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Abstract. In 1885, Fedorov discovered that a convex domain can form
a lattice tiling of the Euclidean plane if and only if it is a parallelogram or a
centrally symmetric hexagon. It is known that there is no other convex domain
which can form a two, three or fourfold lattice tiling in the Euclidean plane,
but there are centrally symmetric convex octagons and decagons which can
form fivefold lattice tilings. This paper characterizes all the convex domains
which can form five or sixfold lattice tilings of the Euclidean plane. They are
parallelograms, centrally symmetric hexagons, three types of centrally sym-
metric octagons and three types of centrally symmetric decagons.

1. Introduction.

Planar tilings is an ancient subject in our civilization. It has been considered in
the arts by craftsmen since antiquity. Up to now, it is still an active research field in
mathematics and some basic problems remain unsolved. In 1885, Fedorov [6] discovered
that there are only two types of two-dimensional lattice tiles: parallelograms and centrally
symmetric hexagons. In 1917, for the purpose to verify the second part of Hilbert’s
18th problem in E?, Bieberbach suggested Reinhardt (see [23]) to determine all the two-
dimensional congruent tiles. However, to complete the list turns out to be challenging and
dramatic. Over the years, the list has been successively extended by Reinhardt, Kershner,
James, Rice, Stein, Mann, McLoud-Mann and Von Derau (see [19]), its completeness has
been mistakenly announced several times. In 2017, Rao [22] announced a completeness
proof based on computer checks. For an updated survey on this topic, we refer to Zong
[33].

The three-dimensional case was also studied in the ancient time. More than 2,300
years ago, Aristotle claimed that both identical regular tetrahedra and identical cubes
can fill the whole space without gap. The cube case is obvious. However, the tetrahedron
case is wrong and such a tiling is impossible (see [16]).

Let K be a convex body with (relative) interior int(K), (relative) boundary 9(K)
and volume vol(K), and let X be a discrete set, both in E”. We call K + X a translative
tiling of E™ and call K a translative tile if K + X = E™ and the translates int(K) + x;
are pairwise disjoint, where x; € X. In other words, if K + X is both a packing and a
covering in E™ (see [7], [32]). In particular, we call K + A a lattice tiling of E™ and call
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K a lattice tile if A is an n-dimensional lattice. Apparently, a translative tile must be a
convex polytope. Usually, a lattice tile is called a parallelohedron.

In 1885, Fedorov [6] also characterized the three-dimensional lattice tiles: A three-
dimensional lattice tile must be a parallelotope, a hexagonal prism, a rhombic dodeca-
hedron, an elongated dodecahedron, or a truncated octahedron. The situations in higher
dimensions turn out to be very complicated. Through the works of Delone [3], Stogrin
[25] and Engel [5], we know that there are exactly 52 combinatorially different types of
parallelohedra in E*. A computer classification for the five-dimensional parallelohedra
was announced by Dutour Sikirié, Garber, Schiirmann and Waldmann [4] only in 2015.

Let A be an n-dimensional lattice. The Dirichlet—Voronoi cell of A is defined by

C={x:x€eE", [x,0] <|x,Al},

where | X, Y| denotes the Euclidean distance between X and Y. Clearly, C'+ A is a lattice
tiling and the Dirichlet—Voronoi cell C' is a parallelohedron. In 1908, Voronoi [27] made
a conjecture that every parallelohedron is a linear transformation image of the Dirichlet—
Voronoi cell of a suitable lattice. In E?, E? and E*, this conjecture was confirmed by
Delone [3] in 1929. In higher dimensions, it is still open.!

To characterize the translative tiles is another fascinating problem. At the first
glance, translative tilings should be more complicated than lattice tilings. However, the
dramatic story had a happy end. It was shown by Minkowski [21] in 1897 that every
translative tile must be centrally symmetric. In 1954, Venkov [26] proved that every
translative tile must be a lattice tile (parallelohedron) (see [1] for generalizations). Later,
a new proof for this beautiful result was independently discovered by McMullen [20].

Let X be a discrete multiset in E™ and let k be a positive integer. We call K + X
a k-fold translative tiling of E™ and call K a k-fold translative tile if every point x € E”
belongs to at least k translates of K in K 4+ X and every point x € E™ belongs to at
most k translates of int(K) in int(K) + X. In other words, K + X is both a k-fold
packing and a k-fold covering in E™ (see [7], [32]). In particular, we call K + A a
k-fold lattice tiling of E™ and call K a k-fold lattice tile if A is an n-dimensional lattice.
Apparently, a k-fold translative tile must be a convex polytope. In fact, similar to
Minkowski’s characterization, it was shown by Gravin, Robins and Shiryaev [9] that a
k-fold translative tile must be a centrally symmetric polytope with centrally symmetric
facets. Let det(A) denote the determinant of a lattice A. One can easily deduce that
vol(K) = k- det(A) if K + A is a k-fold lattice tiling of E™.

Multiple tilings were first investigated by Furtwéngler [8] in 1936 as a generalization
of Minkowski’s conjecture on cube tilings. Let C' denote the n-dimensional unit cube.
Furtwingler made a conjecture that every k-fold lattice tiling C + A has twin cubes. In
other words, every multiple lattice tiling C + A has two cubes sharing a whole facet. In
the same paper, he proved the two- and three-dimensional cases. Unfortunately, when
n > 4, this beautiful conjecture was disproved by Hajés [13] in 1941. In 1979, Robinson
[24] determined all the integer pairs (n, k) for which Furtwéngler’s conjecture is false.
We refer to Zong [30], [31] for detailed accounts on this fascinating problem, and to
pages 82-84 of Gruber and Lekkerkerker [12] for some generalizations.

n 2023, A. Garber announced a proof for the five-dimensional case at arXiv:1906.05193.
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Let P be an n-dimensional centrally symmetric convex polytope, let 7(P) denote
the smallest integer k such that P is a k-fold translative tile, and let 7%(P) denote the
smallest integer k such that P is a k-fold lattice tile. For convenience, we define 7(P) = oo
if P cannot form translative tiling of any multiplicity. Clearly, for every convex polytope
we have

T(P) < 7(P).
It is a basic problem (see [28]) to determine if 7(P) = 7*(P) holds for every polytope.
Up to now, this problem is open even in the plane.

If o is a non-singular affine linear transformation from E™ to E", it can be easily
verified that P 4+ X is a k-fold tiling of E™ if and only if o(P) + o(X) is a k-fold tiling
of E*. Thus, both 7(c(P)) = 7(P) and 7*(¢(P)) = 7*(P) hold for all convex polytopes
P and all non-singular affine linear transformations o.

In 1994, Bolle [2] proved that every centrally symmetric lattice polygon is a multiple
lattice tile, where a lattice polygon means a polygon with lattice point vertices. However,
little is known about the multiplicity. Let A denote the two-dimensional integer lattice
72, and let Dg denote the octagon with vertices (1,0), (2,0), (3,1), (3,2), (2,3), (1,3),
(0,2) and (0,1). As a particular example of Bolle’s theorem, it was discovered by Gravin,
Robins and Shiryaev [9] that Dg + A is a sevenfold lattice tiling of E?. Consequently,
we have

(Ds) < 7.

In 2000, Kolountzakis [14] proved that, if D is a two-dimensional convex domain
which is not a parallelogram and D + X is a multiple tiling in E2, then X must be a
finite union of translated two-dimensional lattices. In 2013, a similar result in E? was
discovered by Gravin, Kolountzakis, Robins and Shiryaev [10]. Afterwards, Lev and Liu
[17], Liu [18] and Kolountzakis [15] made important progress on this topic.

Recently, Yang and Zong [28] proved the following results: Besides parallelograms
and centrally symmetric hexagons, there is no other conver domain which can form a
two, three or fourfold lattice tiling in the Fuclidean plane. However, there are conver
octagons and decagons which can form fivefold lattice tilings. Consequently, whenever
n > 3, there are mon-parallelohedral polytopes which can form fivefold lattice tilings in
the n-dimensional Fuclidean space.

This paper characterizes all the two-dimensional five and sixfold lattice tiles by
proving the following results.

THEOREM 1. A convex domain can form a fivefold lattice tiling of the FEuclidean
plane if and only if it is a parallelogram, a centrally symmetric hexagon, a centrally

symmetric octagon (under a suitable affine linear transformation) with vertices vi =
(7(177%)} Vo = (1 - OZ’*%)) V3 = (1 +O‘77%)’ V4 = (1 - Q, %)7 Vs = —Vi1, Vg = —Vg,
vy = —v3 and vg = —vy, where 0 < a < i, or with vertices vi = (B,-2), vo =
(14 8,-2), v3 = (1 = 3,0), va = (B,1), Vs = —V1, V¢ = —Va, V7 = —V3, Vg = —Vy,

where i < B < %, or a centrally symmetric decagon (under a suitable affine linear

transformation) with uy = (0,1), us = (1,1), uz = (%,%), uy = (%,0), us = (1,—%),
Ug = —uj, Uy = —Up, Ug = —U3, Ug = —uy and U9 = —Uus as the middle points of

its edges.
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THEOREM 2. Let W denote the quadrilateral with vertices wi = (—%,1), wa =

(=3.3), ws = (=2,2) and wy = (—2,2). A centrally symmetric convex decagon
can take wi = (0,1), ug = (1,1), uz=(3,3), w=(3,0), us=(1,—-3), us = —uy,
u; = —Up, Ug = —Uug, Ug = —uy and Uijg = —us as the middle points of its edges if and

only if one of its vertices is an interior point of W.

THEOREM 3. A convexr domain can form a sizfold lattice tiling of the FEuclidean
plane if and only if it is a parallelogram, a centrally symmetric hexagon, a centrally
symmetric octagon (under suitable affine linear transformations) with vertices vi =
(—a,—2), vao=(1—-0a,-2), v =(1+a,—1), vy = (1 — ,0), v5 = —vy, vg = —Vq,

vy = —v3 and vg = —vy, where 0 < a < %, a centrally symmetric decagon (under

6’
suitable affine linear transformations) with u; = (—1,3), w2 = (3,1), uz = (3,1),
u = (2,3), us = (2,0), ug = —uy, uy = —uy, Ug = —U3, Uy = —uy and Uy = —Us as
the middle points of its edges, or with u; = (—%7 1), us = (%7 1), uz = (%7 %), uy = (2,0),
us = (%, —%), Ug = —Uuj, Uy = —Uy, Ug = —U3, Ug = —Uy and uig = —us as the middle

points of its edges.

THEOREM 4. Let QQ denote the quadrilateral with vertices q1 = (0,1), g2 = (0, g),

as = (—1,3) and g1 = (—3,2). A centrally symmetric convex decagon Pio can take
u; = (7175)7 Uz = (%’1)’ uz = (%71)7 Uy = (Za %); us = (270)’ Ug = —Uup, Uy = —Ug,
ug = —ug, Ug = —uy and ujg = —Uus as the middle points of its edges if and only if one

of its vertices is an interior point of Q.
Let Q* denote the quadrilateral with vertices q1 = (0, %), Qo = (%, %), aqsz = (0,1)

and qq = (f%, %) A centrally symmetric conver decagon Pjy can take u; = (%,71),
Uz = (%a_%); us = (2a0); Uy = (%7%)? us = (%71); Ug = —Uujp, Uy = —Uz, Ug = —Us,
ug = —uy and uyg = —us as the middle points of its edges if and only if one of its

vertices is an interior point of Q.

REMARK 1. In principle, our method can characterize all k-fold lattice tiles for
any given k. Of course, the complexity increases along with the multiplicity k.

2. Basic results.

Let Ps,, denote a centrally symmetric convex 2m-gon centered at the origin, let
V1i,Va,..., Vo, be the 2m vertices of Ps,,, enumerated clock-wise, and let G1, Go, ..., Gam
be the 2m edges of Ps,,, where G; has two vertices v; and v;;1. For convenience, we
write V = {vy,va,..., Vo, } and T' = {G1,Ga,...,Gon }.

Assume that P, + X is a 7(Pay)-fold translative tiling of E2?, where X =
{x1,%2,X3, ...} is a discrete multiset with x; = 0. Now, let us observe the local structures
of Py, + X at the vertices ve V + X.

Let XV denote the subset of X consisting of all points x; such that

VvV E 8(P2m) + X;.

Since P, + X is a multiple tiling, the set XV can be divided into disjoint subsets
v, X5, ..., X} such that the translates in Py, +X;’ can be re-enumerated as Ps,,, —|—le,

Py, + xg7 R xgj satisfying the following conditions:
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1. v € O(Pam) —|—xg holds for alli =1,2,...,s;.

2. Let 43 denote the inner angle of Pay, + Xz at v with two half-line edges Lg@ and
L{Q, where L{J, xg — v and L{g are in clock-wise order. Then, the inner angles
join properly as

Lg,z = Lg+1,1
holds for all i =1,2,...,s;, where LJS']_H’1 = L{,r

For convenience, we call such a sequence Py, + X7, Payy + X3, ..., Poy + xgj an
adjacent wheel at v. It is easy to see that

S5

E J_ .
i =2w;-m

i=1

hold for positive integers w;. Then we define
t t s
2= =5 Y4

j=1 j=1 i=1

and
p(v) = jj{xZ :x; € X, v eint(Pyy,) + xi}.
Clearly, if Py, + X is a 7(Pa,,)-fold translative tiling of E?, then
T(Pam) = @(v) + @ (v) (1)

holds for all v e V + X.

First, let us introduce some basic results which will be useful in this paper.

LEMMA 1 (Bolle [2]). A convex polygon is a k-fold lattice tile for a lattice A and
some positive integer k if and only if the following conditions are satisfied:

1. It is centrally symmetric.

2. When it is centered at the origin, in the relative interior of each edge G there is a
point of %A.

3. If the midpoint of an edge G is not in %A then G is a lattice vector of A.

LEMMA 2 (Yang and Zong [28]). If D is a two-dimensional convexr domain which
is neither a parallelogram nor a centrally symmetric hexagon, then we have

(D) > 5.

LEMMA 3.  Ifm is even and Poy, + A is a multiple lattice tiling, then Ps,, has an
edge G which is a lattice vector of A.
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PrROOF. We assume that A = Z2. Let vy, Va,...,Vam be the 2m vertices of Py,
arranged in clock-wise. Let G; denote the edge of P, with vertices v; and v; 1, where
Vom+1 = V1.

If the midpoint of one of the 2m edges, say G1, is not in %A, then it follows from
Lemma 1 that G is a lattice vector of A.

Let u; denote the midpoint of G;. If u; € %A hold for all i = 1,2,...,2m, then we
have

Vo —Uu; = u; — vy,
V3 — U2 = U2 — Vg,
Vm+1 — Wy, = Uy — Vi,

which implies that

Vg1 = (—1)"™vi +2) (1), (2)
i=1
Since m is even and v,,,41 = —Vv1, it can be deduced by (2) that
vy = i (1), € 1A.
— 2

If fact, in this case all the vertices belong to %A. Then, we get
Vg — V] = 2(111 — V1) e A.
The lemma is proved. O

LEMMA 4.  Let u; be the middle point of G;. If m is an odd positive integer, Pa,+A
is a k-fold lattice tiling of E2, and all u; belong to %A, then we have

> (D' =o,

i=1
where o = (0,0) is the origin of E2.
PROOF. Since u; is the middle point of G;, we have

vy =2uj; — vy,
vy = 2up — vy,

V41 = 2Up, — Vi,

which implies
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—V] = V41 = —V1 — 22 (—1)'uy
i=1

and finally
> (=D =o.

i=1

The lemma is proved. O

LEMMA 5 (Yang and Zong [29]).  Assume that Py, is a centrally symmetric convex
2m-gon centered at the origin and Poy, + X is a 7(Pay,)-fold translative tiling of the plane,
where m > 4. If ve V + X is a vertex and G € I' + X is an edge with v as one of its
two vertices, then there are at least [(m — 3)/2] different translates Pay, + x; satisfying
both

v € O(Pom) + x;

and
G\ {V} C Hlt(PQm) + X;.

LEMMA 6 (Yang and Zong [29]). Let Py, be a centrally symmetric convex 2m-gon,
then

m — 1, if m is even,

* > >
T (P2m) = T(PQ"”) = {m — 2, if m is odd.

LEMMA 7 (Yang and Zong [29]).  Assume that Py, is a centrally symmetric convex
2m-gon centered at the origin, Po,, + X is a translative multiple tiling of the plane, and
v eV + X. Then we have

m—1 1
— ke — 4.
w(v) =k 5 + 5

where K is a positive integer and £ is the number of the edges in I' + X which take v as
an interior point.

3. Technical lemmas.
LEMMA 8. Let Py be a centrally symmetric convez tetradecagon, then
T*(P14) Z T(P14) Z 7

ProOOF. We take v € V 4+ X and assume that P4 + x1, P14 + Xa,..., P14 + X, is
an adjacent wheel at v. First, it follows from Lemma 5 and Lemma 7 that

p(v) =2 (3)

and
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Now, we consider three cases.

Case 1. w(v) > 5 holds for a vertex v € V + X. Then, by (1) and (3) we get
T(P14) = QD(V) + W(V) Z 7.

Case 2. w(v) =4 holds for a vertex v € V + X. Then, by Lemma 7 we get £ # 0.
If v € int(G) holds for a suitable edge G, applying Lemma 5 to G and its two vertices
we get

p(v) = 4.
Then it follows by (1) that
T(P14) = p(v) + w(v) > 8.

Case 3. w(v) = 3 holds for every vertex v.€ V + X. Then, the adjacent wheels
at all v € V are essentially unique, as shown by Figure 1. Let vi,vs,...,vis be the
fourteen vertices of Pj4. It follows that there are five point y; € X such that P4 + x1,
Piy+x7,Pia+Yy1,...,P1a+Yys5 is the adjacent wheel at vi. Then we have vig+y2 = V7,
vg +ys = vi and

v €int(Py) +yi, i=2,4.
By convexity, it can be easily deduced that

vy €int(Py) +yi, =24

T
[
7

Figure 1.

Y

o

B

On the other hand, the adjacent wheel at v} has two different translates taking v
as an interior point as well. Thus, we have
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p(v) >4
and
7(Pra) = ¢(v) + w(v) = 7. (4)
The lemma is proved. O
LEMMA 9.  Let P be a centrally symmetric convex dodecagon, then
T (P1a) > 7.

PROOF. Since 7*(Pyy,) is invariant under linear transformations on Pay,, we
assume that A = Z2 and P + A is a 7*(Pj2)-fold lattice tiling. Let u; denote the
middle point of G; and write v; = (z;,v;) and u; = (z},y;). By Lemma 3 and a uni-
modular transformation, we may assume that vo — vi = (k,0) and y; > 0, where k is
a positive integer. By reduction (as shown by Figure 8), we may assume further that
vo — vy = (1,0). For convenience, let P denote the parallelogram with vertices vy, va,
vy = —vy and vg = —Vs.

By Lemma 1 it follows that all yo — y3, y3 — Y4, Y4 — U5, Y5 — ys and yg — y7 are
positive integers. Thus, we have

<

=

Il

<
=~
I

<

N
v
N | Ot

If y1 = y; = y2 > 3, then we have
T* (Plg) = VOl(Plg) > VO](P) > 6.

Ify, =y =y2 = g, then all u; belong to %A. Let T; denote the triangle with vertices
u;, u; 41 and ug, where ¢ = 2,3 and 4. Clearly, all y; — y§ are positive integers. Thus, we
have

/ ! ! !
T — Tg Yi —Ys

1
vol(T;) L2 1

1
5 ’ ’ ’
2 Lit1 — T Yit1 — Ys

and
1
7*(P12) = vol(Pi2) > vol(P) + 2(vol(T3) + vol(T3) + vol(T)) > 5+ 6 - 1> 6.

The lemma is proved. g

Let P be a lattice polygon with vertices in Z2. Let a(P) denote the area of P, let
¢(P) denote the number of the points in P NZ2, and let ¢*(P) denote the number of the
points in d(P) N Z2. Then we have the following result (see page 316 of [11]):

Pick’s THEOREM.
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LEMMA 10.  For every centrally symmetric convex decagon Piy we have

7-* (Plo) Z 5a
where the equality holds if and only if, under a suitable affine linear transformation, it
takes u; = (071)7 Uz = (171)7 uz = (%7%); uy = (%,0), us = (157%)7 Ug = —Uuj,
u; = —Ug, Uug = —ug, Ug = —uy and Uy = —us as the middle points of its edges.
Furthermore

T*(Pl()) = 6
holds if and only if, under a suitable affine linear transformation, it takes u; = (—1, %),
U = (%71), usz = (%al)y uy = (Qa%); us = (2,0), ug = —uy, uy = —uy, ug = —us,
uyg = —uy and uyg = —us as the middle points of its edges, or takes uy; = (—%,1),
g = (%al); us = (%7%), u = (2,0), us = (%7—%); Ug = —Uu, U7 = —U2, Ug = —Ug,
ug = —uy and uyg = —us as the middle points of its edges.

ProOOF. Let vi,va,...,vio be the ten vertices of Pjg enumerated clock-wise, let

G; denote the edge of Py with vertices v; and v; 1, where vi; = vy, and let u; denote
the middle point of G;. For convenience, we write v; = (z;,y;) and u; = (), y}).

It is known that (D) + o(A) is a k-fold lattice tiling of E? whenever D + A is such
a tiling and o is a non-singular linear transformation from E? to E2. Therefore, without
loss of generality, by Lemma 2 we may assume that A = Z2? and Pjo + A is a five or
sixfold lattice tiling of E2.

By Lemma 1 we know that

mﬂGgm%A#@

holds for all the ten edges G; and, if u; ¢ %A, then G; is a lattice vector of A. Now, we
consider two cases.

Case 1. Gy is a lattice vector of A. Without loss of generality, by a uni-modular
linear transformation, we assume that vo — vy = (k,0) and y] > 0, where k is a positive
integer. In fact, by reduction (as shown by Figure 8), one may assume that G is primitive
as a lattice vector and therefore k = 1. Then, it can be deduced that

1
ylzyi:mEiZ

and all y; — y;41 are integers. In particular, when ¢ = 2, 3, 4 and 5, they are positive
integers. Thus, one can deduce that

Case 1.1.  y}{ = 2. Then we must have

Y2—Y3s=Y3— Y4 =Y1— Y5 =Y5 — Yo = L.
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By the second term of Lemma 1, one can deduce that

1
wi € gA i=23.45.

Since v = (1,0) + v; and
i=2,3,4,5,

Vit = 2u; — vy,

it can be deduced that
—V] = Vg = 2(115 — uy4 + us —UQ) + (1,0) + vy

and therefore
i =1,2,...,10.

1
i € =, =
Vv D) (3

Then all G; are lattice vectors.

v7

Figure 2.

Let P denote the parallelogram with vertices vi, v, vg and v7, and let ) denote
the pentagon with vertices vo, v3, vy, v5 and vg, as shown by Figure 2. Applying Pick’s

theorem to Q, we get

vol(Q) > (; - 1>

and therefore
T*(Plo) = VOl(Plo) = VOI(P) +2- VOl(Q) Z 44 2- <Z - 1> =T.

= g Then all y; — y;+1 are positive integers for 2 < ¢ < 5. If

Case 1.2. ¥}
1

i € -A

u; € 5
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hold for all ¢ = 2, 3, 4 and 5, similar to the previous case one can deduce
T*(Plo) = VO](Plo) Z 7.

Ifu & %A holds for one of these indices, then we have y; — ;11 = 2. By a uni-
modular transformation, we may assume that —% <z < %. Then we have vo — vg =
(z,5), where —2 <z < 3. If v; — v;41 = (k,2) with |k| > 2, let @ denote the pentagon
with vertices va, v3, v4, v5 and vg, then we have

1 1

vol(Q) > 5

N | Ot

r 5
k 2
and thus

7*(P1o) = vol(P) + 2 - vol(Q) > 10.

If vi — viy1 = (k,2) with &k = %1, then we have z; € iZ and therefore x € %Z and

—g < x < 2. By considering two subcases with respect to x1 = —% and x1 # —%, we
can get
1
vol(Q) > =
2
and

7*(Pyp) = vol(P) + 2 - vol(Q) > 6.

Case 2. All the middle points u; belong to %A. Since Pig + A is a five or sixfold
lattice tiling of E2, one can deduce that

V01(2P10) S 24

and all u, = 2u; belong to A. For convenience, we define Q10 to be the centrally
symmetric lattice decagon with vertices uf,u),...,uj, and write u; = (z},y;). Since
Q10 is a centrally symmetric lattice polygon, its area must be a positive integer. Thus,
we have

VOl(Qlo) S 23. (5)

Now, we explore QQ1¢ in detail by considering the following subcases.

Case 2.1. uj is primitive in A. Without loss of generality, guaranteed by uni-
modular linear transformations, we take uj = (0,1). Then, Lemma 4 implies

! ! __ / !
{954_305—373—5527

Yy —ys =ys —yy + 1.

(6)

If f, > o or x% = ), one can easily deduce contradiction with convexity from (6).
For example, if % = 2/, > x}, then it can be deduced by (6) that
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uh — ug = uj, — uy = kuy

with k > 2, which contradicts the assumption that Q19 is a centrally symmetric convex
decagon. Therefore, we may assume that

/ /
l‘3>l’i

for all ¢ # 3.

Let T" denote the lattice triangle with vertices uf, uj and uj, let @ denote the lattice
quadrilateral with vertices u}, u}, uj and ug, and let 7" denote the lattice triangle with
vertices uf, u} and uf (as shown by Figure 3). It follows from (5) and Pick’s theorem
that

vol(T') <

N |

(23 — 2(vol(T") + vol(Q))) <10

and therefore

xh < 10. (7)

Figure 3.

Let « denote the slope of G, that is

_Y2—0n
$2*I1.

«

By a uni-modular linear transformation such as

=z,
y' =y+kz,

where k is a suitable integer, we may assume that
0<ax<l. (8)

Let L; denote the straight line containing G, it is obvious that Pjg is in the strip bounded
by L; and Lg. Furthermore, we define five slopes

! !
Yiv1 — Y .

Bi = F——, 1=12,...,5.
Tiq — T

K2
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By convexity it can be shown that there is no sixfold lattice decagon tile with o = 0
in our setting. When a > 0, by (6) and convexity it follows that yj —y§ > 1 and therefore

Y3 — yp > 0.

Figure 4.

As shown by Figure 4, we assume that

us —u) = (p1,q1)

and
u; —ug = (p2,92),
where all p; and ¢; are positive integers. Then, by (7) we have
wy — 2 = x5 — (25 — 27) = a5 — (p1 +p2) <8

Now, we consider in subcases with respect to the different orientations of uj — uj.

Case 2.1.1. y4—vy5 =0 and z, — 25, = 1. By (6) and convexity we have 2, —2f = 1,

vi—ys =1, 04 =1,

By =L 5
D1
and
55=q*2<1
D2

Then, one can deduce that

g+q—1_ q
= >72:657

b1
p1+ D2 p

which contradicts the convexity of Q1¢.
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Case 2.1.2. y4—vy5 =0 and z, — 25, = 2. By (6) and convexity we have =, — 2f = 2,
/ /o _ 1
Yy —ys = 1, 54—5,

q _ 1
==> -, 9
B3 P (9)
g 1
_ _1 10
Bs v 2 (10)
and
Gg+qgp—1 ¢
=< =, 11
b D1+ D2 D2 ()
By (7) and (10) one can deduce that
3 S P2 S 77
1<pi <5 (12)
and
1< g2 <3.

On the other hand, by (11), (10) and (12) we get

1
Q1<p1'@+1<*'p1+1
D2 2

and therefore
1<q <3

Then, it can be verified that the only integer groups (pi,q1,pe, ) satisfying (7),
(9), (10) and (11) are (1,1,3,1), (1,1,4,1), (1,1,5,1), (1,1,6,1), (1,1,7,1), (1,1,5,2),
(1,1,6,2), (1,1,7,2) and (1,1,7,3). By checking the areas of their corresponding
decagons, keeping the subcase conditions in mind, there are only two Q¢ satisfying
(5). Namely, the one with vertices uj = (0,1), u} = (4,2), uy = (6,2), u), = (5,1),

u; = (3,0), ug = —uf, v) = —u), ug = —uj, uyg = —uj and uj, = —uj, which
indeed produces fivefold lattice tiles, and the one with vertices uj = (0,1), uy = (5,2),
uj = (7,2), u) = (6,1), ug = (4,0), ug = —uj, v} = —u}, ugy = —uf, uj = —ujj and
uj, = —uf, which indeed produces sixfold lattice tiles. Clearly, by the linear transfor-
mation

= %(x - 2y),

, 1
Yy = iya

the first decagon is equivalent to the fivefold one stated in the lemma and the second one
is equivalent to the first type of the sixfold ones (as shown by Figure 5 and Figure 6).
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u up u usz
uj s w w,
U9 o
o 115
u
8 Ug Ql() ug
uy Ug ug ury
Figure 5. Figure 6.

Case 2.1.3.  y5—v5 =0 and z, — 25, = 3. By (6) and convexity we have =, — zf = 3,

yﬁ_yé:17ﬂ4:%>

q1

1
=42 13
B3 o3 (13)

@ 1
_e 1 14
Bs v <3 (14)

and
ga+qgp—1 ¢

== < =, 15
h p1+p2 D2 (15)

Restricted by (7), similar to the previous case, it can be deduced that the only
integer solutions (p1, ¢q1,p2, ¢2) for (13), (14) and (15) are (1,1,4,1), (1,1,5,1), (1,1,6,1),
(2,1,4,1), (2,1,5,1) and (2,1,6,1). Then one can deduce

VOI(Qlo) Z 25

for all these cases, which contradicts (5).

Case 2.1.4. y4 —yb =0 and % — 2%, = 4. Then, one can easily deduce that 84 = 1,

qgq _ 1
B :7>7a
ST p T 4
g 1
Bs = — < —
T py 4

and
+q —1

b1 .
p1+ D2 P2

Restricted by (7), similar to Case 2.1.3 one can deduce that the only integer solutions
(p1,q1,p2,q2) for these inequalities are (1,1,5,1), (2,1,5,1), and (3,1,5,1). Then we
have

VOI(Qlo) Z 25

for all these cases, which contradicts (5).
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Case 2.1.5. y4 —yb =0 and =% — x4, > 5. Then, one can easily deduce that 84 < 1,
p2 > 6 and

2 > 5+ 6> 10,

which contradicts the restriction of (7).

Case 2.1.6. y5 —yb =1 and a5 — x4, = 1. Then, by convexity we get
a > ﬁl > 62 = 17

which contradicts the assumption of (8).
Case 2.1.7. yi —yb =1 and 2§ — 2}, = 2. By (4) and convexity we get ), — zf = 2,
Yo — Y5 =2, fa =1,
q

Bz=—>1
b1
and
ﬂ5:ql<l.
D2

Then, it can be deduced that
ate—-1 @
pr=—"T"—">-"=0s,
P11+ p2 D2
which contradicts the convexity assumption of Q1¢.

Case 2.1.8. y4 —yh =1 and x4, — 24, = 3. Then we have =), — 2t = 3, y, — v5 = 2,

Bo =% and By = 2.
On one hand, by (7) it follows that po < 6. On the other hand, by 82 < 81 < f5 < B4
it follows that

1 q2 2

S =<l

3 P2 3
Thus, the integer pair (ps, g2) has only five choices (2, 1), (4,2), (5,2), (5,3) and (6, 3).
Then, by checking

2
@ 7
P 3

and
P1 +p2 S 77

it can be deduced that the only candidates for (p1,q1,p2,q2) are (1,1,4,2), (1,1,5,3),
(2,2,5,3) and (1, 1,6, 3). In fact, the only candidate satisfying (5) is the one with vertices
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ull = (071)7 u/2 = (573)7 ué = (874)7 uﬁl = (773)7 U_g = (4a1)7 uéi = _u/17 u/7 = _ul2a
ug = —uj, ug = —uj and uj, = —uj, satisfying

VOI(Qlo) = 22.

This decagon indeed produces sixfold lattice tiles. Clearly, it is equivalent to the second
type of the sixfold ones (as shown in Figure 7) stated in the lemma under the linear
transformation

u LLB)

ujo us

uy

uz Ug

Figure 7.

Case 2.1.9. vy —yh =1 and 2§ — zf, = 4. By (6), (7) and convexity it can be

deduced that po < 5, B4 = % and f5 < B4. Consequently, we have 5 = %, i, % or %

Thus, by B2 = % and B2 < 81 < 5 we get

1 qg+qg-1 2
—_ < - 16
4 p1+ P2 5 (16)

By (7) we have p; + p2 < 6 and therefore (16) has only one solution (p1,q1,pe,q2) =
(1,1,5,2). However, for such decagon we have

VOl(Qlo) = 29,
which contradicts (5).
Case 2.1.10. y5 —y4b =1 and a4 — 2%, = 5. Then by (7) and convexity we have
p1+p2 <5

and
1 -1 2
I_ate-1_2
5 p1+ D2 5

In fact, these inequalities have no positive integer solution.
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Case 2.1.11. y4 —yb =1 and o — 24, > 6. It follows by (7) that po < 3. Then we
get both 84 < % and (35 > %, which contradicts the convexity of Q1p.

Case 2.1.12.  y4—yh =2 and 25— 25 = 3. Then by (6) and convexity we get 8, =1
and 1 < 5. However, the two inequalities

o >fBy=1

D1
and

ate-1 ¢

p1+ p2 P2

have no integer solution.
Case 2.1.13.  y4—yb =2 and x5 — %, = 4. Then by (6) and convexity we get 3 = %’

Ba = %’ B2 < Bs < B4 and therefore

]
D2

< (17)

N
=] w

Clearly, by (7) we have py < 5 and therefore (17) has two groups of integer solutions
(p2,q2) = (3,2) or (5,3). Then, the two inequalities p; + p2 < 6 and

1 -1
loate-l e
2 P1+ D2 D2

have one group of integer solution (p1,q1,p2,q2) = (2,2,3,2). Unfortunately, then we
have

VOl(Qlo) = 25,

which contradicts (5).

Case 2.1.14. y5 — y4 = 2 and x5 — x4, = 5. Then by (6) and convexity we get
B2 = % Ba = %, B2 < Bs < P4 and therefore

)
b2

< (18)

SR\
o] w

Clearly, by (7) we have py < 4 and therefore (18) has two groups of integer solutions
(p2,q2) = (2,1) or (4,2). Then, one can deduce that p; + p2 < 5 and

2 1
conte-l e
5 P1+ D2 D2

have no integer solution.

Case 2.1.15. y4 —y4 = 2 and x5 — 2, = 6. Then by (6) and convexity we get
b5 < B4 = % and therefore 85 = %7 which contradicts the fact

m>&>@=§
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Case 2.1.16. y4—y4 = 2 and x4 — 2% > 7. Then by (6) and convexity we get 84 < 2
and (5 > %, which contradicts the convexity of Q1p.

Case 2.1.17. y5 — yb = 3 and x5 — 2%, = 4. Then by (6) and convexity we have
P2 <5, By = % and B4 = 1. Then we have

63:g>1

p1
and therefore

Ggt+q—1_ ¢
=——> = =5

B1
p1+ P2 P2

which contradicts the convexity of Q1¢.

Case 2.1.18. y4 —y5h = 3 and x5 — x4, = 5. Then by (6) and convexity we have
P2 <4, s = %, Ba = % and fs < 5 < B4. The inequalities ps < 4 and

have two solutions (p2,g2) = (3,2) or (4,3). Then

has no solution satisfying p; + p2 < 5.

Case 2.1.19. y5—yb =3 and x5 — b = 6. Then by (6) and convexity we get py < 3,
B2 = %, Ba = % and Py < B5 < P4. Then the inequalities ps < 3 and

1 q2 2
2 P2 3
have no solution.
Case 2.1.20. y5—yb =3 and x5 — x4 = 7. Then by (6) and convexity we get ps < 2,
B2 = %, Ba = % and Py < B5 < P4. Then the inequalities ps < 2 and

3 q2 4
7<p2<7

have one solution (p2, g2) = (2,1). However, then

has no solution.

Case 2.1.21. y4—yb =3 and 25 — x4 > 8. Then by (6) and convexity we get ps = 1,
b5 > 1 and B4 < %, which contradicts the convexity of Q1¢.
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Case 2.1.22. y4 —yh = 4 and 24 — 25, = 5. Then by (6) and convexity we have
p2 <4, Bs = %, B4 =1 and By < B5 < B4. The inequalities py < 4 and

4
Sy
5 P2
have no common integer solution.
Case 2.1.23. y4—yh =4 and 25 — x4, = 6. Then by (6) and convexity we get py < 3,
Ba = %, By = % and B2 < B5 < B4. The inequalities p, < 3 and

)
D2

| Ut

<

[V )

have no common integer solution.

Case 2.1.24. y4—y5h =4 and x5 — x4, = 7. Then by (6) and convexity we get pa < 2,
2 =5, P4 = 5 and P2 < P5 < Pg. e Inequalities pa < 2 an
. 2 and The i liti <2 and

)
D2

<

IS
3| ot

have no common integer solution.

Case 2.1.25.  y4—yh =4 and x5 — x4, > 8. Then by (6) and convexity we get ps = 1,
Bs > 1 and B4 < %, which contradicts the convexity of Q1¢.

Case 2.1.26. y4—y5 =5 and x5 —xf, = 6. Then by (6) and convexity we get pa < 3,
Bo = %, B4 =1 and By < fB5 < B4. The inequalities po < 3 and

5 q2
7<f<1
6

have no common integer solution.

Case 2.1.27.  y5—yb =5 and x5 —xb = 7. Then by (6) and convexity we get py < 2,
B2 = %, Ba = g and By < B5 < B4. The inequalities po < 2 and

)
D2

<

| ot
o

have no common integer solution.

Case 2.1.28. y5—yb =5 and x5 — x4 > 8. Then by (6) and convexity we get ps = 1,
b5 > 1 and B4 < %, which contradicts the convexity of Q1o.

Case 2.1.29. y4—yb =6 and x5 — x4 = 7. Then by (6) and convexity we get ps < 2,
Bo = g, B4 =1 and B> < B5 < B4. The inequalities ps < 2 and

6 q2
7<—<1
7

have no common integer solution.
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Case 2.1.30. y5—yh =6 and 25 — x4 > 8. Then by (6) and convexity we get ps = 1,
b5 > 1 and B4 < %, which contradicts the convexity of Q1¢.

Case 2.1.31.  y4—y5 =7 and x5 — x4 > 8. Then by (6) and convexity we get ps = 1,
085 > 1 and B4 < 1, which contradicts the convexity of Q9.

Case 2.2.  All u} are even multiplicative. Then all u; belong to A. It follows by
Lemma 1 that %PIO + A is a k-fold lattice tiling with

1 6 3
Vo (2 10) RN
which contradicts Lemma 2.

Case 2.3.  All v} are multiplicative, v} is odd multiplicative. Without loss of
generality, guaranteed by uni-modular linear transformations, we take uj = (0,2q + 1),
where ¢ is a positive integer.

By Lemma 4 it follows that

Ty —Th =T — Th.
Therefore, by convexity and reflection we may assume that

xh > 1)

— )

i=1,2,...,10.

Let T" denote the lattice triangle with vertices uj, u} and uj, let @ denote the
lattice quadrilateral with vertices u}, u, u; and ug, and let T denote the lattice triangle
with vertices u}, u and ug, as shown in Figure 3. It follows from (5) and Pick’s theorem
that

vol(T) < %(23 —2(vol(T") + Vol(Q))) <10

and therefore

22¢+1) |3

xh =
It is assumed that all u} are multiplicative. Therefore by convexity we have

xh=x5 =2

and

Then, we have
vol(Q10) >3- (2(2¢ + 1) +3) > 27,

which contradicts (5).
As a conclusion of all these cases, Lemma 10 is proved. g
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LEMMA 11.  For every centrally symmetric convex octagon Ps we have
T (Pg) Z 57

where the equality holds if and only if, under a suitable affine linear transformation, Py
has its vertices at vi = (—a,—3), vo=(1—a,-3), vs=(1+a,—3), va = (1 — o, 3),

Vs = —V1, Vg = —Vo, V7 = —V3 and vg = —Vvy, where 0 < a < %, or with vertices
Vi = (B7_2)7 Vo = (1 +57_2); V3 = (]- _/370)) V4 = (571)7 Vs = —Vi1, Vg = —V3,
V7 = —V3, Vg = —Vy, where i <pB< % Furthermore

T*(Pg) =6
if and only if (under a suitable affine linear transformation) Ps has its vertices at
vi=(—a,-2),va=(1—-a,-2), vy = (14+a,-1), vy = (1—,0), v5 = —v1, vg = —Va,
vy = —v3 and vg = —Vvy, where 0 < a < %.

PrOOF. Let P be a centrally symmetric convex octagon centered at the origin, let
V1, Va, ..., Vg be the eight vertices of Pg enumerated in an anti-clock order, let GG; denote
the edge with vertices v; and v;y1, where vg = vy, and let u; denote the midpoint of
G;. For convenience, we write v; = (x;,y;) and u; = (a}, y}). Without loss of generality,
by Lemma 2 we may assume that A = Z? and Psz + A is a five or sixfold lattice tiling.
Then, we have

7*(Pg) = vol(Pg) =5 or 6. (19)

Based on Lemma 3, by a uni-modular transformation, we may assume that
GinN %A # () and vo — vy = (k,0), where k is a positive integer. If k > 1, we define P} to
be the octagon with vertices v = vi + (5451,0), vh = vo + (15%,0), v} = v3 + (15£,0),
vy = vi+ (355,0), vl = v + (555,0), vi = ve + (521,0), vi = v7 + (52,0) and
vi = vs + (£52,0), as shown by Figure 8. By Lemma 1 it can be shown that P{ + A is
a multiple lattice tiling of E? and therefore

TH(P5) < vol(P§) < vol(Ps) — 3 =3,

which contradicts Lemma 2. Thus, we have vy — vy = (1,0).

ViV,

Figure 8.
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Apply Lemma 1 successively to G1, G2, G3 and G4, one can deduce that all 2ys,
Y3 — Y2, Y4 — y3 and ys5 — y4 are positive integers. Therefore, we have

<3
Y2 =91 > 9’

On the other hand, if yo = y; < —3 and let P denote the parallelogram with vertices vy,
va, V5 and vg, it can be deduced by convexity that
vol(Ps) > vol(P) > 6,

which contradicts the assumption of (19). Thus, to prove the theorem it is sufficient to
deal with the three cases

3 5
Y2 = Y1 = _57 _27
Case 1. yo =1y = —%. In this case,
Yit1 —yi =1

must hold for all ¢ = 2,3 and 4. Then, it follows by Lemma 1 that all the midpoints of
G2, G3 and G4 belong to %A. Furthermore, by a uni-modular transformation

{m’zx—ky,
y' =y,

with a suitable integer k, we may assume that f% <z < %.
If G5 is vertical, then x5 is an integer or an half integer. Consequently, we have
T € %Z. Therefore x; only can be —1, —% or 0. By considering three subcases with

respect to z1 = —1, f% or 0, it can be deduced that there is no octagon of this type
satisfying Lemma 1. For example, when z; = —%, by Lemma 1 and convexity we have
— (=1 _3 — (1 _3 — (1 _1 — (11 - _ - _
Vi = ( 29 2)7 V2 = (27 Q)a V3 = (23 2)’ V4 = (272)7 Vs = Vi, Vg = Vo,
vy = —v3 and vg = —vy. Then, Py is no longer an octagon but a parallelogram.
Vg

Vs V3

Figure 9.
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If G5 is vertical, then 1 must be an integer or an half integer as well. Therefore, it
only can be —1, —% or 0. By considering three subcases with respect to 1 = —1, —% or
0, it can be deduced that

vol(Pg) > 7,
which contradicts the assumption of (19). For example, when x; = —%, by Lemma 1
and convesity we have vi = (~3,~2). va = (3.~ ). vo = (5 + k.~ ). va = (3 + k. 3).
Vs = —V1, Vg = —Va, v; = —vg3 and vg = —Vy, where k is a positive integer. Then, as

shown by Figure 9, it can be deduced that
vol(Ps) =3+ 4k > 7.

If none of the three edges G5, G3 and G4 is vertical, by convexity it is sufficient to
deal with the following three subcases.

Subcase 1.1. % > max{x}, 24 }. Then we replace the eight vertices vs, vy, vs, vg,

V7,Vg, V] and \P by Vé = ($/37 7%)7 vﬁl = (xéa %)a Vif) = (21{17‘%{33 %)a Vé} = (21’217%%71’ %)a
v, = —vh, vg = —vy, vi = —vi and vj = —vg, respectively (as shown by Figure 10).
In practice, one first makes Gz vertical and then changes the other vertices successively.
Clearly, this process does not change the area of the polygon. Then one can deduce that

xh > % and therefore
vol(Pg) =3 -2z — (225 — 1) =4dal +1 > 7,

which contradicts the assumption of (19).

Vil v Vo v

Figure 10.

Subcase 1.2. x4 > max{x}, 2} }. If x5 > 3, one can repeat the above process. At
the end we get x, > 2 and

vol(Pg) >3- 2zh — 2(225 — 1) = 22, + 2 > 6,

which contradicts the assumption of (19). If 2o > x3, since —% <z < i, uy only can

be (1,-1), (1,-1), (0,—1) or (—%,—1). Then it can be easily checked that there is no

convex octagon of this type satisfying Lemma 1.
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Subcase 1.3. x4 = x4 > x). Then, we replace the eight vertices va, v3, vy4, Vs, Vg,
1
2
v, = —v4, v = —vj and vi = —vi, respectively (as shown by Figure 11). In practice,
one first makes Gy and G3 vertical and then changes the other vertices successively,
keeping the rules of Lemma 1. Clearly, this process does not change the area of the

polygon, =5, > 1 and therefore

! / 3 /I / 1 /o / ! / ! /
vz, vg and vy by vy = (25, —3), v = (25, —3), Vi = (23, 5), V5 = 2uy — V), Vi = —Vy,

vol(Pg) =3 -2z — (225 — 1) = 4xh, + 1 > 5,

where the equality holds if and only if Ps with vertices vi = (—a, —3), vo = (1—a, —3),
vy = (14 oz,—%)7 vy = (1 — a,%), Vs = —Vy, Vg = —Vg, V7 = —v3 and vg = —Vy,
where 0 < a < %. They are the first octagon type of the fivefold lattice tiles listed in the

lemma.

v \Wvs vil)vs

Figure 11.

Case 2. ys = y; = —2. Then, it can be deduced that one of y3 — y2, y4 — y3 and
Y5 — y4 1s two and the others are ones, and the midpoint u; must belong to %A whenever
Yi+1 — y¥; = 1. Furthermore, we may assume that —% <z < % by a uni-modular
transformation and assume that G; is primitive if it is a lattice vector by reduction.

If one of G5, G3 and Gy is vertical, it can be easily deduced that
VOl(Pg) > 7.

For instance, when Gj is vertical, we have x5 — x2 > 1, 4 — x5 > 1 and thus x5 = 2} =
Ty > % Then, it can be deduced that

VOI(Ps) > 42;1?3 —2(2333 - 1) 241‘3 + 2 > 8,

which contradicts the assumption of (19).
Now, we assume that all G, G5 and G4 are not vertical.

Subcase 2.1. y3s —yo = 2 and us & $A. Then v3 — vo = (k,2) is a lattice vector,
where k is a positive integer (when k is negative, one can easily deduce that Pg cannot
be a convex octagon). On the other hand, it follows by the assumption —% <z < %
that
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V5 — Vg = (1.74)7

where —2 < x < 2. Let P denote the parallelogram with vertices vy, va, v5 and vg, and
let T denote the triangle with vertices vy, vs and vs, as shown by Figure 12.

Vs

Vi
Figure 12.
If £ > 2, one can deduce
11k 2
== =% —2>
vol(T") 5| 2 4‘ 2k —x > 2

and therefore
vol(Pg) > vol(P) + 2 - vol(T) > 8,

which contradicts the assumption of (19).

Ifk=xz3—22=1, GonN %A #( and uy & %A, one can deduce that zo € iZ and
therefore z; € iZ. In fact, by checking all the eight cases x; = —%, —g, -1, —%, —%,
—%, 0 or i, it can be shown that there is no such octagon satisfying the conditions of
Lemma 1. For example, when 1 = 1, by convexity (as shown by Figure 13) the only

candidate for uz is uj = (2,1) and the only candidates for uy are u} = (3,3) and

272
u; = (1, %) However, no octagon Py satisfying Lemma 1 can be constructed from these

candidate midpoints.

Subcase 2.2. y4 —y3 =2 and ug & %A. Then vy — v = (k,2) is a lattice vector,
where k is a positive integer (if it is negative, then make a reflection with respect to the
z-axis). On the other hand, it follows by the assumption f% <z < % that

Vs — Vg = (1’,4)7

where —2 < x < 2. Let P denote the parallelogram with vertices vy, vo, v5 and vg,
and let T' denote the triangle with vertices va, v = vy + (v4 — v3) and vs, as shown by
Figure 14.
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Vi Vo
Figure 14.
If £ > 2, one can deduce
1
vol(T)2‘k i‘Qka?

and therefore

vol(Pg) > vol(P) 4+ 2 - vol(T') > 8,

which contradicts the assumption of (19).

Ifk=x4—23=1,GszN %A # () and uz ¢ %A, one can deduce that z3 € iZ and
therefore 1 € iZ. By checking all the eight cases x1 = —%, —2, -1, —%, —%, —%, 0
or %, it can be deduced that

VOl(Pg) Z 7.

For example, when 1 = —3, we define v4 = (2,-1), v}, = (5,1), v/ = (-3,1),
v = (—g, —1), and define P§ to be the octagon with vertices vi, va, v, vV}, Vs, vg, V5
and v§, as shown by Figure 15. By shifting G5 and G7, one can deduce P; C Py and
therefore

vol(Pg) > vol(P§) = 13.
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Ve Vs

Figure 15.
Subcase 2.3.  None of the three edges G2, G3 and G4 is vertical and all uy, us and
uy belong to %A. Then, it is sufficient to consider the following three situations.

Subcase 2.3.1. 4 > max{z},z}}. Similar to Subcase 1.1, we get z% >3 and
therefore

vol(Pg) >4 -2z% — 2(225 — 1) = 4aly + 2 > 8,

which contradicts the assumption of (19).

Subcase 2.3.2. zf > max{z},x}}. If x5 > 3, just like Subcase 1.2, one can get
xh > % and

vol(Ps) > 4-2z5 — 3(2zh — 1) > 6,

which contradicts the assumption of (19).

If 25 > x5 and y3 — y2 = 1, since —3 < 21 < 3, uy only can be (1,-32), (1,-2),
(0,—32) or (—%,—32). Then it can be routinely checked that there is no convex octagon

of this type satisfying Lemma 1.

V6 Vs
Uy
A .
) us
Px V3
V7
. * v s .
Vi Vo
Figure 16.

If 2o > z3 and y3 — yo = 2, since —% <z < %, uy only can be (1,—1), (%,—1),

(0,—1) or (—%, —1). By checking these four cases, it can be shown that there is only
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one class of such convex octagons satisfying Lemma 1. Namely, the ones satisfying

u; = (1,-1), ug = (3, 1) and uy = (0, 2), as shown in Figure 16. In other words, they

are the octagons with vertices vi = (8, —2), vo = (1+3,-2), vs = (1-,0), v4 = (5, 1),
Vs = —Vi1, Vg = —Vo, V7 = —V3, Vg = —Vy, wWhere % < B < % Then, one can deduce
that

vol(Pg) = 5,

which is the second type of octagons of the fivefold lattice tiles listed in the lemma.

Subcase 2.3.3. % = z§ > ). Similar to Subcase 1.3, one can deduce =5, > 1 and
therefore

vol(Pg) >4 -2zf — 2(225 — 1) = 4al, + 2 > 6,

where the equalities hold if and only if Py with vertices v = (—a, —2), vo = (1 — a, —2),
vi=(1+a,-1),vi=(1—0a,0), vy = —vy, V¢ = =V, v; = —v3 and vg = —v, where
0<a< é (as shown in Figure 17). This is the octagon type of the sixfold lattice tiles
listed in the lemma.

.
Vi Vo

Figure 17.

Case 3. y| = —%. Then all y; 11 — y; are positive integers for 2 < i < 4 and their
sum is five. By a uni-modular transformation, we may assume that —% <z < %. Then
we have vs — vo = (,5), where 7% <z < % Now we consider two subcases.

Subcase 3.1. u; ¢ %A holds for one of the indices i € {2,3,4}. Then we have
Yitr1 —Yi = 2 0r 3.

Subcase 3.1.1.  v;11 —v; = (k,2) and |k| > 2. Let @ denote the quadrilateral with
vertices v, vs, v4 and vs, then we have

1 1
5 = ~|22 — 5k| >

vol(Q) > 5

DO | Ot

r 5
k 2

and thus

7*(Ps) = vol(P) + 2 - vol(Q) > 10.
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Subcase 3.1.2. v;41 —v; = (1,2). Then we have 1 € iZ and therefore x € %Z
and —2 <z < % Ifx, = —%, then we have vy — vy = (g, 5). Applying Pick’s theorem
to @Q and %A, we get

and thus
7*(Pg) = vol(P) + 2 - vol(Q) > 6.
If &1 # 72, then we have x € %Z, —2<x<2,;

1

VOI(Q) > 5

xr 5
1 2

DN =

= 1\2 5| >
== 5 €T >

and thus
7*(Pg) = vol(P) + 2 - vol(Q) > 6.

Subcase 3.1.3. v;11 —v; = (k,3) and |k| > 2. Let @ denote the quadrilateral with
vertices va, vs, v4 and vs, then we have

1
2

N

wl(Q) > 5|\ 4| = 58— 5k >

2

x5 ‘ 1
and thus

T*(Ps) = vol(P) + 2 - vol(Q) > 7.

Subcase 3.1.4. v;y1 —v; = (1,3). Then we have 1 € %Z and therefore z € %Z
and —% <z< % Ifx, = —%, then we have vy — vy = (g, 5). Applying Pick’s theorem
to @ and %A, we get

and thus
7*(Pg) = vol(P) + 2 - vol(Q) > 6.
If 1 # —%, then we have = € %Z, T # g,

1
2

r 5
1 3

| =

vol(@) >

1

and thus

T7*(Pg) = vol(P) + 2 - vol(Q) > 6.
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Subcase 3.2. u; € %A holds for all i € {2,3,4}. Then, it is sufficient to consider
the following three situations.

Subcase 3.2.1. % > max{z},x}}. Similar to Subcase 1.1, we get % > 3 and
therefore

vol(Ps) >5-2z5 — 3(225 — 1) = 4ay, +3 > 9.

Subcase 3.2.2. b > max{a},z}}. If x3 > xq, just like Subcase 1.2, one can get
xh > % and

vol(Ps) > 5-2z5 —4(2zh — 1) > 7.

When x5 > x3, we consider the following four situations:

Subcase 3.2.2.1. y3 —ys =1, ys —y3 = 1 and y5 — y4 = 3. Then, recalling the
assumption that —% <z < %7 the only possible candidates for ug are (1,—2) and
(2,—-2), and the only possible candidates for uz are (3,—1) and (1, —1). Then there is
no uy which can satisfy the condition Lemma 1.

Subcase 3.2.2.2. y3 —y2 =1, y4 —ys = 3 and y5 — y4 = 1. Then, recalling the
assumption that 72 <z < %, the only possible candidates for uy are (1,—2) and
(2,-2), and the only possible candidates for uz are (3,0) and (1,0). Then one can
deduce that the possible octagons have to take us = (2, —2), uz = (1,0) and uy = (0, 2).

2
Unfortunately, for such octagons we have

VOl(Pg) =0.

Subcase 3.2.2.3. ys—ys =1, y4 —ys = 2 and y5 — y4 = 2. Then, the only possible
candidates for uy are (1,—2) and (%, —2), and the only possible candidates for ugz are
(3,—3%) and (1,—3). Then one can deduce that the possible octagons have to take

w = (2,-2), u3 = (1,—1) and us = (0, 2). Unfortunately, for such octagons we have

vol(Ps) = T7.

Subcase 3.2.2.4. y3 —ys = 2, y4 —ys = 1 and y5 — y4 = 2. Then, the only

possible candidates for uy are (1,—32) and (2, —2), and the only possible candidates for

ug are (3,0) and (1,0). Then one can deduce that the possible octagons have to take
u, = (2,-2), u3 = (1,0) and uy = (0, 2). Unfortunately, for such octagons we have
vol(Pg) = 8.

Subcase 3.2.3. b = z§ > ). Similar to Subcase 2.3.3, one can deduce x4 > 1 and
therefore

vol(Ps) > 5 -2z — 32z — 1) =4ab, + 3 > 7.

As a conclusion of all these cases, Lemma 11 is proved. O
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4. Proofs of the theorems.

PROOF OF THEOREM 1. Assume that P,, is a centrally symmetric 2m-gon
satisfying 7*(Pa,,) = 5. First, by Fedorov’s theorem and Lemma 6 we have 4 <m < 7.
Second, by Lemma 9 and Lemma 8 we get m # 6 and 7, respectively. When m = 5, the
theorem follows by the first part of Lemma 10. Finally, when m = 4, the theorem follows
from the first part of Lemma 11. O

PROOF OF THEOREM 2. Let Q¢ denote the convex decagon with vertices u; =
(0, 1), Uy = (1,1), us = (%, %), uy = (%,0), u; = (1, —%), Ug = —ui, U7 = —Uua,
ug = —us, Ug = —uy and U9 = —us, let L; denote the straight line containing u; and
u;11, where ujo4; = w; and Ligy; = L;, let v} denote the common point of L;_o and L,
and let T; denote the triangle with vertices v;, u; and u;_1, as shown by Figure 18.

Vo
' T v}
T, W Uz N\ 73
Ui
us
\7
Uy uy
o \
v T,
us
ug
T
: uy Ug )
Figure 18.
Assume that Py is a fivefold lattice tile with vertices vi,va,..., vy satisfying
Vil — W = W —V;
and therefore
Vit1l = 2111‘ — Vi, (20)

where vy04; = v;. Apparently, it follows by convexity that
v; € int(T;), i=1,2,...,10.

In addition, by (20) we have
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v € int(T5),
vy € (2uy — int(75)) Nint(Ty),
2us — (2uy — int(T5)) N int(T4)) M int(T3)

uz — uy) + int(75)) N (2us — int(7y)) Nint(T3),
2u, — (2u3 — (2uy — int(75)) Nint(T})) N 1nt(T3)) A int(T)
2(up — uz +uy) — int(75)) N (2(uz — ug) +int(7y)) N (2ug — int(73)) Nint(72),
vi € <2u1 (2uy — (2u3 — (2uy — int(T5)) N int(T4)) N int(T5)) N int(T2)> A int(T})

(

Vo €

(
et
(
(

2(111 — Uz +us — U4) + 1nt(T5)) (2(111 — U2 + 113) — int(T4))
N (2(111 — 112) + lnt(Tg)) N (2111 — 1nt(T2)) n iIlt(Tl).

For convenience, we define

W = (2(111 —uy +ug— U4) + T5) N (2(111 —u2 + 113) — T4)
n (2(111 — llg) + T3) n (2[11 — Tg) NTj.

On the other hand, whenever we take
vy € int(IW)

and define v; successively by (20), the inverse of the above process and Lemma 4 guar-
antee that

v; € int(T;)

holds for all i = 1,2, ...,10. Therefore, by Lemma 1 the decagon with them as its vertices
is indeed a fivefold lattice tile.

By routine and detailed computation, it can be deduced from its definition that
W is a quadrilateral with vertices wi = (—1,1), wo = (=1,2), w3 = (-%,2) and
wy = (—32,2). Theorem 2 is proved. O

PrROOF OF THEOREM 3. Assume that Ps, is a centrally symmetric 2m-gon
satisfying 7*(Ps,,) = 6. First, by Fedorov’s theorem and Lemma 6 we have 4 <m < 7.
Second, by Lemma 9 and Lemma 8 we get m # 6 and 7, respectively. When m = 5,
the theorem follows by the second part of Lemma 10. Finally, when m = 4, the theorem
follows from the second part of Lemma 11. O

PrOOF OF THEOREM 4. Theorem 4 can be proved just like Theorem 2. g
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