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Abstract. In 1885, Fedorov discovered that a convex domain can form
a lattice tiling of the Euclidean plane if and only if it is a parallelogram or a

centrally symmetric hexagon. It is known that there is no other convex domain
which can form a two, three or fourfold lattice tiling in the Euclidean plane,
but there are centrally symmetric convex octagons and decagons which can
form fivefold lattice tilings. This paper characterizes all the convex domains

which can form five or sixfold lattice tilings of the Euclidean plane. They are
parallelograms, centrally symmetric hexagons, three types of centrally sym-
metric octagons and three types of centrally symmetric decagons.

1. Introduction.

Planar tilings is an ancient subject in our civilization. It has been considered in

the arts by craftsmen since antiquity. Up to now, it is still an active research field in

mathematics and some basic problems remain unsolved. In 1885, Fedorov [6] discovered

that there are only two types of two-dimensional lattice tiles: parallelograms and centrally

symmetric hexagons. In 1917, for the purpose to verify the second part of Hilbert’s

18th problem in E2, Bieberbach suggested Reinhardt (see [23]) to determine all the two-

dimensional congruent tiles. However, to complete the list turns out to be challenging and

dramatic. Over the years, the list has been successively extended by Reinhardt, Kershner,

James, Rice, Stein, Mann, McLoud-Mann and Von Derau (see [19]), its completeness has

been mistakenly announced several times. In 2017, Rao [22] announced a completeness

proof based on computer checks. For an updated survey on this topic, we refer to Zong

[33].

The three-dimensional case was also studied in the ancient time. More than 2,300

years ago, Aristotle claimed that both identical regular tetrahedra and identical cubes

can fill the whole space without gap. The cube case is obvious. However, the tetrahedron

case is wrong and such a tiling is impossible (see [16]).

Let K be a convex body with (relative) interior int(K), (relative) boundary ∂(K)

and volume vol(K), and let X be a discrete set, both in En. We call K+X a translative

tiling of En and call K a translative tile if K +X = En and the translates int(K) + xi

are pairwise disjoint, where xi ∈ X. In other words, if K +X is both a packing and a

covering in En (see [7], [32]). In particular, we call K + Λ a lattice tiling of En and call
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K a lattice tile if Λ is an n-dimensional lattice. Apparently, a translative tile must be a

convex polytope. Usually, a lattice tile is called a parallelohedron.

In 1885, Fedorov [6] also characterized the three-dimensional lattice tiles: A three-

dimensional lattice tile must be a parallelotope, a hexagonal prism, a rhombic dodeca-

hedron, an elongated dodecahedron, or a truncated octahedron. The situations in higher

dimensions turn out to be very complicated. Through the works of Delone [3], Štogrin

[25] and Engel [5], we know that there are exactly 52 combinatorially different types of

parallelohedra in E4. A computer classification for the five-dimensional parallelohedra

was announced by Dutour Sikirić, Garber, Schürmann and Waldmann [4] only in 2015.

Let Λ be an n-dimensional lattice. The Dirichlet–Voronoi cell of Λ is defined by

C =
{
x : x ∈ En, |x,o| ≤ |x,Λ|

}
,

where |X,Y | denotes the Euclidean distance between X and Y . Clearly, C+Λ is a lattice

tiling and the Dirichlet–Voronoi cell C is a parallelohedron. In 1908, Voronoi [27] made

a conjecture that every parallelohedron is a linear transformation image of the Dirichlet–

Voronoi cell of a suitable lattice. In E2, E3 and E4, this conjecture was confirmed by

Delone [3] in 1929. In higher dimensions, it is still open.1

To characterize the translative tiles is another fascinating problem. At the first

glance, translative tilings should be more complicated than lattice tilings. However, the

dramatic story had a happy end. It was shown by Minkowski [21] in 1897 that every

translative tile must be centrally symmetric. In 1954, Venkov [26] proved that every

translative tile must be a lattice tile (parallelohedron) (see [1] for generalizations). Later,

a new proof for this beautiful result was independently discovered by McMullen [20].

Let X be a discrete multiset in En and let k be a positive integer. We call K +X

a k-fold translative tiling of En and call K a k-fold translative tile if every point x ∈ En

belongs to at least k translates of K in K + X and every point x ∈ En belongs to at

most k translates of int(K) in int(K) + X. In other words, K + X is both a k-fold

packing and a k-fold covering in En (see [7], [32]). In particular, we call K + Λ a

k-fold lattice tiling of En and call K a k-fold lattice tile if Λ is an n-dimensional lattice.

Apparently, a k-fold translative tile must be a convex polytope. In fact, similar to

Minkowski’s characterization, it was shown by Gravin, Robins and Shiryaev [9] that a

k-fold translative tile must be a centrally symmetric polytope with centrally symmetric

facets. Let det(Λ) denote the determinant of a lattice Λ. One can easily deduce that

vol(K) = k · det(Λ) if K + Λ is a k-fold lattice tiling of En.

Multiple tilings were first investigated by Furtwängler [8] in 1936 as a generalization

of Minkowski’s conjecture on cube tilings. Let C denote the n-dimensional unit cube.

Furtwängler made a conjecture that every k-fold lattice tiling C + Λ has twin cubes. In

other words, every multiple lattice tiling C + Λ has two cubes sharing a whole facet. In

the same paper, he proved the two- and three-dimensional cases. Unfortunately, when

n ≥ 4, this beautiful conjecture was disproved by Hajós [13] in 1941. In 1979, Robinson

[24] determined all the integer pairs (n, k) for which Furtwängler’s conjecture is false.

We refer to Zong [30], [31] for detailed accounts on this fascinating problem, and to

pages 82–84 of Gruber and Lekkerkerker [12] for some generalizations.

1In 2023, A. Garber announced a proof for the five-dimensional case at arXiv:1906.05193.
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Let P be an n-dimensional centrally symmetric convex polytope, let τ(P ) denote

the smallest integer k such that P is a k-fold translative tile, and let τ∗(P ) denote the

smallest integer k such that P is a k-fold lattice tile. For convenience, we define τ(P ) = ∞
if P cannot form translative tiling of any multiplicity. Clearly, for every convex polytope

we have

τ(P ) ≤ τ∗(P ).

It is a basic problem (see [28]) to determine if τ(P ) = τ∗(P ) holds for every polytope.

Up to now, this problem is open even in the plane.

If σ is a non-singular affine linear transformation from En to En, it can be easily

verified that P +X is a k-fold tiling of En if and only if σ(P ) + σ(X) is a k-fold tiling

of En. Thus, both τ(σ(P )) = τ(P ) and τ∗(σ(P )) = τ∗(P ) hold for all convex polytopes

P and all non-singular affine linear transformations σ.

In 1994, Bolle [2] proved that every centrally symmetric lattice polygon is a multiple

lattice tile, where a lattice polygon means a polygon with lattice point vertices. However,

little is known about the multiplicity. Let Λ denote the two-dimensional integer lattice

Z2, and let D8 denote the octagon with vertices (1, 0), (2, 0), (3, 1), (3, 2), (2, 3), (1, 3),

(0, 2) and (0, 1). As a particular example of Bolle’s theorem, it was discovered by Gravin,

Robins and Shiryaev [9] that D8 + Λ is a sevenfold lattice tiling of E2. Consequently,

we have

τ∗(D8) ≤ 7.

In 2000, Kolountzakis [14] proved that, if D is a two-dimensional convex domain

which is not a parallelogram and D + X is a multiple tiling in E2, then X must be a

finite union of translated two-dimensional lattices. In 2013, a similar result in E3 was

discovered by Gravin, Kolountzakis, Robins and Shiryaev [10]. Afterwards, Lev and Liu

[17], Liu [18] and Kolountzakis [15] made important progress on this topic.

Recently, Yang and Zong [28] proved the following results: Besides parallelograms

and centrally symmetric hexagons, there is no other convex domain which can form a

two, three or fourfold lattice tiling in the Euclidean plane. However, there are convex

octagons and decagons which can form fivefold lattice tilings. Consequently, whenever

n ≥ 3, there are non-parallelohedral polytopes which can form fivefold lattice tilings in

the n-dimensional Euclidean space.

This paper characterizes all the two-dimensional five and sixfold lattice tiles by

proving the following results.

Theorem 1. A convex domain can form a fivefold lattice tiling of the Euclidean

plane if and only if it is a parallelogram, a centrally symmetric hexagon, a centrally

symmetric octagon (under a suitable affine linear transformation) with vertices v1 =

(−α,−3
2 ), v2 = (1 − α,−3

2 ), v3 = (1 + α,− 1
2 ), v4 = (1 − α, 1

2 ), v5 = −v1, v6 = −v2,

v7 = −v3 and v8 = −v4, where 0 < α < 1
4 , or with vertices v1 = (β,−2), v2 =

(1 + β,−2), v3 = (1 − β, 0), v4 = (β, 1), v5 = −v1, v6 = −v2, v7 = −v3, v8 = −v4,

where 1
4 < β < 1

3 , or a centrally symmetric decagon (under a suitable affine linear

transformation) with u1 = (0, 1), u2 = (1, 1), u3 = ( 32 ,
1
2 ), u4 = ( 32 , 0), u5 = (1,−1

2 ),

u6 = −u1, u7 = −u2, u8 = −u3, u9 = −u4 and u10 = −u5 as the middle points of

its edges.
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Theorem 2. Let W denote the quadrilateral with vertices w1 = (− 1
2 , 1), w2 =

(− 1
2 ,

3
4 ), w3 = (− 2

3 ,
2
3 ) and w4 = (− 3

4 ,
3
4 ). A centrally symmetric convex decagon

can take u1 = (0, 1), u2 = (1, 1), u3 = ( 32 ,
1
2 ), u4 = ( 32 , 0), u5 = (1,−1

2 ), u6 = −u1,

u7 = −u2, u8 = −u3, u9 = −u4 and u10 = −u5 as the middle points of its edges if and

only if one of its vertices is an interior point of W .

Theorem 3. A convex domain can form a sixfold lattice tiling of the Euclidean

plane if and only if it is a parallelogram, a centrally symmetric hexagon, a centrally

symmetric octagon (under suitable affine linear transformations) with vertices v1 =

(−α,−2), v2 = (1 − α,−2), v3 = (1 + α,−1), v4 = (1 − α, 0), v5 = −v1, v6 = −v2,

v7 = −v3 and v8 = −v4, where 0 < α < 1
6 , a centrally symmetric decagon (under

suitable affine linear transformations) with u1 = (−1, 1
2 ), u2 = ( 12 , 1), u3 = ( 32 , 1),

u4 = (2, 1
2 ), u5 = (2, 0), u6 = −u1, u7 = −u2, u8 = −u3, u9 = −u4 and u10 = −u5 as

the middle points of its edges, or with u1 = (− 1
2 , 1), u2 = ( 12 , 1), u3 = ( 32 ,

1
2 ), u4 = (2, 0),

u5 = ( 32 ,−
1
2 ), u6 = −u1, u7 = −u2, u8 = −u3, u9 = −u4 and u10 = −u5 as the middle

points of its edges.

Theorem 4. Let Q denote the quadrilateral with vertices q1 = (0, 1), q2 = (0, 5
6 ),

q3 = (−1
4 ,

3
4 ) and q4 = (− 1

3 ,
5
6 ). A centrally symmetric convex decagon P10 can take

u1 = (−1, 1
2 ), u2 = ( 12 , 1), u3 = ( 32 , 1), u4 = (2, 1

2 ), u5 = (2, 0), u6 = −u1, u7 = −u2,

u8 = −u3, u9 = −u4 and u10 = −u5 as the middle points of its edges if and only if one

of its vertices is an interior point of Q.

Let Q∗ denote the quadrilateral with vertices q1 = (0, 5
4 ), q2 = (16 ,

7
6 ), q3 = (0, 1)

and q4 = (− 1
6 ,

7
6 ). A centrally symmetric convex decagon P ∗

10 can take u1 = ( 12 ,−1),

u2 = ( 32 ,−
1
2 ), u3 = (2, 0), u4 = ( 32 ,

1
2 ), u5 = ( 12 , 1), u6 = −u1, u7 = −u2, u8 = −u3,

u9 = −u4 and u10 = −u5 as the middle points of its edges if and only if one of its

vertices is an interior point of Q∗.

Remark 1. In principle, our method can characterize all k-fold lattice tiles for

any given k. Of course, the complexity increases along with the multiplicity k.

2. Basic results.

Let P2m denote a centrally symmetric convex 2m-gon centered at the origin, let

v1,v2, . . . ,v2m be the 2m vertices of P2m enumerated clock-wise, and let G1, G2, . . . , G2m

be the 2m edges of P2m, where Gi has two vertices vi and vi+1. For convenience, we

write V = {v1,v2, . . . ,v2m} and Γ = {G1, G2, . . . , G2m}.
Assume that P2m + X is a τ(P2m)-fold translative tiling of E2, where X =

{x1,x2,x3, . . .} is a discrete multiset with x1 = o. Now, let us observe the local structures

of P2m +X at the vertices v ∈ V +X.

Let Xv denote the subset of X consisting of all points xi such that

v ∈ ∂(P2m) + xi.

Since P2m + X is a multiple tiling, the set Xv can be divided into disjoint subsets

Xv
1 , X

v
2 , . . . , X

v
t such that the translates in P2m+Xv

j can be re-enumerated as P2m+xj
1,

P2m + xj
2, . . . , P2m + xj

sj satisfying the following conditions:
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1. v ∈ ∂(P2m) + xj
i holds for all i = 1, 2, . . . , sj .

2. Let ∠j
i denote the inner angle of P2m + xj

i at v with two half-line edges Lj
i,1 and

Lj
i,2, where Lj

i,1, x
j
i − v and Lj

i,2 are in clock-wise order. Then, the inner angles

join properly as

Lj
i,2 = Lj

i+1,1

holds for all i = 1, 2, . . . , sj, where Lj
sj+1,1 = Lj

1,1.

For convenience, we call such a sequence P2m + xj
1, P2m + xj

2, . . . , P2m + xj
sj an

adjacent wheel at v. It is easy to see that

sj∑
i=1

∠j
i = 2wj · π

hold for positive integers wj . Then we define

ϖ(v) =
t∑

j=1

wj =
1

2π

t∑
j=1

sj∑
i=1

∠j
i

and

φ(v) = ♯
{
xi : xi ∈ X, v ∈ int(P2m) + xi

}
.

Clearly, if P2m +X is a τ(P2m)-fold translative tiling of E2, then

τ(P2m) = φ(v) +ϖ(v) (1)

holds for all v ∈ V +X.

First, let us introduce some basic results which will be useful in this paper.

Lemma 1 (Bolle [2]). A convex polygon is a k-fold lattice tile for a lattice Λ and

some positive integer k if and only if the following conditions are satisfied :

1. It is centrally symmetric.

2. When it is centered at the origin, in the relative interior of each edge G there is a

point of 1
2Λ.

3. If the midpoint of an edge G is not in 1
2Λ then G is a lattice vector of Λ.

Lemma 2 (Yang and Zong [28]). If D is a two-dimensional convex domain which

is neither a parallelogram nor a centrally symmetric hexagon, then we have

τ∗(D) ≥ 5.

Lemma 3. If m is even and P2m + Λ is a multiple lattice tiling, then P2m has an

edge G which is a lattice vector of Λ.
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Proof. We assume that Λ = Z2. Let v1,v2, . . . ,v2m be the 2m vertices of P2m

arranged in clock-wise. Let Gi denote the edge of P2m with vertices vi and vi+1, where

v2m+1 = v1.

If the midpoint of one of the 2m edges, say G1, is not in 1
2Λ, then it follows from

Lemma 1 that G1 is a lattice vector of Λ.

Let ui denote the midpoint of Gi. If ui ∈ 1
2Λ hold for all i = 1, 2, . . . , 2m, then we

have 
v2 − u1 = u1 − v1,

v3 − u2 = u2 − v2,

. . .

vm+1 − um = um − vm,

which implies that

vm+1 = (−1)mv1 + 2

m∑
i=1

(−1)m−iui. (2)

Since m is even and vm+1 = −v1, it can be deduced by (2) that

v1 =
m∑
i=1

(−1)i+1ui ∈
1

2
Λ.

If fact, in this case all the vertices belong to 1
2Λ. Then, we get

v2 − v1 = 2(u1 − v1) ∈ Λ.

The lemma is proved. □

Lemma 4. Let ui be the middle point of Gi. If m is an odd positive integer, P2m+Λ

is a k-fold lattice tiling of E2, and all ui belong to 1
2Λ, then we have

m∑
i=1

(−1)iui = o,

where o = (0, 0) is the origin of E2.

Proof. Since ui is the middle point of Gi, we have
v2 = 2u1 − v1,

v3 = 2u2 − v2,

. . .

vm+1 = 2um − vm,

which implies
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−v1 = vm+1 = −v1 − 2
m∑
i=1

(−1)iui

and finally

m∑
i=1

(−1)iui = o.

The lemma is proved. □

Lemma 5 (Yang and Zong [29]). Assume that P2m is a centrally symmetric convex

2m-gon centered at the origin and P2m+X is a τ(P2m)-fold translative tiling of the plane,

where m ≥ 4. If v ∈ V +X is a vertex and G ∈ Γ +X is an edge with v as one of its

two vertices, then there are at least ⌈(m− 3)/2⌉ different translates P2m + xi satisfying

both

v ∈ ∂(P2m) + xi

and

G \ {v} ⊂ int(P2m) + xi.

Lemma 6 (Yang and Zong [29]). Let P2m be a centrally symmetric convex 2m-gon,

then

τ∗(P2m) ≥ τ(P2m) ≥
{
m− 1, if m is even,

m− 2, if m is odd.

Lemma 7 (Yang and Zong [29]). Assume that P2m is a centrally symmetric convex

2m-gon centered at the origin, P2m +X is a translative multiple tiling of the plane, and

v ∈ V +X. Then we have

ϖ(v) = κ · m− 1

2
+ ℓ · 1

2
,

where κ is a positive integer and ℓ is the number of the edges in Γ +X which take v as

an interior point.

3. Technical lemmas.

Lemma 8. Let P14 be a centrally symmetric convex tetradecagon, then

τ∗(P14) ≥ τ(P14) ≥ 7.

Proof. We take v ∈ V +X and assume that P14 + x1, P14 + x2, . . . , P14 + xs is

an adjacent wheel at v. First, it follows from Lemma 5 and Lemma 7 that

φ(v) ≥ 2 (3)

and
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ϖ(v) ≥ 3.

Now, we consider three cases.

Case 1. ϖ(v) ≥ 5 holds for a vertex v ∈ V +X. Then, by (1) and (3) we get

τ(P14) = φ(v) +ϖ(v) ≥ 7.

Case 2. ϖ(v) = 4 holds for a vertex v ∈ V +X. Then, by Lemma 7 we get ℓ ̸= 0.

If v ∈ int(G) holds for a suitable edge G, applying Lemma 5 to G and its two vertices

we get

φ(v) ≥ 4.

Then it follows by (1) that

τ(P14) = φ(v) +ϖ(v) ≥ 8.

Case 3. ϖ(v) = 3 holds for every vertex v ∈ V + X. Then, the adjacent wheels

at all v ∈ V are essentially unique, as shown by Figure 1. Let v1,v2, . . . ,v14 be the

fourteen vertices of P14. It follows that there are five point yi ∈ X such that P14 + x1,

P14+x7, P14+y1, . . . , P14+y5 is the adjacent wheel at v∗
1. Then we have v10+y2 = v∗

1,

v8 + y4 = v∗
1 and

v ∈ int(P14) + yi, i = 2, 4.

By convexity, it can be easily deduced that

v∗
4 ∈ int(P14) + yi, i = 2, 4.

Figure 1.

On the other hand, the adjacent wheel at v∗
4 has two different translates taking v

as an interior point as well. Thus, we have
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φ(v) ≥ 4

and

τ(P14) = φ(v) +ϖ(v) ≥ 7. (4)

The lemma is proved. □

Lemma 9. Let P12 be a centrally symmetric convex dodecagon, then

τ∗(P12) ≥ 7.

Proof. Since τ∗(P2m) is invariant under linear transformations on P2m, we

assume that Λ = Z2 and P12 + Λ is a τ∗(P12)-fold lattice tiling. Let ui denote the

middle point of Gi and write vi = (xi, yi) and ui = (x′
i, y

′
i). By Lemma 3 and a uni-

modular transformation, we may assume that v2 − v1 = (k, 0) and y′1 > 0, where k is

a positive integer. By reduction (as shown by Figure 8), we may assume further that

v2 − v1 = (1, 0). For convenience, let P denote the parallelogram with vertices v1, v2,

v7 = −v1 and v8 = −v2.

By Lemma 1 it follows that all y2 − y3, y3 − y4, y4 − y5, y5 − y6 and y6 − y7 are

positive integers. Thus, we have

y1 = y′1 = y2 ≥ 5

2
.

If y1 = y′1 = y2 ≥ 3, then we have

τ∗(P12) = vol(P12) > vol(P ) ≥ 6.

If y1 = y′1 = y2 = 5
2 , then all ui belong to 1

2Λ. Let Ti denote the triangle with vertices

ui, ui+1 and u6, where i = 2, 3 and 4. Clearly, all y′i − y′6 are positive integers. Thus, we

have

vol(Ti) =
1

2

∣∣∣∣∣ x′
i − x′

6 y′i − y′6

x′
i+1 − x′

6 y′i+1 − y′6

∣∣∣∣∣ ≥ 1

4

and

τ∗(P12) = vol(P12) > vol(P ) + 2
(
vol(T2) + vol(T3) + vol(T4)

)
≥ 5 + 6 · 1

4
> 6.

The lemma is proved. □

Let P be a lattice polygon with vertices in Z2. Let α(P ) denote the area of P , let

ℓ(P ) denote the number of the points in P ∩Z2, and let ℓ∗(P ) denote the number of the

points in ∂(P ) ∩ Z2. Then we have the following result (see page 316 of [11]):

Pick’s Theorem.

α(P ) = ℓ(P )− 1

2
ℓ∗(P )− 1.
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Lemma 10. For every centrally symmetric convex decagon P10 we have

τ∗(P10) ≥ 5,

where the equality holds if and only if, under a suitable affine linear transformation, it

takes u1 = (0, 1), u2 = (1, 1), u3 = ( 32 ,
1
2 ), u4 = ( 32 , 0), u5 = (1,−1

2 ), u6 = −u1,

u7 = −u2, u8 = −u3, u9 = −u4 and u10 = −u5 as the middle points of its edges.

Furthermore

τ∗(P10) = 6

holds if and only if, under a suitable affine linear transformation, it takes u1 = (−1, 1
2 ),

u2 = ( 12 , 1), u3 = ( 32 , 1), u4 = (2, 1
2 ), u5 = (2, 0), u6 = −u1, u7 = −u2, u8 = −u3,

u9 = −u4 and u10 = −u5 as the middle points of its edges, or takes u1 = (−1
2 , 1),

u2 = ( 12 , 1), u3 = ( 32 ,
1
2 ), u4 = (2, 0), u5 = ( 32 ,−

1
2 ), u6 = −u1, u7 = −u2, u8 = −u3,

u9 = −u4 and u10 = −u5 as the middle points of its edges.

Proof. Let v1,v2, . . . ,v10 be the ten vertices of P10 enumerated clock-wise, let

Gi denote the edge of P10 with vertices vi and vi+1, where v11 = v1, and let ui denote

the middle point of Gi. For convenience, we write vi = (xi, yi) and ui = (x′
i, y

′
i).

It is known that σ(D) + σ(Λ) is a k-fold lattice tiling of E2 whenever D+Λ is such

a tiling and σ is a non-singular linear transformation from E2 to E2. Therefore, without

loss of generality, by Lemma 2 we may assume that Λ = Z2 and P10 + Λ is a five or

sixfold lattice tiling of E2.

By Lemma 1 we know that

int(Gi) ∩
1

2
Λ ̸= ∅

holds for all the ten edges Gi and, if ui ̸∈ 1
2Λ, then Gi is a lattice vector of Λ. Now, we

consider two cases.

Case 1. G1 is a lattice vector of Λ. Without loss of generality, by a uni-modular

linear transformation, we assume that v2 − v1 = (k, 0) and y′1 > 0, where k is a positive

integer. In fact, by reduction (as shown by Figure 8), one may assume thatG1 is primitive

as a lattice vector and therefore k = 1. Then, it can be deduced that

y1 = y′1 = y2 ∈ 1

2
Z

and all yi − yi+1 are integers. In particular, when i = 2, 3, 4 and 5, they are positive

integers. Thus, one can deduce that

y′1 = 2 or
5

2
.

Case 1.1. y′1 = 2. Then we must have

y2 − y3 = y3 − y4 = y4 − y5 = y5 − y6 = 1.
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By the second term of Lemma 1, one can deduce that

ui ∈
1

2
Λ, i = 2, 3, 4, 5.

Since v2 = (1, 0) + v1 and

vi+1 = 2ui − vi, i = 2, 3, 4, 5,

it can be deduced that

−v1 = v6 = 2(u5 − u4 + u3 − u2) + (1, 0) + v1

and therefore

vi ∈
1

2
Λ, i = 1, 2, . . . , 10.

Then all Gi are lattice vectors.

Figure 2.

Let P denote the parallelogram with vertices v1, v2, v6 and v7, and let Q denote

the pentagon with vertices v2, v3, v4, v5 and v6, as shown by Figure 2. Applying Pick’s

theorem to Q, we get

vol(Q) ≥
(
5

2
− 1

)
and therefore

τ∗(P10) = vol(P10) = vol(P ) + 2 · vol(Q) ≥ 4 + 2 ·
(
5

2
− 1

)
= 7.

Case 1.2. y′1 = 5
2 . Then all yi − yi+1 are positive integers for 2 ≤ i ≤ 5. If

ui ∈
1

2
Λ
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hold for all i = 2, 3, 4 and 5, similar to the previous case one can deduce

τ∗(P10) = vol(P10) ≥ 7.

If ui ̸∈ 1
2Λ holds for one of these indices, then we have yi − yi+1 = 2. By a uni-

modular transformation, we may assume that −7
4 ≤ x1 < 3

4 . Then we have v2 − v6 =

(x, 5), where −5
2 ≤ x < 5

2 . If vi − vi+1 = (k, 2) with |k| ≥ 2, let Q denote the pentagon

with vertices v2, v3, v4, v5 and v6, then we have

vol(Q) >
1

2

∣∣∣∣ x 5

k 2

∣∣∣∣ = 1

2
|2x− 5k| ≥ 5

2

and thus

τ∗(P10) = vol(P ) + 2 · vol(Q) ≥ 10.

If vi − vi+1 = (k, 2) with k = ±1, then we have x1 ∈ 1
4Z and therefore x ∈ 1

2Z and

−5
2 ≤ x ≤ 2. By considering two subcases with respect to x1 = − 7

4 and x1 ̸= −7
4 , we

can get

vol(Q) >
1

2

and

τ∗(P10) = vol(P ) + 2 · vol(Q) > 6.

Case 2. All the middle points ui belong to 1
2Λ. Since P10 + Λ is a five or sixfold

lattice tiling of E2, one can deduce that

vol(2P10) ≤ 24

and all u′
i = 2ui belong to Λ. For convenience, we define Q10 to be the centrally

symmetric lattice decagon with vertices u′
1,u

′
2, . . . ,u

′
10 and write u′

i = (x′
i, y

′
i). Since

Q10 is a centrally symmetric lattice polygon, its area must be a positive integer. Thus,

we have

vol(Q10) ≤ 23. (5)

Now, we explore Q10 in detail by considering the following subcases.

Case 2.1. u′
1 is primitive in Λ. Without loss of generality, guaranteed by uni-

modular linear transformations, we take u′
1 = (0, 1). Then, Lemma 4 implies{

x′
4 − x′

5 = x′
3 − x′

2,

y′4 − y′5 = y′3 − y′2 + 1.
(6)

If x′
2 ≥ x′

3 or x′
3 = x′

4, one can easily deduce contradiction with convexity from (6).

For example, if x′
3 = x′

4 > x′
2, then it can be deduced by (6) that
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u′
2 − u′

5 = u′
10 − u′

7 = ku′
1

with k ≥ 2, which contradicts the assumption that Q10 is a centrally symmetric convex

decagon. Therefore, we may assume that

x′
3 > x′

i

for all i ̸= 3.

Let T ′ denote the lattice triangle with vertices u′
1, u

′
2 and u′

3, let Q denote the lattice

quadrilateral with vertices u′
3, u

′
4, u

′
5 and u′

6, and let T denote the lattice triangle with

vertices u′
1, u

′
3 and u′

6 (as shown by Figure 3). It follows from (5) and Pick’s theorem

that

vol(T ) ≤ 1

2

(
23− 2

(
vol(T ′) + vol(Q)

))
≤ 10

and therefore

x′
3 ≤ 10. (7)

Figure 3.

Let α denote the slope of G1, that is

α =
y2 − y1
x2 − x1

.

By a uni-modular linear transformation such as{
x′ = x,

y′ = y + kx,

where k is a suitable integer, we may assume that

0 ≤ α < 1. (8)

Let Li denote the straight line containing Gi, it is obvious that P10 is in the strip bounded

by L1 and L6. Furthermore, we define five slopes

βi =
y′i+1 − y′i
x′
i+1 − x′

i

, i = 1, 2, . . . , 5.



01-9041 2024.10.04 (17:50)

1010(14)

1010 C. Zong

By convexity it can be shown that there is no sixfold lattice decagon tile with α = 0

in our setting. When α > 0, by (6) and convexity it follows that y′4−y′5 ≥ 1 and therefore

y′3 − y′2 ≥ 0.

Figure 4.

As shown by Figure 4, we assume that

u′
3 − u′

4 = (p1, q1)

and

u′
5 − u′

6 = (p2, q2),

where all pi and qi are positive integers. Then, by (7) we have

x′
3 − x′

2 = x′
3 − (x′

2 − x′
1) = x′

3 − (p1 + p2) ≤ 8.

Now, we consider in subcases with respect to the different orientations of u′
3 − u′

2.

Case 2.1.1. y′3−y′2 = 0 and x′
3−x′

2 = 1. By (6) and convexity we have x′
4−x′

5 = 1,

y′4 − y′5 = 1, β4 = 1,

β3 =
q1
p1

> 1

and

β5 =
q2
p2

< 1.

Then, one can deduce that

β1 =
q1 + q2 − 1

p1 + p2
>

q2
p2

= β5,

which contradicts the convexity of Q10.
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Case 2.1.2. y′3−y′2 = 0 and x′
3−x′

2 = 2. By (6) and convexity we have x′
4−x′

5 = 2,

y′4 − y′5 = 1, β4 = 1
2 ,

β3 =
q1
p1

>
1

2
, (9)

β5 =
q2
p2

<
1

2
(10)

and

β1 =
q1 + q2 − 1

p1 + p2
<

q2
p2

. (11)

By (7) and (10) one can deduce that

3 ≤ p2 ≤ 7,

1 ≤ p1 ≤ 5 (12)

and

1 ≤ q2 ≤ 3.

On the other hand, by (11), (10) and (12) we get

q1 < p1 ·
q2
p2

+ 1 <
1

2
· p1 + 1

and therefore

1 ≤ q1 ≤ 3.

Then, it can be verified that the only integer groups (p1, q1, p2, q2) satisfying (7),

(9), (10) and (11) are (1, 1, 3, 1), (1, 1, 4, 1), (1, 1, 5, 1), (1, 1, 6, 1), (1, 1, 7, 1), (1, 1, 5, 2),

(1, 1, 6, 2), (1, 1, 7, 2) and (1, 1, 7, 3). By checking the areas of their corresponding

decagons, keeping the subcase conditions in mind, there are only two Q10 satisfying

(5). Namely, the one with vertices u′
1 = (0, 1), u′

2 = (4, 2), u′
3 = (6, 2), u′

4 = (5, 1),

u′
5 = (3, 0), u′

6 = −u′
1, u′

7 = −u′
2, u′

8 = −u′
3, u′

9 = −u′
4 and u′

10 = −u′
5, which

indeed produces fivefold lattice tiles, and the one with vertices u′
1 = (0, 1), u′

2 = (5, 2),

u′
3 = (7, 2), u′

4 = (6, 1), u′
5 = (4, 0), u′

6 = −u′
1, u

′
7 = −u′

2, u
′
8 = −u′

3, u
′
9 = −u′

4 and

u′
10 = −u′

5, which indeed produces sixfold lattice tiles. Clearly, by the linear transfor-

mation 
x′ =

1

2
(x− 2y),

y′ =
1

2
y,

the first decagon is equivalent to the fivefold one stated in the lemma and the second one

is equivalent to the first type of the sixfold ones (as shown by Figure 5 and Figure 6).
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Figure 5. Figure 6.

Case 2.1.3. y′3−y′2 = 0 and x′
3−x′

2 = 3. By (6) and convexity we have x′
4−x′

5 = 3,

y′4 − y′5 = 1, β4 = 1
3 ,

β3 =
q1
p1

>
1

3
, (13)

β5 =
q2
p2

<
1

3
(14)

and

β1 =
q1 + q2 − 1

p1 + p2
<

q2
p2

. (15)

Restricted by (7), similar to the previous case, it can be deduced that the only

integer solutions (p1, q1, p2, q2) for (13), (14) and (15) are (1, 1, 4, 1), (1, 1, 5, 1), (1, 1, 6, 1),

(2, 1, 4, 1), (2, 1, 5, 1) and (2, 1, 6, 1). Then one can deduce

vol(Q10) ≥ 25

for all these cases, which contradicts (5).

Case 2.1.4. y′3 − y′2 = 0 and x′
3 − x′

2 = 4. Then, one can easily deduce that β4 = 1
4 ,

β3 =
q1
p1

>
1

4
,

β5 =
q2
p2

<
1

4

and

β1 =
q1 + q2 − 1

p1 + p2
<

q2
p2

.

Restricted by (7), similar to Case 2.1.3 one can deduce that the only integer solutions

(p1, q1, p2, q2) for these inequalities are (1, 1, 5, 1), (2, 1, 5, 1), and (3, 1, 5, 1). Then we

have

vol(Q10) ≥ 25

for all these cases, which contradicts (5).
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Case 2.1.5. y′3 − y′2 = 0 and x′
3 − x′

2 ≥ 5. Then, one can easily deduce that β4 ≤ 1
5 ,

p2 ≥ 6 and

x′
3 ≥ 5 + 6 > 10,

which contradicts the restriction of (7).

Case 2.1.6. y′3 − y′2 = 1 and x′
3 − x′

2 = 1. Then, by convexity we get

α > β1 > β2 = 1,

which contradicts the assumption of (8).

Case 2.1.7. y′3 − y′2 = 1 and x′
3 − x′

2 = 2. By (4) and convexity we get x′
4 − x′

5 = 2,

y′4 − y′5 = 2, β4 = 1,

β3 =
q1
p1

> 1

and

β5 =
q2
p2

< 1.

Then, it can be deduced that

β1 =
q1 + q2 − 1

p1 + p2
>

q2
p2

= β5,

which contradicts the convexity assumption of Q10.

Case 2.1.8. y′3 − y′2 = 1 and x′
3 − x′

2 = 3. Then we have x′
4 − x′

5 = 3, y′4 − y′5 = 2,

β2 = 1
3 and β4 = 2

3 .

On one hand, by (7) it follows that p2 ≤ 6. On the other hand, by β2 < β1 < β5 < β4

it follows that

1

3
<

q2
p2

<
2

3
.

Thus, the integer pair (p2, q2) has only five choices (2, 1), (4, 2), (5, 2), (5, 3) and (6, 3).

Then, by checking

q1
p1

>
2

3
,

1

3
<

q1 + q2 − 1

p1 + p2
<

q2
p2

and

p1 + p2 ≤ 7,

it can be deduced that the only candidates for (p1, q1, p2, q2) are (1, 1, 4, 2), (1, 1, 5, 3),

(2, 2, 5, 3) and (1, 1, 6, 3). In fact, the only candidate satisfying (5) is the one with vertices
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u′
1 = (0, 1), u′

2 = (5, 3), u′
3 = (8, 4), u′

4 = (7, 3), u′
5 = (4, 1), u′

6 = −u′
1, u

′
7 = −u′

2,

u′
8 = −u′

3, u
′
9 = −u′

4 and u′
10 = −u′

5, satisfying

vol(Q10) = 22.

This decagon indeed produces sixfold lattice tiles. Clearly, it is equivalent to the second

type of the sixfold ones (as shown in Figure 7) stated in the lemma under the linear

transformation 
x′ =

1

2
y,

y′ =
1

2
(x− 2y).

Figure 7.

Case 2.1.9. y′3 − y′2 = 1 and x′
3 − x′

2 = 4. By (6), (7) and convexity it can be

deduced that p2 ≤ 5, β4 = 1
2 and β5 < β4. Consequently, we have β5 = 1

3 ,
1
4 ,

1
5 or 2

5 .

Thus, by β2 = 1
4 and β2 < β1 < β5 we get

1

4
<

q1 + q2 − 1

p1 + p2
<

2

5
. (16)

By (7) we have p1 + p2 ≤ 6 and therefore (16) has only one solution (p1, q1, p2, q2) =

(1, 1, 5, 2). However, for such decagon we have

vol(Q10) = 29,

which contradicts (5).

Case 2.1.10. y′3 − y′2 = 1 and x′
3 − x′

2 = 5. Then by (7) and convexity we have

p1 + p2 ≤ 5

and

1

5
<

q1 + q2 − 1

p1 + p2
<

2

5
.

In fact, these inequalities have no positive integer solution.
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Case 2.1.11. y′3 − y′2 = 1 and x′
3 − x′

2 ≥ 6. It follows by (7) that p2 ≤ 3. Then we

get both β4 ≤ 1
3 and β5 ≥ 1

3 , which contradicts the convexity of Q10.

Case 2.1.12. y′3−y′2 = 2 and x′
3−x′

2 = 3. Then by (6) and convexity we get β4 = 1

and β1 < β5. However, the two inequalities

q1
p1

> β4 = 1

and

q1 + q2 − 1

p1 + p2
<

q2
p2

have no integer solution.

Case 2.1.13. y′3−y′2 = 2 and x′
3−x′

2 = 4. Then by (6) and convexity we get β2 = 1
2 ,

β4 = 3
4 , β2 < β5 < β4 and therefore

1

2
<

q2
p2

<
3

4
. (17)

Clearly, by (7) we have p2 ≤ 5 and therefore (17) has two groups of integer solutions

(p2, q2) = (3, 2) or (5, 3). Then, the two inequalities p1 + p2 ≤ 6 and

1

2
<

q1 + q2 − 1

p1 + p2
<

q2
p2

have one group of integer solution (p1, q1, p2, q2) = (2, 2, 3, 2). Unfortunately, then we

have

vol(Q10) = 25,

which contradicts (5).

Case 2.1.14. y′3 − y′2 = 2 and x′
3 − x′

2 = 5. Then by (6) and convexity we get

β2 = 2
5 , β4 = 3

5 , β2 < β5 < β4 and therefore

2

5
<

q2
p2

<
3

5
. (18)

Clearly, by (7) we have p2 ≤ 4 and therefore (18) has two groups of integer solutions

(p2, q2) = (2, 1) or (4, 2). Then, one can deduce that p1 + p2 ≤ 5 and

2

5
<

q1 + q2 − 1

p1 + p2
<

q2
p2

have no integer solution.

Case 2.1.15. y′3 − y′2 = 2 and x′
3 − x′

2 = 6. Then by (6) and convexity we get

β5 < β4 = 1
2 and therefore β5 = 1

3 , which contradicts the fact

β5 > β1 > β2 =
1

3
.



01-9041 2024.10.04 (17:50)

1016(20)

1016 C. Zong

Case 2.1.16. y′3−y′2 = 2 and x′
3−x′

2 ≥ 7. Then by (6) and convexity we get β4 ≤ 3
7

and β5 ≥ 1
2 , which contradicts the convexity of Q10.

Case 2.1.17. y′3 − y′2 = 3 and x′
3 − x′

2 = 4. Then by (6) and convexity we have

p2 ≤ 5, β2 = 3
4 and β4 = 1. Then we have

β3 =
q1
p1

> 1

and therefore

β1 =
q1 + q2 − 1

p1 + p2
>

q2
p2

= β5,

which contradicts the convexity of Q10.

Case 2.1.18. y′3 − y′2 = 3 and x′
3 − x′

2 = 5. Then by (6) and convexity we have

p2 ≤ 4, β2 = 3
5 , β4 = 4

5 and β2 < β5 < β4. The inequalities p2 ≤ 4 and

3

5
<

q2
p2

<
4

5

have two solutions (p2, q2) = (3, 2) or (4, 3). Then

3

5
<

q1 + q2 − 1

p1 + p2
<

q2
p2

has no solution satisfying p1 + p2 ≤ 5.

Case 2.1.19. y′3−y′2 = 3 and x′
3−x′

2 = 6. Then by (6) and convexity we get p2 ≤ 3,

β2 = 1
2 , β4 = 2

3 and β2 < β5 < β4. Then the inequalities p2 ≤ 3 and

1

2
<

q2
p2

<
2

3

have no solution.

Case 2.1.20. y′3−y′2 = 3 and x′
3−x′

2 = 7. Then by (6) and convexity we get p2 ≤ 2,

β2 = 3
7 , β4 = 4

7 and β2 < β5 < β4. Then the inequalities p2 ≤ 2 and

3

7
<

q2
p2

<
4

7

have one solution (p2, q2) = (2, 1). However, then

3

7
<

q1
p1 + 2

<
1

2

has no solution.

Case 2.1.21. y′3−y′2 = 3 and x′
3−x′

2 ≥ 8. Then by (6) and convexity we get p2 = 1,

β5 ≥ 1 and β4 ≤ 1
2 , which contradicts the convexity of Q10.
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Case 2.1.22. y′3 − y′2 = 4 and x′
3 − x′

2 = 5. Then by (6) and convexity we have

p2 ≤ 4, β2 = 4
5 , β4 = 1 and β2 < β5 < β4. The inequalities p2 ≤ 4 and

4

5
<

q2
p2

< 1

have no common integer solution.

Case 2.1.23. y′3−y′2 = 4 and x′
3−x′

2 = 6. Then by (6) and convexity we get p2 ≤ 3,

β2 = 2
3 , β4 = 5

6 and β2 < β5 < β4. The inequalities p2 ≤ 3 and

2

3
<

q2
p2

<
5

6

have no common integer solution.

Case 2.1.24. y′3−y′2 = 4 and x′
3−x′

2 = 7. Then by (6) and convexity we get p2 ≤ 2,

β2 = 4
7 , β4 = 5

7 and β2 < β5 < β4. The inequalities p2 ≤ 2 and

4

7
<

q2
p2

<
5

7

have no common integer solution.

Case 2.1.25. y′3−y′2 = 4 and x′
3−x′

2 ≥ 8. Then by (6) and convexity we get p2 = 1,

β5 ≥ 1 and β4 ≤ 5
8 , which contradicts the convexity of Q10.

Case 2.1.26. y′3−y′2 = 5 and x′
3−x′

2 = 6. Then by (6) and convexity we get p2 ≤ 3,

β2 = 5
6 , β4 = 1 and β2 < β5 < β4. The inequalities p2 ≤ 3 and

5

6
<

q2
p2

< 1

have no common integer solution.

Case 2.1.27. y′3−y′2 = 5 and x′
3−x′

2 = 7. Then by (6) and convexity we get p2 ≤ 2,

β2 = 5
7 , β4 = 6

7 and β2 < β5 < β4. The inequalities p2 ≤ 2 and

5

7
<

q2
p2

<
6

7

have no common integer solution.

Case 2.1.28. y′3−y′2 = 5 and x′
3−x′

2 ≥ 8. Then by (6) and convexity we get p2 = 1,

β5 ≥ 1 and β4 ≤ 6
8 , which contradicts the convexity of Q10.

Case 2.1.29. y′3−y′2 = 6 and x′
3−x′

2 = 7. Then by (6) and convexity we get p2 ≤ 2,

β2 = 6
7 , β4 = 1 and β2 < β5 < β4. The inequalities p2 ≤ 2 and

6

7
<

q2
p2

< 1

have no common integer solution.
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Case 2.1.30. y′3−y′2 = 6 and x′
3−x′

2 ≥ 8. Then by (6) and convexity we get p2 = 1,

β5 ≥ 1 and β4 ≤ 7
8 , which contradicts the convexity of Q10.

Case 2.1.31. y′3−y′2 = 7 and x′
3−x′

2 ≥ 8. Then by (6) and convexity we get p2 = 1,

β5 ≥ 1 and β4 ≤ 1, which contradicts the convexity of Q10.

Case 2.2. All u′
i are even multiplicative. Then all ui belong to Λ. It follows by

Lemma 1 that 1
2P10 + Λ is a k-fold lattice tiling with

k = vol

(
1

2
P10

)
≤ 6

4
=

3

2
,

which contradicts Lemma 2.

Case 2.3. All u′
i are multiplicative, u′

1 is odd multiplicative. Without loss of

generality, guaranteed by uni-modular linear transformations, we take u′
1 = (0, 2q + 1),

where q is a positive integer.

By Lemma 4 it follows that

x′
4 − x′

5 = x′
3 − x′

2.

Therefore, by convexity and reflection we may assume that

x′
3 ≥ x′

i, i = 1, 2, . . . , 10.

Let T ′ denote the lattice triangle with vertices u′
1, u′

2 and u′
3, let Q denote the

lattice quadrilateral with vertices u′
3, u

′
4, u

′
5 and u′

6, and let T denote the lattice triangle

with vertices u′
1, u

′
3 and u′

6, as shown in Figure 3. It follows from (5) and Pick’s theorem

that

vol(T ) ≤ 1

2

(
23− 2

(
vol(T ′) + vol(Q)

))
≤ 10

and therefore

x′
3 =

2 · vol(T )
2(2q + 1)

≤
⌊
10

3

⌋
= 3.

It is assumed that all u′
i are multiplicative. Therefore by convexity we have

x′
2 = x′

5 = 2

and

x′
3 = x′

4 = 3.

Then, we have

vol(Q10) ≥ 3 · (2(2q + 1) + 3) ≥ 27,

which contradicts (5).

As a conclusion of all these cases, Lemma 10 is proved. □



01-9041 2024.10.04 (17:50)

1019(23)

Characterization of the two-dimensional fivefold and sixfold lattice tiles 1019

Lemma 11. For every centrally symmetric convex octagon P8 we have

τ∗(P8) ≥ 5,

where the equality holds if and only if, under a suitable affine linear transformation, P8

has its vertices at v1 = (−α,−3
2 ), v2 = (1− α,− 3

2 ), v3 = (1 + α,−1
2 ), v4 = (1− α, 1

2 ),

v5 = −v1, v6 = −v2, v7 = −v3 and v8 = −v4, where 0 < α < 1
4 , or with vertices

v1 = (β,−2), v2 = (1 + β,−2), v3 = (1 − β, 0), v4 = (β, 1), v5 = −v1, v6 = −v2,

v7 = −v3, v8 = −v4, where
1
4 < β < 1

3 . Furthermore

τ∗(P8) = 6

if and only if (under a suitable affine linear transformation) P8 has its vertices at

v1 = (−α,−2), v2 = (1−α,−2), v3 = (1+α,−1), v4 = (1−α, 0), v5 = −v1, v6 = −v2,

v7 = −v3 and v8 = −v4, where 0 < α < 1
6 .

Proof. Let P8 be a centrally symmetric convex octagon centered at the origin, let

v1,v2, . . . ,v8 be the eight vertices of P8 enumerated in an anti-clock order, let Gi denote

the edge with vertices vi and vi+1, where v9 = v1, and let ui denote the midpoint of

Gi. For convenience, we write vi = (xi, yi) and ui = (x′
i, y

′
i). Without loss of generality,

by Lemma 2 we may assume that Λ = Z2 and P8 + Λ is a five or sixfold lattice tiling.

Then, we have

τ∗(P8) = vol(P8) = 5 or 6. (19)

Based on Lemma 3, by a uni-modular transformation, we may assume that

G1 ∩ 1
2Λ ̸= ∅ and v2 −v1 = (k, 0), where k is a positive integer. If k > 1, we define P ′

8 to

be the octagon with vertices v′
1 = v1 + (k−1

2 , 0), v′
2 = v2 + ( 1−k

2 , 0), v′
3 = v3 + ( 1−k

2 , 0),

v′
4 = v4 + ( 1−k

2 , 0), v′
5 = v5 + ( 1−k

2 , 0), v′
6 = v6 + (k−1

2 , 0), v′
7 = v7 + (k−1

2 , 0) and

v′
8 = v8 + (k−1

2 , 0), as shown by Figure 8. By Lemma 1 it can be shown that P ′
8 + Λ is

a multiple lattice tiling of E2 and therefore

τ∗(P ′
8) ≤ vol(P ′

8) ≤ vol(P8)− 3 = 3,

which contradicts Lemma 2. Thus, we have v2 − v1 = (1, 0).

Figure 8.
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Apply Lemma 1 successively to G1, G2, G3 and G4, one can deduce that all 2y2,

y3 − y2, y4 − y3 and y5 − y4 are positive integers. Therefore, we have

y2 = y1 ≤ −3

2
.

On the other hand, if y2 = y1 ≤ −3 and let P denote the parallelogram with vertices v1,

v2, v5 and v6, it can be deduced by convexity that

vol(P8) > vol(P ) ≥ 6,

which contradicts the assumption of (19). Thus, to prove the theorem it is sufficient to

deal with the three cases

y2 = y1 = −3

2
, −2, −5

2
.

Case 1. y2 = y1 = −3
2 . In this case,

yi+1 − yi = 1

must hold for all i = 2, 3 and 4. Then, it follows by Lemma 1 that all the midpoints of

G2, G3 and G4 belong to 1
2Λ. Furthermore, by a uni-modular transformation{

x′ = x− ky,

y′ = y,

with a suitable integer k, we may assume that −5
4 ≤ x1 < 1

4 .

If G2 is vertical, then x2 is an integer or an half integer. Consequently, we have

x1 ∈ 1
2Z. Therefore x1 only can be −1, − 1

2 or 0. By considering three subcases with

respect to x1 = −1, − 1
2 or 0, it can be deduced that there is no octagon of this type

satisfying Lemma 1. For example, when x1 = − 1
2 , by Lemma 1 and convexity we have

v1 = (− 1
2 ,−

3
2 ), v2 = ( 12 ,−

3
2 ), v3 = ( 12 ,−

1
2 ), v4 = ( 12 ,

1
2 ), v5 = −v1, v6 = −v2,

v7 = −v3 and v8 = −v4. Then, P8 is no longer an octagon but a parallelogram.

Figure 9.
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If G3 is vertical, then x1 must be an integer or an half integer as well. Therefore, it

only can be −1, −1
2 or 0. By considering three subcases with respect to x1 = −1, −1

2 or

0, it can be deduced that

vol(P8) ≥ 7,

which contradicts the assumption of (19). For example, when x1 = − 1
2 , by Lemma 1

and convexity we have v1 = (−1
2 ,−

3
2 ), v2 = ( 12 ,−

3
2 ), v3 = ( 12 + k,− 1

2 ), v4 = ( 12 + k, 1
2 ),

v5 = −v1, v6 = −v2, v7 = −v3 and v8 = −v4, where k is a positive integer. Then, as

shown by Figure 9, it can be deduced that

vol(P8) = 3 + 4k ≥ 7.

If none of the three edges G2, G3 and G4 is vertical, by convexity it is sufficient to

deal with the following three subcases.

Subcase 1.1. x′
3 > max{x′

2, x
′
4}. Then we replace the eight vertices v3, v4, v5, v6,

v7, v8, v1 and v2 by v′
3 = (x′

3,− 1
2 ), v

′
4 = (x′

3,
1
2 ), v

′
5 = (2x′

4−x′
3,

3
2 ), v

′
6 = (2x′

4−x′
3−1, 3

2 ),

v′
7 = −v′

3, v
′
8 = −v′

4, v
′
1 = −v′

5 and v′
2 = −v′

6, respectively (as shown by Figure 10).

In practice, one first makes G3 vertical and then changes the other vertices successively.

Clearly, this process does not change the area of the polygon. Then one can deduce that

x′
3 ≥ 3

2 and therefore

vol(P8) = 3 · 2x′
3 − (2x′

3 − 1) = 4x′
3 + 1 ≥ 7,

which contradicts the assumption of (19).

Figure 10.

Subcase 1.2. x′
2 > max{x′

3, x
′
4}. If x3 > x2, one can repeat the above process. At

the end we get x′
2 ≥ 2 and

vol(P8) > 3 · 2x′
2 − 2(2x′

2 − 1) = 2x′
2 + 2 ≥ 6,

which contradicts the assumption of (19). If x2 > x3, since −5
4 ≤ x1 < 1

4 , u2 only can

be (1,−1), ( 12 ,−1), (0,−1) or (−1
2 ,−1). Then it can be easily checked that there is no

convex octagon of this type satisfying Lemma 1.
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Subcase 1.3. x′
2 = x′

3 > x′
4. Then, we replace the eight vertices v2, v3, v4, v5, v6,

v7, v8 and v1 by v′
2 = (x′

2,− 3
2 ), v

′
3 = (x′

2,− 1
2 ), v

′
4 = (x′

2,
1
2 ), v

′
5 = 2u4 − v′

4, v
′
6 = −v′

2,

v′
7 = −v′

3, v
′
8 = −v′

4 and v′
1 = −v′

5, respectively (as shown by Figure 11). In practice,

one first makes G2 and G3 vertical and then changes the other vertices successively,

keeping the rules of Lemma 1. Clearly, this process does not change the area of the

polygon, x′
2 ≥ 1 and therefore

vol(P8) = 3 · 2x′
2 − (2x′

2 − 1) = 4x′
2 + 1 ≥ 5,

where the equality holds if and only if P8 with vertices v1 = (−α,−3
2 ), v2 = (1−α,− 3

2 ),

v3 = (1 + α,−1
2 ), v4 = (1 − α, 1

2 ), v5 = −v1, v6 = −v2, v7 = −v3 and v8 = −v4,

where 0 < α < 1
4 . They are the first octagon type of the fivefold lattice tiles listed in the

lemma.

Figure 11.

Case 2. y2 = y1 = −2. Then, it can be deduced that one of y3 − y2, y4 − y3 and

y5− y4 is two and the others are ones, and the midpoint ui must belong to 1
2Λ whenever

yi+1 − yi = 1. Furthermore, we may assume that −3
2 ≤ x1 < 1

2 by a uni-modular

transformation and assume that Gi is primitive if it is a lattice vector by reduction.

If one of G2, G3 and G4 is vertical, it can be easily deduced that

vol(P8) ≥ 7.

For instance, when G3 is vertical, we have x3 − x2 ≥ 1, x4 − x5 ≥ 1 and thus x3 = x′
3 =

x4 ≥ 3
2 . Then, it can be deduced that

vol(P8) ≥ 4 · 2x3 − 2(2x3 − 1) = 4x3 + 2 ≥ 8,

which contradicts the assumption of (19).

Now, we assume that all G2, G3 and G4 are not vertical.

Subcase 2.1. y3 − y2 = 2 and u2 ̸∈ 1
2Λ. Then v3 − v2 = (k, 2) is a lattice vector,

where k is a positive integer (when k is negative, one can easily deduce that P8 cannot

be a convex octagon). On the other hand, it follows by the assumption −3
2 ≤ x1 < 1

2

that
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v5 − v2 = (x, 4),

where −2 < x ≤ 2. Let P denote the parallelogram with vertices v1, v2, v5 and v6, and

let T denote the triangle with vertices v2, v3 and v5, as shown by Figure 12.

Figure 12.

If k ≥ 2, one can deduce

vol(T ) =
1

2

∣∣∣∣ k 2

x 4

∣∣∣∣ = 2k − x ≥ 2

and therefore

vol(P8) > vol(P ) + 2 · vol(T ) ≥ 8,

which contradicts the assumption of (19).

If k = x3 − x2 = 1, G2 ∩ 1
2Λ ̸= ∅ and u2 ̸∈ 1

2Λ, one can deduce that x2 ∈ 1
4Z and

therefore x1 ∈ 1
4Z. In fact, by checking all the eight cases x1 = − 3

2 , −
5
4 , −1, − 3

4 , −
1
2 ,

−1
4 , 0 or 1

4 , it can be shown that there is no such octagon satisfying the conditions of

Lemma 1. For example, when x1 = 1
4 , by convexity (as shown by Figure 13) the only

candidate for u3 is u′
3 = (2, 1

2 ) and the only candidates for u4 are u′
4 = ( 12 ,

3
2 ) and

u∗
4 = (1, 3

2 ). However, no octagon P8 satisfying Lemma 1 can be constructed from these

candidate midpoints.

Subcase 2.2. y4 − y3 = 2 and u3 ̸∈ 1
2Λ. Then v4 − v3 = (k, 2) is a lattice vector,

where k is a positive integer (if it is negative, then make a reflection with respect to the

x-axis). On the other hand, it follows by the assumption −3
2 ≤ x1 < 1

2 that

v5 − v2 = (x, 4),

where −2 < x ≤ 2. Let P denote the parallelogram with vertices v1, v2, v5 and v6,

and let T denote the triangle with vertices v2, v
′
3 = v2 + (v4 − v3) and v5, as shown by

Figure 14.
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Figure 13.

Figure 14.

If k ≥ 2, one can deduce

vol(T ) =
1

2

∣∣∣∣ k 2

x 4

∣∣∣∣ = 2k − x ≥ 2

and therefore

vol(P8) > vol(P ) + 2 · vol(T ) ≥ 8,

which contradicts the assumption of (19).

If k = x4 − x3 = 1, G3 ∩ 1
2Λ ̸= ∅ and u3 ̸∈ 1

2Λ, one can deduce that x3 ∈ 1
4Z and

therefore x1 ∈ 1
4Z. By checking all the eight cases x1 = −3

2 , −
5
4 , −1, −3

4 , −
1
2 , −

1
4 , 0

or 1
4 , it can be deduced that

vol(P8) ≥ 7.

For example, when x1 = −3
2 , we define v′

3 = ( 32 ,−1), v′
4 = ( 52 , 1), v′

7 = (− 3
2 , 1),

v′
8 = (− 5

2 ,−1), and define P ′
8 to be the octagon with vertices v1, v2, v

′
3, v

′
4, v5, v6, v

′
7

and v′
8, as shown by Figure 15. By shifting G3 and G7, one can deduce P ′

8 ⊆ P8 and

therefore

vol(P8) ≥ vol(P ′
8) = 13.
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Figure 15.

Subcase 2.3. None of the three edges G2, G3 and G4 is vertical and all u2, u3 and

u4 belong to 1
2Λ. Then, it is sufficient to consider the following three situations.

Subcase 2.3.1. x′
3 > max{x′

2, x
′
4}. Similar to Subcase 1.1, we get x′

3 ≥ 3
2 and

therefore

vol(P8) ≥ 4 · 2x′
3 − 2(2x′

3 − 1) = 4x′
3 + 2 ≥ 8,

which contradicts the assumption of (19).

Subcase 2.3.2. x′
2 > max{x′

3, x
′
4}. If x3 > x2, just like Subcase 1.2, one can get

x′
2 ≥ 3

2 and

vol(P8) > 4 · 2x′
2 − 3(2x′

2 − 1) ≥ 6,

which contradicts the assumption of (19).

If x2 > x3 and y3 − y2 = 1, since − 3
2 ≤ x1 < 1

2 , u2 only can be (1,− 3
2 ), (

1
2 ,−

3
2 ),

(0,− 3
2 ) or (−

1
2 ,−

3
2 ). Then it can be routinely checked that there is no convex octagon

of this type satisfying Lemma 1.

Figure 16.

If x2 > x3 and y3 − y2 = 2, since −3
2 ≤ x1 < 1

2 , u2 only can be (1,−1), ( 12 ,−1),

(0,−1) or (−1
2 ,−1). By checking these four cases, it can be shown that there is only
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one class of such convex octagons satisfying Lemma 1. Namely, the ones satisfying

u2 = (1,−1), u3 = ( 12 ,
1
2 ) and u4 = (0, 3

2 ), as shown in Figure 16. In other words, they

are the octagons with vertices v1 = (β,−2), v2 = (1+β,−2), v3 = (1−β, 0), v4 = (β, 1),

v5 = −v1, v6 = −v2, v7 = −v3, v8 = −v4, where
1
4 < β < 1

3 . Then, one can deduce

that

vol(P8) = 5,

which is the second type of octagons of the fivefold lattice tiles listed in the lemma.

Subcase 2.3.3. x′
2 = x′

3 > x′
4. Similar to Subcase 1.3, one can deduce x′

2 ≥ 1 and

therefore

vol(P8) ≥ 4 · 2x′
3 − 2(2x′

3 − 1) = 4x′
3 + 2 ≥ 6,

where the equalities hold if and only if P8 with vertices v1 = (−α,−2), v2 = (1−α,−2),

v3 = (1 + α,−1), v4 = (1− α, 0), v5 = −v1, v6 = −v2, v7 = −v3 and v8 = −v4, where

0 < α < 1
6 (as shown in Figure 17). This is the octagon type of the sixfold lattice tiles

listed in the lemma.

Figure 17.

Case 3. y′1 = − 5
2 . Then all yi+1 − yi are positive integers for 2 ≤ i ≤ 4 and their

sum is five. By a uni-modular transformation, we may assume that −7
4 ≤ x1 < 3

4 . Then

we have v5 − v2 = (x, 5), where −5
2 < x ≤ 5

2 . Now we consider two subcases.

Subcase 3.1. ui ̸∈ 1
2Λ holds for one of the indices i ∈ {2, 3, 4}. Then we have

yi+1 − yi = 2 or 3.

Subcase 3.1.1. vi+1 − vi = (k, 2) and |k| ≥ 2. Let Q denote the quadrilateral with

vertices v2, v3, v4 and v5, then we have

vol(Q) >
1

2

∣∣∣∣ x 5

k 2

∣∣∣∣ = 1

2
|2x− 5k| ≥ 5

2

and thus

τ∗(P8) = vol(P ) + 2 · vol(Q) ≥ 10.
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Subcase 3.1.2. vi+1 − vi = (1, 2). Then we have x1 ∈ 1
4Z and therefore x ∈ 1

2Z
and −2 ≤ x ≤ 5

2 . If x1 = −7
4 , then we have v5 − v2 = ( 52 , 5). Applying Pick’s theorem

to Q and 1
2Λ, we get

vol(Q) >
1

4

(
8

2
− 1

)
=

3

4

and thus

τ∗(P8) = vol(P ) + 2 · vol(Q) > 6.

If x1 ̸= −7
4 , then we have x ∈ 1

2Z, −2 ≤ x ≤ 2,

vol(Q) >
1

2

∣∣∣∣ x 5

1 2

∣∣∣∣ = 1

2
|2x− 5| ≥ 1

2

and thus

τ∗(P8) = vol(P ) + 2 · vol(Q) > 6.

Subcase 3.1.3. vi+1 − vi = (k, 3) and |k| ≥ 2. Let Q denote the quadrilateral with

vertices v2, v3, v4 and v5, then we have

vol(Q) >
1

2

∣∣∣∣ x 5

k 3

∣∣∣∣ = 1

2
|3x− 5k| ≥ 5

4

and thus

τ∗(P8) = vol(P ) + 2 · vol(Q) ≥ 7.

Subcase 3.1.4. vi+1 − vi = (1, 3). Then we have x1 ∈ 1
6Z and therefore x ∈ 1

3Z
and − 7

3 ≤ x ≤ 7
3 . If x1 = − 4

3 , then we have v5 − v2 = ( 53 , 5). Applying Pick’s theorem

to Q and 1
2Λ, we get

vol(Q) >
1

4

(
7

2
− 1

)
=

5

8

and thus

τ∗(P8) = vol(P ) + 2 · vol(Q) > 6.

If x1 ̸= −4
3 , then we have x ∈ 1

3Z, x ̸= 5
3 ,

vol(Q) >
1

2

∣∣∣∣ x 5

1 3

∣∣∣∣ = 1

2
|3x− 5| ≥ 1

2

and thus

τ∗(P8) = vol(P ) + 2 · vol(Q) > 6.
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Subcase 3.2. ui ∈ 1
2Λ holds for all i ∈ {2, 3, 4}. Then, it is sufficient to consider

the following three situations.

Subcase 3.2.1. x′
3 > max{x′

2, x
′
4}. Similar to Subcase 1.1, we get x′

3 ≥ 3
2 and

therefore

vol(P8) ≥ 5 · 2x′
3 − 3(2x′

3 − 1) = 4x′
3 + 3 ≥ 9.

Subcase 3.2.2. x′
2 > max{x′

3, x
′
4}. If x3 > x2, just like Subcase 1.2, one can get

x′
2 ≥ 3

2 and

vol(P8) > 5 · 2x′
2 − 4(2x′

2 − 1) ≥ 7.

When x2 > x3, we consider the following four situations:

Subcase 3.2.2.1. y3 − y2 = 1, y4 − y3 = 1 and y5 − y4 = 3. Then, recalling the

assumption that −7
4 ≤ x1 < 3

4 , the only possible candidates for u2 are (1,−2) and

( 32 ,−2), and the only possible candidates for u3 are ( 12 ,−1) and (1,−1). Then there is

no u4 which can satisfy the condition Lemma 1.

Subcase 3.2.2.2. y3 − y2 = 1, y4 − y3 = 3 and y5 − y4 = 1. Then, recalling the

assumption that −7
4 ≤ x1 < 3

4 , the only possible candidates for u2 are (1,−2) and

( 32 ,−2), and the only possible candidates for u3 are ( 12 , 0) and (1, 0). Then one can

deduce that the possible octagons have to take u2 = ( 32 ,−2), u3 = (1, 0) and u4 = (0, 2).

Unfortunately, for such octagons we have

vol(P8) = 9.

Subcase 3.2.2.3. y3 − y2 = 1, y4 − y3 = 2 and y5 − y4 = 2. Then, the only possible

candidates for u2 are (1,−2) and ( 32 ,−2), and the only possible candidates for u3 are

( 12 ,−
1
2 ) and (1,−1

2 ). Then one can deduce that the possible octagons have to take

u2 = ( 32 ,−2), u3 = (1,−1
2 ) and u4 = (0, 3

2 ). Unfortunately, for such octagons we have

vol(P8) = 7.

Subcase 3.2.2.4. y3 − y2 = 2, y4 − y3 = 1 and y5 − y4 = 2. Then, the only

possible candidates for u2 are (1,− 3
2 ) and ( 32 ,−

3
2 ), and the only possible candidates for

u3 are ( 12 , 0) and (1, 0). Then one can deduce that the possible octagons have to take

u2 = ( 32 ,−
3
2 ), u3 = (1, 0) and u4 = (0, 3

2 ). Unfortunately, for such octagons we have

vol(P8) = 8.

Subcase 3.2.3. x′
2 = x′

3 > x′
4. Similar to Subcase 2.3.3, one can deduce x′

2 ≥ 1 and

therefore

vol(P8) ≥ 5 · 2x′
2 − 3(2x′

2 − 1) = 4x′
2 + 3 ≥ 7.

As a conclusion of all these cases, Lemma 11 is proved. □
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4. Proofs of the theorems.

Proof of Theorem 1. Assume that P2m is a centrally symmetric 2m-gon

satisfying τ∗(P2m) = 5. First, by Fedorov’s theorem and Lemma 6 we have 4 ≤ m ≤ 7.

Second, by Lemma 9 and Lemma 8 we get m ̸= 6 and 7, respectively. When m = 5, the

theorem follows by the first part of Lemma 10. Finally, when m = 4, the theorem follows

from the first part of Lemma 11. □

Proof of Theorem 2. Let Q10 denote the convex decagon with vertices u1 =

(0, 1), u2 = (1, 1), u3 = ( 32 ,
1
2 ), u4 = ( 32 , 0), u5 = (1,− 1

2 ), u6 = −u1, u7 = −u2,

u8 = −u3, u9 = −u4 and u10 = −u5, let Li denote the straight line containing ui and

ui+1, where u10+i = ui and L10+i = Li, let v
′
i denote the common point of Li−2 and Li,

and let Ti denote the triangle with vertices v′
i, ui and ui−1, as shown by Figure 18.

Figure 18.

Assume that P10 is a fivefold lattice tile with vertices v1,v2, . . . ,v10 satisfying

vi+1 − ui = ui − vi

and therefore

vi+1 = 2ui − vi, (20)

where v10+i = vi. Apparently, it follows by convexity that

vi ∈ int(Ti), i = 1, 2, . . . , 10.

In addition, by (20) we have
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v5 ∈ int(T5),

v4 ∈
(
2u4 − int(T5)

)
∩ int(T4),

v3 ∈
(
2u3 −

(
2u4 − int(T5)

)
∩ int(T4)

)
∩ int(T3)

=
(
2(u3 − u4) + int(T5)

)
∩
(
2u3 − int(T4)

)
∩ int(T3),

v2 ∈
(
2u2 −

(
2u3 −

(
2u4 − int(T5)

)
∩ int(T4)

)
∩ int(T3)

)
∩ int(T2)

=
(
2(u2 − u3 + u4)− int(T5)

)
∩
(
2(u2 − u3) + int(T4)

)
∩
(
2u2 − int(T3)

)
∩ int(T2),

v1 ∈
(
2u1 −

(
2u2 −

(
2u3 −

(
2u4 − int(T5)

)
∩ int(T4)

)
∩ int(T3)

)
∩ int(T2)

)
∩ int(T1)

=
(
2(u1 − u2 + u3 − u4) + int(T5)

)
∩
(
2(u1 − u2 + u3)− int(T4)

)
∩
(
2(u1 − u2) + int(T3)

)
∩
(
2u1 − int(T2)

)
∩ int(T1).

For convenience, we define

W =
(
2(u1 − u2 + u3 − u4) + T5

)
∩
(
2(u1 − u2 + u3)− T4

)
∩
(
2(u1 − u2) + T3

)
∩
(
2u1 − T2

)
∩ T1.

On the other hand, whenever we take

v1 ∈ int(W )

and define vi successively by (20), the inverse of the above process and Lemma 4 guar-

antee that

vi ∈ int(Ti)

holds for all i = 1, 2, . . . , 10. Therefore, by Lemma 1 the decagon with them as its vertices

is indeed a fivefold lattice tile.

By routine and detailed computation, it can be deduced from its definition that

W is a quadrilateral with vertices w1 = (− 1
2 , 1), w2 = (−1

2 ,
3
4 ), w3 = (− 2

3 ,
2
3 ) and

w4 = (− 3
4 ,

3
4 ). Theorem 2 is proved. □

Proof of Theorem 3. Assume that P2m is a centrally symmetric 2m-gon

satisfying τ∗(P2m) = 6. First, by Fedorov’s theorem and Lemma 6 we have 4 ≤ m ≤ 7.

Second, by Lemma 9 and Lemma 8 we get m ̸= 6 and 7, respectively. When m = 5,

the theorem follows by the second part of Lemma 10. Finally, when m = 4, the theorem

follows from the second part of Lemma 11. □

Proof of Theorem 4. Theorem 4 can be proved just like Theorem 2. □
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[ 8 ] P. Furtwängler, Über Gitter konstanter Dichte, Monatsh. Math. Phys., 43 (1936), 281–288.

[ 9 ] N. Gravin, S. Robins and D. Shiryaev, Translational tilings by a polytope, with multiplicity,

Combinatorica, 32 (2012), 629–649.

[10] N. Gravin, M. N. Kolountzakis, S. Robins and D. Shiryaev, Structure results for multiple tilings

in 3D, Discrete Comput. Geom., 50 (2013), 1033–1050.

[11] P. M. Gruber, Convex and Discrete Geometry, Grundlehren Math. Wiss., 336, Springer-Verlg,

Berlin, 2007.

[12] P. M. Gruber and C. G. Lekkerkerker, Geometry of Numbers, 2nd ed., North-Holland, 1987.
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