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Abstract
The paper is concerned with the persistence and spatial propagation of populations 
with age structure in spatially periodic media. We first provide a complete charac-
terization of the global dynamics for the problem via investigating the existence, 
uniqueness and global stability of the nontrivial equilibrium. This leads to a neces-
sary and sufficient condition for populations to survive, in terms of the principal 
eigenvalue of the associated linearized problem with periodic boundary conditions. 
We next establish the spatial propagation dynamics for the problem and derive the 
formula for the asymptotic spreading speed. The result suggests that the propaga-
tion fronts of populations are uniform for all age groups with a common spreading 
speed. Our approach involves developing the theory of generalized principal eigen-
values and the homogenization method to address novel challenges arising from the 
nonlocal age boundary condition.

Mathematics Subject Classification  35B40 · 35K57 · 35B27 · 92D25

1  Introduction

In this paper, we are concerned with an age-dependent population dynamics model 
with spatial diffusion in the spatially periodic media:
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


∂tu + ∂au = D∂xxu − µ(a, x)u, (a, x) ∈ (0, am) × R, t > 0,

u(t, 0, x) = f
(
x,
´ am

0 β(a, x)u(t, a, x)da
)

, x ∈ R, t > 0,

u(0, a, x) = u0(a, x), (a, x) ∈ (0, am) × R,

� (1.1)

where u(t,  a,  x) represents the density of the population with age a at location x 
and time t, and the maximal age is parameterized by am ∈ (0, +∞]. Function 
µ ∈ Cα, α

2 (R × [0, am)) with α ∈ (0, 1) represents the age-specific death rate of 
individuals, which is assumed to be nonnegative and periodic in x with period L > 0. 
Let nonnegative function β ∈ C2+α(R, L∞(0, am)) with α ∈ (0, 1) denote the age-
specific birth rate of individuals, which is L-periodic in x. The total birth rate at loca-
tion x and time t is given by the nonlocal term

	

ˆ am

0
β(a, x)u(t, a, x)da.

The age boundary condition is given by the nonlinear function f ∈ C2+α,1(R × [0, ∞)) 
with α ∈ (0, 1), of the total birth rate, which is also assumed to be L-periodic in x. 
The main feature of problem (1.1) is the combination of nonlinearity and nonlocality.

Structured models bridge the gap between the individual level and the population 
level, allowing us to study the population dynamics by examining the characteristics 
of individuals [41, 46, 52]. These models typically involve parameterizing the state 
of individuals based on their physiological or physical conditions, among which the 
age is an important characteristic. The age-structured model was proposed in the pio-
neering work of McKendrick and Lotka during 1920–1940 [38, 45] and has attracted 
intensive attentions in both theoretical and empirical investigations [1, 29, 30, 61].

In biological modeling, the spatial dispersal of individuals plays a crucial role. 
Since individuals need to be mature enough chronologically to disperse, age-struc-
tured population models incorporating diffusion arise naturally in biological investi-
gations. The diffusive problem (1.1) was first proposed by Gurtin [26] and has been 
extensively studied in the literature [10, 25, 35, 39, 58, 60], with a focus on the 
dynamics of problem (1.1) in spatially bounded domains. Until 2007, the dynamics in 
unbounded domains was investigated via analyzing the existence of traveling wave 
solutions, see e.g. [13, 16–18]. However, the global dynamics and spatial spreading 
properties of problem (1.1) are left open.

The focus of this paper is two-fold. The first aim is to provide a complete char-
acterization of the global dynamics for problem (1.1), as motivated by biological 
questions regarding the persistence of age-structured populations in spatially peri-
odic environments. Specifically, we obtain the existence, uniqueness, and stability of 
stationary solutions for problem (1.1). This leads to a necessary and sufficient condi-
tion for the population to survive. The second aim is to establish the spatial propaga-
tion dynamics of problem (1.1) and derive the formula for the asymptotic spreading 
speed, as motivated by the invasion of age-structured populations. It turns out that the 
propagation fronts of populations is asymptotically unified for all age groups, and the 
age structure only affects the common spreading speed. Our approach focuses on the 
development of the homogenization theory for problem (1.1) in order to overcome 
new challenges arising from the nonlocal age component.
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1.1  Global dynamics of Cauchy problem (1.1)

The stationary equation of problem (1.1) can be written as

	

{
∂au(a, x) = D∂xxu(a, x) − µ(a, x)u(a, x), (a, x) ∈ (0, am) × R,

u(0, x) = f
(
x,
´ am

0 β(a, x)u(a, x)da
)

, x ∈ R.
� (1.2)

Under some assumptions to be specified later, the positive solutions of (1.2) turn out 
to be periodic in x, while the periodicity assumption is not imposed a priori.

The dynamics of problems (1.1) and (1.2) are related to the following spatially 
periodic eigenvalue problem

	




∂aφ = D∂xxφ − µ(a, x)φ − λφ, (a, x) ∈ (0, am) × R,

φ(0, x) = fu(x, 0)
´ am

0 β(a, x)φ(a, x)da, x ∈ R,

φ(a, x) = φ(a, x + L), (a, x) ∈ (0, am) × R,

� (1.3)

which can be regarded as the linearization of problem (1.2) at the trivial equilibrium 
u = 0. We first impose the following assumptions for the age-specific death rate µ 
and birth rate β.

Assumption 1.1  (i) There exists µinf > 0 such that µ(a, x) ≥ µinf  a.e. in (0, am)×
[0, L], and 

´ am

0 µ(a, x)da = +∞ for all x ∈ [0, L].
(ii)	 There exists ac ∈ (0, am) such that β ≡ 0 on [ac, am) × [0, L] and ´ ac

a
minx∈[0,L] β(s, x)ds > 0 for any a ∈ [0, ac).

Remark 1.1  Assumption 1.1 is usually imposed in the age-structured models [29, 30, 
41, 61]. The assumption 

´ am

0 µ(a, x)da = +∞ in part (i) is often employed to guar-
antee that the population density reaches zero at the maximal age. Part (ii) serves to 
obtain the simplicity of the principal eigenvalue and strict positivity of the principal 
eigenfunction for problem (1.3). We refer to Engel and Nagel [19, Theorem 4.4] or 
Ducrot et al. [14] for more details. The assumption β ≡ 0 nearby the maximal age 
means that the birth rate becomes zero when the age of the individuals approaches 
the maximal age, which is biologically reasonable. This allows us to consider prob-
lem (1.1) on a restricted interval [0, a+] for any a+ ∈ [ac, am) ; see Remark 2.1 for 
further details. Such cutoff of age interval guarantees the principal eigenfunction to 
be positive everywhere in [0, a+] × R and avoids the singularity of the logarithm of 
the principal eigenfunction evaluated at the maximal age.

Next we make some assumptions on the nonlinear function f = f(x, u) as follows:

Assumption 1.2  (i) fu(x, u) > 0 for all u ∈ [0, ∞) and x ∈ R.
(ii)	 f(x, 0) ≡ 0 and f(x,u)

u  is decreasing with respect to u for all x ∈ R.

(iii)	There exists M > 0 such that f(x, u) ≤ M  for all u ∈ [0, ∞) and x ∈ R.
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Remark 1.2  Two typical examples satisfying Assumption 1.2 are f(x, u) = u
1+Au  

with some constant A > 0, commonly known as Holling’s type II response [27, 28], 
and f(x, u) = 1 − e−u, referred to as the logistic function and used to model the 
population growth [43]. Assumption 1.2-(i) is imposed to eliminate the existence 
of oscillatory solutions, which is commonly observed in age-structured models as 
in [40, 41] and the references therein. In combination with Assumption 1.2-(ii), it 
is necessary for our problem, in particular in the monotone iterative scheme (using 
comparison principles) to obtain the nontrivial positive equilibrium of problem (1.1) 
(see Proposition 3.5). Assumption 1.2-(iii) means that the birth rate of the population 
is bounded, which guarantees that the solution of (1.1) is uniformly bounded.1

Under Assumptions 1.1 and 1.2, the existence of the principal eigenvalue for problem 
(1.3) is established in Sect. 2.1. Note that Assumptions 1.1 and 1.2 will be required 
throughout the paper. Henceforth, we will assume their validity without repeating 
them, while we will indicate the additional assumptions where necessary.

Our first main result is given as follows.

Theorem 1.1  Let u(t, a, x) be the solution of (1.1) with any initial value u0 ≱≡ 0 . 
Denote by H(0)2 the principal eigenvalue of (1.3). 

(i)	 If H(0) > 0, then there exists a unique positive solution to (1.2), denoted 
by u∗(a, x), which is L-periodic in x and is globally asymptotically stable 
in the sense that u(t, a, x) → u∗(a, x) in Cloc([0, am) × R) as t → +∞. 
Furthermore, for any a+ ∈ [ac, am), if inf(a,x)∈[0,a+)×R u0(a, x) > 0, then 
u(t, a, x) → u∗(a, x) in C([0, a+] × R) as t → +∞.

(ii)	 If H(0) ≤ 0, then any nonnegative solution of (1.2) is identically zero and 
u(t, a, x) → 0 in C([0, a+] × R) as t → +∞ for any a+ ∈ [ac, am).

Theorem 1.1 provides a complete description for the global dynamics of prob-
lem (1.1), which indicates the occurrence of the hair-trigger effect when H(0) > 0. 
Biologically, Theorem 1.1 formulates a necessary and sufficient condition for the 
persistence of an invading species in terms of the principal eigenvalue of (1.3), which 
reflects many crucial information regarding the interaction between age structure, 
species movement, and environmental heterogeneity. Similar results for age-struc-
tured models with diffusion in bounded domains have been found in [35, 39, 58]. 
However, establishing such global dynamics in unbounded domains is more intricate 
compared to bounded domains, even in the absence of age structure, see e.g. [31, 49]. 

1 Indeed, if f is unbounded, the solution of problem (1.1) may blow up at infinity. For instance, assume 
that f(x, u) = u(1 + e−u), which satisfies parts (i) and (ii) in Assumption 1.2 but is not bounded. If 
u0(a, x) has a positive lower bound, then up to multiplication by a positive constant, it can be verified 
that u(t, a, x) = eH(0)tφ(a, x) serves as a sub-solution of (1.1), where (H(0), φ) is the principal 
eigenpair of problem (1.3) with f(x, u) = u. Hence, the solution of (1.1) is not uniformly bounded 
whenever H(0) > 0.
2 The notation “H(0)" is adopted to keep consistency with the principal eigenvalue H(λ) of problem 
(1.5) below.
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Specifically, it is essential to prove a strong persistence result such that the solutions 
of problem (1.1) have a uniformly positive lower bound, which is of importance in 
analyzing the global dynamics by constructing suitable sub-solutions. Moreover, due 
to the presence of the operator ∂a, problem (1.1) resembles a hybrid PDE, exhibiting 
parabolic and hyperbolic properties simultaneously. The classical parabolic estimates 
for (1.1) have not been established. This and the nonlocal term in age boundary con-
dition lead to some difficulties in obtaining Theorem 1.1.

Remark 1.3  To prove Theorem 1.1, it is necessary to establish the relation between 
the principal eigenvalue of (1.3) and that of the following eigenvalue problem:

	

{
∂au(a, x) = D∂xxu − µ(a, x)u(a, x) − λu(a, x), (a, x) ∈ (0, am) × R,

u(0, x) = fu(x, 0)
´ am

0 β(a, x)u(a, x)da, x ∈ R,
� (1.4)

for which the eigenfunction is not necessarily periodic in x. Such a problem itself is 
of independent interest. Note that the principal eigenvalue of (1.4) may not exist. This 
motivates us to define its generalized principal eigenvalue, which can be obtained 
through a limiting procedure of principal eigenvalues associated with problem (1.4) 
on bounded domains with Dirichlet boundary conditions (Lemma 2.5). Due to the 
symmetry property of our operator with respect to spatial diffusion (without advection 
term), one can establish the relation between such generalized principal eigenvalues 
and the principal eigenvalue of (1.3) (Proposition 2.6). In the aforementioned argu-
ment, the presence of the age-structure term distinguishes our eigenvalue problem 
from the time-periodic one as studied in [47–49]. In particular, our analysis requires 
special consideration on the nonlocal boundary condition at a = 0.

1.2  Spreading properties of Cauchy problem (1.1)

Next we consider the spreading properties of problem (1.1). For any λ ∈ R, consider 
the following weighted eigenvalue problem:

	




∂aφ = D∂xxφ − 2Dλ∂xφ + Dλ2φ − µ(a, x)φ − H(λ)φ, (a, x) ∈ (0, am) × R,

φ(0, x) = fu(x, 0)
´ am

0 β(a, x)φ(a, x)da, x ∈ R,

φ(a, x) = φ(a, x + L), (a, x) ∈ (0, am) × R.

� (1.5)

Let H(λ) denote the principal eigenvalue of (1.5), for which the existence is estab-
lished in Sect. 2.1. Our second main result is stated as follows.

Theorem 1.2  Let u(t, a, x) be the solution of (1.1) with any compactly supported 
initial value u0 ≱≡ 0 . Assume H (0 ) > 0  and denote by u∗(a, x) the unique positive 
solution to (1.2) as given by Theorem 1.1, then there exists c∗ > 0  such that

	




lim
t→+∞

sup
|x|≥ct

sup
a∈[0,a+]

u(t, a, x) = 0, for all c > c∗ and a+ ∈ [ac, am),

lim
t→∞

sup
|x|≤ct

sup
a∈[0,a+]

|u(t, a, x) − u∗(a, x)| = 0, for all 0 ≤ c < c∗ and a+ ∈ [ac, am).
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More precisely, the spreading speed c∗ can be determined by

	
c∗ = min

λ>0

H(λ)
λ

,� (1.6)

where the minimum can be attained by a unique positive λ.
The spreading properties shown in Theorem 1.2 are uniform in a ∈ [0, am). One 

possible biological interpretation is that, since the maximal age of the population is 
finite, for all individuals born at the propagation front at time t > 0, the spatial dis-
tance diffused by the population throughout their lifespan remains finite. Hence, the 
positions of all age groups can be expressed as c∗t + O(1), i.e. all individuals with 
different ages will spread at the same speed up to O(1) terms. To our best knowledge, 
this phenomenon appears to be first proved in reaction-diffusion models with addi-
tional structures.

Theorem 1.2 is established via the homogenization method inspired by the works 
of Berestycki and Nadin [5, 6]. Such an approach was originally introduced by Fre-
idlin [22] utilizing probabilistic arguments, and was generalized by Evans and Sou-
ganidis [20] by means of PDE arguments. The ideas for our problem are outlined as 
follows: 

1.	 Consider the transformations: 

	
uϵ(t, a, x) := u

(
t

ϵ
, a,

x

ϵ

)
and zϵ := ϵ ln

(
uϵ(t, a, x)

M

)
,

	 where M > 0 is the uniform upper bound of the solution u to problem (1.1). 
Note that the variable a has not be rescaled. Then uϵ and zϵ satisfy the following 
equation: 

	




∂tzϵ + 1
ϵ ∂azϵ = Dϵ∂xxzϵ + D|∂xzϵ|2 − µ

(
a, x

ϵ

)
, (a, x) ∈ (0, am) × R, t > 0,

ϵ∂tuϵ + ∂auϵ = ϵ2D∂xxuϵ − µ
(
a, x

ϵ

)
uϵ, (a, x) ∈ (0, am) × R, t > 0,

uϵ(t, 0, x) = f
(

x
ϵ ,
´ ac

0 β
(
a, x

ϵ

)
uϵ(t, a, x)da

)
, x ∈ R, t > 0.

� (1.7)

	  The presence of the singular term “ 1
ϵ ∂azϵ" and the nonlocal boundary condition 

in (1.7) leads to some challenges in analyzing the limits of uϵ and zϵ.

2.	 Define the half-relaxed limit: 

	

u∗(t, a, x) := lim inf
ϵ→0

(t′,a′,x′)→(t,a,x)

uϵ(t′, a′, x′).

	  We establish that {u∗ = 0} = {(t, x) : x ≥ c̄t, t > 0} × [0, am) for some c̄ > 0, 
which implies that the support of the limiting function u∗ is age-independent 
(Proposition 4.1). This is a key ingredient of our homogenization method in this 
paper.

3.	 For any a+ ∈ [ac, am), define the half-relaxed limits: 
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Z∗ := lim inf

ϵ→0
inf

a∈[0,a+]
zϵ(t, a, x) and Z∗ := lim sup

ϵ→0
sup

a∈[0,a+]
zϵ(t, a, x).

	  Let the critical value critical value c̄ > 0 be defined in Step 2. We prove that Z∗ 
and Z∗ constitute, respectively, a lower semi-continuous viscosity super-solu-
tion and an upper semi-continuous viscosity sub-solution of the Hamilton-Jacobi 
equation 

	

{
∂tZ − H(∂xZ) = 0, x > c̄t, t > 0,

Z(t, c̄t) = 0, t > 0,
� (1.8)

	  where the Hamiltonian H(∂xZ) is the principal eigenvalue of problem (1.5) 
with λ = ∂xZ (Lemmas 4.2 and 4.3).

4.	 Define the half-relaxed limit: 

	

z∗(t, a, x) := lim inf
ϵ→0

(t′,a′,x′)→(t,a,x)

zϵ(t′, a′, x′).

	  By applying Step 3 and the comparison principle for Hamilton-Jacobi equations, 
we establish that z∗ = z∗(t, x) is independent of a ∈ [0, am) and constitutes a 
viscosity solution of the Hamilton-Jacobi equation (1.8). Based on this, we prove 
that u∗ > 0 in Int{z∗ = 0} × [0, a+] for any a+ ∈ [ac, am) (Lemma 4.5).

5.	 We complete our analysis by showing that the boundary point c̄ serves as the 
spreading speed of (1.1) and coincides with c∗ as defined by (1.6).

Mathematically, there are two main difficulties in proving Theorem 1.2. First, the 
presence of age structure in problem (1.1) brings the nonlocal effect in determining 
limits of uϵ and zϵ as ϵ → 0. This forces us to establish the uniform estimates with 
respect to the age variable a. Second, the nonlinear effects appear in the boundary 
condition at a = 0, which are different from the usual positions in the classical reac-
tion-diffusion equations. This leads to some difficulties in applications of the theory 
of the viscosity solutions for Hamilton-Jacobi equations. Finally, to our best knowl-
edge, while the homogenization method has been successfully employed in the stud-
ies of spreading properties for reaction-diffusion equations with random dispersal [5, 
6, 37], nonlocal dispersal [8, 36] as well as time delays [34], its extension to problems 
with additional structures remains unexplored. We believe that our analytical frame-
work developed in this paper may be applicable to other structured equations.

To conclude this section, we mention that our approach can be applied, with minor 
modifications, to the spreading problem of age-structured species in higher dimen-
sions. Here, we focus on the one-dimensional case for the sake of clarity and sim-
plicity in our presentation. For related works on the asymptotic spreading of a single 
population without age structure in heterogeneous environments, we refer to [3, 11, 
21, 33, 48, 63] for the one-dimensional case, and refer to [4, 6, 50, 54, 62] for higher-
dimensional case. In addition, our analysis specifically addresses the problem (1.1) 
with multiple age groups, which distinguishes from previous studies. In those works, 
the authors integrate the population from maturation age to maximal age, and trans-
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form (1.1) into a time-delayed reaction-diffusion equation under some specific death 
and birth rate functions. We refer to [12, 23, 31, 55, 57] for the related results.

The paper is organized as follows. In Sect. 2, we provide the existence of principal 
eigenvalues of (1.4) and (1.5) along with their properties, which are used to define 
the spreading speed and study the global dynamics of (1.1). In Sect. 3, we obtain the 
global dynamics of (1.1) including the existence, uniqueness, and global stability of 
positive equilibrium, which proves Theorem 1.1. In Sect. 4, we study the spreading 
properties of (1.1) and establish Theorem 1.2.

2  Theory of the principal eigenvalue

2.1  The existence and qualitative properties

In this subsection, we shall investigate the existence and some qualitative proper-
ties of the principal eigenvalue for problem (1.5). We first introduce the following 
notations:

	

µ(a) := min
x∈[0,L]

µ(a, x), µ(a) := max
x∈[0,L]

µ(a, x),

β(a) := min
x∈[0,L]

β(a, x), β(a) := max
x∈[0,L]

β(a, x),

f(0) := min
x∈[0,L]

fu(x, 0), f(0) := max
x∈[0,L]

fu(x, 0).

� (2.1)

Lemma 2.1  Let Assumption 1.1 hold. Then there exists a unique principal eigenvalue 
of (1.5), which is algebraically simple, and the corresponding eigenfunction can be 
positive.

Proof  The proof can follow by [25, Theorem 3] and [59, Lemma 2.6]. Here we only 
provide a sketch proof for completeness. Denote by X the Banach space

	 X = Cper(R) := {ϕ ∈ C(R) : ϕ(x + L) = ϕ(x)},� (2.2)

and denote its positive cone by X+. Observe that X+ is a normal and generating 
cone. Define the following function spaces:

	 X = X × L1((0, am), X), X0 = {0X} × L1((0, am), X),

endowed with the product norms and the positive cones:

	X
+ = X+ × {u ∈ L1((0, am), X) : u(a, ·) ∈ X+ a.e. in (0, am)}, X +

0 = X + ∩ X0.

We consider the following problem posed in X for 0 ≤ τ ≤ a < am:
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{
∂av(a) = Dvxx(a) − 2Dλ∂xv(a) + Dλ2v(a) − µ(a, ·)v(a), τ < a < am,

v(τ) = η ∈ X.
� (2.3)

To avoid introducing more notations involving λ, we omit λ in the following nota-
tions. It follows that problem (2.3) generates an evolution family on X, denoted by 
{U(a, τ)}0≤τ≤a<am . In fact, such U  can be given by a Green’s function G:

	
(U(a, τ)η)(x) =

ˆ

R
G(a, τ ; x − y)η(y)dy, ∀ 0 ≤ τ ≤ a < am.� (2.4)

Moreover, there exist M > 0 and ω ∈ R such that

	 ∥U(a, τ)∥L(X) ≤ Meω(a−τ), ∀ 0 ≤ τ ≤ a < am.� (2.5)

In addition, we also define the following family of bounded linear operators 
{Wλ}λ>ω ⊂ L (X , X0) for (η, g) ∈ X  by

	
Wλ(η, g) =

(
0, e−λaU(a, 0)η +

ˆ a

0
e−λ(a−τ)U(a, τ)g(τ)dτ

)
.� (2.6)

Following the argument in Thieme [56, Section 6], we can prove that this provides 
a family of positive pseudoresolvents. Hence, by Pazy [51, Section 1.9], there exists 
a unique closed Hille-Yosida operator B : dom(B) ⊂ X �→ X  with dom(B) = X0 
such that

	 (λI − B)−1 = Wλ for all λ > ω,� (2.7)

where I : X �→ X  denotes the identity operator.
Furthermore, we define C ∈ L(X0, X ) by

	
C(0, h) =

(
fu(·, 0)

ˆ am

0
β(a, ·)h(a)da, 0

)
, (0, h) ∈ X0,� (2.8)

and A : dom(A) ⊂ X �→ X  by

	 A = B + C with dom(A) = dom(B) ⊂ X0.� (2.9)

Then it suffices to prove the existence of the principal eigenvalue for operator A.
To this end, for each Λ ∈ R, we define a linear operator MΛ : X �→ X  by

	
MΛϕ = fu(·, 0)

ˆ am

0
β(a, ·)e−ΛaU(a, 0)ϕ da, ∀ϕ ∈ X.� (2.10)

In fact, MΛ is obtained by plugging the resolvent of B into the integral initial con-
dition (1.5), and we refer to [25, 59] for the derivation. By Assumption 1.1-(ii), it 
follows from [25] that MΛ is a compact and nonsupporting operator in X, where 
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nonsupporting is a generalization of strong positivity when working on a Banach 
space with a positive cone which has empty interior; see [44] or [53] for the complete 
definition. Thus by the Krein-Rutman theorem, for each Λ ∈ R, the spectral radius 
r(MΛ) of operator MΛ is the principal eigenvalue, which is algebraically simple, 
and the corresponding eigenfunction can be positive.

Note from (2.10) that Λ �→ r(MΛ) is continuous and strictly decreasing. It follows 
that such Λ satisfying r(MΛ) = 1 indeed exists and is unique, denoted by H(λ). By 
definition, such H(λ) is an eigenvalue of operator A. Moreover, if Λ′ > H(λ), then 
r(MΛ′) < r(MH(λ)) = 1, which implies that (I − MΛ′)−1 exists, and so does 
(Λ′I − A)−1. This prevents Λ′ to be an eigenvalue of A and therefore H(λ) is the 
principal eigenvalue of A. Furthermore, the algebraic simplicity follows from that 
of r(MH(λ)). By the classical parabolic estimates, the principal eigenfunction of 
A associated with H(λ) is belonging to W 1,1((0, am), C2

per(R)). The proof is now 
complete. � □

Remark 2.1  Due to β ≡ 0 on [ac, am) × R as in Assumption 1.1-(ii), the characteris-
tic equation (2.10) can be rewritten as follows:

	
MΛϕ = fu(·, 0)

ˆ ac

0
β(a, ·)e−ΛaU(a, 0)ϕ da, ∀ϕ ∈ X.

We observe from the proof of Lemma 2.1 that the principal eigenvalue of (1.5) is 
the unique value such that r(MH(λ)) = 1. Hence, for any a+ ∈ [ac, am), H(λ) is 
also the principal eigenvalue of (1.5) with [0, am) replaced by [0, a+]. In the follow-
ings, we are focused on the eigenvalue problem (1.5) posed on [0, a+] × R instead of 
[0, am) × R for any a+ ∈ [ac, am).
 
Next we collect some useful properties of the principal eigenvalues for problem (1.5).

Proposition 2.2  Let Assumption 1.1 hold. Denote by H (λ) the principal eigenvalue 
of problem (1.5) as given in Lemma 2.1. Then the following assertions hold. 

(i)	 The map λ �→ H(λ) is analytic, convex, and even in R.
(ii)	 The infimum of H(λ)

λ  can be attained at some finite value in (0, +∞) provided 
that H(0) > 0.

Proof  The adjoint problem of (1.5) can be written as

	




−∂aψ(a, x) = D∂xxψ(a, x) + 2Dλ∂xψ(a, x) + Dλ2ψ(a, x) − µ(a, x)ψ(a, x)
−H(λ)ψ(a, x) + fu(x, 0)β(a, x)ψ(0, x), (a, x) ∈ (0, am) × R,
ψ(a, x) = ψ(a, x + L), (a, x) ∈ (0, am) × R.

�(2.11)

Then H(λ) is the principal eigenvalue of (2.11). Due to β ≡ 0 in [ac, am) × R as 
imposed in Assumption 1.1-(ii), problem (2.11) can be reduced to a parabolic equa-
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tion on [ac, am) × R, which admits a unique solution for the given initial value at 
a = ac. Note from Lemma 2.1 that the principal eigenfunction of (2.11) is unique up 
to some multiplier. We can restrict problem (2.11) on [0, ac] × R, for which the prin-
cipal eigenvalue is also H(λ) with the same eigenfunction on [0, ac] × R (Indeed, the 
principal eigenfunction of problem (2.11) restricted on [0, ac] × R can be uniquely 
extended to be the principal eigenfunction of problem (2.11)). Set

	 C2
per(R) := {ϕ ∈ C2(R) : ϕ(x + L) = ϕ(x)}.� (2.12)

 We define the adjoint operator

	 Aλ : W 1,∞((0, ac), C2
per(R)) �→ L∞((0, ac), Cper(R)),

 which is restricted on [0, ac] × R such that

	

[Aλψ](a, x) :=∂aψ(a, x) + D∂xxψ(a, x) + 2Dλ∂xψ(a, x) + Dλ2ψ(a, x)
− µ(a, x)ψ(a, x) + fu(x, 0)β(a, x)ψ(0, x).

� (2.13)

We first show that

	

H(λ) = sup
ϕ∈W 1,∞((0,ac),C2

per(R))
ϕ>0

inf
(0,ac)×R

Aλϕ

ϕ
,
� (2.14)

for which the proof can follow by Griette and Matano [24, Proposition 2.2-(ii)]. 
Indeed, since Aλ admits an eigenfunction ϕλ in W 1,∞((0, ac), C2

per(R)), it holds 

	

H(λ) ≤ H∗(λ) := sup
ϕ∈W 1,∞((0,ac),C2

per(R))
ϕ>0

inf
(0,ac)×R

Aλϕ

ϕ
.
� (2.15)

Let us show the converse inequality. Given any ϵ > 0, by definition of H∗(λ) there 
exists a positive function ϕ ∈ W 1,∞((0, ac), C2

per(R)) such that

	 −Aλϕ(a, x) + (H∗(λ) − ϵ)ϕ(a, x) ≤ 0, ∀(a, x) ∈ (0, ac] × R.� (2.16)

Following Berestycki et al. [7], we define the generalized principal eigenvalue as 
follows:

	

H(Aλ) := sup
{

Λ ∈ R : ∃ ϕ ∈ W 1,∞((0, ac), C2
per(R)) s.t. ϕ > 0

and (−Aλ + Λ)ϕ ≤ 0 in [0, ac] × R
}

.

As stated in Sect. 2.1, H(λ) is the eigenvalue of Aλ associated with a positive eigen-
function in W 1,∞((0, ac), C2

per(R)). We can apply the same argument as in Ducrot 
et al. [14, Proposition 5.2] to deduce that H(Aλ) = H(λ). Hence, it follows from 
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(2.16) that H∗(λ) − ϵ ≤ H(Aλ) = H(λ), so that H∗(λ) ≤ H(λ) due to the arbi-
trariness of ϵ > 0. This together with (2.15) gives H∗(λ) = H(λ), so that the supre-
mum is attained at the principal eigenfunction. Hence, (2.14) is proved.

For part (i), we use Kato’s perturbation theory to prove the analyticity. Note that 
the family of operators Aλ depends analytically on λ in the sense of Kato, which is 
called holomorphic of type (A); see [32, Paragraph 2.1 on page 375] for details. Since 
the principal eigenvalue is isolated in the spectrum by the Krein-Rutman theorem, 
the principal eigenvalue H(λ) is analytic with respect to λ; see [32, Remark 2.9 on 
page 379].

Next we follow the proof of [24, Proposition 2.2] (or Nadin [47, Proposition 2.10]) 
to prove the convexity. We first remark that (2.14) can be written as follows:

	

H(λ) = sup
e−λxψ∈W 1,∞((0,ac),C2

per(R))
ψ>0

inf
(0,ac)×R

A0ψ

ψ
.
� (2.17)

Fix any λ2 > λ1 and α ∈ (0, 1). Choose ψ1 and ψ2 such that eλ1xψ1(a, x) 
and eλ2xψ2(a, x) are L-periodic in x. Define zi = ln ψi, i = 1, 2, and 
z = αz1 + (1 − α)z2, and finally λ = αλ1 + (1 − α)λ2. Elementary computations 
then show that ψ(a, x) := ez(a,x) satisfies that

	
∂aψ

ψ
= α

∂aψ1

ψ1
+ (1 − α)∂aψ2

ψ2
.

By the Hölder’s inequality, we have

	

∂xxψ

ψ
= ∂xxz + |∂xz|2

= α
∂xxψ1

ψ1
− α

|∂xψ1|2

ψ2
1

+ (1 − α)∂xxψ1

ψ1
− (1 − α) |∂xψ2|2

ψ2
2

+
(

α
∂xψ1

ψ1
+ (1 − α)∂xψ2

ψ2

)2

≤ α
∂xxψ1

ψ1
+ (1 − α)∂xxψ2

ψ2
.

It follows from the Young’s inequality that

	

fu(x, 0)β(a, x)ψ(0, x)
ψ(a, x)

=
(

fu(x, 0)β(a, x)ψ1(0, x)
ψ1(a, x)

)α (
fu(x, 0)β(a, x)ψ2(0, x)

ψ2(a, x)

)(1−α)

≤ αfu(x, 0)β(a, x)ψ1(0, x)
ψ1(a, x)

+ (1 − α)fu(x, 0)β(a, x)ψ2(0, x)
ψ2(a, x)

.

Thus we have
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A0ψ

ψ
= ∂aψ + D∂xxψ

ψ
− µ(a, x) + fu(x, 0)β(a, x)ψ(0, x)

ψ(a, x)

≤ α

(
∂aψ1 + D∂xxψ1

ψ1
− µ(a, x) + fu(x, 0)β(a, x)ψ1(0, x)

ψ1(a, x)

)

+ (1 − α)
(

∂aψ2 + D∂xxψ2

ψ2
− µ(a, x) + fu(x, 0)β(a, x)ψ2(0, x)

ψ2(a, x)

)
.

By (2.17), this implies that H(αλ1 + (1 − α)λ2) = H(λ) ≤ αH(λ1)+
H(1 − α)H(λ2), which proves that λ �→ H(λ) is convex.

Next set ϕ̂(a, x) := ϕ(a, −x) for any ϕ ∈ W 1,∞((0, ac), C2
per(R)), then

	∂xxϕ(a, −x) + 2λ∂xϕ(a, −x) = ∂xxϕ̂(a, x) − 2λ∂xϕ̂(a, x), ∀(a, x) ∈ (0, ac] × R.

It follows from the max-min characterization in (2.14) that

	

H(λ) = sup
ϕ∈W 1,∞((0,ac),C2

per(R))
ϕ(a,−x)>0

inf
(0,ac)×R

Aλϕ(a, −x)
ϕ(a, −x)

= sup
ϕ∈W 1,∞((0,ac),C2

per(R))

ϕ̂>0

inf
(0,ac)×R

A−λϕ̂

ϕ̂
= H(−λ).

Hence, λ �→ H(λ) is even. The proof of part (i) is complete.
For part (ii), due to H(0) > 0, we first observe that H(λ)/λ → +∞ as λ → 0+. 

Let us prove that H(λ)/λ → +∞ as λ → +∞. To this end, we consider the follow-
ing eigenvalue problem

	

{
∂av(a) = Dλ2v(a) − µ(a)v(a) − H(λ)v(a), a ∈ (0, ac),
v(0) = f(0)

´ ac

0 β(a)v(a)da,
� (2.18)

By the classical theory of age-structured operators, there exists a unique principal 
eigenvalue H(λ) of (2.18), which satisfies the following characteristic equation

	
f(0)

ˆ ac

0
β(a)e−H(λ)ae−

´ a
0 µ(s)dseDλ2ada = 1,

and the corresponding adjoint eigenfunction is denoted by ṽ(a) > 0. Observe that 
H(λ) is increasing with respect to λ and moreover, H(λ) ≈ O(λ2) → +∞ as 
λ → +∞. Note that (H(λ), ṽ) is a test pair of the operator Aλ satisfying

	 (−Aλ + H(λ))ṽ ≤ 0 in [0, ac] × R.
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It follows from (2.17) that H(λ) ≥ H(λ), so that H(λ)/λ → +∞ as λ → +∞. 
Hence, H(λ)

λ  attains its minimum at some finite value. The proof is now complete. 
� □

2.2   Connection to the generalized principal eigenvalue

In this subsection, we study the relation between the periodic principal eigenvalue of 
(1.3) and some generalized principal eigenvalue. Under Assumption 1.1-(ii), for any 
a+ ∈ [ac, am), we rewrite the eigenvalue problem (1.3) as follows:

	




∂aφ = D∂xxφ − µ(a, x)φ − λφ, (a, x) ∈ (0, a+] × R,

φ(0, x) = fu(x, 0)
´ ac

0 β(a, x)φ(a, x)da, x ∈ R,

φ(a, x) = φ(a, x + L), (a, x) ∈ (0, a+] × R,

� (2.19)

for which the principal eigenvalue is also H(0) as stated in Remark 2.1. Next consider 
the eigenvalue problem

	

{
∂aϕ = D∂xxϕ − µ(a, x)ϕ − λϕ in (0, a+] × R
ϕ (0, x) = fu(x, 0)

´ ac

0 β(a, x)ϕ (a, x) da in R.
� (2.20)

The generalized principal eigenvalue associated with (2.20) is defined as follows:

	

λ1 := inf




λ : ∃ ϕ ∈ W 1,1((0, a+), C2(R)) s.t. ϕ > 0 in [0, a+] × R,

∂aϕ − D∂xxϕ + µϕ ≥ −λϕ in [0, a+] × R,

and ϕ (0, x) ≥ fu(x, 0)
´ ac

0 β(a, x)ϕ (a, x) da




.�(2.21)

Lemma 2.3  The generalized principal eigenvalue λ1  in (2.21) is well-defined and 
λ1 < +∞.

Proof  Let λ be the principal eigenvalue of (2.20) on any fixed bounded interval with 
Dirichlet boundary condition. By the maximum principle, it can be verified that 
λ1 ≥ λ > −∞, so that λ1 is well-defined. We next show that λ1 < +∞. Consider 
the homogeneous eigenvalue problem

	

{
∂aϕ(a) = −µ(a)ϕ(a) − λϕ(a), a ∈ (0, a+],

ϕ(0) = f(0)
´ ac

0 β(a)ϕ(a)da,
� (2.22)

where we used the notations in (2.1). By the classical theory of age-structured 
models, there exists a unique principal eigenvalue λ ∈ R of (2.22). We denote by 
ϕ = ϕ(a) > 0 the associated principal eigenfunction. Then it follows from (2.22) that
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{
∂aϕ ≥ D∂xxϕ − µ(a, x)ϕ − λϕ in (0, a+] × R
ϕ (0) ≥ fu(x, 0)

´ ac

0 β(a, x)ϕ (a) da in R.

Choosing ϕ as a test function in (2.21), we find λ1 ≤ λ < +∞, which concludes the 
proof. � □
We next prove a type of Harnack inequality for problem (2.20).

Proposition 2.4  Assume that (λ, ϕ) is the principal eigenpair of (2.20) with ϕ > 0 . 
Then for any R > 0  and a+ ∈ [ac, am), there exists some CR,a+ > 0  depending only 
on R and a+ such that

	
sup

(a,x)∈[0,a+]×[−R,R]
ϕ(a, x) ≤ CR,a+ inf

(a,x)∈[0,a+]×[−R,R]
ϕ(a, x).

Proof  For each R, a+ and η > 0, applying the classical Harnack inequality for para-
bolic equations, there exists CR,a+,η > 0 such that

	
sup

(a,x)∈[η,a+]×[−R,R]
ϕ(a, x) ≤ CR,a+,η inf

(a,x)∈[η,a+]×[−R,R]
ϕ(a, x).

By considering a super-solution of (2.20) defined by ∥ϕ(0, ·)∥L∞(−R,R) e−(µinf+λ)a, 
we have

	 ∥ϕ(a, ·)∥L∞(−R,R) ≤ ∥ϕ(0, ·)∥L∞(−R,R) e−(µinf+λ)a, ∀a ∈ [0, a+].

Hence, there exists some constant CR,a+ > 0, depending only on µ, β, λ and fu (which 
may change from line to line but is always independent of (a, x) ∈ [0, a+] × [−R, R]), 
such that

	

sup
(a,x)∈[0,a+]×[−R,R]

ϕ(a, x) ≤ CR,a+ sup
x∈[−R,R]

ϕ(0, x)

≤ CR,a+

ˆ ac

η

β(a) sup
x∈[−R,R]

ϕ(a, x)da

+ CR,a+ sup
(a,x)∈[0,ac]×[−R,R]

ϕ(a, x)
ˆ η

0
β(a)da.

 We choose η > 0 sufficiently small such that

	

sup
(a,x)∈[0,a+]×[−R,R]

ϕ(a, x) ≤ CR,a+

ˆ ac

η

β(a) sup
x∈[−R,R]

ϕ(a, x)da

≤ CR,a+ inf
(a,x)∈[η,a+]×[−R,R]

ϕ(a, x).
� (2.23)

This implies that
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inf
x∈[−R,R]

ϕ(0, x) ≥ f(0)
ˆ ac

0
β(a) inf

x∈[−R,R]
ϕ(a, x)da

≥ f(0)
ˆ ac

η

β(a) inf
(a,x)∈[η,a+]×[−R,R]

ϕ(a, x)da

≥ CR,a+ sup
(a,x)∈[0,a+]×[−R,R]

ϕ(a, x).

� (2.24)

Similarly, by choosing e−(µsup+λ)a inf
x∈[−R,R]

ϕ(0, x), with µsup = ∥µ∥L∞(0,a+), as a 

sub-solution of (2.20), we can derive from (2.24) that

	

inf
(a,x)∈[0,η]×[−R,R]

ϕ(a, x) ≥ e−(µsup+λ)η inf
x∈[−R,R]

ϕ(0, x)

≥ CR,a+ sup
(a,x)∈[0,a+]×[−R,R]

ϕ(a, x).� (2.25)

Finally, combining (2.23) and (2.25), we obtain that

	
sup

(a,x)∈[0,a+]×[−R,R]
ϕ(a, x) ≤ CR,a+ inf

(a,x)∈[0,a+]×[−R,R]
ϕ(a, x).

This completes the proof. � □
Next we show that the generalized principal eigenvalue defined by (2.21) is indeed 

the principal eigenvalue of (2.20) corresponding to a positive eigenfunction.

Lemma 2.5  Let λ1  be the generalized principal eigenvalue defined in (2.21). Then for 
any a+ ∈ [ac, am), there exists a positive eigenfunction in W 1 ,1 ((0 , a+), C 2 (R)) of 
problem (2.20) associated with λ1  and

	
λ1 = lim

R→+∞
λR,

where for each R > 0 , λR denotes the principal eigenvalue of the problem

	




∂aϕ = D∂xxϕ − µ(a, x)ϕ − λϕ in (0, a+] × (−R, R),
ϕ (0, x) = fu(x, 0)

´ ac

0 β(a, x)ϕ (a, x) da on (−R, R),
ϕ(a, −R) = ϕ(a, R) = 0 in (0, a+].

� (2.26)

Proof  By the same argument as in Lemma 2.1 and the subsequent Remark 2.1, one 
can see that λR exists and is independent of the choice of a+ ∈ [ac, am). Recalling 
the definition of λ1 in (2.21), by the maximum principle it is easily seen that λR ≤ λ1 
for all R > 0. Since the principal eigenvalue λR of (2.26) is nondecreasing in R, λR 
converges as R → +∞ and

	
λ∞ := lim

R→+∞
λR ≤ λ1.� (2.27)
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Fix any (a0, x0) ∈ (0, a+) × (−R, R). Let ϕR > 0 be the principal eigenfunction 
of (2.26) associated with λR, which is normalized by ϕR(a0, x0) = 1. Note that λR 
is uniformly bounded in R > 0 by (2.27) and Lemma 2.3. Applying the Harnack 
inequality in Proposition 2.4, we derive that for any R0 > 0, there exists some con-
stant CR0,a+ > 0 such that

	

sup
(a,x)∈[0,a+]×[−R0,R0]

ϕR(a, x) ≤ CR0,a+ inf
(a,x)∈[0,a+]×[−R0,R0]

ϕR(a, x)

≤ CR0,a+ , ∀R > R0.
� (2.28)

By the standard Schauder estimates for parabolic equations, we deduce that for all R0, 
by passing a subsequence if necessary, ϕR converges in C1,2([0, a+] × [−R0, R0]) 
to some function ϕ∞ ∈ C1,2([0, a+] × R), which satisfies

	

{
∂aϕ∞ = D∂xxϕ∞ − µ(a, x)ϕ∞ − λ∞ϕ∞ in (0, a+] × (−R0, R0),
ϕ∞ (0, x) = fu(x, 0)

´ ac

0 β(a, x)ϕ∞ (a, x) da on (−R0, R0).
�(2.29)

Using a diagonal extraction method, we can find a particular subsequence of 
{ϕR}R>R0  converging to ϕ∞ in C1,2

loc ([0, a+] × R). Furthermore, ϕ∞(a0, x0) = 1, 
ϕ∞ ≥ 0, and ϕ∞ satisfies (2.20) with λ = λ∞. Then the strong maximum principle 
yields that ϕ∞ > 0 in [0, a+] × R. Choosing ϕ∞ as a test function in (2.21), we 
find λ1 ≤ λ∞, which together with (2.27) implies λ1 = λ∞, namely λR → λ1 as 
R → +∞. Hence, ϕ∞ serves as a principal eigenfunction of (2.20) associated with 
λ1. The proof is now complete. � □

We conclude this section by showing that the principal eigenvalue with periodic 
boundary condition is the limit of the principal eigenvalue with Dirichlet boundary 
condition.

Proposition 2.6  Let H (0 )  be the principal eigenvalue of (2.19). Then there holds

	
H(0) = λ1 = lim

R→+∞
λR,

where λ1  is defined by (2.21) and λR is the principal eigenvalue of problem (2.26).

Proof  It is proved by Lemma 2.5 that λR → λ1 as R → +∞. Comparing problems 
(2.26) with (2.19), it can be verified by the maximum principle that H(0) ≥ λR for 
all R > 0. Hence, it remains to show λ1 ≥ H(0).

To this end, for any α ∈ (0, ac), consider the following perturbed eigenvalue 
problem

	

{
∂aφ = D∂xxφ − µ(a, x)φ − λφ in (0, a+] × R,

φ (0, x) = fu(x, 0)
´ ac

α
β(a, x)φ (a, x) da in R.

� (2.30)
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Similar to the definition of λ1 in (2.21), we denote by λ1α the generalized principal 
eigenvalue of (2.30), which is given by

	

λ1α := inf




λ : ∃ ϕ ∈ W 1,1((0, a+), C2(R)) s.t. ϕ > 0, in [0, a+] × R,

∂aϕ − D∂xxϕ + µϕ ≥ −λϕ in [0, a+] × R,

and ϕ (0, x) ≥ fu(x, 0)
´ ac

α
β(a, x)ϕ (a, x) da




.�(2.31)

By Lemma 2.5, there exists a principal eigenfunction φ > 0 associated with λ1,α, 
that is φ solves (2.30) with λ = λ1,α. We first claim that α �→ λ1α is nonincreas-
ing. Indeed, choose any 0 ≤ α1 ≤ α2 and λ > λ1α1 . By the above definition, there 
exists 0 < ϕ ∈ W 1,1((0, a+), C2(R)) such that ∂aϕ − D∂xxϕ + µϕ > −λϕ in 
[0, a+] × R and

	
ϕ(0, x) ≥ fu(x, 0)

ˆ ac

α1

β(a, x)ϕ(a, x)da ≥ fu(x, 0)
ˆ ac

α2

β(a, x)ϕ(a, x)da,

which implies that (λ, ϕ) is a test eigenpair in (2.31) with α = α2. Hence, λ ≥ λ1α2  
follows by definition. Since this holds for any λ > λ1α1 , we arrive at λ1α1 ≥ λ1α2 . 
This proves the monotonicity of α �→ λ1α.

Next set ψ(a, x) := φ(a,x+L)
φ(a,x) . Applying the classical Harnack inequality to 

(2.30) yields that ψ is globally bounded. Define m := sup[0,a+]×R ψ > 0. We 
choose the sequence (an, xn) ∈ [0, a+] × R such that ψ(an, xn) → m as n → ∞ 
and there exists yn ∈ [0, L] such that xn − yn ∈ LZ for all n. One may assume that 
yn → y∞ ∈ [0, L] and an → a∞ ∈ [0, a+].

Set ψn(a, x) := ψ(a, x + xn) and ϕn(a, x) := φ(a,x+xn)
φ(0,xn) . By (2.30) we have

	

{
∂aϕn = D∂xxϕn − µ(a, x + yn)ϕn − λ1αϕn, (a, x) ∈ (0, a+] × R,

ϕn(0, x) = fu(x + yn, 0)
´ ac

α
β(a, x + yn)ϕn(a, x)da, x ∈ R.

Using the classical parabolic estimates, we may suppose, up to extraction, that 
ϕn → ϕ∞ in C1,2

loc ([0, a+] × R) and function ϕ∞ satisfies

	




∂aϕ∞ = D∂xxϕ∞ − µ(a, x + y∞)ϕ∞ − λ1αϕ∞, (a, x) ∈ (0, a+] × R,

ϕ∞(0, x) = fu(x + y∞, 0)
´ ac

α
β(a, x + y∞)ϕ∞(a, x)da, x ∈ R,

ϕ∞ > 0, ϕ∞(0, 0) = 1.

�(2.32)

On the other hand, by the definition of ψn, direct calculations from (2.30) yield

	
∂aψn = D∂xxψn − 2∂xϕn(a, x)

ϕn(a, x)
∂xψn, (a, x) ∈ (0, a+] × R,

and for all x ∈ R,
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ψn(0, x) = φ(0, x + xn + L)
φ(0, x + xn)

=
´ ac

α
β(a, x + yn)φ (a, x + xn + L) da´ ac

α
β(a, x + yn)φ (a, x + xn) da

=
´ ac

α
β(a, x + yn)φ (a, x + xn) ψn(a, x)da´ ac

α
β(a, x + yn)φ (a, x + xn) da

.

� (2.33)

Applying the classical estimates for parabolic equations once again yields that up to 
extraction, ψn → ψ∞ in C1,2

loc ([0, a+] × R), where ψ∞ satisfies

	
∂aψ∞ = D∂xxψ∞ − 2∂xϕ∞

ϕ∞
∂xψ∞, (a, x) ∈ (0, a+] × R.� (2.34)

Furthermore, ψ∞ ≤ m and ψn(an, 0) = ψ(an, xn) → m as n → ∞, which implies 
ψ∞(a∞, 0) = m.

We claim that the sequence (an, xn) ∈ [0, a+] × R given above can be chosen 
such that a∞ > 0. If not, then ψ∞(0, 0) = m and ψ∞(a, 0) < m for all a ∈ (0, a+]. 
Thus, by (2.33) one has

	

m = ψ∞(0, 0)

= lim
n→+∞

´ ac

α
β(a, yn)φ (a, xn) ψn(a, 0)da´ ac

α
β(a, yn)φ (a, xn) da

≤ lim
n→+∞

[´ ac

α
β(a, yn)φ (a, xn) ψ∞(a, 0)da´ ac

α
β(a, yn)φ (a, xn) da

+ ∥ψn(a, 0) − ψ∞(a, 0)∥L∞([α,ac])

]

= lim
n→+∞

´ ac

α
β(a, yn)φ (a, xn) ψ∞(a, 0)da´ ac

α
β(a, yn)φ (a, xn) da

≤ max
a∈[α,ac]

ψ∞(a, 0) < m,

which is a contradiction. Hence, we may assume a∞ > 0.
Therefore, we apply the strong maximum principle to (2.34) and obtain 

ψ∞(a, x) ≡ m for all (a, x) ∈ (0, a+] × R. By definitions, we note that 
ϕn(a, x + L)/ϕn(a, x) = ψn(a, x), and thus ϕ∞(a, x + L)/ϕ∞(a, x) ≡ m for 
all (a, x) ∈ (0, a+] × R. As m > 0, we can define γ := 1

L ln m. Then the function 
ϕ̃∞ := ϕ∞ exp(−γx) is L-periodic in x. By (2.32) we calculate that ϕ̃∞ solves

	




∂aϕ̃∞ = D∂xxϕ̃∞ − 2Dγ∂xϕ̃∞ + Dγ2ϕ̃∞ − µ(a, x + y∞)ϕ̃∞ − λ1αϕ̃∞, (a, x) ∈ (0, a+] × R,

ϕ̃∞(0, x) = fu(x + y∞, 0)
´ ac

α
β(a, x + y∞)ϕ̃∞(a, x)da, x ∈ R,

ϕ̃∞(a, x) = ϕ̃∞(a, x + L), (a, x) ∈ (0, a+] × R.
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Since the periodic principal eigenvalue is invariant under a translation in x of the 
coefficients, it holds that λ1α = Hα(γ), where for any λ ∈ R, Hα(λ) denotes the 
principal eigenvalue of

	





∂aφ = D∂xxφ − 2Dλ∂xφ + Dλ2φ − µ(a, x)φ − Hα(λ)φ, (a, x) ∈ (0, a+] × R,

φ(0, x) = fu(x, 0)
´ ac

α
β(a, x)φ(a, x)da, x ∈ R,

φ(a, x) = φ(a, x + L), (a, x) ∈ (0, a+] × R.

�(2.35)

For all λ ∈ R, let φλ > 0 be the principal eigenfunction of (2.35) associated with 
Hα(λ). Then the function vλ := φλe−λx satisfies the problem (2.30) with the eigen-
value Hα(λ). Taking vλ as a test function in (2.31), one finds λ1α ≤ Hα(λ) for all 
λ ∈ R. This together with λ1α = Hα(γ) implies that λ1α = minλ∈R Hα(λ). Note 
that Hα(λ) → H(λ) as α → 0+, where H(λ) denotes the principal eigenvalue of 
(1.5). Due to λ1 ≥ λ1α, letting α → 0+ yields λ1 ≥ minλ∈R H(λ). Since λ �→ H(λ) 
is convex and even by Proposition 1.6-(ii), one has H(0) = minλ∈R H(λ), and thus 
λ1 ≥ H(0). The proof is now complete.� □

3  Global dynamics

In this section, we are concerned with the global dynamics of problem (1.1) and 
prove Theorem 1.1. First we show that the solution of (1.1) exists globally in time 
and provide the weak comparison principle.

Lemma 3.1  Given any bounded and nonnegative initial value u0 , problem (1.1) admits 
a unique global solution u(t, a, x), which is nonnegative and uniformly bounded in 
[0 , am) × R for all t > 0 . Furthermore, let u and v be the solutions of problem (1.1) 
with initial data u0  and v0 , respectively. If u0 ≥ v0 , then u(t, a, x) ≥ v(t, a, x) for 
all t > 0  and (a, x) ∈ [0 , am) × R.

Proof  Let us first modify the definitions of X0 and X  in the proof of Lemma 2.1 with-
out introducing more notations. To consider the general initial data (which may not 
be periodic), we define X = Cb(R) denoting the space of continuous and bounded 
functions and modify X  and X0 correspondingly. Define the map F : X0 �→ X  such 
that

	
F (0, ψ) =

(
f

(
·,
ˆ ac

0
β(a, ·)ψ(a)da

)
, 0

)
, ∀ (0, ψ) ∈ X0.

Observe that F is well-defined due to Assumptions 1.1 and 1.2. Let u(t) = u(t, a, x) 
be the solution of (1.1) with initial value u0. By identifying U(t) = (0, u(t)), one can 
rewrite problem (1.1) as the following abstract problem:

	

{
dU
dt = BU + F (U),
U(0) = U0,

with U0 = (0, u0) ∈ X0,� (3.1)
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where B : dom(B) ⊂ X �→ X  is the unique closed Hille-Yosida operator defined in 
the same manner as that in the proof of Lemma 2.1 (Note that the Hille-Yosida esti-
mate (2.5) also holds for Cb(R) ). It follows from Assumption 1.2 that f is Lipschitz 
continuous, so that the solution U of (3.1) exists globally by a standard semigroup 
method, see Thieme [56] or Magal and Ruan [41].

Next, thanks to the definition of B, there holds that B is resolvent positive. Moreover, 
F is monotone due to Assumption 1.2-(ii), i.e. 0 ≤ U ≤ V ⇒ 0 ≤ F (U) ≤ F (V ). 
Thus, by Magal et al. [42, Theorem 4.5], we can conclude that the weak comparison 
principle holds for (3.1).

Finally, we show the uniform boundedness of the unique solution u of (1.1). Indeed, 
set V (t, x) :=

´ am

0 u(t, a, x)da. Due to u(t, am, x) = 0, by (1.1) we calculate that

	
∂tV = D∂xxV −

ˆ am

0
µ(a, x)u(t, a, x)da + f

(
x,

ˆ ac

0
β(a, x)u(t, a, x)da

)
, ∀t > 0, x ∈ R,

and V (0, x) =
´ am

0 u0(a, x)da. It follows by Assumption 1.1-(i) and Assumption 
1.2-(iii) that

	 ∂tV ≤ D∂xxV − µinfV + M, ∀t > 0, x ∈ R.

Since V(0, x) is bounded, by the comparison principle it is easily seen that V(t, x) is 
uniformly bounded for all x ∈ R and t > 0, which in turn implies the uniform bound-
edness of u. The proof is complete. � □

We also present the strong comparison principle for (1.1), for which the proof is 
omitted. The interested readers can refer to Ducrot et. al. [15] for more details.

Lemma 3.2  (Strong Comparison Principle) Assume that u0 ∈ C ([0 , am) × R) and 
u0 (a, x) ≥ 0  but u0 (a, x) ̸≡ 0 . Let u(t, a, x) be the unique solution to (1.1) estab-
lished in Lemma 3.1. Then u(t, a, x) > 0  for any t > 0  and (a, x) ∈ [0 , am) × R.

Under Assumption 1.1-(ii), the stationary equation of (1.1) can be rewritten as

	

{
∂au(a, x) = D∂xxu(a, x) − µ(a, x)u(a, x), (a, x) ∈ (0, am) × R,

u(0, x) = f
(
x,
´ ac

0 β(a, x)u(a, x)da
)

, x ∈ R.
� (3.2)

To proceed further, we present the definitions of sub-solutions and super-solutions 
to the stationary equation (3.2), where the periodicity assumption is not imposed a 
priori.

Definition 3.3  Function u ∈ W 1,1((0, am), C2(R)) is called as a sub-solution to 
(3.2) if

	

{
∂au(a, x) ≤ D∂xxu(a, x) − µ(a, x)u(a, x), (a, x) ∈ (0, am) × R,

u(0, x) ≤ f
(
x,
´ ac

0 β(a, x)u(a, x)da
)

, x ∈ R.
� (3.3)
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Similarly, u ∈ W 1,1((0, am), C2(R)) is called as a super-solution if "≤" in (3.3) is 
replaced by "≥".
We first establish a comparison principle for (3.2).

Lemma 3.4  Let u, v ∈ W 1 ,1 ((0 , am), C 2 (R)) be respectively a sub-solution and 
super-solution of (3.2) as defined in Definition 3.3. Assume that for any a+ ∈ [ac, am),

	
inf

(a,x)∈[0,a+]×R
u(a, x) > 0 and inf

(a,x)∈[0,a+]×R
v(a, x) > 0.� (3.4)

Then u ≤ v in [0 , am) × R.

Proof  Set α∗ := sup{α > 0 : αu ≤ v in [0, a+] × R}. By (3.4), the number α∗ is 
well-defined and positive. If α∗ ≥ 1, then Lemma 3.4 follows due to the arbitrariness 
of a+ ∈ [ac, am). It remains to consider the case α∗ < 1. Set w := v − α∗u, then 
w ≥ 0 in [0, a+] × R. Denote a0 := min{a ∈ [0, a+] : ∃x ∈ R, s.t. w(a0, x) = 0}. 
It follows from the definition of α∗ that there exists x0 ∈ R such that w(a0, x0) = 0.

We first consider the case a0 ∈ (0, a+]. Observe that w satisfies

	 ∂aw(a, x) ≥ D∂xxw(a, x) − µ(a, x)w(a, x), (a, x) ∈ (0, a+] × R.

Considering the above inequality at (a0, x0), we can reach a contradiction by apply-
ing the strong maximum principle for parabolic equations.

We next consider the case a0 = 0, namely w(0, x0) = 0. By Assumption 1.1-(ii), 
we have

	

ˆ ac

0
β(a, x0)u(a, x0)da > 0.� (3.5)

Then it follows by Assumption 1.2-(ii) that

	

w(0, x0) = v(0, x0) − α∗u(0, x0)

≥ f

(
x0,

ˆ ac

0
β(a, x0)v(a, x0)da

)
− α∗f

(
x0,

ˆ ac

0
β(a, x0)u(a, x0)da

)

> f

(
x0,

ˆ ac

0
β(a, x0)v(a, x0)da

)
− f

(
x0, α∗

ˆ ac

0
β(a, x0)u(a, x0)da

)

≥ 0,

� (3.6)

where we used (3.5) and α∗ < 1 for the strict inequality. It is a contradiction with the 
fact that w(0, x0) = 0. Therefore, α∗ ≥ 1 and the proof is complete. � □

Next we give the existence and uniqueness of the positive equilibrium of (3.2).

Proposition 3.5  (Existence and Uniqueness) Assume H (0 ) > 0 , then there exists a 
unique positive solution u∗(a, x) of (3.2) belonging to W 1 ,1 ((0 , am), C 2

per(R)).
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Proof  It suffices to prove the existence of positive L-periodic solution of (3.2), since 
the uniqueness is a direct consequence of the comparison principle in Lemma 3.4. 
The existence can be proved by the following two steps.

Step 1. Construction of super/sub-solutions. Set u ≡ M  with M > 0 being defined 
in Assumption 1.2-(iii). Note that

	 ∂au − D∂xxu + µ(a, x)u = Mµ(a, x) ≥ 0, ∀(a, x) ∈ (0, am) × R,

as well as

	
u(0, x) = M ≥ f

(
x,

ˆ ac

0
β(a, x)u(a, x)da

)
.

Hence, u ≡ M  is indeed a super-solution of (3.2).
Next, we construct a sub-solution of (3.2). For any δ > 0 sufficiently small, by 

Assumption 1.2 we can find some constant ϵ = ϵ(δ) > 0 such that

	 f(x, u) ≥ (fu(x, 0) − δ)u for all 0 < u ≤ ϵ and x ∈ R.� (3.7)

For any a+ ∈ [ac, am), let Hδ(0) ∈ R be the principal eigenvalue of the problem

	




∂aϕ = D∂xxϕ − µ(a, x)ϕ − Hδ(0)ϕ, (a, x) ∈ (0, a+] × R,

ϕ(0, x) = (fu(x, 0) − δ)
´ ac

0 β(a, x)ϕ(a, x)da, x ∈ R,

ϕ(a, x) = ϕ(a, x + L), (a, x) ∈ (0, a+] × R,

� (3.8)

and the corresponding eigenfunction is denoted by ϕδ > 0, which can be normal-
ized such that ∥ϕδ∥L∞((0,a+)×(0,L)) = 1. By the continuity of Hδ(0) in δ, we have 
Hδ(0) → H(0) as δ → 0. Hence, due to H(0) > 0 one can choose δ further small if 
necessary such that Hδ(0) > 0.

Set u(a, x) := ϵϕδ(a, x), so that u ≤ ϵ. Then by (3.7) and (3.8) it can be verified 
that

	 ∂au − D∂xxu + µ(a, x)u = −Hδ(0)u ≤ 0 in (0, a+] × R,

and for all x ∈ R,

	
u(0, x) = (fu(x, 0) − δ)

ˆ ac

0
β(a, x)u(a, x)da ≤ f

(
x,

ˆ ac

0
β(a, x)u(a, x)da

)
.

This implies that the constructed u is a L-periodic sub-solution of (3.2).
Step 2. Existence via iterative scheme. We choose ϵ small such that u ≤ u. By a 

basic iterative scheme, we can establish the existence of a positive nontrivial solution 
u of (3.2). For completeness, we provide the iterative scheme as follows.

Set u0 := u and denote un for n ≥ 1 by the solution of the linear problem
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{
∂aun(a, x) = D∂xxun(a, x) − µ(a, x)un(a, x), (a, x) ∈ (0, a+] × R,

un(0, x) = f
(
x,
´ ac

0 β(a, x)un−1(a, x)da
)

, x ∈ R.
� (3.9)

Note that un is well-defined and is belonging to W 1,1((0, a+), C2
per(R)) (where the 

periodicity follows by that of u and u). We will show that

	 u ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ u in [0, a+] × R.� (3.10)

Indeed, taking w := u1 − u, it follows from Assumption 1.2-(ii) that

	∂aw ≥ D∂xxw − µ(a, x)w, ∀(a, x) ∈ (0, a+] × R, w(0, x) ≥ 0, ∀x ∈ R.

Using the comparison principle for parabolic equations, we conclude that w ≥ 0, that 
is u1 ≥ u in [0, a+] × R. Similarly, we can derive u1 ≤ u in [0, a+] × R. By induc-
tion, we can obtain the desired result (3.10).

Hence, for each (a, x) ∈ [0, a+] × R, un(a, x) has a limit as n → ∞, denoted by 
u∗(a, x), namely un(a, x) → u∗(a, x) as n → ∞. Due to µ ∈ C

α
2 ,α([0, a+] × R), 

by the classical parabolic estimates, we derive that un → u∗ in C1,2
loc ([0, a+] × R) 

as n → ∞ and u∗ ∈ W 1,1((0, a+), C2(R)). Moreover, the continuity of f yields that 
for any x ∈ R,

	
f

(
x,

ˆ ac

0
β(a, x)un(a, x)da

)
→

(
x,

ˆ ac

0
β(a, x)u∗(a, x)da

)
as n → ∞.

Due to the arbitrariness of a+ ∈ [ac, am), we see that u∗ ∈ W 1,1((0, am), C2
per(R)) 

solves (3.2) and is L-periodic in x, which proves the existence. This completes the 
proof. � □

Next, we study the global stability of u∗(a, x) with initial data having a positive 
lower bound.

Proposition 3.6  (Stability I) Let u(t, a, x) be the unique solution of (1.1) 
with initial value u0 . Assume that H (0 ) > 0 , then for each a+ ∈ [ac, am), if 
inf(a,x)∈[0 ,a+]×R u0 (a, x) > 0 , then u(t, a, x) → u∗(a, x) in C ([0 , a+] × R) as 
t → +∞.

Proof  By assumption, there exists a positive constant δ such that u0(a, x) ≥ δ in 
[0, a+] × R. Since H(0) > 0, the function ϵu defined in the proof of Proposition 3.5 
is a sub-solution of (3.2) for small ϵ. Since u0 ≥ δ and u is bounded, we choose ϵ 
small if necessary such that ϵu ≤ u0. Denote by U(t, a, x) the solution of (1.1) with 
initial value ϵu. By the comparison principle in Lemma 3.1, U(t, a, x) ≥ ϵu(a, x) for 
all t ≥ 0. Given s ≥ 0, let zs(t, a, x) := U(t + s, a, x) − U(t, a, x), which satisfies 
zs(0, a, x) ≥ 0 and
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



∂tz
s + ∂azs = D∂xxzs − µ(a, x)zs, (t, a, x) ∈ (0, ∞) × (0, a+] × R,

zs(t, 0, x) = fu (x, ξ(t, s, x))
´ ac

0 β(a, x)zs(t, a, x)da, (t, x) ∈ (0, ∞) × R,

zs(0, a, x) = U(s, a, x) − ϵu ≥ 0, (a, x) ∈ (0, a+] × R
�(3.11)

for some continuous function ξ. Applying the weak comparison principle (Lemma 
3.1) to (3.11) yields that zs ≥ 0 for all s ≥ 0, which implies that U(t, a, x) is a 
non-decreasing function of the time and U(t, a, x) ≤ u(t, a, x) for all t ≥ 0 and 
(a, x) ∈ [0, a+] × R.

On the other hand, as in the proof of Proposition 3.5, we can choose constant 
M > 0 large to be a super-solution of (3.2). Let U(t, a, x) denote the solution of 
(1.1) with initial value U(0, a, x) = M . Using the comparison principle, the simi-
lar arguments as above show that U  is a non-increasing function of t. The com-
parison principle in Lemma 3.1 implies that u(t, a, x) ≤ U(t, a, x) for all t ≥ 0 and 
(a, x) ∈ [0, a+] × R.

In summary, we have defined the monotonic sub-solution U  and super-solution U , 
which are periodic in x, such that for all t ≥ 0 and (a, x) ∈ [0, a+] × R,

	 ϵu ≤ U(t, a, x) ≤ u(t, a, x) ≤ U(t, a, x) ≤ M.� (3.12)

The monotonicity of U  and U  implies U(t, a, x) ↗ U∗(a, x) and U(t, a, x) ↘
U∗(a, x) pointwise as t → +∞ for some L-periodic functions U∗ ≤ U∗. In what fol-
lows, we shall show that U∗, U∗ ∈ W 1,1((0, a+), C2

per(R)) are the solutions to (3.2). 
For now, we acknowledge it to be true and postpone its proof behind. Hence, the 
uniqueness in Proposition 3.5 implies U∗ = U∗ = u∗. Further, due to the periodicity 
of U  and U  in x, we apply the Dini’s theorem to derive that U ↗ U∗ and U ↘ U∗ in 
C([0, a+] × R) as t → +∞, which together with (3.12) implies that u(t, a, x) → u∗ 
in C([0, a+] × R) as t → +∞.

Now let us finish the proof of U∗, U∗ ∈ W 1,1((0, a+), C2
per(R)). Define

	
V (t, a, x) :=

ˆ a

0
U(t, s, x)ds for all t > 0 and (a, x) ∈ (0, a+] × R,

which is L-periodic in x. Since U  solves (1.1), direct calculation yields

	




∂tV = D∂xxV −
´ a

0 µ(s, x)U(t, s, x)ds
−U(t, a, x) + f

(
x,
´ ac

0 β(a, x)U(t, a, x)da
)

, t > 0, x ∈ R,

V (t, a, x) = V (t, a, x + L), t > 0, x ∈ R,

V (0, a, x) =
´ a

0 U(0, s, x)ds, x ∈ R.

� (3.13)

By the boundedness of U  in (3.12), which is independent of a ∈ [0, a+] and t > 0, 
we apply the Lp estimates for parabolic equations to (3.13) and deduce that for any 
p > 1,

	
sup

a∈[0,a+]
sup
t≥1

∥V (·, a, ·)∥W 1,2
p ((t,t+1)×(0,L)) < +∞.� (3.14)

1 3



H. Kang, S. Liu

By the monotone convergence theorem, one has V (t, a, x) ↗
´ a

0 U∗(s, x)ds 
pointwise as t → +∞, which together with (3.14) yields that for each 
a ∈ [0, a+], V (t, a, x) ↗

´ a

0 U∗(s, x)ds as t → +∞ weakly in W 2,p((0, L)) 
and strongly in C1([0, L]) by the Sobolev embedding. This implies that ´ a

0 U∗(s, x)ds ∈ C1
per(R) for each a ∈ [0, a+] and is a strong solution to the problem

	

U∗(a, x) =D∂xx

ˆ a

0
U∗(s, x)ds −

ˆ a

0
µ(s, x)U∗(s, x)ds

+ f

(
x,

ˆ ac

0
β(a, x)U∗(a, x)da

)
, x ∈ R,

� (3.15)

where we have used the monotone convergence theorem in the integral terms. 
Moreover, applying Schauder estimates of elliptic equations to (3.15) yields that ´ a

0 U∗(s, x)ds ∈ C2
per(R) for any a ∈ [0, a+]. Hence, we conclude that U∗(a, x) is 

Lipschitz continuous in a ∈ [0, a+], so that U∗ ∈ W 1,1((0, a+), C2
per(R)) is a solution 

to (3.2). By the same arguments one can deduce that U∗ ∈ W 1,1((0, a+), C2
per(R)) is 

also a solution to (3.2), which completes the proof. � □
Finally, we establish the global stability of u(t, a, x) with general initial data.

Proposition 3.7  (Stability II) Let u∗(a, x) be the unique solution of (1.1) with non-
negative initial value u0 ̸≡ 0 . Assume H (0 ) > 0 , then u(t, a, x) → u∗(a, x) in 
Cloc([0 , am) × R) as t → +∞.

Proof  Note that u(1, a, x) > 0 by the strong comparison principle in Lemma 3.2. For 
any a+ ∈ [ac, am), let us consider the following auxiliary problem:

	




∂tun + ∂aun = D∂xxun − µ(a, x)un, (t, a, x) ∈ (0, ∞) × (0, a+] × (−n, n),
un(t, 0, x) = f

(
x,
´ ac

0 β(a, x)un(t, a, x)da
)

, (t, x) ∈ (0, ∞) × (−n, n),
un(t, a, −n) = un(t, a, n) = 0, (t, a) ∈ (0, ∞) × (0, a+],
un(0, a, x) = u0

n(a, x), (a, x) ∈ [0, a+] × (−n, n),

where the initial data {u0
n(a, x)}n≥1 satisfy 

(1)	 supp(u0
n) ⊂ [0, a+] × (−n, n) for all n ≥ 1;

(2)	 u0
1(a, x) ≤ · · · ≤ u0

n(a, x) ≤ · · · ≤ u(1, a, x) for all (a, x) ∈ [0, a+] × R.

Then by the comparison principle, one has

	u1(t, a, x) ≤ · · · ≤ un(t, a, x) ≤ · · · ≤ u(1, a, x) for all t > 0 and (a, x) ∈ [0, a+] × R.

Let λn be the principal eigenvalue of (2.26) with R = n. Due to H(0) > 0, applying 
Proposition 2.6, we can choose some n∗ large such that λn > 0 for all n ≥ n∗. Thus 
by the similar arguments as in the proof of Proposition 3.5, for n ≥ n∗, there is a 
unique positive solution u∗

n(a, x) satisfying
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


∂au∗
n = D∂xxu∗

n − µ(a, x)u∗
n, (a, x) ∈ (0, a+] × (−n, n),

u∗
n(0, x) = f

(
x,
´ ac

0 β(a, x)u∗
n(a, x)da

)
, x ∈ (−n, n),

u∗
n(a, −n) = u∗

n(a, n) = 0, a ∈ (0, a+].

Similar to Proposition 3.6, one can apply the theory of monotone dynamical systems 
to deduce

	 un(t, a, x) → u∗
n(a, x) in C([0, a+] × [−n, n]) as t → +∞;� (3.16)

see also Ducrot et al. [15, Theorem 4.11] for the case of nonlocal dispersal.
This implies that

	
u∗

n∗
(a, x) ≤ · · · ≤ u∗

n(a, x) ≤ · · · ≤ lim inf
t→∞

u(t, a, x) for all (a, x) ∈ [0, a+] × R.

By the monotone convergence theorem and parabolic estimates, there exists 
u∗ ∈ C1,2([0, a+] × R) satisfying (3.2) such that u∗

n → u∗ in C1,2
loc ([0, a+] × R) as 

n → +∞. It follows that

	
u∗(a, x) ≤ lim inf

t→∞
u(t, a, x) for all (a, x) ∈ [0, a+] × R.� (3.17)

Next, we shall prove u∗ ≡ u∗ in [0, a+] × R with u∗(a, x) being the unique solution 
of (3.2). To this end, for any δ > 0, let Hδ(0) denote the principal eigenvalue of the 
perturbed problem

	




∂aϕ = D∂xxϕ − µ(a, x)ϕ − Hδ(0)ϕ, (a, x) ∈ (0, a+] × R,

ϕ(0, x) = (fu(x, 0) − δ)
´ ac

0 β(a, x)ϕ(a, x)da, x ∈ R,

ϕ(a, x) = ϕ(a, x + L), (a, x) ∈ (0, a+] × R.

Due to H(0) > 0, we can choose δ > 0 small such that Hδ(0) > 0. Motivated by 
Nadin [49], for any y ∈ R, we consider the following problem

	




∂aϕ = D∂xxϕ − µ(a, x + y)ϕ − λϕ, (a, x) ∈ (0, a+] × (−n, n),
ϕ(0, x) = (fu(x + y, 0) − δ)

´ ac

0 β(a, x + y)ϕ(a, x)da, x ∈ (−n, n),
ϕ(a, −n) = ϕ(a, n) = 0, a ∈ (0, a+].

Let (λy
n, ϕy

n) denote the corresponding principal eigenpair. The periodicity of µ, β and 
f implies that y �→ λy

n is periodic and continuous. By Proposition 2.6 and the Dini’s 
lemma, λy

n converges to Hδ(0) uniformly in any compact subset of R as n → ∞, 
so that we can choose n ≥ 1 large such that λy

n > 0 for all y ∈ R due to Hδ(0) > 0.
Hence, for such n ≥ 1, it follows that κϕy

n with sufficiently small κ > 0 is a sub-
solution of
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


∂au = D∂xxu − µ(a, x + y)u, (a, x) ∈ (0, a+] × (−n, n),
u(0, x) = f

(
x + y,

´ ac

0 β(a, x + y)u(a, x)da
)

, x ∈ (−n, n),
u(a, −n) = u(a, n) = 0, a ∈ (0, a+].

�(3.18)

Note that u∗,y(a, x) := u∗(a, x + y) satisfies

	

{
∂au = D∂xxu − µ(a, x + y)u, (a, x) ∈ (0, a+] × R,

u(0, x) = f(x + y,
´ ac

0 β(a, x + y)u(a, x)da), x ∈ R,

which is a super-solution of (3.18). Thus the comparison principle applied in 
[0, a+] × [−n, n] yields that u∗,y(a, x) ≥ κϕy

n(a, x) for all (a, x) ∈ [0, a+] × [−n, n], 
and in particular we deduce that for all y ∈ R,

	 u∗(a, y) = u∗,y(a, 0) ≥ κϕy
n(a, 0) > 0 uniformly in a ∈ [0, a+].

Since y �→ ϕy
n(a, 0) is periodic, we obtain

	
u∗(a, x) ≥ κ inf

(a,y)∈[0,a+]×R
ϕy

n(a, 0) > 0, ∀(a, x) ∈ [0, a+] × R.� (3.19)

Hence one can apply Lemma 3.4 to both u∗ and u∗, and then obtain u∗ ≡ u∗ in 
[0, a+] × R.

Finally, by Proposition 3.6, it follows from (3.16) and (3.17) that u(t, a, x) con-
verges to u∗(a, x) in Cloc([0, a+] × R) as t → +∞. The proof is complete. � □

To prove Theorem 1.1, we next consider the case H(0) ≤ 0.

Lemma 3.8  Assume H (0 ) ≤ 0 , then any nonnegative solution of (3.2) is identically 
zero.

Proof  For any a+ ∈ [ac, am), assume by contradiction that there exists a nonnega-
tive continuous solution u to (3.2) which is positive somewhere in [0, a+] × R.

We first claim u > 0 in [0, a+] × R. Assume by contradiction that u(a∗, x∗) = 0 
for some (a∗, x∗) ∈ [0, a+] × R. If a∗ ∈ (0, a+], then we apply the strong maximum 
principle for parabolic equations to (3.2) and derive u ≡ 0 in [0, a+] × R, which con-
tradicts the fact that u is positive somewhere in [0, a+] × R. Hence, a∗ = 0, that is

	
u(0, x∗) = f

(
x∗,

ˆ ac

0
β(a, x∗)u(a, x∗)da

)
= 0,

which together with Assumption 1.2 implies that 
´ ac

0 β(a, x∗)u(a, x∗)da = 0. This 
implies that u(a∗, x∗) = 0 at least for some a∗ ∈ (0, a+], so that we have the same 
contradiction as above. Therefore, u > 0 in [0, a+] × R.
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Then it follows from Assumption 1.1-(ii) that there exists a positive constant c0 
such that 

´ ac

0 β(a, x)u(a, x)da ≥ c0, ∀x ∈ R. By Assumption 1.2, we have

	

f
(
x,
´ ac

0 β(a, x)u(a, x)da
)

´ ac

0 β(a, x)u(a, x)da
≤ f(x, c0)

c0
< fu(x, 0), ∀x ∈ R,� (3.20)

which implies that

	
f(x, c0)

c0

ˆ ac

0
β(a, x)u(a, x)da ≥ f

(
x,

ˆ ac

0
β(a, x)u(a, x)da

)
= u(0, x), ∀x ∈ R.�(3.21)

Consider the following eigenvalue problem

	




∂aϕ(a, x) = D∂xxϕ − µ(a, x)ϕ − λϕ, (a, x) ∈ (0, a+] × R,

ϕ(0, x) = f(x, c0)
c0

´ ac

0 β(a, x)ϕ(a, x)da, x ∈ R,

ϕ(a, x) = ϕ(a, x + L), (a, x) ∈ (0, a+] × R.

� (3.22)

Let λc0 ∈ R be the principal eigenvalue of (3.22) and the corresponding eigenfunc-
tion is denoted by ϕc0 > 0. Due to (3.20), by the proof of Lemma 2.1, we can deduce 
λc0 < H(0) ≤ 0.

Define α∗ := inf{α > 0 : u ≤ αϕc0}. We conclude the proof by prov-
ing that α∗ = 0. Assume that α∗ > 0. Set w := u − α∗ϕc0 ≤ 0 and 
a0 := min{a ∈ [0, a+] : ∃x ∈ R, s.t. w(a, x) = 0}. The existence of such a0 is due 
to the definition of α∗. Hence, w ≤ 0 and there exists x0 ∈ R such that w(a0, x0) = 0.

Next we claim that w ≡ 0 in [0, a+] × R. Indeed, observe that w satisfies

	 ∂aw ≤ D∂xxw − µ(a, x)w, (a, x) ∈ (0, a+] × R.� (3.23)

If a0 ∈ (0, a+], the fact that w ≡ 0 in [0, a+] × R is a direct consequence of the 
strong maximum principle for (3.23); Otherwise, if a0 = 0, then by (3.21) we have

	

0 = w(0, x0) = u(0, x0) − α∗ϕc0(0, x0)

≤ f(x0, c0)
c0

ˆ ac

0
β(a, x0)u(a, x0)da − α∗ f(x0, c0)

c0

ˆ ac

0
β(a, x0)ϕc0(a, x0)da

= f(x0, c0)
c0

ˆ ac

0
β(a, x0)w(a, x0)da ≤ 0.

Hence, it follows by Assumption 1.1-(ii) that w(a∗, x0) = 0 at least for some 
a∗ ∈ (0, a+]. Then applying the strong maximal principle again yields w ≡ 0 in 
[0, a+] × R. By definition we have u = α∗ϕc0  in [0, a+] × R, which is a contradic-
tion as follows,

	0 = ∂au − D∂xxu + µu = α∗∂aϕc0 − Dα∗∂xxϕc0 + µα∗ϕc0 ≥ −α∗λc0ϕc0 > 0.

Therefore, α∗ = 0 and the proof is complete. � □
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Finally, we present the proof of Theorem 1.1.

Proof  (Proof of Theorem 1.1)

Theorem 1.1-(i) is a direct consequence of Propositions 3.5-3.7. To prove Theo-
rem 1.1-(ii), by Lemma 3.8 it remains to show the global stability of the trivial solu-
tion 0 when H(0) ≤ 0. Indeed, as in the proof of Proposition 3.6, we can choose 
some large M satisfying u0 ≤ M  to be a super-solution of (1.1). Let U  still denote 
the solution of (1.1) with initial value M, which is L-periodic in x. Then there holds

	 0 ≤ u(t, a, x) ≤ U(t, a, x) ≤ M for all (a, x) ∈ [0, a+] × R, t > 0.� (3.24)

Note that U  is non-increasing in t for each (a, x) ∈ [0, a+] × R. It holds that U  con-
verges in Cloc([0, a+] × R) to some nonnegative solution of stationary equation (3.2) 
as t → +∞, which together with Lemma 3.8 yields U → 0 in Cloc([0, a+] × R) as 
t → +∞. Since U  is periodic in x, the convergence is uniform in x. Hence, by (3.24) 
we conclude that u → 0 in C([0, a+] × R) as t → +∞. The proof of Theorem 1.1 is 
now complete. � □

4  Spreading properties

In this section, we are concerned with the spreading properties of problem (1.1). To 
prove Theorem 1.2, we shall investigate the asymptotic spreading of the solution 
restricted on [0, a+] × R for any given a+ ∈ [ac, am). By Assumption 1.1-(ii), the 
restricted solution is exactly that of the following equation:

	




∂tu + ∂au = D∂xxu − µ(a, x)u, (a, x) ∈ (0, a+] × R, t > 0,

u(t, 0, x) = f
(
x,
´ ac

0 β(a, x)u(t, a, x)da
)

, x ∈ R, t > 0,

u(0, a, x) = u0(a, x), (a, x) ∈ [0, a+] × R,

� (4.1)

where u0 is any compactly supported nonnegative initial value.

4.1  Outer spreading

We first prove Theorem 1.2-(i), which follows by constructing appropriate 
super-solutions.

Proof  (Proof of Theorem 1.2-(i)) Fix any c > c∗ with c∗ being defined by (1.6). 
Choose λ > 0 such that cλ ≥ H(λ). Then we shall construct a super-solution to (4.1) 
in the form of v(t, a, x) = v0e−λ(x−ct)ϕλ(a, x) for some positive constant v0 to be 
chosen later, where H(λ) is the principal eigenvalue of problem (1.5) and ϕλ > 0 is 
the corresponding eigenfunction.

Due to cλ ≥ H(λ), direct calculation gives

1 3



Global dynamics and asymptotic spreading of a diffusive…

	∂tv + ∂av − D∂xxv + µ(a, x)v = cλv − H(λ)v ≥ 0 for all a ∈ (0, a+] and t > 0.

By the boundary condition of ϕλ in (1.5), one has

	

v(t, 0, x) =v0e−λ(x−ct)ϕλ(0, x)

=v0e−λ(x−ct)fu(x, 0)
ˆ ac

0
β(a, x)ϕλ(a, x)da

=fu(x, 0)
ˆ ac

0
β(a, x)v(t, a, x)da.

Since u0 is compactly supported, we next choose v0 large enough such that

	 v(0, a, x) = v0e−λxϕλ(a, x) ≥ u0(a, x), ∀x ∈ R, uniformly in [0, a+].

Note from (4.1) and Assumption (1.2)-(ii) that

	
u(t, 0, x) ≤ fu(x, 0)

ˆ ac

0
β(a, x)u(t, a, x)da for all x ∈ R and t > 0.

Set w := v − u. Then by the above discussion we derive that

	

{
∂tw + ∂aw ≥ D∂xxw − µw, (a, x) ∈ (0, a+] × R, t > 0,
w(t, 0, x) ≥ fu(x, 0)

´ ac

0 β(a, x)w(t, a, x)da, x ∈ R, t > 0,
w(0, a, x) ≥ 0, (a, x) ∈ [0, a+] × R.

It follows by the comparison principle in Lemma 3.1 that w ≥ 0, which implies that

	u(t, a, x) ≤ v(t, a, x) = v0e−λ(x−ct)ϕλ(a, x) for all (a, x) ∈ [0, a+] × R and t > 0.

Let c1 be any real number such that c1 > c > c∗. Then

	
lim

t→+∞
sup

|x|≥c1t

sup
a∈[0,a+]

u(t, a, x) ≤ v0 lim
t→+∞

sup
|x|≥c1t

sup
a∈[0,a+]

(e−λ(c1−c)tϕλ(a, x)) = 0.

By choosing c > c∗ to be arbitrarily close to c∗, we can prove Theorem 1.2-(i). � □

4.2  The rescaled equation

To prove Theorem 1.2-(ii), we shall develop the homogenization method for 
problem (4.1) in this subsection, which is our key core and main contribution in 
analyzing spreading properties of problem (1.1). Motivated by [5, 6], for any 
(a, x) ∈ [0, am) × R and t > 0, we define
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uϵ(t, a, x) := u

(
t

ϵ
, a,

x

ϵ

)
and zϵ(t, a, x) := ϵ ln(uϵ(t, a, x)/M),� (4.2)

where M is the uniform bound of the solution u as proved in Lemma 3.1, so that 
zϵ ≤ 0 for all ϵ > 0. By (4.1), for any a+ ∈ [ac, am), direct calculations yield

	





∂tzϵ + 1
ϵ ∂azϵ = ϵD∂xxzϵ + D|∂xzϵ|2 − µ

(
a, x

ϵ

)
, (a, x) ∈ (0, a+] × R, t > 0,

ϵ∂tuϵ + ∂auϵ = ϵ2D∂xxuϵ − µ
(
a, x

ϵ

)
uϵ, (a, x) ∈ (0, a+] × R, t > 0,

uϵ(t, 0, x) = f
(

x
ϵ ,
´ ac

0 β
(
a, x

ϵ

)
uϵ(t, a, x)da

)
, x ∈ R, t > 0,

uϵ(0, a, x) = u0
(
a, x

ϵ

)
, (a, x) ∈ [0, a+] × R.

� (4.3)

Without loss of generality, we can assume that the compactly supported initial 
value u0 satisfies u0(a, 0) > 0 for all a ∈ [0, a+]. Indeed, since u(1, a, x) > 0 in 
[0, a+] × R by Lemma 3.2, we can choose the compactly supported function v0(a, x) 
such that v0(a, 0) > 0 in [0, a+] and v0 ≤ u(1, a, x). Then the solution v of (4.1) with 
initial value v0 satisfies v(t, a, x) ≤ u(t + 1, a, x) for all t > 0. Thus we can estab-
lish Theorem 1.2-(ii) for v, which in turn implies the same result for u.

As in [2, Section 6], we define the following half-relaxed limit:

	

u∗(t, a, x) = lim inf
ϵ→0

(t′,a′,x′)→(t,a,x)

uϵ(t′, a′, x′).
� (4.4)

The following result implies that the zero set of the half-relaxed limit u∗ is uniform 
for age a ∈ [0, am), which is a key ingredient for our homogenization method.

Proposition 4.1  Let u∗ be defined by (4.4). Assume that u∗(t∗, a∗, x∗) = 0  for some 
(a∗, x∗) ∈ [0 , am) × R and t∗ > 0 , then u∗(t∗, a, x∗) ≡ 0  for all a ∈ [0 , am).

Proof  The proof is divided into the following two steps.

Step 1. We show u∗(t∗, a, x∗) ≡ 0 for all a ∈ [a∗, am). Define

	
U ϵ(t, x) :=

ˆ am

a∗
uϵ(t, a, x)da, ∀(t, x) ∈ (0, +∞) × R.

It follows by Lemma 3.1 that there exists some M > 0 such that U ϵ(t, x) ≤ M  for 
all ϵ > 0 and (t, x) ∈ (0, +∞) × R. Integrating the equation of uϵ in (4.3) from a∗ 
to am, one obtains

	
ϵ∂tU ϵ − uϵ(t, a∗, x) = Dϵ2∂xxU ϵ −

ˆ am

a∗
µ

(
a,

x

ϵ

)
uϵ(t, a, x)da.� (4.5)

We next show that

1 3



Global dynamics and asymptotic spreading of a diffusive…

	

lim inf
ϵ→0

(t,x)→(t∗,x∗)

U ϵ(t, x) = 0.
� (4.6)

Due to u∗(t∗, a∗, x∗) = 0, the definition of u∗ in (4.4) implies that there exists a 
sequence (t̃ϵ, ãϵ, x̃ϵ) ∈ (0, +∞) × [0, am) × R such that

	 (t̃ϵ, ãϵ, x̃ϵ) → (t∗, a∗, x∗) and uϵ(t̃ϵ, ãϵ, x̃ϵ) → 0 as ϵ → 0.� (4.7)

Given any ϑ > 0, we define the test function

	
ϕϵ(t, x) := (t − t̃ϵ)2 + (x − x̃ϵ)2

ϑϵ2 , ∀(t, x) ∈ (0, +∞) × R.� (4.8)

By the uniform boundedness of U ϵ in ϵ, we can define the sequence 
(tϵ, xϵ) ∈ (0, +∞) × R such that U ϵ − ϕϵ attains its maximum at (tϵ, xϵ). In par-
ticular, we have

	 U ϵ(tϵ, xϵ) − ϕϵ(tϵ, xϵ) ≥ U ϵ(t̃ϵ, x̃ϵ) − ϕϵ(t̃ϵ, x̃ϵ) = U ϵ(t̃ϵ, x̃ϵ).

Since U ϵ(t, x) ≤ M  holds for all (t, x) ∈ (0, +∞) × R again, this and (4.8) together 
imply that

	 |tϵ − t̃ϵ| + |xϵ − x̃ϵ| ≤ 2ϵ
√

Mϑ.� (4.9)

By combining (4.7) with (4.9), we conclude that as ϵ → 0, there hold (tϵ, xϵ) → (t∗, x∗) 
and

	
uϵ(tϵ, a∗, xϵ) = u

(
tϵ

ϵ
, a∗,

xϵ

ϵ

)
= u

(
t̃ϵ

ϵ
+ O(1), a∗,

x̃ϵ

ϵ
+ O(1)

)
→ 0.� (4.10)

Here (4.10) follows from the comparison arguments involving the construction of 
appropriate super-solutions, and we omit the details here for brevity.

Then by evaluating (4.5) at the point (tϵ, xϵ), we derive that

	

uϵ(tϵ, a∗, xϵ) −
ˆ am

a∗
µ

(
a,

xϵ

ϵ

)
uϵ(tϵ, a, xϵ)da

= ϵ∂tU ϵ(tϵ, xϵ) − Dϵ2∂xxU ϵ(tϵ, xϵ)

≥ ϵ∂tϕϵ(tϵ, xϵ) − Dϵ2∂xxϕϵ(tϵ, xϵ) = 2(tϵ − t̃ϵ)
ϑϵ

− 2D

ϑ
.

By (4.9) and (4.10), letting ϵ → 0 in the above inequality yields

	
µinf lim inf

ϵ→0
U ϵ(tϵ, xϵ) ≤ lim sup

ϵ→0

ˆ am

a∗
µ

(
a,

xϵ

ϵ

)
uϵ(tϵ, a, xϵ)da ≤ 4

√
M

ϑ
+ 2D

ϑ
.
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Due to the arbitrariness of ϑ, letting ϑ → +∞ yields that

	
lim inf

ϵ→0
U ϵ(tϵ, xϵ) = 0,

which implies (4.6) directly. Therefore, we derive that

	

u∗(t∗, a, x∗) = lim inf
ϵ→0

(t,s,x)→(t∗,a,x∗)

uϵ(t, s, x) = 0 for all a ∈ [a∗, am).

This completes the proof of Step 1.
Step 2. We prove u∗(t∗, a, x∗) ≡ 0 for all a ∈ [0, am). By Step 1, if a∗ = 0, then 

the proof is complete. It remains to consider the case a∗ > 0 and u∗(t∗, 0, x∗) > 0. 
Set

	 a∗ := sup{a ≥ 0 : u∗(t∗, s, x∗) > 0, ∀s ∈ [0, a)}.

It follows from Step 1 that 0 ≤ a∗ ≤ a∗. It suffices to show a∗ = 0.
Assume by contradiction that a∗ > 0, then u∗(t∗, a, x∗) > 0 for all a ∈ [0, a∗). 

For any s ∈ (0, a∗), we define

	
Us

ϵ(t, x) :=
ˆ a∗

s

uϵ(t, a, x)da, ∀(t, x) ∈ (0, +∞) × R.

Integrating the equation of uϵ in (4.3) from s to a∗, one obtains

	
ϵ∂tU

s
ϵ + uϵ(t, a∗, x) − uϵ(t, s, x) = Dϵ2∂xxUs

ϵ −
ˆ a∗

s

µ
(

a,
x

ϵ

)
uϵ(t, a, x)da.�(4.11)

By the definition of a∗, there exists some sequence (t̃ϵ, ãϵ, x̃ϵ) ∈(0, +∞)×
[0, am) × R such that

	 (t̃ϵ, ãϵ, x̃ϵ) → (t∗, a∗, x∗) and uϵ(t̃ϵ, ãϵ, x̃ϵ) → 0 as ϵ → 0.� (4.12)

Let the test function ϕϵ be defined in (4.8) with (t̃ϵ, x̃ϵ) replaced by (t̃ϵ, x̃ϵ). By the 
same arguments as in Step 1, there exists some sequence (tϵ, xϵ) such that Us

ϵ + ϕϵ 
attains its minimum at (tϵ, xϵ) and

	 |tϵ − t̃ϵ| + |xϵ − x̃ϵ| ≤ 2ϵ
√

Mϑ.� (4.13)

Similar to (4.10), by (4.12) and (4.13) we deduce that

	 (tϵ, xϵ) → (t∗, x∗) and uϵ(tϵ, a∗, xϵ) → 0 as ϵ → 0.� (4.14)

By evaluating (4.11) at (tϵ, xϵ), we calculate that
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uϵ(tϵ, s, xϵ) − uϵ(tϵ, a∗, xϵ) −
ˆ a∗

s

µ
(

a,
xϵ

ϵ

)
uϵ(tϵ, a, xϵ)da

= ϵ∂tU
s
ϵ(tϵ, xϵ) − Dϵ2∂xxUs

ϵ(tϵ, xϵ)

≤ − ϵ∂tϕϵ(tϵ, xϵ) + Dϵ2∂xxϕϵ(tϵ, xϵ) = −2(tϵ − t̃ϵ)
ϑϵ

+ 2D

ϑ
.

By (4.13) and (4.14), letting ϵ → 0 in the above inequality gives

	
lim sup

ϵ→0

[
uϵ(tϵ, s, xϵ) −

ˆ a∗

s

µ
(

a,
xϵ

ϵ

)
uϵ(tϵ, a, xϵ)da

]
≤ 4

√
M

ϑ
+ 2D

ϑ
, ∀s ∈ (0, a∗).

By letting ϑ → +∞ again, we derive that

	
u∗(s) := lim sup

ϵ→0
uϵ(tϵ, s, xϵ) ≤ lim inf

ϵ→0

ˆ a∗

s

µ
(

a,
xϵ

ϵ

)
uϵ(tϵ, a, xϵ)da, ∀s ∈ (0, a∗).

This implies that

	
u∗(s) ≤ µsup

ˆ a∗

s

u∗(a)da, ∀s ∈ (0, a∗),� (4.15)

where µsup = ∥µ∥L∞(0,a∗) < +∞ since µ(a) = maxx∈[0,L] µ(a, x) is bounded in 

[0, a∗]. Denote

	
w(s) :=

ˆ a∗

s

u∗(a)da and W (a) :=
ˆ a∗

a

w(s)ds.

Then W is differentiable in a and W ′(a) = −w(a). It follows from (4.15) that

	
w(a) ≤ µsup

ˆ a∗

a

w(s)ds = µsupW (a).

Hence, one has (log W (a))′ ≥ −µsup. Integrating this inequality from s to a∗ yields

	 −µsup(a∗ − s) ≤ log W (a∗) − log W (s), ∀s ∈ (0, a∗),

which is a contradiction due to W (a∗) = 0. Therefore, a∗ = 0, and by Step 1 we 
conclude that u∗(t∗, a, x∗) = 0 for all a ∈ (0, am). Noting that u∗ is lower semi-
continuous, we have u∗(t∗, 0, x∗) = 0, so that u∗(t∗, a, x∗) ≡ 0 for any a ∈ [0, am). 
The proof is now complete. � □

Recalling the definition of u∗ in (4.4), we find that u∗(t, a, x) = u∗(αt, a, αx) 
for any α > 0. This, together with Proposition 4.1 and Theorem 1.2-(i), implies that

	 {u∗ = 0} = {(t, x) : x ≥ c̄t, t > 0} × [0, am) for some 0 < c̄ ≤ c∗.� (4.16)

Recalling the definition of zϵ in (4.2), we define
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z∗(t, a, x) := lim inf

ϵ→0
(t′,a′,x′)→(t,a,x)

zϵ(t′, a′, x′) for any (a, x) ∈ [0, am) × R and t > 0,
�(4.17)

which is well-defined by constructing the similar sub-solutions as in the proof of [37, 
Lemma 3.2]. To estimate the limit z∗, for any a+ ∈ [ac, am) we define

	

Z∗(t, x) := lim inf
ϵ→0

(t′,x′)→(t,x)

inf
a∈[0,a+]

zϵ(t′, a, x′)

Z∗(t, x) := lim sup
ϵ→0

(t′,x′)→(t,x)

sup
a∈[0,a+]

zϵ(t′, a, x′).� (4.18)

Obviously, Z∗(t, x) ≤ z∗(t, a, x) ≤ Z∗(t, x) for all (a, x) ∈ [0, a+] × R and t > 0.
Next we shall prove that Z∗ and Z∗ are viscosity super-solution and viscosity 

sub-solution of a Hamilton-Jacobi equation, respectively. We refer to [2, 9] for the 
definitions of viscosity super-solutions and sub-solutions.

Lemma 4.2  Let Z∗ be defined in (4.18). Then Z∗(t, x) is a lower semi-continuous 
viscosity solution of

	

{
∂tZ∗ − H(∂xZ∗) ≥ 0, x > c̄t, t > 0,
Z∗(t, c̄t) = 0, t > 0,

where ̄c ∈ (0 , c∗] is defined in (4.16).

Proof  Step 1. We first show ∂tZ∗ − H(∂xZ∗) ≥ 0 for x > c̄t and t > 0 in the 
sense of viscosity solutions. By the definition of viscosity solutions, we fix any 
φ ∈ C∞((0, +∞) × R) and assume that Z∗ − φ attains a strict local minimum point 
(t∗, x∗) satisfying x∗ > c̄t∗. We must prove

	 ∂tφ(t∗, x∗) − H(∂xφ(t∗, x∗)) ≥ 0.� (4.19)

Set γ := ∂xφ(t∗, x∗). Assume by contradiction that (4.19) fails, namely

	 ∂tφ(t∗, x∗) − H(γ) < 0.� (4.20)

For any δ > 0, denote Hδ(γ) ∈ R by the principal eigenvalue of the problem

	




∂aϕ = D∂xxϕ + 2Dγ∂xϕ + Dγ2ϕ − µ(a, x)ϕ − Hδ(γ)ϕ, (a, x) ∈ (0, a+] × R,

ϕ(0, x) = (fu(x, 0) − 2δ)
´ ac

0 β(a, x)ϕ(a, x)da, x ∈ R,

ϕ(a, x) = ϕ(a, x + L), (a, x) ∈ (0, a+] × R.

�(4.21)

Again, as stated in Remark 2.1, Hδ(γ) exists and is independent of the choice of 
a+ ∈ [ac, am). Let H(γ) be the principal eigenvalue of problem (1.5) with λ = γ. 
Noting that H(γ) = H(−γ) as proved by Proposition 1.6-(i), we find Hδ(γ) → H(γ) 
as δ → 0. By (4.20), we can choose δ > 0 small such that ∂tφ(t∗, x∗) < Hδ(γ).
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For the chosen δ > 0, we define ϕδ > 0 as the principal eigenfunction of (4.21) 
associated with Hδ(γ). Note that ϕδ > 0 in [0, a+] × R. We define the perturbed test 
function

	 φϵ(t, a, x) := φ(t, x) + ϵ ln ϕδ(a, x/ϵ).

By direct calculations, we have

	

∂tφϵ + 1
ϵ

∂aφϵ − ϵD∂xxφϵ − D|∂xφϵ|2 + µ(a, x/ϵ)

=∂tφ + ∂aϕδ

ϕδ
− ϵD∂xxφ − D

∂xxϕδ

ϕδ
+ D

|∂xϕδ|2

ϕ2
δ

− D

(
∂xφ + ∂xϕδ

ϕδ

)2

+ µ(a, x/ϵ)

=∂tφ − ϵD∂xxφ − Hδ(γ) + Dγ2 − D|∂xφ|2 + 2D(γ − ∂xφ)∂x ln ϕδ.

�(4.22)

Due to x∗ > c̄t∗ and ∂tφ(t∗, x∗) < Hδ(γ), we can choose some r > 0 small such 
that

	 Br(t∗, x∗) × [0, a+] ⊂ {u∗ = 0},

and for all (t, x) ∈ Br(t∗, x∗), there holds

	∂tφ(t, x) − Hδ(γ) − ϵD∂xxφ(t, x) + D(γ2 − |∂xφ(t, x)|2) + 2D(γ − ∂xφ(t, x))∂x ln ϕδ < 0,

provided that ϵ > 0 is chosen small. Thus by (4.22) we arrive at

	∂tφϵ + 1
ϵ

∂aφϵ − ϵD∂xxφϵ − D|∂xφϵ|2 + µ(a, x/ϵ) < 0 in Br(t∗, x∗) × [0, a+].�(4.23)

On the other hand, recalling (4.3) one can see

	
∂tzϵ + 1

ϵ
∂azϵ − ϵD∂xxzϵ − D|∂xzϵ|2 + µ(a, x/ϵ) = 0 in Br(t∗, x∗) × [0, a+].�(4.24)

We shall claim that

	
inf

(t,x)∈Br(t∗,x∗)
inf

a∈[0,a+]
(zϵ − φϵ) ≥ inf

(t,x)∈∂Br(t∗,x∗)
inf

a∈[0,a+]
(zϵ − φϵ) .� (4.25)

We assume (4.25) holds at the moment. By the definition of Z∗, it is easily seen that

	
inf

(t,x)∈Br(t∗,x∗)
(Z∗ − φ) ≥ inf

(t,x)∈∂Br(t∗,x∗)
(Z∗ − φ) ,

which is a contradiction since (t∗, x∗) is a strict local minimum of Z∗ − φ. Hence, 
(4.19) holds.
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It remains to prove (4.25). Indeed, if zϵ − φϵ attains its local minimum over 
Br(t∗, x∗) × [0, a+] at some interior point (tϵ, aϵ, xϵ) with (tϵ, xϵ) ∈ Br(t∗, x∗) and 
aϵ ≥ 0, then we separate two cases to prove the claim.

Case 1: aϵ > 0. In this case, ∂azϵ(tϵ, aϵ, xϵ) = ∂aφϵ(tϵ, aϵ, xϵ). Combining 
(4.23) and (4.24), we evaluate them at (tϵ, aϵ, xϵ) to obtain ∂xxzϵ(tϵ, aϵ, xϵ) <∂xxφϵ

(tϵ, aϵ, xϵ), which is a contradiction since (tϵ, aϵ, xϵ) is a minimal point of zϵ − φϵ.
Case 2: aϵ = 0. In this case, we have

	zϵ(tϵ, 0, xϵ) − ϵ ln ϕδ(0, xϵ/ϵ) ≤ zϵ(tϵ, a, xϵ) − ϵ ln ϕδ(a, xϵ/ϵ), ∀a ∈ [0, a+],

which can be written as

	

uϵ(tϵ, 0, xϵ)
ϕδ(0, xϵ/ϵ)

= min
a∈[0,a+]

uϵ(tϵ, a, xϵ)
ϕδ(a, xϵ/ϵ)

=: cmin.

Recalling the integral boundary condition at aϵ = 0, it follows that

	

f
(

xϵ/ϵ,

ˆ ac

0
β(a, xϵ/ϵ)uϵ(tϵ, a, xϵ)da

)

=cmin (fu (xϵ/ϵ, 0) − 2δ)
ˆ ac

0
β (a, xϵ/ϵ) ϕδ (a, xϵ/ϵ) da.

� (4.26)

Due to (tϵ, a, xϵ) ∈ {u∗ = 0} for all a ∈ [0, a+], by Assumption 1.2-(ii) we can 
choose ϵ > 0 further small if necessary such that

	
f

(
xϵ/ϵ,

ˆ ac

0
β(a, xϵ/ϵ)uϵ(tϵ, a, xϵ)da

)
≥ (fu (xϵ/ϵ, 0) − δ)

ˆ ac

0
β (a, xϵ/ϵ) uϵ(tϵ, a, xϵ)da.

By (4.26), we derive that

	

(fu (xϵ/ϵ, 0) − 2δ)
ˆ ac

0
β (a, xϵ/ϵ) ϕδ (a, xϵ/ϵ)

( uϵ(tϵ, a, x)
ϕδ (a, xϵ/ϵ)

− cmin

)
da

+δ

ˆ ac

0
β (a, xϵ/ϵ) uϵ(tϵ, a, xϵ)da ≤ 0,

which concludes that

	

ˆ ac

0
β (a, xϵ/ϵ) uϵ(tϵ, a, xϵ)da ≤ 0.

This is a contradiction, since uϵ(tϵ, a, xϵ) > 0 for all a ∈ [0, a+] due to the strong 
maximum principle in Lemma 3.2. Therefore, (4.25) is proved and Step 1 is complete.

Step 2. We next show Z∗(t, c̄t) = 0. Suppose on the contrary that Z∗(t∗, c̄t∗) < 0 
for some t∗ > 0. Since {(t, x) : x ≥ c̄t, t > 0} × [0, a+] ⊂ {u∗ = 0} and 
{(t, c̄t) : t > 0} × [0, a+] ⊂ ∂{u∗ = 0}, by definitions it must hold
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lim inf
(t′,x′)→(t∗,c̄t∗)

x′/t′<c̄

Z∗(t′, x′) = 0 > Z∗(t∗, c̄t∗).
� (4.27)

We choose constant M > 0 large enough such that

	 Mc̄ − DM2 + 2M ∥∂x ln ϕδ∥L∞((0,a+)×R − Hδ(0) + 1 < 0, � (4.28)

where (Hδ(0), ϕδ) denotes the principal eigenpair of (4.21) with γ = 0. By (4.27), 
we can define the function ρM ∈ C∞(R) such that Z∗(t, x) − ρM (x − c̄t) attains a 
strict minimal point at (t∗, c̄t∗) and ρ′

M (0) ≤ −M . Then it follows from [2, Lemma 
6.1] that

	 wϵ(t, a, x) := zϵ(t, a, x) − ϵ ln ϕδ(a, x/ϵ) − ρM (x − c̄t)

attains its minimal at some (tϵ, aϵ, xϵ) ∈ R+ × [0, a+] × R, which satisfies 
(tϵ, xϵ) → (t∗, c̄t∗) as ϵ → 0. Using the same arguments as in Step 1, we can deduce 
that aϵ > 0. Hence, by evaluating the equation of zϵ in (4.3) at the point (tϵ, aϵ, xϵ), 
direct calculations yield

	

Dϵ∂xxwϵ(tϵ, aϵ, xϵ)
=Dϵ [∂xxzϵ(tϵ, aϵ, xϵ) − ϵ∂xx ln ϕδ(aϵ, xϵ/ϵ) − ρ′′

M (xϵ − c̄tϵ)]

=∂tzϵ + 1
ϵ

∂azϵ − D|∂xzϵ|2 + µ(aϵ, xϵ/ϵ) − D
∂xxϕδ(aϵ, xϵ/ϵ)

ϕδ(aϵ, xϵ/ϵ)
+ D (∂x ln ϕδ(aϵ, xϵ/ϵ))2 − Dϵρ′′

M (xϵ − c̄tϵ)
= − c̄ρ′

M (xϵ − c̄tϵ) − D |ρ′
M (xϵ − c̄tϵ)|

2 − Hδ(0)
− 2ρ′

M (xϵ − c̄tϵ)∂x ln ϕδ(aϵ, xϵ/ϵ) − Dϵρ′′
M (xϵ − c̄tϵ),

where we used the equation of ϕδ  in (4.21) with γ = 0. Due to 
ρ′

M (0) ≤ −M , by the choice of M in (4.28), we can choose ϵ > 0 small if necessary 
such that ∂xxwϵ(tϵ, aϵ, xϵ) < 0, which is a contradiction as (tϵ, aϵ, xϵ) is a minimal 
point of wϵ. This concludes the proof. � □

Similarly, we can show the following lemma.

Lemma 4.3  Let Z∗ be defined in (4.18). Then Z∗(t, x) is a upper semi-continuous 
viscosity solution of

	

{
∂tZ

∗ − H(∂xZ∗) ≤ 0, t > 0, x ∈ R,
Z∗(t, c̄t) = 0, t > 0.

Proof  By the definition of Z∗ in (4.18), Z∗(t, c̄t) = 0 is a direct consequence of

	 {(t, c̄t) : t > 0} × [0, a+] ⊂ ∂{u∗ = 0}.
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It remains to show ∂tZ
∗ − H(∂xZ∗) ≤ 0 in the viscosity sense. The proof can follow 

by the ideas presented in Step 1 of Lemma 4.2 and we give a sketch for completeness.
Indeed, by the definition of viscosity sub-solutions, for any test function 

φ ∈ C∞(R+ × R), if (t∗, x∗) ∈ R+ × R is a strict local maximum point of Z∗ − φ, 
then we need to verify that

	 ∂tφ(t∗, x∗) − H(∂xφ(t∗, x∗)) ≤ 0.� (4.29)

Set γ := ∂xφ(t∗, x∗). Assume that (4.29) fails, namely ∂tφ(t∗, x∗) − H(γ) > 0.
Let ψ > 0 be the principal eigenfunction of problem (1.5) with λ = −γ, and the 

associated principal eigenvalue is H(−γ). We define

	 φϵ(t, a, x) := φ(t, x) + ϵ ln ψ(a, x/ϵ).

Due to H(−γ) = H(γ), by direct calculations as in (4.22), we have

	

∂tφϵ + 1
ϵ

∂aφϵ − ϵD∂xxφϵ − D|∂xφϵ|2 + µ(a, x/ϵ)

=∂tφt − ϵD∂xxφ − H(γ) + Dγ2 − D|∂xφ|2 + 2D(γ − ∂xφ)∂x ln ψ.

By the assumption that ∂tφ(t∗, x∗) > H(γ), we can choose r > 0 small such that

	∂tφϵ + 1
ϵ

∂aφϵ − ϵD∂xxφϵ − D|∂xφϵ|2 + µ(a, x/ϵ) > 0 in Br(t∗, x∗) × [0, a+],�(4.30)

provided that ϵ > 0 is chosen small.
As in the proof of Lemma 4.2, we claim that

	
sup

(t,x)∈Br(t∗,x∗)
sup

a∈[0,a+]
(zϵ − φϵ) ≤ sup

(t,x)∈∂Br(t∗,x∗)
sup

a∈[0,a+]
(zϵ − φϵ) .� (4.31)

If (4.31) holds, then by the definition of Z∗ we have

	
sup

(t,x)∈Br(t∗,x∗)
(Z∗ − φ) ≤ sup

(t,x)∈∂Br(t∗,x∗)
(Z∗ − φ) ,

which is a contradiction since (t∗, x∗) is a strict local maximum of Z∗ − φ. Hence, 
(4.29) holds and Lemma 4.3 is proved.

To prove (4.31), we assume that zϵ − φϵ attains its maximum at some interior 
point (tϵ, aϵ, xϵ) over Br(t∗, x∗) × [0, a+] with aϵ ≥ 0. If aϵ > 0, then comparing 
(4.30) with the equation of zϵ in (4.3) yields ∂xxzϵ(tϵ, aϵ, xϵ) > ∂xxφϵ(tϵ, aϵ, xϵ), 
which is a contradiction since (tϵ, aϵ, xϵ) is a maximum point of zϵ − φϵ. It remains 
to consider the case aϵ = 0. In this case,

	 zϵ(tϵ, 0, xϵ) − ϵ ln ψ(0, x/ϵ) ≥ zϵ(tϵ, a, xϵ) − ϵ ln ψ(a, xϵ/ϵ), ∀a ∈ [0, a+].
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By the definition of zϵ, it can be written as

	

uϵ(tϵ, 0, xϵ)
ψ(0, xϵ/ϵ)

= max
a∈[0,a+]

uϵ(tϵ, a, xϵ)
ψ(a, xϵ/ϵ)

=: cmax.

By the boundary conditions of zϵ and ψ in (4.3) and (1.5), it follows that

	

f
(

xϵ/ϵ,

ˆ ac

0
β (a, xϵ/ϵ) uϵ(tϵ, a, xϵ)da

)

= cmaxfu (xϵ/ϵ, 0)
ˆ ac

0
β (a, xϵ/ϵ) ψ (a, xϵ/ϵ) da.

� (4.32)

Next by Assumption 1.2 again, one obtains

	
f

(
xϵ/ϵ,

ˆ ac

0
β (a, xϵ/ϵ) uϵ(tϵ, a, xϵ)da

)
≤ fu (xϵ/ϵ, 0)

ˆ ac

0
β (a, xϵ/ϵ) uϵ(tϵ, a, xϵ)da,

which together with (4.32) implies that

	
0 ≤ fu (xϵ/ϵ, 0)

ˆ ac

0
β (a, xϵ/ϵ) ψ (a, xϵ/ϵ)

(
cmax − uϵ(tϵ, a, xϵ)

ψ (a, xϵ/ϵ)

)
da ≤ 0.

Hence, there exists some āϵ > 0 such that uϵ(tϵ, āϵ, xϵ)/ψ (āϵ, xϵ/ϵ) = cmax. 
Recalling the definition of zϵ, this implies that zϵ(tϵ, ·, xϵ) − ϵ ln ψ(·, xϵ/ϵ) attains its 
maximum at āϵ > 0, and thus we can obtain a contradiction as in the case of aϵ > 0. 
The proof is complete. � □

The following result states that the function z∗ defined by (4.17) is independent 
of a ∈ [0, a+].

Lemma 4.4  Let function z∗ be defined by (4.17). Then z∗ = z∗(t, x) is independent of 
a ∈ [0 , a+] and is a viscosity solution of the Hamilton-Jacobi equation

	




∂tZ − H(∂xZ) = 0, x > c̄t, t > 0,

Z(t, c̄t) = 0, t > 0,

Z(0, 0) = 0,
Z(t, x) → −∞ as t → 0, x > 0,

� (4.33)

where ̄c ∈ (0 , c∗] is defined by (4.16).

Proof  Let Z be a viscosity solution of (4.33), which can be given by certain action 
functional as in [20]. Recall the definitions of Z∗ and Z∗ in (4.18). Since u0(a, 0) > 0 
for all a ∈ [0, a+], it follows that Z∗(0, 0) = Z∗(0, 0) = 0. Based on the Lemmas 4.2 
and 4.3, we can apply the similar arguments in [37, Lemmas 3.6 and 3.7] (see also 
[20, Lemma 3.1]) to show that
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	 Z∗(t, x) ≤ Z(t, x) ≤ Z∗(t, x) for all x > c̄t and t > 0,

for which the details are omitted here. In view of Z∗ ≤ Z∗, this implies that

	 Z∗(t, x) = Z∗(t, x) for all x > c̄t and t > 0.

Noting that Z∗ ≤ z∗ ≤ Z∗ by definition, this implies that z∗ ≡ Z∗ ≡ Z∗ in {u∗ = 0} 
and satisfies the Hamilton-Jacobi equation (4.33), which is independent of a ∈ [0, a+]. 
Together with z∗ = 0 in {u∗ > 0}, we conclude that z∗ = z∗(t, x) is independent of 
a ∈ [0, a+]. The proof is complete. � □

We conclude this subsection by establishing the connection between z∗ and uϵ 
defined by (4.17) and (4.2), respectively.

Lemma 4.5  Assume H (0 ) > 0 . Then for any (t∗, x∗) ∈ Int{z∗ = 0} and 
a+ ∈ [ac, am), there holds

	

lim inf
ϵ→0

(t,a,x)→(t∗,s,x∗)

uϵ(t, a, x) > 0 , ∀s ∈ [0 , a+].

Proof  Suppose that Lemma 4.5 fails, then a direct application of Proposition 4.1 
yields

	

lim inf
ϵ→0

(t,a,x)→(t∗,s,x∗)

uϵ(t, a, x) = 0, ∀s ∈ [0, a+].
� (4.34)

Due to (t∗, x∗) ∈ Int{z∗ = 0}, there exists some η > 0 small such that z∗ = 0 in 
Bη(t∗, x∗), so that by (4.17), zϵ converges to zero uniformly in Bη(t∗, x∗) × [0, a+] 
as ϵ → 0. Define the test function ϕ(t, x) := −(t − t∗)2 − (x − x∗)2. For each 
δ > 0, let Hδ(0) be the principal eigenvalue of

	




∂aφ(a, x) = D∂xxφ − µ(a, x)φ − Hδ(0)φ, (a, x) ∈ (0, a+] × R,

φ(0, x) = (fu(x, 0) − 2δ)
´ ac

0 β(a, x)φ(a, x)da, x ∈ R,

φ(a, x) = φ(a, x + L), (a, x) ∈ (0, a+] × R.

�(4.35)

Due to H(0) > 0, we choose δ > 0 small such that Hδ(0) > 0.
We first claim that there exists the sequence (tϵ, xϵ, aϵ) ∈ Bη(t∗, x∗) × [0, a+] 

such that

	 wϵ(t, a, x) := zϵ(t, a, x) − ϵ ln φ(a, x/ϵ) − ϕ(t, x)

attains its local minimum at point (tϵ, xϵ, aϵ), and

	 (tϵ, xϵ, aϵ) → (t∗, x∗, a∗) and zϵ(tϵ, xϵ, aϵ) → z∗(t∗, x∗) as ϵ → 0,� (4.36)
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for some a∗ ∈ [0, a+], where φ > 0 denotes the principal eigenfunction of prob-
lem (4.35) associated with Hδ(0). Indeed, note that zϵ − ϵ ln φ → 0 uniformly in 
Bη(t∗, x∗) × [0, a+] as ϵ → 0. For any σ ∈ (0, η2/8), there exists ϵ0 > 0 such that

	 ∥zϵ − ϵ ln φ∥L∞(Bη(t∗,x∗)×[0,a+]) ≤ σ, ∀ϵ ∈ (0, ϵ0).

Hence, for all ϵ ∈ (0, ϵ0) and (t, x, a) ∈ (Bη(t∗, x∗) \ B2
√

σ(t∗, x∗)) × [0, a+],

	

wϵ(t, a, x) = zϵ(t, a, x) − ϵ ln φ(a, x/ϵ) − ϕ(t, x) ≥ 3σ

> zϵ(t∗, a∗, x∗) − ϵ ln φ(a∗, x∗/ϵ) + σ = wϵ(t∗, a∗, x∗) + σ.

This implies that wϵ has a local minimum at some point 
(tϵ, xϵ, aϵ) ∈ B2

√
σ(t∗, x∗) × [0, a+], that is (tϵ − t∗)2 + (xϵ − x∗)2 ≤ 4σ, and thus 

(4.36) holds.
Next, by (4.34) we apply the same arguments of Case 2 in Lemma 4.2 to show 

aϵ > 0, so that

	 ∂azϵ(tϵ, aϵ, xϵ) = ϵ∂a ln φ (aϵ, xϵ/ϵ) .

By evaluating the equation of zϵ in (4.3) at (tϵ, aϵ, xϵ), we have

	

∂tϕ + ∂a ln φ(aϵ, xϵ/ϵ)
≥ Dϵ∂xxϕ + D(∂xxφ/φ − |∂x ln φ|2) (aϵ, xϵ/ϵ) − µ (aϵ, xϵ/ϵ)

+ D (∂xϕ + ∂x ln φ (aϵ, xϵ/ϵ))2

≥ Dϵ∂xxϕ + D (∂xxφ/φ) (aϵ, xϵ/ϵ) + D|∂xϕ|2 − µ (aϵ, xϵ/ϵ)
+ 2D∂xϕ∂x ln φ (aϵ, xϵ/ϵ) .

By the definition of φ in (4.35), we calculate that

	∂tϕ − Dϵ∂xxϕ ≥ 2D∂xϕ∂x ln φ (aϵ, xϵ/ϵ) + D|∂xϕ|2 + Hδ(0) at (tϵ, aϵ, xϵ),

from which letting ϵ → 0, by (4.36) and the definition of test function ϕ, we deduce 
Hδ(0) ≤ 0, contradicting our assumption that Hδ(0) > 0. This completes the proof. 
� □

4.3  Inner spreading

In this subsection, we continue to complete the proof of Theorem 1.2-(ii). To this end, 
we first give a lower bound on z∗ motivated by Berestycki and Nadin [5, Lemma 4.4].

Lemma 4.6  Let z∗ be defined by (4.17). Then z∗(t, x) ≥ min{−tH ∗(−x/t), 0} 
for all t > 0  and x > 0 , where H ∗ is the convex conjugate of H, defined by 
H ∗(q) = supλ∈R(qλ − H (λ)).
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Proof  Define U(t, x) := −t−1z∗(t, −tx) for all t, x > 0. By (4.33) in Lemma 4.4, 
we have

	
∂tU(t, x) = −1

t
U(t, x) − 1

t
H(∂xz∗(t, −tx)) + x

t
∂xz∗(t, −tx), x > c̄t, t > 0,

in the sense of viscosity solutions. As H(λ) + H∗(x) ≥ λx for all λ, x ∈ R, it fol-
lows that

	
∂tU(t, x) ≤ −1

t
U(t, x) + 1

t
H∗(x), x > c̄t, t > 0.� (4.37)

By the definition of z∗ in (4.17), we have z∗(αt, αx) = αz∗(t, x) for all α > 0. 
Hence, U(t, x) = −z∗(1, −x) and in particular, ∂tU(t, x) = 0 in the sense of viscos-
ity solutions for all x > c̄t and t > 0. It follows from (4.37) that U(t, x) ≤ H∗(x).

Then we deduce that

	z∗(t, x) = −tU(t, −x/t) ≥ −tH∗(−x/t) ≥ min{−tH∗(−x/t), 0}, x > c̄t, t > 0.�(4.38)

Note from the definition of c̄ in (4.16) that z∗(t, x) = 0 for all x ≤ c̄t, which together 
with (4.38) completes the proof.� □

For any c1 < c2 and t > 0, we define the set

	 St(c1, c2) := {x ∈ R : c1t < x < c2t}.� (4.39)

To prove Theorem 1.2-(ii), we prepare the following result.

Lemma 4.7  Let τ > 0  and u0 (a, x), ũ0 (a, x) ≥ 0  for all (a, x) ∈ [0 , am) × R. 
Assume that u and ũ are the solutions of (1.1) with initial data u(0 , a, x) =u0 (a, x) 
and ũ(0 , a, x) = ũ0 (a, x), respectively. If u0 (a, x) = ũ0 (a, x) for (a, x) ∈
[0 , am) × Sτ (c1 , c2 ), then for any θ ∈ (0 , (c2 − c1 )/2 ), there holds

	|u(t, a, x) − ũ(t, a, x)| ≤ Me(D−µinf)te−θτ , ∀t ≥ 0, (a, x) ∈ [0, am) × Sτ (c1 + θ, c2 − θ),

where M > 0  is some constant independent of t and τ . In particular, fixing 
T1 > 0 , for any σ > 0 , one can find T such that if u0 (a, x) = ũ0 (a, x) for 
(a, x) ∈ [0 , am) × Sτ (c1 , c2 ) for some τ > T , then

	 |u(T1, a, x) − ũ(T1, a, x)| ≤ σ, (a, x) ∈ [0, am) × Sτ (c1 + θ, c2 − θ).

Proof  Fix any z ∈ R, consider the space

	
Xz = {ϕ ∈ C(R) : sup

x∈R
e−|x−z||ϕ(x)| < +∞}
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equipped with the norm ∥ϕ∥Xz
= supx∈R e−|x−z||ϕ(x)|. Recall that 

{U0(a, s)}0≤s≤a<am  is defined in (2.4) for the case of λ = 0. It is easily seen that it 
is positive and bounded in Xz  satisfying

	 ∥U0(a, s)∥L(Xz) ≤ e(D−µinf)(a−s) for all 0 ≤ s ≤ a < am.� (4.40)

Indeed, due to the property of Green’s function defined in (2.4), for any η ∈ Xz  we 
have

	

∥U0(a, s)η∥Xz
= sup

x∈R
e−|x−z|

∣∣∣∣
ˆ

R
G0(a, s; x − y)η(y)dy

∣∣∣∣

≤ sup
x∈R

e−|x−z|
ˆ

R
G0(a, s; x − y)|η(y)|dy

= sup
x∈R

e−|x−z|
ˆ

R
G0(a, s; y)|η(x − y)|dy

≤ e−µinf(a−s) sup
x∈R

e−|x−z|
ˆ

R

e− y2
4D(a−s)

2
√

Dπ(a − s)
|η(x − y)|dy

≤ e−µinf(a−s) ∥η∥Xz

ˆ

R

e− y2
4D(a−s) +|y|

2
√

Dπ(a − s)
dy

= e−µinf(a−s) ∥η∥Xz

ˆ

R

e− (|y|−2D(a−s))2
4D(a−s) +D(a−s)

2
√

Dπ(a − s)
dy

= e(D−µinf)(a−s) ∥η∥Xz
,

where, in the second inequality, we used the fact that D∆u − µu ≤ D∆u − µinfu 
for nonnegative u ∈ Xz . Hence, (4.40) is proved.

Set w := u − ũ. Direct calculation gives

	




∂tw + ∂aw = D∂xxw − µw, (a, x) ∈ (0, am) × R, t > 0,

w(t, 0, x) = c(t, x)
´ ac

0 β(a, x)w(t, a, x)da, (a, x) ∈ (0, am) × R, t > 0,

w(0, a, x) = w0(a, x), (a, x) ∈ (0, am) × R,

�(4.41)

where w0 = u0 − ũ0 and

	
c(t, x)=

ˆ 1

0
fu

(
x, (1 − s)

ˆ ac

0
β(a, x)ũ(t, a, x)da+s

ˆ ac

0
β(a, x)u(t, a, x)da

)
ds.

Recall that, via the method of characteristics [61], the solution of (4.41) can be writ-
ten as
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w(t, a) =

{ U0(a, a − t)w0(a − t), a ≥ t,

U0(a, 0)w(t − a, 0), a < t,
� (4.42)

where we write w(t, a) = w(t, a, x) for simplicity.
Plugging (4.42) into the equation of w(t, 0) in (4.41) yields that

	
w(t, 0) = c(t, ·)

[ˆ t

0
χ(a)β(a, ·)U0(a, 0)w(t − a, 0)da +

ˆ ac

t

χ(a)β(a, ·)U0(a, a − t)w0(a − t)da

]
,�(4.43)

whereas χ(a) denotes the cutoff function satisfying χ(a) = 1 for a ∈ (0, ac) and 
χ(a) = 0 for a ∈ [ac, am). Now we consider the following two cases.

Case 1. If t < ac, then (4.43) can be written as

	
w(t, 0) = c(t, ·)

[ˆ t

0
β(a, ·)U0(a, 0)w(t − a, 0)da +

ˆ ac

t

β(a, ·)U0(a, a − t)w0(a − t)da

]
.

By Assumption 1.2, using (4.40) we have

	

∥w(t, 0)∥Xz
≤ f(0)

[ˆ t

0
β(a)e(D−µinf)a ∥w(t − a, 0)∥Xz

da +
ˆ ac

t

β(a)e(D−µinf)t ∥w0(a − t)∥Xz
da

]

≤ f(0)
[ˆ t

0
β(t − s)e(D−µinf)(t−s) ∥w(s, 0)∥Xz

ds + e(D−µinf)t∥β∥L∞(0,ac)

ˆ ac

0
∥w0(a)∥Xz

da

]
,

where f(0) and β(a) are defined by (2.1). The Gronwall’s inequality implies that

	
∥w(t, 0)∥Xz

≤ f(0)∥β∥L∞(0,ac)e
(D−µinf)te

f(0)∥β∥
L1(0,ac)

ˆ ac

0
∥w0(a)∥Xz

da for t < ac.�(4.44)

Case 2. If t ≥ ac, then (4.43) can be written as

	
w(t, 0) = c(t, ·)

ˆ ac

0
β(a, ·)U0(a, 0)w(t − a, 0)da.

By the similar argument as in (4.44), we can use (4.40) to derive

	
∥w(t, 0)∥Xz

≤ f(0)
ˆ t

0
β(t − s)e(D−µinf)(t−s) ∥w(s, 0)∥Xz

ds.

The Gronwall’s inequality concludes that

	 ∥w(t, 0)∥Xz
= 0 for t ≥ ac.� (4.45)

Thanks to the above two cases, we have completed the estimates of ∥w(t, 0)∥Xz
 for 

any (t, a) ∈ (0, ∞) × [0, ac]. Now let us finish the estimates of ∥w(t, a)∥Xz
 for any 

(t, a) ∈ (0, ∞) × [0, ac] via (4.42). By (4.42), (4.44) and (4.45), we observe that
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∥w(t, a)∥Xz
≤ e(D−µinf)a ∥w(t − a, 0)∥Xz

≤ f(0)∥β∥L∞(0,ac)e
(D−µinf)te

f(0)∥β∥
L1(0,ac)

ˆ ac

0
∥w0(a)∥Xz

da, ∀t ≥ a.
�(4.46)

It follows from (4.40) and (4.42) that

	 ∥w(t, a)∥Xz
≤ e(D−µinf)t ∥w0(a − t)∥Xz

, ∀t < a.� (4.47)

In summary, for all t < a and (a, z) ∈ [0, am) × Sτ (c1 + θ, c2 − θ), by (4.47) we 
have

	

|u(t, a, z) − ũ(t, a, z)| ≤ e(D−µinf)t sup
x∈R

(
e−|x−z||u(0, a − t, x) − ũ(0, a − t, x)|

)

= e(D−µinf)t sup
x∈R\Sτ (c1,c2)

(
e−|x−z||u(0, a − t, x) − ũ(0, a − t, x)|

)

≤ Ce(D−µinf)t sup
x∈R\Sτ (c1,c2)

e−|x−z|

≤ Ce(D−µinf)te−θτ ,

where C > 0 depends only on u0 and ũ0. On the other hand, (4.46) implies that

	
∥w(t, 0)∥Xz

≤ Me(D−µinf)t sup
a∈[0,ac]

∥w0(a)∥Xz
, ∀t ≥ a,

where M = acf(0)∥β∥L∞(0,ac)e
f(0)∥β∥

L1(0,ac) . Then for all t ≥ a and 

(a, z) ∈ [0, am) × Sτ (c1 + θ, c2 − θ), we derive that

	

|u(t, a, z) − ũ(t, a, z)| ≤ Me(D−µinf)t sup
x∈R

(
e−|x−z||u(0, a, x) − ũ(0, a, x)|

)

= Me(D−µinf)t sup
x∈R\Sτ (c1,c2)

(
e−|x−z||u(0, a, x) − ũ(0, a, x)|

)

≤ CMe(D−µinf)t sup
x∈R\Sτ (c1,c2)

e−|x−z|

≤ CMe(D−µinf)te−θτ .

Thus the proof is complete. � □
We are in a position to complete the proof of Theorem 1.2-(ii).

Proof  (Proof of Theorem 1.2-(ii))

Let c∗ be defined by (1.6). We first show c̄ = c∗, where c̄ is defined by

	 {u∗ = 0} = {(t, x) : x ≥ c̄t, t ≥ 0} × [0, am).
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Since c̄ ≤ c∗ by Theorem 1.2-(i), we assume by contradiction that c̄ < c∗. By the 
symmetry of H(λ) proved by Proposition 1.6-(i), it follows that

	
c∗ = min

λ>0

H(λ)
λ

= min
λ>0

H(−λ)
λ

.

Then for any c ∈ (c̄, c∗), there exists some ϵ > 0 such that H(−λ) ≥ (1 + ϵ)λc for 
all λ > 0. As H(0) > 0 and λ �→ H(λ) is continuous, there exists δ > 0 such that 
H(−λ) ≥ λc + δ for all λ > 0, which implies from the definition of convex conju-
gate that −H∗(−c) > 0. Lemma 4.6 together with the continuity of H∗ yields that 
for all (t, x) in a neighborhood of (1, c),

	 z∗(t, x) ≥ min{−tH∗(−x/t), 0} = 0,

which particularly implies (1, c) ∈ Int{z∗ = 0} for all c ∈ (c̄, c∗). For any 
a+ ∈ [ac, am), an application of Lemma 4.5 yields that

	
lim inf

ϵ→0
uϵ(1, a, c) = lim inf

ϵ→0
u

(
1
ϵ

, a,
c

ϵ

)
= lim inf

t→∞
u(t, a, ct) > 0, ∀a ∈ [0, a+],

which is a contradiction since {(t, ct) : t > 0} × [0, a+] ⊂ {u∗ = 0}. Therefore, 
c̄ = c∗, namely

	 {u∗ = 0} = {(t, x) : x ≥ c∗t, t ≥ 0} × [0, a+].� (4.48)

Next, let us prove

	
lim inf

t→∞
sup

a∈[0,a+],0<x<ct

|u(t, a, x) − u∗(a, x)| = 0, ∀c ∈ (0, c∗).

By (4.48), one can fix any c ∈ (0, c∗) and define

	
α := 1

2
lim inf

t→∞
inf

(a,x)∈[0,a+]×St(0,c)
u(t, a, x) > 0,� (4.49)

where the set St(0, c) is defined by (4.39). Let v be the solution of (1.1) with initial 
value u0 ≡ α. Then by the uniqueness of the solution to problem (1.1), v(t, a, x) 
is periodic in x for all t > 0 and a ∈ [0, a+]. Hence, Theorem 1.1-(i) implies that 
v(t, a, x) → u∗(a, x) in C([0, a+] × R) as t → +∞. Hence, for any σ > 0, there 
exists T1 > 0 such that

	 v(t, a, x) ≥ u∗(a, x) − σ for all t ≥ T1 and (a, x) ∈ [0, a+] × R.� (4.50)

Motivated by the proof of [36, Theorem 5.1], let uτ (t, a, x) be the solution of (1.1) 
with initial value uτ (0, a, x) = minx∈R{α, u(τ, a, x)}. It follows from (4.49) that 
uτ (0, a, x) = α for x ∈ Sτ (0, c), whenever τ > 0 is large, say τ > T2 for some 
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T2 > 0. Applying Lemma 4.7, for any 0 < θ < c/2, one can find a constant T3 ≥ T2 
such that for all τ > T3,

	 |v(T1, a, x) − uτ (T1, a, x)| ≤ σ, ∀(a, x) ∈ [0, a+] × Sτ (θ, c − θ).

This together with (4.50) gives

	u
τ (T1, a, x) ≥ u∗(a, x) − 2σ for all τ > T3 and (a, x) ∈ [0, a+] × Sτ (θ, c − θ).�(4.51)

Note that there exists some T4 > 0 such that

	 Sτ (2θ, c − 2θ) ⊂ Sτ−T1(θ, c − θ), ∀τ ≥ T4.

Now taking T0 = T1 + T3 + T4, it follows from (4.51) that for all t > T0,

	 ut−T1(T1, a, x) ≥ u∗(a, x) − 2σ, ∀(a, x) ∈ [0, a+] × St(2θ, c − 2θ).

On the other hand, comparison principle yields that for all t, s ≥ 0,

	 u(s + t, a, x) ≥ ut(s, a, x), ∀(a, x) ∈ [0, a+] × R.

Therefore, for t ≥ T0, we have

	u(t, a, x) ≥ ut−T1(T1, a, x) ≥ u∗(a, x) − 2σ, ∀(a, x) ∈ [0, a+] × St(2θ, c − 2θ).

Due to the arbitrariness of θ, it follows that

	
lim

t→∞
sup

0≤x<c′t
sup

a∈[0,a+]
|u(t, a, x) − u∗(a, x)| = 0, ∀c′ ∈ (0, c).

The proof is now complete. � □
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