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摘　要　异常检测是IaaS云系统运维中的一个关键任务,通过早期预警和提前干预,可有效避免系统崩溃等严重事故的发生.

但相较于传统数据中心,IaaS云系统具有较大规模的计算节点,节点拓扑复杂、监测数据量大、缺少标注信息等特点,为IaaS云

运维异常检测带来新的挑战.从深度学习的技术框架出发,分析了异常检测问题面临的难点,调研总结了IaaS云系统下常见

异常检测算法和相关技术.面向节点异常和系统异常两类典型问题,对深度学习驱动的解决方法进行调研:面向节点级别异

常,重点调研了时间依赖的运维数据下由时序数据驱动的检测算法;面向系统级别异常,重点调研了网络拓扑建模下由图数据

驱动的检测算法.最后,提出了数据驱动下IaaS云运维数据异常检测中的新问题与新挑战.
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Abstract　AnomalydetectionisanimportanttaskintheoperationandmaintenanceofIaaScloudsystems．Throughearlywarning

andintervention,seriousaccidentssuchassystemcrashescanbeeffectivelyavoided．However,comparedtotraditionaldatacenＧ

ters,IaaScloudsystemshavethecharacteristicsoflargeＧscalecomputingnodes,complexnodetopology,largemonitoringdatavoＧ

lume,andlackofdatalabels,whichbringnewchallengesforIaaScloudanomalydetection．Startingfromthetechnicalframework

ofdeeplearning,thispaperanalyzesthedifficultiesfacedbyanomalydetectionproblems,andsummarizescommonanomalydetecＧ

tionalgorithmsandrelatedtechnologiesinIaaScloudsystems．ThispaperinvestigatesdeeplearningdrivensolutionsfortwotypＧ

icalproblems:nodeanomaliesandsystemanomalies．Fornodeanomalies,detectionalgorithmsdrivenbytemporaldataarestudied

fortimeＧdependentdata．Forsystemanomalies,detectionalgorithmsdrivenbygraphdatainnetworktopologymodelingareinvesＧ

tigated．Finally,newissuesandchallengesindataＧdrivenanomalydetectioninIaaScloudsystemsareproposed．

Keywords　Anomalydetection,IaaScloud,Timeseriesdata,Graphdata,Deeplearning,Machinelearning
　

１　引言

云计算是一种基于网络将计算资源、存储资源和网络资

源集中到“云”端的计算范式,可实现资源的按需配置,向用户

提供个性化服务,逐渐被关注和应用.随着云技术的迅速发

展,越来越多的系统迁移上云[１Ｇ２],云平台的规模和复杂度持

续增加.大规模、虚拟化、高共享等特点,使得云平台在运行

中发生故障是不可避免的,这将影响到用户体验,造成经济损

失,降低用户对云平台的信任.为了保证云平台运行的可靠

性和安全性,针对云平台进行快速、精准、实时的异常检测,

对于已出现或者可能出现的异常状况向运维人员提出告警,

是重要且具有挑战的工作.云平台的异常检测问题已得到了

广泛的关注,研究人员对运维监控数据进行分析,开发了各种

各样的模型用于运维中的异常检测.本文深入调研IaaS云

运维相关论文,分析IaaS架构下云运维中异常检测面临的问

题,针对时序运维数据的时间相关性和云结构的空间相关性,

将异常检测模型分为基于时序数据和基于图数据两类进行

综述.

本文中深度学习驱动下异常检测算法的分类如图 １
所示.

２３０４０００１６Ｇ１



图１　本文中异常检测算法的分类

Fig．１　Classificationofanomalydetectionalgorithms

２　IaaS云运维中的异常检测问题

本章将重点分析IaaS架构下云平台的结构、异常检测的

对象和面临的挑战.

２．１　IaaS框架下的云平台结构

IaaS框架下的云平台通过网络为用户提供计算资源、存

储资源、网络资源等基础设施服务,通过虚拟化技术将所有资

源整合为一个整体对外提供服务,包括硬件、软件、操作系统、

存储等.IaaS框架下的云平台将服务器、存储等设备划分为

多个集群,通过虚拟化技术构成资源池,共同提供服务.在计

算资源池中,物理服务器可虚拟化出多个虚拟机实例,它们共

享CPU、内存、硬盘等硬件资源.IaaS云平台支持将运行的

虚拟机快速地在服务器之间移动、复制和重新分配.云平台

的灵活性使得虚拟机按照客户的需求创建,并且可以随时租

用或削减资源,调整虚拟机配置.但灵活复杂的结构造成云

计算中心出现故障的频率和可能性比传统的数据中心更高.

２．２　 运维数据的采集

IaaS云平台通过对基础设施、系统服务等的监控,为运维

人员提供日常维护和维修保障的依据.运维监控目标一般包

括硬件、系统、应用、网络、流量、日志、安全、API、性能、业务

等多个方面.目前云平台运维相关研究工作主要依托３类数

据进行,分别是性能指标[３Ｇ４]、日志[５]和请求追踪信息[６].性

能指标大多以时间序列指标的形式采集,通过轮询IT资源来

收集云平台的运行数据,以周期性地监控IT资源状态.日志

数据用于描述离散事件,例如运维人员的操作、云管理平台的

动作、系统出错时的相关信息等等.第三类数据为请求追踪

信息,用于追踪单次事务或者服务请求的处理情况.研究人

员根据不同的数据类型构建了不同的异常检测模型.其中,

性能指标包括云平台计算资源、存储资源、磁盘资源、进程信

息、网络资源等监控数据,可通过分析其分布规律刻画数据中

心的运行情况.本文关注于云平台性能指标的异常检测

问题.

为推动云运维领域的研究,一些公司提供了数据集帮助

研究者分析真实场景下异常检测所面临的问题与挑战,测试

与比较不同算法的性能.NAB数据集(TheNumentaAnomaＧ

lyBenchmark,NAB)[７]是一个流异常检测数据集,包含５８个

带有标注的真实数据和人工生成文件.NAB同时提供一种

异常检测的评分机制,并更新基于数据集和评分机制的算法

排名.雅虎 Webscope数据集由带有标记异常点的时序数据

权成,包含从雅虎云平台中真实采集的数据以及人工合成的

数据.清华大学公布了３个大规模真实数据集[８],数据来自

搜狗、易贝、腾讯等大型互联网公司,用于测试运维的异常检

测、根因定位、故障发现与诊断等领域;并举办了三届智慧运

维算法大赛.

２．３　运维数据存在的问题

１)数据量大.云监控系统为运维人员提供海量监控指

标,形成时间序列形式的数据来表征云系统的运行状态.数

量巨大、种类繁多的指标和高频率的刷新,造成运维数据量极

为庞大.

２)召回率低[９].在云系统的运行中,正常的运行占据绝

大多数时间,而异常状态发生频率极低,样本的不平衡可能导

致异常检测问题的召回率低.

３)缺少标注.时序数据异常检测数据集的标注依赖人工

操作,详细标注异常发生的开始和结束时刻.由于专家成本

高昂,这类数据集规模通常较小,不能满足一些异常检测算法

对训练数据规模的要求.

４)特征工程复杂.软件升级、虚拟机漂移等正常但少数

的行为对异常检测提出了挑战.传统的基于阈值的异常检测

模型难以准确地识别真正的异常,从而产生许多误报警.

２．４　云平台运维异常

IaaS云平台的异常可以分为硬件异常和软件异常.根据

一些已有的调研工作[１０Ｇ１１],相比于非云系统,云数据中心运

维异常中硬件故障的发生概率较低,软件故障的发生频率有

所增加.云平台的硬件包括服务器、存储、网络等设备,大型

的云计算中心的硬件设备数量庞大,即使硬件故障发生的概

率较低,硬件故障也十分常见.由于云系统的共享性和灵活

性,软件错误发生的概率更高,例如不同软件组件或版本的数

据格式不一致、因共享资源导致的资源冲突的错误、由于计算

机软件或系统的缺陷、故障或者错误,返回了不正确的结果等

等.有些软件错误可能会导致程序陷入循环,从而占用大量

的计算、内存资源,影响其他程序的正常运行,甚至是虚拟机

宕机等.

２３０４０００１６Ｇ２
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３　异常检测问题描述

３．１　异常检测模型的数学表达

异常检测问题可以定义为:给定一个数据集D,其中包含

大量的正常数据X 和少量异常数据X
∧
.异常检测问题是对

x∈D预测异常分数A(x)或异常标签y(x)∈{０,１},代表x
是否为正常数据.

３．２　异常检测的相关技术

３．２．１　异常检测方法的分类

由于在异常检测中难以获取足够的标签数据,半监督的

学习方式被广泛使用.在训练阶段,模型对正常数据的特征

进行提取和学习,并以此在测试阶段识别数据异常.异常检

测的方法可被分为基于预测误差的异常检测和基于重构误差

的异常检测.

基于预测的异常检测方法通过使用历史数据预测当前数

据来学习样本数据的时序特征.正常数据服从较高的依赖关

系,进而能够被相对准确地预测;而异常数据不符合依赖关

系,无法进行准确预测.数据的异常分数通过预测数据与实

际数据之间的残差计算.

基于重构的异常检测模型利用生成模型将数据映射到潜

在特征空间,以对高维复杂数据进行特征提取.正常数据符

合数据分布特征,能够被更准确地重构;与之相对,异常数无

法被准确重构.数据的异常分数通过重构数据与实际数据之

间的残差计算.目前基于深度学习的生成模型有生成式对抗

网络(GenerativeAdversarialNetwork,GAN)、变分自编码器

(VariationalAutoencoder,VAE)基于流的生成模型、扩散模

型(DiffusionModels)等.其中,扩散模型[１２Ｇ１３]通过逐步向输

入数据添加随机噪声直至数据接近随机噪声,再学习逆扩散

过程,从噪声中重现原始输入数据,被证明具有更强大的生成

性能和稳定性,受到了广泛关注.

不论是基于预测的异常检测方法,还是基于重构的异常

检测方法,其异常的判据通常是推断值与实际值之间的残差,

或者映射为异常分数.如果残差或分数大于某个阈值,则标

注此条数据为异常.因此,自动、动态地为异常检测模型选择

合理的阈值,是影响异常检测模型性能的关键因素之一.阈

值的选择可以通过最优化异常检测模型的性能指标(F１ 值、

Fβ 值等)的方式确定,但这种方法需要在验证集中设置系列

阈值进行测试,计算量大.一些通过对异常分数的统计分析

理论被应用于阈值选择问题中.极值定理(ExtremeValue

Theory,EVT)是一种不假设数据分布的统计理论,认为极值

通常位 于 概 率 分 布 的 尾 部.峰 值 过 阈 值 法 (PeaksＧoverＧ

threshold,POT)[１４]基于 EVT 理论,用广义帕累托分布拟合

数据分布,并识别适当的风险值以动态确定阈值,超过阈值的

样本数据为极端数据.

３．２．２　优化算法

随机梯度下降是机器学习中最常用的优化算法,在每次

迭代中,随机采样一个样本进行梯度计算.相比于经典梯度

算法中采用所有样本的梯度平均进行计算,随机梯度下降显

著降低了计算复杂度.此外,由于下降的方向不是全局的下

降方向,而是某一个样本的损是函数的下降方向,当某一个函

数达到了局部最优后,随着下一次迭代选取了新的目标函数,

迭代就可以继续进行.

随机梯度下降算法有较高的学习效率以及一定程度上避

免局部最优的能力,但也有着计算需求更高及鞍点的学习能

力不足等问题.一些研究对随机梯度下降算法做出了改进,

改进重点在于加速收敛过程,尽量避免局部最优,以及减小调

参的难度.带动量的随机梯度下降和 Nesterov动量的随机

梯度下降算法模仿了物体运动的惯性,通过积累之前梯度指

数级衰减的移动平均,并且继续沿该方向移动,加速了收敛过

程.在训练初期,下降方向与之前的方向一致,动量项能够加

速下降.在训练中后期,动量项能够增大下降的步伐,跳出局

部最小值.在训练的后期,梯度方向发生改变时,动量项将减

缓下降,抑制振荡过程.随机梯度下降方法在机器学习中有

着广泛的应用,但是在训练过程中选择一个合适的学习率是

一件比较困难的事情,往往需要进行大量的实验.而且,在训

练过程中,学习率的调整是预先设置好的,无法进行自动调

整.为了改进上述问题,一些学者提出了自适应优化器,包括

AdaGrad[１５],RMSProp和 Adam[１６]等.其中,Adam 优化器

因超参数具有很好的解释性且通常无需调整或仅需很少的微

调,以及在迭代过程中自动调整学习率等诸多优势被广泛

应用.

３．２．３　训练数据的预处理

训练数据的预处理一般包括数据清理、数据标准化等过

程.数据清理用于判断训练数据中的不规则或错误数据,例

如,时序数据的时间戳是否异常,是否有重复、遗漏的数据等.

运维数据往往具有不同的量纲和量纲单位,例如CPU或内存

的利用率取值范围在[０,１００],网络连接数则没有一个固定的

取值范围,这样的情况会影响到机器学习的效果.原始数据

经过数据标准化处理后,各指标处于同一数量级,适合进行综

合对比评价.在异常检测问题中,常见的一种数据标准化方

法是最大Ｇ最小归一化方法:

xi′＝ xi－min(x)
max(x)－min(x) (１)

３．３　基于深度学习的异常检测学习范式

３．３．１　主动学习

主动学习为减少标注成本提供了一个解决方案,通过选

择机器认为难以判断的少量样本进行人工标注,逐步提升模

型的效果.主动学习的核心是如何选择需要标注的样本集

合,也被称为查询策略.常见的查询策略包括不确定性采样

的查询(UncertaintySampling)、基于委员会的查询(QueryＧ

ByＧCommittee)、基于模型变化期望的查询(Expected Model

Change)等[１７].

３．３．２　迁移学习

迁移学习提供了云平台异常检测问题中缺少训练数据的

另一个解决方案.一般地,机器学习模型假设训练和测试数

据来自相同的特征空间中,具有相同的分布,若分布发生改

变,需要从头开始使用新收集的训练数据对模型进行训练.

迁移学习基于任务领域之间的知识迁移,适应训练数据和测

试数据来自不同的领域、任务和特征空间.因此,针对缺少数

据或数据标签的迁移学习模型可利用一个公开的、有标签的

数据集进行模型训练,再迁移到目标任务中.迁移学习的另
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一个应用场景是在一个新的系统上线初期的异常检测,尚未

积累足够的运行数据用于模型训练,利用迁移学习可以在小

训练样本上进行快速训练.

迁移学习可以与其他学习范式组合使用,以获得更好的

效果.Zhang等[９]提出了一种主动迁移异常检测方法用于云

系统的时序异常检测,结合了主动学习和迁移学习两种技术,

如图２所示.由现有已标注的数据集对异常检测模型进行训

练后,迁移学习将进行从源数据集到目标数据集的知识迁移.

由于云服务系统的复杂性,不同系统的时序数据的特征工程

也会有很大的差异,主动学习将挑选部分模型数据进行标注

以提高模型的性能.实验证明只需要标注１％~５％的数据

即对模型的性能有显著改善.

图２　基于迁移学习的异常检测流程[９]

Fig．２　Workflowofanomalydetectionbasedontransferlearning[９]

３．３．３　在线学习

在云系统的运行过程中,运行状态随着时间的推移发生

变化,时序数据潜在数据分布会随时间发生不可预测的变化,

使得原有的模型无法正确地判断数据是否正常,这种现象被

称作“概念漂移”.在线学习[１８]模型通过历史数据和当前时

刻的数据来预测系统当前的状态,并动态调整参数对模型进

行更新.

３．３．４　集成学习

由于异常检测问题往往采用无监督或者半监督模型,比

有监督学习模型的准确率低.为了改善这类模型的准确率和

稳定性,集成学习组合多个模型,不同的学习器之间相互纠正

错误,以达到比单一模型更好的性能.集成学习的难点在于

如何合并多个模型的结果,传统的集成学习往往采用平均法

或者加权平均法,但这意味着得到的结果也是中间的,而非最

优的.如图３所示,Zhao等[１９]构建了一个 LSCP框架,对多

个异常检测模型进行选择性合并,通过生成伪标签来评估不

同异常检测模型在每个测试点生成局部空间的表现,并选择

最优的几个模型进行合并,从而提高了异常检测模型的性能.

图３　基于集成学习的异常检测LSCP框架[１９]

Fig．３　LSCPframeofanomalydetectionbasedonensemble

learning[１９]

３．４　异常检测模型的性能评估

异常检测问题的任务是把数据分为正常或异常,在性能

评估中可以用分类问题的相关指标对结果进行评估.对于异

常检测的测试数据,记 P为正常数据的集合,N 为异常数据

的集合.对于异常检测的检测结果,记 TP为真正例的集合,

即被正确判定的正常数据;记 TN为真负例的集合,即被正确

判定的异常数据;记FP为假正例的集合,即被错误判定的正

常数据;记FN为假负例的集合,即被错误判定的异常数据.

常用的异常检测性能评价指标如表１所列.

表１　异常检测性能评价指标

Table１　Performancemeasurementindexofanomalydetection

指标名称 计算公式

准确率 TP＋TN
P＋N

错误率 FP＋FN
P＋N

召回率recall) TP
P

精度(precision) TN
N

F１ 值(召回率和精度的调和均值) ２×precision×recall
precision＋recall

Fβ 值(其中β为非负实数) (１＋β)２×precision×recall
β２×(precision＋recall)

４　面向节点异常检测的时序数据驱动算法

云系统运维异常不一定是某一时刻的数据异常,而是时

间维度上的异常,需要对监控数据进行分析判断.针对上述

问题,本章总结了时间依赖的运维数据下由时序数据驱动的

检测算法.

４．１　节点异常的发现模式

通常,带有时间戳的时序数据 X 可以表示为X＝[x１,

x２,x３,􀆺,xt],其中xi 表示时间戳i(i∈T,T＝{１,２,􀆺,t})

的数据.

为了学习到数据中的时间相关性,基于递归的神经网络

被学者提出,计算t时刻的结果yt 时同时考虑当前时刻的输

入xt 和上一时刻的结果yt,可表示为:

yt＝f(yt－１,xt) (２)

循环神经网络(RecurrentNeuralNetworks,RNN)利用

神经网络中隐藏层内的反馈回路,将前一时刻的输出作为后

续部分神经元的输入信号,从而使神经网络能够捕捉一定时

间内不同时刻数据的依赖特征.但应用于云系统的数据规模

过大,RNN的训练十分缓慢,且会出现梯度爆炸或消失的问

题.通过改进 RNN 的结构,长短期记忆网络(LongShortＧ
term Memory,LSTM)和门控循环单元网络(GatedRecurrent
Units,GRU)被相继提出.LSTM 通过设置输入门、输出门和

遗忘门来提高网络对长期数据的记忆能力,同时综合短期记

忆计算输出值,解决了 RNN训练过程中的梯度问题,对数据

在时间维度上的依赖关系有着更强的捕捉能力.GRU 是

LSTM 的简化版,用一个门来同时控制输入和输出,提高了训

练的速度,但同样有很好的训练效果.

Malhotra等[２０]将基于预测误差的 LSTM 神经网络应用

到了时序数据的异常检测中.相较于一般的异常检测模型,

LSTM 有着优秀的长期记忆能力,在训练和测试中不需要预

先指定时间窗口即可检测出数据的行为偏差.通过堆叠

LSTM 增加了网络的层数,模型能够学习到更高水平的时序

特征.在训练过程中,使用非异常的数据模型并将预测误差

建模为高斯分布,用于评估异常行为.Li等[２１]提出了基于重

构误差 的 多 变 量 时 间 序 列 异 常 检 测 模 型 MADＧGAN,将

LSTM 和 RNN嵌入 GAN中捕捉数据时间上的依赖关系,同
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时利用生成器的重建误差和判别器的判别误差检测异常数

据.Su等[２２]提出用于多变量时间序列异常检测的随机递归

神经网络 OmniAnomaly模型,并基于 VAE的重构误差判断

异常.
由于递归神经网络无法并行的问题,模型的计算速度无

法满足运维场景下的要求,Bai等[２３]提出了时域卷积网络

(TemporalConvolutionalNetwork,TCN),可表示为:

yt＝f(x０,x１,􀆺,xt) (３)
如图４所示,TCN利用卷积对时序数据提取序列数据的

时间特性,利用因果卷积对时序数据进行预测,利用扩张卷积

对时序数据进行间隔采样,以在同等深度的网络中获得更大

的感受野.随着时序数据窗口的增大,扩张卷积的层数增加,

TCN网络的深度不断加深,为了避免梯度消失的问题,TCN
构建了残差连接.卷积网络很好地改善了递归网络中无法并

行的问题,极大地提高了计算速度,且更容易捕捉到全局的

信息.

图４　扩张因果卷积结构[２３]

Fig．４　Structureofdilatedcausalconvolution[２３]

He等[２４]提出了一种基于预测误差的 TCN 神经网络用

于时序数据的异常检测,在训练过程中利用 TCN 对正常数

据进行特征提取,在预测模型中使用了多层特征提取合并的

结构以获得更好的预测效果.TCNＧAE[２５]构建了一个基于

自编码结构的时域卷积网络来识别具有周期性的复杂网络时

序异常,基于焦点得分的自我调节来实现鲁棒的多模态特征

提取和对抗训练,以获得稳定性.由于自编码器无法处理数

据的随机性,基于 VAE结构的 MSTＧVAE模型[２６]被提出,并
结合短尺度和长尺度的卷积核来提取时间序列的不同尺度的

时间信息以提升模型性能.
谷歌机器翻译团队提出的依靠注意力机制捕捉序列关联

的 Transformer模型[２７]将注意力机制引入时序数据.该模型

没有使用递归和卷积的结构,依靠编码器Ｇ解码器架构和注意

力机制处理序列数据,有着并行计算、计算复杂度更低、可解

释性更强等优势.在此基础上,Xu等[２８]将 Transformer模型

应用于异常检测领域,提出了 AnomalyTransformer模型.
该模型基于注意力机制学习时间序列中每一个点与整个序列

的关联表示,相比于正常点来说,异常点很难与序列的所有点

都构建很强的关联,且由于连续性,异常节点和其邻近区域往

往有很强的关联性.这种整个序列和邻近先验之间的关联差

异为时序异常检测提供了有力的判据.AnomalyTransformer
模型包含用于建模先验关联和时序关联的 AnomalyＧAttenＧ
tion,并基于重构误差和极小极大策略的关联差异来区分正

常点和异常点.TranAD[２９]是一个基于深度 Transformer网

络的模型,利用基于注意力的序列编码来在更广的时间窗口

做出快速的推理.本文中提到的部分时序数据驱动的异常检

测算法如表２所列.

表２　数据驱动的异常检测算法总结

Table２　SummaryofdataＧdrivenanomalydetectionalgorithms

基于预测误差 基于重构误差

递归网络 [２０] [２１Ｇ２２]
时域卷积网络 [２４] [２５Ｇ２６]

Transformer网络 [２９] [２８]

４．２　流数据场景下的在线检测

在云运维过程中,每一组云监控系统的数据按照时间顺

序依次到达,异常检测模块需要实时给出推断结果.在线异

常检测面临一些挑战:一是在云系统的运行过程中,软件的升

级、虚拟机的漂移等行为时常发生,改变了系统的运行状态,
称之为流数据的概念漂移;二是在线异常检测模型需要提前

预知到故障,而不仅是感知到已经发生的故障,因为故障的发

生往往意味着严重的后果.Ahmad等[３０]提出基于分层时间

记忆网络(HierarchicalTemporalMemeory,HTM),构建了一

个在线学习高效地处理流数据的异常检测方法,对数据的变

化进行持续的适应和调整,能够尽早推测异常的发生.

５　面向网络异常发现的图数据驱动算法

IaaS云平台是一个基于网络的资源池,云平台中的节点

都通过网络与其他节点存在联系,而非孤立存在.例如,部分

虚拟机共同部署在同一个宿主机上,部分设备通过负载均衡

共同承担某项任务,某个业务系统的数据库服务器和系统服

务器存在大量的互访关系等等.时序性能指标在节点层面描

述节点的运行状态,但无法体现节点与节点之间的关联性.
因此一些研究将云系统的拓扑信息引入到异常检测算法中,
系统的拓扑信息和时序性能指标共同构成了系统级别的

信息.

５．１　图数据结构

云系统的拓扑信息可以用图数据结构进行建模.图由两

个集合构成,一个是非空但有限的顶点的集合V,另一个是边

的集合E,每条边对应一对顶点(v,w),其中v,w∈V,一个图

数据被表示为G＝{V,E}.
为云系统监控的时空数据构建数学模型,主要的方法分

为两种:一是基于系统设备之间的关联性建立[３１],定义系统

中的每一个设备为一个节点,将互相通信的设备之间定义为

图的边;二是基于图结构的学习建立[３２],定义每个性能指标

为节点,通过计算指标间的相关性对图结构进行学习,定义相

关性较高的节点之间存在有向边,进而进行网络异常发现.

５．２　图神经网络

图数据是一种复杂的数据结构,对其进行处理也比较困

难.图神经网络(GraphNeuralNetworks,GNN)[３３]是处理图

数据问题在深度学习上的一个重要模型.GNN 模型中假定

每个节点由自身和所有邻居节点的特征信息共同定义,训练

过程对每个节点的自身和所有邻居节点进行加权求和,来更

新节点v的隐藏状态hv,随着 GNN层数的增加,hv 将不断包

含网络中更多节点的节点特征.为了提取到数据的更高级特

征,Kipf等[３４]基于卷积理论提出了图卷积神经网络(Graph
ConvolutionNetworks,GCN).与 GNN相比,GCN主要优化

了加权求和中的权重问题,通过卷积算子提取节点自身和所

有邻居节点的特征信息.但是,GCN无法为不同邻居节点的

特征赋予不同的权重,这限制了其提取空间信息的能力;且提

取邻近节点特征的方式取决于图的结构,局限了其在其他图
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上的泛化能力.为了弥补 GCN 在上述方面的局限性,VeliＧ
kovi[３５]将注意力机制引入了图神经网络,提出了图注意力网

络(GraphAttentionNetwork,GAT),通过注意力机制提取节

点自身和所有邻居节点的特征信息,权重的选取完全取决于

节点特征,与图结构无关.

５．３　网络异常模式的发现

为了同时学习数据的时间和空间特征,一种思路是将图

神经网络模块和时序数据处理模型结合.He等[３１]构建了

GraphLSTM 模块,将图神经网络和LSTM 连接,用图神经层

替换掉LSTM 中的全连接层,进而基于 VAE的重构误差构

建拓扑感知的多元时序数据异常检测模型,其结构如图５所

示.AddGraph模型[３６]定义每个时间戳下的图数据为一个快

照,利用基于注意力机制的 GRU 扩展了 GCN 模型,使得

GCN在处理图结构的同 时 考 虑 到 图 中 节 点 的 时 序 因 素.

STAＧGAN模型[３７]基于时序注意力机制和空间注意力机制

构建了时空注意力模块,分别学习数据的短期时序相关性和

动态空间依赖关系.

图５　GraphLSTM 结构[３１]

Fig．５　StructureofGraphLSTM[３１]

由于图数据的复杂性,其异常检测往往需要庞大的计算,
具有很大的挑战性.因此一些文章引入了图嵌入技术,将高

维图数据表示成向量,同时保留网络的拓扑结构和节点信息,

进而能够适用于更多的机器学习算法.NetWalk[３８]将图嵌入

技术引入了动态图结构中,通过学习网络结构信息以检测动

态图数据中的异常节点,通过自编码器学习节点的初始表示

并根据网络的发展添加或删除节点,基于聚类的方法动态、增
量地进行异常检测.由于图结构的复杂性,图数据的异常检

测问题依然存在挑战[３９]:不同时间戳间时间维度和空间维度

的信息提取问题;节点、边、子图和图变化趋势的发现问题等.

６　数据驱动下IaaS云运维数据异常检测中的新

问题与新挑战

　　随着数据驱动的异常检测模型的发展,异常检测模型的

性能也在不断提高,同时也带来了新的问题与挑战,包括数据

的标注以及模型的计算效率等方面.

６．１　如何减少数据标注成本

如前文所述,为训练数据进行标注是一项昂贵且耗时的

工作,数据标注的工作量是大规模数据集异常检测工作最主

要的难点.为了减轻添加数据标签的工作量,Zhao等[４０]设计

了一种基于异常相似搜索的半自动化标注工具,利用孤立森

林进行无监督的异常检测,筛选出候选异常,专家对某一异常

进行标注后,工具将自动匹配相似的异常,减少专家标注时

间.此外,迁移学习和主动学习技术的应用也降低了数据标

注的要求.Zhang等[４１]提出一种主动迁移异常检测模型实

现跨数据集的异常检测,只需标记１％~５％的目标集未标记

数据.

６．２　如何处理数据标签的污染

在解决现实问题中,训练数据集的数据标签可能与它们

真实的情况不相符,称之为数据标签的污染.由于数据的标

签是人工添加的,标签存在错误是有可能会发生的.而且,很
多情况下,对数据添加标签的任务是具有主观性的,位于边界

的数据点可能会被错误标记.数据标签的污染会削弱机器学

习模型的性能.很多学者针对这个问题展开了研究.VerＧ
leysen等[４２]总结了３类对抗数据标签污染的方法:１)一些模

型的结构有天然的鲁棒属性,对标签污染的敏感度低;２)在数

据清理阶段,对有标签进行过滤和处理,订正或是删除标签有

误的数据;３)一些算法在学习过程中对标签噪声进行建模,或
将已有的模型嵌入标签污染的模型,这类方法能将模型和标

签噪声模型分开,从而允许使用有关标签噪声性质的信息.

６．３　如何满足流数据场景下的计算效率要求

在流数据场景下,异常检测的计算效率是一个重要的因

素.如果不能及时地给出异常检测的结果,运维人员则无法

及时地处理故障.如何轻量化异常检测模型,快速判断系统

运行状态,是研究的方向之一.SCWarn模型[４３]是一种有着

轻量且高效网络结构的异常检测模型,训练时长只有几分钟,

检测时常小于１s,较其他模型有极大改善.
结束语　随着云计算规模和复杂性不断扩大,用户对系

统的要求不断提升,系统的运维工作问题面临越来越多的挑

战.基于深度学习等人工智能技术,自动从海量监测数据中

总结规律,并做出决策的智能化运维是未来的发展方向.本

文从面向IaaS云计算节点的异常检测和面向IaaS云计算平

台的系统级异常检测总结了近年来异常检测的新方法、新技

术,并分析了现阶段云运维出现的新问题和新挑战.随着人

工智能和深度学习相关技术的发展,云运维异常检测算法将

愈加完善,为IaaS云的智能运维提供坚实支撑.

参 考 文 献

[１] JIANGP．DevelopmentandApplicationofSmartOceanCloud

PlatformundertheInternetofThings[J]．JournalofMarineInＧ

formationTechnologyandApplication,２０２２,３:１０Ｇ１７．
[２] SUNC,WANGY,PANZ,etal．Designandimplementationof

islandinformation managementanddisplaysystem basedon

cloudstoragetechnology[J]．MarineScienceBulletin,２０１９,２:

２３３Ｇ２４０．
[３] QIU J,DU Q,QIAN C．KPIＧTSAD:A TimeＧSeries Anomaly

DetectorforKPIMonitoringinCloudApplications[J]．SymmeＧ

try,２０１９,１１:１３５０．
[４] GUERRONX,ABRAHOS,INSFRANE,etal．Ataxonomyof

qualitymetricsforcloudservices[J]．IEEE Access,２０２０,８:

１３１４６１Ｇ１３１４９８．
[５] MENG W,LIU Y,ZHU Y,etal．LogAnomaly:Unsupervised

DetectionofSequentialandQuantitativeAnomaliesinUnstrucＧ

turedLogs[C]∥TwentyＧEighthInternationalJointConference

２３０４０００１６Ｇ６

ComputerScience 计算机科学 Vol．５１,No．６A,June２０２４



onArtificialIntelligence(IJCAIＧ１９)．２０１９:４７３９Ｇ４７４５．
[６] XIU Z．RequestTracingand AnomaliesDetectingSystemin

Cloud[D]．Wuhan:HuazhongUniversityofScienceandTechＧ

nology,２０１４．
[７] LAVIN A,AHMADS．EvaluatingRealＧTimeAnomalyDetecＧ

tionAlgorithms－TheNumenta AnomalyBenchmark[C]∥

IEEE１４thInternationalConferenceon MachineLearningand

Applications(ICMLA)．２０１５:３８Ｇ４４．
[８] LIZY,ZHAO N W,ZHANGSL,etal．ConstructingLargeＧ

ScaleRealＧWorld Benchmark Datasetsfor AIOps [J/OL]．
(２０２２Ｇ０８Ｇ０８)[２０２３Ｇ０３Ｇ０８]．https://doi．org/１０．４８５５０/arXiv．

２２０８．０３９３８．
[９] ZHANG X,LIN Q,XU Y,etal．CrossＧdatasettimeseriesanoＧ

malydetectionforcloudsystems[C]∥USENIXAnnualTechniＧ

calConference．USENIXAssociation,２０１９:１０６３Ｇ１０７６．
[１０]LIU H,LUS,MUSUVATHIM,etal．WhatbugscauseproＧ

ductioncloudincidents?[C]∥ProceedingsoftheWorkshopon

HotTopicsinOperatingSystem．ACM,２０１９:１５５Ｇ１６２．
[１１]VISHWANATH K V,NAGAPPAN N．Characterizing Cloud

ComputingHardwareReliability[C]∥Proceedingsofthe１st

ACMSymposiumonCloudComputing．ACM,２０１０:１９３Ｇ２０４．
[１２]SOHLＧDICKSTEINJ,WEISSEA,MAHESWARANATHAN

N,etal．DeepUnsupervisedLearningThermodynamics[C]∥

Proceedingsofthe３２ndInternationalConferenceonInternaＧ

tionalConferenceonMachineLearning．ACM,２０１５:２２５６Ｇ２２６５．
[１３]HO J,JAIN A,ABBEEL P．Denoising Diffusion Probabilistic

Models[J/OL]．(２０２０Ｇ１２Ｇ１６)[２０２３Ｇ０３Ｇ０８]．https://arxiv．org/

abs/２００６．１１２３９．
[１４]SIFFERA,FOUQUEPA,TERMIERA,etal．AnomalyDetecＧ

tioninStreamswithExtremeValueTheory[C]∥Proceedings

ofthe２３rdACM SIGKDDInternationalConferenceonKnowＧ

ledgeDiscoveryandDataMining．ACM,２０１７:１０６７Ｇ１０７５．
[１５]WARD R A,WU X,BOTTOU L．AdaGrad stepsizes:sharp

convergenceovernonconvexlandscapes[C]∥Proceedingsofthe

３６thInternationalConferenceonMachineLearning．２０１９:６６７７Ｇ

６６８６．
[１６]KINGMAD,BAJ．Adam:A MethodforStochasticOptimizaＧ

tion[J/OL]．(２０１７Ｇ０１Ｇ３０)[２０２３Ｇ０３Ｇ０８]https://doi．org/１０．

４８５５０/arXiv．１４１２．６９８０．
[１７]SETTLESB．ActiveLearningLiteratureSurvey[J/OL]．(２０１２Ｇ

０３Ｇ１５)[２０２３Ｇ０４Ｇ０１]．http://digital．library．wisc．edu/１７９３/

６０６６０．
[１８]HANS,WU Q,ZHANG H,etal．LogＧbasedAnomalyDetecＧ

tionwithRobustFeatureExtractionandOnlineLearning[J]．

IEEE Transactions onInformation Forensicsand Security,

２０２１,１６:２３００Ｇ２３１１．
[１９]ZHAO Y,NASRULLAH Z,HRYNIEWICKI M K,et al．

LSCP:LocallySelectiveCombinationinParallelOutlierEnsemＧ

bles[C]∥Proceedingsofthe２０１９SIAMInternationalConfeＧ

renceonDataMining．２０１９:５８５Ｇ５９３．
[２０]MALHOTRAP,VIGL,SHROFFG,etal．LongShortTerm

MemoryNetworksforAnomalyDetectioninTimeSeries[C]∥

２３rdEuropeanSymposiumonArtificialNeuralNetworks,ComＧ

putationalIntelligenceandMachineLearning．２０１５．

[２１]LID,CHEND,SHIL,etal．MADＧGAN:MultivariateAnomaly

Detectionfor TimeSeries Data with Generative Adversarial

Networks[C]∥ArtificialNeuralNetworksand MachineLearＧ

ning(ICANN２０１９):TextandTimeSeries:２８thInternational

Conferenceon ArtificialNeuralNetworks．ACM,２０１９:７０３Ｇ

７１６．

[２２]SU Y,ZHAO Y,NIU C,etal．RobustAnomalyDetectionfor

MultivariateTimeSeriesthroughStochasticRecurrentNeural

Network[C]∥Proceedingsofthe２５thACMSIGKDDInternaＧ

tionalConferenceon Knowledge Discovery & Data Mining．

２０１９:２８２８Ｇ２８３７．
[２３]BAISJ,ZICOKJ,KOLTUNV,etal．AnEmpiricalEvaluation

ofGenericConvolutionalandRecurrentNetworksforSequence

Modeling[J/OL]．(２０１８Ｇ０４Ｇ１９)[２０２３Ｇ０４Ｇ０８]．https://doi．org/

１０．４８５５０/arXiv．１８０３．０１２７１．

[２４]HEY,ZHAOJ．TemporalConvolutionalNetworksforAnomaＧ

lyDetectioninTimeSeries[J]．JournalofPhysics:Conference

Series,２０１９,１２１３:０４２０５０．

[２５]THILL M,KONEN W,WANG H,etal．TemporalconvoluＧ

tionalautoencoderforunsupervisedanomalydetectionintime

series[J]．AppliedSoftComputing,２０２１,３:１０７７５１．

[２６]PHAM T,LEEJ,PARKC．MSTＧVAE:MultiＧScaleTemporal

VariationalAutoencoderforAnomalyDetectioninMultivariate

TimeSeries[J]．AppliedSciences,２０２２,１２(１９):１００７８．

[２７]VASWANIA,SHAZEER N,PARMAR N,etal．AttentionIs

AllYou Need[J/OL]．(２０１７Ｇ１２Ｇ０６)[２０２３Ｇ０３Ｇ０８]．https://

doi．org/１０．４８５５０/arXiv．１７０６．０３７６２．

[２８]XUJ,WU H,WANGJ,etal．AnomalyTransformer:TimeSeＧ

riesAnomalyDetectionwithAssociationDiscrepancy[J/OL]．

(２０２２Ｇ０６Ｇ２９)[２０２３Ｇ０３Ｇ０８]．https://doi．org/１０．４８５５０/arXiv．

２１１０．０２６４２．
[２９]TULIS,CASALE G,JENNINGS N R．TranAD:Deep TransＧ

formerNetworksforAnomalyDetectionin MultivariateTime

SeriesData[J]．Pro．VLDBEndow,２０２２,１５:１２０１Ｇ１２１４．
[３０]AHMADS,LAVINA,PURDYS,etal．UnsupervisedrealＧtime

anomalydetectionforstreaming data[J]．Neurocomputing,

２０１７,２６２:１３４Ｇ１４７．
[３１]HEZ,CHEN P,LIX,etal．A SpatiotemporalDeepLearning

ApproachforUnsupervisedAnomalyDetectioninCloudSysＧ

tems[J]．IEEETransactionsonNeuralNetworksandLearning

Systems,２０２３,３４(４):１７０５Ｇ１７１９．

[３２]DENGA,HOOIB．GraphNeuralNetworkＧBasedAnomalyDeＧ

tectionin MultivariateTimeSeries[C]∥Proceedingsofthe

AAAIConferenceonArtificialIntelligence,２０２１,３５(５):４０２７Ｇ

４０３５．
[３３]SCARSELLIF,GORIM,TSOIA C,etal．TheGraphNeural

NetworkModel[J]．IEEE TransactionsonNeuralNetworks,

２００９,２０(１):６１Ｇ８０．
[３４]KIPF T,WELLING M．SemiＧSupervised Classification with

GraphConvolutionalNetworks[J/OL]．(２０１７Ｇ０２Ｇ２２)[２０２３Ｇ０３Ｇ

０８]．https://doi．org/１０．４８５５０/arXiv．１６０９．０２９０７９０７K．
[３５]VELIKOVIP,CUCURULL G,CASANOVA A,etal．Graph

AttentionNetworks[J/OL]．(２０１８Ｇ０２Ｇ０４)[２０２３Ｇ０３Ｇ０８]．htＧ

２３０４０００１６Ｇ７

司　佳,等:深度学习驱动下IaaS云运维异常检测算法的研究进展



tps://doi．org/１０．４８５５０/arXiv．１７１０．１０９０３．
[３６]ZHENGL,LIZ,LIJ,etal．AddGraph:AnomalyDetectionin

DynamicGraph UsingAttentionＧbasedTemporalGCN[C]∥

TwentyＧEighthInternationalJointConferenceonArtificialInＧ

telligence(IJCAIＧ１９)．２０１９:４４１９Ｇ４４２５．
[３７]WANGS,LIW,HOUS,etal．STAＧGAN:ASpatioＧTemporal

AttentionGenerativeAdversarialNetworkfor Missing Value

ImputationinSatelliteData[J]．RemoteSensing,２０２２,１５:８８．
[３８]YU W,WEIC,AGGARWALCC,etal．NetWalk:A Flexible

DeepEmbeddingApproachforAnomalyDetectioninDynamic

Networks[C]∥The２４thACM SIGKDDInternationalConfeＧ

renceon Knowledge Discovery & Data Mining．２０１８:２６７２Ｇ

２６８１．
[３９]MAX,WUJ,XUES,etal．AComprehensiveSurveyonGraph

AnomalyDetectionwithDeepLearning[J]．IEEETransactions

onKnowledgeand Data Engineering,２０２３,３５(１２):１２０１２Ｇ

１２０３８．
[４０]ZHAON,ZHUJ,LIU R,etal．LabelＧLess:ASemiＧAutomatic

LabellingToolforKPIAnomalies[C]∥IEEE Conferenceon

ComputerCommunications(INFOCOM ２０１９)．IEEE,２０１９:

１８８２Ｇ１８９０．
[４１]ZHANG X,LIN Q,XU Y,etal．CrossＧdataset Time Series

AnomalyDetectionforCloudSystems[C]∥USENIX Annual

TechnicalConference．２０１９:１０６３Ｇ１０７６．
[４２]VERLEYSEN M,FRENA Y．ClassificationinthePresenceof

LabelNoise:ASurvey[J]．IEEETransactionsonNeuralNetＧ

worksandLearningSystems,２０１４,２５(５):８４５Ｇ８６９．
[４３]ZHAON,CHENJ,YUZ,etal．IdentifyingbadsoftwarechanＧ

gesviamultimodalanomalydetectionforonlineservicesystems
[C]∥Proceedingsofthe２９thACMJointMeetingonEuropean

SoftwareEngineeringConferenceandSymposiumontheFounＧ

dationsofSoftwareEngineering．２０２１:５２７Ｇ５３９．

SIJia,bornin１９９４,postgraduate,asＧ

sistantengineer．HermainresearchinＧ

terestsincludemarineinformationsysＧ

temandsoon．

DENGYingjun,bornin１９８６,Ph．D,lecＧ

turer．His mainresearchinterestsinＧ

cludepredictive maintenanceand maＧ

chinelearning．

２３０４０００１６Ｇ８

ComputerScience 计算机科学 Vol．５１,No．６A,June２０２４




