AUTOMORPHISM GROUPS OF CUBIC FIVEFOLDS AND FOURFOLDS

SONG YANG, XUN YU AND ZIGANG ZHU

ABSTRACT. In this paper, we introduce notions of partitionability and characteristic sets of ho-
mogeneous polynomials and give a complete classification of groups faithfully acting on smooth
cubic fivefolds. Specifically, we prove that there exist 20 maximal ones among all such groups.
As an application, we classify all possible subgroups of the automorphism groups of smooth
cubic fourfolds.
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1. INTRODUCTION

In this paper, we study the automorphism groups of smooth cubic hypersurfaces X in the
projective space over the complex number field C. Such hypersurfaces are an important class of
projective varieties in algebraic geometry. For instance, cubic threefolds are unirational but not
rational [CG72], and the development of topics related to smooth cubic hypersurfaces can be
found in [Huy23]. The study of their automorphism groups Aut(X) has a long and rich history,
see [Seg42], [AdI78], [Hos97], [Rou09], [GL11], [Dol12], [Prol2], [GL13], [Mo13], [BCS16], [Ful6],
[DD19], [HM19], [WY20], [LZ22], [Zhe22], [AKPW23], [GLM23], etc. All possible subgroups of
Aut(X) have been classified for cubic surfaces (see [Seg42]|, [Hos97], [Dol12]) and for cubic
threefolds (JWY20]). For dim(X) = 4, recently Laza-Zheng [LZ22] classified the symplectic
automorphism groups Aut®(X) of cubic fourfolds and proved that the Fermat cubic fourfold
has the largest possible order for |Aut(X)|. For some partial results on abelian subgroups of
automorphism groups of smooth cubic hypersurfaces of arbitrary dimension, see [GL11], [Zhe22],
[GLM23]. However, a classification of all possible subgroups of Aut(X) for cubic fourfolds is
still unknown and such classifications for dimensions > 5 are widely open. Our main results of
this paper completely solve this problem for cubic fivefolds and fourfolds.

Theorem 1.1 (Theorem 5.1). A finite group G can act faithfully on a smooth cubic fivefold if
and only if G s isomorphic to a subgroup of one of the following 20 groups:

No. group order  No. group order
1 C$ x Sy 3674160 11 Cez % C 378
2 ((C2xC3)xCy) x (C3x8y) 69984 12 Cs. My 2160
3 Cs x (C3 x S3) 1296 13 S7 x Cy 15120
4 S5 x (C3 x S3) 19440 14 C3x ((Cs x Cy) x Cq) 96
5 048 X Sg 288 15 03 X (PSL(3,2) X 02) 1008
6 PSL(2,11) x (C2 x Cy) 11880 16 Cs. A7 7560
7 ((C2 x C3) x Cy)? x Oy 23328 17 Cs x GL(2,3) 144
8 ((C3 x C3) x Cy) x Cs 864 18 ((C3xC3)xQs)xCy 648
9 S5 x ((C2 % C3) x Cy) 12960 19 Cea 64
10 096 96 20 043 X 07 301
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Theorem 1.2 (Theorem 6.1). A finite group G can act faithfully on a smooth cubic fourfold if
and only if G is isomorphic to a subgroup of one of the following 15 groups:

No. group order No. group order
1 C3 % Sg 174960 9 Ca1 x Cg 126
2 ((C3x(C3xC3))xC3)x(CyxCy) 5832 10 Mg 720
3 Cs x (0% x Cy) 144 11 Sz 5040
4 S5 x (C3 x Cy) 2160 12 (Cgx Cy)xCy 32
5 Cis 48 13 PSL(3,2) x Cy 336
6 PSL(2,11) x C3 1980 14 GL(2,3) 48
7 ((C3x(C2xC3)xC3)x(CIxCy) 7776 15 (C2xQs)xC3; 216
8 Csz 32

Explicit examples of cubic fivefolds and fourfolds acted on by these maximal groups are given
in the examples in Subsections 4.1 and 6.1 respectively.

Next, we briefly explain the idea of the proof of the main results. Let (n,d) be a pair of
integers satisfying n > 2, d > 3, and (n,d) # (2,4). We say a finite group G is an (n,d)-group
if G is isomorphic to a subgroup of the automorphism group of a smooth hypersurface in P7*!
of degree d. Matsumura-Monsky [MM63] proved that for a smooth hypersurface X, 4 C prtl
of degree d, its automorphism group Aut(X, 4) is a finite group, and

Aut(de) = {¢ S PGL(?’L + 2, (C) ‘ (b(Xn,d) = Xn,d}-

Two smooth hypersurfaces of dimension n and degree d are isomorphic if and only if they are
projectively equivalent, that is, their defining equations are the same up to linear change of co-
ordinates. Therefore, classifying all (n, d)-groups is equivalent to classifying all finite subgroups
of PGL(n+ 2, C) preserving smooth homogeneous polynomials of degree d. By solving the latter
problem in the classical invariant theory, Oguiso—Yu [OY19] classified all groups acting faithfully
on smooth quintic threefolds, which meanwhile gives a systematic (and computer-aided) method
for classifying all possible (n,d)-groups for prescribed integers n and d. Based on this method,
Wei-Yu [WY20] completed the classification of all (3,3)-groups. In this paper, we follow the
approach of Oguiso—Yu’s work to study the automorphism groups of cubic fivefolds. However,
the dimensions of target hypersurfaces in this paper are higher and groups of automorphisms
in question are more complex. In order to overcome such difficulties, among other things, we
introduce two new notions, partitionability (Definition 3.1) and characteristic sets (Definition
3.6) of homogeneous polynomials. Partitionability and characteristic sets are crucial for our
classification of (5,3)-groups since they not only significantly simplify the classification proce-
dures conceptually but also considerably reduce the amount of calculations to rule out relevant
groups. In fact, using characteristic sets, we are able to control the automorphism groups of
cubic fivefolds Xy defined by cubic polynomials F' of the form

(1.1) F=H(zy,...0q) + K(zgt1,..,27),2<a<3

(Propositions 3.11, 3.13, 3.15), which immediately gives all possible subgroups of Aut(Xr) from
previously known classifications of (2, 3)-groups and (3, 3)-groups (Proposition 3.17, Theorems
4.2, 4.4). On the other hand, for cubic fivefolds with defining polynomials not of the form (1.1),
their automorphism groups are bounded by 90720 (Proposition 5.21) and can be effectively
handled by Strategy 5.16 which heavily relies on partitionability. In this way, we complete
the classification of (5, 3)-groups. Note that the proofs of all results in Section 3 are free from
computer algebra, but such results fit well with computer algebra (see Corollary 4.5, Theorem
5.12, Strategy 5.16). We believe that the results on partitionability and characteristic sets are
interesting in and of themselves and will be applicable to other problems.
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Unlike cubic fivefolds, the automorphism groups of cubic fourfolds have no F-lifting in general
(see Theorem 3.18 and Remark 6.16), which is a key obstruction in our classification of such
groups. To deal with this issue, we introduce the notion of Cy-covering group (Definition 6.3). A
finite group is a (4, 3)-group only if it has a Cs-covering (5, 3)-group (see Lemma 6.5), which gives
strong constraints on (4, 3)-groups. Moreover, partitionability of defining polynomials of cubic
fourfolds and fivefolds are closely related (see Lemma 6.4). Based on these relations, we quickly
classify all (4, 3)-groups by taking advantages of our results and strategies for (5,3)-groups (see
Theorem 6.7 and Strategy 6.8). As a by-product, we obtain explicit defining polynomials Fl4.
and Fyy,, of two cubic fourfolds with maximal symplectic automorphism groups A7 and Mg
respectively (Theorems 6.14 and 6.15). To the best of our knowledge, defining equations of the
two cubic fourfolds are previously unknown (see [LZ22, Page 1461]).

We conclude the introduction by explaining in detail which results rely to what extent on
computer calculations. All results in Sections 3 and 4 are free from computer calculations
except that for 14 < i < 18, we use computer algebra (Mathematica [Wo|, Magma [BCP]) to
verify smoothness of X; and the inclusions Gx; C Aut(X;) in Subsection 4.1. In Sections 5 and
6, the results which rely on computer calculations are Theorems 5.1, 5.12, 5.13, 5.20, 5.22, 6.1,
6.7, 6.14, 6.15, Remark 5.2, Lemma 5.11, and Proposition 5.21. In fact, we prove Theorems
5.12, 5.13, 6.7 using classification of (5, 3)-representations (see Definition 5.3) of relevant abelian
groups. Such representations can be computed by hand in principle (see e.g., [WY20, Theorem
5.4] and Example 5.7), but we use computer algebra (Mathematica) for efficiency. For Remark
5.2, Lemma 5.11, we use computer algebra (GAP [GAP]) to compute all subgroups of Gx;
(1 < ¢ < 20). Note that smoothness of the examples in Subsection 6.1 and the structure
description of their automorphism groups follows from Subsetion 4.1 and Remark 5.2. Our
proofs of Theorems 5.1, 5.20, 5.22, 6.15 heavily rely on computer calculations using Strategy
5.16. More precisely, we use GAP to do the sub-test (see Remark 5.18) in the Step 1 of Strategy
5.16; we use a mixture of GAP, Mathematica and Sage [Sage] to compute special almost (5, 3)-
representations (see Definitions 5.3 and 5.14) and invariant cubic forms in the Steps 2 and 3 of
Strategy 5.16. Similarly, our proof of Theorem 6.1 heavily relies on computer calculations using
Strategy 6.8. Moreover, Proposition 5.21 (resp. Theorem 6.14) is free from computer calculations
modulo Theorems 5.12 and 5.20 (resp. Theorem 5.1 and Remark 5.2). The computer codes and
outputs needed in Sections 4-6 are contained in the ancillary files to [YYZ23] whose roles are
described in Appendix A. These files are explicitly mentioned in the relevant proofs and can be
obtained at https://arxiv.org/src/2308.07186/anc.

Acknowledgement. We would like to thank Professor Jun-Muk Hwang for pointing out the
notion of Thom—Sebastiani polynomials in Remark 3.2 and Professor Keiji Oguiso for helpful
discussions on automorphisms of hyperkéihler manifolds of K3 -type. We would also like to
express our thanks to the editors and referees for their valuable comments and suggestions. This
work is partially supported by the National Natural Science Foundation of China (No. 12171351,
No. 12071337, No. 11831013, No. 11921001).

2. NOTATION

(2.1) Let F = F(z1,...,xy) be a homogeneous polynomial of degree d. For A = (a;;) €
GL(n,C), we denote by A(F') the homogeneous polynomial

n n
F( E 1T, E Anii).
i—1 i=1

Then we have A(F)(x1,...,2,) = F((x1,...,2,)AT). Note that (AB)(F) = B(A(F)) for any
A, B € GL(n,C). We define

Gp = {A € GL(n,C) | A(F) = F}.
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(2.2) We denote by Xy C P*! the hypersurface defined by F. If Xp is smooth, we say F
is a smooth form of degree d. We define F:=F+ a:TdZH. We denote by X; (resp. Gx;), i €
{1,2,...,20}, the 20 smooth cubic fivefolds (resp. finite groups) in the examples in Subsection
4.1. We denote by X/, i € {1,2,...,15}, the 15 smooth cubic fourfolds in the examples in
Subsection 6.1. We use 7 : GL(n,C) — PGL(n,C) to denote the natural quotient map, and for
A € GL(n,C), we denote w(A) by [A].

(2.3) We say a finite group G is an (n,d)-group if G is isomorphic to a subgroup of the
automorphism group Aut(X) of a smooth hypersurface X C P*"*! of degree d. Let p be a prime
number. If no confusion causes, we use G, to denote a Sylow p-subgroup of G. We use N x H
to denote one of the semidirect products of groups N, H. We use N.H to denote a finite group
which fits in a (non-split) short exact sequence of finite groups

1—N-—NH-—H—1.

Some symbols frequently used in this paper are as follows:

&, the k-th primitive root e of unity, where k is a positive integer;
I, the identity matrix of rank n;
C, the cyclic group of order n;
Do,, the dihedral group of order 2n;
Sy the symmetric group of degree n;
A, the alternating group of degree n;
@), the quaternion group of order n;
PSL(n,q) the projective special linear group of degree n over the field F, with ¢ elements;
GL(2,3) the general linear group of degree 2 over the field Fs;
My the Mathieu group of order 720;
QD16 the quasidihedral group of order 16;
PSU(3,3) the projective special unitary group of degree 3 for the quadratic extension field Fy
over the field Fs.

3. PARTITIONABILITY AND CHARACTERISTIC SETS

In this section, we introduce two notions, partitionability and characteristic sets. We use
characteristic sets to control symmetries of homogeneous polynomials F' having partitions of
certain types (Propositions 3.11, 3.13, 3.15) and we give a relation among partitionability, F-
liftability, and automorphism groups of hypersurfaces (Proposition 3.17). These results are very
important for our classification of (5, 3)-groups in later sections.

Definition 3.1. Let F' = F(z1,22,...,Zy) be a homogeneous polynomial of degree d. If there

exists an invertible matrix A € GL(m, C) and positive integers a1, ..., a; such that
A(F) = H (‘/Elv s >$a1) + H2($a1+13 s 71'a1+a2) +oot Ht(ma1+a2+---+at_1+1; s 7$a1+a2+---+at)7
where a; +---+a; < m and ¢t > 2, then we say F' is partitionable or F' has an (a1, ag, . .., a;)-type

partition. In this case, we say F can be partitioned as Hy + --- + H;. Otherwise, we say F' is
unpartitionable.

If F has an (a1, ag, . .., a;)-type partition given by A(F) = Hy+---+H,and all H; (i =1, ...,t)
are unpartitionable, we say F' has a mazimal (a1, ag, ..., a;)-type partition.

Remark 3.2. In the literature, polynomials of the form Hi(z1,...,Za,) + Ho(Tay41, -, Tay+ay)
are also called Thom—Sebastiani (type) polynomials. If H; : (C*,0) — (C,0) are two germs
of holomorphic functions with isolated critical points, then Thom-Sebastiani theorem ([ST71])
asserts that the vanishing cycles complex of H; + Hs is isomorphic to the tensor product of those
of H1 and HQ.



AUTOMORPHISM GROUPS OF CUBIC FIVEFOLDS AND FOURFOLDS 5

Example 3.3. Let F = 23 + 23z3 + x329. Then F has a (1,2)-type partition given by F =
Hi + Hy, where H| = x*z’ and Hy = .%'%flfg + 1’%.%'2. This partition is not maximal. In fact, Hs has

-1 -1
a (1,1)-type partition since A(Hsz) = x% + x%, where A = (1_\/3;2- 1+x/§i>‘
2 2

More generally, for partitions of cubic forms, we have the following result.

Lemma 3.4. Consider a smooth cubic form F = F(x1,...,2y) with m > 4. If F has a
(2, m — 2)-type partition, then F' has a (1,1, m — 2)-type partition. If F has a (3,m — 3)-type
partition, then either F' has a (1,1,1,m — 3)-type partition or there exists A € GL(m,C) such
that A(F) = 23 + o3 + 23 + Av1z03 + H (24, ..., ), where A # 0 (see [Dol12, Section 3.1.2]).

Let F(xy,...,2m,) be a homogeneous polynomial of degree d. For 1 < i < d, we define the
natural i-th order differential mapping induced by F' as follows:

DF . Di(x1,...,xm) — Clz1, ..., Tm),
where D;(x1,...,2,) denotes the vector space of i-th differential operators. For example,
F( 8\ _ OF F(_9% _ _9°F _ ;
Dy (axi) = o0 2 (3%5%) = Je.0; Let m = m(z1,...,%,) be a monomial of degree d.

Then we say m is in F' (or m € F) if the coefficient of m is not zero in the expression of F.
Oguiso—Yu [OY19] introduced the differential method to classify the automorphism groups of
smooth quintic threefolds. In order to study partitionability of polynomials and their symme-
tries, we recall the differential method.

Theorem 3.5 ([OY19, Theorem 3.5]). Let F(x1,...,%m), G(Y1,-..,Ym) be nonzero homoge-
neous polynomials of degree d. Suppose that there exists an invertible matriz A = (aij)1<i j<m.,
such that F(x1,...,7m) = G(M, aigiy. .., > it amizi), then tk(DF) = 1k(DY), for all
1<iqi<d.

We now introduce the new notion of characteristic sets and prove that they are invariants of
homogeneous polynomials up to linear transformations.

Definition 3.6. Let F(z1,...,x,,) be a homogeneous polynomial of degree d > 2. Let r be a
positive integer. We define
OF

!
SE={(ln, ... ,lm) € C™ | tk(D, m) =}

We call SE' the r-th characteristic set of F. We define V.¥' C C™ to be the subspace spanned by
SF.

Then we have the following lemma.

OF OF
1 E‘Fb E‘F""Hm

Lemma 3.7. Let G = G(y1,92,...,Ym) be a homogeneous polynomial of degree d, and let
F(z,...,znm) = GOoM a1i%iy . .., Y ity Gmi%i), where A = (aij)1<ij<m € GL(m,C). Consider
the following linear transformation:

m

P:C" — (Cm, (ll, . ,lm) — (Z aljlj, .. .,Zam]’lj).

j=1 J=1
Then P(SE) = S¢ and P(VF) = V¢, In particular, if A(F) = F, then P(SF) = SI and
PV =Vl
Proof. By the proof of [OY19, Theorem 3.5], we have the following commutative diagram:

Df
Di(z1,...,xym) ——————— Clxy, ..., 2]

b

Di(y1,- -y Ym) —————Clyr,-.. . ym) |
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where the isomorphisms p and g are defined as follows:

m m
833 Zaﬂay H(yi,. . ym)) :H(Zalimi,...,Zamixi).
[ =1 =1

7j=1

Then we have
0 0 i 0
(a 1ll+8 2l o+ -+ Zajlll ‘i’ZaJQlZ Zajmlm -

Note that the coefficients of Wj on the right—hand side Correspond to the images of (I1,...,0n)

under the mapping P.
Since ¢ induces a linear change of coordinates from the polynomial Z;n:l ajlllg—g + -+

Z;”Zl ajmlmg—g_ to the polynomial ngill 4+ a £ l,n, by Theorem 3.5, we have

rk(Dz;;lajlzl%i+~~~+2?:1ajmzm§,—fj) _ k(D] gflzl+ +2F zm)'
Since A is an invertible matrix, we have P(S}) = S¢, and hence P(V,}") = V.¢. O
Remark 3.8. Note that by the mapping (I1,...,ly,) — (I3 : -+ : Ly), we can view S as a

subset of P! and VI as a linear subspace of P™ 1.

Next, we introduce the relationship between characteristic sets and partitionability of cubic
forms.

Lemma 3.9. Let F = F(x1,2,...,Zm) be a smooth cubic form. Then F has a (1,m — 1)-type
partition if and only if the first characteristic set ST # ().

Proof. The “only if” part is clear. To prove “if’ part, we assume (lq,...,L,) € ST. Since it is
clear that not all of ly,...,l,, are zero, there exists an invertible matrix B = (b;;)1<i j<m such
that b;; = I;, for 1 < ¢ < m. Consider the linear change of coordinates:

(21, .y zm)t =B (21, ..., 2m) 7.

Here T denotes the transpose. By substituting, we define

G(21,y ey 2m) = F(i biizi, ... ,ibmizi).
i=1 i=1

Applying 8%1 to both sides of the equality, we have

0G 8F8x1+.+87F8xm_87Fl1+ +8il
0z, Oz, 07 Oz, 021 0z Oty
By Theorem 3.5,
rk(Dgfl) = rk(Da“l1+ +8Tmlm) = 1.
Since g—g is a homogeneous quadratic polynomial in variables zi,..., zy, we infer that 2G

()\12’1 4+ Aozg + -0+ )\mzm)Q, where A\{,..., \,, € C.
If Ay = 0, then G = 21(Maz2 + -+ + Anzm)? + H(22, ..., 2m), where H is a homogeneous

polynomial of degree 3. Then X C P! is singular at (21 : 22 : -+ : 2,) = (1:0:---:0), a
contradiction. Therefore, we have A1 £ 0 and G = ﬁ()\lzﬁ—kg,@—i—' A Amzm )P K (22, . 2m),
where K(z2,...,2zy,) is a homogeneous polynomial of degree 3. This implies that F has a
(1,m — 1)-type partition. O

Remark 3.10. Note that for a smooth cubic form F = F(x1,...,z,) with m € {3,4,5}, F
being unpartitionable is equivalent to the first characteristic set ST = () by Lemmas 3.4 and 3.9.
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Next, we will control shape of matrices that preserve partitionable polynomials of degree
3. Based on this, we will determine the structure of automorphism groups of cubic hypersur-
faces defined by polynomials admitting certain types of partition, which will be crucial for our
classification of (5, 3)-groups and (4, 3)-groups in later sections.

F=H(z1,...,71) + K(Tps1,. .., 2m), where3<k<m—1, SH =, andK:x2+1+...+:nf’n.
Then

Proposition 3.11. Let F = F(z1,...,%m) be a smooth cubic form with m > 4. Suppose

Gr C {(é’ g) | B e GL(k,C),C € GL(m — k,C)}.

Proof. Note that smoothness of F' implies that H # 0. Let A = (a;j)1<ij<m € Gp and y; =
> ey aix, 1 <i <m. By F'= A(F), we have H (21, ..., o) + K(Tg11, -y Tm) = H(y1, s yi) +

K(yk+1,--, Ym). Applying a%t to both sides of this equality for & + 1 <t < m, we have

k

OH (yl Z/k)

2 ) ) 2

3y = E - ayiait + 4 g 3yjajt~
i=1 Jj=k+1

2
Denote the right-hand side as J. Then rk(D{) = rk(Di’zt) = 1. Since SH = (), we have
az = 0 for all 1 < ¢ < k. In fact, suppose for given ¢ there exists 1 < ¢ < k with ay # 0,
then from S = (), we know the polynomial J; = ZaithZ cannot satisfy rk(D‘lh) =1. So

rk(D]*) > 2, which implies rk(D{) > 2, contradiction. Similarly, for each t € {k +1,...,m},
there exists exactly one index j; € {k + 1,...,m} such that aj; # 0. Since A is invertible,
without loss of generality, we may assume that j, = ¢ for all ¢ € {k + 1,...,m}. Therefore,
H(xy,...,x) + 24 + ... + 25, is equal to

k k k k
H(Z A15L54 « - - Z akixi) + K(a(k+1)(k+1):ck+1 + Z a(k+1)jxj, e s QmmTm + Z amjxj).
=1 =1 j=1 j=1

Direct calculation shows that a;; = 0 for k+1 <i <mand 1 < j < k. Thus, A is of the desired
shape. O

Lemma 3.12. Let F(x1,22,73) be a smooth cubic form. Then G is isomorphic to C3 x Ss,
Cg’ X Sg, or (Cg X Cg) A C4.

Proof. Smoothness of F implies that for any prime p > 3, p t |Gp| (see the proof of [GL13,
Theorem 1.3]). Therefore, |Gr| = 2% - 3% where a,b > 0. By some calculations and the
smoothness of F', we can conclude that

(i) if |(GF)2| > 4, then By (F) = 22x3 + 2323 + 23 for some By € GL(3,C) and |(GF)2| = 4;
and
(ii) if [(GF)3| > 3%, then Byo(F) = 23 + 23 + 23 for some By € GL(3,C) and |(Gp)s| = 3%.

In fact, if [(GF)a| > 4 (resp. |(Gr)s| > 3%), then G contains an abelian subgroup N of order
4 (resp. 3%) and up to conjugation in GL(3,C), we have N = (diag(&;, —1,1)) = Cy (resp.
N = (diag(&s,1,1),diag(1, &3, 1), diag(1,1,&3)) = C3) by smoothness of F (see e.g. [OY19,
Theorem 7.7] and [WY20, Theorem 5.2]). From this, we infer that (i) and (ii) hold.

On the other hand, by Lemma 3.4, we can assume that F = H) := x$ + 23 + 23 + \z12073,
where A € C. Therefore, C3 x S3 is a subgroup of G and 32 - 2 divides |Gr|. Moreover, the
following statements hold:

(1) IfX=0, Gp = C3 x Ss;
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(2) If A =3(v/3—1), Gp is

010 1 0 O 1 1 1 1
< 00 1],{0 & 0f,—=[1 & & >g(03?>403)>404;
100/ oo ¢ V31 & g

(3) If there exists no B € GL(3,C) with B(F) = Ho, Hy(/5_,), then Gp = C§ x Ss. O

Proposition 3.13. Let F' = F(x1,...,27) be a smooth cubic form with F = 23+ H (2, 73, 74) +
K (x5, x6,27), where H and K are unpartitionable. If A € GL(7,C) satisfies A(F) = F, then

1 0 0 1 0 0
either A= [0 B 0| orA=1|0 0 B, where B,C € GL(3,C).
0 0 C 0 C 0

Proof. Suppose A = (a;j)1<ij<7- Let (y1,...,y7)T = A+ (21,...,27)T. Since A(F) = F, we have
F(z1,...,27) = F(y1,...,y7). Applying 821 to both sides of the equality, we get

OH (y2,y3,ya) . OK(ys, Y6, Y7)
+
aﬂfl 8$1

372 = 3apy? + .
Since H and K are unpartitionable, by Lemma 3.9, S and S¥ are empty and thus Sf{ T g
also empty. So we have a;; = 0 for 2 < i < 7. Then a;; # 0. Since

F = (a1121 + a1oms + a1323 + a4z + a1525 + a16z6 + ar7e7)® + A(H + K),

1 0

the term 3a%1a1i . :c%xi, 2 < ¢ < Tisin F unless a;; = 0. So A = (0 A

>, where A1 =
1
(aij)2<i,j<7. Similarly, for 2 < j < 7, we have

OH (z2,73,74) = OK(x5,76,27)  OH(y2,y3,91) = OK(ys,¥ye,y7)
T - + -
al’j 8CU]‘ axj 8xj

By SH = SEK =), we get

3H<wz»r3vr4)+8K(z5@6w7>

tk(D; 77 ) e{2,3)

and
9H (y2,y3,Y4) 9K (y5,Y6:Y7)

rk(D, "7 )k(D, 77 ) e€{0,2,3).

Then either as; = azj = a4; = 0 or asj; = ag; = ar; = 0.

We may assume that H(xq, z3,74) = 23 + xg + 23 + Agzorsry and K (x5, 76, 77) = x% + x% +
x% + Axxsxgxy, where AgAx # 0. If ase = age = aq9 = 0, we can infer that ass = ag3 = aq3 =0
and agq = azqy = agq = 0 (since otherwise the monomial xoz3zy is in neither H(ys2,ys,y4) nor

1 0 0
K (ys,y6,y7), which is a contradiction). Since A is invertible, we have A= [0 0 B |. For
0 C 0
1 0 0
the case aso = ago = a7 =0, we have A= [0 B 0 | by similar arguments. O
0 0o C
Next, we consider the case where F'(xi,...,z7) can be partitioned into H(z1,...,x3) +

K(x4,...,27), where H and K are both unpartitionable. For this goal, we need the follow-
ing result.
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Lemma 3.14. Let F = F(x1,x2,x3,14) be an unpartitionable smooth cubic form. Then the
subspace V. C C* generated by the union Sf USY U S:f s of dimension at least 3. In particular,
there exists an invertible matric A = (aij)1<ij<4 such that K(z1,x2,x3,24) := A(F) satisfies
the following:

OK

k(D) <3, i=1,2,3.

Proof. Let l1,l2,l3,l4 € C and at least one of them is not zero. Considering the polynomial
N = 8651 lh+---+ %14, we have:

ON
87 = bn(ll, RN l4)£L'1 + -+ b14(l1, e l4).%'4,
T
ON
s = bar(lis - b))z + -+ baally, - - - la)aa,
T4
where b;; are linear forms of Iy, ..., 4.
b1 -+ bug b1 -+ bug
Note that k(DY) =tk | : .. : |. Thendet| : .. : | =0 defines a hypersur-
bar -+ ba bar -+ b
face in P3. From this, we deduce the lemma. O

Proposition 3.15. Let F' = F(x1,...,27) be a smooth cubic form such that F(x1,...,x7) =
H(xy,...,23) + K(x4,...,27), where H and K are unpartitionable. Then

Gr C {(? g) | B GL(3,C),C € GL(4,C)}.

Proof. By assumption, ST = Sf = () (see Remark 3.10). As above, we may assume H(x1, x9,x3) =

23 + 23 + 23 + Az17273, A # 0. Then we have rk( d9”) =3,i=1,2,3.

By Lemma 3.14, we may assume that rk(D1 1) <3,i=4,5,6.

Suppose A = (aij)i<ij<7 € Gp. Since F(x1,...,27) = F(Z:Z 1a11xl,...,zi7:1 ariri), we
have
= i+t 2 ar;
rk(DJ7) = rk(szl W =1, T
Then
3 rk(D%) . rk(Dgﬁ ai1+-- +7a31+7a41+ +ma71)
= 1 )= 1

OH OK
11+"'+W3(13 41+"'+Ea71

= rk(Da””l )+ rk(D‘%‘l ).

Thus, by S{{ = Sf( = () and smoothness of H, K, we have either (1) a1; = a1 = az; = 0 or (2)
ag1 = as1 = ag1 = ar; = 0.
For Case (1), by similar arguments, we have either a12 = ags = az2 = 0 or ag2 = as2 = ag2 =

aro = 0. We define
= § a1;2q, E a2;xq, E Clgle

and

= § a4zx2u§ aSZJUuE a6z$27§ CL77,937, .
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Since H + K = H(x1,x9,23) + K(x4, x5, 26,27) and a11 = a1 = as; = 0, it follows that H
has no monomial involving x1. If a4e = ase = agy = arg = 0, then there is no monomial

involving xo in K which contradicts Axixox3 € H + K. Thus a1z = a2 = aze = 0. Similarly,
a3 = agz = agz = 0.

BF
Since A is invertible, and rk(D; ") < 3, i = 4,5,6, we infer that as; = as; = ag; = a7; = 0,
i =4,56. Again, by H + K = H+K we have
K(a:4, - ,l’7) = (a14a:4 + -4 a17a:7)3 -+ (a24a:4 + -+ a27x7)3 + (CL341’4 + -+ a37x7)3

+A (@144 + - -+ ar7w7)(a2awa + - -+ agrrr)(azava + - -+ asrrr) + K(aarwr, asrer, agror, arrar).
It is clear that the last term on the right hand side of the equation is equal to oza:%, «a € C. Then
under the linear change of coordinates:

a4 a5 aie air
- ~ ~ AT az4 QA25 Aa26 Aa27 T
(56471‘5,336,967) = ass ass asg asn '(~T4:$57$6>$7)>
0 0 0 1

we have K (x4, x5, x6,x7) = 4% + @53 + 6% + M\euds i + a7, which leads to a contradiction to
the condition K is unpartitionable. Therefore, Case (1): a11 = a2; = a1 = 0 is impossible.

For Case (2), by similar arguments as in Case (1), we can deduce that a4; = as; = ag; = a7 =0
fori=1,2,3 and a1; = as; = azj = 0 for j = 4,5,6. Then by A(F') = F and direct computation,
we have that a17 = ao7 = agr = 0. Thus, A is of the desired shape. This completes the proof of
the lemma. |

Following [OY19], we recall some definitions about liftability of group actions. Let F' be a
homogeneous polynomial of degree d. Let G (resp. G) be a finite subgroup of PGL(m, C) (resp.
GL(m,C)). We say G is a lifting of G if G and G are isomorphic via the natural projection
7 : GL(m, C) — PGL(m, C). We say G is an F-lifting of G if G is a lifting of G and A(F) = F,
for all A in G.

Lemma 3.16. Let F = F(x1,...,xy) be a smooth form of degree d, where m > 4, d > 3,
(m,d) # (4,4). Then Aut(Xp) = n(Gr) C PGL(m,C) and there is a short exact sequence of
finite groups

] G
1—>NL>GFW|—F>A1H)<XF)—>1,

where N = ({q1) = Cy, i is the natural inclusion map, and 7|Gp is the restriction of m to Gp.

Proof. By [MM63], Aut(Xr) = n(GF) is a finite group. Clearly N C Ker(n|GF). On the other
hand, if A € Ker(r|GF), then A = A, for some A € C, and F = A(F) = AF. Then \ =1
and A € N. Thus, N = Ker(7|GF). O

The following result gives a useful relation among partitionability, F-liftability, and structure
of automorphism groups of hypersurfaces.

Proposition 3.17. Let F = F(x1,...,Zm) be a smooth form of degree d with F = H(x1, ..., z))+
K(Zg41y ey Tm), wherem >5,d>3,4<k<m—1, and (k,d) # (4,4). Suppose the following
statements hold:

P

(1) Aut(Xpg) admits an H-lifting Aut(Xg);
(2) G C {(fj g) | B € GL(k,C),C € GL(m — k,C)}.

Then Aut(XF) is isomorphic to Aut(Xpg) x Gg and Aut(Xr) has an F-lifting 5’, where

G = {(B 0) | B € Aut(Xp),C € Gk}
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Proof. By Lemma 3.16 and the conditions (1) and (2), clearly G and 7(Gp) are isomorphic via
the natural projection w. Thus, G is an F-lifting of Aut(Xr) and Aut(Xrp) = G = Aut(Xg) x
Gk. O

Wei-Yu [WY20, Theorem 4.11] observed that the automorphism group of every smooth cu-
bic threefold is F-liftable. Following a similar approach, Gonzélez-Aguilera—Liendo—Montero
[GLM23] generalized this result to other hypersurfaces.

Theorem 3.18 ([GLM23, Theorem 3.5]). Let m > 3 and d > 3 with (m,d) # (3,3),(4,4).
Then the automorphism group of every smooth hypersurface Xg of dimension m —2 and degree
d in Pt is F-liftable if and only if d and m are relatively prime.

Example 3.19. Let F':= H + K, where H = 23 + 23 + 23 + 23 and K = 23 + 23 + 22 + 3(vV3 -
1)zszez7. Then we have Aut(Xy) = C3 xSy and G =2 (C2 x C3) x Cy (see the proof of Lemma
3.12). By Theorem 3.18 and Proposition 3.11, both (1) and (2) in Proposition 3.17 hold. Thus,
we have Aut(Xp) = (C3 x Sy) x ((C2 x C3) x Cy).

4. EXAMPLES AND REDUCTION

In this section, we give 20 explicit examples of smooth cubic fivefolds and their automor-
phisms. Using results on partitionability in the previous section, we determine the automor-
phism groups of many of them (Theorem 4.2) and completely classify all possible groups acting
faithfully on smooth cubic fivefolds defined by polynomials of the form F = H(x1,...,x4) +
K(xg41,-.y27), 2 < a <3 (Theorem 4.4).

4.1. Examples. This subsection lists 20 explicit examples of smooth cubic fivefolds X; and sub-
groups Gx, of the automorphism groups Aut(X;) (i = 1,2, ...,20). Since for i # 6,12, 15,16, 17,18,
the generators of G x, are combinations of the following three types of matrices: diagonal matri-

1 1 1
ces, permutations of coordinates, % 1 & fg , we omit them here (the matrix generators
1 & &

of Gx, C PGL(7,C) for all i except i = 6 can be found in the ancillary file Examples4.1.txt to
[YYZ23]). In Section 5 we will prove that these 20 groups G, classify all (5, 3)-groups (Theorem
5.1).

(1) Let Fy = 23 + 23 + 23 + 23 + 23 + 23 + 23 and X1 = Xp, the Fermat cubic fivefold. Then
Aut(X;) = Gx, 2 C§ x S7 and |Gy, | =2*-3%.5.7 = 3674160.

(2) Let Fy = 23 + 23 + 23 + 3(v/3 — V)wyaows + 23 + 22 + 23 + 22 and Xo = Xp,. Then
Gx, & ((C3xC3)xCy) x (C3 xSy) is a subgroup of Aut(Xs) and |Gx,| = 2°-37 = 69984.

(3) Let F3 = x%xg+x%x3+x§$4+x§+x§+x%+x§ and X3 = Xp,. Then Gx, = Cgx (Cg X S3)
is a subgroup of Aut(X3) and |G x,| = 2* - 3* = 1296.

(4) Let X4 C P7 defined by @§ + 23+ 23 +zi +ad + 2 + s +2f = v1+ 2o+ a3+ 24+ 25 = 0.
Then Gx, = S5 x (C3 x S3) is a subgroup of Aut(Xy) and |Gx,| = 2*-3% - 5 = 19440.

(5) Let Fs = 3wy + x3w3 + 23wy + w5 + 2 + 2 + 22 and X5 = Xp. Then Gx,; = Cug X S3
is a subgroup of Aut(Xs) and |Gx,| = 2° - 3% = 288.

(6) Let Fg = x2x9 + 2373 + x§x4 + 225 + :c%xl + azg + x% and Xg = Xp,. Then Gx, =
PSL(2,11) x (C2 x Cy) is a subgroup of Aut(Xs) and |Gx,| =23-3%-5- 11 = 11880.

(7) Let Fr = 23 + 23 + 23 + 3(V3 — Damozs + 2 + 28 + 23 + 3(V3 — 1)aazsze + 23 and
X7 = XF7. Then GX7 = (((Cg X Cg) X 04) X ((Cg X 03) A 04)) A 02 is a subgroup of
Aut(X7) and |Gy, | = 2° - 35 = 23328.

(8) Let Fy = z%x9 + 233 + 2dwg + 23 + 23 + 23 + 23 + 3(V3 — Daszery and Xg = Xp,.
Then Gx, = ((C3 x C3) x Cy) x Cg is a subgroup of Aut(Xg) and |Gx,| = 2° - 3% = 864.
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(9) Let X9 C P7 defined by x3 + 23 + 23 + 2 + 28 + 2 + 23 + 23 + 3(V3 — Daszras =
T1+ 29+ 23 +24+ 25 = 0. Then Gx, = S5 x ((C2 x C3) x1 Cy) is a subgroup of Aut(Xy)
and |Gx,| = 25 - 3% 5 = 12960.

(10) Let Fio = z3zo + 2323+ 23z + 2525 + 2226 + 23 + 23 and X190 = Xp,. Then Gx,, = Cos
is a subgroup of Aut(Xy0) and |Gx,,| = 2° - 3 = 96.

(11) Let Fy1 = 232 + 233 + x§x4 + 2lxs + x§x6 + x%xl + :c?7’ and X1; = Xp,. Then
Gx,, = Cg3 x Cg is a subgroup of Aut(X11) and |Gy,,| =2-3%.7 = 378.

(12) Let Fi2 = (23 + a3 + 23 + 23 + 23 + 23 + 23) + 1/5(—365, — 365, + 3&6 — 3&s + 6824 — 3) -
(w17223 + 212224 + (&6 — 1) 12225 + 212206 + (§6 — 1) 212324 + T12375 + 212376 + (§6 —
D)z2425 — {er10426 — §6210526 4 (§6 — 1)wax324 + (§6 — 1) 222375 — 622376 + L2245 +
ToxaTe — E6T2T5Te + T3T4Ts — ex3TaTe + T3T5T6 + T4x5x6) and Xi2 = Xp,. Then
Gx,, = C3.Mjg is a subgroup Aut(Xis) and |Gx,,| = 2*-33 -5 = 2160 (see [HM19]).
Here Mg is the Mathieu group of order 720.

(13) Let X3 C IP7 defined by x?+x§+x§+xi+x§+x%+m§+x§ = x1+xotr3+Tst+T5+T6+TT =
0. Then Gx,, = S7 x (3 is a subgroup of Aut(Xi3) and |Gy, | =2*-3%.5.7 = 15120.

(14) Let Fiy = 2229 + 2325 + m%ﬂm + z3ws + LE%CL’G + XoxgT6 + m% + m% and X14 = Xp,,. Then
Gx,, & C35 x ((Cg x Cq) x Cy) is a subgroup of Aut(Xy4) and |Gx,,| = 2° -3 = 96.

(15) Let Fi5 = 23 + 823 + 8(—5 + 4v/2)zax? + 2&4(—11 + 6v/2)z3(23 + 22) — 4&422((—5 +
A4N2)zg25 +2(=3 +V2)z627) + (1 +€4) (=12 + 11v2) (2522 — 2422) and X15 = Xp,,. Let
G x,; be the subgroup of PGL(7, C) generated by diag(£s, 1, —1, &3, &4, €7, &) and

1 0 0 0 0 0 0
2 —34v2Z  —3+2 1, ¢ 3+¢ 1€ 143¢
0 T4 0 8 8 €a _§+T4+ 8\/54 _Z+§4_ 8\/54
0 0 V2 3+\/§§ 3+v2 2_574+3+§4 1 €4 _ 1438
P g &4 8 8 4 8v/2 1 8 83\/5
1 1 2 3
T e T o A 2%
£ 1 2 1 3 3 3
e N PN TS -4-%
0 3+% —2+% 1+% 177 3 0
0 $+8 -g+% -1-% -1+8 0 -5

Then Gy,, = C3 x (PSL(3,2) x Cy) is a subgroup of Aut(X;5) and |Gy, | =2%-32.7=
1008.

(16) Let F16 = xi”+x§+x§+%x1x2x3+w1xﬁ+x2x§+x3x%+@m%m—i—x? and X16 = XF16-
Let Gx,, be the subgroup of PGL(7, C) generated by Ax,, 1 := diag(1, &3, &3, —1, &3, —€3,1)

A/
and Ax, 2 1= < X162 (1)>, where

0
1 1 1 Vi5 Vis Vi5
2 2 2 18 18 18
1 & _& V15 Vis e _3VBg4+VI15
2 2 2 18 18 &3 36
1 _&e & V15 _ 3v/5£4+V15 Vise
/ — 2 2 2 18 36 18 &3
X16,2 — V15 V15 V15 1 1 1
10 10 10 2 2 2
V15 7v15§ _7\/155 _1 _ & €6
10 10_53 10 S6 2 2 2
V15 _ v15 7\/155 _1 £e _ &3
10 10 S6 10 S3 2 2 2

Then Gy,, = C3.A47 is a subgroup of Aut(X6) and |Gx,,| = 2*-32-5-7 = 7560.

(17) Let Fi7 = a3 + o3 + zo22 — %x2x5w7 + 2912 — %xgwg,xg — %ZL‘2$61§7 + (=1 + &) zomd +
2375 — 23w4w5 + 23w5 + 2307 + 3 w3ame + (=14 Eou — Es — E3) 2317 + (=1 — 280 + 265 +
265 )w3wazr + (S0 — &6 — £54)T3we + (—Eou — &6 + &3y ) whae + 08 — 2 — 227 — w5ad + 23 —
56.%'%.1‘6 + 2851627 — 561‘6.%'% + (1 — {6)1'5.%'% + (1 — fﬁ)l’%.%”z and Xq7 = XF17. Let GX17
be the subgroup of PGL(7,C) generated by the following three matrices:
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10 0 0 0 0 0 10 0 0 0 O 0
0 1 0 0 0 0 0 0 & 0 0 0 0 0
0 0 1—¢—¢& -2 0 0 0 00 0 —£& 0 0 0
0 0 —1—-&—& —1+&+¢& 0 0 0],]0 0 & —¢& 0 0 o [,
0 0 0 0 1 & 0 00 0 0 & 1 0
0 0 0 0 0 -1 0 0 0 0 0 0 —¢ —€2
00 0 0 0 & 1 00 0 0 0 1 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 —&—& 0 0 0

0 0 —¢&—& -1 0 0 0

00 0 0 0 —& -1

00 0 0 —& 0 &

00 0 0 0 0 -1

Then Gy,. = C3 x GL(2,3) is a subgroup of Aut(Xj7) and |Gx,,| = 2*- 3% = 144.

(18) Let Fig = a3 +a3+ (36— &+ 3)x3us+(—3&a+3&+ 2612 — D) aoad+(—3&— 2&a+35) 23+
(54 — 286 —&12+ 2)165964 + (2612 — 1)wow3ws + (%54 + 586 — 5E12) w3 ma + (E4— 266+ Dol +
(—3&+ &+ &2 — )363904 (=386 + 3612 — 3)2] (§4+§6—1)$2$5+(—§4—€6+5u—
1)3?2373955+( 364 — )x3$5+(2§12)$29€4ﬂ?5+(56—512—1)963$4965+( Se+i+36,—

)1134335+( §6— {12)3321’5 (— 2§4+2§6+251z)$3w5+( Ea+&6— 512_*)1’4~T5+(—%€6+%§12+

) (flg— )l‘2x6+( §4+2§6— )xza}gl"(;—i-( 256 %512-1—%)$§x6+(—2§4+2§6+2§12—

)562934966+( §6— 2512+ Jaiwe+(—284)zom56 4 (E6— E12) T35 w6+ (E4— 56—512)$4335$6+

2§4+§6 ‘|’§12—*)$5m6+(£6_£12+1)$2$6 (€a— 36— L6+ D) msad + (36— 3&2+

Dwazd+ (36— 38— 3&2+1)wsad+ (— 36+ 3612—3) 6+(%§4—%56+2512)$21‘7+( 284+

Sot+&2—1 )962933iv7+(%54—256—512+%)$§$7+(§6+€12—2)w2$4$7+(§6—€12—1)9€3x4$7+

(- 2€4+2€6+ $612) w7+ (=284 2812) wows vy + (—Ea+ &6 — E12) w35 w7+ (— & — L) agwsr+

(3&s—5612— )905337+(2§6 §12)x2$6$7+(§4 2§6+1)963a?63?7+( f12+1)$4x6x7+(2§4—§6—

2512+1)$5966337+( $&4—&6+E&2— )»’U6337+( 254+56 3) 203+ (36— 366+ 5612+2) T3 wE+

(A& -+ et +(—3&— 3o+t + (— 38— 16+ 2512)96656%+(—%§6+%512+%)$§

and X138 = Xp,. Let Gx,, be the subgroup of PGL(7,C) generated by the following

three matrices:

1
1
2
2
(=
1

10 0 0 O 0 O 1 0 0 0 0 0 0
01 0 0 & -1 0 0 —& I35 0 0 & —¢&s —&
60 06 0o 0 O 0 & 0 1—-64 —¢&l, —&+E&s & 0 0
00 0 0 & 0 o0, ]o0 0 & 0 0 0 -1 |,
00 0 0 O 20 0 —£2 0 0 0 &2 0
00 0 & 0 0 O 0 —&—¢&bs 0 0 0 & —&1,
00 & 0 0 0 =& 0 & &+E =&, -1 0 3P

1 0 0 0 0 0 0

0 —& &4 —&3 0 0 &4

0 —1—-& —&3 &G+e, 1 0 0

0 —&s3 & -1 0 O i

0 0 —&i5 0 0 0 &—¢&s

0 1 —1+&4 —&3 & & -1

0 1 0 —& -1 0 —&3

Then Gx,, = (((C3 x C3) x C3) x Qg) x Cs is a subgroup of Aut(Xig) and |Gx | =
2%. 3% = 648.

(19) Let Fig = 2329+ 23w+ a3z +aies +aize+advr+23 and X9 = Xpy,. Then Gx,, = Coy
is a subgroup of Aut(Xig) and |G x,,| = 2° = 64.

(20) Let Fyy = x3wo+x3x3+ 2324 + 2305 + 2206 + 2327 + 2221 and Xog = Xp,, the Klein cubic
fivefold. Then Gx,, = Cy3 x C7 is a subgroup of Aut(Xyso) and |Gx,,| =743 = 301.
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Remark 4.1. For ¢ # 14,15,16,17,18, the examples X; and Gy, are easily obtained from
known examples of cubic hypersurfaces of dimensions < 4. For i = 14, 15,16, 17, 18, we find the
cubic fivefolds X; and their symmetries G, in the process of our classification of (5, 3)-groups

in Section 5. Smoothness of these cubics and Gx, C Aut(X;) can be verified by Mathematica
[Wo] and Magma [BCP].

4.2. Reduction to the examples. Based on partitionability and the differential method, we
have the following

Theorem 4.2. Foriec {1,2,...,11,19,20}, Aut(X;) is isomorphic to Gx;,.

Proof. 1t is well-known that Aut(X;) = Gx,. For i € {2,...,9}, by Propositions 3.11, 3.13,
3.15, we can control the shape of matrices A satisfying [A] € Aut(X;), and then similar to
Example 3.19, we conclude that Aut(X;) is isomorphic to Gx,. For i € {10,11,19,20}, as
in proof of [OY19, Theorem 3.18|, by the differential method (Theorem 3.5), we infer that
Aut(X;) are generated by diagonal matrices and permutations of coordinates, which implies
that Aut(X;) = Gx,. O

Remark 4.3. The automorphism groups of most Klein hypersurfaces can be computed using
a refinement of the differential method ([GLMV23]).

The following theorem states that if a polynomial defining a cubic hypersurface has a certain
type of partition, then the automorphism group of the hypersurface is determined by known
results.

Theorem 4.4. Let F' = F(x1,...,x7) be a smooth cubic form. If F has a (2,5)-type or (3,4)-type
partition, there exists i € {1,...,9} such that Aut(Xg) is isomorphic to a subgroup of Gx;.

Proof. We sketch the proof since it is similar to Example 3.19. By assumption, F’ has a maximal
(a1, ...,a;)-type partition, where a; < ag < ... < a4, and we may assume that (ap,...,a;) is
one of the following types: (1,1,5), (3,4), (1,1,1,4), (1,3,3), (1,1,1,1,3), (1,1,1,1,1,1,1). If
(ai,...,at) = (1,1,5), then we may assume F = H(x1,...,x5) + x5 + 23. By Theorem 3.18 and
Propositions 3.17, 3.11, we have

Aut(Xp) = Aut(Xp) x Guapn = Aut(Xp) x (C3 x Cy).

Then by [WY20, Theorem 1.1] and Theorem 4.2, we infer that Aut(Xp) is isomorphic to a
subgroup of G, for some ¢ € {1,2,...,6}. The remaining cases of (ay,...,a;) are similar. O

Theorem 4.4 has the following direct consequence, which will be frequently used in our clas-
sification of (5, 3)-groups.

Corollary 4.5. Let F' = F(x1,...,x7) be a smooth cubic form. Suppose that there exists A € Gp
such that A is similar to diag(&s,&s,1,1,1,1,1) (resp. diag(&s,&s,&s,1,1,1,1)). Then F has a
(2,5)-type (resp. (3,4)-type) partition. In particular, Aut(Xr) is isomorphic to a subgroup of
Gx, for somei e {1,...,9}.

5. AUTOMORPHISM GROUPS OF CUBIC FIVEFOLDS

In this section, we classify all possible subgroups of the automorphism groups of smooth cubic
fivefolds (Theorem 5.1). Roughly speaking, we proceed the classification in the following order:
abelian subgroups, Sylow subgroups, non-abelian solvable subgroups, non-solvable subgroups.
We use Strategy 5.16 to rule out relevant non-abelian groups and it relies on partitionability via
abelian subgroups (Theorem 5.12) and the notion of special almost (5,3)-representations (see
Definitions 5.3, 5.14).

Our main theorem is the following;:

Theorem 5.1. Let G be a finite group. Then the following two conditions are equivalent:
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(i) G is isomorphic to a subgroup of one of the 20 groups Gx, (i =1,...,20) ; and
(ii) G acts on a smooth cubic fivefold faithfully.

Remark 5.2. For i € {1,2,...,11,19,20}, in Theorem 4.2, we have seen that Aut(X;) = Gx,.
Note that Gy, is not isomorphic to a subgroup of Gx, if 1 < 4,5 < 20 and ¢ # j. Thus, Theorem
5.1 implies that Aut(X;) = G, for i € {12,13,...,18}. The Fermat cubic fivefold has the largest
possible order (3674160) for the automorphism group among all smooth cubic fivefolds. A list
of all subgroups of the 20 groups Aut(X;) can be found in the ancillary file 53-groups.txt to
[YYZ23].

5.1. (n,d)-representations and smoothness. By Theorem 3.18, the automorphism group of
every smooth cubic fivefold Xp admits an F-lifting. Thus, a finite group G is a (5, 3)-group if
and only if G admits an injective group homomorphism p to GL(7,C) such that p(G) preserves a
smooth cubic form and mop is injective. Motivated by this, we introduce the following definitions
(we identify GL(C"*2) with GL(n + 2,C) by choosing a basis of C"*?2).

Definition 5.3. Let A,B € GL(n + 2,C). Let p : G — GL(n + 2,C) be a faithful linear
representation of a finite group G. Let x be the character of p.

(1) Wesay pis an (n, d)-representation of G if there exists a smooth form F' = F(x1, ..., Tp42)
of degree d such that p(G) is an F-lifting of a subgroup of Aut(Xp).

(2) We say p is an almost (n,d)-representation of G if for every proper abelian subgroup
H < @G, the restriction p|H is an (n, d)-representation of H.

(3) We say x is an (n,d)-character (resp. almost (n,d)-character) of G if p is an (n,d)-
representation (resp. almost (n,d)-representation).

Let p; : G — GL(n 4 2,C) be two faithful linear representations of a finite group G with
characters x; (i = 1,2). Recall that p; and ps are isomorphic (i.e., there exists B € GL(n+2,C)
such that Bpi(g)B~! = pa(g) for all g € G) if and only if x; = x2. From this, we have that
p1(G) and p2(G) are conjugate in GL(n + 2, C) if and only if there exists f € Aut(G) such that

X1 = [*(x2). Here f*(x2)(g) := Tr(p2(f(g))) for all g € G.
We introduce the following equivalence relation between linear representations of finite groups.

Definition 5.4. Let p; : G — GL(n+2, C) be two faithful linear representations of a finite group
G with characters x; (i = 1,2). Let d be a positive integer. We say p; and py are d-equivalent
if the groups (p1(G), {glnt2) and (p2(G), gl +2) are conjugate in GL(n 4 2,C). We say x1 and
X2 are d-equivalent if p; and po are d-equivalent.

The motivation of the definition of d-equivalence is the following

Lemma 5.5. Let p; : G — GL(n+2,C) be d-equivalent faithful linear representations of a finite
group G (i = 1,2). If p1 is an (n,d)-representation, so is pa.

Proof. By assumption, there exists a smooth form F' of degree d such that A;(F') = F for all A; €
(p1(Q), €414 2). Since B{p1(GQ), &qlni2) B~ = (p2(Q), 414 2) for some B € GL(n + 2,C), we
have Ay(H) = H for all Ay € (p2(Q), &4l 12), where H := B™Y(F). Because |(p2(Q), Eqlnio)| =
{p1(G), Eqln+2)| = d|G|, one has pa(G) N (gl n+2) = {In+2} and so 7ps is injective. Thus, po(G)
is an H-lifting of mp2(G) C Aut(Xp), which implies ps is an (n, d)-representation. O

Using smoothness in an effective way is important for classification of automorphism groups
of smooth hypersurfaces. We mainly use two “combinatorial” non-smoothness tests Lemmas 5.6
and 5.8 in our classification of (5, 3)-groups.

Lemma 5.6 ([OY19, Lemma 3.2 and Proposition 3.3]). Let F' = F(x1,...,x7) be a homogeneous
polynomial of degree 3. Then F' is not smooth if one of the following four conditions is true:

(i) There exists 1 <i <7, such that for all 1 < j <7, x?xj ¢ F;



16 SONG YANG, XUN YU AND ZIGANG ZHU

(ii) There exist three distinct variables T, Tq, Ty, such that F € (xp, x4, zy);
(iii) There exist four distinct variables x,, xq, Ty, Ts, such that F € (xp,z4) + (2, 25)?;
(iv) There exist five distinct variables xp, Tq, Tr, Ts, Tt, such that F € (zp) + (T4, Tr, Ts, 71)?.

It turns out that this test is often convenient and sufficient to rule out relevant candidates of
cubics and groups for our purposes.

Example 5.7. Let p : Cy — GL(7,C) be a faithful linear representation of Cy. Then we may

assume p(Ca) = (Aqp), where Agp = (_({a ?), (a,b) € {(1,6), (2,5), (3,4), (4,3), (5,2),
b

(6,1)}. Suppose F'is a smooth cubic form satisfying A(F') = F. If a > 4, then F € (x5, z¢,27),

which contradicts Lemma 5.6. On the other hand, Ay¢, A25, A34 preserve the smooth cubic

form 23z + 2375 + 2326 + 23 + 22 + 23 + 23. Thus, up to isomorphisms, Cs has exactly three

(5, 3)-representations corresponding to Ay ¢, Az 5, A3 4 respectively.

Lemma 5.6 fails in some cases and we use the following stronger test in our computer program.

Lemma 5.8 ([GLM23, Lemma 1.6]). Let F = F(x1,...,27) be a homogeneous polynomial of
degree 8. If there exist three mutually disjoint collections of variables Vi, Vo, V3 such that
U; Vi = {z1,..., 27}, [Vi| > |Va| and for every monomial m € F, m can be expressed in one of
the following forms:

(i) m = zpxqx,, Tp, g € VI and z, € Va;

(ii) m = zpzqz,, xp € Vi and xg, 2, € Vo U V3; or

(iii) m = zpzqz,, xp, g, 2, € Vo U V3,
then F' is not smooth.

5.2. Abelian (5,3)-groups. We classify abelian (5, 3)-groups in this subsection. As a direct
consequence of [GL13, Theorem 1.3|, we have the following

Proposition 5.9. Let g be an element of primary order in a (5,3)-group. Then ord(g) =
20 3 57,11 or 43, where a,b > 0.

The Sylow p-subgroups of (5, 3)-groups with p > 3 are known.

Proposition 5.10 (cf. [GLM23, Example 4.3]). Let G be a nontrivial p-group with p €
{5,7,11,43}. If G is a (5,3)-group, then G = C,.

Let G, be the set of subgroups of the following 29 abelian groups: Cy3, Cg x C5, C5 x Cy x Cs,
Cg X 07, 064, CH X Cg X 02, Cg X Cg, C92, 05 X 032 X CQ, 032 X 03, 016 X Cg X 02, Cg X 04 X 03,
C'Hng, CQXC4X03, CgXCgXC%, C5><C§’,016><C§, CgXC%XCQ,CEXC%,CZXC%XC%,
Co x C3 x Cy, Cg x C3, Cy x C3 x Ca, C3 x C3, Cyg x C3, Cy x C3, C3 x C3, C3 x Oy, CS.

By computing abelian subgroups of Gx,, we have the following

Lemma 5.11. An abelian group G is in G, if and only if G is isomorphic to an abelian subgroup
of Gx, for some i € {1,2,...,20}. In particular, all groups in G, are (5,3)-groups.

We say A € GL(m,C) is semi-permutation if A is a diagonal matrix up to permutation of
columns, or equivalently, A has exactly m nonzero entries.

Similar to Example 5.7, using Lemmas 5.6 and 5.8, we can compute (5, 3)-representations, up
to 3-equivalence, of groups in G, with the help of computer algebra. Based on this, we obtain
the following result.

Theorem 5.12. If a (5,3)-group G contains a subgroup isomorphic to one of the following
groups: 011, Cg X 03, Cg X 04, 09 X 022, 043, Cg X 05, 05 X 032, 05 X 04 X 03, Cg X 07, 064;
Cg ><C’§, C4><C32 XCQ, Cél, 032 XCg, CmXCgXCQ, Cg ><C4><C3, C4XC§, CgXCQQ, C’meg,
then G is isomorphic to a subgroup of Gx, for some i € {1,2,...,11,19,20}.
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Proof. First we explain the strategies of the proof. Let X be a smooth cubic fivefold defined
by F. Suppose G < Aut(Xp) contains G, where Gy is one of the 19 abelian groups in the
list. We classify (5, 3)-representations p of Gy up to 3-equivalence. We may assume that the
matrices in p(Gy) are diagonal since G is abelian. By computing all cubic monomials preserved
by p(Gp), we infer that either F' has an (a1, a2)-type partition, where (a1, a2) = (2,5), (3,4), or
G consists of semi-permutation matrices by the differential method. Then by Theorems 4.2
and 4.4, we conclude that Aut(Xr) is isomorphic to a subgroup of Aut(X;) = Gx, for some
i€{1,2,...,11,19,20}. We give details for two typical cases Gy = C11,Cy x C5 and the other
cases are similar (representatives of all 3-equivalence classes of (5, 3)-representations of the 19
abelian groups can be found in the ancillary file Theorem5.12.txt to [YYZ23]).

Case Gy = Ci1: Up to 3-equivalence, Gy has exactly one (5,3)-representation p given by
p(Go) = (A), where A = diag(€),,&),€H,&,€11,1,1). Then the set of cubic monomials pre-
served by A consists of a:?, :nm:%, m%m, :n%, x%m, 172, w35, xlmg, 22x3. Thus, by A(F) = F, we
have that F' can be partitioned into H (1, z2, z3, T4, x5) + K (x¢, x7). By Theorem 4.4, Aut(Xr)
is isomorphic to a subgroup of G, for some i € {1,...,6}.

Case Gy = C9 x C5: Up to 3-equivalence, G has exactly one (5,3)-representation p given
by p(Go) = (A, B), where A = diag(&,&5,65,1,1,1,1) and B = diag(1,1,1,&5,£2,£3,€2). Then
the cubic monomials preserved by A and B are 33‘%.7)2, x%xg, x%xl, azix5, x%mﬁ, m%m, a:%m. Since
F is preserved by p(Gp), F' can be partitioned into F' = H(x1,x2,23) + K (x4, x5, x6, x7), and
by Theorem 4.4, there exists i € {1,...,9} such that Aut(Xp) is isomorphic to a subgroup in
Gx,. O

7

Now we are ready to classify abelian (5, 3)-groups.
Theorem 5.13. Let G be an abelian group. Then G is a (5,3)-group if and only if G € G,.

Proof. Tt suffices to show that if G is an abelian group such that (1) all of its proper subgroups
are in G, and (2) G ¢ G, then G is not a (5,3)-group. Then by Lemma 5.11 and Theorem
5.12, we are reduced to rule out the following 13 groups: Ca7, C3, Cg x C2, C% x Cy, C3 x Ca,
Cl6 X C4, Cg, C7 X CQ, C5 X 022, C5 X C7, Cg X C5, C4 X 022 X C3, C7 X Cg Then the idea is
to prove that these groups have no (5, 3)-representation by considering (5, 3)-representations of
their proper subgroups. We give details for C7 x Cs and the other cases are similar.

Suppose p is a (5, 3)-representation of G = C7 x Cy with p(G) preserving a smooth cubic
form F. Note that C; has only one (5, 3)-representation up to 3-equivalence given by A7 :=
diag(£9, €2, €3, €3,£2, &7, 1) (representatives of all 3-equivalence classes of (5, 3)-representations of
cyclic groups of primary orders can be found in the ancillary file Theorem5.13.txt to [YYZ23]).
By considering the restriction p|C7, we may assume that p(G) = (A7, A2), where Ay = diag(=+1,
+1,...,£1). The cubic monomials preserving by A7 are ZL‘%, ux%, :Ui:vg, I‘Q.%‘%, .1‘%1’3, aclx%, .1‘%165,
T3T5T6, LIT4TT, TaX5T7, T1XeL7, T1T2x4. By Lemma 5.6, the first 7 monomials must be in F.
From this, by As(F) = F, we deduce that Ay = diag(1,1,1,1,1,1, 1), which is a contradiction
since p(G) = C7 x Cy. O

5.3. Solvable (5, 3)-groups. In this subsection, a classification of solvable (5, 3)-groups is pre-
sented. The classification begins with identifying all 2-groups and 3-groups followed by exam-
ining other solvable (5, 3)-groups of order less than or equal to 2°-3%.5.7.

Definition 5.14. Let p : G — GL(7,C) be a faithful linear representation of a finite group
G with character xy. We say p (resp. ) is a special representation (resp. special character)
if there exists no A € p(G) such that A is similar to either diag({f,f+1 g“,fg,fg,fg,fg,fg) or
diag(£gtt, €5 eatl g ¢o €9 ¢9) for some a € {0,1,2}.

As a direct consequence of Corollary 4.5, the following lemma plays an important role in our
strategy of ruling out groups.
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Lemma 5.15. Let G be a finite group. Then G is not a (5,3)-group if the following two
conditions are satisfied:

(1) There exists no 1 <i < 20 such that G is isomorphic to a subgroup of Gx,;
(2) G admits no special (5, 3)-representation.

We use the following strategy to classify non-abelian (5, 3)-groups.

Strategy 5.16. Let m be a positive integer. Suppose that all (5, 3)-groups of orders m’ < m
satisfying m’ | m have been found. We classify non-abelian (5, 3)-groups of order m as follows.
Step 1: We compute the (finite) set B, of non-abelian groups G of order m satisfying the
following conditions:
(1) All proper subgroups of G are (5, 3)-groups;
(2) Gx, has no subgroup isomorphic to G for all 1 < ¢ < 20;
(3) G contains none of the 19 abelian groups in Theorem 5.12.

If B,, = 0, then we are done. Otherwise, we do case-by-case check for groups in B,,. For each
G € By, go to Step 2.

Step 2: Compute the (finite) set R of the 3-equivalence classes of the special almost (5, 3)-
characters of G. If Rg = (), then G is ruled out by Lemmas 5.5 and 5.15. Otherwise, go to Step
3.

Step 3: For each x € R¢, (i) we compute a representation p affording x; (ii) we compute
the cubic forms F' invariant by all matrices in p(G); (iii) we prove that such forms F' are not
smooth.

Here we explain why Strategy 5.16 works out. Let G be a non-abelian group of order m such
that G'x, has no subgroup isomorphic to G for all 1 <+ < 20. It suffices to show that G is not
a (5, 3)-group if one of the following three statements is true: (a) G ¢ By,; (b) Rg = 0; (c) each
X € R¢ is not a (5,3)-character. Note that by assumption, (2) in Step 1 holds for G. Thus,
if G ¢ By, then G does not satisfy either (1) or (3) in Step 1, which implies that G is not a
(5,3)-group by Theorem 5.12. From now on, we may assume that G € B,,. Suppose G is a
(5,3)-group. Then by Lemma 5.15, G has a special (5, 3)-representation p. This representation
gives rise to a special (5, 3)-character y, which is of course a special almost (5, 3)-character in
R, which implies that R # 0 and x € R is a (5, 3)-character (i.e., both (b) and (c) fail).

Remark 5.17. For orders |G| = m coprime to 3, all representations of G are special. However,
for cases 3 | m, G might have many non-special almost (5, 3)-representations. Thus, focusing on
special almost (5, 3)-representations in Step 2 and Step 3 reduces the amount of calculations
in our classification considerably.

Remark 5.18. Following [OY19], we call the condition (1) in Step 1 the sub-test. Like in
[OY19] and [WY20], for relevant group orders m, the sub-test often rules out most of the finite
groups which are not (5, 3)-groups.

Remark 5.19. The idea of ruling out candidate (n,d)-groups via restricting their characters
to (abelian) subgroups is used in previous studies, e.g. [OY19, Lemma 6.11] for (n,d) = (3,5)
and [WY20, Theorem 6.1] for (n,d) = (3,3). In order to handle a larger list of relevant can-
didates of hypersurfaces and groups in the cases (n,d) = (5,3),(4,3), we use this idea in a
more systematic way (e.g., introducing new notions including (special) almost (n, d)-character
and d-equivalence). For computation in the steps of Strategy 5.16, we use a mixture of GAP
[GAP], Mathematica [Wo|, and Sage [Sage]. The codes needed in Strategy 5.16 are contained
in the following ancillary files to [YYZ23]: GAPsubtest-53groups.txt, LHsnewLHsnewred.txt,
GAPcodesnewforMath.txt, CubicFivefolds.m.

As illustrations, we apply Strategy 5.16 to determine Sylow subgroups of (5, 3)-groups.
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Theorem 5.20. Let G be a p-group with p = 2,3. If G is a (5,3)-group, then G is isomorphic
to a subgroup of Gx, for some 1 <i < 20.

Proof. We give proof for 2-groups, and the classification for 3-groups is similar. Let m = |G| =
29,

Cases a = 1,2,3: Each group of order 2¢ is a subgroup of one of the 20 groups Gx,. In
particular, By = By = Bg = () and we are done.

Case a = 4: After running Step 1, we have Big = {C2 x Qs}. By Step 2, we find Re,xgs = 0,
which implies that Cy x Qg is not a (5, 3)-group.

Cases a = 5,6: Similar to case a = 4.

Cases a > 6: Note that Cgy is the only (5,3)-group of order 64. Since any finite group of
order 2% contains a subgroup of order 64. Thus, by Theorem 5.12, there is no (5, 3)-group of
order 2% This completes the classification for 2-groups. (I

Next we give an upper bound for the orders of candidate (5, 3)-groups which we are reduced
to consider from now on.

Proposition 5.21. Let G be a (5,3)-group. If |G| does not divide 90720 = 2°-3%*.5.7, then G
is isomorphic to a subgroup of Gx, for some 1 < i < 20. In particular, if F' = F(x1,x2,...,27)
is a smooth cubic form having neither (2,5) nor (3,4)-type partition, then |Aut(Xp)| < 90720.

Proof. By Propositions 5.9, 5.10 and Theorem 5.20, we have
|G| =292 3% . 5% . 797 . 1911 . 43943

where a2 <6, a3 <8, a5 <1, a7 <1, a1 <1, ays < 1. By Theorem 5.20, any (5, 3)-group of
order 243 = 35 contains either Cy x C3 or C§. Since |G| does not divide 2° - 3% -5 -7, it follows
that G contains one of the following groups: Cg4, Cg x Cj, C§, C11, C43. Then by Theorem
5.12, G is isomorphic to a subgroup of Gx, for some 1 <7 < 20. O

Now we are ready to classify all solvable (5, 3)-groups.

Theorem 5.22. Let G be a solvable (5,3)-group. Then there exists i € {1,...,20} such that G
is tsomorphic to a subgroup of Gx,.

Proof. By Proposition 5.21, we are reduced to consider cases |G| = m dividing 90720. Then as
in the proof of Theorem 5.20, we use Strategy 5.16 to proceed the classification. It turns out that
all relevant candidate groups which are not (5, 3)-groups can be ruled out by Strategy 5.16 (the
details are included in the ancillary file Theorem5.22.txt to [YYZ23]). Since the arguments are
completely similar as before, we only give an example for which Step 3 is involved. Consider the
case |G| = m = 96 (the outputs of our computer-aided calculations for this case are contained in
the ancillary file Example-m96-53-groups.txt to [YYZ23]). By Step 1, Bys consists of 4 groups.
Applying Step 2, it turns out C3 x C3s € Bgg is the only one for which R¢ is not empty. In fact,
Reyxcs, has exactly one element, say x. The image p(Cs x Csz) of the special almost (5,3)-
representation p affording y is generated by A; = (g 3,) and Ay = diag(1,1,1,1,1,&3,£3),

. 0 1
where S = diag(1, &5, 3,5, €33), T = (1 0). Thus, {@3, T12677, T422, 2§ + 23, 323, 273}
is a basis of the homogenous polynomials of degree 3 preserved by A; and As. Then if F is a
cubic form invariant by p(C3 x Cs2), we have z3x; ¢ F for all 1 < j < 7, which implies F is not
smooth. Therefore, C35 x Cs33 is not a (5, 3)-group. O

5.4. Proof of Theorem 5.1. In this subsection, we prove our main theorem (Theorem 5.1).
By Theorem 5.22 and Proposition 5.21, it suffices to prove that if G is a non-solvable (5, 3)-
groups with m := |G| dividing 2° - 3* - 5- 7, then G is isomorphic to a subgroup of G x, for some
i€ {1,2,..,20}.
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Cases m < 2000: We use Strategy 5.16 to handle these cases. In fact, it turns out that by
Step 1, B,, = 0 (vesp. By, = {Ca x Ag}) for m # 720 (resp. m = 720). By Step 2, we find
Reyxas = 0, which implies Cy x Ag is not a (5, 3)-group.

Cases m > 2000: It is well-known that a non-abelian finite simple group of order dividing
25.3%.5.7is one of the following: A5, PSL(3,2), Ag, PSL(2,8), A7, PSU(3,3). Then m must
be divided by the order of one of the 6 simple groups. Thus, it suffices to consider non-solvable
groups of the following orders: 2016, 2160, 2520, 3024, 3240, 3360, 3780, 4320, 4536, 5040,
6048, 6480, 7560, 9072, 10080, 11340, 12960, 15120, 18144, 22680, 30240, 45360, 90720. As
above, we also apply Strategy 5.16 to treat these orders. For cases m = 2160, 2520, 3024, 3240,
3360, 3780, 4536, 5040, 7560, 15120, we completely use computer to do computation in the
steps of Strategy 5.16 like in the cases m < 2000 (the details can be found in the ancillary file
Theorem5.1.txt to [YYZ23]). For the remaining orders, we use a more theoretical approach
based on our classification of (5,3)-groups of smaller orders. Next we give the details for a
typical case m = 2016.

Suppose G is a non-solvable (5, 3)-group of order 2016. Let N be a maximal proper normal
subgroup of G. Then we consider the following short exact sequence:

1—N—G— M —1,

where M = G/N is a simple group. Then M is one of the following groups: Ca, Cs, Cr,
PSL(3,2), PSL(2,8).

(1) If M = Cs, then |N| = 1008 and N = C3 x (PSL(3,2) x C2) by our classification of
(5,3)-groups of order 1008. Note that N contains a unique subgroup, say H, of order 336.
Moreover, H = PSL(3,2) x Cy. Thus for any g € G, gHg~! C gNg~! = N, which implies that
gHg™! = H is a normal subgroup of G. We get another short exact sequence:

1—H—G—M —1,

where |M'| = 6. So there exists a subgroup H' < M’ with |H’| = 2. Then G has a subgroup of
order 336 - 2 = 672, which is impossible since there is no (5, 3)-group of order 672.

(2) If M = (3, then |N| = 672, which is impossible.

(3) If M = Cy, then both N and M are solvable, which contradicts non-solvability of G.

(4) If M = PSL(3,2), then |N| = 12. Since |M| = 23 -3 -7, there exists a subgroup H < G
such that |H| = 84, which is impossible by previous classification.

(5) If M = PSL(2,8), then |N| = 4. Since |M| = 23-32 .7, there exists a subgroup H < G
such that |H| = 28, similarly, it is impossible.

Therefore, we conclude that there is no non-solvable (5, 3)-group of order 2016. The remaining
cases for m can be handled similarly. This completes the proof of Theorem 5.1.

6. AUTOMORPHISM GROUPS OF CUBIC FOURFOLDS

In this section, we classify all groups faithfully acting on smooth cubic fourfolds based on
the classification of (5,3)-groups. It turns out that there are 15 maximal groups among them
(Theorem 6.1). As a by-product, we find explicit defining polynomials of two cubic fourfolds with
maximal symplectic automorphism groups isomorphic to A7 and Mg respectively (Theorems
6.14 and 6.15).

6.1. Examples. The 15 smooth cubic fivefolds X; (j = 1,2,...,7,10,11,...,15,17,18) in Sub-
section 4.1 are defined by smooth cubic forms admitting partitions of (6, 1)-type and we have
seen the explicit description of their automorphism groups Aut(X;) = Gx, (see Remark 5.2).
From this and Lemma 3.16, we immediately obtain the following 15 examples of smooth cubic
fourfolds X/ = Xpr (i = 1,2,...,15 respectively) via the relation F] = F; (up to obvious per-
mutations of variables) and the explicit description of their automorphism groups Aut(Xg/) (in
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. A0
fact, if A € GF{, then (0 1) € GF,,

ancillary file Examples6.1.txt to [YYZ23]).

the matrix generators of Aut(Xpy) can be found in the

(1) Let F{ = af 4 2§ + a3 4 2§ + 22 4+ 2§ and X| = Xz the Fermat cubic fourfold. Then
Aut(X!]) = C3 % Sg of order 2¢- 37 - 5 = 174960.

(2) Let F} = 23+ 23 + 23 +3(v/3— 1)z1w0m3 + 23 + 22 + 23 and X} = Xpy. Then Aut(X3) =
((03 X (Cg’ X Cg)) X Cg) X (04 X Cg) of order 23 : 36 = 5832.

(3) Let F} = 23zo+adws+adrg+ai+ad+23 and X} = Xpy. Then Aut(X3) = Csx (C3xCy)
of order 2% - 32 = 144.

(4) Let X; C P% defined by 23 + 23 + 23 + 23 + 23 + 23 + 23 =21 + 22 + 73 + 24 + 75 = 0.
Then Aut(X}) = S5 x (C% x Cq) of order 2% - 3% - 5 = 2160.

(5) Let F = 23xo + 233 + 2324 + 2325 + 23 + 23 and XL = Xpy. Then Aut(X!l) = Cyg of
order 3 - 2% = 48.

(6) Let F} = 23wy + 233 + 2324 + 23w5 + 2221 + 23 and X = Xpy. Then Aut(Xg) =
PSL(2,11) x C3 of order 22 -3%.5- 11 = 1980.

(7) Let Fi = a3+ a3+ 23 +3(vV3— 1) z1z023 + 23 + 22 + 23+ 3(V3 — 1) 247576 and X7, = Xp
Then Aut(X7) ((Cg X (C3 X Cg)) X Cg) (04 x Cy) of order 2° - 3% = 7776.

(8) Let F§ = x%wy + 2323 + 23w4 + 2225 + 2276 + 23 and X} = Xy Then Aut(Xg) = Csp
of order 2° = 32.

(9) Let Fy = x3zo+a323+ 2304+ 0305+ 0206+2271 and X = Xpy. Then Aut(X§) = CayxCs
of order 232 -7 = 126.

(10) Let F{y = (23 4+ 23 + 23 + a3 + a3 + o) + (-3¢}, — 383, + 3% — 3&s + 624 — 3) -
(12023 + 212274 + (§6 — 1) 12025 + 212206 + (€6 — 1)T12374 + 212375 + 212326 + (§6 —
Dx1xaxs — {er12476 — Eex10526 + (§6 — 1)w22304 4 (§6 — 1) w2325 — {eT22326 + L2245 +
ToxaTe — EgTaxsxe + T3Taxs — EgT3XT4T6 + T3T5Tg + 1‘4.%'5336) and X{O = XF1/0' Then
Aut(X],) & Mg of order 24 - 32 - 5 = 720.

(11) Let X{; C IP® defined by :E:{’—i—x%—{—:ng%—:ni%—mg—i—m%—i—m; = x1+xot+as+trst+as+ret+ar = 0.
Then Aut(X},) = S7 of order 2% - 32 .5 -7 = 5040.

(12) Let Fiy = aizg + x3w5 + 2324 + 2325 + 376 + 222426 + 2§ and Xjy = Xpy . Then
Aut(X],) =2 (Cs x Cq) x Cy of order 2° = 32.

(13) Let Fjy = 823 +8(—5+4v2)z123 +264(—114+6V2)z2 (22 +22) — 4&421 (=5 +4V2) w374 +
2(=3+V2)z526) + (14+£4) (—124+11/2) (2422 — 2322) and X|; = Xpy,- Then Aut(Xj3) =
PSL(3,2) x Ca of order 2% -3 -7 = 336.

(14) Let F{, = 23 + 2123 — %xluxﬁ +z128 — %xlm% — %xl%xﬁ + (=14 &) w122 + 2324 —
Tox3Ts + T3T4 + Thre + 3Eewowaws + (—1 + Eou — &8 — 524)562566 + (=1 — 2894 + 288 +
2524)1‘2393566 + (§24 — &6 — 524)333455 + (=24 — &6 + £54) 735 + 2 — @} — afws — wyxd +

— &exims + 266mams e — Eorsad + (1 — Ep)wax? + (1 — &g)atwg and X, = Xpr,. Then
Aut(X14) GL( ,3) of order 2¢ -3 = 48.

(15) Let Fis = a3+ (564—&+5)atwa+(— 2§4+2§6+2§12— Jz123+ (— 586 — 5&12+3 ) a3+ (&a—
2{6—5124-2)961363-1—(2512— )171902963-1—( Eat 566 — 2&12)a3m3+ (&4 — 28+ D) mrad+(— 26+
&6 +512 Dzord+ (— 1+ 382 — 53+ (Ca+ &6 — 1)3?1964 + (=& — &+ &2 — 1) z1mamy +
(— 54—*)$2x4+(2512)$1333374+(€6—512— Jrowsts+(— €4+ 586+ 3&2—1)adma+(—E6—
512)$1$42;+(—%f4+%€6+%§12)x21221+(%§4+§6—§12—%)$3$Z+(—%§6+%§1z+%)ﬂ?i+(§1z—
2)z3ws + (—54 +286 — 1)m120w5 4+ (— 386 — 5&12+ 5) 2335+ (—284 + 286 + 2612 — 2)z1 2325+
(3¢ — %512 + $)a3ws + (—280) 21425+ (6 — 512)@1’4905 + (54 —&— 512)933904% +(—3&+
&6 +&12 — *)$41‘5 + (& — &2+ 1)331$5 (54 — 36— 2512 + 3 zoad + (566 — 5&2+ 5)srd+
(3&4—386—3¢12+ 1) mamd+(— 386+ 312 — 3)03+ (38— 2€6+ 2512)9019064-( 284+8&6+E&12—
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Dz1@os+ (56— 286 — 12+ 3) 2326+ (€6 + 12— 2)w12326 + (§6 — E12 — 1) w2326 + (— 5E4 +
386+ 5€12)03m6+ (=264 +2812) w1 Taw6 + (—Ea+ &6 — E12) Tawaze + (—Ea — L) wsmaws + (56 —
$&19— )23 w6+ (266 —E&12) 112576+ (E4— 266+ 1) Tow5 36+ (—E12+ 1) T3 T576+ (260 —E6—2E12+
Dazazsze+(— 56— &6+ &2 — 3)x8x6 + (— 360+ & — 5 ) 0132+ (560 — 586 + 512+ 2)wod +
(36a—Ero+3)x305+(— 58— 5€12+5)Tazg+(— 56— 586 +5E12) w525 +(— 56+ 3612+ 5) 7]
and X{5 = Xy . Then Aut(Xj;) = ((C3 x C3) x @) x C3 of order 23 . 3% = 216.

The defining equations of the examples X! (i = 1,2,...,11) are known (see e.g., [HM19],

[LZ22], [Zhe22]). It seems that the cubic fourfolds X/ (i = 12,13, 14, 15) are new.

6.2. C3-covering groups and classification.

Theorem 6.1. Let G be a finite group. Then the following two conditions are equivalent:
(i) G is isomorphic to a subgroup of one of the 15 groups Aut(X]) (i =1,2,...,15); and
(ii) G acts on a smooth cubic fourfold faithfully.

A list of all subgroups of the 15 groups Aut(X]) is contained in the ancillary file 43-groups. txt
to [YYZ23]. We will prove Theorem 6.1 based on close relations between (4, 3)-groups and
(5,3)-groups. First we make some reduction based on partitionability as in our classification of
(5,3)-groups. The proof of the following result is similar to that of Theorem 4.4 and we omit
the details.

Theorem 6.2. Let X be a smooth cubic fourfold defined by the homogeneous polynomial F'. If
F is partitionable, then there exists i € {1,...7} such that Aut(X) is isomorphic to a subgroup
of Aut(X7).

To study relations between (4, 3)-groups and (5, 3)-groups in a more general setting, we in-
troduce the following definition.

Definition 6.3. Let G and G be two finite groups. Let d be a positive integer. We say Gis a
Cy-covering group of G if the centre Z(G) of G contains a subgroup N such that N = C,; and
G/N = G.

Now we have the following

Lemma 6.4. Let F = F(x1,...,zy) be a smooth form of degree d with m > 3, d > 3. We define
F= F-l—x;imrl. Then
(1) F is a smooth form of degree d.
(2) If G consists of semi-permutation matrices, then so does G .
(3) If d = 3, then F is partitionable if and only if F has an (a1,a2)-type partition with
a; > 2, a > 2.

Proof. (1) and (2) follow from definitions. To prove (3), from now on, we assume that d = 3. If
F is partitionable, then we may assume that F' has a partition of type (a,b) with a > 1, b > 2,
which implies that F' has a partition of type (a+1,b) with a+1 > 2, b > 2. On the other hand,
if F has an (a1, as)-type partition with a; > 2, as > 2, then there exists A € GL(m + 1, C) such
that R

A(F)=H(x1,....xa,) + K(Ta 41, s Tas+ay)-
181 53%”). Then Bg, o, € GA(?)- Note that

P = A7'G3A. Then by Lemma 3.9 and Proposition 3.11, we have AB,, 0,A™! € Gz and

B 0
0 A

For positive integers ni,na, we set By, ,, = (

ABQMLQA_1 = ( ), where B € G and A € C. Since By, 4, and ABal,azA_1 have the same
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eigenvalues (counting multiplicities), we have that B is similar to either By, _1 4, Or B, ay—1-
From this, we conclude that F' is partitionable (see Corollary 4.5). Il

Every (n, d)-group has at least one Cy-covering (n+1, d)-group, which gives strong constraints
n (n,d)-groups.
Lemma 6.5. Let G be a subgroup of Aut(Xr), where F = F(x1,...,Zn+2) s a smooth form of
degree d, where n > 2, d > 3, (n,d) # (2,4). Let F denote the degree d smooth form F + xn+3
Then the following statements hold:
(1) There exists a subgroup G' C GL(n + 3,C) such that: (i) G' is a Cy-covering (n+ 1,d)-
group of G, (ii) G' is an F-lifting of 7(G") C Aut(Xz), and (iii) G' contains the matriz
Ealny2 0
0 1)’
(2) If G admits an F-lifting, then G x Cq is an (n + 1,d)-group. In particular, if d is a
prime number not dividing |G|, then G x Cy is an (n + 1,d)-group.

Proof. Recall that the center Z(Gp) of Gr = {A € GL(n + 2,C) | A(F) = F} contains
N := (§41+2) = Cy. By Lemma 3.16, we have the short exact sequence of groups

1—>Ni>Gpﬂi>Aut(XF)—>l

where 7 is the natural inclusion map. Let G <G F be the pre-image of the subgroup G C
Aut(Xp) under the map 7|Gp. Then N C Z(G) and G/N = @G, which means that G is a

={ 0 1) | A € G} Clearly G is isomorphic to G’ = 7(G') C

Aut(Xz). From this, we conclude the statement (1).
If G admits an F-lifting, say G, then

@:CNJXN%GXCd,

Cy-covering group. Let G :=

which implies the first sentence in (2). Then by [OY19, Theorem 4.8], the second sentence in
(2) holds. This completes the proof of the lemma. O

Example 6.6. By Theorem 5.1, Cgy is the only (5, 3)-group of order 64 and Cgq x C3 is not a
(5,3)-group. Then by Lemma 6.5, there is no (4, 3)-group of order 64.

From now on, we focus on (4, 3)-groups and their Cs-covering (5, 3)-groups.

Theorem 6.7. Let G be a finite group. Suppose that for every Cs-covering (5, 3)-group G of G,
one of the following statements holds:
(i) Cz contains one of the 19 abelian groups in TheoArem 5.12;
(ii) G has no special (5,3)-representation p with p(G) containing diag(&s, ..., &3, 1).
If G is a (4,3)-group, then Aut(X]) contains a subgroup isomorphic to G for some i €
{1,2,...,9}.

Proof. Suppose G < Aut(Xp), where F = F(x1,...,x¢) is a smooth cubic form. Let G’ be as in
Lemma 6.5 (1). In particular, G is a Cs-covering (5, 3)-group of G. If (ii) holds for G’, then there
exists A € G such that A is similar to either diag(¢3,&3,1,1,1,1,1) or diag(s,£3,83,1,1,1,1),
which implies the theorem by Corollary 4.5, Lemma 6.4, Theorem 6.2. If (i) holds for G’, then
like in the proof of Theorem 5.12, we conclude that Aut(X/) contains a subgroup isomorphic to
G for some i € {1,2,...,9}. This completes the proof of the theorem. O

By adapting Strategy 5.16, we use the following strategy to classify (4, 3)-groups.
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Strategy 6.8. Let m be a positive integer. Suppose that all (4, 3)-groups of orders m’ < m
satisfying m’ | m have been found. We classify (4, 3)-groups of order m as follows.
Step 1: We compute the (finite) set B], of groups G of order m satisfying the following
conditions:
(1) All proper subgroups of G are (4, 3)-groups;
(2) Aut(X/) has no subgroup isomorphic to G for all 1 <1i < 15.
If B, = 0, then we are done. Otherwise, we do case-by-case check for groups in B],. For each
G € B),, go to Step 2.
Step 2: Compute the (finite) set Ci defined as follows: if 3 | m,

Co = {@ | Gisa Cs-covering (5, 3)-group of G};

if3tm,Cq:={G|G=CsxG and G is a (5,3)-group}. If C¢ = 0, then G is ruled out (Lemma
6.5). Otherwise, go to Step 3.
Step 3: For each G € Cg, we prove that either (i

) G contains one of the 19 groups in Theorem
5.12 by computing abelian subgroups of G or (ii) G h

as no special (5, 3)-representation p with
p(G) containing diag(&s, ..., &3, 1) by computing R5 (and applying Step 3 of Strategy 5.16 to
each x € R if Rg # ()). Then by Theorem 6.7, G is ruled out.

Next we prove Theorem 6.1 based on Strategy 6.8.

Proof of Theorem 6.1. By Theorem 5.1 and Lemma 6.5 (see Example 6.6), the order of a (4, 3)-
group is of the following form

az . 343 . 5As . 7ar . 1101
where ao <5, a3 <7,a5 <1,a7 <1, a;;1 <1. Then by Theorem 6.7, we are reduced to classify
(4, 3)-groups of orders dividing 2° - 33 -5 - 7 (see the proof of Proposition 5.21).

Similar to the proof of Theorem 5.1 based on Strategy 5.16, we use Strategy 6.8 to rule out
groups inductively in the sense of increasing orders m of relevant groups. We only give the
details for a typical case m = 16 (other cases can be found in the ancillary file Theorem6.1.txt
to [YYZ23]; the outputs of our computer-aided calculations for the case m = 16 are contained
in the ancillary file Example-m16-43-groups.txt).

By Step 1, B consists of 5 groups: C2 x Qs, C4, (Cq x Ca) x Cz, Cy x Cy, Cy x C3. In
Step 2, for the first 2 (resp. the last 3) groups G in the list, we have Cq = 0 (resp. {C5 x G}).
Thus, Cs x Qg and Cj are not (4,3)-groups. By Step 3, Rg =0 for G = O3 x ((Cy x Cy) x Cy),
Cs x (C4 x Cy), Wthh implies that (C4 x C3) x Cy and Cy >4 Cy are not (4, 3)-groups. Applying
Step 3 to G = C3 x Cy x C2, we have Rg contains only one element y and the image p(G)
of the special almost (5, 3)-representation p affordlng X is generated by dlag( 1,84,1,1,1,1,1)
and diag(1,1, — 1, 1,1,1,1), diag(1,1,1,—1,1,1,1) and diag(1,1,&3,£3,£3,€3,1). From this, we
conclude that G satisfies (i) in Theorem 6.7, which implies that G = Cy x C? is not a (4, 3)-
group. Thus, we complete the proof for the case m = 16. Similarly, we can handle all other
cases m | 25 - 33 -5 7. This completes the proof of the theorem. O

Remark 6.9. Automorphisms of cubic fourfolds naturally induce automorphisms of their Fano
varieties of lines which are hyperkahler manifolds of K 3[2]—type. In particular, all (4, 3)-groups
can act faithfully on hyperkiihler manifolds of K32-type. It would be interesting to apply our
classification of (4, 3)-groups to study (fixed point loci of) finite groups of automorphisms of
hyperkéhler manifolds of K 32-type.

6.3. Symplectic automorphism groups. The symplectic automorphism group Aut®(Xp) of
a smooth cubic fourfold Xz consists of the symplectic automorphisms f of Xz (i.e., the induced
action on H3(Xr) = C is trivial). If the defining equation F' and matrix generators of Aut(Xp)
are explicitly given, one can directly compute Aut®(Xp) via the following result.
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Lemma 6.10 ([Ful6, Lemma 3.2]). Let X be a smooth cubic fourfold defined by F(x1,...,x¢).
Let f = [A] be an element in Aut(X), A € GL(6,C), with ord(f) = ord(A) and A(F) = A\F
with A € C, then f is symplectic if and only if det(A) = A2.

Example 6.11. The automorphism group Aut(X}) = Cyg of X! is generated by the matrix
Axy = diag(&16, €L, €4, —1,1,&3). Since Ax;(F3) = Fy and det(Ay;) is a 48-th primitive root of
unity, by Lemma 6.10, we have that Aut®(X!) is trivial. More generally, if Aut(Xr) admits an
F-lifting Aut(Xr) C GL(6,C), then

Aut®(Xp) = (Aut(Xr) N SL(6, C)).

The symplectic automorphism groups Aut®(X/) (¢ = 1,2,...,15) can be computed similarly
and the result is summarized in the Table 1. This is consistent with [LZ22, Theorems 1.2
and 1.8] which we will recall below. By Aut®(X/) being maximal (as indicated by v in the
last column of the table), we mean that Aut®(X]) is not isomorphic to a proper subgroup
of Aut®(X) for any smooth cubic fourfold X. In fact, by computer calculations using GAP,
Aut®(X) is not isomorphic to any proper subgroup of the groups in [LZ22, Theorem 1.2] if and
only if ¢ € {1,4,6,7,10,11, 14} (see the ancillary file 43-groups.txt).

i Aut(X)) [Aut(X))] Aut®(X]) |[Aut®(X})| maximal
1 C3 % Ss 174960 Cs % Ag 29160 v
2 ((C3 x (C§ x C3)) x C3) x (Cy x Ca) 5832 (C5 x (C3 x C3)) x Ca 486

3 Cs x (C3 x Cs) 144 S3 6

4 S5 x (C3 x Cy) 2160 As 4 S5 360 v
5 Cys 48 trivial 1

6 PSL(2,11) x C3 1980 PSL(2,11) 660 v
7 ((Cs x (O3 x C3)) x C3) x (CF x Ca) 7776 ((C5 x (C% % C3)) x C3) x Qs 1944 v
8 Cso 32 trivial 1

9 Ca1 % Cg 126 Cr xC3 21

10 Mio 720 Mo 720 v
11 S7 5040 Az 2520 v
12 (Cs x C3) x Ca 32 QD 16

13 PSL(3,2) x C» 336 PSL(3,2) 168

14 GL(2,3) 48 GL(2,3) 48 v
15 ((C3 x C3) x Qs) x Cs 216 (C3 x C3) x Qs 72

TABLE 1. Symplectic automorphism groups of cubic fourfolds

Based on the global Torelli theorem for cubic fourfolds and lattice theory, Laza—Zheng [LZ22,
Theorems 1.2] identified all possible Aut®(X) for smooth cubic fourfolds X . The following result
is a direct consequence of [LZ22, Theorems 1.2 and 1.8].

Theorem 6.12. A finite group G can act faithfully and symplectically on a smooth cubic fourfold
if and only if G is isomorphic to a subgroup of one of the following 7 groups:

GL(2,3),C4 x Ag, A7, ((C3 x (C2 % C3)) x C3) x Qg, Mg, PSL(2,11), A5 x Ss.
Moreover, for the moduli space M¢ of the smooth cubic fourfolds X with Aut®(X) containing
G as a subgroup, the following statements hold:

(1) If G = GL(2,3), then dim(Mg) = 1;
(2) [fG = Cg X A6 (Tesp. A7, ((03 X (Cg X Cg)) X Cg) X Qg, Ml(],PSL(2, 11),A5 X 83), then
the cardinality |[Ma| =1 (resp. 2,1,2,1,1).
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Remark 6.13. Using notations in [LZ22, Theorem 1.2], the 7 groups in Theorem 6.12 are
isomorphic to Tys, 3% : Ag, A7, 3174 :2.22) My, La(11), As5 respectively. Note that Tyg is one
of the 11 maximal finite groups acting on K3 surfaces faithfully and symplectically ([Mu88]).

Among the 8 smooth cubic fourfolds with maximal symplectic automorphism groups in The-
orem 6.12 (2), explicit defining equations for 6 of them are previously known (see [HM19, Table
11], [LZ22, Theorem 1.8]). Let X*(A7) and X*(Mjg) (i = 1,2) be as in [LZ22, Theorem 1.8].
Note that X*(A7) = X}, and X'(Myo) = Xj,. To the best of our knowledge, explicit defin-
ing equations for X2(A7) and X?2(Mjg) are unknown. As a by-product of our classification of
(4,3)-groups and (5, 3)-groups, we solve this open problem.

Theorem 6.14. Let Fa, = a3 + 23 + a3 + %xlxzxg + 2123 + 2022 + w37% + @m%xﬁ. Then
the smooth cubic fourfold Xpa, satisfies

Auts(XFA7) = Aut(XFA7) = A7.
In particular, Xp,_ is isomorphic to X2(A7).

Proof. Let F' := Fu,. Recall that Fig = F=F+ 73 and X156 = Xpy, (see the example (16) in
Subsection 4.1). By Theorem 5.1 and Remark 5.2, we have Aut(Xi6) = C3.A7 is generated by

Al)(le 1 0 A/)(lﬁ 2 O / . 4 2 2
AXle,l = 0 ’ 1 and AX16,2 = 0 ’ 1)’ where AX1671 = dlag(17£37§37_17£37_£3)'

Then by Lemma 3.16, Aut(Xp) is generated by [AY, ]| and [A%, o], which implies that
Aut(Xr) = Az. Since the quotient group Aut(Xr)/Aut®(Xr) is abelian and A7 is a non-abelian
simple group, we have Aut®(Xp) = Aut(Xp) = A7. By A7 = Aut®(X'(47))  Aut(X* (A7) =
Sz, the cubic fourfold X!(A7) is not isomorphic to Xr. Thus, Xp = X2(Ay7). O

For Mo, we prove a somewhat stronger result (note that Mjy contains Ag as a normal
subgroup of index 2) via our approach of classifying (4, 3)-groups and (5, 3)-groups.

Theorem 6.15. Let X be a smooth cubic fourfold. Then the following three statements are
equivalent:

(1) Aut(X) = AutS(X) = Ml();

(2) Mg is isomorphic to a subgroup of Aut(X);

(3) X s isomorphic to one of the following two smooth cubic fourfolds: X}, and XFugyy
where Fyr,, = o3 + 1/1815(1036£5, — 5800&4 — 1576£3, + 20166 + 4180&s + 3632&12 —
2644894 — 3939) 1173 + 1/605(1028£5, — 864&, — 146865, — 14485 + 1280&3, + 3072812 +
152624 — 2270)xz12374 + 1/3993(25574E5, + 9032¢, — 208265, — 1822086 — 137443, +
13592€19 + 2208084 — 1231) w223 + 1/3993(41818£5, + 64576&, — 1314£5, — 795808 —
60500£3, —20552&12+70716€94 +43177) w222 +1/19965(—16944E3, —50216&, — 1001685, +
1922726 — 55224&3, + 153712815 — 145288854 — 22288)zax516 + 1/6655(—20096£%, +
5560&4+22156£5,+621686— 45283, — 1729612 —11268624+13556) w322 +1/6655(89336£5,+
48240, — 89485, — 8839286 — 1064763, + 29824€12 + 50884€24 + 70396) w4732

In particular, Xp,, —is isomorphic to X2(Myp).

Proof. The idea is to compute cubic polynomials preserved by (5,3)-representations of Cj-
covering (5, 3)-groups of Mjg. Let F' := Fy,,. By Theorem 5.1, Mo has only one C3-covering
(5, 3)-group C3.Mjg. By adapting Steps 2 and 3 of Strategy 5.16, we compute the set Scy sy, Of
all (5, 3)-representations up to 3-equivalence. It turns out that Scy s, contains exactly 2 repre-
sentations of C3.Mjg. An Fio-lifting of the automorphism group Aut(Xj2) of X9 in the example
(12) in Subsection 4.1 corresponds to one representation, say pi, in Scy ar,- Let p2 denote the
other one in Scy .. It turns out the image pa(Cs.Mip) can be generated by two matrices
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_ (40 _ (4
A1—<O 1>andA2—<0

(the matrix A} is a little complicated and it can be found in the ancillary file Theorem6.15.txt
to [YYZ23]). Then by computation, the set of the homogeneous polynomials of degree 3 pre-
served by both A} and Aj is {\F' | A € C}. The automorphism group Aut(Xz) of the smooth
cubic fivefold Xz contains ([A1], [A2]) = C5.M19, a maximal (5, 3)-group by Theorem 5.1. Thus,
Aut(Xz) = ([A], [A2]) and Aut(Xp) = ([A1], [A5]) = Myg. Note that A} (F) = Ay(F) = F,
ord([4]]) = ord(A}) = 8, ord([4}]) = ord(4}) = 4, and det(A}) = det(A4,) = 1. Then by
Lemma 6.10, we have [A]], [4}] € Aut®(Xp) = Aut(Xp). Since p; and ps are not 3-equivalent,
it follows that Xp,, = Xf{\o and Xz are not isomorphic, which implies that X 1o and X are not

isomorphic. This completes the proof of the theorem. O

2), where A} = diag(1, —1, &4, —f4,§g, —¢&g) and A, € GL(6,C)

Remark 6.16. The automorphism groups Aut(Xp,_) and Aut(Xr,, ) have no Fy, -lifting and
Fyr,,-lifting respectively.

Remark 6.17. As in the proof of Theorem 6.15, we can compute all (5, 3)-representations, up to
3-equivalence, of any (5, 3)-groups by adapting Strategy 5.16. In particular, for any (4, 3)-group
G, we can determine whether G can act faithfully and symplectically on smooth cubic fourfolds
via computing (5, 3)-representations of Cs-covering (5, 3)-groups of G. In this way, we can prove
Theorem 6.12 without using the global Torelli theorem for cubic fourfolds.

APPENDIX A. ROLES OF SUPPLEMENTARY FILES

In this appendix, we briefly explain the role of each supplementary file.

(1) Examples4.1.txt: This file contains the matrix generators of Gx, C PGL(7,C) for all
1 except i = 6, where X; are the smooth cubic fivefolds in Subsection 4.1.

(2) Examples6.1.txt: This file contains the matrix generators of Gx; C PGL(6,C) for all
i except i = 6, where X/ are the smooth cubic fourfolds in Subsection 6.1.

(3) 563-groups.txt: This file contains lists of all subgroups of the 20 groups Aut(X;) in
Theorem 5.1. We use this file in Remark 5.2, Lemma 5.11, and the ancillary file
GAPsubtest-53groups.txt.

(4) 43-groups.txt: This file contains lists of all subgroups of the 15 groups Aut(X]) in
Theorem 6.1. Such subgroups are used in the ancillary file GAPsubtest-43groups.txt.

(5) Theorem5.12.txt: This file contains representatives of all 3-equivalence classes of (5, 3)-
representations of the 19 abelian groups in Theorem 5.12. The (5, 3)-representations
in this file and the next file can be computed by hand in principle (see e.g. [WY20,
Theorem 5.4] and Example 5.7), but we use computer algebra for efficiency.

(6) Theorem5.13.txt: This file contains representatives of all 3-equivalence classes of (5, 3)-
representations of cyclic groups of primary orders. We use this file in the proof of
Theorem 5.13.

(7) Theorem6.15.txt: This file contains the matrix A% in the proof of Theorem 6.15.

(8) GAPsubtest-53groups.txt: This file contains the GAP codes used in Step 1 of Strategy
5.16.

(9) GAPsubtest-43groups.txt: This file contains the GAP codes used in Steps 1 and 2 of
Strategy 6.8.

(10) LHsnewLHsnewred.txt: This file contains (5, 3)-characters and special (5, 3)-characters
of non-trivial abelian (5, 3)-groups required for Steps 2 and 3 of Strategy 5.16 and Step
3 of Strategy 6.8.

(11) GAPcodesnewforMath.txt: This file contains the GAP codes used in Steps 2 and 3 of
Strategy 5.16 and Step 3 of Strategy 6.8.

(12) CubicFivefolds.m: This file contains the Mathematica codes used in Steps 2 and 3 of
Strategy 5.16 and Step 3 of Strategy 6.8.
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Theorem5.1.txt: This file contains the computation details (for non-solvable groups) in
the proof of Theorem 5.1. The computation uses Strategy 5.16.

Theorem5.22.txt: This file contains the computation details (for solvable groups) in
the proof of Theorem 5.22. The computation uses Strategy 5.16.

Theorem6.1.txt: This file contains the computation details in the proof of Theorem
6.1. The computation uses Strategy 6.8.

Example-m96-53-groups.txt: In this file, we take the case m = 96 as an example to
illustrate how to classify (non-abelian) solvable (5, 3)-groups by using Strategy 5.16 with
the help of computer algebra (GAP, Sage and Mathematica). We use this file in the
proof of Theorem 5.22.

Example-m16-43-groups.txt: In this file, we take the case m = 16 as an example
to illustrate how to classify solvable (4, 3)-groups by using Strategy 6.8 with the help
of computer algebra (GAP, Sage and Mathematica). We use this file in the proof of
Theorem 6.1.
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