Journal of Mathematical Biology (2025) 91:79 ° o

https:/doi.org/10.1007/500285-025-02311-z Mathematical B|0|Ogy
Check for
updates

Competitive exclusion in age-structured populations

Xi Huo' - Hao Kang? - Shuang Liu3 - Shigui Ruan’

Received: 26 December 2024 / Revised: 28 October 2025 / Accepted: 31 October 2025
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025

Abstract

Competitive exclusion principle, which states that two or more species limited by the
same resource cannot coexist indefinitely, is a very common phenomenon in population
dynamics. It is well-known that competitive exclusion principle occurs in determinis-
tic competition models, diffusive competition models, and evolutionary competition
models. In this paper, we consider an age-structured competition model among N
species and obtain an interesting result: under suitable scaled birth and death rates,
the species with the smallest maximum age always wins the competition to exclude
the other species; that is, the competitive exclusion principle occurs in age-structured
competition models.
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1 Introduction

Competition is a very common and dynamic interaction in population dynamics.
Volterra (1928) was the first to use a mathematical model to demonstrate that two
or more species limited by the same resource cannot coexist indefinitely. This phe-
nomenon has been expanded into the statement that n species cannot coexist on fewer
than n resources or niches (MacArthur and Levins 1964; Rescigno and Richardson
1965; Armstrong and McGehee 1980) and is now known as the “competitive exclu-
sion principle” (Hardin 1960; Levin 1970). Competitive exclusion principle has been
shown to be valid in competitive population models described by ordinary differential
equations (Armstrong and McGehee 1980), delay differential equations (Gopalsamy
1992; Kuang 1993), and (spatial or size-structured) partial differential equations (Ack-
leh et al. 2004; Cantrell and Lam 2021; Dockery et al. 1998). The purpose of this paper
is to study if competitive exclusion principle occurs in age-structured competition
models.
Consider the following age-structured competition model among N species:

N )
314,' Bui aj
5t 5. = @ auit o) —o; (;/O uj(t,a)da) ui(t,a), t>0, ae,a),
a; J= (1.1)
u;i(t,0) =/ Bla,aj)u;(t,a)da, t >0,
0
u; (0, a) = up; (a), a € (0, a;).

Here u; (¢, a) denotes the density of the i-th species at time ¢ with age a, which admits
the maximum age a; > 0. Functions p € Llo(fc’+([0, a;)) and B € L(0, a;) with
the support suppf # ¢ represent the death rate and birth rate of the i-th species,
respectively. In addition, o; > 0 describes the competition coefficient of the i-th
species affected by all species. We mention that i« and 8 are dependent on the maximum
age a; for each species, with a; € (0, co]. We assume that

/ai u(a)yda = +o0 (1.2)
0

to ensure u; (¢, a;) = 0 for any # > 0, which is an usual assumption in age-structured
models with finite maximum ages. Such a ¢ can be chosen as a Llo(fc) . function with
blow-up at a = a;, see (Inaba 2017, Fig. 1.2) for an example, which is shown in
Figure 1.

In this paper, we investigate the global dynamics of (1.1), with a specific emphasis
on the effects of the maximum age on the extinction or persistence of each species.
Previous studies on (1.1) or other related age-structured population models mainly
focused on the effects of death rates, birth rates, or in particular the nonlinearites,
on the global dynamics. More specifically, they studied the existence, uniqueness and
stability of positive or semi-trivial equilibria, see (Webb 1984; Cushing 1998; Hastings
1986; Li and Brauer 2008; Iannelli 1995; Magal and Thieme 2004; Magal and Ruan
2018; Li et al. 2020; Martcheva 2015; Thieme 2018 and Iannelli and Milner (2017).
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Fig.1 The graph of the death rate  (Inaba 2017, Fig. 1.2)

Before proceeding further, we introduce age-structured operators A; with their
domains D(A;) fori =1, ---, N as follows:
Aig = -9 — g, (13)
D(A;) := {¢p € WH(0,4), pi¢p € L'(0, ;) and $(0) = [ Bi (@) (a)da).

Our main theorem reads as follows.

Theorem 1.1 Let u € Lfoocﬁ([O, a;)) satisfy (1.2) and B € L°(0,q;). Then the
solution (uy,--- ,un) of (1.1) with initial date uyp; >% 0 satisfies the following
property: if ug; € D(A;) and up;(a) # 0 for a € suppBi, and assume A1/o1 > 0 and

Ar/oy > Ajfoj, Vj > 2, then

e % (a,0,a1)

a1 fo" e M (a,0,a1)da " in LY([0, @) ast — +oo, (1.4)
uj(t,a) - 0, Vj > 2,

ui(t,a) —

where w(a, 0,ay) ;= e~ Jo wis.ands guq Ajfor j=1,---, N arethe principal eigen-
values of the problems

aj
0apj = —p(a,ap)p; —roj, a € (0,a)), 9;(0) =/0 Bla,aj)pj(a)da.

Remark 1.2 We would like to mention that the assumption ug; € D(A;) is used to en-
sure the regularity of the solutions u; € C1([0, 00), L1(0, a;))NC([0, 00), Wh1(0, a;)).
One can refer to (Webb 1984, Theorem 2.10) for more details. In addition, the assump-
tion ug; (@) # 0 for a € suppp; is employed to guarantee the existence of persistent
solutions, i.e p;(t) = foai ui(t,a)da > 0. The interested readers can refer to (Inaba
2017, Proposition 1.9) for more details.

We mention that the dynamics of (1.1) with more general species’ interactions
(see (2.1) in the next section) had been studied previously from different aspects,
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for example, the dynamics of hierarchically age-structured populations by Cushing
(1994), non-constant oscillations by Cushing and Saleem (1984), age-structured mod-
els with more interactions including the predator-prey type by Busenberg and Iannelli
(1985), and optimal control of (1.1) with harvesting by Fister and Lenhart (2004). The
interested readers can refer to these studies and references cited therein.

Next we focus on the effects of life span, i.e. the maximum age a; on the dynamics
of system (1.1). Observe that the sign of the principal eigenvalue of species-i (which
is used to study the global dynamics of (1.1)) is determined by a nonlocal integral on
the whole age interval,

a; ai a
/ B(a,ai)m(a,0,a;)da = / B(a,a;)e Jo 1Gs-ads g g (1.5)
0 0

It could be quite complicated: due to the variation of maximum ages a;, the domains
of birth and death rates will also change, in particular the death rate u will blow up
at different points a;, which results in complicated and subtle behavior of the integral
(1.5). Later, one will see this from some concrete examples in Section 3. Thus this
motivates us to provide scaled assumptions on 8 and p, and consider the following
system:

du; Oui _ 1/a; i S aj~t d i(t t>0 0, a;
R (/a,)u(a/a,)Jr;/O uj(t,a)da | uj(t.a), t>0, ae,a),
a; = (1.6)
ui(t,0) =/ (1/aj)B(a/a;)u;i(t, a)da, >0,
0
u; (0, a) = ugpji(a), a e (0,a).

With this scaled assumptions on 8 and p in hand, we could obtain the monotonicity of
the principal eigenvalue with respect to the maximum ages. More precisely, we have
the following corollary.

Corollary 1.3 Lerpu € Li’o‘;’_s_([O, 1)) satisfy (1.2) and B € LS (0, 1). Then the solution
(uy, -+ ,un) of (1.6) with initial date uo; > 0 satisfies the following property: if
uo; € D(A;) and up;i(a) # 0 for a € suppB;, and assume Ly > 0 and a1 < aj,

Vj > 2, then

e % (a,0,a1)

Jot e @ 0.anda = L0, a5)) ast — 400, (1.7)
uj(t,a) -0, vj > 2,

ui(t,a) -

where w(a,0,a;) = e~ (Wan) [y uis/ands gpq A1 is the principal eigenvalue of the
problem

a
dap = —(I/apla/ar)p—2g, a € (0,a1),  ¢(0) =/O (I/a1)B(a/ar)¢(a)da.

Regarding the above result, we find that in age-structured competition models with
some suitable assumptions on birth and death rates (given as above), the species with
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the smallest maximum age always wins the competition to exclude the other species.
It can be explained mathematically as follows: under the scaled assumptions on 8 and
W, the characteristic equation of (1.6) linearized at zero reads as follows,

a; a
/ (1/ap)Blaja;)e"i%e= (e Jo ws/ads gq — 1. (1.8)
0
After a change of variables, it can be written as follows
1 a
/ Bla)e Hi%ie= Iy s gy = 1, (1.9)
0

Setting A; = 0, this means that the number of newborns that a survived individual
produces in its lifespan would be the same and independent of the maximum age. In
other words, this scaling leaves the basic reproduction number unaffected. In addition,
the life expectation (see (Thieme 2018)) will be proportional to the maximum age. In
fact, the life expectation is defined by

ai a 1 a
D(ar) = f o~ (1/ai) [ uis/ands g, _ aif o Jiuds g,
0 0

According to (1.9), one can see that ; = X;(a;) is inversely proportional to the
maximum age a;. It follows that the species with smallest maximum age a; =
minf{ayp, - - - , ay} has the largest principal eigenvalue X, which thus allows only the
first species survive and forces other species to extinction.

As we can see, the competitive exclusion principle occurs in age-structured compe-
tition models. Similar results on the optimal age or size in species interaction models
were observed before, see (Ackleh et al. 2004; Koztowski and Wiegert 1987; Argasin-
ski and Broom 2021; John and Miiller 2023; Blath and Tébias 2020). Itis also somehow
similar to the conjecture that "the slowest diffuser always wins the competition" in
diffusive competition models (see (Dockery et al. 1998)). The latter one says that if a
species has the smallest diffusion rate, then it always wins the competition. This con-
jecture was proved for N = 2 in Dockery et al. (1998), while is still open for N > 3.
We refer to Cantrell and Lam (2021); Lam and Lou (2023) for some recent progresses.
Here, we prove a similar result which states that "the species with smallest maximum
age always wins the competition" for any N > 2 under appropriate conditions on birth
and death rates.

In summary, with the fixed birth and death rates along its lifespan, i.e.

i 1

o (1/a)B(a/aj)da = [y B(s)ds, Vi 1 N
i 1 — Ly )

o (I/apu(a/ada = [y ju(s)ds,
each species will obtain the same 1;a; determined by (1.9), but the one with smallest
maximum age will attain the largest intrinsic growth rate ;. One possible biological
explanation on this scaling is suggested that the species are in the stage of quies-
cence, which slow down the metabolism such that the overall mortality and fecundity
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unaffected. The interested readers can refer to Blath and Tébias (2020), where a
stochastic individual-based approach employing birth-and-death processes indicates
that the slower trait is more likely to go into fixation. In addition, for other age-
structured populations and competition exclusion principle, the interested readers can
refer to (Ackleh and Allen 2003; Bremermann and Thieme 1989; Duan et al. 2018;
Tannelli and Milner 2017; Martcheva 2009, 2015; Martcheva and Li 2013; Smith and
Thieme 2013; Smith and Waltman 1995; Thieme 2007, 2018; John and Miiller 2023;
Koztowski and Wiegert 1987; Argasinski and Broom 2021; Ackleh et al. 2004) for
more results.

The paper is organized as follows. In Section 2, we present the proofs of our
main results, Theorem 1.1 and Corollary 1.3. More precisely, we will first find an
equivalent system with (1.1), then study the monotonicity of the principal eigenvalue
with respect to the maximum age, and finally determine the global dynamics of both
(1.1) and (1.6). In Section 3, we provide some examples about more interesting and
complicated behavior of the principal eigenvalue with respect to the maximum age.

2 Main proofs

In this section we give the proof of Theorem 1.1 via two steps.

2.1 Equivalent system
First we show that the global dynamics of (1.1) can be determined completely by an

N species competition ODE. To include more general interactions, we consider the
following age-structured model with N-species,

ou; ou; N aj

—+ = —pa,apuit,a) + | D bij(@)uj(t,a)da | ui(t,a), t>0, ae(0,a)),
: 0
=1

at da

“ @.1)
u;i(t,0) = / B(a,aj)u;i(t,a)da, t >0,

0
u; (0, a) = ugpi(a), a € (0,a;),

Here b;; € L*°(0, oo) represents the interaction coefficient between the i-th and ;-
th species, which is dependent on age a. In Theorem 1.1, b;; = —o; for all i =
1, ..., N describe the competition. In addition, let us recall the principal eigenvalues
of corresponding linear age-structured operators A; defined in (1.3) as follows:

a;
/ B(a,ai)e *%w(a,0,a)da=1, i=1,...,N, (2.2)
0

where 7 (a, b, a;) := e Jy nis.aids represents the survival rate from age b to a; see
for example (Webb 1984). Then we have the following result.
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Theorem 2.1 Given the following ODE system

N

=npi)+ [ Y bijpi@) | pi(), t>0,
=1 (2.3)

pi0) = / (0, a)da,
0

dpi(t)
dt

where N
T Jo” bij(@e i (a,0,a;)da

b;; = :
Y foa’ e (a,0,a;)da

and A withi = 1,2, ..., N are defined in (2.2). In addition, let the assumptions in
Theorem 1.1 hold. Now if (2.3) has uniformly bounded solutions in RN and has a
globally stable semi-trivial equilibrium p* = (A1/01,0, ...,0) with A /oy > 0 and
A1/o1 > Aj/oj forany j > 2, then the solution u(t,a) = (ui(t,a), ..., un(t, a)) of
(2.1) satisfies

re M (a,0,a;)

o] f(;‘l efxl“n(a,o,m)da’ in Ll([o’ ai))~ (24)
lim u;(t,a) =0fori =2,...,N,
11— 00

Iim u;(t,a) =
11— 00

Proof Observe that the interaction term of (2.1) is quadratic type, which is Lips-
chitz continuous on bounded sets. Thus combining the assumptions on the initial
data, there exists a unique solution u € C([0, 00), L'(0, a1) x -+ x L' (0, ay)) N
C([0, 00), WE1(0,a1) x --- x WE1(0, ay)), see (Webb 1984, Section 2) or Pazy
(1983) for more details. We first transform (2.1) into a decoupled and linear age-
structured system. To this end, we define the total density of each species by

pi(0) :=f ‘wit.a)da, i=1,- N. 2.5)
0

Observe that due to the assumptions imposed on the initial data u¢;, we have p; (t) > 0
foralli = 1,---, N and sufficiently large time # > 0. By (2.1) and the regularity of
u;, direct calculations yield that p; satisfies

dp;(t di
pi(®) =/ ’ orui(t,a)da
dt 0

a; N 4.
:/ |:—Bau,-(t,a)—;,L(a,a,-)u,-(t,a)—l—ui(t,a) (Zf ! b,-j(a)uj(t,a)da)i|da (2.6)
0 ; 0
Jj=1

a N
=/0 (Bla,a;) — p(a,a;)) ui(t, a)da + (Zfo ! bij(a)uj(t,a)da) pi(0),
j=1
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where we used the fact that u;(f,a;) = 0forallt > O0andi =1,---, N dueto (1.2).
Next, denote
. t,
it ay =D N 2.7)
pi (1)

Then it follows from (2.6) that

S e T Pl dr

1 N ra
=_pi(l) —ula, aj)u; + ;./o bij(@)u;(t,a)da | u; (2.8)

i U (Ba. ap) — ula, a)) ui(t. ayda
pi(t) LJo

N g
e /0 byj(@u (1, ada | pi(e)
i=1

— — pa i — / (Bla, ar) — pa, ap) mit, adan;.
0

Foreachi =1, ..., N, we denote

k(t,a;) == — /Oai (Bla,ai) — pla,a;i))ni(t, a)da

and v;(t, a) == e~ Jokoaddsy ¢ ). (2.9)
Then we can verify that
0 vi + 0avi = —pula, ai)vi, t>0, a€(©,a),
a;
0i(2,0) = / Bla,apyvit, a)da, 1> 0, (2.10)
0
i (0, @) = “il@ a < (0,a;).

pi(0)”

Indeed, by (2.8) and (2.9) direct calculations yield

Byvi + dav; = e~ o KOS @ 1 9uny) — k(t, ap);
_ o~ Jo k(s,a;)ds
=e /0 (—p(a, ai)ni +k(t, ai)ni) — k(t, ai)v;
= —ula, aj)v;,
and the initial and boundary conditions in (2.10) follow directly from definition (2.9).
Notice that the equation of v; in (2.10) is linear and admits the existence of the

principal eigenvalue, denoted by X;, which satisfies (2.2). On the other hand, by (2.6)
and (2.9), we observe that for eachi = 1, ..., N, the total population p; satisfies
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dp; N 4j
4pit) = —k(t,a;)pi(t) + Z/ bij(a)nj(t,a)da p;(t) | pi(t), t >0,
di o @2.11)

aj
pi(0) =/ u;(0,a)da.
0
Now we claim that
aj ~
lim k(t,a;) = —A; and lim / bij(a)n;(t,a)da = bj;. (2.12)
11— 00 11— 00 0 ; ;

Suppose that the above claim is true. On the other hand, we consider the following
autonomous system

dp;(t)

N
T = mpi O+ | D obipi@) | pi®), 10,

= (2.13)
pi(0) :/ u;(0,a)da.
0

By assumptions in Theorem 2.1, (2.13) has a uniformly bounded solution p; € R¥ . In
addition, due to (2.12), the solutions of (2.11) are also uniformly bounded in R" . Then
according to (Zhao 2017, Proposition 3.2.2), we see that (2.11) is “asymptotically”
equivalent to system (2.13).

Here “asymptotically” means that if the unique equilibrium p* of (2.13) is globally
stable, then the solutions of (2.11) converges to p* ast — oo. Recalling the definitions
of p; in (2.5) and n; in (2.7), we can see that the global dynamics of u; is determined
completely by p; and n; foralli = 1, ..., N. Thus the results (2.4) are desired once
n; is determined, see (2.16). O

Proof of the claim (2.12) The proof is motivated by (Webb 1984, Section 5.4) (or see
(Busenberg and Iannelli 1985)). For completeness, we include the necessary details.
Recall from (Webb 1984, Section 4.3) that

H; (yr)
AG)

(01— a0"9) @ = f " MO0, s, any(s)ds + e (a, 0, ap)
0

v e L0, a),

where

Hy.(y) = / Bla,ape ( f ’ e*r(a, b, a,-)vf(mdb) da,
0 0

AQ) =1— /ai B(a, ai)e (a0, a;)da.
0
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Next recalling the asynchronous exponential growth of age-structured models (see
(Webb 1984, Theorem 4.9)), the solutions v; with i = 1,2,..., N of linear age-
structured models satisfy

1
lim v; (¢, a)e Mt = —./(u — A) Yo di,
t—00 27i Jr

where T is a positively oriented closed curve in C enclosing A, but no other point of
o (A;) (the spectrum set of A;) and vg; = v; (0, -) denotes the initial data.
Observe that the functions

a
/ M) a5, apyvoi(s)ds, i=1,2,...,N
0

are holomorphic with respect to X in the region enclosed by I' and thus there holds

1

a
// e ) (a, s, a;j)voi (s)ds d) = 0.
27i Jr Jo

On the other hand, A; is a simple zero of A(A) follows from the fact that
aj
A (L) = / aB(a, aj)e " (a, 0, aj)da > 0.
0

Moreover, the residue of 1/A(X) at A; is

1 1
ANQGi) [y aBla.ae (a0, ap)da’

By using the Residue Theorem we have

a;

lim eifUt k(s.ai)ds p=hit _ 1jm ni(t,a)eff(; k(s.ai)ds p=hit g4
1—00 t—o00 J
a;
= tlim v (t, a)e_)"'tda
— 00 0
= Hy (voi) /di e %7 (a, 0, aj)da.
Jo" aBla, ae=4x(a, 0, ada Jo o
(2.14)
It follows that
lim o JukGsands _ oo ifAi >0, (2.15)
1—>00 0, if ; <O.
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Next by (2.14) we have

ot
lim n;(t,a) = lim (e_)""v,-(t,a)) it glo k(s.aids
1—00 1—00

e *47(a,0,a;)
Oai e %4y (a, 0, a;)da

=: wiso(a), in L'(0, a;), (2.16)

see (Webb 1984, Theorem 4.9). Next recall the renew theorem of age-structured equa-
tions (see (Inaba 2017, Proposition 1.9)), there holds

H . .
e M1, 0) — — 3 (Vi) ast — 00. (2.17)
o aBla,ap)e 4w (a,0,a;)da

Moreover, direct computation yields

ai

lim wla, aj)ni(t,a)da

=00 J
ai

= lim uia, a,')efot ks.addsy, (¢ a)da
0

¢ di )
= lim elo k(‘v’“")d‘ve)""/ wia, ai)e v (t, a)da
0

=00

—>00

t @i
— lim el "Wt')dse'\i’/ w(a, ai)e v (t —a, 0)m(a, 0, a;)da
0

ai d
— — lim ef()t k(S,a,')dSe)»,'t / e*)\[(tfa)vi ([ —a, O)ef)nia_ (7T(Cl, O, Cli)) da.
t—00 0 da
Note from (2.14) that the limit tlirn eJo k(s.ai)ds ghit exists. Combining (2.17) and the
— 00
fact that %n is integrable, Lebesgue convergence theorem applies to conclude that
aj 1

lim a,ap)n;(t,a)da = — —Aj.
t—>00 Jo wla, aijny (¢, @) fél’ e it (a,0,a;)da !

On the other hand, due to (-, a;) € LT(O, a;), Lebesgue convergence theorem again
yields

a; ai
tlim/ ﬂ(a,ai)ni(t,a)dazf B(a, aj)wis(a)da = wix(0). (2.18)
It follows that

a;
lim k(t, ;) = — lim f (Bla, ai) — ula, ap) mi(t, ayda = — i,
t— 00 11— 00 0
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Finally, recalling (2.16) we have

. aj aj
b,’j = lim / b,‘j (a)nj(t, a)da = / bij(a)wjoo(a)da. (2.19)
—00 0 0
Thus the results are desired. |

Now via the transformation in Theorem 2.1, system (1.6) is asymptotically equiv-
alent to

M= )Vi—Uiﬁ:P'(t) pi), t>0
dt P / e ’ (2.20)
pi(0) = [§" ui (0, a)da.
Let us finish the proof of Theorem 1.1 under the assumption that
A/oy >0 and Ay/oy > Aj/oj, Vj=2. (2.21)

We mention that A; > 0 is used to guarantee the first species to survive, since from
the above analysis one can see that A; < O implies that u;(t,a) — 0 ast — oo.
Biologically speaking, A; < 0 means that the birth-death process cannot support the
survival of the i-th species before competition happens.

Proof of Theorem 1.1 Let (p1(¢), - -+, pn(t)) be the solution of (2.20). Then

d
% < (A —o1py) pp forallt > 0,

and note that p; > O forall 7 > 0. Define W; := p;/aj/pll/m forany j =2,---, N.
It follows from (2.20) that

dw;

ar =(\j/oj —M/oD)W;, Vt>0, j=2,---,N

Dueto A1/o1 > Aj/o; forall j > 2, we deduce
W;(t) = W;)exp{(r;/0; — A1 /ot} — 0 as t — +o0. (2.22)

Since pi (t) is uniformly bounded, we derive that p; () — Oforall j > 2. Recall that
the limiting equation of p; in (2.20) is the following

dp1(1)

P <A —op1@®) pi1(t), t>0. (2.23)

Fix a #yp > 0 and consider the following auxiliary equation:

dy =1 —o1y)y, th <t <o,

2.24
y(to) = p1(ty). (229
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Clearly, y — X1 /o1 ast — oo. Further, by comparison principle, there holds y(#) >
p1(¢t) for all ¢t > fg. On the other hand, we have

d p1 Py al
—In ( ) gL —si(y—p1) -0 Dj-
i \y) "y ; !

It follows that
1
— —_— 1 E
y—pr1= o1 dt < ) Pj-

Integrating the above equality from #; to #, we then obtain

! 1
/ (y(m) = p1(m)dn = —In (pl(t)> + Z/ pj(mdn =M < oo,
o o] (t)

where M is independent of ¢, since pj (¢) and y(¢) are both bounded, and fz; pj(mdn <
oo for j = 2,..., N due to (2.22). This implies that f,;()’(ﬂ) — p1(m)dn < oo.

Furthermore, it is easily seen that j—[(y(t) — p1(t)) is bounded in [zy, 00). Hence
p1() — y(t) — 0ast — oo; thatis, pj(t) — Ai/oy ast — oo. Therefore, the
desired result (2.4) follows from (2.7) and (2.16). O

Remark 2.2 We would like to mention that for system (2.1) with general b;;, one can
investigate its dynamics via studying (2.13). In the present paper, to illustrate the
effects of the maximum age on the principal eigenvalue, we only focus on the simplest
competition case, i.e. b;; = —o;.

2.2 Monotonicity of the principal eigenvalue on the maximal age

We now focus on the effects of the maximum age on the principal eigenvalue, and
in particular, show that under the scaled assumptions on 8 and p given in (1.6), the
principal eigenvalue is increasing with respect to the maximum age. This will imply
(2.21) to finish the proof of Theorem 1.1. First from (2.2) observe that A; is increasing
and decreasing with respect to the birth rate f and death rate p, respectively. It means
that under the same maximum ages, increasing birth rates or decreasing death rates
will help the species to win the competition, which is quite reasonable biologically.

As mentioned before, the domains of death and birth rates as functions of a; are
[0, a;). It follows that once a; varies, the death rate function w(-, @;) and birth rate
function B(-, a;) may change arbitrarily. In particular, the assumption of ©(-, @;) in
(1.2) will make it change its blow-up points when a; varies. Based on the above obser-
vations, one can imagine that the behavior of a* — A(a™) could be very complicated,
without any monotonicity. This motivates us to provide some suitable assumptions on
w and B to study the monotonicity. Now we present a monotonicity result as follows
including more choices on 8 and p.
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Lemma 2.3 For eacha™ > 0, let (-, a™) € L{2.([0, a™)) be any nonnegative func-

.
tion satisfying [ ju(a, a")da = +oo. Let M(a™) denote the principal eigenvalue of
the problem

d
{£ = —ula,aMe — Lo, a€(0,a"], (2.25)

0(0) = [ Bla,a")p(a)da,

where B(-,a™) € L*(0, a™) is any nonnegative function.

() If at — u(a,a™) is differentiable and non-increasing and a* +— B(a,a™)
is differentiable and non-decreasing for any a > 0, then a* +— A(a™) is non-
decreasing,

i) If
pla,a®)y = 1/aN)p(aja®)  with some ji € Ly, ([0, 1),
Bla,a®) = (1/a™)p (a/at) with some p € LL(0, 1),

then M(a™) = A(1)/a™, and in particular, a* > A(a™) is non-increasing.

Remark 2.4 Observe that Lemma 2.3-(ii) is just our choice of 8 and p in (1.6). Thus
once Lemma 2.3-(ii) is proved, due to 0; = 1, Ay > Oand A; > A; forall j =
2, .-+, N hold automatically, thus the proof of Corollary 1.3 is complete.

Proof Similar to (2.2), the principal eigenvalue A(a™) satisfies
at
/ Bla,atye M@= Jy misaDdsgq — . (2.26)
0

(i) We first prove the monotonicity of A(a™) under the assumption (i). To this end,
define H(a™, 1) : (0, 00) x R > [0, 00) as follows:

at
H(a" ) = / Bla,a®)e e i naDdsgq,
0

Then H is partially differentiable with respect to A and 9, H(a™, ») > 0. Due to the
differentiability of x and B with respect to a™, by the implicit function theorem, we
conclude that A = A(a™) is differentiable with respect to a*. Now we can take the
derivative of (2.26) and obtain

at +
/ aﬂ(aa a )e—k(a+)ae—fg ;,L(S,a+)dsda
0 dat

a+ a
— A’(a+)/ aB(a, atye MaNap= [ nls.adsq,
0

+ Bt atye M = i tsatyas

+ +
— /u B(a, a+)ef)\(a+)ae*f(§’ p(s,a®)ds /a (s, a )ds da = 0.
0 0 dat
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Then it follows from (i) that

at
Bat,atye raat o= fy nls.at)ds

M@t >

3

>
f0a+ aB(a, atyeaHag= o misadsqy

which implies that A(a™) is non-decreasing in a™.

(i1) Under the assumption in part (ii), by the characteristic equation in (1.9), we
calculate that

at 1 1 ra~
— 3 +y ,—MaNya ,——F [o i(s/aT)ds
1= /0 a+ﬁ(a/a )e e da

1
— f ,3((1) e—k(a"')a"'a e—fél ,ll(s)dsda-
0

This together with the monotonicity of the mapping A +— fol Ba)e e~ Jo m)ds gq
implies immediately that a™ A(a™) = A(1). The proof is complete. O

Before ending this subsection, let us mention that there is another situation appeared
in previous studies, which also could induce monotonicity. That is individuals can
attain ages greater than a;, but they are no longer tracked in the models. This assumption
firstappeared in Webb (2008) and is used later by Walker and Zehetbauer (2022). Under
this assumption, one can view 8(-, a;) = B(-) and (-, a;) = pu(-)fori =1,2,..., N
defined directly in [0, 00), and only let the maximum age a; vary in [0, c0).

Then the integral f(;l " B(a)w (a, 0)da is non-decreasing with respect to a;. This
implies that the species with the largest maximum age max;{a;} has the largest prin-
cipal eigenvalue Amax := max; A; for alli = 1,2, .... Then by Theorem 1.1, the
species with the largest maximum age will win the competition and drives the others
to extinction.

3 Examples and counterexamples

We have investigated the global dynamics of an age-structured competition model
(1.6) with equal competition coefficients. In particular, we have studied the effects of
maximum ages quantitatively via observing the occurrence of the competitive exclu-
sion phenomenon. Before finishing the paper, we would like to provide some examples
which are not included in Lemma 2.3, but with very interesting results.

3.1 Complicated behavior of A(a™)
In this subsection, we provide two examples to show the complicated behavior of the
principal eigenvalue A(a™) with respect to a™. Observe from (2.2) that the principal

eigenvalue A = A(a™) of problem (2.25) is completely determined by the integral
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a+ a+ a
/ Ba,aM)m(a,0,aM)da := / B(a, a+)e_f0 wis.a)ds g,
0 0

This explains intuitively why Lemma 2.3-(i) holds. Moreover, we can take an explicit
example as follows:

+ 1 + : +
ua,a™) = pr— B(a,a™) = B(a) independent of a 3.1

which imply that 7(a,0,a%) = 1 — a% It follows from the compuation in Lemma
2.3 that

fo B(a )8”(a0“+) —MaNag,
fo Ba)m(a, 0, a+)aef)»(a+)ada

V@) = >0, (3.2)

which shows that a* > A(a™) is increasing.

However, if B(a, a™) or u(a, a™) is not monotone with respect to a™, does it imply
that a* — A(a™) is not monotone? To illustrate this situation, let us consider another
example as follows

1
wia,a®) = pr— +a", B(a,a’) =1independent of a™. (3.3)

Direct computation yields

7(a,0,at) = (1 — %) e_“+“,
a

and thus fora®™ > 1

dm(a,0,a™) _ e g(1 4+ aat — @hH? <0, ae(0,at —1/a"),
dat B (at)? >0, ae(at—1/at,a").

It follows that

+

/u Bla,a )—a”(”g 0+" ) Mg,
0
1 T-l/at + +
= m[ e a(l +aat — (@hH)PHe Mgy
a 0
1 at + 2 rat
—l—W/ e a(l+aat — (ah)P)e g
at—1/at
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an an-1 aj az ay j -

(a) 7t; have the same tendency. (b) B;i have the same tendency. (c) m; have different shapes.

Fig.2 different 7;

. + +
where we used the fact that A(a™) +a™ > 0 (otherwise [ e *“ )7 (a,0,a")da >
at/2 > 1 for a™ > 1). It follows that a* + A(a™) is decreasing with respect to
a™ for y and B satisfying (3.3). Hence we have seen that there still could happen that
a’ + A(a™) is monotone for a™ > 1 under a™ > B(a, a™) being monotone but
a’ +— u(a,a™) being not monotone. The behind reason is that the sign of A'(a™) is
determined by the integral

f Ba )Bn(a 0,a™) _)‘(“+)“da,

which is the global behavior in the whole interval [0, a™) rather than the local one.
Next, to illustrate the non-monotone behavior of at — A(a™), let us still consider
the example (3.3). For a™ < 1, one has

9(a,0,a") e a(l +aa* — (a*)?)

Py = @) >0, ael0,at],

and thus

Bﬂ(u 0,a ) a(at
[ Bla,at T MaT)a g,

.
a
(a+)2,/ e (1 +aat — (@h)De M@ agq

1 1
> —g(cﬁ)2 + 3 >0, forat <1,

where similarly we used the fact that A(a™) + a™ < 0 (otherwise [ " gMata
7(a,0,a%)da < a*/2 < 1fora™ < 1). In summary, this example (3.3) shows that
at + A(a™)isincreasing first fora™ < 1, and then decreasing when a™ > 1, corre-
sponding to the complicated non-monotone behavior of a™ + A(a™). Furthermore,
for such non-monotone cases, it would be very interesting to investigate the optimal
maximum age to allow the population attain its largest principal eigenvalue in realistic
ecology, see (Koztowski and Wiegert 1987) for more details.
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Finally, we illustrate the behavior a™ +— A(a™) by three figures, see Figure 2.
Note that 7 (a, 0, a™), as the survival rate of the species, is decreasing with respect
to a satisfying 7(0,0,a*) = 1 and w(a™,0,a™) = 0. In Figure 2a, u(a,a™) =

1

+ . . . . .
——. and one can see that [ 7(a, 0, a™)da is increasing with respect to a™, while

in Figure 2c, f0“+ m(a,0,a")da is decreasing with respect to a™. This shows that
if B(a,a™) = B(a), then a* — A(a™) has two completely opposite monotone
behaviors, which shows again the very complicated behavior of a™ > A(a™). Finally,

Figure 2b is an example that [ ’ B(a, a™)da is increasing with respect to a™, which
shows that a* +— A(a™) is increasing provided . (a,a™) = u(a) independent on
a™. In summary, the sign of A'(a™) is determined by the areas and thus the shapes of
7(a,0,a™) and B(a,a™) in [0, a™), which can exhibit complicated behavior.

3.2 Effects of maturation time

In this subsection, we provide a second interesting example again to show the compli-
cated behavior of the principal eigenvalue of problem (2.25) under different choices
of u(a,a™) and B(a, a™). We assume . (a, a™) = u(a) independent on a™ and

C
Ba.aty == 4€lt a®),
0, a €0, 1),

where 7 € (0, a™) represents the maturation time and C > 1 is any constant.

With the above choices of © and 8, model (1.6) is corresponding to a two-stage
model, including juveniles and adults, whose characteristic equation is given as fol-
lows

at

1= ¢ / e o= [g ns)ds gy (3.5)
T

T at-—1

The interested readers can refer to Fang et al. (2016) for more details on the derivation
of the precise equations of a two-stage model. Here we are interested in the effects of
maturation time t on the principal eigenvalue A = A(t). More precisely, we have the
following result.

Corollary 3.1 Let 1, B be defined above and )(tv) > 0 hold. Define ¢ : [0,a™) x
[0, 00) > [0, 00) as

at

f o= Jo n)ds g, (3.6)
T

¢(t, L) =

at—t
Then t +— A(t) is strictly decreasing. Moreover, if $(0,0) > 1, then there exists a

unique 1o € (0, a™) such that ¢ (1o, A(19)) = 1 with A(t) > 0in [0, 79] and A(t) < 0
in[to,a™].
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Remark 3.2 The definition of 8 implies that the total birth rate along the life spans
of the population is a constant larger than 1. Furthermore, A(t) > 0 is required to
ensure that the species persists, otherwise it will vanish. The conclusion of Corollary
3.1 states that as long as the species survives, the earlier the maturation, the larger the
intrinsic growth rate.

Proof of Corollary 3.1 Observe from (3.6) that ¢ (t, A) — Oas A — oo and ¢ (t, 1) —
oo as A — —oo. Due to d;¢(7, 1) < 0, the implicit function theorem applies to
conclude that there exists a unique A(t) € R such that ¢ (z, A(t)) = 1 and A(7) has
the same sign as ¢ (z, 0) — 1.

On the other hand, the quotient rule yields

+

C a a
orp(t, \) = —/ e—)\ae—fo w(s)ds g,
T

—AT — fr n(s)ds
e e Jo .
(at —1)?

at —1

Due to the fact that A > 0 and e *4e~ Jo n(s)ds strictly decreasing and not constant
ina € (r,a™), we obtain d;¢ (t, A) < 0. Moreover, for any 7 € (0, a™), there exists
a neighborhood U of 7 such that A is continuously differentiable with respect to T on
U. By the chain rule, there holds

dcp (7, A(T))

- U.
Gpma) | C

M) =

It follows that A/(z) has the same sign with 9;¢ (z, A(7)). Thus T — A(7) is strictly
decreasing in the region of A(t) > 0. The remaining conclusions are obvious. This
completes the proof. O

It makes sense biologically that the species will mature simultaneously after being
born, and then will produce new species. In other words, the species with zero matu-
ration period will have the maximal principal eigenvalue and thus the largest intrinsic
growth rate.

Finally, we would like to mention that the model presented in this paper is a sim-
plified formulation that only accounts for generic competition effects among species.
Such assumptions may imply unrealistic persistence or vanishing of surviving traits
under evolutionary forces, which is not observed in natural populations. In reality,
several additional ecological features may shape species dynamics. For instance, the
intensity of intraspecific competition often depends on external environmental con-
ditions. A relevant example is provided by mosquito species that breed in aquatic
habitats. Chemical cues in water bodies can act as selective forces: Aedes aegypti tends
to oviposit in habitats with lower ammonia concentrations, whereas Culex quinquefas-
ciatus is more tolerant of and even prefers higher ammonia levels. Because ammonia
levels in natural water resources fluctuate seasonally with rainfall and organic decom-
position, the suitability of breeding sites alternates across the year. As aresult, different
species may thrive during different seasons, leading to temporally varying competitive
advantages that are not captured by the current model.
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