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Abstract
Competitive exclusion principle, which states that two or more species limited by the
same resource cannot coexist indefinitely, is a very commonphenomenon in population
dynamics. It is well-known that competitive exclusion principle occurs in determinis-
tic competition models, diffusive competition models, and evolutionary competition
models. In this paper, we consider an age-structured competition model among N
species and obtain an interesting result: under suitable scaled birth and death rates,
the species with the smallest maximum age always wins the competition to exclude
the other species; that is, the competitive exclusion principle occurs in age-structured
competition models.
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1 Introduction

Competition is a very common and dynamic interaction in population dynamics.
Volterra (1928) was the first to use a mathematical model to demonstrate that two
or more species limited by the same resource cannot coexist indefinitely. This phe-
nomenon has been expanded into the statement that n species cannot coexist on fewer
than n resources or niches (MacArthur and Levins 1964; Rescigno and Richardson
1965; Armstrong and McGehee 1980) and is now known as the “competitive exclu-
sion principle” (Hardin 1960; Levin 1970). Competitive exclusion principle has been
shown to be valid in competitive population models described by ordinary differential
equations (Armstrong and McGehee 1980), delay differential equations (Gopalsamy
1992; Kuang 1993), and (spatial or size-structured) partial differential equations (Ack-
leh et al. 2004; Cantrell and Lam 2021; Dockery et al. 1998). The purpose of this paper
is to study if competitive exclusion principle occurs in age-structured competition
models.

Consider the following age-structured competition model among N species:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂ui
∂t

+ ∂ui
∂a

= −μ(a, ai )ui (t, a) − σi

⎛

⎝
N∑

j=1

∫ a j

0
u j (t, a)da

⎞

⎠ ui (t, a), t > 0, a ∈ (0, ai ),

ui (t, 0) =
∫ ai

0
β(a, ai )ui (t, a)da, t > 0,

ui (0, a) = u0i (a), a ∈ (0, ai ).

(1.1)

Here ui (t, a) denotes the density of the i-th species at time t with age a, which admits
the maximum age ai > 0. Functions μ ∈ L∞

loc,+([0, ai )) and β ∈ L∞+ (0, ai ) with
the support suppβ �= ∅ represent the death rate and birth rate of the i-th species,
respectively. In addition, σi > 0 describes the competition coefficient of the i-th
species affected by all species.Wemention thatμ andβ are dependent on themaximum
age ai for each species, with ai ∈ (0,∞]. We assume that

∫ ai

0
μ(a)da = +∞ (1.2)

to ensure ui (t, ai ) = 0 for any t > 0, which is an usual assumption in age-structured
models with finite maximum ages. Such a μ can be chosen as a L∞

loc,+ function with
blow-up at a = ai , see (Inaba 2017, Fig. 1.2) for an example, which is shown in
Figure 1.

In this paper, we investigate the global dynamics of (1.1), with a specific emphasis
on the effects of the maximum age on the extinction or persistence of each species.
Previous studies on (1.1) or other related age-structured population models mainly
focused on the effects of death rates, birth rates, or in particular the nonlinearites,
on the global dynamics. More specifically, they studied the existence, uniqueness and
stability of positive or semi-trivial equilibria, see (Webb 1984; Cushing 1998; Hastings
1986; Li and Brauer 2008; Iannelli 1995; Magal and Thieme 2004; Magal and Ruan
2018; Li et al. 2020; Martcheva 2015; Thieme 2018 and Iannelli and Milner (2017).
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Fig. 1 The graph of the death rate μ (Inaba 2017, Fig. 1.2)

Before proceeding further, we introduce age-structured operators Ai with their
domains D(Ai ) for i = 1, · · · , N as follows:

{
Aiφ := − dφ

da − μiφ,

D(Ai ) := {φ ∈ W 1,1(0, ai ), μiφ ∈ L1(0, ai ) and φ(0) = ∫ ai
0 βi (a)φ(a)da}.(1.3)

Our main theorem reads as follows.

Theorem 1.1 Let μ ∈ L∞
loc,+([0, ai )) satisfy (1.2) and β ∈ L∞+ (0, ai ). Then the

solution (u1, · · · , uN ) of (1.1) with initial date u0i ≥�≡ 0 satisfies the following
property: if u0i ∈ D(Ai ) and u0i (a) �= 0 for a ∈ suppβi , and assume λ1/σ1 > 0 and
λ1/σ1 > λ j/σ j , ∀ j ≥ 2, then

⎧
⎨

⎩

u1(t, a) → λ1e−λ1aπ(a,0,a1)
σ1

∫ a1
0 e−λ1aπ(a,0,a1)da

> 0,

u j (t, a) → 0, ∀ j ≥ 2,
in L1([0, ai )) as t → +∞, (1.4)

where π(a, 0, a1) := e− ∫ a
0 μ(s,a1)ds and λ j for j = 1, · · · , N are the principal eigen-

values of the problems

∂aϕ j = −μ(a, a j )ϕ j − λϕ j , a ∈ (0, a j ), ϕ j (0) =
∫ a j

0
β(a, a j )ϕ j (a)da.

Remark 1.2 We would like to mention that the assumption u0i ∈ D(Ai ) is used to en-
sure the regularity of the solutionsui ∈ C1([0,∞), L1(0, ai ))∩C([0,∞),W 1,1(0, ai )).
One can refer to (Webb 1984, Theorem 2.10) for more details. In addition, the assump-
tion u0i (a) �= 0 for a ∈ suppβi is employed to guarantee the existence of persistent
solutions, i.e pi (t) = ∫ ai

0 ui (t, a)da > 0. The interested readers can refer to (Inaba
2017, Proposition 1.9) for more details.

We mention that the dynamics of (1.1) with more general species’ interactions
(see (2.1) in the next section) had been studied previously from different aspects,
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for example, the dynamics of hierarchically age-structured populations by Cushing
(1994), non-constant oscillations by Cushing and Saleem (1984), age-structured mod-
els with more interactions including the predator-prey type by Busenberg and Iannelli
(1985), and optimal control of (1.1) with harvesting by Fister and Lenhart (2004). The
interested readers can refer to these studies and references cited therein.

Next we focus on the effects of life span, i.e. the maximum age ai on the dynamics
of system (1.1). Observe that the sign of the principal eigenvalue of species-i (which
is used to study the global dynamics of (1.1)) is determined by a nonlocal integral on
the whole age interval,

∫ ai

0
β(a, ai )π(a, 0, ai )da :=

∫ ai

0
β(a, ai )e

− ∫ a
0 μ(s,ai )dsda. (1.5)

It could be quite complicated: due to the variation of maximum ages ai , the domains
of birth and death rates will also change, in particular the death rate μ will blow up
at different points ai , which results in complicated and subtle behavior of the integral
(1.5). Later, one will see this from some concrete examples in Section 3. Thus this
motivates us to provide scaled assumptions on β and μ, and consider the following
system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂ui
∂t

+ ∂ui
∂a

= −
⎡

⎣(1/ai )μ(a/ai ) +
N∑

j=1

∫ a j

0
u j (t, a)da

⎤

⎦ ui (t, a), t > 0, a ∈ (0, ai ),

ui (t, 0) =
∫ ai

0
(1/ai )β(a/ai )ui (t, a)da, t > 0,

ui (0, a) = u0i (a), a ∈ (0, ai ).

(1.6)

With this scaled assumptions on β andμ in hand, we could obtain the monotonicity of
the principal eigenvalue with respect to the maximum ages. More precisely, we have
the following corollary.

Corollary 1.3 Letμ ∈ L∞
loc,+([0, 1)) satisfy (1.2) and β ∈ L∞+ (0, 1). Then the solution

(u1, · · · , uN ) of (1.6) with initial date u0i ≥�≡ 0 satisfies the following property: if
u0i ∈ D(Ai ) and u0i (a) �= 0 for a ∈ suppβi , and assume λ1 > 0 and a1 < a j ,
∀ j ≥ 2, then

⎧
⎨

⎩

u1(t, a) → λ1e−λ1aπ(a,0,a1)∫ a1
0 e−λ1aπ(a,0,a1)da

> 0,

u j (t, a) → 0, ∀ j ≥ 2,
in L1([0, ai )) as t → +∞, (1.7)

where π(a, 0, a1) = e−(1/a1)
∫ a
0 μ(s/a1)ds and λ1 is the principal eigenvalue of the

problem

∂aϕ = −(1/a1)μ(a/a1)ϕ−λϕ, a ∈ (0, a1), ϕ(0) =
∫ a1

0
(1/a1)β(a/a1)ϕ(a)da.

Regarding the above result, we find that in age-structured competition models with
some suitable assumptions on birth and death rates (given as above), the species with
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the smallest maximum age always wins the competition to exclude the other species.
It can be explained mathematically as follows: under the scaled assumptions on β and
μ, the characteristic equation of (1.6) linearized at zero reads as follows,

∫ ai

0
(1/ai )β(a/ai )e

−λi ae−(1/ai )
∫ a
0 μ(s/ai )dsda = 1. (1.8)

After a change of variables, it can be written as follows

∫ 1

0
β(a)e−λi aai e− ∫ a

0 μ(s)dsda = 1. (1.9)

Setting λi = 0, this means that the number of newborns that a survived individual
produces in its lifespan would be the same and independent of the maximum age. In
other words, this scaling leaves the basic reproduction number unaffected. In addition,
the life expectation (see (Thieme 2018)) will be proportional to the maximum age. In
fact, the life expectation is defined by

D(ai ) :=
∫ ai

0
e−(1/ai )

∫ a
0 μ(s/ai )dsda = ai

∫ 1

0
e− ∫ a

0 μ(s)dsda.

According to (1.9), one can see that λi = λi (ai ) is inversely proportional to the
maximum age ai . It follows that the species with smallest maximum age a1 =
min{a1, · · · , aN } has the largest principal eigenvalue λ1, which thus allows only the
first species survive and forces other species to extinction.

As we can see, the competitive exclusion principle occurs in age-structured compe-
tition models. Similar results on the optimal age or size in species interaction models
were observed before, see (Ackleh et al. 2004; Kozłowski andWiegert 1987; Argasin-
ski andBroom2021; John andMüller 2023;Blath andTóbiás 2020). It is also somehow
similar to the conjecture that "the slowest diffuser always wins the competition" in
diffusive competition models (see (Dockery et al. 1998)). The latter one says that if a
species has the smallest diffusion rate, then it always wins the competition. This con-
jecture was proved for N = 2 in Dockery et al. (1998), while is still open for N ≥ 3.
We refer to Cantrell and Lam (2021); Lam and Lou (2023) for some recent progresses.
Here, we prove a similar result which states that "the species with smallest maximum
age always wins the competition" for any N ≥ 2 under appropriate conditions on birth
and death rates.

In summary, with the fixed birth and death rates along its lifespan, i.e.

{∫ ai
0 (1/ai )β(a/ai )da = ∫ 1

0 β(s)ds,
∫ ai
0 (1/ai )μ(a/ai )da = ∫ 1

0 μ(s)ds,
∀i = 1, · · · , N ,

each species will obtain the same λi ai determined by (1.9), but the one with smallest
maximum age will attain the largest intrinsic growth rate λi . One possible biological
explanation on this scaling is suggested that the species are in the stage of quies-
cence, which slow down the metabolism such that the overall mortality and fecundity
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unaffected. The interested readers can refer to Blath and Tóbiás (2020), where a
stochastic individual-based approach employing birth-and-death processes indicates
that the slower trait is more likely to go into fixation. In addition, for other age-
structured populations and competition exclusion principle, the interested readers can
refer to (Ackleh and Allen 2003; Bremermann and Thieme 1989; Duan et al. 2018;
Iannelli and Milner 2017; Martcheva 2009, 2015; Martcheva and Li 2013; Smith and
Thieme 2013; Smith and Waltman 1995; Thieme 2007, 2018; John and Müller 2023;
Kozłowski and Wiegert 1987; Argasinski and Broom 2021; Ackleh et al. 2004) for
more results.

The paper is organized as follows. In Section 2, we present the proofs of our
main results, Theorem 1.1 and Corollary 1.3. More precisely, we will first find an
equivalent system with (1.1), then study the monotonicity of the principal eigenvalue
with respect to the maximum age, and finally determine the global dynamics of both
(1.1) and (1.6). In Section 3, we provide some examples about more interesting and
complicated behavior of the principal eigenvalue with respect to the maximum age.

2 Main proofs

In this section we give the proof of Theorem 1.1 via two steps.

2.1 Equivalent system

First we show that the global dynamics of (1.1) can be determined completely by an
N species competition ODE. To include more general interactions, we consider the
following age-structured model with N -species,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂ui
∂t

+ ∂ui
∂a

= −μ(a, ai )ui (t, a) +
⎛

⎝
N∑

j=1

∫ a j

0
bi j (a)u j (t, a)da

⎞

⎠ ui (t, a), t > 0, a ∈ (0, ai ),

ui (t, 0) =
∫ ai

0
β(a, ai )ui (t, a)da, t > 0,

ui (0, a) = u0i (a), a ∈ (0, ai ),

(2.1)

Here bi j ∈ L∞(0,∞) represents the interaction coefficient between the i-th and j-
th species, which is dependent on age a. In Theorem 1.1, bi j ≡ −σi for all i =
1, . . . , N describe the competition. In addition, let us recall the principal eigenvalues
of corresponding linear age-structured operators Ai defined in (1.3) as follows:

∫ ai

0
β(a, ai )e

−λi aπ(a, 0, ai )da = 1, i = 1, . . . , N , (2.2)

where π(a, b, ai ) := e− ∫ a
b μ(s,ai )ds represents the survival rate from age b to a; see

for example (Webb 1984). Then we have the following result.

123



Competitive exclusion in age-structured populations Page 7 of 21    79 

Theorem 2.1 Given the following ODE system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dpi (t)

dt
= λi pi (t) +

⎛

⎝
N∑

j=1

b̃i j p j (t)

⎞

⎠ pi (t), t > 0,

pi (0) =
∫ a1

0
ui (0, a)da,

(2.3)

where

b̃i j =
∫ a j
0 bi j (a)e−λ j aπ(a, 0, a j )da

∫ a j
0 e−λ j aπ(a, 0, a j )da

and λi with i = 1, 2, . . . , N are defined in (2.2). In addition, let the assumptions in
Theorem 1.1 hold. Now if (2.3) has uniformly bounded solutions in R

N and has a
globally stable semi-trivial equilibrium p∗ = (λ1/σ1, 0, . . . , 0) with λ1/σ1 > 0 and
λ1/σ1 > λ j/σ j for any j ≥ 2, then the solution u(t, a) = (u1(t, a), . . . , uN (t, a)) of
(2.1) satisfies

⎧
⎨

⎩

lim
t→∞ u1(t, a) = λ1e−λ1aπ(a,0,a1)

σ1
∫ a1
0 e−λ1aπ(a,0,a1)da

,

lim
t→∞ ui (t, a) = 0 for i = 2, . . . , N ,

in L1([0, ai )). (2.4)

Proof Observe that the interaction term of (2.1) is quadratic type, which is Lips-
chitz continuous on bounded sets. Thus combining the assumptions on the initial
data, there exists a unique solution u ∈ C1([0,∞), L1(0, a1) × · · · × L1(0, aN )) ∩
C([0,∞),W 1,1(0, a1) × · · · × W 1,1(0, aN )), see (Webb 1984, Section 2) or Pazy
(1983) for more details. We first transform (2.1) into a decoupled and linear age-
structured system. To this end, we define the total density of each species by

pi (t) :=
∫ ai

0
ui (t, a)da, i = 1, · · · , N . (2.5)

Observe that due to the assumptions imposed on the initial data u0i , we have pi (t) > 0
for all i = 1, · · · , N and sufficiently large time t > 0. By (2.1) and the regularity of
ui , direct calculations yield that pi satisfies

dpi (t)

dt
=

∫ ai

0
∂t ui (t, a)da

=
∫ ai

0

⎡

⎣−∂aui (t, a) − μ(a, ai )ui (t, a) + ui (t, a)

⎛

⎝
N∑

j=1

∫ a j

0
bi j (a)u j (t, a)da

⎞

⎠

⎤

⎦ da (2.6)

=
∫ ai

0
(β(a, ai ) − μ(a, ai )) ui (t, a)da +

⎛

⎝
N∑

j=1

∫ a j

0
bi j (a)u j (t, a)da

⎞

⎠ pi (t),
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where we used the fact that ui (t, ai ) = 0 for all t > 0 and i = 1, · · · , N due to (1.2).
Next, denote

ni (t, a) := ui (t, a)

pi (t)
, i = 1, · · · , N . (2.7)

Then it follows from (2.6) that

∂t ni + ∂ani = 1

pi (t)
(∂t ui + ∂aui ) − ui

p2i (t)

dpi (t)

dt

= 1

pi (t)

⎡

⎣−μ(a, ai )ui +
⎛

⎝
N∑

j=1

∫ a j

0
bi j (a)u j (t, a)da

⎞

⎠ ui

⎤

⎦ (2.8)

− ni
pi (t)

[∫ ai

0
(β(a, ai ) − μ(a, ai )) ui (t, a)da

+
⎛

⎝
N∑

j=1

∫ a j

0
bi j (a)u j (t, a)da

⎞

⎠ pi (t)

⎤

⎦

= − μ(a, ai )ni −
∫ ai

0
(β(a, ai ) − μ(a, ai )) ni (t, a)da ni .

For each i = 1, . . . , N , we denote

k(t, ai ) := −
∫ ai

0
(β(a, ai ) − μ(a, ai )) ni (t, a)da

and vi (t, a) := e− ∫ t
0 k(s,ai )dsni (t, a). (2.9)

Then we can verify that

⎧
⎪⎪⎨

⎪⎪⎩

∂tvi + ∂avi = −μ(a, ai )vi , t > 0, a ∈ (0, ai ),

vi (t, 0) =
∫ ai

0
β(a, ai )vi (t, a)da, t > 0,

vi (0, a) = u0i (a)
pi (0)

, a ∈ (0, ai ).

(2.10)

Indeed, by (2.8) and (2.9) direct calculations yield

∂tvi + ∂avi = e− ∫ t
0 k(s,ai )ds (∂t ni + ∂ani ) − k(t, ai )vi

= e− ∫ t
0 k(s,ai )ds (−μ(a, ai )ni + k(t, ai )ni ) − k(t, ai )vi

= −μ(a, ai )vi ,

and the initial and boundary conditions in (2.10) follow directly from definition (2.9).
Notice that the equation of vi in (2.10) is linear and admits the existence of the

principal eigenvalue, denoted by λi , which satisfies (2.2). On the other hand, by (2.6)
and (2.9), we observe that for each i = 1, . . . , N , the total population pi satisfies
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dpi (t)

dt
= −k(t, ai )pi (t) +

⎛

⎝
N∑

j=1

∫ a j

0
bi j (a)n j (t, a)da p j (t)

⎞

⎠ pi (t), t > 0,

pi (0) =
∫ a1

0
ui (0, a)da.

(2.11)

Now we claim that

lim
t→∞ k(t, ai ) = −λi and lim

t→∞

∫ a j

0
bi j (a)n j (t, a)da = b̃i j . (2.12)

Suppose that the above claim is true. On the other hand, we consider the following
autonomous system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dpi (t)

dt
= λi pi (t) +

⎛

⎝
N∑

j=1

b̃i j p j (t)

⎞

⎠ pi (t), t > 0,

pi (0) =
∫ a1

0
ui (0, a)da.

(2.13)

By assumptions in Theorem 2.1, (2.13) has a uniformly bounded solution pi ∈ R
N . In

addition, due to (2.12), the solutions of (2.11) are also uniformly bounded inRN . Then
according to (Zhao 2017, Proposition 3.2.2), we see that (2.11) is “asymptotically”
equivalent to system (2.13).

Here “asymptotically” means that if the unique equilibrium p∗ of (2.13) is globally
stable, then the solutions of (2.11) converges to p∗ as t → ∞. Recalling the definitions
of pi in (2.5) and ni in (2.7), we can see that the global dynamics of ui is determined
completely by pi and ni for all i = 1, . . . , N . Thus the results (2.4) are desired once
ni is determined, see (2.16). �


Proof of the claim (2.12) The proof is motivated by (Webb 1984, Section 5.4) (or see
(Busenberg and Iannelli 1985)). For completeness, we include the necessary details.
Recall from (Webb 1984, Section 4.3) that

(
(λI − Ai )

−1ψ
)

(a) =
∫ a

0
e−λ(a−s)π(a, s, ai )ψ(s)ds + e−λaπ(a, 0, ai )

Hλ(ψ)


(λ)
,

ψ ∈ L1(0, ai ),

where

Hλ(ψ) :=
∫ ai

0
β(a, ai )e

−λa
(∫ a

0
eλbπ(a, b, ai )ψ(b)db

)

da,


(λ) := 1 −
∫ ai

0
β(a, ai )e

−λaπ(a, 0, ai )da.
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Next recalling the asynchronous exponential growth of age-structured models (see
(Webb 1984, Theorem 4.9)), the solutions vi with i = 1, 2, . . . , N of linear age-
structured models satisfy

lim
t→∞ vi (t, a)e−λi t = 1

2π i

∫

�

(λI − Ai )
−1v0i dλ,

where � is a positively oriented closed curve in C enclosing λ1, but no other point of
σ(Ai ) (the spectrum set of Ai ) and v0i = vi (0, ·) denotes the initial data.

Observe that the functions

∫ a

0
e−λ(a−s)π(a, s, ai )v0i (s)ds, i = 1, 2, . . . , N

are holomorphic with respect to λ in the region enclosed by � and thus there holds

1

2π i

∫

�

∫ a

0
e−λ(a−s)π(a, s, ai )v0i (s)ds dλ = 0.

On the other hand, λi is a simple zero of 
(λ) follows from the fact that


′(λi ) =
∫ ai

0
aβ(a, ai )e

−λi aπ(a, 0, ai )da > 0.

Moreover, the residue of 1/
(λ) at λi is

1


′(λi )
= 1

∫ ai
0 aβ(a, ai )e−λi aπ(a, 0, ai )da

.

By using the Residue Theorem we have

lim
t→∞ e− ∫ t

0 k(s,ai )dse−λi t = lim
t→∞

∫ ai

0
ni (t, a)e− ∫ t

0 k(s,ai )dse−λi t da

= lim
t→∞

∫ ai

0
vi (t, a)e−λi t da

= Hλi (v0i )∫ ai
0 aβ(a, ai )e−λi aπ(a, 0, ai )da

∫ ai

0
e−λi aπ(a, 0, ai )da.

(2.14)

It follows that

lim
t→∞ e− ∫ t

0 k(s,ai )ds =
{

∞, if λi > 0,

0, if λi < 0.
(2.15)
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Next by (2.14) we have

lim
t→∞ ni (t, a) = lim

t→∞
(
e−λi tvi (t, a)

)
eλi t e

∫ t
0 k(s,ai )ds

= e−λi aπ(a, 0, ai )
∫ ai
0 e−λi aπ(a, 0, ai )da

=: wi∞(a), in L1(0, ai ), (2.16)

see (Webb 1984, Theorem 4.9). Next recall the renew theorem of age-structured equa-
tions (see (Inaba 2017, Proposition 1.9)), there holds

e−λi tvi (t, 0) → Hλi (v0i )∫ ai
0 aβ(a, ai )e−λi aπ(a, 0, ai )da

as t → ∞. (2.17)

Moreover, direct computation yields

lim
t→∞

∫ ai

0
μ(a, ai )ni (t, a)da

= lim
t→∞

∫ ai

0
μ(a, ai )e

∫ t
0 k(s,ai )dsvi (t, a)da

= lim
t→∞ e

∫ t
0 k(s,ai )dseλi t

∫ ai

0
μ(a, ai )e

−λi tvi (t, a)da

= lim
t→∞ e

∫ t
0 k(s,ai )dseλi t

∫ ai

0
μ(a, ai )e

−λi tvi (t − a, 0)π(a, 0, ai )da

= − lim
t→∞ e

∫ t
0 k(s,ai )dseλi t

∫ ai

0
e−λi (t−a)vi (t − a, 0)e−λi a d

da
(π(a, 0, ai )) da.

Note from (2.14) that the limit lim
t→∞ e

∫ t
0 k(s,ai )dseλi t exists. Combining (2.17) and the

fact that d
daπ is integrable, Lebesgue convergence theorem applies to conclude that

lim
t→∞

∫ ai

0
μ(a, ai )ni (t, a)da = 1

∫ ai
0 e−λi aπ(a, 0, ai )da

− λi .

On the other hand, due to β(·, ai ) ∈ L∞+ (0, ai ), Lebesgue convergence theorem again
yields

lim
t→∞

∫ ai

0
β(a, ai )ni (t, a)da =

∫ ai

0
β(a, ai )wi∞(a)da = wi∞(0). (2.18)

It follows that

lim
t→∞ k(t, ai ) = − lim

t→∞

∫ ai

0
(β(a, ai ) − μ(a, ai )) ni (t, a)da = −λi .
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Finally, recalling (2.16) we have

b̃i j = lim
t→∞

∫ a j

0
bi j (a)n j (t, a)da =

∫ a j

0
bi j (a)w j∞(a)da. (2.19)

Thus the results are desired. �

Now via the transformation in Theorem 2.1, system (1.6) is asymptotically equiv-

alent to
⎧
⎪⎪⎨

⎪⎪⎩

dpi (t)

dt
=

⎛

⎝λi − σi

N∑

j=1

p j (t)

⎞

⎠ pi (t), t > 0,

pi (0) = ∫ a1
0 ui (0, a)da.

(2.20)

Let us finish the proof of Theorem 1.1 under the assumption that

λ1/σ1 > 0 and λ1/σ1 > λ j/σ j , ∀ j ≥ 2. (2.21)

We mention that λ1 > 0 is used to guarantee the first species to survive, since from
the above analysis one can see that λi < 0 implies that ui (t, a) → 0 as t → ∞.
Biologically speaking, λi < 0 means that the birth-death process cannot support the
survival of the i-th species before competition happens.

Proof of Theorem 1.1 Let (p1(t), · · · , pN (t)) be the solution of (2.20). Then

dp1
dt

≤ (λ1 − σ1 p1) p1 for all t > 0,

and note that p1 > 0 for all t > 0. Define Wj := p
1/σ j
j

/
p1/σ11 for any j = 2, · · · , N .

It follows from (2.20) that

dWj

dt
= (λ j/σ j − λ1/σ1)Wj , ∀t > 0, j = 2, · · · , N .

Due to λ1/σ1 > λ j/σ j for all j ≥ 2, we deduce

Wj (t) = Wj (0) exp{(λ j/σ j − λ1/σ1)t} → 0 as t → +∞. (2.22)

Since p1(t) is uniformly bounded, we derive that p j (t) → 0 for all j ≥ 2. Recall that
the limiting equation of p1 in (2.20) is the following

dp1(t)

dt
≤ (λ1 − σ1 p1(t)) p1(t), t > 0. (2.23)

Fix a t0 > 0 and consider the following auxiliary equation:

{
dy
dt = (λ1 − σ1y)y, t0 < t < ∞,

y(t0) = p1(t0).
(2.24)
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Clearly, y → λ1/σ1 as t → ∞. Further, by comparison principle, there holds y(t) ≥
p1(t) for all t ≥ t0. On the other hand, we have

d

dt
ln

(
p1
y

)

= p′
1

p1
− y′

y
= σ1(y − p1) − σ1

N∑

j=2

p j .

It follows that

y − p1 = 1

σ1

d

dt
ln

(
p1
y

)

+
N∑

j=2

p j .

Integrating the above equality from t0 to t , we then obtain

∫ t

t0
(y(η) − p1(η))dη = 1

σ1
ln

(
p1(t)

y(t)

)

+
N∑

j=2

∫ t

t0
p j (η)dη ≤ M < ∞,

whereM is independent of t , since p1(t) and y(t) are both bounded, and
∫ t
t0
p j (η)dη <

∞ for j = 2, . . . , N due to (2.22). This implies that
∫ t
t0
(y(η) − p1(η))dη < ∞.

Furthermore, it is easily seen that d
dt (y(t) − p1(t)) is bounded in [t0,∞). Hence

p1(t) − y(t) → 0 as t → ∞; that is, p1(t) → λ1/σ1 as t → ∞. Therefore, the
desired result (2.4) follows from (2.7) and (2.16). �

Remark 2.2 We would like to mention that for system (2.1) with general bi j , one can
investigate its dynamics via studying (2.13). In the present paper, to illustrate the
effects of the maximum age on the principal eigenvalue, we only focus on the simplest
competition case, i.e. bi j = −σi .

2.2 Monotonicity of the principal eigenvalue on themaximal age

We now focus on the effects of the maximum age on the principal eigenvalue, and
in particular, show that under the scaled assumptions on β and μ given in (1.6), the
principal eigenvalue is increasing with respect to the maximum age. This will imply
(2.21) to finish the proof of Theorem 1.1. First from (2.2) observe that λi is increasing
and decreasing with respect to the birth rate β and death rate μ, respectively. It means
that under the same maximum ages, increasing birth rates or decreasing death rates
will help the species to win the competition, which is quite reasonable biologically.

As mentioned before, the domains of death and birth rates as functions of ai are
[0, ai ). It follows that once ai varies, the death rate function μ(·, ai ) and birth rate
function β(·, ai ) may change arbitrarily. In particular, the assumption of μ(·, ai ) in
(1.2) will make it change its blow-up points when ai varies. Based on the above obser-
vations, one can imagine that the behavior of a+ → λ(a+) could be very complicated,
without any monotonicity. This motivates us to provide some suitable assumptions on
μ and β to study the monotonicity. Now we present a monotonicity result as follows
including more choices on β and μ.
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Lemma 2.3 For each a+ > 0, let μ(·, a+) ∈ L∞
loc([0, a+)) be any nonnegative func-

tion satisfying
∫ a+
0 μ(a, a+)da = +∞. Let λ(a+) denote the principal eigenvalue of

the problem

{
dϕ
da = −μ(a, a+)ϕ − λϕ, a ∈ (0, a+],
ϕ(0) = ∫ a+

0 β(a, a+)ϕ(a)da,
(2.25)

where β(·, a+) ∈ L∞(0, a+) is any nonnegative function.

(i) If a+ �→ μ(a, a+) is differentiable and non-increasing and a+ �→ β(a, a+)

is differentiable and non-decreasing for any a > 0, then a+ �→ λ(a+) is non-
decreasing;

(ii) If {
μ(a, a+) = (1/a+)μ̃

(
a/a+)

with some μ̃ ∈ L∞
loc,+([0, 1)),

β(a, a+) = (1/a+)β̃
(
a/a+)

with some β̃ ∈ L∞+ (0, 1),

then λ(a+) = λ(1)/a+, and in particular, a+ �→ λ(a+) is non-increasing.

Remark 2.4 Observe that Lemma 2.3-(ii) is just our choice of β and μ in (1.6). Thus
once Lemma 2.3-(ii) is proved, due to σi ≡ 1, λ1 > 0 and λ1 > λ j for all j =
2, · · · , N hold automatically, thus the proof of Corollary 1.3 is complete.

Proof Similar to (2.2), the principal eigenvalue λ(a+) satisfies

∫ a+

0
β(a, a+)e−λ(a+)ae− ∫ a

0 μ(s,a+)dsda = 1. (2.26)

(i) We first prove the monotonicity of λ(a+) under the assumption (i). To this end,
define H(a+, λ) : (0,∞) × R �→ [0,∞) as follows:

H(a+, λ) :=
∫ a+

0
β(a, a+)e−λae− ∫ a

0 μ(s,a+)dsda.

Then H is partially differentiable with respect to λ and ∂λH(a+, λ) > 0. Due to the
differentiability of μ and β with respect to a+, by the implicit function theorem, we
conclude that λ = λ(a+) is differentiable with respect to a+. Now we can take the
derivative of (2.26) and obtain

∫ a+

0

∂β(a, a+)

∂a+ e−λ(a+)ae− ∫ a
0 μ(s,a+)dsda

− λ′(a+)

∫ a+

0
aβ(a, a+)e−λ(a+)ae− ∫ a

0 μ(s,a+)dsda

+ β(a+, a+)e−λ(a+)a+
e− ∫ a+

0 μ(s,a+)ds

−
∫ a+

0
β(a, a+)e−λ(a+)ae− ∫ a

0 μ(s,a+)ds
[∫ a

0

∂μ(s, a+)

∂a+ ds

]

da = 0.
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Then it follows from (i) that

λ′(a+) ≥ β(a+, a+)e−λ(a+)a+
e− ∫ a+

0 μ(s,a+)ds

∫ a+
0 aβ(a, a+)e−λ(a+)ae− ∫ a

0 μ(s,a+)dsda
≥ 0,

which implies that λ(a+) is non-decreasing in a+.
(ii) Under the assumption in part (ii), by the characteristic equation in (1.9), we

calculate that

1 =
∫ a+

0

1

a+ β̃(a/a+) e−λ(a+) a e− 1
a+

∫ a
0 μ̃(s/a+) dsda

=
∫ 1

0
β̃(a) e−λ(a+) a+ a e− ∫ a

0 μ̃(s) dsda.

This together with the monotonicity of the mapping λ �→ ∫ 1
0 β(a)e−λae− ∫ a

0 μ(s)dsda
implies immediately that a+ λ(a+) = λ(1). The proof is complete. �


Before ending this subsection, let usmention that there is another situation appeared
in previous studies, which also could induce monotonicity. That is individuals can
attain ages greater thanai , but they are no longer tracked in themodels. This assumption
first appeared inWebb (2008) and is used later byWalker andZehetbauer (2022).Under
this assumption, one can view β(·, ai ) ≡ β(·) andμ(·, ai ) ≡ μ(·) for i = 1, 2, . . . , N
defined directly in [0,∞), and only let the maximum age ai vary in [0,∞).

Then the integral
∫ ai
0 β(a)π(a, 0)da is non-decreasing with respect to ai . This

implies that the species with the largest maximum age maxi {ai } has the largest prin-
cipal eigenvalue λmax := maxi λi for all i = 1, 2, . . . . Then by Theorem 1.1, the
species with the largest maximum age will win the competition and drives the others
to extinction.

3 Examples and counterexamples

We have investigated the global dynamics of an age-structured competition model
(1.6) with equal competition coefficients. In particular, we have studied the effects of
maximum ages quantitatively via observing the occurrence of the competitive exclu-
sion phenomenon. Before finishing the paper, wewould like to provide some examples
which are not included in Lemma 2.3, but with very interesting results.

3.1 Complicated behavior of �(a+)

In this subsection, we provide two examples to show the complicated behavior of the
principal eigenvalue λ(a+) with respect to a+. Observe from (2.2) that the principal
eigenvalue λ = λ(a+) of problem (2.25) is completely determined by the integral
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∫ a+

0
β(a, a+)π(a, 0, a+)da :=

∫ a+

0
β(a, a+)e− ∫ a

0 μ(s,a+)dsda.

This explains intuitively why Lemma 2.3-(i) holds. Moreover, we can take an explicit
example as follows:

μ(a, a+) = 1

a+ − a
, β(a, a+) ≡ β(a) independent of a+ (3.1)

which imply that π(a, 0, a+) = 1 − a
a+ . It follows from the compuation in Lemma

2.3 that

λ′(a+) =
∫ a+
0 β(a)

∂π(a,0,a+)
∂a+ e−λ(a+)ada

∫ a+
0 β(a)π(a, 0, a+)ae−λ(a+)ada

> 0, (3.2)

which shows that a+ �→ λ(a+) is increasing.
However, if β(a, a+) orμ(a, a+) is not monotone with respect to a+, does it imply

that a+ �→ λ(a+) is not monotone? To illustrate this situation, let us consider another
example as follows

μ(a, a+) = 1

a+ − a
+ a+, β(a, a+) ≡ 1 independent of a+. (3.3)

Direct computation yields

π(a, 0, a+) =
(
1 − a

a+
)
e−a+a,

and thus for a+ > 1

∂π(a, 0, a+)

∂a+ = e−aa+
a(1 + aa+ − (a+)2)

(a+)2

{
< 0, a ∈ (0, a+ − 1/a+),

> 0, a ∈ (a+ − 1/a+, a+).

It follows that

∫ a+

0
β(a, a+)

∂π(a, 0, a+)

∂a+ e−λ(a+)ada

= 1

(a+)2

∫ a+−1/a+

0
e−aa+

a(1 + aa+ − (a+)2)e−λ(a+)ada

+ 1

(a+)2

∫ a+

a+−1/a+
e−aa+

a(1 + aa+ − (a+)2)e−λ(a+)ada

≤
[

−1

6
(a+)2 + 1

2

]

e−(λ(a+)+a+)(a+−1/a+) < 0 as a+ � 1, (3.4)
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Fig. 2 different πi

where we used the fact that λ(a+)+a+ > 0 (otherwise
∫ a+
0 e−λ(a+)aπ(a, 0, a+)da ≥

a+/2 > 1 for a+ � 1). It follows that a+ �→ λ(a+) is decreasing with respect to
a+ for μ and β satisfying (3.3). Hence we have seen that there still could happen that
a+ �→ λ(a+) is monotone for a+ � 1 under a+ �→ β(a, a+) being monotone but
a+ �→ μ(a, a+) being not monotone. The behind reason is that the sign of λ′(a+) is
determined by the integral

∫ a+

0
β(a)

∂π(a, 0, a+)

∂a+ e−λ(a+)ada,

which is the global behavior in the whole interval [0, a+) rather than the local one.
Next, to illustrate the non-monotone behavior of a+ �→ λ(a+), let us still consider

the example (3.3). For a+ < 1, one has

∂π(a, 0, a+)

∂a+ = e−aa+
a(1 + aa+ − (a+)2)

(a+)2
> 0, a ∈ [0, a+],

and thus

∫ a+

0
β(a, a+)

∂π(a, 0, a+)

∂a+ e−λ(a+)ada

= 1

(a+)2

∫ a+

0
e−aa+

a(1 + aa+ − (a+)2)e−λ(a+)ada

≥ − 1

6
(a+)2 + 1

2
> 0, for a+ < 1,

where similarly we used the fact that λ(a+) + a+ < 0 (otherwise
∫ a+
0 e−λ(a+)a

π(a, 0, a+)da ≤ a+/2 < 1 for a+ < 1). In summary, this example (3.3) shows that
a+ �→ λ(a+) is increasing first for a+ < 1, and then decreasing when a+ � 1, corre-
sponding to the complicated non-monotone behavior of a+ �→ λ(a+). Furthermore,
for such non-monotone cases, it would be very interesting to investigate the optimal
maximum age to allow the population attain its largest principal eigenvalue in realistic
ecology, see (Kozłowski and Wiegert 1987) for more details.
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Finally, we illustrate the behavior a+ �→ λ(a+) by three figures, see Figure 2.
Note that π(a, 0, a+), as the survival rate of the species, is decreasing with respect
to a satisfying π(0, 0, a+) = 1 and π(a+, 0, a+) = 0. In Figure 2a, μ(a, a+) =

1
a+−a , and one can see that

∫ a+
0 π(a, 0, a+)da is increasing with respect to a+, while

in Figure 2c,
∫ a+
0 π(a, 0, a+)da is decreasing with respect to a+. This shows that

if β(a, a+) ≡ β(a), then a+ �→ λ(a+) has two completely opposite monotone
behaviors, which shows again the very complicated behavior of a+ �→ λ(a+). Finally,

Figure 2b is an example that
∫ a+
0 β(a, a+)da is increasing with respect to a+, which

shows that a+ �→ λ(a+) is increasing provided μ(a, a+) ≡ μ(a) independent on
a+. In summary, the sign of λ′(a+) is determined by the areas and thus the shapes of
π(a, 0, a+) and β(a, a+) in [0, a+), which can exhibit complicated behavior.

3.2 Effects of maturation time

In this subsection, we provide a second interesting example again to show the compli-
cated behavior of the principal eigenvalue of problem (2.25) under different choices
of μ(a, a+) and β(a, a+). We assume μ(a, a+) ≡ μ(a) independent on a+ and

β(a, a+) =
{

C
a+−τ

, a ∈ [τ, a+),

0, a ∈ [0, τ ),

where τ ∈ (0, a+) represents the maturation time and C > 1 is any constant.
With the above choices of μ and β, model (1.6) is corresponding to a two-stage

model, including juveniles and adults, whose characteristic equation is given as fol-
lows

1 = C

a+ − τ

∫ a+

τ

e−λ(τ)ae− ∫ a
0 μ(s)dsda. (3.5)

The interested readers can refer to Fang et al. (2016) for more details on the derivation
of the precise equations of a two-stage model. Here we are interested in the effects of
maturation time τ on the principal eigenvalue λ = λ(τ). More precisely, we have the
following result.

Corollary 3.1 Let μ, β be defined above and λ(τ) ≥ 0 hold. Define φ : [0, a+) ×
[0,∞) �→ [0,∞) as

φ(τ, λ) := C

a+ − τ

∫ a+

τ

e−λae− ∫ a
0 μ(s)dsda. (3.6)

Then τ �→ λ(τ) is strictly decreasing. Moreover, if φ(0, 0) > 1, then there exists a
unique τ0 ∈ (0, a+) such that φ(τ0, λ(τ0)) = 1 with λ(τ) > 0 in [0, τ0] and λ(τ) < 0
in [τ0, a+].
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Remark 3.2 The definition of β implies that the total birth rate along the life spans
of the population is a constant larger than 1. Furthermore, λ(τ) ≥ 0 is required to
ensure that the species persists, otherwise it will vanish. The conclusion of Corollary
3.1 states that as long as the species survives, the earlier the maturation, the larger the
intrinsic growth rate.

Proof of Corollary 3.1 Observe from (3.6) that φ(τ, λ) → 0 as λ → ∞ and φ(τ, λ) →
∞ as λ → −∞. Due to ∂λφ(τ, λ) < 0, the implicit function theorem applies to
conclude that there exists a unique λ(τ) ∈ R such that φ(τ, λ(τ)) = 1 and λ(τ) has
the same sign as φ(τ, 0) − 1.

On the other hand, the quotient rule yields

∂τφ(τ, λ) = C

(a+ − τ)2

∫ a+

τ

e−λae− ∫ a
0 μ(s)dsda − C

a+ − τ
e−λτ e− ∫ τ

0 μ(s)ds .

Due to the fact that λ ≥ 0 and e−λae− ∫ a
0 μ(s)ds is strictly decreasing and not constant

in a ∈ (τ, a+), we obtain ∂τφ(τ, λ) < 0. Moreover, for any τ ∈ (0, a+), there exists
a neighborhood U of τ such that λ is continuously differentiable with respect to τ on
U . By the chain rule, there holds

λ′(τ ) = −∂τφ(τ, λ(τ ))

∂λφ(τ, λ(τ ))
, τ ∈ U .

It follows that λ′(τ ) has the same sign with ∂τφ(τ, λ(τ )). Thus τ �→ λ(τ) is strictly
decreasing in the region of λ(τ) ≥ 0. The remaining conclusions are obvious. This
completes the proof. �


It makes sense biologically that the species will mature simultaneously after being
born, and then will produce new species. In other words, the species with zero matu-
ration period will have the maximal principal eigenvalue and thus the largest intrinsic
growth rate.

Finally, we would like to mention that the model presented in this paper is a sim-
plified formulation that only accounts for generic competition effects among species.
Such assumptions may imply unrealistic persistence or vanishing of surviving traits
under evolutionary forces, which is not observed in natural populations. In reality,
several additional ecological features may shape species dynamics. For instance, the
intensity of intraspecific competition often depends on external environmental con-
ditions. A relevant example is provided by mosquito species that breed in aquatic
habitats. Chemical cues in water bodies can act as selective forces:Aedes aegypti tends
to oviposit in habitats with lower ammonia concentrations, whereasCulex quinquefas-
ciatus is more tolerant of and even prefers higher ammonia levels. Because ammonia
levels in natural water resources fluctuate seasonally with rainfall and organic decom-
position, the suitability of breeding sites alternates across the year. As a result, different
species may thrive during different seasons, leading to temporally varying competitive
advantages that are not captured by the current model.
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