmkmIrmkm ), where λij are non-zero complex
numbers.

Definition 3.4. Under Set-up 3.2, let l(G) := (r′1, . . . , r
′
s) be the s-tuple of positive integers

such that r′1 ≥ r′2 ≥ · · · ≥ r′s and there exists a permutation σ ∈ Ss satisfying (r′σ(1), . . . , r
′
σ(s)) =

(r11, r12, . . . , rmkm). We call l(G) the subdegree sequence of G (of length s) and the s-tuple
(H11, H12, . . . ,Hm(km−1), Hmkm) a primitive-constituent sequence of G. The m-tuple of integers
(k1, . . . , km) is called an intrinsic multiplicity sequence of G.

Throughout the paper, for any finite subgroup of GL(r,C), we fix a primitive-constituent
sequence once and for all.

3.2. Abelian subgroups and canonical bounds. It is known that for a smooth homogeneous
polynomial F (x1, . . . , xr) of degree d ≥ 3, every abelian subgroup of Aut(F ) has order at most
dr (see [HS80, Lemma 3.1], [Sza96, Abelian Lemma]). The following more refined bound for
abelian subgroups of the automorphism groups of smooth forms plays a key role in our study.

Theorem 3.5. Let F = F (x1, . . . , xr) be a smooth homogeneous polynomial of degree d ≥ 3,
where r ≥ 2. Fix positive integers r1, . . . , rm with

∑
1≤i≤m ri = r, where 1 ≤ m ≤ r. Let N ⊂

Aut(F ) be an abelian subgroup generated by matrices of the form diag(λ1Ir1 , λ2Ir2 , . . . , λmIrm).
Then |N | ≤ dm.
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Proof. We prove the theorem by adapting the proof of [Sza96, Bézout Lemma]. If r = 2, then
|N | ≤ dm by direct calculation. If r ≥ 3, then X := XF ⊂ Pr−1 is a smooth hypersurface
of degree d. Fix x = (a1 : · · · : ar) ∈ X with ai 6= 0 for all i. Let T ⊂ PGL(r,C) be
the (abelian) subgroup generated by all invertible diagonal matrices. The stabilizer Tx of x is
trivial and we identify T with the orbit Tx of x via the T action. We set U = X ∩ T and
we have Lin(X) ∩ T =

⋂
s∈U Us−1. Let H ⊂ T be the subgroup generated by all matrices

of the form diag(λ′1Ir1 , λ
′
2Ir2 , . . . , λ

′
mIrm), where λ′i ∈ C× (1 ≤ i ≤ m). Let Y ⊂ Pr−2 denote

the closure of the orbit Hx of x. Note that Y ∼= Pm−1. Then Lin(X) ∩ H=Lin(X) ∩ T ∩
H=

⋂
s∈U (Us−1 ∩H). The cardinality of

⋂
s∈U (Us−1 ∩H) is at most that of

⋂
s∈U (Us−1 ∩ Y ).

The finiteness of
⋂
s∈U (Us−1 ∩ Y ) implies that for m − 1 general points s0, s1, ..., sm−2, the

intersection
⋂m−2
i=0 (Us−1

i ∩ Y ) is already finite. The cardinality of this intersection is at most

deg(
⋂m−2
i=0 (Xs−1

i ∩ Y )). By applying Bézout’s Theorem ([Ful98, Example 8.4.6]), we obtain
|Lin(X) ∩H| ≤ dm−1. Then |N | ≤ d · |π(N)| ≤ dm since π(N) ⊆ (Lin(X) ∩H). �

The proof, using the ideas in [CS95] and [Sza96], is suggested by a referee. A longer proof of
Theorem 3.5 without using Bézout’s Theorem can be found in [YYZ24, Theorem 3.4]. Now we
are ready to introduce a bound for the size of groups of automorphisms of smooth forms.

Definition 3.6. Let G be a subgroup of the automorphism group Aut(F ) of a smooth form
F = F (x1, . . . , xr) of degree d ≥ 3, where r ≥ 1. Let (H1, . . . ,Hs) be a primitive-constituent
sequence of G with an intrinsic multiplicity sequence (k1, . . . , km). We define the canonical bound
of G by

B(G,F ) = ds ·
s∏
i=1

|Hi| ·
m∏
j=1

kj !.

To simplify notation, we often use B(G) to denote B(G,F ) if there is no confusion.

Combining Theorem 3.5 with the two associated exact sequences (3.1) and (3.2) of finite linear
groups, we have the following observation.

Lemma 3.7. Let F = F (x1, . . . , xr) be a smooth form of degree d ≥ 3, where r ≥ 1. If G is a
subgroup of Aut(F ), then |G| ≤ B(G,F ).

The following example gives an illustration for computing canonical bounds.

Example 3.8. Following [OY19, Example 2.1 (17)], let F =
((
x4

1 + x4
2

)
+
(
2 + 4ξ2

3

)
x2

1x
2
2

)
x3 +(

−
(
x4

1 + x4
2

)
+
(
2 + 4ξ2

3

)
x2

1x
2
2

)
x4 + x4

3x4 + x4
4x3 + x5

5 and the subgroup G̃ of Aut(F )

G̃ =

〈
ξ3

8 0 0 0 0
0 ξ8 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

 ,


− 1√

2
ξ8

1√
2
ξ8 0 0 0

1√
2
ξ3

8
1√
2
ξ3

8 0 0 0

0 0 ξ3 0 0
0 0 0 ξ2

3 0
0 0 0 0 1

 ,


−1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 ξ5


〉
.

We denote by (e1, e2, e3, e4, e5) the of C5. Then using notations in Set-up 3.2, we have C5 =
V1⊕V2⊕V3, V1 = W11, V2 = W21⊕W22, V3 = W31, where V1 = 〈e1, e2〉, V2 = 〈e3, e4〉, V3 = 〈e5〉,
W21 = 〈e3〉, W22 = 〈e4〉. The linear group G̃ has 4 primitive constituents Hij . Moreover,

S4
∼= H11 ⊂ PGL(2,C), |H21| = |H22| = |H31| = 1, the subdegree sequence l(G̃) = (2, 1, 1, 1),

and G̃ has an intrinsic multiplicity sequence (1, 2, 1). Then we have B(G̃, F ) = 54 · 24 · 2 =

30000 > 480 = |G̃|, as predicted by Lemma 3.7.

We say an invertible matrix A is semi-permutation if A is a diagonal matrix up to permutation
of columns. Note that up to linear change of coordinates, a finite linear group consists of semi-
permutation matrices if its subdegree sequence is (1, . . . , 1). Using Theorem 3.5, we obtain an
optimal bound for the size of semi-permutation automorphism groups of smooth forms.



8 SONG YANG, XUN YU AND ZIGANG ZHU

Theorem 3.9. Let F = F (x1, . . . , xr) be a smooth form of degree d ≥ 3 and r ≥ 2. If Aut(F )
consists of semi-permutations, then |Aut(F )| ≤ dr · r!. The equality occurs if and only if F is
isomorphic to the Fermat form F r−2

d = xd1 + xd2 + · · ·+ xdr .

Proof. We identify Sr with the group of all permutations of the coordinates x1, ..., xr. Let N1 ⊆
Aut(F ) be the (abelian) subgroup consisting of all diagonal matrices in Aut(F ). Since Aut(F )
only has semi-permutations, N1 is normal in Aut(F ) and the quotient group Q1 := Aut(F )/N1 is
isomorphic to a subgroup of Sr. Then by Theorem 3.5, we have |Aut(F )| ≤ dr ·r! and the equality
holds only if |N1| = dr andQ1

∼= Sr. We assume now |Aut(F )| = dr·r!. If xd1 ∈ F , then xdi ∈ F for
all i ∈ {1, 2, ..., r} by Q1

∼= Sr. Thus, for every A = diag(λ1, ..., λr) ∈ N1, we have λdi = 1 for all
i by A(F ) = F . Then N1 = {diag(λ1, ..., λr)|λd1 = · · · = λdr = 1}, which implies that {xdi }1≤i≤r
are the only monomials preserved by N1 and F is a Fermat form, up to replacing xi by their non-
zero multiples. If xd1 /∈ F , then by [OY19, Proposition 3.3] and Q1

∼= Sr, we have xd−1
i xj ∈ F for

all i, j with i 6= j. Then N1 ⊆ N2 := {diag(λ1, ..., λr)|λd−1
i λj = 1 for all i, j with i 6= j}, which

is a contradiction since dr = |N1| ≤ |N2| < dr by direct computation. �

4. Fermat-test ratios and proof of most cases

A famous theorem of Jordan [Jor78] states that, for every integer r ≥ 1, there exists a constant
such that any finite subgroup of GL(r,C) has an abelian normal subgroup of index at most this
constant. Consequently, for each integer r ≥ 1, there are only finitely many finite primitive
groups in PGL(r,C) (up to conjugation), and Collins [Col08a, Theorem A] determined the
maximum order JC(r) among such groups. Note that JC(r) = J(r) for r ≥ 71, but JC(r) and
J(r) are often different for r < 71 (see [Col07, Theorems A, B and D]). In §4.1, based on canonical
bounds and the values of JC(r), we introduce the notion of Fermat-test ratio (Definition 4.5)
and we show that Fermat-test ratios have many nice properties which will be frequently used in
our study. In §4.2, using Fermat-test ratios, we quickly prove that our main result Theorem 1.1
holds if n ≥ 26 or d ≥ 18 (Theorem 4.14).

4.1. Fermat-test ratios. As a generalization of subdegree sequences of linear groups, the fol-
lowing concepts will be used in the definition of Fermat-test ratios.

Definition 4.1. Let s be a positive integer. We call an s-tuple l = (r′1, . . . , r
′
s) of positive integers

r′i a subdegree sequence of length s if r′1 ≥ r′2 ≥ · · · ≥ r′s. The integers r′i are called subdegrees of
l. The total degree v(l) of l is defined by v(l) = r′1 + · · ·+ r′s. Suppose l has exactly m distinct

subdegrees r1 > r2 > · · · > rm, where m ≥ 1. We call rk11 r
k2
2 · · · rkmm the exponential type of l,

where ki are the multiplicities of ri in l. We call (k1, . . . , km) the multiplicity sequence of l. We
often denote l by its exponential type if there is no confusion. Clearly, we have two equations:
v(l) =

∑m
i=1 riki, s =

∑m
i=1 ki. For a subdegree sequence l = (r′1, . . . , r

′
s), if H = (H1, . . . ,Hs)

is an s-tuple of finite primitive subgroups Hi ⊂ PGL(r′i,C), we call l(H) := l the subdegree
sequence of H.

In practice, we often use H to denote a primitive-constituent sequence.

Example 4.2. Let G̃ be as in Example 3.8. Then the subdegree sequence l(G̃) = (2, 1, 1, 1) has

the exponential type 2113, and the multiplicity sequence of l(G̃) is (1, 3) which is different from

the intrinsic multiplicity sequence (1, 2, 1) of G̃. The total degree v(l(G̃)) is 5.

Remark 4.3. We allow r0 to appear in the exponential type of l even if r is not a subdegree
of l. Under such convention, the equations in Definition 4.1 still hold. For example, by l being
the subdegree sequence of the exponential type 50322013 we mean l = (3, 3, 1, 1, 1).

For later use, we define sum/difference between subdegree sequences.
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Definition 4.4. Let l1 and l2 be two subdegree sequences of exponential types ra11 r
a2
2 · · · ramm

and rb11 r
b2
2 · · · rbmm , where ai, bi ≥ 0, m ≥ 1, r1 > · · · > rm ≥ 1. We denote by l1 +l2 the subdegree

sequence of the exponential type ra1+b1
1 ra2+b2

2 · · · ram+bm
m . If ai ≥ bi for all i, we denote by l1− l2

the subdegree sequence of the exponential type ra1−b11 ra2−b22 · · · ram−bmm .

We recall the values of the function JC(r) ([Col08a, Theorem A]). For r = 10, 11 or r ≥ 13,
JC(r) = (r + 1)!; for the remaining cases, JC(r) is as follows:

r 1 2 3 4 5 6 7 8 9 12

JC(r) 1 60 360 25920 25920 6531840 1451520 348364800 4199040 448345497600

Now we give the definition of Fermat-test ratios which is crucial for our classification of smooth
hypersurfaces with large automorphism groups.

Definition 4.5. Let l = (r′1, . . . , r
′
s) be a subdegree sequence of length s ≥ 1 with the exponential

type rk11 r
k2
2 · · · rkmm and total degree r ≥ 1. For an integer d ≥ 3, we define the Fermat-test ratio

of the pair (l, d) by

R(l, d) =

ds ·
s∏
i=1

JC(r′i) ·
m∏
j=1

kj !

dr · r!
.

Let H = (H1, . . . ,Hs) be an s-tuple of finite primitive subgroups Hi ⊂ PGL(r′i,C) with the
subdegree sequence l(H) = l. We define the Fermat-test ratio of the pair (H, d) by

R(H, d) =

ds ·
s∏
i=1
|Hi| ·

m∏
j=1

kj !

dr · r!
.

Let F = F (x1, . . . , xr) be a smooth form of degree d ≥ 3, where r ≥ 1. We call R(l(Aut(F )), d)
the Fermat-test ratio of F , denoted by R(F ).

The following simple fact is useful for our study.

Lemma 4.6. Let k1, . . . , km be positive integers with m ≥ 1. Then
∏m
j=1 kj ! ≤ (k1 + · · ·+ km)!.

The equality occurs if and only if m = 1.

By Lemmas 3.7, 4.6 and definition of Fermat-test ratios, we have the following observation.

Lemma 4.7. Let F = F (x1, . . . , xr) be a smooth form of degree d ≥ 3 and r ≥ 1. Let H :=
(H1, . . . ,Hs) be a primitive-constituent sequence of Aut(F ) with r1 ≥ · · · ≥ rs, where ri is the
degree of Hi. Then we have

R(F ) ≥ R(F ) · |Hi|
JC(ri)

≥ R(H, d) ≥ B(Aut(F ))

dr · r!
≥ |Aut(F )|

dr · r!
.

In particular, if |Aut(F )| ≥ dr · r!, then R(F ) ≥ R(H, d) ≥ 1.

By Definition 4.5, we find some basic properties of Fermat-test ratios.

Lemma 4.8. Let l be a subdegree sequence of length s ≥ 1. Let d, d′ be integers at least 3. Then
R(l, d)/R(l, d′) = (d′/d)v(l)−s. In particular, if d > d′, then R(l, d) ≤ R(l, d′).

The properties of Fermat-test ratios in Lemmas 4.9, 4.10 and 4.12 make computing/bounding
values of Fermat-test ratios quite feasible.

Lemma 4.9. Let l1, l2 be subdegree sequences and let d ≥ 3 be a positive integer. Then we have

(1)
(v(l1+l2)

v(l1)

)
·R(l1+l2, d) ≥ R(l1, d)·R(l2, d). The equality occurs if and only if the subdegrees

of l1 and l2 are disjoint;
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(2) Suppose the subdegrees of l1 and l2 are disjoint. Let l′2 be a subdegree sequence. If
v(l2) ≥ v(l′2) and R(l2, d) ≤ R(l′2, d), then R(l1 + l2, d) ≤ R(l1 + l′2, d); and

(3) Let si be the length of li (i = 1, 2). Suppose s1 ≥ s2 and v(l1) ≤ v(l2). If R(l1, d) >
R(l2, d), then R(l1, d+ 1) > R(l2, d+ 1).

Proof. We only give the proof of case (1) and the other cases are similar. Suppose the exponential

type of l := l1+l2 is rk11 r
k2
2 · · · rkmm . Then we may write l1 = r

k′1
1 r

k′2
2 · · · r

k′m
m and l2 = r

k′′1
1 r

k′′2
2 · · · r

k′′m
m ,

where k′i ≥ 0, k′′i ≥ 0 and ki = k′i + k′′i > 0. From Lemma 4.6, we conclude that ki! ≥ k′i! · k′′i !
and the equality holds if and only if k′i · k′′i = 0. By Definition 4.5, we have

R(l, d) = R(l1, d)R(l2, d) · v(l1)! · v(l2)!

v(l1 + l2)!
·
m∏
i=1

ki!

k′i! · k′′i !
≥ R(l1, d)R(l2, d) · 1(v(l1+l2)

v(l1)

) ,
and the equality holds if and only if k′i · k′′i = 0 for all i (i.e., the subdegrees of l1 and l2 are
disjoint). �

Lemma 4.10. Let l be a subdegree sequence containing r0 > 1 with multiplicity k0 ≥ 1. Then,
for d ≥ 3, R(l, d) > R(l + (r0), d) holds if one of the following conditions is true:

(1) r0 = 2 and k0 ≥ 5;
(2) r0 = 4 and k0 ≥ 2;
(3) r0 = 3 or r0 ≥ 5.

In particular, if l is of exponential type rk00 with r0 /∈ {2, 3, 4, 5, 6, 8}, then R(l, d) < 1.

Proof. Let l2 be the subdegree sequence of the exponential type rk00 . We set l1 := l− l2. By (1)
in Lemma 4.9 we have( v(l)+r0

(k0+1)r0

)
R(l + (r0), d) = R(l1, d)R(l2 + (r0), d),

( v(l)
k0r0

)
R(l, d) = R(l1, d)R(l2, d).

Then the ratio

λ :=
R(l + (r0), d)

R(l, d)
=

( v(l)
k0r0

)( v(l)+r0
(k0+1)r0

) · R(l2 + (r0), d)

R(l2, d)
=

v(l)!

(v(l) + r0)!
· JC(r0)(k0 + 1)

dr0−1
. (4.1)

Since λ decreases as v(l1) increases or d increases, we may take v(l1) = 0 and d = 3. Then

λ ≤ (r0k0)!

(r0(k0 + 1))!
· (k0 + 1)JC(r0)

3r0−1
=

(r0k0)!

(r0(k0 + 1)− 1)!
· JC(r0)

r03r0−1
. (4.2)

We notice that the value in the right hand side of the inequality decreases as k0 increases. By
(4.2), if r0 = 2, k0 = 5, we have λ ≤ 10!·60

11!·2·3 = 10
11 < 1. Thus (1) follows. Similarly, one may check

if (r0, k0) = (3, 1), (4, 2), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (12, 1), we have λ < 1.

For r0 = 10, 11 or r0 ≥ 13, we have λ < (r0+1)!

3r0−1r
r0
0

< r0+1
3r0−1 ·

r
r0
0

r
r0
0

< 1. By Lemma 4.8 and

Definition 4.5, we find that R((r0), d) ≤ R((r0), 3) < 1 for r0 = 7, or r0 ≥ 9. Therefore,

R(rk00 , d) < 1 if r0 = 7 or r0 ≥ 9. �

Remark 4.11. For the proof of Lemma 4.12, we record the values of some Fermat-test ratios.
R(213, 3) = 16000000000/12649365729, R(31, 3) = 20/3, R(33, 3) = 200/189, R(41, 3) = 40,
R(42, 3) = 320/7, R(43, 3) = 2560/231, R(51, 3) = 8/3, R(61, 3) = 112/3, R(62, 3) = 896/297,
R(81, 3) = 320/81.

Lemma 4.12. Let d ≥ 3 and m ≥ 1 be integers. Let l1 be a subdegree sequence of exponential
type rk11 · · · rkmm with ri > 1, ki > 0 and R(rkii , d) ≥ 1 for all 1 ≤ i ≤ m. Then we have
R(l1, d) ≤ R(l′1, d), where

l′1 is of exponential type


41 if v(l1) = 4 and d = 3

2a with a = v(l1)/2 if v(l1) is even and (v(l1), d) 6= (4, 3)

2a with a = (v(l1)− 1)/2 if v(l1) is odd.
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In particular, if v(l1) ≥ 28, we have R(l1, d) < 1.

Proof. By Lemma 4.10, we have ri ∈ {2, 3, 4, 5, 6, 8} for all i. Then we may assume l1 is of
exponential type 8a86a65a54a43a32a2 with ai ≥ 0. Furthermore, as R(214, 3), R(34, 3), R(44, 3),
R(52, 3), R(63, 3), and R(82, 3) are all less than 1, applying Lemmas 4.8 and 4.10, we have a8 ≤ 1,
a6 ≤ 2, a5 ≤ 1, a4 ≤ 3, a3 ≤ 3, a2 ≤ 13. By calculations, we observe R(5131, 3) < R(24, 3),
R(5133, 3) < R(27, 3), R(31, 3) < R(21, 3), R(32, 3) < R(23, 3), R(33, 3) < R(24, 3), R(42, 3) <
R(24, 3), R(43, 3) < R(26, 3), R(51, 3) < R(22, 3), R(61, 3) < R(23, 3), R(62, 3) < R(26, 3) and
R(81, 3) < R(24, 3).

If a4 6= 1, then by Lemma 4.9 (2)-(3) and replacing subdegrees 3, 4, 5, 6, 8 by 2 with suitable

multiplicities (e.g. replacing 5131 by 24), we have R(l1, d) ≤ R(2a
′
2 , d) with a′2 = v(l1)

2

(
resp. a′2 =

v(l1)−1
2

)
when v(l1) is even (resp. odd).

If a4 = 1, then similar to the previous case, we have R(l1, d) ≤ R(412b2 , d) with b2 = v(l1)−4
2(

resp. b2 = v(l1)−5
2

)
when v(l1) is even (resp. odd). Since the ratio R(412b2 , d)/R(2b2+2, d)

= 25920
3600d(b2+1)(b2+2) , we find that R(412b2 , d) ≤ R(2b2+2, d) unless (b2, d) = (0, 3). Thus, we have

R(l1, d) ≤ R(2b2+2, d) unless (v(l1), d) = (4, 3).
Moreover, since R(214, d) < 1 for d = 3, by Lemmas 4.8 and 4.10, we have R(l1, d) < 1 for all

l1 satisfying v(l1) ≥ 28. �

Remark 4.13. For later use, here we present (in decreasing order) the values R(l′1, 3) for all
possible l′1 with v(l′1) ≤ 26 in Lemma 4.12: R(25, 3) = 20000/189, R(26, 3) = 200000/2079,
R(24, 3) = 2000/21, R(27, 3) = 2000000/27027, R(23, 3) = 200/3, R(28, 3) = 4000000/81081,
R(41, 3) = 40, R(22, 3) = 100/3, R(29, 3) = 40000000/1378377, R(210, 3) = 400000000/26189163,
R(21, 3) = 10, R(211, 3) = 4000000000/549972423, R(212, 3) = 40000000000/12649365729,
R(213, 3) = 16000000000/12649365729.

4.2. Proof of most cases. Next we use Fermat-test ratios to prove that our main result
Theorem 1.1 holds for all possible pairs (n, d) except only finitely many cases.

Theorem 4.14. Let F = F (x1, . . . , xn+2) be a smooth form of degree d, where n ≥ 1, d ≥ 3.
Suppose that XF is not isomorphic to the Fermat hypersurface in Pn+1 of degree d. If n ≥ 26
or d ≥ 18, then |Aut(XF )| < dn+1 · (n+ 2)!.

Proof. Suppose the subdegree sequence l := l(Aut(F )) of Aut(F ) is of exponential type rk11 · · · rkmm
with m ≥ 1 and ki > 0 for all i. By Theorem 3.9, we may assume r1 > 1. Then by Lemma 4.7,
it suffices to show R(l, d) < 1. Let A := {i| ri > 1, R(rkii , d) ≥ 1, 1 ≤ i ≤ m}. We define l1 to be

the sum of all the subdegree sequences of exponential types r
kj
j (j ∈ A). Let l2 := l − l1.

Case n ≥ 26. If l = l1 or l = l2, then by Lemmas 4.12 and 4.9 (1), R(l, d) < 1. Then we may
assume that l 6= l1, l2 and v(l1) < 28. Since n + 2 = v(l1 + l2) ≥ 28, by Lemmas 4.9 (1), 4.12
and Remark 4.13, we have

R(l1 + l2, d) =
R(l1, d) ·R(l2, d)(v(l1+l2)

v(l1)

) ≤ R(l′1, d)(v(l1+l2)
v(l1)

) ≤ R(l′1, d)(
28
v(l1)

) ≤ R(l′1, 3)(
28
v(l1)

) < 1.

Case d ≥ 18. By Lemma 4.8, it suffices to show R(l, 18) < 1. For positive integers r0 > 1

and k0 > 0, from Lemma 4.10, we conclude that R(rk00 , 18) ≥ 1 if and only if (r0, k0) = (2, 1).
Thus, by Lemma 4.12, either l1 = l′1 of exponential type 21 or l = l2, which implies R(l, 18) < 1

by Lemma 4.9 (1) again (in fact, if l = l′ = 21, then R(l, 18) = R(21,18)·R(l2,18)(
n+2

2

) ≤ R(21,18)(
n+2

2

) < 1; if

l = l2, then R(l, 18) ≤
∏

1≤i≤mR(rkii , 18) < 1 since R(rkii , 18) < 1 for all ri > 1). This completes
the proof of the theorem. �

By similar arguments in the proof of Theorem 4.14 and running some local computations, we
obtain additional properties of Fermat-test ratios, which will be used in the subsequent sections.
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Lemma 4.15. Let a ≥ 0 be the multiplicity of 1 in a subdegree sequence l and d ≥ 3. Then

(1) R(l, d) < 106;
(2) If l has at least two distinct subdegrees, then R(l, d) < 60;
(3) If a ≥ 2 (resp. a ≥ 1), then R(l, d) < 3 (resp. R(l, d) < 11).

To get the bounds in (1), (2), (3), it suffices to consider the case d = 3 by Lemma 4.8. Note
that 106 is a uniform bound for Fermat-test ratios.

Remark 4.16. Let d ≥ 3, a ≥ 2. Let l be a subdegree sequence containing 1 and a with R :=
R(l, d) ≥ 1. Then a ∈ {2, 3, 4, 6}. Moreover, if a = 3 (resp. 6), then (l, d, R) = (312111, 3, 10/9),
(3111, 3, 5/3) (resp. (6111, 4, 81/64), (6112, 3, 4/3), (612111, 3, 40/27), (6111, 3, 16/3)).

5. Refined bounds via special monomials

In this section, based on canonical bounds, we derive several refined upper bounds for the
size of automorphism groups of smooth forms containing monomials involving different primitive
constituents (Lemmas 5.4, 5.5, 5.6, 5.7). The motivation for such bounds is to control the size
of the automorphism group Aut(F ) of a smooth form F when Aut(F ) is not primitive and they
will be frequently used in Section 7.

Smoothness of a polynomial F sometimes implies existence of monomials of special shape.

Lemma 5.1. Let F = F (x1, . . . , xk+a) be a smooth form of degree d ≥ 3 with k ≥ 2 and a > 0.
We write F = F1 +F2, where F1 ∈ C[x1, . . . , xk] and F2 ∈ (xk+1, . . . , xk+a) ·C[x1, . . . , xk+a] are
forms of degree d. Suppose F1 is not smooth. Then F2 /∈ (xk+1, . . . , xk+a)

2 · C[x1, . . . , xk+a]. In

particular, there exist integers d1, . . . , dk ≥ 0 and a monomial m ∈ F with m = xd11 · · ·x
dk
k · xk+j

for some 1 ≤ j ≤ a.

Proof. Since F1 is not smooth, we may assume all partial derivatives of F1 vanishes at (1, 0, . . . , 0)
∈ Ck. Then by direct computation, if F2 ∈ (xk+1, . . . , xk+a)

2 ·C[x1, . . . , xk+a], all partial deriva-
tives of F vanishes at (1, 0, . . . , 0) ∈ Ck+a, a contradiction. Therefore, F2 /∈ (xk+1, . . . , xk+a)

2 ·
C[x1, . . . , xk+a], which implies the last statement in the lemma. �

The following lemma will be used in the proof of Lemmas 5.4 and 5.5.

Lemma 5.2. Let F = F (x1, . . . , xn+2) be a form of degree d ≥ 3 with n ≥ 1 and G be a finite
subgroup of Aut(F ). Suppose the underlying basis of Cn+2 is compatible with a decomposition
Cn+2 = V1 ⊕ V2, where Vi are G-stable subspaces of dimension ni ≥ 1 (i = 1, 2). If the G-space

V2 is irreducible and the Sd−1(V ∗1 )⊗ S1(V ∗2 )-component F (d−1,1) of F is not zero, then we have

F (d−1,1) = F ′1xn1+1 + · · ·+ F ′n2
xn1+n2 ,

where F ′i = F ′i (x1, . . . , xn1) are n2 C-linearly independent forms of degree d− 1.

Proof. Recall that F (d−1,1) ∈ Sd−1(V ∗1 )⊗S1(V ∗2 ). Let W ′2 be the minimal subvector space of V ∗2
such that F (d−1,1) ∈ Sd−1(V ∗1 )⊗S1(W ′2). Since F (d−1,1) 6= 0, we have W ′2 6= 0. Since G preserves

F and Vi (i = 1, 2) are G-stable, we have G preserves F (d−1,1), which implies W ′2 is G-stable.
From the irreducibility of V2, we get that V ∗2 is also irreducible under the (right) action by G.

Then W ′2 = V ∗2 , which implies a decomposition of F (d−1,1) as in the lemma. �

For our purposes and conventions, we recall some notations in Set-up 3.2.

Set-up 5.3. Let F = F (x1, . . . , xr) be a smooth form of degree d ≥ 3 with r ≥ 3. Let G be

a subgroup of Aut(F ). Let Vi,Wij ,Ki, ki, rij , Hij ,m, s, P, H̃ij , φij , πij , φ,N be as in Set-up 3.2

and Definition 3.3. Let ˜̄Hij := φij(P ) and H̄ij := πij(
˜̄Hij). We assume that the underlying basis

of Cr is compatible with the decomposition Cr = ⊕i,jWij . The decomposition

Sd(Cr∗) =
⊕

∑
i,j dij=d

Sd11(W ∗11)⊗ Sd12(W ∗12)⊗ · · · ⊗ Sdmkm (W ∗mkm)
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naturally induces a decomposition

F =
∑

∑
i,j dij=d

F (d11,d12,...,dmkm ) ∈ Sd(Cr∗).

We use Fij to denote the component (possibly being zero) in Sd(W ∗ij).

Note that ˜̄Hij and H̄ij are normal subgroups of H̃ij and Hij respectively, since φij and πij
are surjective and P is normal in G. Clearly primitive constituents Hij of G preserve Fij . In the
following lemmas and their proofs, we adopt the notations in Set-up 5.3. From the associated
exact sequences (3.1) and (3.2), we have

|G| ≤ B(G,F )∏
i[Ski : Ki]

· |N |
ds
· |P/N |∏

i,j |Hij |
. (5.1)

Lemma 5.4. Suppose m ≥ 2 and let V ′1 := ⊕i 6=2Vi. If there is a monomial m ∈ Sd−1(V ′∗1 ) ⊗
S1(V ∗2 ) in F , then

|G| ≤ B(G,F )

|H21|k2
≤ R(l(G), d) · dr · r!

JC(r21)k2
.

Proof. For all 1 ≤ i ≤ m and for all 1 ≤ j ≤ ki, we have the following commutative diagram:

P ˜̄Hij H̄ij

StabG(Wij) H̃ij Hij .

φij |P πij | ˜̄Hij

φij πij

Note that the three injections are inclusions of normal subgroups. Consider the exact sequence

1 −→ Ñ −→ P −→ H11 × · · · ×H1k1 ×H31 × · · · ×H3k1 × · · · ×Hm1 × · · · ×Hmkm ,

where the last morphism is given by g 7→ ([g|W11], . . . , [g|W1k1 ], [g|W31], . . . , [g|Wmkm ]) and Ñ is

defined as its kernel. In order to prove the lemma, it suffices to show Ñ ⊂ N . Recall that the
underlying basis (e1, . . . , er) of Cr is compatible with the decomposition Cr = ⊕i,jWij . For any

A = diag(λ11Ir11 , . . . , λ1kIr1k1 , A21, A22, . . . , A2k2 , λ31Ir31 , . . . , λmkmIrmkm ) ∈ Ñ ,

B = diag(B11, . . . , B1k1 , . . . , Bm1, . . . , Bmkm) ∈ P,
we have the commutator C = [A,B] is the identity matrix, by C(F ) = F , the shape of A,
B and Lemma 5.2. In fact, from the decomposition Cr = V ′1 ⊕ V2, we have a decomposition

F =
∑d

i=0 Fi, where Fi ∈ Sd−i(V ′∗1 ) ⊗ Si(V ∗2 ). By the existence of the monomial m, we have

F1 6= 0. Then by Lemma 5.2, we have F1 =
∑

1≤i≤k2,1≤j≤r2i F
′
ijxij , where F ′ij ∈ Sd−1(V ′∗1 ) are

k2 · r21 C-linearly independent forms of degree d − 1 and {xij} forms a basis of V ∗2 . Since the
commutator C = diag(Ir11 , . . . , Ir1k1 , [A21, B21], [A22, B22], . . . , [A2k2 , B2k2 ], Ir31 , . . . , Irmkm ) and

C(F ) = F , we infer that C(F1) = F1 and [A2i, B2i] = Ir2i for all i.

Therefore, we have φ2j(A) ∈ Z( ˜̄H2j) for any 1 ≤ j ≤ k2. Since ˜̄H2j C H̃2j , we have

Z( ˜̄H2j) C H̃2j . Then by primitivity of H̃2j , we have

Z( ˜̄H2j) ⊂ Z(H̃2j) ⊂ 〈{λIr2j |λ ∈ C×}〉.

Thus A2j ∈ 〈{λIr2j |λ ∈ C×}〉 for any 1 ≤ j ≤ k2. Therefore, A ∈ N and N = Ñ . Then

|P/N | = |P/Ñ | ≤
∏
i,j |Hij |∏

1≤j≤k2
|H2j | and the lemma follows from (5.1). �

By similar arguments in Lemma 5.4, we obtain the following lemma using (5.1).
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Lemma 5.5. Suppose 1 ≤ a ≤ m and ka ≥ 2. If there is a monomial m ∈ Sd−1(W ∗a1)⊗S1(W ∗a2)
in F , then one of the following statements holds:

(1) ka = 2 and |G| ≤ B(G,F )
|Ha1| ≤

R(l(G),d)·dr·r!
JC(ra1) ;

(2) ka ≥ 3 and |G| ≤ B(G,F )
2·|Ha1| ≤

R(l(G),d)·dr·r!
2·JC(ra1) .

Note that the spaces ⊕(i,j)6=(a,2)Wij and Wa2 are StabG(Wa2)-stable subspaces of Cr. Since
Wa2 is an irreducible StabG(Wa2)-stable subspace, we can apply Lemma 5.2 as in the proof
of Lemma 5.4 to prove that N is equal to the kernel of the morphism P −→

∏
(i,j) 6=(a,2)Hij ,

g 7→ ([g|Wij ]). From this, we have |P/N | ≤
∏
i,j |Hij |
|Ha2| in Lemma 5.5 (1) and (2). For ka ≥ 3,

if [Ska : Ka] ≥ 2, then (2) follows; if [Ska : Ka] = 1, then |N |
ds ≤

1
dka−1 (similar to the proof of

Lemma 5.7 (2)) and we are done by (5.1).

Lemma 5.6. Let 1 ≤ i1 ≤ m, 1 ≤ j1 ≤ ki1, 0 < d1 < d. Suppose there is a monomial

m ∈ Sd1(W ∗i1j1)⊗Sd−d1(⊕(i2,j2) 6=(i1,j1)W
∗
i2j2

) in F . Then H̄i1j1 contains a normal subgroup ¯̄Hi1j1

preserving a non-zero form of degree d1 and

|G| ≤ B(G,F )

[Hi1j1 : ¯̄Hi1j1 ]
≤ R(l(G), d) · | ¯̄Hi1j1 | · dr · r!

JC(ri1j1)
.

Proof. Without loss of generality, we assume (i1, j1) = (1, 1). Consider the exact sequence

1 −→ Ñ11 −→ P −→ H12 × · · · ×H1k1 ×H21 × · · · ×H2k2 × · · · ×Hm1 × · · · ×Hmkm , (5.2)

where the last morphism is given by g 7→ ([g|W12], . . . , [g|W1k1 ], [g|W21], . . . , [g|Wmkm ]) and Ñ11

is defined as its kernel. Let ¯̄H11 := π11 ◦ φ11(Ñ11). Then ¯̄H11 C H̄11 and we have the exact
sequence

1 −→ N −→ Ñ11 −→ ¯̄H11 −→ 1. (5.3)

From the exact sequences (3.1), (3.2), (5.2), (5.3) and by Theorem 3.5, we have

|G| ≤ |P |
∏
i

ki! ≤
|Ñ11|

∏
i ki!

∏
i,j |Hij |

|H11|
≤
|N || ¯̄H11|

∏
i ki!

∏
i,j |Hij |

|H11|
≤
ds
∏
i ki!

∏
i,j |Hij |

[H11 : ¯̄H11]
,

which implies the inequalities in the lemma by definitions of canonical bounds and Fermat-test
ratios. From the existence of m, we infer that ¯̄H11 preserves a non-zero form of degree d1. �

Lemma 5.7. Let 1 ≤ i1 ≤ m, 1 ≤ j1 ≤ ki1 and ri1j1 ≥ 2. We define

A := {(i2, j2)| (i2, j2) 6= (i1, j1), ∃ a monomial m ∈ Sd−1(W ∗i1j1)⊗ S1(W ∗i2j2) in F}.
Let c be the cardinality of A. If the form Fi1j1 is either zero or not smooth, then c 6= 0 and the
following statements hold:

(1) |G| ≤ B(G,F )
|Hi2j2 |

≤ R(l(G),d)·dr·r!
JC(ri2j2 ) for all (i2, j2) ∈ A;

(2) |G| ≤ B(G,F )
dc−1 ≤ R(l(G),d)·dr·r!

dc−1 ;
(3) If c = 1, ri2j2 = 1 for (i2, j2) ∈ A and G contains Ir,d, then Fi1j1 is not zero and Hi1j1

admits an Fi1j1-lifting preserving some non-zero form of degree d− 1.

Proof. We may assume (i1, j1) = (1, 1). We choose a basis of Cr compatible with the decompo-
sition Cr = ⊕i,jWij . By the smoothness of F and Lemma 5.1, we have c 6= 0. The statement
(1) is a direct consequence of Lemmas 5.4 and 5.5.

For (2), let A = diag(λ11Ir11 , . . . , λ1k1Ir1k1 , λ21Ir21 , . . . , λm1Irm1 , . . . , λmkmIrmkm ) ∈ N . By

A(F ) = F , we get λd−1
11 λi2j2 = · · · = λd−1

11 λic+1jc+1 = 1, where A = {(i2, j2), . . . , (ic+1, jc+1)}.
Thus, λi2j2 = · · · = λic+1jc+1 , which implies |N | ≤ ds−(c−1) by Theorem 3.5. From this, we
obtain the inequalities in (2) using the associated exact sequences (3.1) and (3.2).
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For (3), we define W ′ := ⊕(i′,j′)6=(1,1),(i2,j2)Wi′j′ , where A = {(i2, j2)}. Let a := ri2j2 = 1
and b := dim(W ′). Since r = r11 + a + b ≥ (a + 1) + a + b, we have 2a + b ≤ r − 1. If the
Sd(W ∗11)-component F11 of F is zero, then we have

F ∈
∑

1≤d1≤d
Sd1(W ∗i2j2)⊗ Sd−d1(W ∗11 ⊕W ′∗) +

∑
2≤d2≤d

Sd2(W ′∗)⊗ Sd−d2(W ∗11 ⊕W ∗i2j2),

which contradicts the smoothness of F by [OY19, Lemma 3.2]. Therefore, F11 6= 0. Since
the Sd−1(W ∗11) ⊗ S1(W ∗i2j2)-component F11i2j2 of F is not zero, we write F11i2j2 = F ′11 · L′i2j2 ,

where F ′11 ∈ Sd−1(W ∗11) and L′i2j2 ∈ S1(W ∗i2j2). By A = {(i2, j2)}, we have W11 ⊕ Wi2j2

is StabG(W11)-stable. Let M := {(g1, g2)| g1 = g|W11, g2 = g|Wi2j2 , g ∈ StabG(W11)}. If

A = (λ1Ir11 , λ2) ∈ M , then by A(F ) = F , we have λd1 = λd−1
1 λ2 = 1 and λ1 = λ2. Consider

the surjective homomorphisms ϕ1 : M −→ H11, (g1, g2) 7→ [g1] and ϕ2 : M −→ H̃i2j2
∼= Cd,

(g1, g2) 7→ g2. For any (g1, 1) ∈ Ker(ϕ2), we have g1 preserves both F11 and F11i2j2 , which
implies that ϕ1|Ker(ϕ2) : Ker(ϕ2)→ H11 is injective. Clearly |H11| = |M |/d = |Ker(ϕ2)|. Thus
{g1| (g1, 1) ∈ Ker(ϕ2)} ∼= H11 is a desired F11-lifting of H11. This completes the proof of the
lemma. �

6. Primitive groups of automorphisms

Finite linear groups in small dimensions have been completely classified (see e.g. [Fei70] for a
survey). In particular, all finite primitive subgroups in PGL(r,C) for small r are known. Based
on this, we derive the following theorem which is the main result of this section.

Theorem 6.1. Fix integers n ≥ 1, d ≥ 3. Let F = F (x1, . . . , xn+2) be a smooth form of degree
d ≥ 3 with primitive Aut(F ) and |Aut(F )| ≥ dn+2 · (n+ 2)!. Then up to isomorphism, F is as
follows:

(n, d) Lin(XF ) |Lin(XF )| F

(1, 4) PSL(2, 7) 168 x3
1x2 + x3

2x3 + x3
3x1

(1, 6) C2
3oSL(2, 3) 216 x6

1 + x6
2 + x6

3 − 10(x3
1x

3
2 + x3

2x
3
3 + x3

3x
3
1)

(1, 6) A6 360 10x3
1x

3
2 + 9(x5

1 + x5
2)x3 − 45x2

1x
2
2x

2
3 − 135x1x2x

4
3 + 27x6

3

(2, 4) C4
2 .S5 1920 x4

1 + x4
2 + x4

3 + x4
4 + 12x1x2x3x4

(4, 6) PSU(4, 3).C2 6531840
∑

1≤i≤6

x6
i +

∑
1≤i6=j≤6

15x4
ix

2
j−

∑
1≤i<j<k≤6

30x2
ix

2
jx

2
k+240

√
−3x1x2x3x4x5x6

Besides the values of JC(r), our proof of Theorem 6.1 relies on explicit list of the finite
primitive subgroups in PGL(r,C) for r ∈ {2, 3, 4, 5, 6, 8}, see Blichfeldt [Bli17] for r ≤ 4 (see
also [CS19, Appendix A] for diagrams indicating inclusions between groups in the case r = 4);
Brauer [Bra67, §9] for r = 5; Lindsey [Lin71, §3] for r = 6; Feit [Fei76, §2] for r = 8. For ease
of reference, we present a list of finite primitive groups H in PGL(r,C) with |H| ≥ 3r−1r! and
r ∈ {2, 3, 4, 5, 6} (see Table 1).

r |H| H r |H| H r |H| H r |H| H

2 12 A4 3 360 A6 4 1920 C4
2 .S5 4 25920 PSP(4, 3)

2 24 S4 4 720 A4 ×A5 4 1920 C4
2 .S5 5 25920 PSP(4, 3)

2 60 A5 4 720 S6 4 2520 A7 6 604800 HaJ

3 60 A5 4 960 C4
2 oA5 4 3600 A2

5 6 3265920 PSU(4, 3)

3 72 C2
3 oQ8 4 960 C4

2 oA5 4 5760 C4
2 oA6 6 6531840 PSU(4, 3).C2

3 168 PSL(2, 7) 4 1152 S2
4 o C2 4 7200 A2

5 o C2

3 216 C2
3 o SL(2, 3) 4 1440 S4 ×A5 4 11520 C4

2 .S6

Table 1. Large finite primitive groups H ⊂ PGL(r,C)

Before presenting the proof of the theorem, we first give two lemmas.
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Lemma 6.2. Let H̃ ⊂ GL(r,C) be a finite primitive subgroup and H := π(H̃). If H̃ ∼= H, then
the following statements hold:

(1) H admits a faithful linear representation of degree r;
(2) H has no non-trivial solvable normal subgroups;
(3) For each prime p, H has no subgroups isomorphic to Crp .

Proof. (1) is clear. By H̃ ∼= π(H̃), we have |Z(H̃)| = 1. For (2), we suppose N is a non-trivial

solvable normal subgroup of H̃. Since N is solvable, N has a non-trivial characteristic abelian

subgroup, say N1. Then N1 is a normal abelian subgroup of H̃, which implies N1 ⊂ Z(H̃) by

primitivity of H̃, a contradiction. Consequently, the statement (2) is true. For (3), we suppose

that H̃ has a subgroup, say H1, isomorphic to Crp for some prime p. Since H1 ⊂ GL(r,C), we

infer that A := diag(ξp, . . . , ξp) ∈ H1. Thus, A ∈ Z(H̃), a contradiction. Hence (3) is true. �

By a theorem of Schur, for a finite group G, there is a finite group SC(G) such that SC(G) is
a central extension of the Schur multiplier H2(G,C×) by G and every projective representation
of G can be lifted to SC(G) (see [Rot95, Chapter 7]). We call SC(G) a Schur cover group of G.
If G is perfect (i.e., G is equal to its commutator subgroup), then SC(G) is perfect and unique
up to isomorphism (see [Rot95, Corollary 11.12]).

Lemma 6.3. Let H ⊂ PGL(r,C) be a finite perfect subgroup preserving a form F = F (x1, . . . , xr)
of degree d ≥ 3. Then the Schur cover group SC(H) of H admits a linear representation
ρ : SC(H) → GL(r,C) such that ρ(SC(H)) ⊂ Aut(F ) and π(ρ(SC(H))) = H. Moreover, if
(r, d) = (4, 6) and F is smooth, then ρ(SC(H)) has no elements A of order 5 with tr(A) = −1.

Proof. The group SC(H) has a representation ρ : SC(H)→ GL(r,C) such that π(ρ(SC(H))) =
H. Since H preserves F , we get a character χ : SC(H) → C× satisfying ρ(g)(F ) = χ(g)F for
all g ∈ SC(H). On the other hand, SC(H) is perfect since H is perfect, which implies χ
is trivial. Thus, ρ(SC(H)) preserves F . For the last statement in the lemma, we suppose
A = diag(ξ5, ξ

2
5 , ξ

3
5 , ξ

4
5) ∈ Aut(F ). Then by A(F ) = F , we have x5

1xi /∈ F for any 1 ≤ i ≤ 4,
which contradicts smoothness of F . �

We are now ready to prove the main result of this section.

Proof of Theorem 6.1. The primitivity of Aut(F ) implies the only primitive constituent H of
Aut(F ) is π(Aut(F )) ∼= Aut(F )/Z(Aut(F )), where Z(Aut(F )) ∼= Cd. Hence, we have |Aut(F )| =
B(Aut(F )) = d · |H| and |H| ≥ dn+1(n+ 2)!. Since |H| ≤ JC(n+ 2), it suffices to consider the
cases where (n, d) is one of the following: (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (2, 3), (2, 4), (2, 5),
(2, 6), (2, 7), (2, 8), (2, 9), (2, 10), (3, 3), (4, 3), (4, 4), (4, 5), (4, 6), (6, 3).

For (n, d) equal to (1, 4), (1, 5), (1, 6), and (1, 7), the results are already known, see [Pam13]
and [Har19]; for (n, d) = (1, 6) and |Lin(XF )| = 216, see also [BB22]; for (n, d) = (1, 3), see e.g.
[YYZ23, Lemma 3.12]. For 2 ≤ n ≤ 4, Fermat cubic n-fold has the largest possible order for the
automorphism group among all smooth cubic n-folds (see [Seg42], [Hos97], [Dol12] for n = 2;
[WY20] for n = 3; [LZ22], [YYZ23] for n = 4). For the case (n, d) = (2, 4), F with primitive
Lin(XF ) of order ≥ 43 · 4! = 1536 is unique (up to isomorphism) and |Lin(XF )| = 1920 (see
[Bur55, Exercise 6, Chap. XVII], [AOT24, Theorem A and Corollary B]).

Cases (n, d) = (2, 5), (2, 7), (2, 9), (4, 5), (6, 3). Since n + 2 and d are coprime, by [GLM23,

Theorem 3.5], there is a (primitive) subgroup H̃ ⊂ Aut(F ) with H̃ ∼= π(H̃) = H. Thus, H
satisfies Lemma 6.2 (1)-(3). However, no such H exists by Table 1 and [Fei76, Theorem A].

For (n, d) = (2, 6), we may assume |H| ≥ 63 ·4! = 5184. We then need to consider H to be one
of the following groups: A2

5oC2, C4
2oA6, C4

2 .S6, PSP(4, 3). Suppose H ∼= A2
5oC2. Then H has

a perfect subgroup H1
∼= A2

5. The Schur cover group of A5 (resp. A2
5) is SL(2, 5) (resp. SL(2, 5)2)

of order 120 (resp. 14400). From the character table of SL(2, 5) (see [CCNPW, Page 2]), we
infer that for each irreducible representation ρ : SL(2, 5)2 → GL(4,C), there is A ∈ ρ(SL(2, 5)2)
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with A of order 5 and tr(A) = −1, which contradicts Lemma 6.3. Thus, H � A2
5oC2. Similarly,

we have H � C4
2 oA6, C4

2 .S6, PSP(4, 3) by choosing H1 as A6, A6, PSP(4, 3) respectively.
For (n, d) = (2, 8), (2, 10), we may assume |H| ≥ 83 · 4! = 12288. Thus we only need to

consider H ∼= PSP(4, 3), which preserves no forms of degree d = 8, 10 by the Molien’s series of
its Schur cover (see [ST54, Page 287]), a contradiction by Lemma 6.3.

For (n, d) = (4, 4), since |H| ≥ 45 · 6! = 737280, we have H ∼= PSU(4, 3) or H ∼= PSU(4, 3).C2.
As in the previous cases, these two groups can be ruled out by the Molien’s series of the Schur
cover of PSU(4, 3) (see [Tod50, Page 86]) and the fact PSU(4, 3) < PSU(4, 3).C2.

For (n, d) = (4, 6), there is a unique form F = F (x1, . . . , x6) of degree 6 with primitive
π(Aut(F )) ∼= PSU(4, 3).C2 of order 6531840 ([Tod50, §3, §4]). Smoothness of F can be verified
by Magma ([BCP97]). �

Forms preserved by finite primitive groups in PGL(2,C) are known (see [MBD16, §105]).

Lemma 6.4. Let H ⊂ PGL(2,C) be a finite primitive group preserving a form F = F (x1, x2)
of degree d ≥ 1. If H = A4 (resp. S4, resp. A5), then d ≥ 4 (resp. d ≥ 6, resp. d = 12 or
d ≥ 20). Moreover, if (H, d) = (A4, 4) (resp. (S4, 6), resp. (A5, 12)), then F is isomorphic to
the smooth form x4

1 + 2
√
−3x2

1x
2
2 + x4

2 (resp. x5
1x2 + x5

2x1, resp. x11
1 x2 + 11x6

1x
6
2 − x1x

11
2 ).

7. Proof of the main theorem

In this section, using Theorem 6.1 and the refined bounds in Section 5, we classify smooth
forms with large imprimitive or reducible automorphism groups in §7.1 and §7.2 (Theorems 7.1
and 7.4). In §7.3, combining these results, we prove a stronger form (Theorem 7.5) of Theorem
1.1.

For a smooth form F of degree d ≥ 3 in r ≥ 1 variables, we define RF := |Aut(F )|/(dr · r!).

7.1. Imprimitive Aut(F ). Recall that by an imprimitive finite linear group we mean that it is
irreducible and not primitive. Now we classify smooth forms with large imprimitive automor-
phism groups.

Theorem 7.1. Let F = F (x1, . . . , xn+2) be a smooth form of degree d, where n ≥ 1, d ≥ 3.
Suppose Aut(F ) is imprimitive and F is not isomorphic to Fermat form Fnd . If |Aut(F )| ≥
dn+2 · (n+ 2)!, then up to isomorphism, F is as follows:

(n, d) Aut(F ) |Aut(F )| F

(2, 6) C2
6 .(S

2
4 o C2) 41472 x5

1x2 + x5
2x1 + x5

3x4 + x5
4x3

(2, 12) C2
12.(A

2
5oC2) 1036800 x11

1 x2 + 11x6
1x

6
2 − x1x

11
2 + x11

3 x4 + 11x6
3x

6
4 − x3x

11
4

(4, 12) C3
12.(A

3
5oS3) 2239488000 x11

1 x2+11x6
1x

6
2−x1x

11
2 +x11

3 x4+11x6
3x

6
4−x3x

11
4 +x11

5 x6+11x6
5x

6
6−x5x

11
6

Proof. Since Aut(F ) is imprimitive and F is not isomorphic to the Fermat form, l(Aut(F )) is
of exponential type rk with r ≥ 2 and k ≥ 2, and Aut(F ) has a primitive-constituent sequence
H := (H1, . . . ,Hk) with Hi ⊂ PGL(r,C) and Hi

∼= Hj for 1 ≤ i, j ≤ k. By Lemma 4.7,
we have R(H, d) ≥ 1. By direct calculation (see (4.1)), we get |Hi| > dr−1 · r!. In fact,

R(H, d) = dk·|Hi|k·k!
drk·(rk)!

≥ 1 implies |Hi| > dr−1 · r! since (rk)! > (r!)k · k!. It suffices to consider

two cases: r ≥ 3 and r = 2.
Case r ≥ 3. If H1 preserves a smooth form F1(x1, . . . , xr) of degree d, then by Theorem 6.1,

we have (r, d, |H1|) = (3, 4, 168), (3, 6, 360), (4, 4, 1920), (6, 6, 6531840). By direct calculation,
we have R(H, d) < 1, a contradiction. Thus, H1 preserves no smooth forms of degree d. Since
JC(r) > 106 for r ≥ 3, by Lemmas 5.1, 5.5 and 4.15, we get |Aut(F )| < dn+2 · (n + 2)!,
a contradiction. In fact, we may write F = F1 + F2, where F1 ∈ C[x1, . . . , xr] and F2 ∈
(xr+1, . . . , xn+2) · C[x1, . . . , xn+2] are forms of degree d with H1 preserving F1. Then F1 is not
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smooth and by Lemma 5.1, there exist integers d1, . . . , dr ≥ 0 and a monomial m ∈ F with
m = xd11 · · ·xdrr · xr+j for some 1 ≤ j ≤ n+ 2− r. Thus, by Lemmas 5.5 and 4.15 (1), we have

|Aut(F )| ≤ R(l(Aut(F )), d) · dn+2 · (n+ 2)!

JC(r)
<

106 · dn+2 · (n+ 2)!

JC(r)
< dn+2 · (n+ 2)!.

Case r = 2. If H1 preserves no smooth forms of degree d, then |Aut(F )| < dn+2 · (n + 2)!
by similar arguments as in case r ≥ 3. Thus, we may assume H1 preserves a smooth form
F1(x1, . . . , xr) of degree d. By Lemma 6.4, if H1

∼= A4, S4, A5, then H1 preserves no smooth
forms in 2 variables of degree less than 4, 6, 12 respectively. If H1

∼= A4, then d ≥ 4 and
R(H, d) < 1, a contradiction. If H1

∼= S4, then d ≥ 6 and R(H, d) ≥ 1 implies (k, d) = (2, 6).
Then R(H, d) = 4/3 and F can be expressed as F1(x1, x2) + F2(x3, x4) + F ′, where Fi are
preserved by Hi and F ′ is in the intersection of the two ideals (x1, x2) · C[x1, x2, x3, x4] and
(x3, x4) · C[x1, x2, x3, x4]. If F ′ 6= 0, then by Lemma 5.6, H1 has a normal subgroup H̄1 and

|Aut(F )| ≤ B(Aut(F ),F )

[H1: ¯̄H1]
, where ¯̄H1 is a normal subgroup of H̄1 and ¯̄H1 preserves a non-zero form

of degree j for some j ∈ {1, 2, 3, 4, 5}. Then

1 ≤ |Aut(F )|
dn+2 · (n+ 2)!

≤ B(Aut(F ), F )

dn+2 · (n+ 2)! · [H1 : ¯̄H1]
=

R(H, d)

[H1 : ¯̄H1]
=

4

3 · [H1 : ¯̄H1]

and ¯̄H1 = H1
∼= S4, which contradicts Lemma 6.4. Thus, F ′ = 0. Therefore, F is unique up to

isomorphism by Lemma 6.4. If H1
∼= A5, then d = 12 or d ≥ 20 by Lemma 6.4. So R(H, d) ≥ 1

implies (k, d) = (2, 12), (3, 12). Similar to the case H1 = S4, we have the uniqueness of F . �

As a consequence of Theorems 6.1, 7.1 and Lemma 6.4, we have the following result.

Proposition 7.2. Let F = F (x1, . . . , xr) be a smooth form of degree d ≥ 3, where r ≥ 2.

Suppose Aut(F ) is irreducible and RF = |Aut(F )|
dr·r! > 1. Then either RF = 5/2 or RF ≤ 25/12.

Moreover, RF = 5/2 if and only if (r, d) = (2, 12) and Aut(F )/Z(Aut(F )) ∼= A5.

7.2. Reducible Aut(F ). The following lemma will be used to prove Theorem 7.4.

Lemma 7.3. Let n1, . . . , nm be positive integers, where m ≥ 2. Suppose qi (1 ≤ i ≤ m) are

rational numbers satisfying qi = 5/2 (resp. qi = 1) if ni ≥ 2 (resp. ni = 1). If
∏m
i=1 qi·ni!

(n1+···+nm)! ≥ 1,

then m = 2 and n1 = n2 = 2.

Proof. We may assume n1 ≥ n2 ≥ · · · ≥ nm. We write

q :=

∏m
i=1 qi · ni!

(n1 + · · ·+ nm)!
=
q1 · n1!n2!

(n1 + n2)!
· q2 · (n1 + n2)!n3!

(n1 + n2 + n3)!
· · · qm−1qm(n1 + · · ·+ nm−1)!nm!

(n1 + · · ·+ nm)!
.

By the formula above, if nm = 1 or m ≥ 3 or n1 > 2, then all fractions on the right side are less
than 1, a contradiction to q ≥ 1. Thus, we have m = 2, n1 = n2 = 2 and q = 25

24 . �

Next we show that smooth homogeneous polynomials of reducible automorphism groups have
fewer automorphisms than Fermat polynomials.

Theorem 7.4. Let F = F (x1, . . . , xr) be a smooth form of degree d ≥ 3, where r ≥ 3. If Aut(F )
is reducible, then |Aut(F )| < dr · r!.

Proof. To prove the theorem by contradiction, we suppose RF = |Aut(F )|
dr·r! ≥ 1. Let G :=

Aut(F ). By Theorem 3.9, we may assume at least one subdegree of G is larger than 1. Let
Vi,Wij , ki, rij , Hij ,m, Fij be as in Set-up 5.3. Recall that Cr = V1 ⊕ · · · ⊕ Vm, Vi = Wi1 ⊕ · · · ⊕
Wiki , Hij ⊂ PGL(Wij), and dim(Wij) = rij . We define β to be 1 (resp. 2) if l(G) has at least
two different subdegrees (resp. all subdegrees of G are the same). From the definitions, we have

B(G,F )

|Hij |k
≤ R(l(G), d) · dr · r!

β · JC(rij)k
(7.1)
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for any pair (i, j) and any 1 ≤ k ≤ ki. By Lemmas 4.7 and 4.15, we obtain R(l(G), d) < 60β. If
there is a monomial

m ∈ S1(W ∗i1j1)⊗ Sd−1(⊕ri2j2=1W
∗
i2j2)

in F with ri1j1 ≥ 2, then by Lemma 5.4, we have

|Aut(F )| ≤ B(G,F )

|Hi1j1 |ki1
≤ R(l(G), d) · dr · r!

β · JC(ri1j1)ki1
< dr · r!,

a contradiction. From now on, we may assume that such monomial m does not exist. Without
loss of generality, we assume rij ≥ ri′j′ whenever i < i′. Then there exists a positive integer
m1 ≤ m such that rij ≥ 2 for i ≤ m1 and rij = 1 for i > m1. We set

Fi :=
∑

1≤j≤ki

Fij (i = 1, 2, . . . ,m1) and Fm1+1 :=
∑

∑
i>m1,1≤j≤ki

dij=d

F (d11,d12,...,dmkm ).

If m1 = m, by definition Fm1+1 = 0. Then Lemma 5.1 implies that Fm1+1 is smooth if m1 < m.
It suffices to consider two cases: (1) Fij are smooth for all pairs (i, j) with i ≤ m1; (2) Fi1j1 is
not smooth for some pair (i1, j1) with i1 ≤ m1.

Case (1). Note that Vi (i = 1, . . . ,m1) are irreducible G-stable subspaces of dimension ri :=
dim(Vi) = ri1ki and the irreducible linear groups Gi := pi(G) preserve the smooth forms Fi of
degree d. Here pi : G→ GL(Vi) is given by g 7→ g|Vi. Let V ′ := ⊕i>m1Vi and p′ : G→ GL(V ′) be
given by g 7→ g|V ′. Let Gm1+1 := p′(G). Then r = r1+· · · rm1 +rm1+1, where rm1+1 := dim(V ′).

By Proposition 7.2, we have RFi = |Aut(Fi)|
dri ·ri! ≤ 5/2 (i = 1, 2, . . . ,m1). Clearly, Gi ⊂ Aut(Fi)

(i = 1, 2, . . . ,m1 + 1). Since Gm1+1 consists of semi-permutations by rij = 1 for i > m1, by

slightly adapting Theorem 3.9, we have Q :=
|Gm1+1|

d
rm1+1 ·rm1+1!

≤ 1. Then by Lemma 7.3 and

1 ≤ RF =
|Aut(F )|
dr · r!

≤ |G1| · |G2| · · · |Gm1 | · |Gm1+1|
dr · r!

≤
(
∏m1
i=1 RFi · ri!) · (Q · rm1+1!)

(r1 + · · ·+ rm1+1)!
,

we have m1 = m = 2, r1 = r2 = 2 and r = 4. Thus by Proposition 7.2 again, we infer that
H11
∼= H21

∼= A5 and d = 12. Then we may write F = F1(x1, x2)+F2(x3, x4)+F ′(x1, x2, x3, x4),
where

F ′ ∈
⊕

1≤d1≤11

Sd1(V ∗1 )⊗ S12−d1(V ∗2 ).

If F ′ is zero, then Aut(F ) is irreducible (see Theorem 7.1), a contradiction. If F ′ 6= 0, then by

Lemma 5.6, H11 has a normal subgroup H̄11 and |Aut(F )| ≤ R(l(G),12)·| ¯̄H11|·dr·r!
JC(2) = 5·| ¯̄H11|·dr·r!

144 ,

where ¯̄H11 is a normal subgroup of H̄11 and ¯̄H11 preserves a non-zero form of degree j for some
1 ≤ j ≤ 11. Since H11

∼= A5 is a simple group, we have ¯̄H11 is either H11 or trivial. From this
and Lemma 6.4, we infer that ¯̄H11 is trivial and RF ≤ 5

144 < 1, a contradiction. This proves
case (1).

Case (2). Let A and c be as in Lemma 5.7. Recall that

A = {(i2, j2)| (i2, j2) 6= (i1, j1), ∃ a monomial m ∈ Sd−1(W ∗i1j1)⊗ S1(W ∗i2j2) in F}

and c is the cardinality of A. Then c > 0. If there is a pair (i2, j2) ∈ A with ri2j2 ≥ 2,
then RF < 1 by Lemma 5.7 (1) and the inequality (7.1). So we may assume ri2,j2 = 1 for
all (i2, j2) ∈ A. If c ≥ 2, then by Lemmas 4.15 (3) and 5.7 (2), we have R(l(G), d) < 3 and

RF ≤ R(l(G),d)
dc−1 < 1, which is impossible. Thus we have c = 1 and Hi1j1 admits an Fi1j1-lifting

preserving some non-zero form F ′1 of degree d − 1. Since l(Aut(F )) contains ri1j1 ≥ 2 and 1,
by Lemma 4.15 (3) and Remark 4.16, we have ri1j1 = 2, 3, 4, 6 and R(l(G), d) < 11, 2, 11, 6
respectively. By Lemma 4.7, we have

1 ≤ RF ≤
R(l(G), d) · |Hri1j1

|
JC(ri1j1)

and |Hri1j1
| ≥ JC(ri1j1)

R(l(G), d)
.



20 SONG YANG, XUN YU AND ZIGANG ZHU

From this, we have |Hi1j1 | > 60/11, 360/2, 25920/11, 6531840/6 if ri1j1 = 2, 3, 4, 6 respectively.
On the other hand, Hi1j1 admitting an Fi1j1-lifting implies that Hi1j1 satisfies Lemma 6.2 (1)-(3),
which is impossible by Table 1 (see [CCNPW] for character tables of finite simple groups). �

7.3. A stronger form of the main theorem. Now we prove the following theorem, which in
particular completes the proof of Theorem 1.1.

Theorem 7.5. Fix integers n ≥ 1, d ≥ 3 with (n, d) 6= (1, 3), (2, 4). Let X ⊂ Pn+1 be a smooth
hypersurface of degree d with |Aut(X)| ≥ dn+1 · (n + 2)!. If X is not isomorphic to Fermat
hypersurface Xn

d , then X is isomorphic to one of the following smooth hypersurfaces XF :

(n, d) Aut(XF ) |Aut(XF )| F

(1, 4) PSL(2, 7) 168 x3
1x2 + x3

2x3 + x3
3x1

(1, 6) C2
3 o SL(2, 3) 216 x6

1 + x6
2 + x6

3 − 10(x3
1x

3
2 + x3

2x
3
3 + x3

3x
3
1)

(1, 6) A6 360 10x3
1x

3
2 + 9(x5

1 + x5
2)x3 − 45x2

1x
2
2x

2
3 − 135x1x2x

4
3 + 27x6

3

(2, 6) C6.(S
2
4 o C2) 6912 x5

1x2 + x5
2x1 + x5

3x4 + x5
4x3

(2, 12) C12.(A
2
5 o C2) 86400 x11

1 x2 + 11x6
1x

6
2 − x1x

11
2 + x11

3 x4 + 11x6
3x

6
4 − x3x

11
4

(4, 6) PSU(4, 3).C2 6531840
∑

1≤i≤6

x6
i +

∑
1≤i6=j≤6

15x4
ix

2
j−

∑
1≤i<j<k≤6

30x2
ix

2
jx

2
k+240

√
−3x1x2x3x4x5x6

(4, 12) C2
12.(A

3
5 o S3) 186624000 x11

1 x2+11x6
1x

6
2−x1x

11
2 +x11

3 x4+11x6
3x

6
4−x3x

11
4 +x11

5 x6+11x6
5x

6
6−x5x

11
6

Proof. Let F0 be a defining polynomial of X. Based on the exact sequence (1.1), by [MM63] and
[Cha78], we have |Aut(X)| = |Lin(X)| = |Aut(F0)|/d. Thus, |Aut(F0)| ≥ dn+2 · (n+ 2)!, which
implies Aut(F0) is irreducible by Theorem 7.4. Then the conclusion of the theorem follows from
Theorems 3.9, 6.1, 7.1. �

Remark 7.6. Let XF ⊂ Pn+1 be a smooth hypersurface of degree d ≥ 3 defined by F . If
n + 2 ≥ 71, then J(n + 2) = (n + 3)! by [Col07, Theorem A] (note that this bound can be
achieved by Sn+3). On the other hand, by Theorem 3.5, the optimal upper bound for the size
of an abelian subgroup in Aut(F ) is dn+2. Thus the product J(n + 2) · dn+2 = dn+2 · (n + 3)!
gives an upper bound for |Aut(F )|, which gives an upper bound dn+1 · (n + 3)! for |Aut(XF )|.
However, this bound for |Aut(XF )| is larger than the optimal bound dn+1 · (n+2)! = |Aut(Xn

d )|.
Remark 7.7. By Lefschetz hyperplane theorem, the Picard group of a smooth hypersurface
X of dimension at least 3 is the same as for projective space. Hence Aut(X) = Lin(X). A
smooth hypersurface X in Pn+1 of degree d = 1 (resp. 2) is isomorphic to Pn (resp. Fermat
quadric Xn

2 ) with infinite automorphism group. Smooth cubic curves are elliptic curves and
their automorphism groups are infinite. The automorphism group of a generic quartic surface
is finite, but there are many smooth quartic surfaces with infinite automorphism groups. The
automorphism group of Fermat quartic X2

4 is infinite, and its finite subgroup Lin(X2
4 ) ∼= C3

4oS4

determines X2
4 uniquely among all K3 surfaces ([Ogu05, Theorem 1.2 (i)]).
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Math. 84 (1878), 89–215.
[LZ22] Laza, R., Zheng, Z.: Automorphisms and periods of cubic fourfolds, Math. Z. 300 (2022), 1455–1507.
[Lin71] Lindsey, J.: Finite linear groups of degree six, Canad. J. Math. 23 (1971), 771–790.
[MM63] Matsumura, H., Monsky, P.: On the automorphisms of hypersurfaces, J. Math. Kyoto Univ. 3 (1963),

347–361.
[MBD16] Miller, G. A., Blichfeldt, H. F., Dickson, L. E.: Theory and applications of finite groups, Wiley, New

York, (1916).
[Ogu05] Oguiso, K.: A characterization of the Fermat quartic K3 surface by means of finite symmetries,

Compositio Math. 141 (2005), 404–424.
[OY19] Oguiso, K., Yu, X.: Automorphism groups of smooth quintic threefolds, Asian J. Math. 23 (2019),

201–256.
[OS78] Orlik, P., Solomon, L.: Singularities II: automorphisms of forms, Math. Ann. 231 (1978), 229–240.
[Pam13] Pambianco, F.: Characterization of the Fermat curve as the most symmetric nonsingular algebraic

plane curve, Math. Z. 277 (2014), 975–993.
[Rot95] Rotman, J.: An introduction to the theory of groups, Springer-Verlag, New York, (1995).
[Seg42] Segre, B.: The non-singular cubic surfaces, Oxford University Press, Oxford, (1942).
[ST54] Shephard, G., Todd, J.: Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274–304.
[Shi88] Shioda, T.: Arithmetic and geometry of Fermat curves, In Algebraic Geometry Seminar (Singapore,

1987), World Sci. Publishing, Singapore, (1988), 95–102.
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