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Abstract

The paper is concerned with the persistence and spatial propagation of populations
with age structure in spatially periodic media. We first provide a complete charac-
terization of the global dynamics for the problem via investigating the existence,
uniqueness and global stability of the nontrivial equilibrium. This leads to a neces-
sary and sufficient condition for populations to survive, in terms of the principal
eigenvalue of the associated linearized problem with periodic boundary conditions.
We next establish the spatial propagation dynamics for the problem and derive the
formula for the asymptotic spreading speed. The result suggests that the propaga-
tion fronts of populations are uniform for all age groups with a common spreading
speed. Our approach involves developing the theory of generalized principal eigen-
values and the homogenization method to address novel challenges arising from the
nonlocal age boundary condition.
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1 Introduction

In this paper, we are concerned with an age-dependent population dynamics model
with spatial diffusion in the spatially periodic media:
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Opu + Ogu = DOrpu — pu(a, x)u, (a,2) € (0,a,) xR, t >0,
u(t,0,2) = f (z, foa’" ﬁ(a,x)u(t,a,w)da) , TER, t>0, (1.1)
u(0,a, ) = up(a, ), (a,2) € (0,am) x R,

where u(t, a, x) represents the density of the population with age a at location x
and time ¢, and the maximal age is parameterized by a,, € (0,+0oc]. Function
e C0%% (R x [0,a,,)) with a € (0,1) represents the age-specific death rate of
individuals, which is assumed to be nonnegative and periodic in x with period L > 0.
Let nonnegative function 3 € C?T%(R, L>°(0, a,,)) with a € (0, 1) denote the age-
specific birth rate of individuals, which is L-periodic in x. The total birth rate at loca-
tion x and time 7 is given by the nonlocal term

Am

B(a, x)u(t, a, z)da.
0

Theageboundary conditionis givenby thenonlinear function f € C2T*1(R x [0, c0))
with « € (0,1), of the total birth rate, which is also assumed to be L-periodic in x.
The main feature of problem (1.1) is the combination of nonlinearity and nonlocality.

Structured models bridge the gap between the individual level and the population
level, allowing us to study the population dynamics by examining the characteristics
of individuals [41, 46, 52]. These models typically involve parameterizing the state
of individuals based on their physiological or physical conditions, among which the
age is an important characteristic. The age-structured model was proposed in the pio-
neering work of McKendrick and Lotka during 1920-1940 [38, 45] and has attracted
intensive attentions in both theoretical and empirical investigations [1, 29, 30, 61].

In biological modeling, the spatial dispersal of individuals plays a crucial role.
Since individuals need to be mature enough chronologically to disperse, age-struc-
tured population models incorporating diffusion arise naturally in biological investi-
gations. The diffusive problem (1.1) was first proposed by Gurtin [26] and has been
extensively studied in the literature [10, 25, 35, 39, 58, 60], with a focus on the
dynamics of problem (1.1) in spatially bounded domains. Until 2007, the dynamics in
unbounded domains was investigated via analyzing the existence of traveling wave
solutions, see e.g. [13, 16-18]. However, the global dynamics and spatial spreading
properties of problem (1.1) are left open.

The focus of this paper is two-fold. The first aim is to provide a complete char-
acterization of the global dynamics for problem (1.1), as motivated by biological
questions regarding the persistence of age-structured populations in spatially peri-
odic environments. Specifically, we obtain the existence, uniqueness, and stability of
stationary solutions for problem (1.1). This leads to a necessary and sufficient condi-
tion for the population to survive. The second aim is to establish the spatial propaga-
tion dynamics of problem (1.1) and derive the formula for the asymptotic spreading
speed, as motivated by the invasion of age-structured populations. It turns out that the
propagation fronts of populations is asymptotically unified for all age groups, and the
age structure only affects the common spreading speed. Our approach focuses on the
development of the homogenization theory for problem (1.1) in order to overcome
new challenges arising from the nonlocal age component.
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1.1 Global dynamics of Cauchy problem (1.1)

The stationary equation of problem (1.1) can be written as

{ Oqu(a,x) = DOypu(a, z) — pla, z)ula,x), (a,z) € (0,a,) X R, 12)

u(0,z) = f (as, j;)am ﬂ(a,z)u(a,x)da) , r € R.

Under some assumptions to be specified later, the positive solutions of (1.2) turn out
to be periodic in x, while the periodicity assumption is not imposed a priori.

The dynamics of problems (1.1) and (1.2) are related to the following spatially
periodic eigenvalue problem

Oap = DOyrp — p(a, z)p — A, (a,2) € (0,a,) X R,
0(0,2) = fu(x,0) [§™ Bla,x)p(a,z)da, = €R, (1.3)
ola,z) = pla,z + L), (a,z) € (0,a,) X R,

which can be regarded as the linearization of problem (1.2) at the trivial equilibrium
u = 0. We first impose the following assumptions for the age-specific death rate p
and birth rate 5.

Assumption 1.1 (i) There exists pins > 0 such that p(a, ) > uine a.e. in (0, am)x
[0,L], and [ p(a, z)da = +oc forall @ € [0, L].

(ii) There exists a. € (0,a,,) such that S=0 on [ac am)x [0,L] and
[ mingepo,z) B(s, x)ds > 0 forany a € [0, ac).

Remark 1.1 Assumption 1.1 is usually imposed in the age-structured models [29, 30,
41, 61]. The assumption foa’" w(a, x)da = 400 in part (i) is often employed to guar-
antee that the population density reaches zero at the maximal age. Part (ii) serves to
obtain the simplicity of the principal eigenvalue and strict positivity of the principal
eigenfunction for problem (1.3). We refer to Engel and Nagel [19, Theorem 4.4] or
Ducrot et al. [14] for more details. The assumption 8 = 0 nearby the maximal age
means that the birth rate becomes zero when the age of the individuals approaches
the maximal age, which is biologically reasonable. This allows us to consider prob-
lem (1.1) on a restricted interval [0, a] for any a4 € [a., a.,) ; see Remark 2.1 for
further details. Such cutoff of age interval guarantees the principal eigenfunction to
be positive everywhere in [0, a4 ] X R and avoids the singularity of the logarithm of
the principal eigenfunction evaluated at the maximal age.

Next we make some assumptions on the nonlinear function f = f(x, u) as follows:

Assumption 1.2 (i) fu(z,u) > 0 forall u € [0,00) and z € R.
(ii) f(z,0) =0and @ is decreasing with respect to u for all x € R.

(iii) There exists M > 0 such that f(x,u) < M forall u € [0,00) and = € R.
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Remark 1.2 Two typical examples satisfying Assumption 1.2 are f(x,u) = Hﬁ
with some constant A > 0, commonly known as Holling’s type II response [27, 28],
and f(z,u) =1— e~ %, referred to as the logistic function and used to model the
population growth [43]. Assumption 1.2-(i) is imposed to eliminate the existence
of oscillatory solutions, which is commonly observed in age-structured models as
in [40, 41] and the references therein. In combination with Assumption 1.2-(ii), it
is necessary for our problem, in particular in the monotone iterative scheme (using
comparison principles) to obtain the nontrivial positive equilibrium of problem (1.1)
(see Proposition 3.5). Assumption 1.2-(iii) means that the birth rate of the population
is bounded, which guarantees that the solution of (1.1) is uniformly bounded.'

Under Assumptions 1.1 and 1.2, the existence of the principal eigenvalue for problem
(1.3) is established in Sect. 2.1. Note that Assumptions 1.1 and 1.2 will be required
throughout the paper. Henceforth, we will assume their validity without repeating
them, while we will indicate the additional assumptions where necessary.

Our first main result is given as follows.

Theorem 1.1 Let u(t, a, x) be the solution of (1.1) with any initial value vy >% 0.
Denote by H(0)’ the principal eigenvalue of (1.3).

(1) IfH(0) > 0, then there exists a unique positive solution to (1.2), denoted
by u*(a, x), which is L-periodic in x and is globally asymptotically stable
in the sense that u(t, a, ) — u*(a, ) in Coc([0, arm) X R) as t — 4o0.
Furthermore, for any ay. € [ac, Gy,), if inf (4 2)e[0,a, )xr Uo(a, ) > 0, then
u(t,a,z) = u*(a,z) in C([0,a1] X R) as t — +o0.

(ii) If H(0) < 0, then any nonnegative solution of (1.2) is identically zero and
u(t,a,2) = 0in C([0,ay] X R) as t — 400 for any ay € [ac, am).

Theorem 1.1 provides a complete description for the global dynamics of prob-
lem (1.1), which indicates the occurrence of the hair-trigger effect when H(0) > 0.
Biologically, Theorem 1.1 formulates a necessary and sufficient condition for the
persistence of an invading species in terms of the principal eigenvalue of (1.3), which
reflects many crucial information regarding the interaction between age structure,
species movement, and environmental heterogeneity. Similar results for age-struc-
tured models with diffusion in bounded domains have been found in [35, 39, 58].
However, establishing such global dynamics in unbounded domains is more intricate
compared to bounded domains, even in the absence of age structure, see e.g. [31, 49].

!Indeed, if f is unbounded, the solution of problem (1.1) may blow up at infinity. For instance, assume
that f(x,u) = u(1 + ™), which satisfies parts (i) and (ii) in Assumption 1.2 but is not bounded. If
Uo (a, 13) has a positive lower bound, then up to multiplication by a positive constant, it can be verified
that u(t, a, x) = eH(O)th(a, &) serves as a sub-solution of (1.1), where (H (0), ) is the principal
eigenpair of problem (1.3) with f(x, u) = u. Hence, the solution of (1.1) is not uniformly bounded

whenever H(O) > 0.

2The notation “H (0)" is adopted to keep consistency with the principal eigenvalue H ()\) of problem
(1.5) below.
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Specifically, it is essential to prove a strong persistence result such that the solutions
of problem (1.1) have a uniformly positive lower bound, which is of importance in
analyzing the global dynamics by constructing suitable sub-solutions. Moreover, due
to the presence of the operator d,, problem (1.1) resembles a hybrid PDE, exhibiting
parabolic and hyperbolic properties simultaneously. The classical parabolic estimates
for (1.1) have not been established. This and the nonlocal term in age boundary con-
dition lead to some difficulties in obtaining Theorem 1.1.

Remark 1.3 To prove Theorem 1.1, it is necessary to establish the relation between
the principal eigenvalue of (1.3) and that of the following eigenvalue problem:

{ Ouu(a, x) = DOypu — p(a, x)u(a, ) — Au(a,z), (a,z) € (0,an,) X R, (L4)

U(Oa .23) = fu(xv 0) Qam B(Ga m)u(a, x)da, T e R,

for which the eigenfunction is not necessarily periodic in x. Such a problem itself is
of'independent interest. Note that the principal eigenvalue of (1.4) may not exist. This
motivates us to define its generalized principal eigenvalue, which can be obtained
through a limiting procedure of principal eigenvalues associated with problem (1.4)
on bounded domains with Dirichlet boundary conditions (Lemma 2.5). Due to the
symmetry property of our operator with respect to spatial diffusion (without advection
term), one can establish the relation between such generalized principal eigenvalues
and the principal eigenvalue of (1.3) (Proposition 2.6). In the aforementioned argu-
ment, the presence of the age-structure term distinguishes our eigenvalue problem
from the time-periodic one as studied in [47—49]. In particular, our analysis requires
special consideration on the nonlocal boundary condition at a = 0.

1.2 Spreading properties of Cauchy problem (1.1)

Next we consider the spreading properties of problem (1.1). For any A € R, consider
the following weighted eigenvalue problem:

Oap = DOyytp — 2DAIp + DXN2p — pla, z)p — H\ )@, (a,z) € (0,a,) X R,

0(0,2) = fu(z,0) foa"” B(a, z)¢(a,x)da, z € R, (1.5)
¢(a,z) = pla,z + L), (a,z) € (0,am) x R.

Let H(X) denote the principal eigenvalue of (1.5), for which the existence is estab-
lished in Sect. 2.1. Our second main result is stated as follows.

Theorem 1.2 Let u(t, a,x) be the solution of (1.1) with any compactly supported
initial value uwg >% 0. Assume H(0) > 0 and denote by u*(a, ) the unique positive
solution to (1.2) as given by Theorem 1.1, then there exists c* > 0 such that

7 el > et agl0,04)
lim sup sup |u(t,a,z) —u*(a,z)|=0, for all 0<c<c* and at € [ac,am).

{ lim sup sup wu(t,a,x)=0, for all ¢>c¢* and a4 € [ac, am),
E700 || <et ag[0,a4]
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More precisely, the spreading speed c* can be determined by

¢* = min H(A), (1.6)

where the minimum can be attained by a unique positive \.

The spreading properties shown in Theorem 1.2 are uniform in a € [0, a,,). One
possible biological interpretation is that, since the maximal age of the population is
finite, for all individuals born at the propagation front at time ¢ > 0, the spatial dis-
tance diffused by the population throughout their lifespan remains finite. Hence, the
positions of all age groups can be expressed as ¢*t + O(1), i.e. all individuals with
different ages will spread at the same speed up to O(1) terms. To our best knowledge,
this phenomenon appears to be first proved in reaction-diffusion models with addi-
tional structures.

Theorem 1.2 is established via the homogenization method inspired by the works
of Berestycki and Nadin [5, 6]. Such an approach was originally introduced by Fre-
idlin [22] utilizing probabilistic arguments, and was generalized by Evans and Sou-
ganidis [20] by means of PDE arguments. The ideas for our problem are outlined as
follows:

1. Consider the transformations:

t X us(t,a,x)
€t7 ) = SRRt d €= 1 )
ue(t, a, ) u(eae) and 2 en< i )

where M > 0 is the uniform upper bound of the solution u to problem (1.1).
Note that the variable a has not be rescaled. Then u, and z. satisfy the following
equation:

Osze + éaaze = De0ppze + D|0s2|? — (a, f) , (a,z) € (0,am) X R, t >0,
€dyue + Ogue = €2Ddypuc — 1 (a, %) ue, (a,z) € (0,am) xR, t >0, (1.7)
ue(t,0,z) = f (f7 foa" B (a7 f) ue(t, a, :Jc)da) , reR, t>0.

The presence of the singular term “%aazé" and the nonlocal boundary condition
in (1.7) leads to some challenges in analyzing the limits of u. and z..

2. Define the half-relaxed limit:

ux(t,a,x) = liminf  u.(t,ad,2").
e—0
(t',a’,2") = (t,a,z)

We establish that {u, = 0} = {(¢,z) : « > ¢t,t > 0} x [0, a,,) for some ¢ > 0,

which implies that the support of the limiting function . is age-independent
(Proposition 4.1). This is a key ingredient of our homogenization method in this

paper.
3. Forany ay € [ac, an), define the half-relaxed limits:
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Zy:=liminf inf z(¢t,a,2) and Z*:=limsup sup z.(t,a,x).
e—=0 a€[0,a4] e—=0  a€l0,a4]

Let the critical value critical value ¢ > 0 be defined in Step 2. We prove that Z,
and Z* constitute, respectively, a lower semi-continuous viscosity super-solu-
tion and an upper semi-continuous viscosity sub-solution of the Hamilton-Jacobi
equation

{ O0Z —H(0,Z)=0, x>ct, t>0,

1.8
Z(t,ét) =0, t>0, (18

where the Hamiltonian H (0, Z) is the principal eigenvalue of problem (1.5)
with A = 0, Z (Lemmas 4.2 and 4.3).
4. Define the half-relaxed limit:

2i(t,a, 7)== liminf  z.(¢,d,2').
e—0
(t',a’,2") = (t,a,z)

By applying Step 3 and the comparison principle for Hamilton-Jacobi equations,
we establish that z, = z.(¢, x) is independent of a € [0, a,,) and constitutes a
viscosity solution of the Hamilton-Jacobi equation (1.8). Based on this, we prove
that u, > 0in Int{z, = 0} x [0, a] for any a+ € [ac, a,,) (Lemma 4.5).

5. We complete our analysis by showing that the boundary point ¢ serves as the
spreading speed of (1.1) and coincides with ¢* as defined by (1.6).

Mathematically, there are two main difficulties in proving Theorem 1.2. First, the
presence of age structure in problem (1.1) brings the nonlocal effect in determining
limits of u. and z. as ¢ — 0. This forces us to establish the uniform estimates with
respect to the age variable a. Second, the nonlinear effects appear in the boundary
condition at ¢ = 0, which are different from the usual positions in the classical reac-
tion-diffusion equations. This leads to some difficulties in applications of the theory
of the viscosity solutions for Hamilton-Jacobi equations. Finally, to our best knowl-
edge, while the homogenization method has been successfully employed in the stud-
ies of spreading properties for reaction-diffusion equations with random dispersal [5,
6, 37], nonlocal dispersal [8, 36] as well as time delays [34], its extension to problems
with additional structures remains unexplored. We believe that our analytical frame-
work developed in this paper may be applicable to other structured equations.

To conclude this section, we mention that our approach can be applied, with minor
modifications, to the spreading problem of age-structured species in higher dimen-
sions. Here, we focus on the one-dimensional case for the sake of clarity and sim-
plicity in our presentation. For related works on the asymptotic spreading of a single
population without age structure in heterogeneous environments, we refer to [3, 11,
21, 33, 48, 63] for the one-dimensional case, and refer to [4, 6, 50, 54, 62] for higher-
dimensional case. In addition, our analysis specifically addresses the problem (1.1)
with multiple age groups, which distinguishes from previous studies. In those works,
the authors integrate the population from maturation age to maximal age, and trans-
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form (1.1) into a time-delayed reaction-diffusion equation under some specific death
and birth rate functions. We refer to [12, 23, 31, 55, 57] for the related results.

The paper is organized as follows. In Sect. 2, we provide the existence of principal
eigenvalues of (1.4) and (1.5) along with their properties, which are used to define
the spreading speed and study the global dynamics of (1.1). In Sect. 3, we obtain the
global dynamics of (1.1) including the existence, uniqueness, and global stability of
positive equilibrium, which proves Theorem 1.1. In Sect. 4, we study the spreading
properties of (1.1) and establish Theorem 1.2.

2 Theory of the principal eigenvalue
2.1 The existence and qualitative properties
In this subsection, we shall investigate the existence and some qualitative proper-

ties of the principal eigenvalue for problem (1.5). We first introduce the following
notations:

pla) = ngéf}] pla,z),  @(a) = Jnax n(a,z),
Bla) := zgféf}] Bla,x),  Bla):= Jnax Bla, ), 2.1
f(0) := CEg%(i))nL] fu(z,0), £(0) := wrgn{gma fu(z,0).

Lemma 2.1 Let Assumption 1.1 hold. Then there exists a unique principal eigenvalue
of (1.5), which is algebraically simple, and the corresponding eigenfunction can be
positive.

Proof The proof can follow by [25, Theorem 3] and [59, Lemma 2.6]. Here we only
provide a sketch proof for completeness. Denote by X the Banach space

X = Gpar(R) :={p € C(R) : p(z + L) = ¢(x)}, (22)

and denote its positive cone by X . Observe that X is a normal and generating
cone. Define the following function spaces:

X=X xL'Y(0,an),X), Xo={0x}xL((0,an),X),
endowed with the product norms and the positive cones:
Xt =X, x {ue L'(0,am), X) s u(a,") € X; ae. in (0,a,)}, X =XTNA.

We consider the following problem posed in X for 0 < 7 < a < @y,
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{ 94v(a) = Dvgz(a) — 2DA,v(a) + DA%v(a) — pla, Yv(a), 7<a < am,

v(r)=neX. 23)

To avoid introducing more notations involving A, we omit A in the following nota-
tions. It follows that problem (2.3) generates an evolution family on X, denoted by
{U(a,T)}o<r<a<a,, - In fact, such U can be given by a Green’s function G:

(U( /G(IT.’IJ n(y)dy, Y0<7<a<an. (2.4)

Moreover, there exist M > 0 and w € R such that
[t (a, 7)) o) < Me* ™7, VO <7 <a<apn. 2.5)

In addition, we also define the following family of bounded linear operators
{Mhsw € L(X, ) for (n, g) € X by

Witng) = (0. U@+ [T U)o
0

Following the argument in Thieme [56, Section 6], we can prove that this provides
a family of positive pseudoresolvents. Hence, by Pazy [51, Section 1.9], there exists
a unique closed Hille-Yosida operator B : dom(B) C X — X with dom(B) = X,
such that

M —B)"' =W, forall A>w, (2.7)

where I : X — X denotes the identity operator.
Furthermore, we define C' € L(Xy, X) by

C(0,h) = ( / B(a, Yh(a)da, o) (0,1) € Xp, 2.8)

and A : dom(A) C X — X by

A=B+C with dom(A)=dom(B) C Xj. (2.9)

Then it suffices to prove the existence of the principal eigenvalue for operator 4.
To this end, for each A € R, we define a linear operator My : X — X by

Mad = fu(-,0) / B(a,Ye U (a,0)pda, Yo e X. (2.10)

In fact, M is obtained by plugging the resolvent of B into the integral initial con-
dition (1.5), and we refer to [25, 59] for the derivation. By Assumption 1.1-(ii), it
follows from [25] that M, is a compact and nonsupporting operator in X, where
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nonsupporting is a generalization of strong positivity when working on a Banach
space with a positive cone which has empty interior; see [44] or [53] for the complete
definition. Thus by the Krein-Rutman theorem, for each A € R, the spectral radius
r(My) of operator M, is the principal eigenvalue, which is algebraically simple,
and the corresponding eigenfunction can be positive.

Note from (2.10) that A — (M) is continuous and strictly decreasing. It follows
that such A satisfying (M) = 1 indeed exists and is unique, denoted by H (). By
definition, such H () is an eigenvalue of operator 4. Moreover, if A’ > H(\), then
r(Mar) <r(Mpyy) =1, which implies that (I — M,/ )~! exists, and so does
(A'T — A)~1. This prevents A’ to be an eigenvalue of A and therefore H () is the
principal eigenvalue of 4. Furthermore, the algebraic simplicity follows from that
of r(Mp(x)). By the classical parabolic estimates, the principal eigenfunction of
A associated with H()) is belonging to W'((0, am, ), C2.,(R)). The proof is now
complete. ]

Remark 2.1 Due to 5 = 0 on [a,, a,,) X R as in Assumption 1.1-(ii), the characteris-
tic equation (2.10) can be rewritten as follows:

Mad = ful0) /0 " Bla, e MU(a,0)p da, V6 € X.

We observe from the proof of Lemma 2.1 that the principal eigenvalue of (1.5) is
the unique value such that 7(Mpg(y)) = 1. Hence, for any ay € [ac, am), H(N) is
also the principal eigenvalue of (1.5) with [0, a,, ) replaced by [0, a]. In the follow-
ings, we are focused on the eigenvalue problem (1.5) posed on [0, a1 ] X R instead of
[0,a.,) x R for any ay € [ac, am).

Next we collect some useful properties of the principal eigenvalues for problem (1.5).

Proposition 2.2 Let Assumption 1.1 hold. Denote by H()) the principal eigenvalue
of problem (1.5) as given in Lemma 2.1. Then the following assertions hold.

(1) The map A\ — H(X) is analytic, convex, and even in R.

(i) The infimum of HX) can be attained at some finite value in (0, +00) provided
X
that H(0) > 0.

Proof The adjoint problem of (1.5) can be written as

—H(N(a,z) + fu(z,0)8(a, z)1(0, z), (a,z) € (0,am) x R, (2.11)

{ —0atp(a,z) = DOyzib(a, ) + 2DA0p(a, x) + DA2Y(a, x) — u(a, z)(a, )
Y(a,z) =Y(a,x + L), (a,z) € (0,am) X IRg

Then H () is the principal eigenvalue of (2.11). Due to 8 =0 in [a., a,,) X R as
imposed in Assumption 1.1-(ii), problem (2.11) can be reduced to a parabolic equa-
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tion on [ac, amy) X R, which admits a unique solution for the given initial value at
a = a.. Note from Lemma 2.1 that the principal eigenfunction of (2.11) is unique up
to some multiplier. We can restrict problem (2.11) on [0, a.] X R, for which the prin-
cipal eigenvalue is also H (\) with the same eigenfunction on [0, a.] X R (Indeed, the
principal eigenfunction of problem (2.11) restricted on [0, a.] X R can be uniquely
extended to be the principal eigenfunction of problem (2.11)). Set

Char(R) = {6 € C*(R) : ¢(= + L) = p(x)}. (2.12)
We define the adjoint operator
Ax s WE((0, ac), Cher (R)) = L((0, ac), Cper (R)),
which is restricted on [0, a.] x R such that

[Axv](a, z) :=0,9(a,x) + Ddypip(a, x) + 2D (a, x) + DN*(a, x)

(2.13)
- ,u(av x)w(av :C) + fu(l', O)B(av ZE)i/)(O, 1‘)
We first show that
H(\) = sup inf M,
GEW12((0,a,),C2,, (R)) (0:ac) xR ¢ (2.14)
>0

for which the proof can follow by Griette and Matano [24, Proposition 2.2-(ii)].
Indeed, since Ay admits an eigenfunction ¢ in W°°((0, a.), C%,.(R)), it holds

per
Aro
H\) <H*(\) := sup — .
( ) ( ) ¢eW1’°°((07ac)vc§ex-(R)) (0,ac) xR ¢ (215)
¢>0

Let us show the converse inequality. Given any € > 0, by definition of H*(\) there
exists a positive function ¢ € W1>°((0, a.), C2..(R)) such that

per

—Axd(a, ) + (H*(N) —€)p(a,z) <0, V(a,z) € (0,a.] x R. (2.16)

Following Berestycki et al. [7], we define the generalized principal eigenvalue as
follows:

H(Ay) :=sup{A eR:3¢ € W"*((0,a.),Cl(R)) s.t. ¢ >0
and (—Ax + A)¢ < 0in [0,a] x R}.

As stated in Sect. 2.1, H(\) is the eigenvalue of A, associated with a positive eigen-

function in W1 ((0, a.), CZ.,(R)). We can apply the same argument as in Ducrot

et al. [14, Proposition 5.2] to deduce that H(Ax) = H(X). Hence, it follows from
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(2.16) that H*(\) — e < H(A)) = H(A), so that H*(\) < H()\) due to the arbi-
trariness of € > 0. This together with (2.15) gives H*(\) = H (), so that the supre-
mum is attained at the principal eigenfunction. Hence, (2.14) is proved.

For part (i), we use Kato’s perturbation theory to prove the analyticity. Note that
the family of operators .4, depends analytically on X in the sense of Kato, which is
called holomorphic of type (4),; see [32, Paragraph 2.1 on page 375] for details. Since
the principal eigenvalue is isolated in the spectrum by the Krein-Rutman theorem,
the principal eigenvalue H () is analytic with respect to \; see [32, Remark 2.9 on
page 379].

Next we follow the proof of [24, Proposition 2.2] (or Nadin [47, Proposition 2.10])
to prove the convexity. We first remark that (2.14) can be written as follows:

Aoy

H(\) = sup inf .
( ) e—”wGWl'“’((Oxac)’cger(R)) (0,ac) xR w (217)
P>0

Fix any Ay > A; and « € (0,1). Choose 1 and o such that e*®1(a,x)
and e*%i)y(a,z) are L-periodic in x. Define z; =Inv;,i=1,2, and
z =z + (1 — a)ze, and finally A = aA; + (1 — a)Aq. Elementary computations
then show that 1(a, x) := e*(»%) satisfies that

aaw atﬂ;bl aaqzb?
=« + (1 -« .
( 1 ( ) (0
By the Holder’s inequality, we have
82,;'1,21: ez + |0,2)?
_ 59011/11 _ |az¢}1‘2 _ axzwl _ _ ‘81w2‘2 ( alwl _ azw2>2
T e B A
Ozzwl _ 8111/12
Samg TlmeT

It follows from the Young’s inequality that

. ) 2\ 2(0, (1-a)
Fu(,0)B(a, x)zgil; = (fu(x,())ﬂ(a, ) zlggi z;) (fu(m,o)ﬂ(a, ) Zzgg,xi)
< afu(w,o)ﬁ(a,x)zigg’ g + (1 —a)fu(z,0)8(a, x) zzgg: z;

Thus we have
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Aoty ﬁaw + DOty (0, )

= a,x) + fu(x,0)5(a )

” v P(a,)
S o <aa¢1 +¢-1Da;1;:cz/]1 N /L(C%CE) + fu(x; O)B(CLZE) zigg: i;)
aa'l/JQ + Da:mch 1!}2(07‘%)
s o) (PR ) 4 g 00500 2.

By (2.17), this implies that H(aX + (1 —a)X2)=H(\) < aH(M\)+
H(1 — a)H(A2), which proves that A — H () is convex.
Next set ¢(a, z) := ¢(a, —x) for any ¢ € W1>°((0,a.), C2..(R)), then

per

Opad(a, —2) + 200pd(a, —) = Dped(a, z) — 2200 d(a, ), V(a,z) € (0,a] x R.

It follows from the max-min characterization in (2.14) that

H(\) = sup 7“4’\(;5(& —2)
SEWL((0,a,),C2,, (R)) (0ac) xR p(a, —T)
¢(a,—x)>0
= sup inf A_A)‘(b = H(-M\).

PEW L2 ((0,00),CFr (R)) (2] xR

$>0

per(

Hence, A\ — H()) is even. The proof of part (i) is complete.

For part (ii), due to H(0) > 0, we first observe that H(\)/\A — +ooas A — 0T,
Let us prove that H(A)/\ — 400 as A — +o0. To this end, we consider the follow-
ing eigenvalue problem

{ g (a )=D>\2 ( ) — m(a)v(a) — H(A)v(a), a € (0,ac),
v(0) = £(0) [5* B(a)v(a)da,

(2.18)

By the classical theory of age-structured operators, there exists a unique principal
eigenvalue H () of (2.18), which satisfies the following characteristic equation

70)/ g( —H(Na,— Jo m(s)ds D)\ “da = 1,
0

and the corresponding adjoint eigenfunction is denoted by ©(a) > 0. Observe that
H()) is increasing with respect to A and moreover, H(\) ~ O(A\?) — 400 as
A — +o00. Note that (H()\), ) is a test pair of the operator A, satisfying

(— Ay + HO\)5 <0 in [0,a.] x R.
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It follows from (2.17) that H(\) > H(\), so that H(\)/A — 400 as A — +o0.

Hence, @ attains its minimum at some finite value. The proof is now complete.

O
2.2 Connection to the generalized principal eigenvalue
In this subsection, we study the relation between the periodic principal eigenvalue of

(1.3) and some generalized principal eigenvalue. Under Assumption 1.1-(ii), for any
ay € [ac, a,), we rewrite the eigenvalue problem (1.3) as follows:

8(1(/7 = Da‘l‘],(p - /,L(CL, .73)(,0 - )‘907 (a7 x) € (07 a+] X Rv
©(0,2) = fu(z,0) [ Bla,z)p(a, x)da, z € R, (2.19)
ola,x) = pla,z + L), (a,z) € (0,a4] x R,

for which the principal eigenvalue is also H(0) as stated in Remark 2.1. Next consider
the eigenvalue problem

{ 0ad = DOyup — pi(a,x)p — A in (0,a4] xR (2.20)

¢ (0,2) = fu(z,0) [ Bla,x)¢ (a,x)da in R.

The generalized principal eigenvalue associated with (2.20) is defined as follows:

A:3 ¢ e WEH(0,a4),C*(R)) s.t. ¢ > 01in [0,a4] X R,
A1 = inf 0 — D0rsp + pp > A in [0,a4] x R, (2.21)
and ¢ (0,x) > fu(z,0) foa'“ Bla,x)¢ (a,z)da

Lemma 2.3 The generalized principal eigenvalue \; in (2.21) is well-defined and
A < o0.

Proof Let ) be the principal eigenvalue of (2.20) on any fixed bounded interval with
Dirichlet boundary condition. By the maximum principle, it can be verified that
A1 > A > —o00, so that \q is well-defined. We next show that A\; < +o0. Consider
the homogeneous eigenvalue problem

{ 0ud(a) = —pu(a)o(a) — Ad(a), a € (0,a4]

(0) = £(0) f5* Bla)¢(a)da, (222)

where we used the notations in (2.1). By the classical theory of age-structured
models, there exists a unique principal eigenvalue A € R of (2.22). We denote by
¢ = ¢(a) > 0 the associated principal eigenfunction. Then it follows from (2.22) that
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{ Qaa 2 Damx$ - M(a7 1’)6 77E in (0, a_;_} x R
#(0) > fu(z,0) foac Bla,z)p (a)da in R.

Choosing ¢ as a test function in (2.21), we find A\; < X < 400, which concludes the
proof. O
We next prove a type of Harnack inequality for problem (2.20).

Proposition 2.4 Assume that (\, ¢) is the principal eigenpair of (2.20) with ¢ > 0.
Then for any R > 0 and ay € [ac, an,), there exists some Cg q, > 0 depending only
on R and a, such that

sup a,z) < Cg, inf a,x).
(a,z)€[0,a4]x[—R,R] ¢la ) flas (a,2)€[0,a4]X[-R,R] ¢(a,)

Proof For each R, a4 and n > 0, applying the classical Harnack inequality for para-
bolic equations, there exists Cg 4, 5 > 0 such that

sup a,z) < CRa, n inf o(a,x).
(a,2)€[n,a+]x [~ R,R] #la, 7) fhat ' (a,2)€Mm.at]x[~R.R] (@)

By considering a super-solution of (2.20) defined by [|¢(0, ") || e (_ g, ) e~ (HinrtA)a

we have
||¢(a7 ')||L°°(—R,R) S ||¢(07 ')”LQO(—R,R) e7(p4inf+)\)a7 Va € [07 a-‘r]'

Hence, there exists some constant C'r , > 0,dependingonly on y, 3, Aand f,, (which
may change from line to line but is always independent of (a, ) € [0, a+] x [-R, R)),
such that

sup ¢(a,x) < C(R,aJr sup d)(oa'r)
(a,z)€[0,a4+]x[—R,R] z€[—R,R|
< Cra. | Bla) sup ¢(a,x)da
n z€[—R,R]
m_
+ CVR,U,Jr sSup QS(CL,(E)/ ﬂ(a’)da’
(a,z)€[0,a.] X [—R,R] 0

We choose 1 > 0 sufficiently small such that

sup ¢(a, )

(a,z)€[0,a4]x[—R,R]

IN

Cha, / "Bla) swp é(a,z)da
" 2€[~R,F] (2.23)

e inf .
Rt (o orein i xionm #O 0

This implies that
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> f / inf ¢(a,z)da (2.24)
n aw)e [n,a+]x[—R,R]
> CvR,cLJr sup qu(a,x).

(a,z)€[0,a4]x[—R,R]

Similarly, by choosing e~ (#suptA)a [inzfz . #(0, x), with psup = [|72l| oo (0,0, ) @5 @
rxe|—R,

sub-solution of (2.20), we can derive from (2.24) that

inf a,z) > e Haup® N ipg 0,x
(a,z)€[0,m] X [—R,R] (ZS( ) - z€[—R,R] (b( ) (2 25)
2 CR,(I+ sup ¢(a7 J)) .
(a,z)€[0,a4]X[—R,R]
Finally, combining (2.23) and (2.25), we obtain that
sup a,z) < Cg, inf a,x).
(a,z)€[0,a4]x[—R,R] ¢la ) flas (a, ﬂ£)€[<J +]x[-R,R] ¢la2)
This completes the proof. O

Next we show that the generalized principal eigenvalue defined by (2.21) is indeed
the principal eigenvalue of (2.20) corresponding to a positive eigenfunction.

Lemma2.5 Let \; be the generalized principal eigenvalue defined in (2.21). Then for
any ay € [ac, an,), there exists a positive eigenfunctionin W11 ((0, ay), C*(R)) of
problem (2.20) associated with \; and

/\12 lim /\R,
R—+o00

where for each R > 0, A denotes the principal eigenvalue of the problem

9a¢ = DOyo¢ — pi(a, x)¢ — AP in (0,a4] x (=R, R),
o) (07 l‘) - fu(x7 O) Oac ﬂ(aa l’)¢ (av :L’) da on (7Ra R)7 (2.26)
¢(a,—R) = ¢(a,R) =0 in (0,a4].

Proof By the same argument as in Lemma 2.1 and the subsequent Remark 2.1, one
can see that Ag exists and is independent of the choice of ay € [ac, an,). Recalling
the definition of A; in (2.21), by the maximum principle it is easily seen that A < A\g
for all R > 0. Since the principal eigenvalue Ar of (2.26) is nondecreasing in R, Ar
converges as R — +oo and

Aoo i=_lim Ap < Ag. (2.27)

R—+o00
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Fix any (aog, o) € (0,a4) X (—R, R). Let ¢ > 0 be the principal eigenfunction
of (2.26) associated with Ag, which is normalized by ¢r(ag, o) = 1. Note that Ag
is uniformly bounded in R > 0 by (2.27) and Lemma 2.3. Applying the Harnack
inequality in Proposition 2.4, we derive that for any Ry > 0, there exists some con-
stant C'r,,q, > 0 such that
(a,:r)G[O,aiu]E[*Ro,Ro] ¢rla7) < CRmWr (a,x)e[O,alﬁi[—Ro,Ro] #r(@,2) (2.28)
< CRr,, VR > Ry.

a4

By the standard Schauder estimates for parabolic equations, we deduce that for all Ry,
by passing a subsequence if necessary, ¢ converges in C*2([0,a.] x [~ Ro, Ro))
to some function ¢, € C12([0,ay] x R), which satisfies

{ aa.¢oc = DaTTd)OO - M(a,$)¢m - )\"XJQSOO in (O7a+} % (_R07R0)7 (229)

oo (0,) = fu(x,0) Oac B(a,x)poo (a,x)da on (—Ry, Rp).

Using a diagonal extraction method, we can find a particular subsequence of
{¢Rr} r>R, converging to do, in CLo>([0,a] x R). Furthermore, ¢uo(ao, 7o) = 1,
Doo > 0, and ¢ satisfies (2.20) with A = A. Then the strong maximum principle
yields that ¢, > 0 in [0,a4] X R. Choosing ¢, as a test function in (2.21), we
find A\; < A, which together with (2.27) implies A\; = Ao, namely Ag — A; as
R — +00. Hence, ¢ serves as a principal eigenfunction of (2.20) associated with
A1. The proof is now complete. O

We conclude this section by showing that the principal eigenvalue with periodic
boundary condition is the limit of the principal eigenvalue with Dirichlet boundary
condition.

Proposition 2.6 Let H(0) be the principal eigenvalue of (2.19). Then there holds

H(O) - Al - Rgl}rloo AR’

where \; is defined by (2.21) and AR is the principal eigenvalue of problem (2.26).

Proof 1t is proved by Lemma 2.5 that A\ — A1 as R — +o0. Comparing problems
(2.26) with (2.19), it can be verified by the maximum principle that H(0) > Ag for
all R > 0. Hence, it remains to show A; > H(0).

To this end, for any a € (0,a.), consider the following perturbed eigenvalue
problem

O0up = DOrrp — p(a, ) — A in (0,a4] xR,
{ ¢ ¢ — p(a,x) (0,a+] 230,

©(0,2) = fu(z,0) f(j Bla,z)p (a,x)da in R.
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Similar to the definition of A; in (2.21), we denote by A1, the generalized principal
eigenvalue of (2.30), which is given by

AT e WH((0,a4),C?(R)) s.t. ¢ >0, in [0,a4] x R,
/\1& = il’lf 8a¢) - Dax1¢ + /Ld) 2 _)‘¢ iIl [07 a+] X R’ (231)
and ¢ (0,2) > fu(z,0) [ B(a,2)¢ (a,z) da

By Lemma 2.5, there exists a principal eigenfunction ¢ > 0 associated with Ay o,
that is ¢ solves (2.30) with A = \; . We first claim that a — A is nonincreas-
ing. Indeed, choose any 0 < o3 < aip and A > Ay, . By the above definition, there
exists 0 < @€ WH((0,ay),C?*(R)) such that 9y — DOprd + i > —A¢ in
[0,a4] x Rand

$(0,2) > fu(x,0) / " Bla,2)éla, 2)da > fu(,0) / " B(a,x)6(a, 2)da,

which implies that (A, ¢) is a test eigenpair in (2.31) with & = ap. Hence, A > A1q,
follows by definition. Since this holds for any A > A1,,, we arrive at A1o, > Aiq,-
This proves the monotonicity of & — A14.

Next set ¢(a,x) := %. Applying the classical Harnack inequality to
(2.30) yields that ¢ is globally bounded. Define m :=supjg, jxg ¥ > 0. We
choose the sequence (a,,x,) € [0,a,] X R such that ¢ (a,,x,) — m as n — co
and there exists y,, € [0, L] such that z;,, — y,, € LZ for all n. One may assume that
Yn = Yoo € [0, L] and a,, = aoo € [0, ay].

Set ¥y, (a,z) = Y(a,z + z,) and ¢, (a, z) = %. By (2.30) we have
{ aa¢n = Daﬂcr(bn - N(‘Lz + yn)¢n - )\1a¢)na (aa ‘T) € (Oa a+} X R7

én(0,2) = fu(z + yn,0) f;‘ B(a,x + yn)dn(a, v)da, x € R.

Using the classical parabolic estimates, we may suppose, up to extraction, that
Pn — boo in C2([0,a4] x R) and function ¢, satisfies

aadsoo = Dazz¢oo - M(d,l‘ + yoo)¢oo - >\101¢o<>7 (CL, ‘L) € (0,(L+] X R’
000(0,2) = fu(z + Yoo, 0) f;l B(a, T 4 Yoo )Poo(a, z)da, = € R, (2.32)
oo >0, ¢oo(07 0) =1

On the other hand, by the definition of ¢,,, direct calculations from (2.30) yield

8(11/)71 = Dama:wn - 2M8£¢n, (G,JT) S (0, a+] X R,

on(a, )

and for all z € R,
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00,2+, +L

P (0,7) = W

S Blax +ya)e (a,x + @, + L) da
T Bz ya)e (a2 + ) da

B faa” Bla,z + yn)¢ (a,x + x5) Yu(a, x)da
- [ Bla,x +yn)p (0,2 +ap)da

(2.33)

Applying the classical estimates for parabolic equations once again yields that up to
extraction, ¥, — Yoo in Cllo’f([(), ai] x R), where 1 satisfies

a$¢00
Poo

Oa¥oo = DOpptpoe — 2 Or¥oo, (a,2) € (0,a4] x R. (2.34)

Furthermore, ¥, < m and ¥, (a,,0) = ¥(an,x,) — m as n — oo, which implies
Yoo (Goo, 0) = m.

We claim that the sequence (a,,z,) € [0,a+] X R given above can be chosen
such that a,, > 0. If not, then 1), (0,0) = m and ¥, (a,0) < m forall a € (0, a].
Thus, by (2.33) one has

m = 10 (0,0)
— lim fsc B(avyn)@ (av xﬂ) wn(avo)da
notoo [V B(a, ya)p (a,2n) da
. f:c Bla,yn)p (a, 70) Yoo(a, 0)da
= o8 | T B ) (0, 2m) da
L B (0,80) (a0
notoo [ B(a, ya)e (a,2,) da
< max Yeo(a,0) < m,

a€la,ac]

+ H¢n(a, 0) - 1/100((1, O)HL"C([a,ac])

which is a contradiction. Hence, we may assume a», > 0.

Therefore, we apply the strong maximum principle to (2.34) and obtain
Yoola,x) =m for all (a,z) € (0,a4] x R. By definitions, we note that
dn(a,x+ L)/ dn(a,x) = ¥p(a,x), and thus ¢oo(a,z+ L)/doo(a,z) =m for
all (a,z) € (0,a4] x R. As m > 0, we can define v := 7 Inm. Then the function
Boo = Doo exp(—~yz) is L-periodic in x. By (2.32) we calculate that boo solves

J)M(Ova’) = fu,(:t + yooo) f(;la ﬁ(al + yoo)éx(a,m)da, r eR,

{ Datoo = Dpadoo — 2D700bo0 + DV2hoe — 110, T + Yoo ) oo — Madoo,  (a,7) € (0,a4] X R,
Poo (@, ) = oo (a, 2 + L), (a,z) € (0,a4] x R.
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Since the periodic principal eigenvalue is invariant under a translation in x of the
coefficients, it holds that A1, = H,(v), where for any A\ € R, H,(\) denotes the
principal eigenvalue of

datp = DOy — 2DN0pp + DNp — p(a, 2)p — Ha(Np, (a,2) € (0,a4] x R,
»(0,2) = fu(z,0) f;l" B(a,z)p(a,z)da, z €R, (2.35)
ola2) = pla,z + L), (a,7) € (0,a4] X R.

For all A € R, let ¢, > 0 be the principal eigenfunction of (2.35) associated with
H,,(\). Then the function vy := e~ " satisfies the problem (2.30) with the eigen-
value H,(\). Taking vy as a test function in (2.31), one finds A1, < H,(\) for all
A € R. This together with A1, = H,(7) implies that A1, = minyer Ho(A). Note
that Ho(\) — H()\) as o — 0T, where H()) denotes the principal eigenvalue of
(1.5). Due to Ay > Aiq, letting o — 07 yields Ay > minyer H()). Since A — H())
is convex and even by Proposition 1.6-(ii), one has H(0) = minyeg H(A), and thus
A1 > H(0). The proof is now complete. O

3 Global dynamics

In this section, we are concerned with the global dynamics of problem (1.1) and
prove Theorem 1.1. First we show that the solution of (1.1) exists globally in time
and provide the weak comparison principle.

Lemma3.1 Given any bounded and nonnegative initial value v, problem (1.1) admits
a unique global solution u(t, a, z), which is nonnegative and uniformly bounded in
[0, arm) X R forall t > 0. Furthermore, let u and v be the solutions of problem (1.1)
with initial data ug and vy, respectively. If ug > vy, then u(t, a,z) > v(t, a, z) for
all t > 0 and (a,z) € [0, a,) X R.

Proof Let us first modify the definitions of Aj and X" in the proof of Lemma 2.1 with-
out introducing more notations. To consider the general initial data (which may not
be periodic), we define X = C,(R) denoting the space of continuous and bounded
functions and modify X and Xj correspondingly. Define the map F' : Ay — & such
that

Fo0) = (£(+ [ sta i), o), v 0w €k

Observe that F is well-defined due to Assumptions 1.1 and 1.2. Let u(t) = u(t, a, )
be the solution of (1.1) with initial value uo. By identifying U (¢) = (0, u(t)), one can
rewrite problem (1.1) as the following abstract problem:

U — BU + F(U) :

dt ’ =

{ U(O) — U, with Uy (O,uo) e Xp, 3.D
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where B : dom(B) C X — X is the unique closed Hille-Yosida operator defined in
the same manner as that in the proof of Lemma 2.1 (Note that the Hille-Yosida esti-
mate (2.5) also holds for Cy,(IR) ). It follows from Assumption 1.2 that f'is Lipschitz
continuous, so that the solution U of (3.1) exists globally by a standard semigroup
method, see Thieme [56] or Magal and Ruan [41].

Next, thanks to the definition of B, there holds that B is resolvent positive. Moreover,
F is monotone due to Assumption 1.2-(ii), i.e. 0 < U <V = 0< F(U) < F(V).
Thus, by Magal et al. [42, Theorem 4.5], we can conclude that the weak comparison
principle holds for (3.1).

Finally, we show the uniform boundedness of the unique solution z of (1.1). Indeed,

set V(t,2) := [;"" u(t, a,x)da. Due to u(t, ap,, x) = 0, by (1.1) we calculate that

*Am

ae
B(a,x)u(t,a, :c)da), Vvt >0,z €R,

OV = D0,V — / wla,x)u(t, a,r)da + f(a?,

0 0

and V(0,z) = Oa"” uo(a, z)da. It follows by Assumption 1.1-(i) and Assumption
1.2-(iii) that

OV < D0V — pintV + M, Yt >0, x €R.

Since (0, x) is bounded, by the comparison principle it is easily seen that F(¢, x) is
uniformly bounded for all z € R and ¢ > 0, which in turn implies the uniform bound-
edness of u. The proof is complete. O
We also present the strong comparison principle for (1.1), for which the proof is
omitted. The interested readers can refer to Ducrot et. al. [15] for more details.

Lemma 3.2 (Strong Comparison Principle) Assume that ug € C([0, a;,) X R) and
ug(a,x) > 0 but ug(a,x) £ 0. Let u(t, a, z) be the unique solution to (1.1) estab-
lished in Lemma 3.1. Then u(t, a,x) > 0 for any t > 0 and (a,z) € [0, ap,) X R.

Under Assumption 1.1-(ii), the stationary equation of (1.1) can be rewritten as

{ du(a,z) = DIgzula,x) — pla, x)ula,x), (a,z) € (0,am) X R, 62)

u(0,z) = f (33, j;)ac ﬂ(a,z)u(a,x)da) , x eR.

To proceed further, we present the definitions of sub-solutions and super-solutions
to the stationary equation (3.2), where the periodicity assumption is not imposed a
priori.

Definition 3.3 Function v € W1((0, a,,), C%(R)) is called as a sub-solution to
(3.2)if

{ Oqula, <)§D8mu(a ,x) — pla, v)u(a,x), (a,z) € (0,a,) X R, 33)

u(0,2) < f (, [y" Ba, 2)u(a, x)da),  wER.
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Similarly, u € W((0, a,, ), C%(R)) is called as a super-solution if "<" in (3.3) is
replaced by ">".
We first establish a comparison principle for (3.2).

Lemma 3.4 Let u,v € W11((0,a,), C*(R)) be respectively a sub-solution and
super-solution of (3.2) as defined in Definition 3.3. Assume that for any ay. € [ac, an),

inf u(a,z) >0 and inf v(a,z) > 0. (3.4)

m
(a,z)€[0,a4] xR (a,z)€[0,a4] xR

Then w < wvin [0, am) X R.

Proof Set v, :=sup{a > 0:au <wvin[0,ay] x R}. By (3.4), the number . is
well-defined and positive. If o, > 1, then Lemma 3.4 follows due to the arbitrariness
of ay € [ac, a,,). It remains to consider the case a, < 1. Set w := v — a,u, then
w > 0in [0, ay] X R. Denote ag := min{a € [0,a4] : Iz € R, s.t. w(ag,z) = 0}.
It follows from the definition of «, that there exists ¢ € R such that w(ag, o) = 0.

We first consider the case ag € (0, a4 ]. Observe that w satisfies

daw(a,x) > DOpyw(a,x) — pla, x)w(a,x), (a,z) € (0,a4] x R.

Considering the above inequality at (ag, o), we can reach a contradiction by apply-
ing the strong maximum principle for parabolic equations.

We next consider the case ag = 0, namely w(0, xg) = 0. By Assumption 1.1-(ii),
we have

/ac B(a, xo)u(a,zg)da > 0. (3.5)
0

Then it follows by Assumption 1.2-(ii) that
w(0,z9) = v(0,z9) — au(0,x0)

> f (xg/o B(a, z0)v(a, xg)da) —anf <z0/0 B(a, 0)ula, xo)da>
> f (3707/0% B(a, zo)v(a, ﬂfo)da) - f (mo,a* /OHVc B(a, zo)u(a, ﬂco)da)

>0,

(3.6)

where we used (3.5) and o, < 1 for the strict inequality. It is a contradiction with the
fact that w(0, zo) = 0. Therefore, ., > 1 and the proof is complete. O

Next we give the existence and uniqueness of the positive equilibrium of (3.2).

Proposition 3.5 (Existence and Uniqueness) Assume H(0) > 0, then there exists a
unique positive solution w*(a, z) of (3.2) belonging to W1 ((0, ay,), CZ..(R)).

@ Springer



Global dynamics and asymptotic spreading of a diffusive...

Proof 1t suffices to prove the existence of positive L-periodic solution of (3.2), since
the uniqueness is a direct consequence of the comparison principle in Lemma 3.4.
The existence can be proved by the following two steps.

Step 1. Construction of super/sub-solutions. Setw = M with M > 0 being defined
in Assumption 1.2-(iii). Note that

04 — DOyt + p(a, z)u = Mu(a,z) >0, V(a,z) € (0,a,) X R,

as well as
u(0,z) =M > f (Jc,/ac ﬂ(a,x)u(a,a:)da) .
0

Hence, u = M is indeed a super-solution of (3.2).
Next, we construct a sub-solution of (3.2). For any ¢ > 0 sufficiently small, by
Assumption 1.2 we can find some constant € = ¢(d) > 0 such that

flz,u) > (fu(z,0) —6)u forall 0 <u<eandzeR. (3.7)

For any a4 € [ac, an,), let Hs(0) € R be the principal eigenvalue of the problem

aafb = Da.L.Ldj - [I,(CL, I)d) - H6(0)¢7 (CL, :L‘) € (07 CI,+] xR,
$(0,2) = (fu(z,0) = 8) [, Ba,z)p(a, x)da, z € R, (3.8)
¢(a,z) = ¢(a,z + L), (a,z) € (0,a4] X R,

and the corresponding eigenfunction is denoted by ¢s > 0, which can be normal-
ized such that ||¢s]| £ ((0,a;)x(0,z)) = 1. By the continuity of Hs(0) in §, we have
H;(0) — H(0) as § — 0. Hence, due to H(0) > 0 one can choose § further small if
necessary such that Hs(0) > 0.

Set u(a, z) := eps(a,x), so that u < e. Then by (3.7) and (3.8) it can be verified
that

ot — DOppu + pa, x)u = —Hs(0)u <0 in (0,a4] x R,

and for all z € R,
u(0.) = (fu(w0) =) [ Bla (o, a)da < f ( I 5<a,x>u<a,x>da) .

This implies that the constructed u is a L-periodic sub-solution of (3.2).

Step 2. Existence via iterative scheme. We choose € small such that u < u. By a
basic iterative scheme, we can establish the existence of a positive nontrivial solution
u of (3.2). For completeness, we provide the iterative scheme as follows.

Set ug := u and denote u,, for n > 1 by the solution of the linear problem
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{ Ogtn(a, ) = DOyyun(a,z) — p(a, x)uy(a,z), (a,z) € (0,a4+] X R, 39)

un(0,2) = f (x, Oa“ B(a,x)un,l(aw)da) , r €R.

Note that u,, is well-defined and is belonging to W1((0, ay ), C?.,(R)) (where the

per
periodicity follows by that of w and w). We will show that
u<u; < - <wu, <---<u in [0,a4] xR (3.10)

Indeed, taking w := u; — wu, it follows from Assumption 1.2-(ii) that

Oqw > DOpyw — pla, x)w, V(a,z) € (0,a4] X R, w(0,2) >0, VzeR.

Using the comparison principle for parabolic equations, we conclude that w > 0, that
isu; > win [0,a4] x R. Similarly, we can derive u; < @ in [0, a4] x R. By induc-
tion, we can obtain the desired result (3.10).

Hence, for each (a,x) € [0,a4] X R, u,(a,x) has a limit as n — oo, denoted by
u*(a, ), namely u,(a,z) — u*(a, ) as n — oco. Due to u € C'2> O‘([O,aJr] x R),
by the classical parabolic estimates, we derive that u,, — u* in Cloc ([0,a4] x R)
asn — oo and u* € WH1((0, a4 ), C?(R)). Moreover, the continuity of f'yields that
for any z € R,

N N T .

Due to the arbitrariness of a. € [ac, ar, ), we see that u* € WH((0, am), CZ..(R))
solves (3.2) and is L-periodic in x, which proves the existence. This completes the

proof. O

Next, we study the global stability of u*(a, x) with initial data having a positive
lower bound.

Proposition 3.6 (Stability 1) Let u(t,a,x) be the unique solution of (1.1)
with initial value ug. Assume that H(0) > 0, then for each ai € [ac, aw), if
inf (4 2)€[0,04) xR Yo (@, x) > 0, then u(t,a,z) — u*(a,z) in C([0,ay] x R) as
t — +o0.

Proof By assumption, there exists a positive constant § such that ug(a,z) > § in
[0,a4] x R. Since H(0) > 0, the function eu defined in the proof of Proposition 3.5
is a sub-solution of (3.2) for small €. Since ug > § and u is bounded, we choose ¢
small if necessary such that eu < ug. Denote by U (¢, a, z) the solution of (1.1) with
initial value eu. By the comparison principle in Lemma 3.1, U (¢, a, ) > eu(a, x) for
all t > 0. Given s > 0, let 2°(t,a,x) := U(t + s,a,x) — U(t, a,x), which satisfies
2%(0,a,x) > 0 and
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012° + 0,2° = D0yy2® — p(a, z)2%, (t,a,z) € (0,00) x (0,a4] x R,
{ 25(t,0,2) = fu (x,&(t, s,2)) f(;l Bla,z)z5(t,a,z)da, (t,z) € (0,00) X R, (3.11)
25(0,a,z) = U(s,a,z) — eu > 0, (a,z) € (0,ay] xR

for some continuous function &. Applying the weak comparison principle (Lemma
3.1) to (3.11) yields that 2° > 0 for all s > 0, which implies that U(¢,a,x) is a
non-decreasing function of the time and U(¢,a,x) < u(t,a,x) for all ¢ > 0 and
(a,z) € [0,a4] x R.

On the other hand, as in the proof of Proposition 3.5, we can choose constant
M > 0 large to be a super-solution of (3.2). Let U(t,a,z) denote the solution of
(1.1) with initial value U(0, a,2z) = M. Using the comparison principle, the simi-
lar arguments as above show that U is a non-increasing function of ¢. The com-
parison principle in Lemma 3.1 implies that u(t, a,z) < U(t,a,x) for all t > 0 and
(a,z) € [0,a4] x R.

In summary, we have defined the monotonic sub-solution U and super-solution U,
which are periodic in x, such that for all ¢ > 0 and (a,z) € [0,a4] X R,

ew <Ut,a,2) <u(t,a,z) <U(ta,x) < M. (3.12)

The monotonicity of U and U implies U(t,a,z) / U.(a,z) and U(t, a,z) \
U*(a, z) pointwise as t — +oo for some L-periodic functions U, < U*. In what fol-
lows, we shall show that U,., U* € W((0, a4 ), C2,,(R)) are the solutions to (3.2).

per
For now, we acknowledge it to be true and postpone its proof behind. Hence, the
uniqueness in Proposition 3.5 implies U, = U™* = u*. Further, due to the periodicity
of U and U in x, we apply the Dini’s theorem to derive that U * U, and U \, U* in
C([0,a4] x R) as t — +o0, which together with (3.12) implies that u(¢, a, ) — u*
in C([0,ay] x R) as t — +o00.
Now let us finish the proof of U, U* € W11((0,a ), C?,.(R)). Define

per

V(t,a,zx):= / U(t,s,z)ds for allt > 0 and (a,z) € (0,a4] x R,
0

which is L-periodic in x. Since U solves (1.1), direct calculation yields

0V = D0,V — fo U(tsx)ds

—U(t,a,x) —|—f( fo U(t,a,z)da), t>0, z€R,
V(t,a,2) =V (t,a,z+ L), t>0, zeR, (3.13)
V(0,a,2) = [, U(0,s,z)ds, z €R.

By the boundedness of U in (3.12), which is independent of a € [0,a.] and ¢ > 0,
we apply the LP estimates for parabolic equations to (3.13) and deduce that for any
p>1,

sup sup ||V (-, a,- 12 < +o00.
QG[OEHQE’”—( w2 (e41)x0.2)) (3.14)
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By the monotone convergence theorem, one has V(t,a,z) 7 fo (s,x)ds
pointwise as t — 400, Wthh together with (3.14) yields that for each
a€l0,ay], V(t,a,x) /7 [ Us(s,x)ds as t — +oo weakly in W2P((0,L))
and strongly in C*([0, L)) by the Sobolev embedding. This implies that
fo (s,x)ds € C.(R) for each a € [0, a] and is a strong solution to the problem

per

(a,x) D@m/ (s,z)ds f/ w(s, x)Us(s, x)ds
0

+f (x,/o B(aw)U*(a,x)da) , z €R,

where we have used the monotone convergence theorem in the integral terms.
Moreover applying Schauder estimates of elliptic equations to (3.15) yields that
Jo Us(s,x)ds € C2..(R) for any a € [0, a]. Hence, we conclude that U, (a, z) is

Llpschltz continuousina € [0, a4 ],sothatU, € W11((0,a, ), C?,.(R))isasolution

per

to (3.2). By the same arguments one can deduce that U* € W1((0,ay), C2%.(R)) is

per

(3.15)

also a solution to (3.2), which completes the proof. O
Finally, we establish the global stability of u(t, a, z) with general initial data.

Proposition 3.7 (Stability II) Let u*(a, z) be the unique solution of (1.1) with non-
negative initial value ug # 0. Assume H(0) > 0, then u(t,a,z) — u*(a,z) in
Cloc([0, am) X R) as t — +o0.

Proof Note that u(1, a,z) > 0 by the strong comparison principle in Lemma 3.2. For
any ai € [ac,an), let us consider the following auxiliary problem:

O, + Oqu,, = D@mmu - u(a T)Uy,, (t,a,z) € (0,00) x (0,a4] X (—n,n),
u,, (t,0,2) ( fo a, T)u,(t, a, z)da) (t,z) € (0,00) x (—n,n),
u, (t,a, fn) u, (t,a, n) = 0, (t,a) € (0,00) x (0,a4],
(

u,(0,a,7) = ul(a,z), a,z) € [0,a4] X (—n,n),

where the initial data {u (a,z)},>1 satisfy

(1) supp(ud) C [0,a4] x (—=n,n) foralln > 1;
) w(a,z) < - <ul(a,x) < - <wu(l,a,z) forall (a,z) € [0,ay] x R.

Then by the comparison principle, one has

uy(t,a,x) < <u,(t,a,z) <---<wu(l,a,z) forallt>0and (a,z) € [0,a4] X R.

Let A, be the principal eigenvalue of (2.26) with R = n. Due to H(0) > 0, applying
Proposition 2.6, we can choose some 7, large such that A, > 0 for all n > n,. Thus
by the similar arguments as in the proof of Proposition 3.5, for n > n,, there is a
unique positive solution . (a, z) satisfying
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aa@: = Damﬂz - :U’(aax)@:w (avx) € (07 a—‘r] X (771; TL),
uy,(0,2) = f (2, [5* Bla, 2)uy;(a, 2)da) , = € (—n,n),
u(a,—n) = uk(a,n) =0, a € (0,a4].

Similar to Proposition 3.6, one can apply the theory of monotone dynamical systems
to deduce

wu,(t,a,x) = w,(a,x) in C([0,ay] x [-n,n]) ast— +oo; (3.16)

see also Ducrot et al. [15, Theorem 4.11] for the case of nonlocal dispersal.
This implies that

uy (a,2) < - <wp(a,z) <--- < litrginfu(t,a, x) forall (a,z) € [0,a4] x R.

By the monotone convergence theorem and parabolic estimates, there exists
u* € CV2([0,a] x R) satisfying (3.2) such that w, — u* in C\22([0,a4] x R) as

n — +oo. It follows that

u*(a,z) < liminfu(t,a,z) for all (a,z) € [0,a4] x R. (3.17)

t—o0

Next, we shall prove u* = u* in [0, ay] X R with u*(a, «) being the unique solution
of (3.2). To this end, for any 6 > 0, let Hs5(0) denote the principal eigenvalue of the
perturbed problem

aafb = Da.L.Ldj - [I,(CL, I)d) - H6(0)¢7 (CL, :L‘) € (07 CI,+] xR,
¢(O,$) = (fu(zzo) - 6) ()aC 6(a7x)¢(a7x)da7 z € R,
¢(a,z) = p(a,z + L), (a,z) € (0,a4+] x R.

Due to H(0) > 0, we can choose ¢ > 0 small such that Hs(0) > 0. Motivated by
Nadin [49], for any y € R, we consider the following problem

aa¢ = Daxx(b - ,U/(avir + y)Qb - )\¢7 (CL, 23) S (0, a+} X (—n, n),
$(0,2) = (fu(z +4,0) = 8) [ Bla,z +y)d(a,x)da, w € (—n,n),
¢(a7 7”) = QZS(G,’I’L) = 07 a < (07 GI+}.

Let (MY, ¢¥) denote the corresponding principal eigenpair. The periodicity of y, 8 and
fimplies that y — A¥ is periodic and continuous. By Proposition 2.6 and the Dini’s
lemma, AY converges to Hs(0) uniformly in any compact subset of R as n — oo,
so that we can choose n > 1 large such that AY > 0 for all y € R due to Hs(0) > 0.

Hence, for such n > 1, it follows that x¢¥ with sufficiently small x > 0 is a sub-
solution of
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Ogu = DOypu — pla, z + y)u, (a,z) € (0,a4] X (—n,n),
u(0,2) = f (z +y, foa“ Bla,z + y)u(a,z)da), x € (—n,n), (3.18)
u(a, —n) = u(a,n) = 0, a € (0,a4].

Note that u*¥(a, x) := u*(a, z + y) satisfies

Oau = DOyru — p(a, x + y)u, (a,z) € (0,a4] X R,
u(0,2) = f(z+y, [i* Bla,z + y)ula,z)da), = R,

which is a super-solution of (3.18). Thus the comparison principle applied in
[0,a4] X [-n,n]yieldsthatu®Y(a, x) > k@Y (a,x)forall (a,z) € [0,a4] X [-n,n],
and in particular we deduce that for all y € R,

u*(a,y) = u"Y(a,0) > k@Y (a,0) >0 uniformly in a € [0, a4].
Since y — ¢¥ (a, 0) is periodic, we obtain

* I > i f 4 ,0 >07 V ’ S 0’ R
W) 28 e e (@ 0) (a,2) € 0,a] xR (3 1)

Hence one can apply Lemma 3.4 to both u* and u*, and then obtain u* = u* in

[O, a+] x R.
Finally, by Proposition 3.6, it follows from (3.16) and (3.17) that u(¢, a, x) con-
verges to u*(a, x) in Cloc([0, a4] X R) as t — 4o00. The proof is complete. O

To prove Theorem 1.1, we next consider the case H(0) < 0.

Lemma 3.8 Assume H(0) < 0, then any nonnegative solution of (3.2) is identically
zero.

Proof For any a4 € [a., a,,), assume by contradiction that there exists a nonnega-
tive continuous solution u to (3.2) which is positive somewhere in [0, a4 ] x R.

We first claim w > 0 in [0, a4 ] X R. Assume by contradiction that u(a., z.) = 0
for some (ax,z) € [0,ay] X R.If a, € (0, a], then we apply the strong maximum
principle for parabolic equations to (3.2) and derive v = 0 in [0, a4 ] x R, which con-
tradicts the fact that u is positive somewhere in [0, a1 ] x R. Hence, a. = 0, that is

u(0,x4) = f (x*,/oac ﬁ(a,m)u(a,m)da) =0,

which together with Assumption 1.2 implies that [, 3(a, z.)u(a, z,)da = 0. This
implies that u(a*, z,) = 0 at least for some a* € (0, a4 ], so that we have the same
contradiction as above. Therefore, u > 01in [0,a4] x R.
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Then it follows from Assumption 1.1-(ii) that there exists a positive constant cg
such that [ B(a, z)u(a,x)da > co, Y& € R. By Assumption 1.2, we have

f (x, Oac 6(a,x)u(a,x)da) < f(z, co)

& B(a,yula, x)da <o < ful2,0), VzeR,  (320)

which implies that
f(@ <) /ac B(a,z)u(a,z)da > f (1'7 /ac B(a, z)ula, x)da) =u(0,z), VzeR.(3.21)
Co 0 0

Consider the following eigenvalue problem

8a¢(a,x) = Dal.L¢ - M(G,I)¢ - )\d)a (a,x) € (Oa a+} X ]Ra

$(0,x) = L&) [8° 3(q,2)p(a, x)da, w € R, (3.22)
¢(a,x) = ¢(a,z + L), (a,2) € (0,a4] x R.

Let A, € R be the principal eigenvalue of (3.22) and the corresponding eigenfunc-
tion is denoted by ¢, > 0. Due to (3.20), by the proof of Lemma 2.1, we can deduce
Aeo < H(0) <0.

Define o* :=inf{a >0:u < a¢.,}. We conclude the proof by prov-
ing that o*=0. Assume that o*>0. Set w:=u—a*¢, <0 and
ag ;= min{a € [0,a4] : 3z € R, s.t. w(a,x) = 0}. The existence of such ag is due
to the definition of o*. Hence, w < 0 and there exists 2o € R such that w(ag, xg) = 0.

Next we claim that w = 0 in [0, a] X R. Indeed, observe that w satisfies

daw < Dyow — pla, 2w, (a,2) € (0,a4] x R. (3.23)

If ap € (0,a4], the fact that w =0 in [0,a4] x R is a direct consequence of the
strong maximum principle for (3.23); Otherwise, if ap = 0, then by (3.21) we have

0= ’LU(O/ SCQ) = U(O, 'TO) - a*¢6(\(05 ‘TO)

< 1000 1™ g g puta, movda — o EE2) [ 02010, 0
co 0 0

Co

= f(xsio’co)/o ' B(a, zo)w(a,zg)da < 0.

Hence, it follows by Assumption 1.1-(ii) that w(a*,zo) =0 at least for some
a* € (0,ay]. Then applying the strong maximal principle again yields w = 0 in
[0,a4] x R. By definition we have u = a*¢,, in [0, a] x R, which is a contradic-
tion as follows,

0 = 0gu — DOyt + pru = @ 0 pey — D™ Opgpey + 0 ey > —* Aey by > 0.
Therefore, o* = 0 and the proof is complete. O
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Finally, we present the proof of Theorem 1.1.
Proof (Proof of Theorem 1.1)

Theorem 1.1-(i) is a direct consequence of Propositions 3.5-3.7. To prove Theo-
rem 1.1-(ii), by Lemma 3.8 it remains to show the global stability of the trivial solu-
tion 0 when H(0) < 0. Indeed, as in the proof of Proposition 3.6, we can choose
some large M satisfying ug < M to be a super-solution of (1.1). Let U still denote
the solution of (1.1) with initial value M, which is L-periodic in x. Then there holds

0 <u(t,a,z) <U(t,a,x) <M forall (a,z) € [0,ay] xR, t>0. (3.24)

Note that U is non-increasing in ¢ for each (a, ) € [0,ay] x R. It holds that U con-
verges in Cloc ([0, a4 ] X R) to some nonnegative solution of stationary equation (3.2)
as t — 400, which together with Lemma 3.8 yields U — 0 in Coc([0,a4] x R) as
t — +o00. Since U is periodic in x, the convergence is uniform in x. Hence, by (3.24)
we conclude that v — 0in C([0, a+] x R) as t — +o0. The proof of Theorem 1.1 is
now complete. O

4 Spreading properties

In this section, we are concerned with the spreading properties of problem (1.1). To
prove Theorem 1.2, we shall investigate the asymptotic spreading of the solution
restricted on [0,a4] x R for any given a € [ac, ar,). By Assumption 1.1-(ii), the
restricted solution is exactly that of the following equation:

Opu + Ogu = DOyru — p(a, x)u, (a,z) € (0,a4] xR, t >0,
u(t,0,z) = f (1:, foa“ B(a,x)u(ma,x)da) , tER, t>0, 4.1)
u(0,a,z) = up(a, x), (a,z) € [0,a4] X R,

where ug is any compactly supported nonnegative initial value.
4.1 Outer spreading

We first prove Theorem 1.2-(i), which follows by constructing appropriate
super-solutions.

Proof (Proof of Theorem 1.2-(i)) Fix any ¢ > ¢* with ¢* being defined by (1.6).
Choose A > 0 such that c\ > H(X). Then we shall construct a super-solution to (4.1)
in the form of v(t, a,z) = voe 2=~V $, (a, ) for some positive constant vy to be
chosen later, where H () is the principal eigenvalue of problem (1.5) and ¢ > 0 is
the corresponding eigenfunction.

Due to ¢cA > H()), direct calculation gives
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O + 0,0 — DOyyv + pa,x)v = chv — H(A)v >0 for all a € (0,a4] and ¢ > 0.

By the boundary condition of ¢, in (1.5), one has
v(t, 0, ) =vge MNT=D ) (0, z)
=vge NP £ (2, 0) / Bla,z)oxr(a,x)da
0

:fu(x,O)/ B(a, z)v(t, a, z)da.
0
Since ug is compactly supported, we next choose vg large enough such that

v(0,a, ) = voe ¢y (a,x) > ug(a,z), Yo € R, uniformly in [0,a,].

Note from (4.1) and Assumption (1.2)-(ii) that

u(t,0,z) < fu(x,O)/ ) Bla,z)u(t,a,z)da for all z € R and ¢t > 0.
0

Set w := v — u. Then by the above discussion we derive that

Oyw + O, w > DOypw — pw, (a,z) € (0,a4] xR, t >0,
{ w(t,0,z) > fu(x,0) foa“ Bla,x)w(t,a,z)da, = €R, t>0,
w(0,a,z) >0, (a,z) € [0,a4] x R.

It follows by the comparison principle in Lemma 3.1 that w > 0, which implies that
u(t,a,z) < v(t,a,x) = vge "N py(a,2) for all (a,z) € [0,a4] x R and ¢ > 0.
Let ¢; be any real number such that ¢; > ¢ > ¢*. Then

lim sup sup wu(t,a,z) <w lim sup sup (e M7, (a,z)) = 0.
=40 13>t a€l0,a4 ] Y E=400 141>t a€[0,a4 ]

By choosing ¢ > c¢* to be arbitrarily close to ¢*, we can prove Theorem 1.2-(i). O
4.2 The rescaled equation

To prove Theorem 1.2-(ii), we shall develop the homogenization method for
problem (4.1) in this subsection, which is our key core and main contribution in

analyzing spreading properties of problem (1.1). Motivated by [5, 6], for any
(a,2) € [0,a,) x Rand t > 0, we define
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uc(t,a,x) :=u <t, a, $) and  z.(t,a,7) :=eln(u.(t, a,x)/M), (4.2)
e e

where M is the uniform bound of the solution u as proved in Lemma 3.1, so that
ze < 0forall e > 0. By (4.1), for any a1 € [ac, a,y,), direct calculations yield

Oze + %&Lze = €D0py2e + D|0pz|? — 1t (a, %) , (a,z) € (0,a4] xR, t >0,

€Ostte + Ot = €2D0ppute — 1 (a, f) Ue, (a,z) € (0,a4] xR, t >0, 43
uc(t,0,2) = f (£, [ B (a, %) uc(t,a,x)da), r€eR, t>0, (@.3)
ue(0,a, ) = ug (a, f) , (a,z) € [0,a4] x R.

Without loss of generality, we can assume that the compactly supported initial
value ug satisfies ug(a,0) > 0 for all a € [0,a4]. Indeed, since u(1,a,x) > 0 in
[0,a+] x R by Lemma 3.2, we can choose the compactly supported function vg(a, )
such that vg(a, 0) > 01in [0, a4 ] and vo < u(1,a,x). Then the solution v of (4.1) with
initial value vg satisfies v(¢, a,z) < u(t 4+ 1,a,x) for all ¢ > 0. Thus we can estab-
lish Theorem 1.2-(ii) for v, which in turn implies the same result for u.

As in [2, Section 6], we define the following half-relaxed limit:

ue(t,a,r) =  lim iélf ue(t',a', z"). 4.4)
€E—r .

(t",a",2") = (t,a,x)

The following result implies that the zero set of the half-relaxed limit u, is uniform
for age a € [0, a,,, ), which is a key ingredient for our homogenization method.

Proposition 4.1 Let u, be defined by (4.4). Assume that u.(t*, a*, z*) = 0 for some
(a*,2*) € [0, am) X Rand t* > 0, then u.(t*,a,2*) = 0 forall a € [0, ay,).

Proof The proof is divided into the following two steps.

Step 1. We show u.(t*, a,2*) = 0 for all @ € [a*, a,,). Define

U.(t,) ::/ uc(t,a,x)da, V(t,z) € (0,400) x R.
It follows by Lemma 3.1 that there exists some M > 0 such that U.(¢,z) < M for
all e > 0 and (¢, x) € (0,+00) x R. Integrating the equation of u. in (4.3) from a*
to a,,, one obtains

Am

€U — uc(t,a*, o) = De?0,,U. — /

a*

1 (a, %) ue(t, a, x)da. 4.5)

We next show that
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llg&f U(t,z) =0. 4.6)

(t,x)—(t*,z*)

Due to u.(t*, a*,z*)

= 0, the definition of w, in (4.4) implies that there exists a
sequence (1€, ac, 7€) € (

,+00) X [0, @) X R such that
(t5,a%,7°) — (t*,a*,2*) and u(f,a%,3)—0 as ¢— 0. 4.7
Given any 9 > 0, we define the test function

(t =19+ (z —7)?

d’e(tax) = e2 )

Y(t,z) € (0,+00) x R. (4.8)

By the uniform boundedness of U. in e, we can define the sequence
(t¢,z¢) € (0,+00) X R such that U, — ¢, attains its maximum at (¢, z¢). In par-
ticular, we have

U (t5,2°) — ¢ (t€,2°) > U (5, 7°) — ¢ (9, 7°) = U (T, 7°).

Since U, (t, ) < M holds forall (¢,z) € (0, +00) x R again, this and (4.8) together
imply that

[t — | + |2€ — 3] < 2eV MY, (4.9)

By combining (4.7) with (4.9), we conclude thatase — 0,therehold (¢€, z€) — (¢*, ™)
and

€ € {e ~€
ue(t€,a", %) = u (t,a*, x) =u <€ +0(1),a", % + O(l)) — 0. (4.10)

€ €

Here (4.10) follows from the comparison arguments involving the construction of
appropriate super-solutions, and we omit the details here for brevity.
Then by evaluating (4.5) at the point (¢€, x¢), we derive that

Am €
wittsatry— [ ( x) w(t, a,2)da
€
a

=eO U (t2°) — Dezamﬁe(tﬁ, x)
2(t€ — 1) 2D

> €0y e (€, 1) — D20y e (t€, 2°) = o 5

By (4.9) and (4.10), letting ¢ — 0 in the above inequality yields

_ an ; [M 2D
fing lim inf U (¢, 2¢) < lim sup/ ula, r ue(t, a,x)da < 4y — + —.
e—0 e=0  Jar € 0 9
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Due to the arbitrariness of ¢, letting ¥ — +oc yields that

liminf U (¢, 2°) = 0,
e—0

which implies (4.6) directly. Therefore, we derive that

ue(t*,a,2") = lim iglf uc(t,s,2) =0 for all a € [a*, an).
€E—>
(t,s,2)—(t*,a,2*)

This completes the proof of Step 1.

Step 2. We prove u.(t*,a,z*) =0 forall a € [0, a,,). By Step 1, if a* = 0, then
the proof is complete. It remains to consider the case a* > 0 and . (t*,0,z*) > 0.
Set

ay :=sup{a > 0: u,(t*,s,2%) >0, Vs € [0,a)}.
It follows from Step 1 that 0 < a, < a*. It suffices to show a, = 0.

Assume by contradiction that a, > 0, then u.(t*,a,x*) > 0 for all a € [0, a,).
For any s € (0, a.), we define

US(t, x) ::/ uc(t,a,x)da, Y(t,z) € (0,+00) x R.
Integrating the equation of u, in (4.3) from s to a., one obtains

€ U? + uc(t, aw, ) — uc(t,s,2) = De?0,,US — / 1 (a, %) ue(t,a,z)da.(4.11)

By the definition of a,, there exists some sequence (fe,a., &) €(0,+00)x
[0,a,,) x R such that

(e, e, Te) — (t*,as,2*) and (e, e, @) — 0 as € — 0. (4.12)
Let the test function ¢, be defined in (4.8) with (#¢, &) replaced by (., Z.). By the
same arguments as in Step 1, there exists some sequence (i, z.) such that U + ¢,
attains its minimum at (¢, z.) and

[te — te| + |xe — T| < 26V MY. (4.13)
Similar to (4.10), by (4.12) and (4.13) we deduce that

(te,we) = (t*,2%) and we(te,as,ze) >0 as e — 0. (4.14)

By evaluating (4.11) at (¢, x.), we calculate that
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[ T
ue(te; S, xe) - uE(tE7 Qe s er) - / /’L (a7 f) ue(tea a, xe)da
s
= Gatgs(tev 1'5) - Dezaxmgg(téa xe)

< - 58t¢e(teaxe) + Dezaxa:(be(tmxe) =5

By (4.13) and (4.14), letting ¢ — 0 in the above inequality gives

o ¢ [M 2D
hmsup uE(tﬂSaxe) - / H (CL, £> ue(t€7a7 Ie)da S 4 -+ T VS € (O,Q*)~
e—0 s € 9 v

By letting ¥ — +o00 again, we derive that

Uy (8) := limsup ue(te, 8, 2¢) < lileginf I (a, %) Ue(te, a,zc)da, Vs € (0,a).

e—0 0 s

This implies that

Uy (s) < ,usup/ Ty (a)da, Vs € (0,a4), (4.15)

where pisup = || o< (0,4,) < 00 since fi(a) = max,e[o,z) #(a, z) is bounded in

[0, a.]. Denote
w(s) := /a* Uy (a)da and W(a):= /a* w(s)ds.

Then W is differentiable in @ and W' (a) = —w(a). It follows from (4.15) that

w(a) < ,usup/ w(s)ds = pgupW(a).

a

Hence, one has (log W (a))" > —fisup. Integrating this inequality from s to a. yields
—psup(as — 8) <logW(a.) —logW(s), Vse€ (0,a.),

which is a contradiction due to W (a.) = 0. Therefore, a. = 0, and by Step 1 we

conclude that u.(t*,a,x*) = 0 for all a € (0, a,,). Noting that u, is lower semi-

continuous, we have u, (t*,0,2*) = 0, so that . (t*, a, z*) = 0 for any a € [0, a,).

The proof is now complete. i

Recalling the definition of w. in (4.4), we find that u. (¢, a,x) = u.(at, a, ax)
for any o > 0. This, together with Proposition 4.1 and Theorem 1.2-(i), implies that

{u. =0} ={(t,z) : x > ¢ét,t > 0} x [0,ay,) forsome 0<c<c". (4.16)

Recalling the definition of z. in (4.2), we define
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.—— 3 s ! / !
ze(t,a,x) := h?l}éﬁ ze(t',a',a") for any (a,x) € [0,a,,) x R and t > 0,(4.17)

(t,a,2") = (t,a,7)

which is well-defined by constructing the similar sub-solutions as in the proof of [37,
Lemma 3.2]. To estimate the limit z,, for any a4 € [a, a,,) we define

Z(t,x):= liminf  inf 2.t a,2’)
=0 acl0,a4]
(t,2")—(t,2) 418
Z*(t,xz) := limsup sup z(t,a,z’). (4.18)
e—0 a€l0,a4]
(t',z")—(t,x)

Obviously, Z, (t,x) < z(t,a,z) < Z*(t,z) forall (a,z) € [0,as] x Rand ¢t > 0.

Next we shall prove that Z, and Z* are viscosity super-solution and viscosity
sub-solution of a Hamilton-Jacobi equation, respectively. We refer to [2, 9] for the
definitions of viscosity super-solutions and sub-solutions.

Lemma 4.2 Let Z, be defined in (4.18). Then Z.(t,x) is a lower semi-continuous
viscosity solution of

H(0,Z,) >0, x>¢ct, t>0,
Z( ):O t>0,

where ¢ € (0, c¢*] is defined in (4.16).

Proof Step 1. We first show 0,7, — H(0,Z,) > 0 for > ¢t and t > 0 in the
sense of viscosity solutions. By the definition of viscosity solutions, we fix any
p € C*((0,400) x R) and assume that Z, — ¢ attains a strict local minimum point
(t«,x) satisfying z, > ct.. We must prove

Op(te, xs) — H(Opp(ts, 1)) 2 0. (4.19)

Set v := 0, p(ts, T4). Assume by contradiction that (4.19) fails, namely

Orp(te, ze) — H(y) < 0. (4.20)

For any ¢ > 0, denote Hs(y) € R by the principal eigenvalue of the problem

aa¢ = Da.LI(b + 2D’ya ¢) + D72¢ - /J’(a (L’)¢5 - H5(7)¢1 (av (L’) € (07 a+} xR,
$(0,2) = (fu(z,0) 26)f ¢(a,z)da, z €R, (4.21)
¢(a7 I) = (b(a: T+ L)7 (CL7 Qf) S (0, CLJF} x R.

Again, as stated in Remark 2.1, Hs() exists and is independent of the choice of
a4 € [ac, am). Let H(y) be the principal eigenvalue of problem (1.5) with A\ = ~.
Noting that H () = H(—~) as proved by Proposition 1.6-(i), we find Hs () — H(v)
as § — 0. By (4.20), we can choose ¢ > 0 small such that Oy (t., x.) < Hs(7).
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For the chosen § > 0, we define ¢5 > 0 as the principal eigenfunction of (4.21)
associated with Hs (). Note that ¢5 > 0in [0, a4 ] x R. We define the perturbed test
function

we(t,a,x) := @(t,x) + eln gs(a, x/€).
By direct calculations, we have

1
at(pe + Eaa‘roe - EDamxSOe - D|8m99e‘2 + V‘(aa “C/E)

2 R 2
=0y + Duts _ €DO,p — Da“% +D \814;5\ -D (81.4,0 + Lw(b()) + /L(a,fﬂ/e)(4'22)
®s oh oF ®s

=0rp — €DDyrp — Hs(y) + DA% — D\@mga\z +2D(y — 9z¢)0; In ¢s.

Due to x, > ¢ty and Oyp(t«, x«) < Hs(v), we can choose some r > 0 small such
that

By (ts, z+) x [0,a4] C {u. =0},

and for all (¢, z) € B, (L., x«), there holds

3&0(157 T) - H5(7) - eD(‘)mgo(t, JJ) + D(VQ - |81(10(t7x)|2) + QD(’.V - a&t@(a x))aﬁ In ¢5 < 07
provided that € > 0 is chosen small. Thus by (4.22) we arrive at

1
0y 0c + =040 — €DDyyipe — D|0ype|® + pla,z/e) <0 in By(ty,x,) X [0,a4].(4.23)
€

On the other hand, recalling (4.3) one can see

1
Orze + —0pzc — €DOyp2e — D|Bzze|2 +ula,z/e) =0 in B(t.,z.) X [0,a4].(4.24)
€

We shall claim that

inf inf (2 — ) > inf nf (2 — 0.).
(t,z)eanr(t*,x*)ael[(I)l,aJr] (Z ® ) - (t,x)EBlgr(t*,z*)ael[(rll,aH (Z g ) (425)

We assume (4.25) holds at the moment. By the definition of Z,, it is easily seen that
inf (Ze — ) > inf (Ze — ),

(t,0)EBr(taszs) © = (t,0)€OB, (te,74)

which is a contradiction since (., x.) is a strict local minimum of Z, — ¢. Hence,
(4.19) holds.
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It remains to prove (4.25). Indeed, if z. — ¢, attains its local minimum over
B, (t.,z.) x [0,a,] at some interior point (¢, ac, r) with (., z.) € B, (t«, ) and
ae > 0, then we separate two cases to prove the claim.

Case 1: ac > 0. In this case, Oyzc(te, e, xc) = Ogipe(te, ae, ). Combining
(4.23) and (4.24), we evaluate them at (¢, ae, Z¢) to obtain Oy 2¢ (te, e, Te) <Oz Pe
(te, ae, xc), which is a contradiction since (¢, ac, z.) is a minimal point of z. — ..

Case 2: a. = 0. In this case, we have

Ze(te,0,2) — eln¢5(0, 2 /€) < zc(te,a,xc) — €lngps(a,xc/e), Va € [0,a4],

which can be written as

Ue(te, 0, ) . Ue(te,a, )

_ min —————~> =: Cmin-
¢6(07x€/6) a€0,a4] ¢5(G,.’EE/€)

Recalling the integral boundary condition at a. = 0, it follows that

f(xe/e,/oac ﬁ(aaffe/@“f(te’a’xf)da) (4.26)

—canin (fu (e /€, 0) — 26) /O " 8(a,m)€) b5 (a, 2 J€) da.

Due to (t,a,z.) € {u, =0} for all a € [0,a4], by Assumption 1.2-(ii) we can
choose € > 0 further small if necessary such that

f(alce/e7 /O{LC ﬁ(a,xﬁ/e)uf(tﬁ,awe)da) > (fu (ze/€,0) = 9) /Ouc B (a,zc/€) uc(te, a, xc)da.

By (4.26), we derive that

ue(t€7 a, .I)

b5 (a,aefe) Cmi“)d“

(Fu(oefe.0)=2) [ 8 (auefe) 65 (0. fe)
—1—6/0 B(a,zc/€) uc(te,a,xe)da < 0,

which concludes that
| Baa/outazda <o
0

This is a contradiction, since u(t.,a,zc) > 0 for all a € [0,a] due to the strong
maximum principle in Lemma 3.2. Therefore, (4.25) is proved and Step 1 is complete.

Step 2. We next show Z., (¢, ¢t) = 0. Suppose on the contrary that Z, (¢, ct,.) <0
for some ¢, >0. Since {(t,x):x>ct,t>0}x][0,a] C {u, =0} and
{(t,ct) : t > 0} x [0,a4] C d{u. = 0}, by definitions it must hold
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liminf  Z.(t',2") =0 > Z.(t., cty).
(t"a") = (£ Cta) (4.27)
x'jt'<¢e

We choose constant M > 0 large enough such that
Mé = DM? + 2M (|0 10 5 e (0.0, yxr — H5(0) +1 <0, (4.28)

where (H;(0), ¢s5) denotes the principal eigenpair of (4.21) with v = 0. By (4.27),
we can define the function pp; € C*°(R) such that Z, (¢, x) — pas(x — ¢t) attains a
strict minimal point at (¢., ¢t.) and p’;(0) < —M. Then it follows from [2, Lemma
6.1] that

we(t,a,x) = ze(t,a,x) — elngs(a,z/e) — ppr(x — ct)

attains its minimal at some (., ac, ) € Ry x [0,a4] x R, which satisfies
(te,ze) = (s, Cty) as € — 0. Using the same arguments as in Step 1, we can deduce
that a. > 0. Hence, by evaluating the equation of z in (4.3) at the point (¢, a., z.),
direct calculations yield

DeOyzwe(te, ac, )
=De [axwze (tey Ae, (Ee) - 66:1:30 In ¢5(ae7 336/6) - pXI (me - Ete)}
1 amx¢5(ae xe/e)
:ae 7aae_Dare2 € Le -D—=—/——"""
) ze + . z |0z ze|” + plae, zc/€) P P
+ D (8, In ¢s(ac, z/€))* — Deplyy (ze — cte)
= — ephy(we — et) — Dphyy(we — eto)|* — Hy(0)
— 200y (e — ct )0 Ings(ae, e /€) — Depyy(xe — ct.),

where we wused the equation of ¢s5 in (4.21) with v=0. Due to

ph(0) < —M, by the choice of M in (4.28), we can choose € > 0 small if necessary

such that 0., we (e, ae, z.) < 0, which is a contradiction as (., ac, z¢) is a minimal

point of w,. This concludes the proof. O
Similarly, we can show the following lemma.

Lemma 4.3 Let Z* be defined in (4.18). Then Z*(t, ) is a upper semi-continuous
viscosity solution of

02" — H(0,Z*) <0, t>0, z€R,
Z*(t,¢t) = 0, t>0.

Proof By the definition of Z* in (4.18), Z*(t, ¢t) = 0 is a direct consequence of

{(t,et) : £ > 0} x [0,a4] C d{u* =0}
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It remains to show 0, Z* — H (9, Z*) < 0 in the viscosity sense. The proof can follow
by the ideas presented in Step 1 of Lemma 4.2 and we give a sketch for completeness.

Indeed, by the definition of viscosity sub-solutions, for any test function
p € C*(R4 x R),if (t*,2*) € R4 x Ris a strict local maximum point of Z* — ¢,
then we need to verify that

dep(t* ™) — H(Ozp(t", ")) < 0. (4.29)

Set v := O, p(t*, z*). Assume that (4.29) fails, namely 9y (t*, z*) — H(y) > 0.
Let v > 0 be the principal eigenfunction of problem (1.5) with A = —~, and the
associated principal eigenvalue is H (—v). We define

we(t,a,z) = @(t,z) + elny(a, z/€).

Due to H(—~) = H(v), by direct calculations as in (4.22), we have

1
Orpe + Eaagog — €Dyppe — D|0ype|? + pu(a, x/¢)
:aﬁpt - eDaszO - H(’Y) + D’Y2 - D|8L17<)0|2 + ZD('}/ - 8I<)0)81 ln'(/)

By the assumption that 9;(t*, x*) > H(~), we can choose r > 0 small such that

By + %aagog — Dyupe — DIdup 2 + pla,xfe) > 0 in Bulte, ) x [0,a:],(4.30)

provided that € > 0 is chosen small.
As in the proof of Lemma 4.2, we claim that

sup sup  (ze — ) < sup sup  (ze — @) - 431
(t,z)E€B,(t*,x*) a€[0,a4] (t,2)€OB,(t*,2*) a€[0,a4] :

If (4.31) holds, then by the definition of Z* we have

sup (2" —¢p) < sup (Z"=¢),
(t,x)eB(t*,x*) (t,x)€dB,(t*,x*)

which is a contradiction since (t*,z*) is a strict local maximum of Z* — . Hence,
(4.29) holds and Lemma 4.3 is proved.

To prove (4.31), we assume that z. — (. attains its maximum at some interior
point (t¢,a¢, 2¢) over B,.(t*,xz*) x [0,ay] with a¢ > 0. If a¢ > 0, then comparing
(4.30) with the equation of z. in (4.3) yields Oy.2(t¢, a%, 2€) > Oprpe (L€, a, x°),
which is a contradiction since (t€, a¢, z€) is a maximum point of z. — .. It remains
to consider the case a® = 0. In this case,

ze(t,0,2°) — elnp(0,z/€) > z(t% a,z) — elntp(a,x/€), Va € [0,a4].
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By the definition of z, it can be written as

uE(tE7O’ Jje) uG(t€7a7 xe)

max = Crmax-
P(0,2¢/€)  a€l0,at] Y(a,x¢/€) B

By the boundary conditions of z. and ¥ in (4.3) and (1.5), it follows that

f(xe/e, /ac B (a,z/e) ue(t67a,x5)da>
0 o (4.32)
= CmaxJu (2¢/€,0) /0 B(a,z/e) ) (a,x/€) da.

Next by Assumption 1.2 again, one obtains
f(:ce/e,/ ’ B (a,z/e) u(te, a,xs)da) < fu (z€/€, 0)/ B (a,z¢/e) uc(te, a, z%)da,
0 0

which together with (4.32) implies that

ue(t€, a, z)

G ) SO

0< fuo/e0) [ 8 (ea"/e)(0,2%/0) (cm -

Hence, there exists some a® > 0 such that u(t¢,a%, x¢) /¥ (a%, 2¢/€) = cmax-
Recalling the definition of z., this implies that z.(t€, -, 2¢) — eln (-, z¢/€) attains its
maximum at a© > 0, and thus we can obtain a contradiction as in the case of a® > 0.
The proof is complete. O

The following result states that the function z, defined by (4.17) is independent
ofa € [0,a4].

Lemma4.4 Let function z, be defined by (4.17). Then z. = 2.(t, x) is independent of
a € [0, ay] and is a viscosity solution of the Hamilton-Jacobi equation

O0Z —H(0,Z)=0, x>ct, t>0,
Z(t,ct) =0, t>0,

Z(0,0) = 0,
Z(t,x) > —oc0 as t—0,2>0,

(4.33)

where ¢ € (0, c.] is defined by (4.16).

Proof Let Z be a viscosity solution of (4.33), which can be given by certain action
functional as in [20]. Recall the definitions of Z, and Z* in (4.18). Since ug(a,0) > 0
forall a € [0, a4 ], it follows that Z,(0,0) = Z*(0,0) = 0. Based on the Lemmas 4.2
and 4.3, we can apply the similar arguments in [37, Lemmas 3.6 and 3.7] (see also
[20, Lemma 3.1]) to show that
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Z*(t,x) < Z(t,x) < Z(t,x) forall z > ct and t > 0,

for which the details are omitted here. In view of Z, < Z*, this implies that

Z(t,x) = Z*(t,x) for all x > ct and t > 0.

Noting that Z, < z, < Z* by definition, this implies that z, = Z, = Z* in {u, = 0}
and satisfies the Hamilton-Jacobi equation (4.33), which is independent of a € [0, a4 ].
Together with 2z, = 0 in {u. > 0}, we conclude that z, = 2,(t, z) is independent of
a € [0, a]. The proof is complete. O

We conclude this subsection by establishing the connection between z, and wu.
defined by (4.17) and (4.2), respectively.

Lemma 4.5 Assume H(0) > 0. Then for any (t*,2*) € Int{z. =0} and
ay € [ac, am,), there holds

limitr)lf ue(t,a,x) > 0, Vsel0,ay]
e—
(t,a,z)—(t*,s,2*)

Proof Suppose that Lemma 4.5 fails, then a direct application of Proposition 4.1
yields

liminf  w(t,a,@) =0, Vs € [0,a4]. (4.34)

(t,a,z)—(t*,5,2%)

Due to (t*,2*) € Int{z, = 0}, there exists some 7 > 0 small such that z, = 0 in
B, (t*,z*), so that by (4.17), z. converges to zero uniformly in B, (t*, z*) x [0, a4]
as € — 0. Define the test function ¢(t,z) := —(t —t*)? — (x — 2*)%. For each
0 > 0, let Hs(0) be the principal eigenvalue of

dap(a, ) = Do — pla, )¢ — Hs(0)p, (a,z) € (0,a4] xR,
©(0,2) = (fu(x,0) — 26) Oac B(a,x)p(a,x)da, x € R, (4.35)
p(a,z) = p(a,z + L), (a,2) € (0,a4] x R.

Due to H(0) > 0, we choose d > 0 small such that Hs(0) > 0.
We first claim that there exists the sequence (., e, a.) € B, (t*,z*) x [0, ay]
such that
We(t,a, ) := ze(t,a,x) — elnp(a, x/€) — P(t, )

attains its local minimum at point (¢, ., a.), and

(te, e, ae) — (t*,2",a") and zc(te,Te,ac) — z:(t",2") as e — 0, (4.36)
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for some a* € [0,a4], where ¢ > 0 denotes the principal eigenfunction of prob-
lem (4.35) associated with Hs(0). Indeed, note that z. — eln ¢ — 0 uniformly in
B, (t*,2*) x [0,a4] as e — 0. For any o € (0,7?/8), there exists €y > 0 such that

||Ze — 6ln(p”Loc(Bn(t*)x*)X[O’a+]) <o, Vee (0,60).

Hence, for all € € (0,¢9) and (¢, z,a) € (B, (t*,2*) \ By /7(t*,2%)) x [0,a4],

we(ta Cl,l') = Ze(t7aax) —e€ln @(a,x/e) - d)(ta 3:) > 30
>z (t",a",2") —elnp(a®, 2% /e) + 0 = w(t*,a",2") + 0.
This implies that w. has a local minimum at some point
(te, e, ae) € By /5 (t*,2%) % [0,a4], thatis (t. — t*)? 4 (zc — 2*)* < 40, and thus
(4.36) holds.

Next, by (4.34) we apply the same arguments of Case 2 in Lemma 4.2 to show
ae > 0, so that

8aze(tea e, xe) = 66& ln(p (a'Ea .136/6) .

By evaluating the equation of z. in (4.3) at (¢, a, x.), we have

¢ + O Inp(ac, ve/e)

> De0zz ¢ + D(Opatp/ — 0z ln<p|2) (ae,zc/€) — pr(ac, we/e)
+ D (020 + uIn g (ac, zef€))°

> De0zz ¢+ D (0z2p/ ) (e, xe/€) + D|8I¢‘2 — p(ae, zc/€)
+2D8,¢0, In ¢ (ae, x/€) .

By the definition of  in (4.35), we calculate that
O1p — Dedyrd > 2D0, 0, In ¢ (ac, e /€) + D]0,0|* + Hs(0) at (t,ac,z.),
from which letting € — 0, by (4.36) and the definition of test function ¢, we deduce

Hy(0) <0, contradicting our assumption that Hs(0) > 0. This completes the proof.
(I

4.3 Inner spreading

In this subsection, we continue to complete the proof of Theorem 1.2-(ii). To this end,
we first give a lower bound on z, motivated by Berestycki and Nadin [5, Lemma 4.4].

Lemma 4.6 Let 2z, be defined by (4.17). Then z.(t,z) > min{—tH*(—xz/t), 0}
for all t > 0 and > 0, where H* is the convex conjugate of H, defined by
H*(q) = supyer(gA — H(N)).
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Proof Define U(t,z) := —t~12,(t,—tx) for all t,x > 0. By (4.33) in Lemma 4.4,
we have

1 1
U (t,x) = =3 U(tx) = L H(Doz(t, ~t2)) + %&Cz*(t, —tz), z>ét, t>0,

in the sense of viscosity solutions. As H(\) + H*(z) > Ax for all A,z € R, it fol-
lows that

1 1
U (t,z) < —;U(t,x) + ;H*(x), x>et, t>0. (4.37)

By the definition of z, in (4.17), we have z.(«at, ax) = az.(t,z) for all a > 0.

Hence, U(t,x) = —z.(1, —x) and in particular, ;U (¢, z) = 0 in the sense of viscos-

ity solutions for all > ¢t and ¢ > 0. It follows from (4.37) that U (¢, x) < H*(z).
Then we deduce that

zo(t,x) = —tU(t, —x/t) > —tH"(—x/t) > min{—tH"(—x/t),0}, = >¢ct, t>0.(4.38)

Note from the definition of ¢ in (4.16) that z, (¢, ) = 0 for all < ¢t, which together
with (4.38) completes the proof. O
For any ¢; < ¢ and ¢ > 0, we define the set

Si(cr,c2) i ={x €R: 1t < x < cat}. (4.39)
To prove Theorem 1.2-(ii), we prepare the following result.

Lemma 4.7 Let 7 > 0 and up(a,z),tp(a,z) > 0 for all (a,z) € [0, a,) X R.
Assume that u and U are the solutions of (1.1) with initial data u(0, a, x) =ug(a, )
and (0, a,z) = Ug(a, ), respectively. If wug(a,z) = tg(a,z) for (a,z)€
[0, am) X S:(cy1,cz), then for any 6 € (0,(ce — ¢1)/2), there holds

lu(t, a, ) — i(t,a,z)| < MeP7Hnte=0T =t >0 (a,2) € [0,am) X Sr(c1 + 6, ca — 6),
where M > 0 is some constant independent of t and T. In particular, fixing

T; > 0, for any o > 0, one can find T such that if ug(a, ) = Gy (a, x) for

(a,z) € [0, am) x Sy(cy, c2) for some T > T, then

lu(Ty,a,z) —a(Ty,a,z)| <o, (a,z) €[0,a,m) x Sr(c1 +6,co—0).
Proof Fix any z € R, consider the space

X, ={p€C(R):sup 67|‘T*Z‘\¢(x)| < 400}
z€eR
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equipped with the norm ||¢HXZ:supxeRe_‘I_Z||¢(x)|. Recall  that

{Uo(a, ) }o<s<a<a,, is defined in (2.4) for the case of A = 0. It is easily seen that it
is positive and bounded in X, satisfying

[Uo(a,s)llo(x.) < eP=rm)@=s)  for all 0<s<a< an. (4.40)

Indeed, due to the property of Green’s function defined in (2.4), for any n € X, we
have

[tho(a, s)nll . = supe” !
i z€R

/RGO(a, s — y)n(y)dy‘

< supe_‘w_z‘ / Go(a, s;x —y)|n(y)|dy
R

z€R

— supelo / Gola, s:9)n(x — )|dy
rER R
2

4D(a o)
< e Hint(a—s) sup 67|:L’7z\/ e (o — 1)ldy
eeR R QW
7m+ly\
< el [ Sty
z R 2 DT('(a — S)
—ping(a—s) ” H / 6_%4_[)@_5)(1
= e 11 77 y
- R Dr(a — s)

= P g
z

where, in the second inequality, we used the fact that DAu — pu < DAu — pynru
for nonnegative u € X,. Hence, (4.40) is proved.
Set w := u — @. Direct calculation gives

Oyw + Oqw = DOppw — pw, (a,2) € (0,a,) xR, t >0,
w(t,0,2) = c(t, =) Oa"’ Bla,z)w(t,a,x)da, (a,x)€ (0,am) xR, t>0, (4.41)
w(0,a,z) = wo(a, z), (a,z) € (0,am) X R,

where wg = ug — U and

1
c(t,x):/o fu( 175/ Bla,x)u tazdaJrs/ Bla,x)u (tax)da)ds

Recall that, via the method of characteristics [61], the solution of (4.41) can be writ-
ten as
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Uo(a,a —t)wo(a —t), a>t,

4.42
Up(a,0)w(t — a,0), a<t, (442)

w(t,a) = {

where we write w(t, a) = w(t, a, x) for simplicity.
Plugging (4.42) into the equation of w(¢, 0) in (4.41) yields that

w(t,0) = c(t,-) [/0 x(a)B(a, WUy (a,0)w(t — a,0)da + /tnw x(a)B(a, Yo(a,a — t)wo(a — t)da| ,(4.43)

whereas x(a) denotes the cutoff function satisfying x(a) =1 for a € (0,a.) and
x(a) =0 for a € [ac, am). Now we consider the following two cases.
Case 1. Ift < a,, then (4.43) can be written as

t Qe
w(t,0) = e(t, ) [/ B(a, WU (a, 0)w(t — a,0)da + / B(a, WUo(a,a — t)wo(a — t)da} .
0 t
By Assumption 1.2, using (4.40) we have
_ f,i ac
w(t, 0)]x, <f(0) [ Ba)eP=m04 | w(t — a,0)|| x_ da +/ Bla)eP=m0t lwo(a — 1)l da}
0 t
ot "
S?(O) [/ B(f _ S)e(Dfumr)(ffS) [lw(s, O)HXZ ds + e(Dﬂlmr)iHB”LW(O,GC) / Hwo((z)HxZ da:l s
0 0
where f(0) and 3(a) are defined by (2.1). The Gronwall’s inequality implies that

w0, < FOIFlzx@ane® ot WPl [* @)l da tor 1< a.(4.44)
0

Case 2. Ift > a,, then (4.43) can be written as

w(t,0) = c(t,-) / B(a, Uy (a,0)w(t — a,0)da.

0
By the similar argument as in (4.44), we can use (4.40) to derive
— t —
Ja(t,0)l, < F0) [ Bt = e 10 (s, o) ds.
0

The Gronwall’s inequality concludes that
[w(t,0)x. =0 for t>a. (4.45)
Thanks to the above two cases, we have completed the estimates of ||w(t, 0)| . for

any (t,a) € (0,00) x [0, a.]. Now let us finish the estimates of ||w(t, a)| 5. for any
(t,a) € (0,00) x [0, a] via (4.42). By (4.42), (4.44) and (4.45), we observe that
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lw(t,a)llx, < eP70 lw(t —a,0)||x,

(4.46)

o o
”’ n —uing)t O[B4
< F(0) B 1 0.00) P Hm)te O3], (o.m/ lwo(a)llx. da, ¥t > a.
0

It follows from (4.40) and (4.42) that
lw(t,a)llx, < eP™Hm" flwg(a— 1)y, , VE<a. (4.47)

In summary, for all ¢ < a and (a, z) € [0, am) X S;(c1 + 0,c2 — 0), by (4.47) we
have

lu(t, a, z) — a(t, a, z)| <eP~rntltgup (67‘17” |u(0,a —t,z) — a(0,a — t, x)|)
z€R

= (D~ Hine)t sup (ef“”fz‘ |u(0,a — ¢, 2) — a(0,a — t, z)|>
z€R\ S+ (c1,c2)

SCe(D_”i"f)t sup 6—\z—z\
z€R\S-(c1,c2)

< Ce(D—#inf)te—‘%"

where C' > 0 depends only on ug and %g. On the other hand, (4.46) implies that

o, 0)lly, =M™t sup fluo(@ly. V2,
a€l0,a.

where M = acf(())||B\|Lm(0’ac)e?(0)”E”Llw,ac), Then for all t>a and
(a,2) € [0,am) x Sr(c1 + 6, ca — ), we derive that
lu(t, a, z) — a(t, a, z)| < MeP—Hnt Slég (e"z_zl |u(0, a, ) — @(0, a, m)|)

= Me(P—Hino)t sup e 1" ==1u(0, a, ) — (0, a, x)|)

z€R\ S+ (c1,c2)

< CMeP—Hin0)t sup P
z€R\ S (c1,c2)

< CMe P~ rint)t =0T

Thus the proof is complete. i
We are in a position to complete the proof of Theorem 1.2-(ii).

Proof (Proof of Theorem 1.2-(ii))
Let ¢* be defined by (1.6). We first show ¢ = ¢*, where c is defined by

{us =0} ={(t,z) 1z >ct, t >0} x [0, am).

@ Springer



H. Kang, S. Liu

Since ¢ < ¢* by Theorem 1.2-(i), we assume by contradiction that ¢ < c¢*. By the
symmetry of H (\) proved by Proposition 1.6-(i), it follows that

. H()\) . H(-))
C = min = min .
A>0 A A>0 A

Then for any ¢ € (¢, ¢*), there exists some € > 0 such that H(—\) > (1 + €)Ac for
all A > 0. As H(0) > 0 and A — H()) is continuous, there exists § > 0 such that
H(—X) > Ac+ 0 for all A > 0, which implies from the definition of convex conju-
gate that —H™*(—c) > 0. Lemma 4.6 together with the continuity of H* yields that
for all (¢, x) in a neighborhood of (1, ¢),

zy(t,x) > min{—tH*(—x/t), 0} =0,

which particularly implies (1,c¢) € Int{z, =0} for all ¢ € (¢,c¢*). For any
a4 € [ac, a;), an application of Lemma 4.5 yields that

1
liminfu.(1,a,c¢) = liminfu (,a, C) = liminfu(t, a,ct) >0, Va € [0,a4],
e e

e—0 e—0 t—o0

which is a contradiction since {(¢,ct) :¢ > 0} x [0,a4] C {u. = 0}. Therefore,
¢ = c*, namely

{u, =0} ={(t,x) : x > c"t, t > 0} x [0,a4]. (4.48)

Next, let us prove

lim inf sup lu(t,a,z) —u*(a,z)] =0, Vce(0,c%).
=20 4el0,a],0<z<ct

By (4.48), one can fix any ¢ € (0, ¢*) and define

(t,a,2) >0, (4.49)

1
o = — liminf inf U
2 t—o0 (a,2)€[0,a1]xS:(0,c)

where the set S;(0, ¢) is defined by (4.39). Let v be the solution of (1.1) with initial
value ug = a. Then by the uniqueness of the solution to problem (1.1), v(z, a, x)
is periodic in x for all ¢ > 0 and a € [0, a4 ]. Hence, Theorem 1.1-(i) implies that
v(t,a,z) = u*(a,z) in C([0,ay] X R) as t — +oo. Hence, for any o > 0, there
exists 77 > 0 such that

v(t,a,x) > u*(a,x) —o forallt>T and (a,z) € [0,a4] xR.  (4.50)
Motivated by the proof of [36, Theorem 5.1], let u” (¢, a, ) be the solution of (1.1)

with initial value u” (0, a,x) = minger{e, u(, a,z)}. It follows from (4.49) that
u™(0,a,2) = « for x € S;(0,c), whenever 7 > 0 is large, say 7 > T for some
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T> > 0. Applying Lemma 4.7, for any 0 < 6 < ¢/2, one can find a constant 75 > T5
such that for all T > T3,

[v(Ty,a,2) —u™ (Ty,a0,2)| <o, Y(a,z) € [0,a4] x S-(0,¢c—0).
This together with (4.50) gives

u (Th,a,2) > u*(a,z) =20 forall 7 > Ts and (a,z) € [0,a4] x S;(0,c—0).(4.51)

Note that there exists some 7 > 0 such that
S-(20,¢—20) C S, (0,c—6), V7 >Ty.
Now taking Ty = T + 13 + Ty, it follows from (4.51) that for all ¢t > Tj,
u'T(Ty a,2) > u*(a,x) — 20, Y(a,z) € [0,ay] x S;(20,c — 26).
On the other hand, comparison principle yields that for all ¢, s > 0,
u(s +t,a,7) > u'(s,a,z), Y(a,z)€[0,ay] xR.

Therefore, for t > T, we have

u(t,a,z) > w1 (T, a, ) > u*(a,z) — 20, Y(a,z) €[0,ay] x S¢(26,c — 26).
Due to the arbitrariness of 0, it follows that

lim sup sup |u(t,a,z) —u*(a,z)] =0, V' €(0,c).
t=00 0<z<e't ac[0,a4 ]

The proof is now complete. i
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