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1 | INTRODUCTION
Let E" be the n-dimensional Euclidean space. For any bounded set S C E", we call
d(S) = sup{llx,yll : x,y € S}

the diameter of S, where || - || is the Euclidean norm. Let b(S) be the smallest number such that
S can be divided into b(S) subsets with diameters strictly smaller than d(S). In 1933, Borsuk [9]
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proved that an n-dimensional ball B" in E” cannot be partitioned into n parts of smaller diameters,
which was announced in his ICM-Zurich talk (see [8]). Meanwhile, he proved that every bounded
setin E? can be divided into three subsets of smaller diameters. Based on this fact, he proposed the
following problem. (Usually, the positive assertion of the problem is known as Borsuk’s partition
conjecture.)

Borsuk’s problem. Is it true that

b(S)sn+1

holds for every bounded set S in E"?
In 1934, Bonnesen and Fenchel [7] proved that every bounded set S of E? can be divided into
three subsets S;, S, and S, satisfying

3

d(s)) < ‘/7— Ld(S), i=1,23.
In fact, the upper bound \/5 /2 can be attained at circular domains.

In 1947, Perkal [30] sketched a proof for a positive answer to the three-dimensional partition

problem. Afterward, different proofs for this case were discovered by Eggleston [12], Griinbaum

[14], Heppes [17], and others (see [15, 35]). In particular, Griinbaum proved that every bounded set

S in E3 can be divided into four parts S;, S,, S5, and S, satisfying

d(S;) <0.9887-d(S), i=1,2,3,4.

In 1993, Kahn and Kalai [22] surprised the mathematical community by discovering coun-
terexamples to Borsuk’s conjecture in high dimensions. They proved that there exist sets S in
E" satisfying

b(S) > 1.07V".

Therefore, the first counterexample to Borsuk’s conjecture occurs in E>18!, Afterward, Kahn
and Kalai’s breakthrough was simplified by Alon [1] and improved by many authors, in par-
ticular by Hinrichs and Richter [18] to n > 298 in 2003. In 2014, Bondarenko [6] presented a
65-dimensional counterexample to Borsuk’s conjecture. Soon after, Jenrich and Brouwer [21] dis-
covered a 64-dimensional one. Up to now, Borsuk’s problem is still open for 4 < n < 63. Recently,
Zong [38] proposed a computer proof program to this problem.

As Borsuk’s conjecture is not true in high dimensions, obtaining upper bounds for the partition
number is an interesting problem. In 1955, Lenz [25] proved that

b(S) < (Vn+1)"

holds for every bounded set S in E”. This bound was successively improved by Danzer [11], Lassak
[24], and Schramm [32]. The best-known upper bound is

n
2

b(S) < Sn%(4+ logn)<%> )

which was discovered by Schramm in 1988.
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Let (R, || - ||*) be an n-dimensional normed space, that is, an n-dimensional real linear space R"
with norm || - ||*. It is well-known that B* = {x € R" . ||x||* < 1} is a centrally symmetric convex
body centered at the origin. Usually, a convex body means a convex compact set with nonempty
interior and B* is called the unit ball of (R", || - ||*). On the other hand, if C is a centrally symmetric
convex body centered at the origin and v is a vector in R", then

[[Vllc =min{r : r>0, verC}

defines a norm on R" and produces an n-dimensional normed space. Therefore, there is a
one-to-one correspondence between n-dimensional normed spaces and n-dimensional centrally
symmetric convex bodies centered at the origin. So, for convenience, we use M- = {R", || - ||} to
denote an n-dimensional normed space that takes C as the unit ball. In M, the distance between
two points x and y is defined by

1% yllc = lx=yllc-

For basic concepts and results in normed spaces, we refer to [28, 29].
Let S be a bounded set in M. We define

dc(S) = sup{lIx, yllc : X, y €S}

to be the diameter of S and define b (S) to be the smallest number such that S can be divided into
b (S) subsets, all of them having diameters strictly smaller than d.(S).

It is natural to study the analogies of Borsuk’s problem in normed spaces. For convenience, let
S be a bounded set in a normed space M and let S denote the closure of the convex hull of S. In
1957, Griinbaum [13] studied Borsuk’s partition problem in normed planes. He showed that, for
every bounded set S in a normed plane M,

bo(S) < 4,

where the equality holds if and only if S and C are homothetic parallelograms. In 1965, Boltyanski
and Gohberg [3, pp. 75, 92] made the following conjecture:

Boltyanski and Gohberg’s conjecture. For every bounded set S in an n-dimensional normed
space M, we have

be(S) <27,

where the equality holds if and only if S and C are homothetic parallelotopes.

Remark 1.1. When C is an n-dimensional cube, it is well-known and easy to see that
bo(C) = 2"

Let K denote a convex body, a compact and convex set with nonempty interior int(K), in E". Let
h(K) denote the smallest number of translates of AK (0 < 4 < 1) (or int(K)) such that their union
contains K. In 1957, Hadwiger [16] proposed the following conjecture, which has a close relation
with the Boltyanski-Gohberg conjecture.
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Hadwiger’s covering conjecture. For every n-dimensional convex body K, we have
h(K) < 2",
where the equality holds if and only if K is a parallelotope.
This conjecture has been studied by many authors, including Bezdek, Boltyanski, Lassak, Levi,
Martini, Rogers, Soltan, Wu, and Zong. The two-dimensional case was solved by Levi [26] in 1954.
However, the conjecture is still open for all n > 3. As the target of this paper is the Boltyanski-

Gohberg conjecture, we will not go to the details of Hadwiger’s conjecture. We refer the interested
readers to the references of [2, 4, 10, 19, 37]. Here we only list two results that will be useful in this

paper.

Lemma 1.1 (Boltyanski and Gohberg [3]). For every bounded set S in a normed space M = {R", || -
I}, we have

be(S) < h(S).
This lemma is simple, one can take it as an exercise.
Lemma 1.2 (Rogers and Zong [31]). For every n-dimensional K, we have
h(K) < <2:>n(logn + loglogn + 5).
For every n-dimensional centrally symmetric convex body C, we have
h(C) < 2"n(logn + loglogn + 5).

There are some partial results on the Boltyanski-Gohberg conjecture for particular sets and
norms (see [5, 20, 23, 27, 33, 34, 36]). However, it is still open for all n > 3 in general. As a
consequence of Lemma 1.1 and the first part of Lemma 1.2, we have that

bo(S) € (Znn> n(logn + loglogn + 5)

holds for every bounded set S in an n-dimensional normed space M. Recently, this upper bound

was improved by [10, 19] to
n
be(S) < -Q -4",
) eXp( <aogn)8>>

also by studying Hadwiger’s conjecture. In this paper, we will prove the following theorem:

Theorem 1.1. For every bounded set S in an n-dimensional normed space M, we have

be(S) < 2™(n + 1)(log(n + 1) + loglog(n + 1) + 5) = 20+,
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Remark 1.2. As usual, we write f(n) = o(g(n)) if

lim M=

0.
n—co g(n)

2 | PROOF OF THE THEOREM

First, let us recall a basic concept in convex geometry. For every n-dimensional convex body K,
we define

DK)=K-K={x-y: X, yeEK}L

Usually, it is known as the difference body of K. Clearly, D(K) is centrally symmetric and convex.
In fact the norm || - || ok defined by D(K) plays the key role of our proof.

Furthermore, for convenience, let K" denote the set of all n-dimensional convex bodies K and
let C" denote the set of all n-dimensional centrally symmetric convex bodies C. It is easy to see
that

dc(S) = d(S)
and
bo(S) < be(S) 1)

holds for all bounded sets S in M. Therefore, to study the Boltyanski-Gohberg conjecture, it is
sufficient to deal with the convex bodies in K".

Lemma 2.1. In every n-dimensional normed space M, we have
< .
ax bc(K) < max bp)(K)
Proof. Without loss of generality, let K be an n-dimensional convex body in M with d-(K) = 1.

Assume that x = x; — X, and y =y, — y, are two points in D(K), where all x,, X,, y; and y, are
points in K. Then, one can deduce that

1%, ¥llc < 11%; =%y, 0llc + [Iy1 = ¥2,0llc = [IX1, X5 llc + [[Y1: V2lle <2
and therefore
de(D(K)) < 2 22)
(In fact, one has d-(D(K)) = 2). Then, we obtain

D(K)CC
and, therefore,

dc(S) < dpk)(S) (2.3)

for all sets S in M.
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On the other hand, for any pair of points x, y € K, we have
1% ¥llp) = 51% =,y = Xllpe)
and therefore
dpx)(K) = 1. (2.4)
If K can be divided into bp k) (K) subsets X3, X5, ..., X by (K) satisfying
dpX;) <1, i=12,..,bpx(K),
it follows by (2.3) that
de(X) <1, i=1,2,..,byx)K)
and therefore
be(K) < by (K).
Consequently, we get

b-(K) < b K).
max bo(K) < max by, (K)

Lemma 2.1 is proved. Ol

Assume that K is a convex body in R". We embed it into R"*! = R" X R and create a centrally
symmetric convex body K* in R**!, Setting K in the n-dimensional hyperplane

H ={(x}, X5, 0, X 41) © Xy = 0}

of R"*1 and writing e = (0,0, ..., 0, 1), then we define

K'=K+e)u(—K —e).
Clearly, K* is a centrally symmetric convex body in R"*! and, therefore, D(K*) = 2K".
Lemma 2.2.
bp(K") = bp\(K + €) + by (=K — €) = 2bp ¢\ (K + e).
Proof. First of all, we note that
dpgH(K) =1
and

”X’y“D(K') =1,
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wheneverx € K + eandy € —K —e. Thus, if X, X, ""XbD<z<->(K') is a partition of K* such that
dD(K‘)(Xi) < 1, l = 1, 2, ceey bD(K‘)(K.)’

none of the parts can contain two points x € K + e and y € —K — e simultaneously. Therefore,
we have

bp(K") = bpx)(K + €) + bpg (=K —e). (2.5)
It is easy to see that
DK')NH ={x-y : x,y € K} = DX).
Therefore, we have
dpi(K +e) =dpgy(—K—e)=1. (2.6)
By symmetry, we have
bp)(K + €) = bp (=K —e). 2.7)
Assume that by .\ (K + e) = m and K, K, ..., K,,, is a partition of K + e satisfying
dpn&) <1, i=1,2,..,m
Clearly, —K;, —K,, ..., =K, is a partition of —K — e satisfying
dp(—Kp) <1, i=12,..,m
We define
HY ={(xq, e, Xp4q) & Xpyq = O},
H™ ={(x1, e, Xpyq) © Xpyq <03,
T,=(K,U(-K —e)nH*

fori=1,2,.., m,and

Tpii = (K))UK +e)NH"

fori =1, 2, ..., m. It is obvious that

K:Un. (2.8)
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Next, we proceed to verify that

holds foralli = 1, 2, ..., m. For every pair of points x,y € T}, there exist two numbers 4, u € [0, %]
and four points x;,y; € K, X,,y, € —K — e such that

x=(1-2A)x; +1x,
and

y =1 = Wy, + u1y,.

Hence, we have

1%1, ¥1llpgey < 1.

Iy X llpgey =1
and
1%, ¥2llpgey < 1.
Without loss of generality, we assume that A > u. Then, we get
1%, ¥llpk) = 1X = ¥lpk-
=1 =D —y1) + (= Dy — %) + uX; = ¥2)llp
<A =DIx, yillpkey + (A = wlly1 Xl pey + #l1Xa, Yallp)
<l1—-A4+1—-pu+u=1
and therefore
dpH(T) <1, i=12,..,m. (2.9)
Similarly, one can deduce that
dpy(T) <1, i=m+1,m+2,..,2m. (2.10)
As a conclusion of (2.7), (2.8), (2.9), and (2.10), we get
bp)(K*) < 2m = by (K + €) + by (=K —e). (1)
By (2.5) and (2.11), Lemma 2.2 is proved. O
Lemma 2.3.
bp+(K + €) = bp)(K).
Proof. Recalling the equation just below (2.5),

D(X*)nH = D(K),
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when we measure the diameters of subsets of K +e by | - [|[pk-), the real norm is || - ||p(x)-
Therefore, we get

bp+)(K + €) = bpx)(K).
Lemma 2.3 is proved.
Proof of Theorem 1.1.. By Lemmas 2.2 and 2.3, we have
bp(K*) = 2bpy(K + €) = 2bpy(K). (212)
AsK® € C""!, by Lemma 1.1 and the second part of Lemma 1.2, we get
bp- (K" < h(K*) < 2" (n + 1)(log(n + 1) + loglog(n + 1) + 5).

Therefore, by (2.12) we have

1 .
bpxy(K) = EbD(K')(K )

< 2"(n + 1)(log(n + 1) + loglog(n + 1) + 5)

— 2(1+o(1))n
for all K € K". Then, Theorem 1.1 follows from (2.1) and Lemma 2.1 O

ACKNOWLEDGMENTS

Wang and Zong are supported by the National Natural Science Foundation of China
(NSFC12226006, NSFC11921001) and the Natural Key Research and Development Program of
China (2018YFA0704701). Xue is supported by the National Natural Science Foundation of China
(NSFC12201307) and Jiangsu Natural Science Foundation (BK20210555). The authors are grateful
to the referee and Professor Senlin Wu for their helpful suggestions.

JOURNAL INFORMATION

The Bulletin of the London Mathematical Society is wholly owned and managed by the London
Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission.
All surplus income from its publishing programme is used to support mathematicians and
mathematics research in the form of research grants, conference grants, prizes, initiatives for
early career researchers and the promotion of mathematics.

REFERENCES

1. N. Alon and A. Nilli, On Borsuk’s problem, Contemp. Math. 178 (1994), 209-210.

2. K. Bezdek and M. A. Khan, The geometry of homothetic covering and illumination, Discrete geometry and
symmetry, Springer Proc. Math. Stat., vol. 234, Springer, Cham, 2018, pp. 1-30.

3. V. G. Boltyanski and I. T. Gohberg, Results and problems in combinatorial geometry, Cambridge University
Press, Cambridge, 1985; Nauka, Moscow, 1965.

4. V. G. Boltyanski, H. Martini, and V. P. Soltan, Excursions into combinatorial geometry, Springer, Berlin, 1997.

5. V. G. Boltyanski and V. P. Soltan, Borsuk’s problem (in Russian), Mat. Zametki 22 (1977), 621-631.

6. A. Bondarenko, On Borsuk’s conjecture for two-distance sets, Discrete Comput. Geom. 51 (2014), 509-515.

7. T. Bonnesen and W. Fenchel, Theorie der Konvexen Korper, Springer, Berlin, 1934.

35U8017 SUOLULLIOD A1) dqeal(dde auy Aq pausenob ae sop e YO ‘3sn Jo sajnl 10} AkeiqiauljuQ AB|IAN UO (SUOIIPUOD-pUR-SWB)W0Y" B |1 Ae.q 1 |BU1UO//SA1Y) SUORIPUOD Pue SWIB | 3U} 89S *[7202/T0/8z] Uo ARiqiauliug AB|Im ‘UiesH Aisieaiun Buied Aq 6T62ZT'SWIA/ZTTT OT/I0p/Wod A8 1M AReiq 1pujuo d0syIewpuo|//sdny wouj papeojumod ‘T ‘¥20Z ‘02T2697T



ON BOLTYANSKI AND GOHBERG’S PARTITION CONJECTURE 149

11.

12.

13.
14.

15.
16.
17.

18.
19.

20.
21.

22.
23.

24.

25.
26.
27.
28.

29.
30.
31
32.
33.

34.

35.
36.

37.
38.

. K. Borsuk, Uber die Zerlegung einer n-dimensionalen Vollkugel in n Mengen, Verh. Internat. Math.-Kongress

Ziirich, 1932, Bd. II, ed. W. Saxer, Orell Fiissli, Ziirich, 1932, p. 192.

. K. Borsuk, Drei Siitze iiber die n-dimensionale euklidische Sphdre, Fund. Math. 20 (1933), 177-190.
10.

M. Campos, P. van Hintum, R. Morris, and M. Tiba, Towards Hadwiger’s conjecture via Bourgain Slicing,
arXiv:2206.11227.

L. Danzer, Uber Durchschnittseigenschaften n-dimensionaler Kugelfamilien, J. Reine Angew. Math. 208 (1961),
181-203.

H. G. Eggleston, Covering a three-dimensional set with sets of smaller diameter, J. Lond. Math. Soc. 30 (1955),
11-24.

B. Griinbaum, Borsuk’s partition conjecture in Minkowski planes, Bull. Res. Council Israel 7 (1957), 25-30.

B. Griinbaum, A simple proof of Borsuk’s conjecture in three dimensions, Proc. Cambridge Philos. Soc. 53 (1957),
776-778.

B. Griinbaum, Borsuk’s problem and related questions, Proc. Symp. Pure Math. 7 (1963), 271-284.

H. Hadwiger, Ungeldste Probleme Nr. 20, Elem. Math. 12 (1957), 121.

A. Heppes, On the partitioning of three-dimensional point-sets into sets of smaller diameter (Hungarian), Magyar
Tud. Akad. Mat. Fiz. Oszt. Kozl. 7 (1957), 413-416.

A. Hinrichs and C. Richter, New sets with large Borsuk numbers, Discrete Math. 270 (2003), 137-147.

H. Huang, B. A. Slomka, T. Tkocz, and B. Vritsiou, Improved bounds for Hadwigers covering problem via thin-
shell estimates, J. Eur. Math. Soc. 24 (2021), 1431-1448.

M. Hujter and Z. Langi, On the multiple Borsuk numbers of sets, Israel J. Math. 199 (2014), 219-239.

T.Jenrich and A. E. Brouwer, A 64-dimensional counterexample to Borsuk’s conjecture, Electron. J. Combin. 21
(2014), 4.29.

J. Kahn and G. Kalai, A counterexample to Borsuk’s conjecture, Bull. Amer. Math. Soc. (N.S.) 29 (1993), 60-62.
Z. Langi and M. Naszo6di, On multiple Borsuk numbers in normed spaces, Studia Sci. Math. Hungar. 54 (2017),
13-26.

M. Lassak, An estimate concerning Borsuk partition problem, Bull. Acad. Polon. Sci. Sér. Sci. Math. 30 (1982),
449-451.

H. Lenz, Zur Zerlegung von Punktmengen in solche kleineren Durchmessers, Arch. Math. 6 (1955), 413-416.

F. W. Levi, Ein geometrisches Uberdeckungsproblem, Arch. Math. 5 (1954), 476-478.

Y. Lian and S. Wu, Partition bounded sets into sets having smaller diameters, Results Math. 76 (2021), 116.

J. Lindenstrauss and V. D. Milman, The local theory of normed spaces and its applications to convexity,
Handbook of convex geometry (P. M. Gruber and J. M. Wills, eds.), North-Holland, Amsterdam, 1993,
pp. 1149-1220.

H. Martini and K. J. Swanepoel, The geometry of Minkowski spaces: a survey. IT, Expo. Math. 22 (2004), 93-144.
J. Perkal, Sur la subdivision des ensembles en parties de diamétre inférieur, Colloq. Math. 1 (1947), 45.

C. A. Rogers and C. Zong, Covering convex bodies by translates of convex bodies, Mathematika 44 (1997), 215-218.
O. Schramm, Illuminating sets of constant width, Mathematika 35 (1988), 180-189.

J. Wang and F. Xue, Borsuk’s partition problem in four-dimensional £ p space, Math. Inequal. Appl. 25 (2023),
131-139.

L. Yu and C. Zong, On the blocking number and the covering number of a convex body, Adv. Geom. 9 (2009),
13-29.

C. Zong, Strange phenomena in convex and discrete geometry, Springer, New York, 1996.

C. Zong, The kissing number, blocking number and covering number of a convex body, Contemp. Math. 453
(2008), 529-548.

C. Zong, A quantitative program for Hadwiger’s covering conjecture, Sci. China Math. 53 (2010), 2551-2560.

C. Zong, Borsuk’s partition conjecture, Jpn. J. Math. 16 (2021), 185-201.

25UBD17 SLOWILLOD) BAIER1D) 3|gedt[dde aUy Aq pauseno afe SSpILe WO ‘88N JO S3IN1 10} ARIq 1T BUIIUO 3|1 UO (SUO HIPUCD-PUR-SWLB)LI0D" AB| 1M ARe.q Ul jUO//Sd1Y) SUORIPUOD PUe SIS L 8U) 885 * [1202/T0/82] UO ARIqITauIUuO ABIM ‘UiesH AisAun Bunpd AQ 6T62T'SWG/ZTTT OT/I0p/LOY A8 | 1M ALRIq BUIIUO"D0SUTRLPUO|//SANY WO papeojumod ‘T ‘720z ‘0212697 T



	On Boltyanski and Gohberg’s partition conjecture
	Abstract
	1 | INTRODUCTION
	2 | PROOF OF THE THEOREM
	ACKNOWLEDGMENTS
	JOURNAL INFORMATION
	REFERENCES


