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Abstract
In 1965, Boltyanski and Gohberg made the following
conjecture: Every bounded set in an 𝑛-dimensional
normed space can be divided into 2𝑛 subsets of
smaller diameters. In this paper, we prove the following
result: Every bounded set in an 𝑛-dimensional normed
space can be divided into 2(1+𝑜(1))𝑛 subsets of smaller
diameters.
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1 INTRODUCTION

Let 𝔼𝑛 be the 𝑛-dimensional Euclidean space. For any bounded set 𝑆 ⊆ 𝔼𝑛, we call

𝑑(𝑆) = sup{‖𝐱, 𝐲‖ ∶ 𝐱, 𝐲 ∈ 𝑆}
the diameter of 𝑆, where ‖ ⋅ ‖ is the Euclidean norm. Let 𝑏(𝑆) be the smallest number such that
𝑆 can be divided into 𝑏(𝑆) subsets with diameters strictly smaller than 𝑑(𝑆). In 1933, Borsuk [9]
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ON BOLTYANSKI AND GOHBERG’S PARTITION CONJECTURE 141

proved that an 𝑛-dimensional ball𝐵𝑛 in𝔼𝑛 cannot be partitioned into 𝑛 parts of smaller diameters,
whichwas announced in his ICM–Zurich talk (see [8]).Meanwhile, he proved that every bounded
set in 𝔼2 can be divided into three subsets of smaller diameters. Based on this fact, he proposed the
following problem. (Usually, the positive assertion of the problem is known as Borsuk’s partition
conjecture.)
Borsuk’s problem. Is it true that

𝑏(𝑆) ⩽ 𝑛 + 1

holds for every bounded set 𝑆 in 𝔼𝑛?
In 1934, Bonnesen and Fenchel [7] proved that every bounded set 𝑆 of 𝔼2 can be divided into

three subsets 𝑆1, 𝑆2 and 𝑆3 satisfying

𝑑(𝑆𝑖) ⩽

√
3

2
⋅ 𝑑(𝑆), 𝑖 = 1, 2, 3.

In fact, the upper bound
√
3∕2 can be attained at circular domains.

In 1947, Perkal [30] sketched a proof for a positive answer to the three-dimensional partition
problem. Afterward, different proofs for this case were discovered by Eggleston [12], Grünbaum
[14], Heppes [17], and others (see [15, 35]). In particular, Grünbaum proved that every bounded set
𝑆 in 𝔼3 can be divided into four parts 𝑆1, 𝑆2, 𝑆3, and 𝑆4 satisfying

𝑑(𝑆𝑖) ⩽ 0.9887 ⋅ 𝑑(𝑆), 𝑖 = 1, 2, 3, 4.

In 1993, Kahn and Kalai [22] surprised the mathematical community by discovering coun-
terexamples to Borsuk’s conjecture in high dimensions. They proved that there exist sets 𝑆 in
𝔼𝑛 satisfying

𝑏(𝑆) ⩾ 1.07
√
𝑛.

Therefore, the first counterexample to Borsuk’s conjecture occurs in 𝔼21801. Afterward, Kahn
and Kalai’s breakthrough was simplified by Alon [1] and improved by many authors, in par-
ticular by Hinrichs and Richter [18] to 𝑛 ⩾ 298 in 2003. In 2014, Bondarenko [6] presented a
65-dimensional counterexample to Borsuk’s conjecture. Soon after, Jenrich and Brouwer [21] dis-
covered a 64-dimensional one. Up to now, Borsuk’s problem is still open for 4 ⩽ 𝑛 ⩽ 63. Recently,
Zong [38] proposed a computer proof program to this problem.
As Borsuk’s conjecture is not true in high dimensions, obtaining upper bounds for the partition

number is an interesting problem. In 1955, Lenz [25] proved that

𝑏(𝑆) ⩽ (
√
𝑛 + 1)𝑛

holds for every bounded set 𝑆 in 𝔼𝑛. This boundwas successively improved by Danzer [11], Lassak
[24], and Schramm [32]. The best-known upper bound is

𝑏(𝑆) ⩽ 5𝑛
3
2 (4 + log 𝑛)

(
3

2

) 𝑛
2
,

which was discovered by Schramm in 1988.
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142 WANG et al.

Let (ℝ𝑛, ‖ ⋅ ‖∗) be an𝑛-dimensionalnormed space, that is, an𝑛-dimensional real linear spaceℝ𝑛
with norm ‖ ⋅ ‖∗. It is well-known that 𝐵∗ = {𝐱 ∈ ℝ𝑛 ∶ ‖𝐱‖∗ ⩽ 1} is a centrally symmetric convex
body centered at the origin. Usually, a convex body means a convex compact set with nonempty
interior and𝐵∗ is called the unit ball of (ℝ𝑛, ‖ ⋅ ‖∗). On the other hand, if𝐶 is a centrally symmetric
convex body centered at the origin and 𝐯 is a vector in ℝ𝑛, then

‖𝐯‖𝐶 = min{𝑟 ∶ 𝑟 ⩾ 0, 𝐯 ∈ 𝑟𝐶}
defines a norm on ℝ𝑛 and produces an 𝑛-dimensional normed space. Therefore, there is a
one-to-one correspondence between 𝑛-dimensional normed spaces and 𝑛-dimensional centrally
symmetric convex bodies centered at the origin. So, for convenience, we use𝑀𝐶 = {ℝ

𝑛, ‖ ⋅ ‖𝐶} to
denote an 𝑛-dimensional normed space that takes 𝐶 as the unit ball. In𝑀𝐶 , the distance between
two points 𝐱 and 𝐲 is defined by

‖𝐱, 𝐲‖𝐶 = ‖𝐱 − 𝐲‖𝐶.
For basic concepts and results in normed spaces, we refer to [28, 29].
Let 𝑆 be a bounded set in𝑀𝐶 . We define

𝑑𝐶(𝑆) = sup{‖𝐱, 𝐲‖𝐶 ∶ 𝐱, 𝐲 ∈ 𝑆}
to be the diameter of 𝑆 and define 𝑏𝐶(𝑆) to be the smallest number such that 𝑆 can be divided into
𝑏𝐶(𝑆) subsets, all of them having diameters strictly smaller than 𝑑𝐶(𝑆).
It is natural to study the analogies of Borsuk’s problem in normed spaces. For convenience, let

𝑆 be a bounded set in a normed space𝑀𝐶 and let 𝑆 denote the closure of the convex hull of 𝑆. In
1957, Grünbaum [13] studied Borsuk’s partition problem in normed planes. He showed that, for
every bounded set 𝑆 in a normed plane𝑀𝐶 ,

𝑏𝐶(𝑆) ⩽ 4,

where the equality holds if and only if 𝑆 and 𝐶 are homothetic parallelograms. In 1965, Boltyanski
and Gohberg [3, pp. 75, 92] made the following conjecture:
Boltyanski and Gohberg’s conjecture. For every bounded set 𝑆 in an 𝑛-dimensional normed

space𝑀𝐶 , we have

𝑏𝐶(𝑆) ⩽ 2
𝑛,

where the equality holds if and only if 𝑆 and 𝐶 are homothetic parallelotopes.

Remark 1.1. When 𝐶 is an 𝑛-dimensional cube, it is well-known and easy to see that

𝑏𝐶(𝐶) = 2
𝑛.

Let𝐾 denote a convex body, a compact and convex set with nonempty interior int(𝐾), in 𝔼𝑛. Let
ℎ(𝐾) denote the smallest number of translates of 𝜆𝐾 (0 < 𝜆 < 1) (or int(𝐾)) such that their union
contains 𝐾. In 1957, Hadwiger [16] proposed the following conjecture, which has a close relation
with the Boltyanski–Gohberg conjecture.
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ON BOLTYANSKI AND GOHBERG’S PARTITION CONJECTURE 143

Hadwiger’s covering conjecture. For every 𝑛-dimensional convex body 𝐾, we have

ℎ(𝐾) ⩽ 2𝑛,

where the equality holds if and only if 𝐾 is a parallelotope.
This conjecture has been studied by many authors, including Bezdek, Boltyanski, Lassak, Levi,

Martini, Rogers, Soltan, Wu, and Zong. The two-dimensional case was solved by Levi [26] in 1954.
However, the conjecture is still open for all 𝑛 ⩾ 3. As the target of this paper is the Boltyanski–
Gohberg conjecture, we will not go to the details of Hadwiger’s conjecture.We refer the interested
readers to the references of [2, 4, 10, 19, 37]. Here we only list two results that will be useful in this
paper.

Lemma1.1 (Boltyanski andGohberg [3]). For every bounded set 𝑆 in a normed space𝑀𝐶 = {ℝ
𝑛, ‖ ⋅‖𝐶}, we have

𝑏𝐶(𝑆) ⩽ ℎ(𝑆).

This lemma is simple, one can take it as an exercise.

Lemma 1.2 (Rogers and Zong [31]). For every 𝑛-dimensional 𝐾, we have

ℎ(𝐾) ⩽

(
2𝑛

𝑛

)
𝑛(log 𝑛 + log log 𝑛 + 5).

For every 𝑛-dimensional centrally symmetric convex body 𝐶, we have

ℎ(𝐶) ⩽ 2𝑛𝑛(log 𝑛 + log log 𝑛 + 5).

There are some partial results on the Boltyanski–Gohberg conjecture for particular sets and
norms (see [5, 20, 23, 27, 33, 34, 36]). However, it is still open for all 𝑛 ⩾ 3 in general. As a
consequence of Lemma 1.1 and the first part of Lemma 1.2, we have that

𝑏𝐶(𝑆) ⩽

(
2𝑛

𝑛

)
𝑛(log 𝑛 + log log 𝑛 + 5)

holds for every bounded set 𝑆 in an 𝑛-dimensional normed space𝑀𝐶 . Recently, this upper bound
was improved by [10, 19] to

𝑏𝐶(𝑆) ⩽ exp
(
−Ω

(
𝑛

(log 𝑛)8

))
⋅ 4𝑛,

also by studying Hadwiger’s conjecture. In this paper, we will prove the following theorem:

Theorem 1.1. For every bounded set 𝑆 in an 𝑛-dimensional normed space𝑀𝐶 , we have

𝑏𝐶(𝑆) ⩽ 2
𝑛(𝑛 + 1)(log(𝑛 + 1) + log log(𝑛 + 1) + 5) = 2(1+𝑜(1))𝑛.
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144 WANG et al.

Remark 1.2. As usual, we write 𝑓(𝑛) = 𝑜(g(𝑛)) if

lim
𝑛→∞

𝑓(𝑛)

g(𝑛)
= 0.

2 PROOF OF THE THEOREM

First, let us recall a basic concept in convex geometry. For every 𝑛-dimensional convex body 𝐾,
we define

𝐷(𝐾) = 𝐾 − 𝐾 = {𝐱 − 𝐲 ∶ 𝐱, 𝐲 ∈ 𝐾}.

Usually, it is known as the difference body of 𝐾. Clearly, 𝐷(𝐾) is centrally symmetric and convex.
In fact the norm ‖ ⋅ ‖𝐷(𝐾) defined by 𝐷(𝐾) plays the key role of our proof.
Furthermore, for convenience, let𝑛 denote the set of all 𝑛-dimensional convex bodies 𝐾 and

let 𝑛 denote the set of all 𝑛-dimensional centrally symmetric convex bodies 𝐶. It is easy to see
that

𝑑𝐶(𝑆) = 𝑑𝐶(𝑆)

and

𝑏𝐶(𝑆) ⩽ 𝑏𝐶(𝑆) (2.1)

holds for all bounded sets 𝑆 in𝑀𝐶 . Therefore, to study the Boltyanski–Gohberg conjecture, it is
sufficient to deal with the convex bodies in

𝑛.

Lemma 2.1. In every 𝑛-dimensional normed space𝑀𝐶 , we have

max
𝐾∈𝑛

𝑏𝐶(𝐾) ⩽ max
𝐾∈𝑛

𝑏𝐷(𝐾)(𝐾).

Proof. Without loss of generality, let 𝐾 be an 𝑛-dimensional convex body in𝑀𝐶 with 𝑑𝐶(𝐾) = 1.
Assume that 𝐱 = 𝐱1 − 𝐱2 and 𝐲 = 𝐲1 − 𝐲2 are two points in 𝐷(𝐾), where all 𝐱1, 𝐱2, 𝐲1 and 𝐲2 are
points in 𝐾. Then, one can deduce that

‖𝐱, 𝐲‖𝐶 ⩽ ‖𝐱1 − 𝐱2, 𝐨‖𝐶 + ‖𝐲1 − 𝐲2, 𝐨‖𝐶 = ‖𝐱1, 𝐱2‖𝐶 + ‖𝐲1, 𝐲2‖𝐶 ⩽ 2
and therefore

𝑑𝐶(𝐷(𝐾)) ⩽ 2 (2.2)

(In fact, one has 𝑑𝐶(𝐷(𝐾)) = 2). Then, we obtain

𝐷(𝐾) ⊆ 𝐶

and, therefore,

𝑑𝐶(𝑆) ⩽ 𝑑𝐷(𝐾)(𝑆) (2.3)

for all sets 𝑆 in𝑀𝐶 .
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ON BOLTYANSKI AND GOHBERG’S PARTITION CONJECTURE 145

On the other hand, for any pair of points 𝐱, 𝐲 ∈ 𝐾, we have

‖𝐱, 𝐲‖𝐷(𝐾) = 1

2
‖𝐱 − 𝐲, 𝐲 − 𝐱‖𝐷(𝐾)

and therefore

𝑑𝐷(𝐾)(𝐾) = 1. (2.4)

If 𝐾 can be divided into 𝑏𝐷(𝐾)(𝐾) subsets 𝑋1, 𝑋2, …, 𝑋𝑏𝐷(𝐾)(𝐾) satisfying

𝑑𝐷(𝐾)(𝑋𝑖) < 1, 𝑖 = 1, 2, … , 𝑏𝐷(𝐾)(𝐾),

it follows by (2.3) that

𝑑𝐶(𝑋𝑖) < 1, 𝑖 = 1, 2, … , 𝑏𝐷(𝐾)(𝐾)

and therefore

𝑏𝐶(𝐾) ⩽ 𝑏𝐷(𝐾)(𝐾).

Consequently, we get

max
𝐾∈𝑛

𝑏𝐶(𝐾) ⩽ max
𝐾∈𝑛

𝑏𝐷(𝐾)(𝐾).

Lemma 2.1 is proved. □

Assume that 𝐾 is a convex body in ℝ𝑛. We embed it into ℝ𝑛+1 = ℝ𝑛 × ℝ and create a centrally
symmetric convex body 𝐾∙ in ℝ𝑛+1. Setting 𝐾 in the 𝑛-dimensional hyperplane

𝐻 = {(𝑥1, 𝑥2, … , 𝑥𝑛+1) ∶ 𝑥𝑛+1 = 0}

of ℝ𝑛+1 and writing 𝐞 = (0, 0, … , 0, 1), then we define

𝐾∙ = (𝐾 + 𝐞) ∪ (−𝐾 − 𝐞).

Clearly, 𝐾∙ is a centrally symmetric convex body in ℝ𝑛+1 and, therefore, 𝐷(𝐾∙) = 2𝐾∙.

Lemma 2.2.

𝑏𝐷(𝐾∙)(𝐾
∙) = 𝑏𝐷(𝐾∙)(𝐾 + 𝐞) + 𝑏𝐷(𝐾∙)(−𝐾 − 𝐞) = 2𝑏𝐷(𝐾∙)(𝐾 + 𝐞).

Proof. First of all, we note that

𝑑𝐷(𝐾∙)(𝐾
∙) = 1

and

‖𝐱, 𝐲‖𝐷(𝐾∙) = 1,
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146 WANG et al.

whenever 𝐱 ∈ 𝐾 + 𝐞 and 𝐲 ∈ −𝐾 − 𝐞. Thus, if 𝑋1, 𝑋2,…, 𝑋𝑏𝐷(𝐾∙)(𝐾∙) is a partition of 𝐾
∙ such that

𝑑𝐷(𝐾∙)(𝑋𝑖) < 1, 𝑖 = 1, 2, … , 𝑏𝐷(𝐾∙)(𝐾
∙),

none of the parts can contain two points 𝐱 ∈ 𝐾 + 𝐞 and 𝐲 ∈ −𝐾 − 𝐞 simultaneously. Therefore,
we have

𝑏𝐷(𝐾∙)(𝐾
∙) ⩾ 𝑏𝐷(𝐾∙)(𝐾 + 𝐞) + 𝑏𝐷(𝐾∙)(−𝐾 − 𝐞). (2.5)

It is easy to see that

𝐷(𝐾∙) ∩ 𝐻 = {𝐱 − 𝐲 ∶ 𝐱, 𝐲 ∈ 𝐾} = 𝐷(𝐾).

Therefore, we have

𝑑𝐷(𝐾∙)(𝐾 + 𝐞) = 𝑑𝐷(𝐾∙)(−𝐾 − 𝐞) = 1. (2.6)

By symmetry, we have

𝑏𝐷(𝐾∙)(𝐾 + 𝐞) = 𝑏𝐷(𝐾∙)(−𝐾 − 𝐞). (2.7)

Assume that 𝑏𝐷(𝐾∙)(𝐾 + 𝐞) = 𝑚 and 𝐾1, 𝐾2, …, 𝐾𝑚 is a partition of 𝐾 + 𝐞 satisfying

𝑑𝐷(𝐾∙)(𝐾𝑖) < 1, 𝑖 = 1, 2, … ,𝑚.

Clearly, −𝐾1, −𝐾2, …, −𝐾𝑚 is a partition of −𝐾 − 𝐞 satisfying

𝑑𝐷(𝐾∙)(−𝐾𝑖) < 1, 𝑖 = 1, 2, … ,𝑚.

We define

𝐻+ = {(𝑥1, … , 𝑥𝑛+1) ∶ 𝑥𝑛+1 ⩾ 0},

𝐻− = {(𝑥1, … , 𝑥𝑛+1) ∶ 𝑥𝑛+1 ⩽ 0},

𝑇𝑖 = (𝐾𝑖 ∪ (−𝐾 − 𝐞)) ∩ 𝐻
+

for 𝑖 = 1, 2, …,𝑚, and

𝑇𝑚+𝑖 = ((−𝐾𝑖) ∪ (𝐾 + 𝐞)) ∩ 𝐻
−

for 𝑖 = 1, 2, …,𝑚. It is obvious that

𝐾∙ =

2𝑚⋃
𝑖=1

𝑇𝑖. (2.8)
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ON BOLTYANSKI AND GOHBERG’S PARTITION CONJECTURE 147

Next, we proceed to verify that

𝑑𝐷(𝐾∙)(𝑇𝑖) < 1

holds for all 𝑖 = 1, 2,…,𝑚. For every pair of points 𝐱, 𝐲 ∈ 𝑇𝑖 , there exist two numbers 𝜆, 𝜇 ∈ [0,
1

2
]

and four points 𝐱1, 𝐲1 ∈ 𝐾𝑖 , 𝐱2, 𝐲2 ∈ −𝐾 − 𝐞 such that

𝐱 = (1 − 𝜆)𝐱𝟏 + 𝜆𝐱2

and

𝐲 = (1 − 𝜇)𝐲𝟏 + 𝜇𝐲2.

Hence, we have

‖𝐱1, 𝐲1‖𝐷(𝐾∙) < 1,
‖𝐲1, 𝐱2‖𝐷(𝐾∙) = 1

and

‖𝐱2, 𝐲2‖𝐷(𝐾∙) ⩽ 1.
Without loss of generality, we assume that 𝜆 > 𝜇. Then, we get

‖𝐱, 𝐲‖𝐷(𝐾∙) = ‖𝐱 − 𝐲‖𝐷(𝐾∙)
= ‖(1 − 𝜆)(𝐱1 − 𝐲1) + (𝜇 − 𝜆)(𝐲1 − 𝐱2) + 𝜇(𝐱2 − 𝐲2)‖𝐷(𝐾∙)
⩽ (1 − 𝜆)‖𝐱1, 𝐲1‖𝐷(𝐾∙) + (𝜆 − 𝜇)‖𝐲1, 𝐱2‖𝐷(𝐾∙) + 𝜇‖𝐱2, 𝐲2‖𝐷(𝐾∙)
< 1 − 𝜆 + 𝜆 − 𝜇 + 𝜇 = 1

and therefore

𝑑𝐷(𝐾∙)(𝑇𝑖) < 1, 𝑖 = 1, 2, … ,𝑚. (2.9)

Similarly, one can deduce that

𝑑𝐷(𝐾∙)(𝑇𝑖) < 1, 𝑖 = 𝑚 + 1,𝑚 + 2,… , 2𝑚. (2.10)

As a conclusion of (2.7), (2.8), (2.9), and (2.10), we get

𝑏𝐷(𝐾∙)(𝐾
∙) ⩽ 2𝑚 = 𝑏𝐷(𝐾∙)(𝐾 + 𝐞) + 𝑏𝐷(𝐾∙)(−𝐾 − 𝐞). (2.11)

By (2.5) and (2.11), Lemma 2.2 is proved. □

Lemma 2.3.

𝑏𝐷(𝐾∙)(𝐾 + 𝐞) = 𝑏𝐷(𝐾)(𝐾).

Proof. Recalling the equation just below (2.5),

𝐷(𝐾∙) ∩ 𝐻 = 𝐷(𝐾),
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when we measure the diameters of subsets of 𝐾 + 𝐞 by ‖ ⋅ ‖𝐷(𝐾∙), the real norm is ‖ ⋅ ‖𝐷(𝐾).
Therefore, we get

𝑏𝐷(𝐾∙)(𝐾 + 𝐞) = 𝑏𝐷(𝐾)(𝐾).

Lemma 2.3 is proved.

Proof of Theorem 1.1.. By Lemmas 2.2 and 2.3, we have

𝑏𝐷(𝐾∙)(𝐾
∙) = 2𝑏𝐷(𝐾∙)(𝐾 + 𝐞) = 2𝑏𝐷(𝐾)(𝐾). (2.12)

As 𝐾∙ ∈ 
𝑛+1, by Lemma 1.1 and the second part of Lemma 1.2, we get

𝑏𝐷(𝐾∙)(𝐾
∙) ⩽ ℎ(𝐾∙) ⩽ 2𝑛+1(𝑛 + 1)(log(𝑛 + 1) + log log(𝑛 + 1) + 5).

Therefore, by (2.12) we have

𝑏𝐷(𝐾)(𝐾) =
1

2
𝑏𝐷(𝐾∙)(𝐾

∙)

⩽ 2𝑛(𝑛 + 1)(log(𝑛 + 1) + log log(𝑛 + 1) + 5)

= 2(1+𝑜(1))𝑛

for all 𝐾 ∈ 
𝑛. Then, Theorem 1.1 follows from (2.1) and Lemma 2.1 □
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