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Abstract. In this paper, we introduce notions of partitionability and characteristic sets of ho-
mogeneous polynomials and give a complete classification of groups faithfully acting on smooth
cubic fivefolds. Specifically, we prove that there exist 20 maximal ones among all such groups.
As an application, we classify all possible subgroups of the automorphism groups of smooth
cubic fourfolds.
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1. Introduction

In this paper, we study the automorphism groups of smooth cubic hypersurfaces X in the
projective space over the complex number field C. Such hypersurfaces are an important class of
projective varieties in algebraic geometry. For instance, cubic threefolds are unirational but not
rational [CG72], and the development of topics related to smooth cubic hypersurfaces can be
found in [Huy23]. The study of their automorphism groups Aut(X) has a long and rich history,
see [Seg42], [Adl78], [Hos97], [Rou09], [GL11], [Dol12], [Pro12], [GL13], [Mo13], [BCS16], [Fu16],
[DD19], [HM19], [WY20], [LZ22], [Zhe22], [AKPW23], [GLM23], etc. All possible subgroups of
Aut(X) have been classified for cubic surfaces (see [Seg42], [Hos97], [Dol12]) and for cubic
threefolds ([WY20]). For dim(X) = 4, recently Laza–Zheng [LZ22] classified the symplectic
automorphism groups Auts(X) of cubic fourfolds and proved that the Fermat cubic fourfold
has the largest possible order for |Aut(X)|. For some partial results on abelian subgroups of
automorphism groups of smooth cubic hypersurfaces of arbitrary dimension, see [GL11], [Zhe22],
[GLM23]. However, a classification of all possible subgroups of Aut(X) for cubic fourfolds is
still unknown and such classifications for dimensions ≥ 5 are widely open. Our main results of
this paper completely solve this problem for cubic fivefolds and fourfolds.

Theorem 1.1 (Theorem 5.1). A finite group G can act faithfully on a smooth cubic fivefold if
and only if G is isomorphic to a subgroup of one of the following 20 groups:

No. group order No. group order

1 C6
3 o S7 3674160 11 C63 o C6 378

2 ((C2
3 o C3) o C4)× (C3

3 o S4) 69984 12 C3.M10 2160

3 C8 × (C3
3 o S3) 1296 13 S7 × C3 15120

4 S5 × (C3
3 o S3) 19440 14 C3 × ((C8 × C2) o C2) 96

5 C48 × S3 288 15 C3 × (PSL(3, 2) o C2) 1008

6 PSL(2, 11)× (C2
3 o C2) 11880 16 C3.A7 7560

7 ((C2
3 o C3) o C4)

2 o C2 23328 17 C3 ×GL(2, 3) 144

8 ((C2
3 o C3) o C4)× C8 864 18 ((C2

3 o C3) oQ8) o C3 648

9 S5 × ((C2
3 o C3) o C4) 12960 19 C64 64

10 C96 96 20 C43 o C7 301
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Theorem 1.2 (Theorem 6.1). A finite group G can act faithfully on a smooth cubic fourfold if
and only if G is isomorphic to a subgroup of one of the following 15 groups:

No. group order No. group order

1 C5
3 o S6 174960 9 C21 o C6 126

2 ((C3 × (C3
3 o C3)) o C3) o (C4 × C2) 5832 10 M10 720

3 C8 × (C2
3 o C2) 144 11 S7 5040

4 S5 × (C2
3 o C2) 2160 12 (C8 × C2) o C2 32

5 C48 48 13 PSL(3, 2) o C2 336

6 PSL(2, 11)× C3 1980 14 GL(2, 3) 48

7 ((C3 × (C2
3 o C3)) o C3) o (C2

4 o C2) 7776 15 (C2
3 oQ8) o C3 216

8 C32 32

Explicit examples of cubic fivefolds and fourfolds acted on by these maximal groups are given
in the examples in Subsections 4.1 and 6.1 respectively.

Next, we briefly explain the idea of the proof of the main results. Let (n, d) be a pair of
integers satisfying n ≥ 2, d ≥ 3, and (n, d) 6= (2, 4). We say a finite group G is an (n, d)-group
if G is isomorphic to a subgroup of the automorphism group of a smooth hypersurface in Pn+1

of degree d. Matsumura–Monsky [MM63] proved that for a smooth hypersurface Xn,d ⊂ Pn+1

of degree d, its automorphism group Aut(Xn,d) is a finite group, and

Aut(Xn,d) = {φ ∈ PGL(n+ 2,C) | φ(Xn,d) = Xn,d}.
Two smooth hypersurfaces of dimension n and degree d are isomorphic if and only if they are
projectively equivalent, that is, their defining equations are the same up to linear change of co-
ordinates. Therefore, classifying all (n, d)-groups is equivalent to classifying all finite subgroups
of PGL(n+2,C) preserving smooth homogeneous polynomials of degree d. By solving the latter
problem in the classical invariant theory, Oguiso–Yu [OY19] classified all groups acting faithfully
on smooth quintic threefolds, which meanwhile gives a systematic (and computer-aided) method
for classifying all possible (n, d)-groups for prescribed integers n and d. Based on this method,
Wei–Yu [WY20] completed the classification of all (3, 3)-groups. In this paper, we follow the
approach of Oguiso–Yu’s work to study the automorphism groups of cubic fivefolds. However,
the dimensions of target hypersurfaces in this paper are higher and groups of automorphisms
in question are more complex. In order to overcome such difficulties, among other things, we
introduce two new notions, partitionability (Definition 3.1) and characteristic sets (Definition
3.6) of homogeneous polynomials. Partitionability and characteristic sets are crucial for our
classification of (5, 3)-groups since they not only significantly simplify the classification proce-
dures conceptually but also considerably reduce the amount of calculations to rule out relevant
groups. In fact, using characteristic sets, we are able to control the automorphism groups of
cubic fivefolds XF defined by cubic polynomials F of the form

(1.1) F = H(x1, ..., xa) +K(xa+1, ..., x7), 2 ≤ a ≤ 3

(Propositions 3.11, 3.13, 3.15), which immediately gives all possible subgroups of Aut(XF ) from
previously known classifications of (2, 3)-groups and (3, 3)-groups (Proposition 3.17, Theorems
4.2, 4.4). On the other hand, for cubic fivefolds with defining polynomials not of the form (1.1),
their automorphism groups are bounded by 90720 (Proposition 5.21) and can be effectively
handled by Strategy 5.16 which heavily relies on partitionability. In this way, we complete
the classification of (5, 3)-groups. Note that the proofs of all results in Section 3 are free from
computer algebra, but such results fit well with computer algebra (see Corollary 4.5, Theorem
5.12, Strategy 5.16). We believe that the results on partitionability and characteristic sets are
interesting in and of themselves and will be applicable to other problems.
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Unlike cubic fivefolds, the automorphism groups of cubic fourfolds have no F -lifting in general
(see Theorem 3.18 and Remark 6.16), which is a key obstruction in our classification of such
groups. To deal with this issue, we introduce the notion of Cd-covering group (Definition 6.3). A
finite group is a (4, 3)-group only if it has a C3-covering (5, 3)-group (see Lemma 6.5), which gives
strong constraints on (4, 3)-groups. Moreover, partitionability of defining polynomials of cubic
fourfolds and fivefolds are closely related (see Lemma 6.4). Based on these relations, we quickly
classify all (4, 3)-groups by taking advantages of our results and strategies for (5, 3)-groups (see
Theorem 6.7 and Strategy 6.8). As a by-product, we obtain explicit defining polynomials FA7

and FM10 of two cubic fourfolds with maximal symplectic automorphism groups A7 and M10

respectively (Theorems 6.14 and 6.15). To the best of our knowledge, defining equations of the
two cubic fourfolds are previously unknown (see [LZ22, Page 1461]).

We conclude the introduction by explaining in detail which results rely to what extent on
computer calculations. All results in Sections 3 and 4 are free from computer calculations
except that for 14 ≤ i ≤ 18, we use computer algebra (Mathematica [Wo], Magma [BCP]) to
verify smoothness of Xi and the inclusions GXi ⊆ Aut(Xi) in Subsection 4.1. In Sections 5 and
6, the results which rely on computer calculations are Theorems 5.1, 5.12, 5.13, 5.20, 5.22, 6.1,
6.7, 6.14, 6.15, Remark 5.2, Lemma 5.11, and Proposition 5.21. In fact, we prove Theorems
5.12, 5.13, 6.7 using classification of (5, 3)-representations (see Definition 5.3) of relevant abelian
groups. Such representations can be computed by hand in principle (see e.g., [WY20, Theorem
5.4] and Example 5.7), but we use computer algebra (Mathematica) for efficiency. For Remark
5.2, Lemma 5.11, we use computer algebra (GAP [GAP]) to compute all subgroups of GXi
(1 ≤ i ≤ 20). Note that smoothness of the examples in Subsection 6.1 and the structure
description of their automorphism groups follows from Subsetion 4.1 and Remark 5.2. Our
proofs of Theorems 5.1, 5.20, 5.22, 6.15 heavily rely on computer calculations using Strategy
5.16. More precisely, we use GAP to do the sub-test (see Remark 5.18) in the Step 1 of Strategy
5.16; we use a mixture of GAP, Mathematica and Sage [Sage] to compute special almost (5, 3)-
representations (see Definitions 5.3 and 5.14) and invariant cubic forms in the Steps 2 and 3 of
Strategy 5.16. Similarly, our proof of Theorem 6.1 heavily relies on computer calculations using
Strategy 6.8. Moreover, Proposition 5.21 (resp. Theorem 6.14) is free from computer calculations
modulo Theorems 5.12 and 5.20 (resp. Theorem 5.1 and Remark 5.2). The computer codes and
outputs needed in Sections 4-6 are contained in the ancillary files to [YYZ23] whose roles are
described in Appendix A. These files are explicitly mentioned in the relevant proofs and can be
obtained at https://arxiv.org/src/2308.07186/anc.

Acknowledgement. We would like to thank Professor Jun-Muk Hwang for pointing out the
notion of Thom–Sebastiani polynomials in Remark 3.2 and Professor Keiji Oguiso for helpful
discussions on automorphisms of hyperkähler manifolds of K3[2]-type. We would also like to
express our thanks to the editors and referees for their valuable comments and suggestions. This
work is partially supported by the National Natural Science Foundation of China (No. 12171351,
No. 12071337, No. 11831013, No. 11921001).

2. Notation

(2.1) Let F = F (x1, ..., xn) be a homogeneous polynomial of degree d. For A = (aij) ∈
GL(n,C), we denote by A(F ) the homogeneous polynomial

F (

n∑
i=1

a1ixi, · · · ,
n∑
i=1

anixi).

Then we have A(F )(x1, . . . , xn) = F ((x1, . . . , xn)AT ). Note that (AB)(F ) = B(A(F )) for any
A,B ∈ GL(n,C). We define

GF := {A ∈ GL(n,C) | A(F ) = F}.

https://arxiv.org/src/2308.07186/anc
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(2.2) We denote by XF ⊂ Pn−1 the hypersurface defined by F . If XF is smooth, we say F

is a smooth form of degree d. We define F̂ := F + xdn+1. We denote by Xi (resp. GXi), i ∈
{1, 2, . . . , 20}, the 20 smooth cubic fivefolds (resp. finite groups) in the examples in Subsection
4.1. We denote by X ′i, i ∈ {1, 2, . . . , 15}, the 15 smooth cubic fourfolds in the examples in
Subsection 6.1. We use π : GL(n,C)→ PGL(n,C) to denote the natural quotient map, and for
A ∈ GL(n,C), we denote π(A) by [A].

(2.3) We say a finite group G is an (n, d)-group if G is isomorphic to a subgroup of the
automorphism group Aut(X) of a smooth hypersurface X ⊂ Pn+1 of degree d. Let p be a prime
number. If no confusion causes, we use Gp to denote a Sylow p-subgroup of G. We use N oH
to denote one of the semidirect products of groups N , H. We use N.H to denote a finite group
which fits in a (non-split) short exact sequence of finite groups

1 // N // N.H // H // 1.

Some symbols frequently used in this paper are as follows:

ξk the k-th primitive root e
2πi
k of unity, where k is a positive integer;

In the identity matrix of rank n;
Cn the cyclic group of order n;
D2n the dihedral group of order 2n;
Sn the symmetric group of degree n;
An the alternating group of degree n;
Qn the quaternion group of order n;

PSL(n, q) the projective special linear group of degree n over the field Fq with q elements;
GL(2, 3) the general linear group of degree 2 over the field F3;

M10 the Mathieu group of order 720;
QD16 the quasidihedral group of order 16;

PSU(3, 3) the projective special unitary group of degree 3 for the quadratic extension field F9

over the field F3.

3. Partitionability and characteristic sets

In this section, we introduce two notions, partitionability and characteristic sets. We use
characteristic sets to control symmetries of homogeneous polynomials F having partitions of
certain types (Propositions 3.11, 3.13, 3.15) and we give a relation among partitionability, F -
liftability, and automorphism groups of hypersurfaces (Proposition 3.17). These results are very
important for our classification of (5, 3)-groups in later sections.

Definition 3.1. Let F = F (x1, x2, . . . , xm) be a homogeneous polynomial of degree d. If there
exists an invertible matrix A ∈ GL(m,C) and positive integers a1, . . . , at such that

A(F ) = H1(x1, . . . , xa1) +H2(xa1+1, . . . , xa1+a2) + · · ·+Ht(xa1+a2+···+at−1+1, . . . , xa1+a2+···+at),

where a1+ · · ·+at ≤ m and t ≥ 2, then we say F is partitionable or F has an (a1, a2, . . . , at)-type
partition. In this case, we say F can be partitioned as H1 + · · · + Ht. Otherwise, we say F is
unpartitionable.

If F has an (a1, a2, . . . , at)-type partition given by A(F ) = H1+· · ·+Ht and all Hi (i = 1, ..., t)
are unpartitionable, we say F has a maximal (a1, a2, . . . , at)-type partition.

Remark 3.2. In the literature, polynomials of the form H1(x1, ..., xa1) +H2(xa1+1, ..., xa1+a2)
are also called Thom–Sebastiani (type) polynomials. If Hi : (Cai , 0) → (C, 0) are two germs
of holomorphic functions with isolated critical points, then Thom–Sebastiani theorem ([ST71])
asserts that the vanishing cycles complex of H1+H2 is isomorphic to the tensor product of those
of H1 and H2.
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Example 3.3. Let F = x31 + x22x3 + x23x2. Then F has a (1, 2)-type partition given by F =
H1 +H2, where H1 = x31 and H2 = x22x3 + x23x2. This partition is not maximal. In fact, H2 has

a (1, 1)-type partition since A(H2) = x32 + x33, where A =

( −1 −1
1−
√
3i

2
1+
√
3i

2

)
.

More generally, for partitions of cubic forms, we have the following result.

Lemma 3.4. Consider a smooth cubic form F = F (x1, . . . , xm) with m ≥ 4. If F has a
(2,m − 2)-type partition, then F has a (1, 1,m − 2)-type partition. If F has a (3,m − 3)-type
partition, then either F has a (1, 1, 1,m − 3)-type partition or there exists A ∈ GL(m,C) such
that A(F ) = x31 + x32 + x33 + λx1x2x3 +H(x4, . . . , xm), where λ 6= 0 (see [Dol12, Section 3.1.2]).

Let F (x1, . . . , xm) be a homogeneous polynomial of degree d. For 1 ≤ i ≤ d, we define the
natural i-th order differential mapping induced by F as follows:

DF
i : Di(x1, . . . , xm) −→ C[x1, . . . , xm],

where Di(x1, . . . , xm) denotes the vector space of i-th differential operators. For example,

DF
1 ( ∂

∂xi
) = ∂F

∂xi
, DF

2 ( ∂2

∂xi∂xj
) = ∂2F

∂xi∂xj
. Let m = m(x1, . . . , xm) be a monomial of degree d.

Then we say m is in F (or m ∈ F ) if the coefficient of m is not zero in the expression of F .
Oguiso–Yu [OY19] introduced the differential method to classify the automorphism groups of
smooth quintic threefolds. In order to study partitionability of polynomials and their symme-
tries, we recall the differential method.

Theorem 3.5 ([OY19, Theorem 3.5]). Let F (x1, . . . , xm), G(y1, . . . , ym) be nonzero homoge-
neous polynomials of degree d. Suppose that there exists an invertible matrix A = (aij)1≤i,j≤m,
such that F (x1, . . . , xm) = G(

∑m
i=1 a1ixi, . . . ,

∑m
i=1 amixi), then rk(DF

i ) = rk(DG
i ), for all

1 ≤ i ≤ d.

We now introduce the new notion of characteristic sets and prove that they are invariants of
homogeneous polynomials up to linear transformations.

Definition 3.6. Let F (x1, . . . , xm) be a homogeneous polynomial of degree d ≥ 2. Let r be a
positive integer. We define

SFr := {(l1, . . . , lm) ∈ Cm | rk(D
l1
∂F
∂x1

+l2
∂F
∂x2

+···+lm ∂F
∂xm

1 ) = r}.
We call SFr the r-th characteristic set of F . We define V F

r ⊆ Cm to be the subspace spanned by
SFr .

Then we have the following lemma.

Lemma 3.7. Let G = G(y1, y2, . . . , ym) be a homogeneous polynomial of degree d, and let
F (x1, . . . , xm) = G(

∑m
i=1 a1ixi, . . . ,

∑m
i=1 amixi), where A = (aij)1≤i,j≤m ∈ GL(m,C). Consider

the following linear transformation:

P : Cm −→ Cm, (l1, . . . , lm) 7−→ (

m∑
j=1

a1jlj , . . . ,

m∑
j=1

amjlj).

Then P (SFr ) = SGr and P (V F
r ) = V G

r . In particular, if A(F ) = F , then P (SFr ) = SFr and
P (V F

r ) = V F
r .

Proof. By the proof of [OY19, Theorem 3.5], we have the following commutative diagram:

D1(x1, . . . , xm)

p

��

DF1 // C[x1, . . . , xm]

D1(y1, . . . , ym)
DG1 // C[y1, . . . , ym] ,

q

OO
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where the isomorphisms p and q are defined as follows:

p(
∂

∂xi
) =

m∑
j=1

aji
∂

∂yj
, q(H(y1, . . . , ym)) = H(

m∑
i=1

a1ixi, . . . ,
m∑
i=1

amixi).

Then we have

p(
∂

∂x1
l1 +

∂

∂x2
l2 + · · ·+ ∂

∂xm
lm) =

m∑
j=1

aj1l1
∂

∂yj
+

m∑
j=1

aj2l2
∂

∂yj
+ · · ·+

m∑
j=1

ajmlm
∂

∂yj
.

Note that the coefficients of ∂
∂yj

on the right-hand side correspond to the images of (l1, . . . , lm)

under the mapping P .
Since q induces a linear change of coordinates from the polynomial

∑m
j=1 aj1l1

∂G
∂yj

+ · · · +∑m
j=1 ajmlm

∂G
∂yj

to the polynomial ∂F
∂x1

l1 + · · ·+ ∂F
∂xm

lm, by Theorem 3.5, we have

rk(D

∑m
j=1 aj1l1

∂G
∂yj

+···+
∑m
j=1 ajmlm

∂G
∂yj

1 ) = rk(D
∂F
∂x1

l1+···+ ∂F
∂xm

lm

1 ).

Since A is an invertible matrix, we have P (SFr ) = SGr , and hence P (V F
r ) = V G

r . �

Remark 3.8. Note that by the mapping (l1, . . . , lm) 7−→ (l1 : · · · : lm), we can view SFr as a
subset of Pm−1 and V F

r as a linear subspace of Pm−1.

Next, we introduce the relationship between characteristic sets and partitionability of cubic
forms.

Lemma 3.9. Let F = F (x1, x2, . . . , xm) be a smooth cubic form. Then F has a (1,m− 1)-type
partition if and only if the first characteristic set SF1 6= ∅.

Proof. The “only if” part is clear. To prove “if” part, we assume (l1, . . . , lm) ∈ SF1 . Since it is
clear that not all of l1, . . . , lm are zero, there exists an invertible matrix B = (bij)1≤i,j≤m such
that bi1 = li, for 1 ≤ i ≤ m. Consider the linear change of coordinates:

(x1, ..., xm)T = B · (z1, ..., zm)T .

Here T denotes the transpose. By substituting, we define

G(z1, ..., zm) = F (
m∑
i=1

b1izi, . . . ,
m∑
i=1

bmizi).

Applying ∂
∂z1

to both sides of the equality, we have

∂G

∂z1
=
∂F

∂x1

∂x1
∂z1

+ · · ·+ ∂F

∂xm

∂xm
∂z1

=
∂F

∂x1
l1 + · · ·+ ∂F

∂xm
lm.

By Theorem 3.5,

rk(D
∂G
∂z1
1 ) = rk(D

∂F
∂x1

l1+···+ ∂F
∂xm

lm

1 ) = 1.

Since ∂G
∂z1

is a homogeneous quadratic polynomial in variables z1, . . . , zm, we infer that ∂G
∂z1

=

(λ1z1 + λ2z2 + · · ·+ λmzm)2, where λ1, . . . , λm ∈ C.
If λ1 = 0, then G = z1(λ2z2 + · · · + λmzm)2 + H(z2, ..., zm), where H is a homogeneous

polynomial of degree 3. Then XG ⊂ Pm−1 is singular at (z1 : z2 : · · · : zm) = (1 : 0 : · · · : 0), a
contradiction. Therefore, we have λ1 6= 0 and G = 1

3λ1
(λ1z1+λ2z2+· · ·+λmzm)3+K(z2, . . . , zm),

where K(z2, . . . , zm) is a homogeneous polynomial of degree 3. This implies that F has a
(1,m− 1)-type partition. �

Remark 3.10. Note that for a smooth cubic form F = F (x1, ..., xm) with m ∈ {3, 4, 5}, F
being unpartitionable is equivalent to the first characteristic set SF1 = ∅ by Lemmas 3.4 and 3.9.
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Next, we will control shape of matrices that preserve partitionable polynomials of degree
3. Based on this, we will determine the structure of automorphism groups of cubic hypersur-
faces defined by polynomials admitting certain types of partition, which will be crucial for our
classification of (5, 3)-groups and (4, 3)-groups in later sections.

Proposition 3.11. Let F = F (x1, . . . , xm) be a smooth cubic form with m ≥ 4. Suppose
F = H(x1, . . . , xk) +K(xk+1, . . . , xm), where 3 ≤ k ≤ m− 1, SH1 = ∅, and K = x3k+1 + ...+ x3m.
Then

GF ⊂ {
(
B 0
0 C

)
| B ∈ GL(k,C), C ∈ GL(m− k,C)}.

Proof. Note that smoothness of F implies that H 6= 0. Let A = (aij)1≤i,j≤m ∈ GF and yi =∑m
j=1 aijxj , 1 ≤ i ≤ m. By F = A(F ), we have H(x1, ..., xk) +K(xk+1, ..., xm) = H(y1, ..., yk) +

K(yk+1, ..., ym). Applying ∂
∂xt

to both sides of this equality for k + 1 ≤ t ≤ m, we have

3x2t =
k∑
i=1

∂H(y1, . . . , yk)

∂yi
ait +

m∑
j=k+1

3y2jajt.

Denote the right-hand side as J . Then rk(DJ
1 ) = rk(D

3x2t
1 ) = 1. Since SH1 = ∅, we have

ait = 0 for all 1 ≤ i ≤ k. In fact, suppose for given t there exists 1 ≤ i ≤ k with ait 6= 0,
then from SH1 = ∅, we know the polynomial J1 =

∑
ait

∂H
∂yi

cannot satisfy rk(DJ1
1 ) = 1. So

rk(DJ1
1 ) ≥ 2, which implies rk(DJ

1 ) ≥ 2, contradiction. Similarly, for each t ∈ {k + 1, ...,m},
there exists exactly one index jt ∈ {k + 1, ...,m} such that ajtt 6= 0. Since A is invertible,
without loss of generality, we may assume that jt = t for all t ∈ {k + 1, ...,m}. Therefore,
H(x1, ..., xk) + x3k+1 + ...+ x3m is equal to

H(
k∑
i=1

a1ixi, . . . ,
k∑
i=1

akixi) +K(a(k+1)(k+1)xk+1 +
k∑
j=1

a(k+1)jxj , . . . , ammxm +
k∑
j=1

amjxj).

Direct calculation shows that aij = 0 for k+ 1 ≤ i ≤ m and 1 ≤ j ≤ k. Thus, A is of the desired
shape. �

Lemma 3.12. Let F (x1, x2, x3) be a smooth cubic form. Then GF is isomorphic to C2
3 o S3,

C3
3 o S3, or (C2

3 o C3) o C4.

Proof. Smoothness of F implies that for any prime p > 3, p - |GF | (see the proof of [GL13,
Theorem 1.3]). Therefore, |GF | = 2a · 3b, where a, b ≥ 0. By some calculations and the
smoothness of F , we can conclude that

(i) if |(GF )2| ≥ 4, then B1(F ) = x21x2 + x22x3 + x33 for some B1 ∈ GL(3,C) and |(GF )2| = 4;
and

(ii) if |(GF )3| ≥ 34, then B2(F ) = x31 + x32 + x33 for some B2 ∈ GL(3,C) and |(GF )3| = 34.

In fact, if |(GF )2| ≥ 4 (resp. |(GF )3| ≥ 34), then GF contains an abelian subgroup N of order
4 (resp. 33) and up to conjugation in GL(3,C), we have N = 〈diag(ξ4,−1, 1)〉 ∼= C4 (resp.
N = 〈diag(ξ3, 1, 1),diag(1, ξ3, 1),diag(1, 1, ξ3)〉 ∼= C3

3 ) by smoothness of F (see e.g. [OY19,
Theorem 7.7] and [WY20, Theorem 5.2]). From this, we infer that (i) and (ii) hold.

On the other hand, by Lemma 3.4, we can assume that F = Hλ := x31 + x32 + x33 + λx1x2x3,
where λ ∈ C. Therefore, C2

3 o S3 is a subgroup of GF and 33 · 2 divides |GF |. Moreover, the
following statements hold:

(1) If λ = 0, GF = C3
3 o S3;
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(2) If λ = 3(
√

3− 1), GF is〈0 1 0
0 0 1
1 0 0

 ,

1 0 0
0 ξ3 0
0 0 ξ23

 ,
1√
3

1 1 1
1 ξ3 ξ23
1 ξ23 ξ3

〉 ∼= (C2
3 o C3) o C4;

(3) If there exists no B ∈ GL(3,C) with B(F ) = H0, H3(
√
3−1), then GF = C2

3 o S3. �

Proposition 3.13. Let F = F (x1, . . . , x7) be a smooth cubic form with F = x31+H(x2, x3, x4)+
K(x5, x6, x7), where H and K are unpartitionable. If A ∈ GL(7,C) satisfies A(F ) = F , then

either A =

1 0 0
0 B 0
0 0 C

 or A =

1 0 0
0 0 B
0 C 0

, where B,C ∈ GL(3,C).

Proof. Suppose A = (aij)1≤i,j≤7. Let (y1, ..., y7)
T = A · (x1, ..., x7)T . Since A(F ) = F , we have

F (x1, . . . , x7) = F (y1, . . . , y7). Applying ∂
∂x1

to both sides of the equality, we get

3x21 = 3a11y
2
1 +

∂H(y2, y3, y4)

∂x1
+
∂K(y5, y6, y7)

∂x1
.

Since H and K are unpartitionable, by Lemma 3.9, SH1 and SK1 are empty and thus SH+K
1 is

also empty. So we have ai1 = 0 for 2 ≤ i ≤ 7. Then a11 6= 0. Since

F = (a11x1 + a12x2 + a13x3 + a14x4 + a15x5 + a16x6 + a17x7)
3 +A(H +K),

the term 3a211a1i · x21xi, 2 ≤ i ≤ 7 is in F unless a1i = 0. So A =

(
1 0
0 A1

)
, where A1 =

(aij)2≤i,j≤7. Similarly, for 2 ≤ j ≤ 7, we have

∂H(x2, x3, x4)

∂xj
+
∂K(x5, x6, x7)

∂xj
=
∂H(y2, y3, y4)

∂xj
+
∂K(y5, y6, y7)

∂xj
.

By SH1 = SK1 = ∅, we get

rk(D

∂H(x2,x3,x4)
∂xj

+
∂K(x5,x6,x7)

∂xj

1 ) ∈ {2, 3}

and

rk(D

∂H(y2,y3,y4)
∂xj

1 ), rk(D

∂K(y5,y6,y7)
∂xj

1 ) ∈ {0, 2, 3}.

Then either a2j = a3j = a4j = 0 or a5j = a6j = a7j = 0.
We may assume that H(x2, x3, x4) = x32 + x33 + x34 + λHx2x3x4 and K(x5, x6, x7) = x35 + x36 +

x37 + λKx5x6x7, where λHλK 6= 0. If a22 = a32 = a42 = 0, we can infer that a23 = a33 = a43 = 0
and a24 = a34 = a44 = 0 (since otherwise the monomial x2x3x4 is in neither H(y2, y3, y4) nor

K(y5, y6, y7), which is a contradiction). Since A is invertible, we have A =

1 0 0
0 0 B
0 C 0

. For

the case a52 = a62 = a72 = 0, we have A =

1 0 0
0 B 0
0 0 C

 by similar arguments. �

Next, we consider the case where F (x1, . . . , x7) can be partitioned into H(x1, . . . , x3) +
K(x4, . . . , x7), where H and K are both unpartitionable. For this goal, we need the follow-
ing result.
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Lemma 3.14. Let F = F (x1, x2, x3, x4) be an unpartitionable smooth cubic form. Then the
subspace V ⊆ C4 generated by the union SF1 ∪SF2 ∪SF3 is of dimension at least 3. In particular,
there exists an invertible matrix A = (aij)1≤i,j≤4 such that K(x1, x2, x3, x4) := A(F ) satisfies
the following:

rk(D
∂K
∂xi
1 ) ≤ 3, i = 1, 2, 3.

Proof. Let l1, l2, l3, l4 ∈ C and at least one of them is not zero. Considering the polynomial
N := ∂F

∂x1
l1 + · · ·+ ∂F

∂x4
l4, we have:

∂N

∂x1
= b11(l1, . . . , l4)x1 + · · ·+ b14(l1, . . . , l4)x4,

...

∂N

∂x4
= b41(l1, . . . , l4)x1 + · · ·+ b44(l1, . . . , l4)x4,

where bij are linear forms of l1, . . . , l4.

Note that rk(DN
1 ) = rk

b11 · · · b14
...

. . .
...

b41 · · · b44

. Then det

b11 · · · b14
...

. . .
...

b41 · · · b44

 = 0 defines a hypersur-

face in P3. From this, we deduce the lemma. �

Proposition 3.15. Let F = F (x1, . . . , x7) be a smooth cubic form such that F (x1, . . . , x7) =
H(x1, . . . , x3) +K(x4, . . . , x7), where H and K are unpartitionable. Then

GF ⊂ {
(
B 0
0 C

)
| B ∈ GL(3,C), C ∈ GL(4,C)}.

Proof. By assumption, SH1 = SK1 = ∅ (see Remark 3.10). As above, we may assumeH(x1, x2, x3) =

x31 + x32 + x33 + λx1x2x3, λ 6= 0. Then we have rk(D
∂H
∂xi
1 ) = 3, i = 1, 2, 3.

By Lemma 3.14, we may assume that rk(D
∂K
∂xi
1 ) ≤ 3, i = 4, 5, 6.

Suppose A = (aij)1≤i,j≤7 ∈ GF . Since F (x1, . . . , x7) = F (
∑7

i=1 a1ixi, . . . ,
∑7

i=1 a7ixi), we
have

rk(D
∂F
∂xi
1 ) = rk(D

∂F
∂x1

a1i+···+ ∂F
∂x7

a7i

1 ), ∀i = 1, . . . , 7.

Then

3 = rk(D
∂F
∂x1
1 ) = rk(D

∂H
∂x1

a11+···+ ∂H
∂x3

a31+
∂K
∂x4

a41+···+ ∂K
∂x7

a71

1 )

= rk(D
∂H
∂x1

a11+···+ ∂H
∂x3

a31

1 ) + rk(D
∂K
∂x4

a41+···+ ∂K
∂x7

a71

1 ).

Thus, by SH1 = SK1 = ∅ and smoothness of H,K, we have either (1) a11 = a21 = a31 = 0 or (2)
a41 = a51 = a61 = a71 = 0.

For Case (1), by similar arguments, we have either a12 = a22 = a32 = 0 or a42 = a52 = a62 =
a72 = 0. We define

H̃ := H(
7∑
i=1

a1ixi,
7∑
i=1

a2ixi,
7∑
i=1

a3ixi),

and

K̃ := K(
7∑
i=1

a4ixi,

7∑
i=1

a5ixi,

7∑
i=1

a6ixi,

7∑
i=1

a7ixi).
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Since H̃ + K̃ = H(x1, x2, x3) + K(x4, x5, x6, x7) and a11 = a21 = a31 = 0, it follows that H̃
has no monomial involving x1. If a42 = a52 = a62 = a72 = 0, then there is no monomial
involving x2 in K̃, which contradicts λx1x2x3 ∈ H̃ + K̃. Thus a12 = a22 = a32 = 0. Similarly,
a13 = a23 = a33 = 0.

Since A is invertible, and rk(D
∂F
∂xi
1 ) ≤ 3, i = 4, 5, 6, we infer that a4i = a5i = a6i = a7i = 0,

i = 4, 5, 6. Again, by H̃ + K̃ = H +K, we have

K(x4, . . . , x7) = (a14x4 + · · ·+ a17x7)
3 + (a24x4 + · · ·+ a27x7)

3 + (a34x4 + · · ·+ a37x7)
3

+λ(a14x4 + · · ·+a17x7)(a24x4 + · · ·+a27x7)(a34x4 + · · ·+a37x7) +K(a47x7, a57x7, a67x7, a77x7).

It is clear that the last term on the right hand side of the equation is equal to αx37, α ∈ C. Then
under the linear change of coordinates:

(x̃4, x̃5, x̃6, x̃7)
T =


a14 a15 a16 a17
a24 a25 a26 a27
a34 a35 a36 a37
0 0 0 1

 · (x4, x5, x6, x7)T ,
we have K(x4, x5, x6, x7) = x̃4

3 + x̃5
3 + x̃6

3 + λx̃4x̃5x̃6 +αx̃7
3, which leads to a contradiction to

the condition K is unpartitionable. Therefore, Case (1): a11 = a21 = a31 = 0 is impossible.
For Case (2), by similar arguments as in Case (1), we can deduce that a4i = a5i = a6i = a7i = 0

for i = 1, 2, 3 and a1j = a2j = a3j = 0 for j = 4, 5, 6. Then by A(F ) = F and direct computation,
we have that a17 = a27 = a37 = 0. Thus, A is of the desired shape. This completes the proof of
the lemma. �

Following [OY19], we recall some definitions about liftability of group actions. Let F be a

homogeneous polynomial of degree d. Let G (resp. G̃) be a finite subgroup of PGL(m,C) (resp.

GL(m,C)). We say G̃ is a lifting of G if G̃ and G are isomorphic via the natural projection

π : GL(m,C)→ PGL(m,C). We say G̃ is an F -lifting of G if G̃ is a lifting of G and A(F ) = F ,

for all A in G̃.

Lemma 3.16. Let F = F (x1, ..., xm) be a smooth form of degree d, where m ≥ 4, d ≥ 3,
(m, d) 6= (4, 4). Then Aut(XF ) = π(GF ) ⊂ PGL(m,C) and there is a short exact sequence of
finite groups

1→ N
i−→ GF

π|GF−−−→ Aut(XF )→ 1,

where N = 〈ξdIm〉 ∼= Cd, i is the natural inclusion map, and π|GF is the restriction of π to GF .

Proof. By [MM63], Aut(XF ) = π(GF ) is a finite group. Clearly N ⊆ Ker(π|GF ). On the other
hand, if A ∈ Ker(π|GF ), then A = λIm for some λ ∈ C, and F = A(F ) = λdF . Then λd = 1
and A ∈ N . Thus, N = Ker(π|GF ). �

The following result gives a useful relation among partitionability, F -liftability, and structure
of automorphism groups of hypersurfaces.

Proposition 3.17. Let F = F (x1, ..., xm) be a smooth form of degree d with F = H(x1, ..., xk)+
K(xk+1, ..., xm), where m ≥ 5, d ≥ 3, 4 ≤ k ≤ m− 1, and (k, d) 6= (4, 4). Suppose the following
statements hold:

(1) Aut(XH) admits an H-lifting ˜Aut(XH);

(2) GF ⊂ {
(
B 0
0 C

)
| B ∈ GL(k,C), C ∈ GL(m− k,C)}.

Then Aut(XF ) is isomorphic to Aut(XH)×GK and Aut(XF ) has an F -lifting G̃, where

G̃ := {
(
B 0
0 C

)
| B ∈ ˜Aut(XH), C ∈ GK}.
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Proof. By Lemma 3.16 and the conditions (1) and (2), clearly G̃ and π(GF ) are isomorphic via

the natural projection π. Thus, G̃ is an F -lifting of Aut(XF ) and Aut(XF ) ∼= G̃ ∼= Aut(XH)×
GK . �

Wei–Yu [WY20, Theorem 4.11] observed that the automorphism group of every smooth cu-
bic threefold is F -liftable. Following a similar approach, González-Aguilera–Liendo–Montero
[GLM23] generalized this result to other hypersurfaces.

Theorem 3.18 ([GLM23, Theorem 3.5]). Let m ≥ 3 and d ≥ 3 with (m, d) 6= (3, 3), (4, 4).
Then the automorphism group of every smooth hypersurface XF of dimension m− 2 and degree
d in Pm−1 is F -liftable if and only if d and m are relatively prime.

Example 3.19. Let F := H +K, where H = x31 +x32 +x33 +x34 and K = x35 +x36 +x37 + 3(
√

3−
1)x5x6x7. Then we have Aut(XH) ∼= C3

3 oS4 and GK ∼= (C2
3 oC3)oC4 (see the proof of Lemma

3.12). By Theorem 3.18 and Proposition 3.11, both (1) and (2) in Proposition 3.17 hold. Thus,
we have Aut(XF ) ∼= (C3

3 o S4)× ((C2
3 o C3) o C4).

4. Examples and reduction

In this section, we give 20 explicit examples of smooth cubic fivefolds and their automor-
phisms. Using results on partitionability in the previous section, we determine the automor-
phism groups of many of them (Theorem 4.2) and completely classify all possible groups acting
faithfully on smooth cubic fivefolds defined by polynomials of the form F = H(x1, ..., xa) +
K(xa+1, ..., x7), 2 ≤ a ≤ 3 (Theorem 4.4).

4.1. Examples. This subsection lists 20 explicit examples of smooth cubic fivefolds Xi and sub-
groupsGXi of the automorphism groups Aut(Xi) (i = 1, 2, ..., 20). Since for i 6= 6, 12, 15, 16, 17, 18,
the generators of GXi are combinations of the following three types of matrices: diagonal matri-

ces, permutations of coordinates, 1√
3

1 1 1
1 ξ3 ξ23
1 ξ23 ξ3

, we omit them here (the matrix generators

of GXi ⊂ PGL(7,C) for all i except i = 6 can be found in the ancillary file Examples4.1.txt to
[YYZ23]). In Section 5 we will prove that these 20 groups GXi classify all (5, 3)-groups (Theorem
5.1).

(1) Let F1 = x31 +x32 +x33 +x34 +x35 +x36 +x37 and X1 = XF1 the Fermat cubic fivefold. Then
Aut(X1) = GX1

∼= C6
3 o S7 and |GX1 | = 24 · 38 · 5 · 7 = 3674160.

(2) Let F2 = x31 + x32 + x33 + 3(
√

3 − 1)x1x2x3 + x34 + x35 + x36 + x37 and X2 = XF2 . Then
GX2

∼= ((C2
3oC3)oC4)×(C3

3oS4) is a subgroup of Aut(X2) and |GX2 | = 25 ·37 = 69984.
(3) Let F3 = x21x2+x22x3+x23x4+x34+x35+x36+x37 and X3 = XF3 . Then GX3

∼= C8×(C3
3oS3)

is a subgroup of Aut(X3) and |GX3 | = 24 · 34 = 1296.
(4) Let X4 ⊂ P7 defined by x31 +x32 +x33 +x34 +x35 +x36 +x37 +x38 = x1 +x2 +x3 +x4 +x5 = 0.

Then GX4
∼= S5 × (C3

3 o S3) is a subgroup of Aut(X4) and |GX4 | = 24 · 35 · 5 = 19440.
(5) Let F5 = x21x2 +x22x3 +x23x4 +x24x5 +x35 +x36 +x37 and X5 = XF5 . Then GX5

∼= C48×S3
is a subgroup of Aut(X5) and |GX5 | = 25 · 32 = 288.

(6) Let F6 = x21x2 + x22x3 + x23x4 + x24x5 + x25x1 + x36 + x37 and X6 = XF6 . Then GX6
∼=

PSL(2, 11)× (C2
3 o C2) is a subgroup of Aut(X6) and |GX6 | = 23 · 33 · 5 · 11 = 11880.

(7) Let F7 = x31 + x32 + x33 + 3(
√

3 − 1)x1x2x3 + x34 + x35 + x36 + 3(
√

3 − 1)x4x5x6 + x37 and
X7 = XF7 . Then GX7

∼= (((C2
3 o C3) o C4) × ((C2

3 o C3) o C4)) o C2 is a subgroup of
Aut(X7) and |GX7 | = 25 · 36 = 23328.

(8) Let F8 = x21x2 + x22x3 + x23x4 + x34 + x35 + x36 + x37 + 3(
√

3 − 1)x5x6x7 and X8 = XF8 .
Then GX8

∼= ((C2
3 oC3)oC4)×C8 is a subgroup of Aut(X8) and |GX8 | = 25 · 33 = 864.
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(9) Let X9 ⊂ P7 defined by x31 + x32 + x33 + x34 + x35 + x36 + x37 + x38 + 3(
√

3 − 1)x6x7x8 =
x1 +x2 +x3 +x4 +x5 = 0. Then GX9

∼= S5× ((C2
3 oC3)oC4) is a subgroup of Aut(X9)

and |GX9 | = 25 · 34 · 5 = 12960.
(10) Let F10 = x21x2 +x22x3 +x23x4 +x24x5 +x25x6 +x36 +x37 and X10 = XF10 . Then GX10

∼= C96

is a subgroup of Aut(X10) and |GX10 | = 25 · 3 = 96.
(11) Let F11 = x21x2 + x22x3 + x23x4 + x24x5 + x25x6 + x26x1 + x37 and X11 = XF11 . Then

GX11
∼= C63 o C6 is a subgroup of Aut(X11) and |GX11 | = 2 · 33 · 7 = 378.

(12) Let F12 = (x31 + x32 + x33 + x34 + x35 + x36 + x37) + 1/5(−3ξ724− 3ξ524 + 3ξ6− 3ξ8 + 6ξ24− 3) ·
(x1x2x3 + x1x2x4 + (ξ6− 1)x1x2x5 + x1x2x6 + (ξ6− 1)x1x3x4 + x1x3x5 + x1x3x6 + (ξ6−
1)x1x4x5− ξ6x1x4x6− ξ6x1x5x6 +(ξ6−1)x2x3x4 +(ξ6−1)x2x3x5− ξ6x2x3x6 +x2x4x5 +
x2x4x6 − ξ6x2x5x6 + x3x4x5 − ξ6x3x4x6 + x3x5x6 + x4x5x6) and X12 = XF12 . Then
GX12

∼= C3.M10 is a subgroup Aut(X12) and |GX12 | = 24 · 33 · 5 = 2160 (see [HM19]).
Here M10 is the Mathieu group of order 720.

(13) LetX13 ⊂ P7 defined by x31+x
3
2+x

3
3+x

3
4+x

3
5+x

3
6+x

3
7+x

3
8 = x1+x2+x3+x4+x5+x6+x7 =

0. Then GX13
∼= S7 × C3 is a subgroup of Aut(X13) and |GX13 | = 24 · 33 · 5 · 7 = 15120.

(14) Let F14 = x21x2 + x22x5 + x23x4 + x24x5 + x25x6 + x2x4x6 + x36 + x37 and X14 = XF14 . Then
GX14

∼= C3 × ((C8 × C2) o C2) is a subgroup of Aut(X14) and |GX14 | = 25 · 3 = 96.

(15) Let F15 = x31 + 8x32 + 8(−5 + 4
√

2)x2x
2
3 + 2ξ4(−11 + 6

√
2)x3(x

2
4 + x25) − 4ξ4x2((−5 +

4
√

2)x4x5 + 2(−3 +
√

2)x6x7) + (1 + ξ4)(−12 + 11
√

2)(x5x
2
6−x4x27) and X15 = XF15 . Let

GX15 be the subgroup of PGL(7,C) generated by diag(ξ3, 1,−1, ξ34 , ξ4, ξ
7
8 , ξ8) and

1 0 0 0 0 0 0

0 −
√
2
4

0 −3+
√

2
8

−3+
√
2

8
ξ4 − 1

8
+ ξ4

4
+ 3+ξ4

8
√
2
− 1

4
+ ξ4

8
− 1+3ξ4

8
√
2

0 0
√
2
4

3+
√
2

8
ξ4

3+
√
2

8
1
8
− ξ4

4
+ 3+ξ4

8
√
2

1
4
− ξ4

8
− 1+3ξ4

8
√
2

0 1
2

ξ4
2

− 1
2

−
√
2

4
ξ4 − ξ4

4
− ξ8

4
− ξ4

4
+

ξ38
4

0 − ξ4
2

− 1
2

√
2

4
ξ4 − 1

2
− ξ4

4
+ ξ8

4
− ξ4

4
− ξ38

4

0 1
2

+ ξ8
2

− 1
2

+ ξ8
2

1
4

+ ξ8
4

1
4
− ξ8

4
ξ4
2

0

0 ξ4
2

+ ξ8
2
− ξ4

2
+ ξ8

2
− 1

4
− ξ38

4
− 1

4
+

ξ38
4

0 − ξ4
2


.

Then GX15
∼= C3× (PSL(3, 2)oC2) is a subgroup of Aut(X15) and |GX15 | = 24 · 32 · 7 =

1008.
(16) Let F16 = x31+x32+x33+ 12

5 x1x2x3+x1x
2
4+x2x

2
5+x3x

2
6+ 4

√
15
9 x4x5x6+x37 and X16 = XF16 .

LetGX16 be the subgroup of PGL(7,C) generated byAX16,1 := diag(1, ξ3, ξ
2
3 ,−1, ξ3,−ξ23 , 1)

and AX16,2 :=

(
A′X16,2

0

0 1

)
, where

A′X16,2 =


1
2

1
2

1
2

√
15
18

√
15

18

√
15

18
1
2

ξ3
2

− ξ6
2

√
15
18

√
15

18
ξ3 − 3

√
5ξ4+

√
15

36
1
2

− ξ6
2

ξ3
2

√
15
18

− 3
√
5ξ4+

√
15

36

√
15

18
ξ3√

15
10

√
15

10

√
15

10
− 1

2
− 1

2
− 1

2√
15
10

√
15

10
ξ3 −

√
15

10
ξ6 − 1

2
− ξ3

2
ξ6
2√

15
10

−
√
15

10
ξ6

√
15

10
ξ3 − 1

2
ξ6
2

− ξ3
2

 .

Then GX16
∼= C3.A7 is a subgroup of Aut(X16) and |GX16 | = 24 · 32 · 5 · 7 = 7560.

(17) Let F17 = x31 + x32 + x2x
2
5 − 2

3x2x5x7 + x2x
2
7 −

2ξ6
3 x2x5x6 −

2ξ6
3 x2x6x7 + (−1 + ξ6)x2x

2
6 +

x23x5−x3x4x5 +x24x5 +x24x7 + 3ξ6x3x4x6 + (−1 + ξ24− ξ8− ξ524)x23x7 + (−1−2ξ24 + 2ξ8 +
2ξ524)x3x4x7 + (ξ24− ξ6− ξ724)x24x6 + (−ξ24− ξ6 + ξ724)x

2
3x6 +x35−x36−x25x7−x5x27 +x37−

ξ6x
2
5x6 + 2ξ6x5x6x7 − ξ6x6x27 + (1 − ξ6)x5x26 + (1 − ξ6)x26x7 and X17 = XF17 . Let GX17

be the subgroup of PGL(7,C) generated by the following three matrices:
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1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1− ξ8 − ξ38 −2 0 0 0
0 0 −1− ξ8 − ξ38 −1 + ξ8 + ξ38 0 0 0
0 0 0 0 1 ξ23 0
0 0 0 0 0 −1 0
0 0 0 0 0 ξ23 1


,



1 0 0 0 0 0 0
0 ξ3 0 0 0 0 0
0 0 0 −ξ3 0 0 0
0 0 ξ3 −ξ3 0 0 0
0 0 0 0 ξ3 1 0
0 0 0 0 0 −ξ3 −ξ23
0 0 0 0 0 1 0


,



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 −ξ8 − ξ38 0 0 0
0 0 −ξ8 − ξ38 −1 0 0 0
0 0 0 0 0 −ξ23 −1
0 0 0 0 −ξ3 0 ξ3
0 0 0 0 0 0 −1


.

Then GX17
∼= C3 ×GL(2, 3) is a subgroup of Aut(X17) and |GX17 | = 24 · 32 = 144.

(18) Let F18 = x31+x32+(32ξ4−ξ6+ 1
2)x22x3+(−1

2ξ4+ 1
2ξ6+ 1

2ξ12−1)x2x
2
3+(−1

2ξ6−
1
2ξ12+ 1

2)x33+

(ξ4−2ξ6−ξ12 +2)x22x4 +(2ξ12−1)x2x3x4 +(12ξ4 + 1
2ξ6−

1
2ξ12)x

2
3x4 +(ξ4−2ξ6 +1)x2x

2
4 +

(−3
2ξ4 + ξ6 + ξ12− 1

2)x3x
2
4 + (−1

2ξ6 + 1
2ξ12−

1
2)x34 + (ξ4 + ξ6− 1)x22x5 + (−ξ4− ξ6 + ξ12−

1)x2x3x5 + (−1
2ξ4−

1
2)x23x5 + (2ξ12)x2x4x5 + (ξ6− ξ12− 1)x3x4x5 + (−3

2ξ4 + 1
2ξ6 + 3

2ξ12−
1)x24x5+(−ξ6−ξ12)x2x25+(−1

2ξ4+ 1
2ξ6+ 1

2ξ12)x3x
2
5+(12ξ4+ξ6−ξ12− 1

2)x4x
2
5+(−1

2ξ6+ 1
2ξ12+

1
2)x35+(ξ12−2)x22x6+(−ξ4+2ξ6−1)x2x3x6+(−1

2ξ6−
1
2ξ12+ 1

2)x23x6+(−2ξ4+2ξ6+2ξ12−
2)x2x4x6+(12ξ6−

1
2ξ12+ 1

2)x24x6+(−2ξ4)x2x5x6+(ξ6−ξ12)x3x5x6+(ξ4−ξ6−ξ12)x4x5x6+

(−1
2ξ4 + ξ6 + ξ12− 1

2)x25x6 + (ξ6− ξ12 + 1)x2x
2
6 + (ξ4− 3

2ξ6−
1
2ξ12 + 1

2)x3x
2
6 + (12ξ6−

1
2ξ12 +

1
2)x4x

2
6+(32ξ4−

1
2ξ6−

3
2ξ12+1)x5x

2
6+(−1

2ξ6+ 1
2ξ12−

1
2)x36+(12ξ4−

3
2ξ6+ 1

2ξ12)x
2
2x7+(−2ξ4+

ξ6+ξ12−1)x2x3x7+(12ξ4−2ξ6−ξ12+ 5
2)x23x7+(ξ6+ξ12−2)x2x4x7+(ξ6−ξ12−1)x3x4x7+

(−1
2ξ4+ 1

2ξ6+ 1
2ξ12)x

2
4x7+(−2ξ4+2ξ12)x2x5x7+(−ξ4+ξ6−ξ12)x3x5x7+(−ξ4−1)x4x5x7+

(32ξ6−
1
2ξ12−

1
2)x25x7+(2ξ6−ξ12)x2x6x7+(ξ4−2ξ6+1)x3x6x7+(−ξ12+1)x4x6x7+(2ξ4−ξ6−

2ξ12+1)x5x6x7+(−1
2ξ4−ξ6+ξ12−

1
2)x26x7+(−1

2ξ4+ξ6−
1
2)x2x

2
7+(12ξ4−

5
2ξ6+

1
2ξ12+2)x3x

2
7+

(12ξ4−ξ12+ 1
2)x4x

2
7+(−1

2ξ6−
1
2ξ12+ 1

2)x5x
2
7+(−1

2ξ4−
1
2ξ6+ 1

2ξ12)x6x
2
7+(−1

2ξ6+ 1
2ξ12+ 1

2)x37
and X18 = XF18 . Let GX18 be the subgroup of PGL(7,C) generated by the following
three matrices:

1 0 0 0 0 0 0
0 1 0 0 ξ4 −1 0
0 0 0 0 0 0 ξ712
0 0 0 0 ξ1112 0 0
0 0 0 0 0 ξ34 0
0 0 0 ξ3 0 0 0
0 0 ξ712 0 0 0 −ξ3


,



1 0 0 0 0 0 0
0 −ξ23 ξ712 0 0 ξ23 − ξ1112 −ξ3
0 1− ξ4 −ξ712 −ξ3 + ξ712 ξ4 0 0
0 0 ξ4 0 0 0 −1
0 −ξ23 0 0 0 ξ23 0
0 −ξ23 − ξ1112 0 0 0 ξ23 −ξ712
0 ξ4 ξ3 + ξ712 −ξ712 −1 0 ξ712


,



1 0 0 0 0 0 0
0 −ξ23 ξ4 −ξ3 0 0 ξ4
0 −1− ξ4 −ξ3 ξ3 + ξ712 1 0 0
0 −ξ3 ξ34 −1 0 0 ξ34
0 0 −ξ1112 0 0 0 ξ23 − ξ1112
0 1 −1 + ξ4 −ξ3 ξ4 ξ3 −1
0 1 0 −ξ3 −1 0 −ξ3


.

Then GX18
∼= (((C3 × C3) o C3) o Q8) o C3 is a subgroup of Aut(X18) and |GX18 | =

23 · 34 = 648.
(19) Let F19 = x21x2+x22x3+x23x4+x24x5+x25x6+x26x7+x37 and X19 = XF19 . Then GX19

∼= C64

is a subgroup of Aut(X19) and |GX19 | = 26 = 64.
(20) Let F20 = x21x2+x22x3+x23x4+x24x5+x25x6+x26x7+x27x1 and X20 = XF20 the Klein cubic

fivefold. Then GX20
∼= C43 o C7 is a subgroup of Aut(X20) and |GX20 | = 7 · 43 = 301.
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Remark 4.1. For i 6= 14, 15, 16, 17, 18, the examples Xi and GXi are easily obtained from
known examples of cubic hypersurfaces of dimensions ≤ 4. For i = 14, 15, 16, 17, 18, we find the
cubic fivefolds Xi and their symmetries GXi in the process of our classification of (5, 3)-groups
in Section 5. Smoothness of these cubics and GXi ⊆ Aut(Xi) can be verified by Mathematica
[Wo] and Magma [BCP].

4.2. Reduction to the examples. Based on partitionability and the differential method, we
have the following

Theorem 4.2. For i ∈ {1, 2, . . . , 11, 19, 20}, Aut(Xi) is isomorphic to GXi.

Proof. It is well-known that Aut(X1) = GX1 . For i ∈ {2, . . . , 9}, by Propositions 3.11, 3.13,
3.15, we can control the shape of matrices A satisfying [A] ∈ Aut(Xi), and then similar to
Example 3.19, we conclude that Aut(Xi) is isomorphic to GXi . For i ∈ {10, 11, 19, 20}, as
in proof of [OY19, Theorem 3.18], by the differential method (Theorem 3.5), we infer that
Aut(Xi) are generated by diagonal matrices and permutations of coordinates, which implies
that Aut(Xi) = GXi . �

Remark 4.3. The automorphism groups of most Klein hypersurfaces can be computed using
a refinement of the differential method ([GLMV23]).

The following theorem states that if a polynomial defining a cubic hypersurface has a certain
type of partition, then the automorphism group of the hypersurface is determined by known
results.

Theorem 4.4. Let F = F (x1, ..., x7) be a smooth cubic form. If F has a (2, 5)-type or (3, 4)-type
partition, there exists i ∈ {1, . . . , 9} such that Aut(XF ) is isomorphic to a subgroup of GXi.

Proof. We sketch the proof since it is similar to Example 3.19. By assumption, F has a maximal
(a1, ..., at)-type partition, where a1 ≤ a2 ≤ ... ≤ at, and we may assume that (a1, ..., at) is
one of the following types: (1, 1, 5), (3, 4), (1, 1, 1, 4), (1, 3, 3), (1, 1, 1, 1, 3), (1, 1, 1, 1, 1, 1, 1). If
(a1, ..., at) = (1, 1, 5), then we may assume F = H(x1, ..., x5) + x36 + x37. By Theorem 3.18 and
Propositions 3.17, 3.11, we have

Aut(XF ) ∼= Aut(XH)×Gx36+x37
∼= Aut(XH)× (C2

3 o C2).

Then by [WY20, Theorem 1.1] and Theorem 4.2, we infer that Aut(XF ) is isomorphic to a
subgroup of GXi for some i ∈ {1, 2, ..., 6}. The remaining cases of (a1, ..., at) are similar. �

Theorem 4.4 has the following direct consequence, which will be frequently used in our clas-
sification of (5, 3)-groups.

Corollary 4.5. Let F = F (x1, ..., x7) be a smooth cubic form. Suppose that there exists A ∈ GF
such that A is similar to diag(ξ3, ξ3, 1, 1, 1, 1, 1) (resp. diag(ξ3, ξ3, ξ3, 1, 1, 1, 1)). Then F has a
(2, 5)-type (resp. (3, 4)-type) partition. In particular, Aut(XF ) is isomorphic to a subgroup of
GXi for some i ∈ {1, . . . , 9}.

5. Automorphism groups of cubic fivefolds

In this section, we classify all possible subgroups of the automorphism groups of smooth cubic
fivefolds (Theorem 5.1). Roughly speaking, we proceed the classification in the following order:
abelian subgroups, Sylow subgroups, non-abelian solvable subgroups, non-solvable subgroups.
We use Strategy 5.16 to rule out relevant non-abelian groups and it relies on partitionability via
abelian subgroups (Theorem 5.12) and the notion of special almost (5, 3)-representations (see
Definitions 5.3, 5.14).

Our main theorem is the following:

Theorem 5.1. Let G be a finite group. Then the following two conditions are equivalent:
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(i) G is isomorphic to a subgroup of one of the 20 groups GXi (i = 1, ..., 20) ; and
(ii) G acts on a smooth cubic fivefold faithfully.

Remark 5.2. For i ∈ {1, 2, . . . , 11, 19, 20}, in Theorem 4.2, we have seen that Aut(Xi) = GXi .
Note that GXi is not isomorphic to a subgroup of GXj if 1 ≤ i, j ≤ 20 and i 6= j. Thus, Theorem
5.1 implies that Aut(Xi) = GXi for i ∈ {12, 13, ..., 18}. The Fermat cubic fivefold has the largest
possible order (3674160) for the automorphism group among all smooth cubic fivefolds. A list
of all subgroups of the 20 groups Aut(Xi) can be found in the ancillary file 53-groups.txt to
[YYZ23].

5.1. (n, d)-representations and smoothness. By Theorem 3.18, the automorphism group of
every smooth cubic fivefold XF admits an F -lifting. Thus, a finite group G is a (5, 3)-group if
and only if G admits an injective group homomorphism ρ to GL(7,C) such that ρ(G) preserves a
smooth cubic form and π◦ρ is injective. Motivated by this, we introduce the following definitions
(we identify GL(Cn+2) with GL(n+ 2,C) by choosing a basis of Cn+2).

Definition 5.3. Let A,B ∈ GL(n + 2,C). Let ρ : G → GL(n + 2,C) be a faithful linear
representation of a finite group G. Let χ be the character of ρ.

(1) We say ρ is an (n, d)-representation of G if there exists a smooth form F = F (x1, ..., xn+2)
of degree d such that ρ(G) is an F -lifting of a subgroup of Aut(XF ).

(2) We say ρ is an almost (n, d)-representation of G if for every proper abelian subgroup
H < G, the restriction ρ|H is an (n, d)-representation of H.

(3) We say χ is an (n, d)-character (resp. almost (n, d)-character) of G if ρ is an (n, d)-
representation (resp. almost (n, d)-representation).

Let ρi : G → GL(n + 2,C) be two faithful linear representations of a finite group G with
characters χi (i = 1, 2). Recall that ρ1 and ρ2 are isomorphic (i.e., there exists B ∈ GL(n+2,C)
such that Bρ1(g)B−1 = ρ2(g) for all g ∈ G) if and only if χ1 = χ2. From this, we have that
ρ1(G) and ρ2(G) are conjugate in GL(n+ 2,C) if and only if there exists f ∈ Aut(G) such that
χ1 = f∗(χ2). Here f∗(χ2)(g) := Tr(ρ2(f(g))) for all g ∈ G.

We introduce the following equivalence relation between linear representations of finite groups.

Definition 5.4. Let ρi : G→ GL(n+2,C) be two faithful linear representations of a finite group
G with characters χi (i = 1, 2). Let d be a positive integer. We say ρ1 and ρ2 are d-equivalent
if the groups 〈ρ1(G), ξdIn+2〉 and 〈ρ2(G), ξdIn+2〉 are conjugate in GL(n+ 2,C). We say χ1 and
χ2 are d-equivalent if ρ1 and ρ2 are d-equivalent.

The motivation of the definition of d-equivalence is the following

Lemma 5.5. Let ρi : G→ GL(n+2,C) be d-equivalent faithful linear representations of a finite
group G (i = 1, 2). If ρ1 is an (n, d)-representation, so is ρ2.

Proof. By assumption, there exists a smooth form F of degree d such that A1(F ) = F for all A1 ∈
〈ρ1(G), ξdIn+2〉. Since B〈ρ1(G), ξdIn+2〉B−1 = 〈ρ2(G), ξdIn+2〉 for some B ∈ GL(n + 2,C), we
have A2(H) = H for all A2 ∈ 〈ρ2(G), ξdIn+2〉, where H := B−1(F ). Because |〈ρ2(G), ξdIn+2〉| =
|〈ρ1(G), ξdIn+2〉| = d|G|, one has ρ2(G)∩〈ξdIn+2〉 = {In+2} and so πρ2 is injective. Thus, ρ2(G)
is an H-lifting of πρ2(G) ⊂ Aut(XH), which implies ρ2 is an (n, d)-representation. �

Using smoothness in an effective way is important for classification of automorphism groups
of smooth hypersurfaces. We mainly use two “combinatorial” non-smoothness tests Lemmas 5.6
and 5.8 in our classification of (5, 3)-groups.

Lemma 5.6 ([OY19, Lemma 3.2 and Proposition 3.3]). Let F = F (x1, . . . , x7) be a homogeneous
polynomial of degree 3. Then F is not smooth if one of the following four conditions is true:

(i) There exists 1 ≤ i ≤ 7, such that for all 1 ≤ j ≤ 7, x2ixj /∈ F ;
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(ii) There exist three distinct variables xp, xq, xr, such that F ∈ (xp, xq, xr);
(iii) There exist four distinct variables xp, xq, xr, xs, such that F ∈ (xp, xq) + (xr, xs)

2;
(iv) There exist five distinct variables xp, xq, xr, xs, xt, such that F ∈ (xp) + (xq, xr, xs, xt)

2.

It turns out that this test is often convenient and sufficient to rule out relevant candidates of
cubics and groups for our purposes.

Example 5.7. Let ρ : C2 → GL(7,C) be a faithful linear representation of C2. Then we may

assume ρ(C2) = 〈Aa,b〉, where Aa,b :=

(
−Ia 0

0 Ib

)
, (a, b) ∈ {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2),

(6, 1)}. Suppose F is a smooth cubic form satisfying A(F ) = F . If a ≥ 4, then F ∈ (x5, x6, x7),
which contradicts Lemma 5.6. On the other hand, A1,6, A2,5, A3,4 preserve the smooth cubic
form x21x4 + x22x5 + x23x6 + x34 + x35 + x36 + x37. Thus, up to isomorphisms, C2 has exactly three
(5, 3)-representations corresponding to A1,6, A2,5, A3,4 respectively.

Lemma 5.6 fails in some cases and we use the following stronger test in our computer program.

Lemma 5.8 ([GLM23, Lemma 1.6]). Let F = F (x1, . . . , x7) be a homogeneous polynomial of
degree 3. If there exist three mutually disjoint collections of variables V1, V2, V3 such that⋃
i Vi = {x1, . . . , x7}, |V1| > |V2| and for every monomial m ∈ F , m can be expressed in one of

the following forms:

(i) m = xpxqxr, xp, xq ∈ V1 and xr ∈ V2;
(ii) m = xpxqxr, xp ∈ V1 and xq, xr ∈ V2 ∪ V3; or

(iii) m = xpxqxr, xp, xq, xr ∈ V2 ∪ V3;

then F is not smooth.

5.2. Abelian (5, 3)-groups. We classify abelian (5, 3)-groups in this subsection. As a direct
consequence of [GL13, Theorem 1.3], we have the following

Proposition 5.9. Let g be an element of primary order in a (5, 3)-group. Then ord(g) =
2a, 3b, 5, 7, 11 or 43, where a, b > 0.

The Sylow p-subgroups of (5, 3)-groups with p > 3 are known.

Proposition 5.10 (cf. [GLM23, Example 4.3]). Let G be a nontrivial p-group with p ∈
{5, 7, 11, 43}. If G is a (5, 3)-group, then G ∼= Cp.

Let Ga be the set of subgroups of the following 29 abelian groups: C43, C9×C5, C5×C4×C3,
C9×C7, C64, C11×C3×C2, C9×C8, C

2
9 , C5×C2

3 ×C2, C32×C3, C16×C3×C2, C8×C4×C3,
C11×C2

3 , C9×C4×C3, C9×C3×C2
2 , C5×C3

3 , C16×C2
3 , C8×C2

3 ×C2, C
2
4 ×C2

3 , C4×C2
3 ×C2

2 ,
C9 × C2

3 × C2, C8 × C3
3 , C4 × C3

3 × C2, C
3
3 × C3

2 , C9 × C3
3 , C4 × C4

3 , C4
3 × C2

2 , C5
3 × C2, C

6
3 .

By computing abelian subgroups of GXi , we have the following

Lemma 5.11. An abelian group G is in Ga if and only if G is isomorphic to an abelian subgroup
of GXi for some i ∈ {1, 2, ..., 20}. In particular, all groups in Ga are (5, 3)-groups.

We say A ∈ GL(m,C) is semi-permutation if A is a diagonal matrix up to permutation of
columns, or equivalently, A has exactly m nonzero entries.

Similar to Example 5.7, using Lemmas 5.6 and 5.8, we can compute (5, 3)-representations, up
to 3-equivalence, of groups in Ga with the help of computer algebra. Based on this, we obtain
the following result.

Theorem 5.12. If a (5, 3)-group G contains a subgroup isomorphic to one of the following
groups: C11, C9 × C3, C9 × C4, C9 × C2

2 , C43, C9 × C5, C5 × C2
3 , C5 × C4 × C3, C9 × C7, C64,

C2
3 ×C3

2 , C4×C2
3 ×C2, C4

3 , C32×C3, C16×C3×C2, C8×C4×C3, C4×C3
3 , C3

3 ×C2
2 , C16×C2

3 ,
then G is isomorphic to a subgroup of GXi for some i ∈ {1, 2, . . . , 11, 19, 20}.
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Proof. First we explain the strategies of the proof. Let XF be a smooth cubic fivefold defined
by F . Suppose G < Aut(XF ) contains G0, where G0 is one of the 19 abelian groups in the
list. We classify (5, 3)-representations ρ of G0 up to 3-equivalence. We may assume that the
matrices in ρ(G0) are diagonal since G0 is abelian. By computing all cubic monomials preserved
by ρ(G0), we infer that either F has an (a1, a2)-type partition, where (a1, a2) = (2, 5), (3, 4), or
GF consists of semi-permutation matrices by the differential method. Then by Theorems 4.2
and 4.4, we conclude that Aut(XF ) is isomorphic to a subgroup of Aut(Xi) = GXi for some
i ∈ {1, 2, . . . , 11, 19, 20}. We give details for two typical cases G0 = C11, C9 × C5 and the other
cases are similar (representatives of all 3-equivalence classes of (5, 3)-representations of the 19
abelian groups can be found in the ancillary file Theorem5.12.txt to [YYZ23]).

Case G0 = C11: Up to 3-equivalence, G0 has exactly one (5, 3)-representation ρ given by
ρ(G0) = 〈A〉, where A = diag(ξ911, ξ

5
11, ξ

4
11, ξ

3
11, ξ11, 1, 1). Then the set of cubic monomials pre-

served by A consists of x37, x6x
2
7, x

2
6x7, x

3
6, x

2
3x4, x2x

2
4, x

2
2x5, x1x

2
5, x

2
1x3. Thus, by A(F ) = F , we

have that F can be partitioned into H(x1, x2, x3, x4, x5)+K(x6, x7). By Theorem 4.4, Aut(XF )
is isomorphic to a subgroup of GXi for some i ∈ {1, . . . , 6}.

Case G0 = C9 × C5: Up to 3-equivalence, G0 has exactly one (5, 3)-representation ρ given
by ρ(G0) = 〈A,B〉, where A = diag(ξ9, ξ

7
9 , ξ

4
9 , 1, 1, 1, 1) and B = diag(1, 1, 1, ξ5, ξ

3
5 , ξ

4
5 , ξ

2
5). Then

the cubic monomials preserved by A and B are x21x2, x
2
2x3, x

2
3x1, x

2
4x5, x

2
5x6, x

2
6x7, x

2
7x4. Since

F is preserved by ρ(G0), F can be partitioned into F = H(x1, x2, x3) + K(x4, x5, x6, x7), and
by Theorem 4.4, there exists i ∈ {1, . . . , 9} such that Aut(XF ) is isomorphic to a subgroup in
GXi . �

Now we are ready to classify abelian (5, 3)-groups.

Theorem 5.13. Let G be an abelian group. Then G is a (5, 3)-group if and only if G ∈ Ga.

Proof. It suffices to show that if G is an abelian group such that (1) all of its proper subgroups
are in Ga and (2) G /∈ Ga, then G is not a (5, 3)-group. Then by Lemma 5.11 and Theorem
5.12, we are reduced to rule out the following 13 groups: C27, C

4
2 , C8 ×C2

2 , C2
4 ×C2, C32 ×C2,

C16 × C4, C
2
8 , C7 × C2, C5 × C2

2 , C5 × C7, C8 × C5, C4 × C2
2 × C3, C7 × C2

3 . Then the idea is
to prove that these groups have no (5, 3)-representation by considering (5, 3)-representations of
their proper subgroups. We give details for C7 × C2 and the other cases are similar.

Suppose ρ is a (5, 3)-representation of G = C7 × C2 with ρ(G) preserving a smooth cubic
form F . Note that C7 has only one (5, 3)-representation up to 3-equivalence given by A7 :=
diag(ξ67 , ξ

5
7 , ξ

4
7 , ξ

3
7 , ξ

2
7 , ξ7, 1) (representatives of all 3-equivalence classes of (5, 3)-representations of

cyclic groups of primary orders can be found in the ancillary file Theorem5.13.txt to [YYZ23]).
By considering the restriction ρ|C7, we may assume that ρ(G) = 〈A7, A2〉, where A2 = diag(±1,
±1, ...,±1). The cubic monomials preserving by A7 are x37, x4x

2
5, x

2
4x6, x2x

2
6, x

2
2x3, x1x

2
3, x

2
1x5,

x3x5x6, x3x4x7, x2x5x7, x1x6x7, x1x2x4. By Lemma 5.6, the first 7 monomials must be in F .
From this, by A2(F ) = F , we deduce that A2 = diag(1, 1, 1, 1, 1, 1, 1), which is a contradiction
since ρ(G) ∼= C7 × C2. �

5.3. Solvable (5, 3)-groups. In this subsection, a classification of solvable (5, 3)-groups is pre-
sented. The classification begins with identifying all 2-groups and 3-groups followed by exam-
ining other solvable (5, 3)-groups of order less than or equal to 25 · 34 · 5 · 7.

Definition 5.14. Let ρ : G → GL(7,C) be a faithful linear representation of a finite group
G with character χ. We say ρ (resp. χ) is a special representation (resp. special character)
if there exists no A ∈ ρ(G) such that A is similar to either diag(ξa+1

3 , ξa+1
3 , ξa3 , ξ

a
3 , ξ

a
3 , ξ

a
3 , ξ

a
3) or

diag(ξa+1
3 , ξa+1

3 , ξa+1
3 , ξa3 , ξ

a
3 , ξ

a
3 , ξ

a
3) for some a ∈ {0, 1, 2}.

As a direct consequence of Corollary 4.5, the following lemma plays an important role in our
strategy of ruling out groups.
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Lemma 5.15. Let G be a finite group. Then G is not a (5, 3)-group if the following two
conditions are satisfied:

(1) There exists no 1 ≤ i ≤ 20 such that G is isomorphic to a subgroup of GXi;
(2) G admits no special (5, 3)-representation.

We use the following strategy to classify non-abelian (5, 3)-groups.

Strategy 5.16. Let m be a positive integer. Suppose that all (5, 3)-groups of orders m′ < m
satisfying m′ | m have been found. We classify non-abelian (5, 3)-groups of order m as follows.

Step 1: We compute the (finite) set Bm of non-abelian groups G of order m satisfying the
following conditions:

(1) All proper subgroups of G are (5, 3)-groups;
(2) GXi has no subgroup isomorphic to G for all 1 ≤ i ≤ 20;
(3) G contains none of the 19 abelian groups in Theorem 5.12.

If Bm = ∅, then we are done. Otherwise, we do case-by-case check for groups in Bm. For each
G ∈ Bm, go to Step 2.

Step 2: Compute the (finite) set RG of the 3-equivalence classes of the special almost (5, 3)-
characters of G. If RG = ∅, then G is ruled out by Lemmas 5.5 and 5.15. Otherwise, go to Step
3.

Step 3: For each χ ∈ RG, (i) we compute a representation ρ affording χ; (ii) we compute
the cubic forms F invariant by all matrices in ρ(G); (iii) we prove that such forms F are not
smooth.

Here we explain why Strategy 5.16 works out. Let G be a non-abelian group of order m such
that GXi has no subgroup isomorphic to G for all 1 ≤ i ≤ 20. It suffices to show that G is not
a (5, 3)-group if one of the following three statements is true: (a) G /∈ Bm; (b) RG = ∅; (c) each
χ ∈ RG is not a (5, 3)-character. Note that by assumption, (2) in Step 1 holds for G. Thus,
if G /∈ Bm, then G does not satisfy either (1) or (3) in Step 1, which implies that G is not a
(5, 3)-group by Theorem 5.12. From now on, we may assume that G ∈ Bm. Suppose G is a
(5, 3)-group. Then by Lemma 5.15, G has a special (5, 3)-representation ρ. This representation
gives rise to a special (5, 3)-character χ, which is of course a special almost (5, 3)-character in
RG, which implies that RG 6= ∅ and χ ∈ RG is a (5, 3)-character (i.e., both (b) and (c) fail).

Remark 5.17. For orders |G| = m coprime to 3, all representations of G are special. However,
for cases 3 | m, G might have many non-special almost (5, 3)-representations. Thus, focusing on
special almost (5, 3)-representations in Step 2 and Step 3 reduces the amount of calculations
in our classification considerably.

Remark 5.18. Following [OY19], we call the condition (1) in Step 1 the sub-test. Like in
[OY19] and [WY20], for relevant group orders m, the sub-test often rules out most of the finite
groups which are not (5, 3)-groups.

Remark 5.19. The idea of ruling out candidate (n, d)-groups via restricting their characters
to (abelian) subgroups is used in previous studies, e.g. [OY19, Lemma 6.11] for (n, d) = (3, 5)
and [WY20, Theorem 6.1] for (n, d) = (3, 3). In order to handle a larger list of relevant can-
didates of hypersurfaces and groups in the cases (n, d) = (5, 3), (4, 3), we use this idea in a
more systematic way (e.g., introducing new notions including (special) almost (n, d)-character
and d-equivalence). For computation in the steps of Strategy 5.16, we use a mixture of GAP
[GAP], Mathematica [Wo], and Sage [Sage]. The codes needed in Strategy 5.16 are contained
in the following ancillary files to [YYZ23]: GAPsubtest-53groups.txt, LHsnewLHsnewred.txt,
GAPcodesnewforMath.txt, CubicFivefolds.m.

As illustrations, we apply Strategy 5.16 to determine Sylow subgroups of (5, 3)-groups.
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Theorem 5.20. Let G be a p-group with p = 2, 3. If G is a (5, 3)-group, then G is isomorphic
to a subgroup of GXi for some 1 ≤ i ≤ 20.

Proof. We give proof for 2-groups, and the classification for 3-groups is similar. Let m = |G| =
2a.

Cases a = 1, 2, 3: Each group of order 2a is a subgroup of one of the 20 groups GXi . In
particular, B2 = B4 = B8 = ∅ and we are done.

Case a = 4: After running Step 1, we have B16 = {C2×Q8}. By Step 2, we findRC2×Q8 = ∅,
which implies that C2 ×Q8 is not a (5, 3)-group.

Cases a = 5, 6: Similar to case a = 4.
Cases a > 6: Note that C64 is the only (5, 3)-group of order 64. Since any finite group of

order 2a contains a subgroup of order 64. Thus, by Theorem 5.12, there is no (5, 3)-group of
order 2a. This completes the classification for 2-groups. �

Next we give an upper bound for the orders of candidate (5, 3)-groups which we are reduced
to consider from now on.

Proposition 5.21. Let G be a (5, 3)-group. If |G| does not divide 90720 = 25 · 34 · 5 · 7, then G
is isomorphic to a subgroup of GXi for some 1 ≤ i ≤ 20. In particular, if F = F (x1, x2, ..., x7)
is a smooth cubic form having neither (2, 5) nor (3, 4)-type partition, then |Aut(XF )| ≤ 90720.

Proof. By Propositions 5.9, 5.10 and Theorem 5.20, we have

|G| = 2a2 · 3a3 · 5a5 · 7a7 · 11a11 · 43a43 ,

where a2 ≤ 6, a3 ≤ 8, a5 ≤ 1, a7 ≤ 1, a11 ≤ 1, a43 ≤ 1. By Theorem 5.20, any (5, 3)-group of
order 243 = 35 contains either C9 × C3 or C4

3 . Since |G| does not divide 25 · 34 · 5 · 7, it follows
that G contains one of the following groups: C64, C9 × C3, C

4
3 , C11, C43. Then by Theorem

5.12, G is isomorphic to a subgroup of GXi for some 1 ≤ i ≤ 20. �

Now we are ready to classify all solvable (5, 3)-groups.

Theorem 5.22. Let G be a solvable (5, 3)-group. Then there exists i ∈ {1, . . . , 20} such that G
is isomorphic to a subgroup of GXi.

Proof. By Proposition 5.21, we are reduced to consider cases |G| = m dividing 90720. Then as
in the proof of Theorem 5.20, we use Strategy 5.16 to proceed the classification. It turns out that
all relevant candidate groups which are not (5, 3)-groups can be ruled out by Strategy 5.16 (the
details are included in the ancillary file Theorem5.22.txt to [YYZ23]). Since the arguments are
completely similar as before, we only give an example for which Step 3 is involved. Consider the
case |G| = m = 96 (the outputs of our computer-aided calculations for this case are contained in
the ancillary file Example-m96-53-groups.txt to [YYZ23]). By Step 1, B96 consists of 4 groups.
Applying Step 2, it turns out C3oC32 ∈ B96 is the only one for which RG is not empty. In fact,
RC3oC32 has exactly one element, say χ. The image ρ(C3 o C32) of the special almost (5, 3)-

representation ρ affording χ is generated by A1 =

(
S 0
0 T

)
and A2 = diag(1, 1, 1, 1, 1, ξ3, ξ

2
3),

where S = diag(1, ξ34 , ξ
5
8 , ξ

3
16, ξ

13
32), T =

(
0 1
1 0

)
. Thus, {x31, x1x6x7, x4x25, x36 + x37, x3x

2
4, x2x

2
3}

is a basis of the homogenous polynomials of degree 3 preserved by A1 and A2. Then if F is a
cubic form invariant by ρ(C3 oC32), we have x22xj /∈ F for all 1 ≤ j ≤ 7, which implies F is not
smooth. Therefore, C3 o C32 is not a (5, 3)-group. �

5.4. Proof of Theorem 5.1. In this subsection, we prove our main theorem (Theorem 5.1).
By Theorem 5.22 and Proposition 5.21, it suffices to prove that if G is a non-solvable (5, 3)-
groups with m := |G| dividing 25 · 34 · 5 · 7, then G is isomorphic to a subgroup of GXi for some
i ∈ {1, 2, ..., 20}.
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Cases m ≤ 2000: We use Strategy 5.16 to handle these cases. In fact, it turns out that by
Step 1, Bm = ∅ (resp. Bm = {C2 × A6}) for m 6= 720 (resp. m = 720). By Step 2, we find
RC2×A6 = ∅, which implies C2 ×A6 is not a (5, 3)-group.

Cases m > 2000: It is well-known that a non-abelian finite simple group of order dividing
25 · 34 · 5 · 7 is one of the following: A5, PSL(3, 2), A6, PSL(2, 8), A7, PSU(3, 3). Then m must
be divided by the order of one of the 6 simple groups. Thus, it suffices to consider non-solvable
groups of the following orders: 2016, 2160, 2520, 3024, 3240, 3360, 3780, 4320, 4536, 5040,
6048, 6480, 7560, 9072, 10080, 11340, 12960, 15120, 18144, 22680, 30240, 45360, 90720. As
above, we also apply Strategy 5.16 to treat these orders. For cases m = 2160, 2520, 3024, 3240,
3360, 3780, 4536, 5040, 7560, 15120, we completely use computer to do computation in the
steps of Strategy 5.16 like in the cases m ≤ 2000 (the details can be found in the ancillary file
Theorem5.1.txt to [YYZ23]). For the remaining orders, we use a more theoretical approach
based on our classification of (5, 3)-groups of smaller orders. Next we give the details for a
typical case m = 2016.

Suppose G is a non-solvable (5, 3)-group of order 2016. Let N be a maximal proper normal
subgroup of G. Then we consider the following short exact sequence:

1 −→ N −→ G −→M −→ 1,

where M ∼= G/N is a simple group. Then M is one of the following groups: C2, C3, C7,
PSL(3, 2), PSL(2, 8).

(1) If M ∼= C2, then |N | = 1008 and N ∼= C3 × (PSL(3, 2) o C2) by our classification of
(5, 3)-groups of order 1008. Note that N contains a unique subgroup, say H, of order 336.
Moreover, H ∼= PSL(3, 2) o C2. Thus for any g ∈ G, gHg−1 ⊂ gNg−1 = N , which implies that
gHg−1 = H is a normal subgroup of G. We get another short exact sequence:

1 −→ H −→ G −→M ′ −→ 1,

where |M ′| = 6. So there exists a subgroup H ′ < M ′ with |H ′| = 2. Then G has a subgroup of
order 336 · 2 = 672, which is impossible since there is no (5, 3)-group of order 672.

(2) If M ∼= C3, then |N | = 672, which is impossible.
(3) If M ∼= C7, then both N and M are solvable, which contradicts non-solvability of G.
(4) If M ∼= PSL(3, 2), then |N | = 12. Since |M | = 23 · 3 · 7, there exists a subgroup H < G

such that |H| = 84, which is impossible by previous classification.
(5) If M ∼= PSL(2, 8), then |N | = 4. Since |M | = 23 · 32 · 7, there exists a subgroup H < G

such that |H| = 28, similarly, it is impossible.
Therefore, we conclude that there is no non-solvable (5, 3)-group of order 2016. The remaining

cases for m can be handled similarly. This completes the proof of Theorem 5.1.

6. Automorphism groups of cubic fourfolds

In this section, we classify all groups faithfully acting on smooth cubic fourfolds based on
the classification of (5, 3)-groups. It turns out that there are 15 maximal groups among them
(Theorem 6.1). As a by-product, we find explicit defining polynomials of two cubic fourfolds with
maximal symplectic automorphism groups isomorphic to A7 and M10 respectively (Theorems
6.14 and 6.15).

6.1. Examples. The 15 smooth cubic fivefolds Xj (j = 1, 2, ..., 7, 10, 11, ..., 15, 17, 18) in Sub-
section 4.1 are defined by smooth cubic forms admitting partitions of (6, 1)-type and we have
seen the explicit description of their automorphism groups Aut(Xj) = GXj (see Remark 5.2).
From this and Lemma 3.16, we immediately obtain the following 15 examples of smooth cubic

fourfolds X ′i = XF ′i
(i = 1, 2, ..., 15 respectively) via the relation F̂ ′i = Fj (up to obvious per-

mutations of variables) and the explicit description of their automorphism groups Aut(XF ′i
) (in
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fact, if A ∈ GF ′i , then

(
A 0
0 1

)
∈ G

F̂ ′i
; the matrix generators of Aut(XF ′i

) can be found in the

ancillary file Examples6.1.txt to [YYZ23]).

(1) Let F ′1 = x31 + x32 + x33 + x34 + x35 + x36 and X ′1 = XF ′1
the Fermat cubic fourfold. Then

Aut(X ′1)
∼= C5

3 o S6 of order 24 · 37 · 5 = 174960.

(2) Let F ′2 = x31 +x32 +x33 +3(
√

3−1)x1x2x3 +x34 +x35 +x36 and X ′2 = XF ′2
. Then Aut(X ′2)

∼=
((C3 × (C3

3 o C3)) o C3) o (C4 × C2) of order 23 · 36 = 5832.
(3) Let F ′3 = x21x2+x22x3+x23x4+x34+x35+x36 and X ′3 = XF ′3

. Then Aut(X ′3)
∼= C8×(C2

3oC2)

of order 24 · 32 = 144.
(4) Let X ′4 ⊂ P6 defined by x31 + x32 + x33 + x34 + x35 + x36 + x37 = x1 + x2 + x3 + x4 + x5 = 0.

Then Aut(X ′4)
∼= S5 × (C2

3 o C2) of order 24 · 33 · 5 = 2160.
(5) Let F ′5 = x21x2 + x22x3 + x23x4 + x24x5 + x35 + x36 and X ′5 = XF ′5

. Then Aut(X ′5)
∼= C48 of

order 3 · 24 = 48.
(6) Let F ′6 = x21x2 + x22x3 + x23x4 + x24x5 + x25x1 + x36 and X ′6 = XF ′6

. Then Aut(X ′6)
∼=

PSL(2, 11)× C3 of order 22 · 32 · 5 · 11 = 1980.
(7) Let F ′7 = x31+x32+x33+3(

√
3−1)x1x2x3+x34+x35+x36+3(

√
3−1)x4x5x6 and X ′7 = XF ′7

.

Then Aut(X ′7)
∼= ((C3 × (C2

3 o C3)) o C3) o (C2
4 o C2) of order 25 · 35 = 7776.

(8) Let F ′8 = x21x2 + x22x3 + x23x4 + x24x5 + x25x6 + x36 and X ′8 = XF ′8
. Then Aut(X ′8)

∼= C32

of order 25 = 32.
(9) Let F ′9 = x21x2+x22x3+x23x4+x24x5+x25x6+x26x1 andX ′9 = XF ′9

. Then Aut(X ′9)
∼= C21oC6

of order 2 · 32 · 7 = 126.
(10) Let F ′10 = (x31 + x32 + x33 + x34 + x35 + x36) + 1

5(−3ξ724 − 3ξ524 + 3ξ6 − 3ξ8 + 6ξ24 − 3) ·
(x1x2x3 + x1x2x4 + (ξ6− 1)x1x2x5 + x1x2x6 + (ξ6− 1)x1x3x4 + x1x3x5 + x1x3x6 + (ξ6−
1)x1x4x5− ξ6x1x4x6− ξ6x1x5x6 +(ξ6−1)x2x3x4 +(ξ6−1)x2x3x5− ξ6x2x3x6 +x2x4x5 +
x2x4x6 − ξ6x2x5x6 + x3x4x5 − ξ6x3x4x6 + x3x5x6 + x4x5x6) and X ′10 = XF ′10

. Then

Aut(X ′10)
∼= M10 of order 24 · 32 · 5 = 720.

(11) Let X ′11 ⊂ P6 defined by x31+x32+x33+x34+x35+x36+x37 = x1+x2+x3+x4+x5+x6+x7 = 0.
Then Aut(X ′11)

∼= S7 of order 24 · 32 · 5 · 7 = 5040.
(12) Let F ′12 = x21x2 + x22x5 + x23x4 + x24x5 + x25x6 + x2x4x6 + x36 and X ′12 = XF ′12

. Then

Aut(X ′12)
∼= (C8 × C2) o C2 of order 25 = 32.

(13) Let F ′13 = 8x31+8(−5+4
√

2)x1x
2
2+2ξ4(−11+6

√
2)x2(x

2
3+x24)−4ξ4x1((−5+4

√
2)x3x4+

2(−3+
√

2)x5x6)+(1+ξ4)(−12+11
√

2)(x4x
2
5−x3x26) and X ′13 = XF ′13

. Then Aut(X ′13)
∼=

PSL(3, 2) o C2 of order 24 · 3 · 7 = 336.

(14) Let F ′14 = x31 +x1x
2
4− 2

3x1x4x6 +x1x
2
6−

2ξ6
3 x1x4x5−

2ξ6
3 x1x5x6 + (−1 + ξ6)x1x

2
5 +x22x4−

x2x3x4 + x23x4 + x23x6 + 3ξ6x2x3x5 + (−1 + ξ24 − ξ8 − ξ524)x22x6 + (−1 − 2ξ24 + 2ξ8 +
2ξ524)x2x3x6 + (ξ24 − ξ6 − ξ724)x23x5 + (−ξ24 − ξ6 + ξ724)x

2
2x5 + x34 − x35 − x24x6 − x4x26 +

x36 − ξ6x24x5 + 2ξ6x4x5x6 − ξ6x5x26 + (1− ξ6)x4x25 + (1− ξ6)x25x6 and X ′14 = XF ′14
. Then

Aut(X ′14)
∼= GL(2, 3) of order 24 · 3 = 48.

(15) Let F ′15 = x31+(32ξ4−ξ6+ 1
2)x21x2+(−1

2ξ4+ 1
2ξ6+ 1

2ξ12−1)x1x
2
2+(−1

2ξ6−
1
2ξ12+ 1

2)x32+(ξ4−
2ξ6−ξ12+2)x21x3+(2ξ12−1)x1x2x3+(12ξ4+ 1

2ξ6−
1
2ξ12)x

2
2x3+(ξ4−2ξ6+1)x1x

2
3+(−3

2ξ4+

ξ6 + ξ12− 1
2)x2x

2
3 +(−1

2ξ6 + 1
2ξ12−

1
2)x33 +(ξ4 + ξ6−1)x21x4 +(−ξ4− ξ6 + ξ12−1)x1x2x4 +

(−1
2ξ4−

1
2)x22x4+(2ξ12)x1x3x4+(ξ6−ξ12−1)x2x3x4+(−3

2ξ4+ 1
2ξ6+ 3

2ξ12−1)x23x4+(−ξ6−
ξ12)x1x

2
4+(−1

2ξ4+ 1
2ξ6+ 1

2ξ12)x2x
2
4+(12ξ4+ξ6−ξ12− 1

2)x3x
2
4+(−1

2ξ6+ 1
2ξ12+ 1

2)x34+(ξ12−
2)x21x5+(−ξ4+2ξ6−1)x1x2x5+(−1

2ξ6−
1
2ξ12+ 1

2)x22x5+(−2ξ4+2ξ6+2ξ12−2)x1x3x5+

(12ξ6−
1
2ξ12 + 1

2)x23x5 +(−2ξ4)x1x4x5 +(ξ6−ξ12)x2x4x5 +(ξ4−ξ6−ξ12)x3x4x5 +(−1
2ξ4 +

ξ6 +ξ12− 1
2)x24x5 +(ξ6−ξ12 +1)x1x

2
5 +(ξ4− 3

2ξ6−
1
2ξ12 + 1

2)x2x
2
5 +(12ξ6−

1
2ξ12 + 1

2)x3x
2
5 +

(32ξ4−
1
2ξ6−

3
2ξ12+1)x4x

2
5+(−1

2ξ6+ 1
2ξ12−

1
2)x35+(12ξ4−

3
2ξ6+ 1

2ξ12)x
2
1x6+(−2ξ4+ξ6+ξ12−
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1)x1x2x6+(12ξ4−2ξ6−ξ12+ 5
2)x22x6+(ξ6+ξ12−2)x1x3x6+(ξ6−ξ12−1)x2x3x6+(−1

2ξ4+
1
2ξ6+ 1

2ξ12)x
2
3x6+(−2ξ4+2ξ12)x1x4x6+(−ξ4+ξ6−ξ12)x2x4x6+(−ξ4−1)x3x4x6+(32ξ6−

1
2ξ12−

1
2)x24x6+(2ξ6−ξ12)x1x5x6+(ξ4−2ξ6+1)x2x5x6+(−ξ12+1)x3x5x6+(2ξ4−ξ6−2ξ12+

1)x4x5x6+(−1
2ξ4−ξ6+ξ12− 1

2)x25x6+(−1
2ξ4+ξ6− 1

2)x1x
2
6+(12ξ4−

5
2ξ6+ 1

2ξ12+2)x2x
2
6+

(12ξ4−ξ12+ 1
2)x3x

2
6+(−1

2ξ6−
1
2ξ12+ 1

2)x4x
2
6+(−1

2ξ4−
1
2ξ6+ 1

2ξ12)x5x
2
6+(−1

2ξ6+ 1
2ξ12+ 1

2)x36
and X ′15 = XF ′15

. Then Aut(X ′15)
∼= ((C3 × C3) oQ8) o C3 of order 23 · 33 = 216.

The defining equations of the examples X ′i (i = 1, 2, ..., 11) are known (see e.g., [HM19],
[LZ22], [Zhe22]). It seems that the cubic fourfolds X ′i (i = 12, 13, 14, 15) are new.

6.2. C3-covering groups and classification.

Theorem 6.1. Let G be a finite group. Then the following two conditions are equivalent:

(i) G is isomorphic to a subgroup of one of the 15 groups Aut(X ′i) (i = 1, 2, ..., 15); and
(ii) G acts on a smooth cubic fourfold faithfully.

A list of all subgroups of the 15 groups Aut(X ′i) is contained in the ancillary file 43-groups.txt
to [YYZ23]. We will prove Theorem 6.1 based on close relations between (4, 3)-groups and
(5, 3)-groups. First we make some reduction based on partitionability as in our classification of
(5, 3)-groups. The proof of the following result is similar to that of Theorem 4.4 and we omit
the details.

Theorem 6.2. Let X be a smooth cubic fourfold defined by the homogeneous polynomial F . If
F is partitionable, then there exists i ∈ {1, . . . 7} such that Aut(X) is isomorphic to a subgroup
of Aut(X ′i).

To study relations between (4, 3)-groups and (5, 3)-groups in a more general setting, we in-
troduce the following definition.

Definition 6.3. Let G and Ĝ be two finite groups. Let d be a positive integer. We say Ĝ is a

Cd-covering group of G if the centre Z(Ĝ) of Ĝ contains a subgroup N such that N ∼= Cd and

Ĝ/N ∼= G.

Now we have the following

Lemma 6.4. Let F = F (x1, ..., xm) be a smooth form of degree d with m ≥ 3, d ≥ 3. We define

F̂ := F + xdm+1. Then

(1) F̂ is a smooth form of degree d.
(2) If G

F̂
consists of semi-permutation matrices, then so does GF .

(3) If d = 3, then F is partitionable if and only if F̂ has an (a1, a2)-type partition with
a1 ≥ 2, a2 ≥ 2.

Proof. (1) and (2) follow from definitions. To prove (3), from now on, we assume that d = 3. If
F is partitionable, then we may assume that F has a partition of type (a, b) with a ≥ 1, b ≥ 2,

which implies that F̂ has a partition of type (a+ 1, b) with a+ 1 ≥ 2, b ≥ 2. On the other hand,

if F̂ has an (a1, a2)-type partition with a1 ≥ 2, a2 ≥ 2, then there exists A ∈ GL(m+ 1,C) such
that

A(F̂ ) = H(x1, ..., xa1) +K(xa1+1, ..., xa1+a2).

For positive integers n1, n2, we set Bn1,n2 :=

(
In1 0
0 ξ3In2

)
. Then Ba1,a2 ∈ GA(F̂ )

. Note that

G
A(F̂ )

= A−1G
F̂
A. Then by Lemma 3.9 and Proposition 3.11, we have ABa1,a2A

−1 ∈ G
F̂

and

ABa1,a2A
−1 =

(
B 0
0 λ

)
, where B ∈ GF and λ ∈ C. Since Ba1,a2 and ABa1,a2A

−1 have the same
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eigenvalues (counting multiplicities), we have that B is similar to either Ba1−1,a2 or Ba1,a2−1.
From this, we conclude that F is partitionable (see Corollary 4.5). �

Every (n, d)-group has at least one Cd-covering (n+1, d)-group, which gives strong constraints
on (n, d)-groups.

Lemma 6.5. Let G be a subgroup of Aut(XF ), where F = F (x1, ..., xn+2) is a smooth form of

degree d, where n ≥ 2, d ≥ 3, (n, d) 6= (2, 4). Let F̂ denote the degree d smooth form F + xdn+3.
Then the following statements hold:

(1) There exists a subgroup G′ ⊂ GL(n+ 3,C) such that: (i) G′ is a Cd-covering (n+ 1, d)-

group of G, (ii) G′ is an F̂ -lifting of π(G′) ⊆ Aut(X
F̂

), and (iii) G′ contains the matrix(
ξdIn+2 0

0 1

)
;

(2) If G admits an F -lifting, then G × Cd is an (n + 1, d)-group. In particular, if d is a
prime number not dividing |G|, then G× Cd is an (n+ 1, d)-group.

Proof. Recall that the center Z(GF ) of GF = {A ∈ GL(n + 2,C) | A(F ) = F} contains
N := 〈ξdIn+2〉 ∼= Cd. By Lemma 3.16, we have the short exact sequence of groups

1→ N
i−→ GF

π|GF−−−→ Aut(XF )→ 1,

where i is the natural inclusion map. Let Ĝ < GF be the pre-image of the subgroup G ⊆
Aut(XF ) under the map π|GF . Then N ⊆ Z(Ĝ) and Ĝ/N ∼= G, which means that Ĝ is a

Cd-covering group. Let G′ := {
(
A 0
0 1

)
| A ∈ Ĝ}. Clearly Ĝ is isomorphic to G′ ∼= π(G′) ⊆

Aut(X
F̂

). From this, we conclude the statement (1).

If G admits an F -lifting, say G̃, then

Ĝ = G̃×N ∼= G× Cd,

which implies the first sentence in (2). Then by [OY19, Theorem 4.8], the second sentence in
(2) holds. This completes the proof of the lemma. �

Example 6.6. By Theorem 5.1, C64 is the only (5, 3)-group of order 64 and C64 × C3 is not a
(5, 3)-group. Then by Lemma 6.5, there is no (4, 3)-group of order 64.

From now on, we focus on (4, 3)-groups and their C3-covering (5, 3)-groups.

Theorem 6.7. Let G be a finite group. Suppose that for every C3-covering (5, 3)-group Ĝ of G,
one of the following statements holds:

(i) Ĝ contains one of the 19 abelian groups in Theorem 5.12;

(ii) Ĝ has no special (5, 3)-representation ρ with ρ(Ĝ) containing diag(ξ3, ..., ξ3, 1).

If G is a (4, 3)-group, then Aut(X ′i) contains a subgroup isomorphic to G for some i ∈
{1, 2, ..., 9}.

Proof. Suppose G < Aut(XF ), where F = F (x1, ..., x6) is a smooth cubic form. Let G′ be as in
Lemma 6.5 (1). In particular, G′ is a C3-covering (5, 3)-group of G. If (ii) holds for G′, then there
exists A ∈ G

F̂
such that A is similar to either diag(ξ3, ξ3, 1, 1, 1, 1, 1) or diag(ξ3, ξ3, ξ3, 1, 1, 1, 1),

which implies the theorem by Corollary 4.5, Lemma 6.4, Theorem 6.2. If (i) holds for G′, then
like in the proof of Theorem 5.12, we conclude that Aut(X ′i) contains a subgroup isomorphic to
G for some i ∈ {1, 2, ..., 9}. This completes the proof of the theorem. �

By adapting Strategy 5.16, we use the following strategy to classify (4, 3)-groups.
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Strategy 6.8. Let m be a positive integer. Suppose that all (4, 3)-groups of orders m′ < m
satisfying m′ | m have been found. We classify (4, 3)-groups of order m as follows.

Step 1: We compute the (finite) set B′m of groups G of order m satisfying the following
conditions:

(1) All proper subgroups of G are (4, 3)-groups;
(2) Aut(X ′i) has no subgroup isomorphic to G for all 1 ≤ i ≤ 15.

If B′m = ∅, then we are done. Otherwise, we do case-by-case check for groups in B′m. For each
G ∈ B′m, go to Step 2.

Step 2: Compute the (finite) set CG defined as follows: if 3 | m,

CG := {Ĝ | Ĝ is a C3-covering (5, 3)-group of G};

if 3 - m, CG := {Ĝ | Ĝ ∼= C3×G and Ĝ is a (5, 3)-group}. If CG = ∅, then G is ruled out (Lemma
6.5). Otherwise, go to Step 3.

Step 3: For each Ĝ ∈ CG, we prove that either (i) Ĝ contains one of the 19 groups in Theorem

5.12 by computing abelian subgroups of Ĝ or (ii) Ĝ has no special (5, 3)-representation ρ with

ρ(Ĝ) containing diag(ξ3, ..., ξ3, 1) by computing R
Ĝ

(and applying Step 3 of Strategy 5.16 to
each χ ∈ R

Ĝ
if R

Ĝ
6= ∅). Then by Theorem 6.7, G is ruled out.

Next we prove Theorem 6.1 based on Strategy 6.8.

Proof of Theorem 6.1. By Theorem 5.1 and Lemma 6.5 (see Example 6.6), the order of a (4, 3)-
group is of the following form

2a2 · 3a3 · 5a5 · 7a7 · 11a11 ,

where a2 ≤ 5, a3 ≤ 7, a5 ≤ 1, a7 ≤ 1, a11 ≤ 1. Then by Theorem 6.7, we are reduced to classify
(4, 3)-groups of orders dividing 25 · 33 · 5 · 7 (see the proof of Proposition 5.21).

Similar to the proof of Theorem 5.1 based on Strategy 5.16, we use Strategy 6.8 to rule out
groups inductively in the sense of increasing orders m of relevant groups. We only give the
details for a typical case m = 16 (other cases can be found in the ancillary file Theorem6.1.txt

to [YYZ23]; the outputs of our computer-aided calculations for the case m = 16 are contained
in the ancillary file Example-m16-43-groups.txt).

By Step 1, B′16 consists of 5 groups: C2 × Q8, C
4
2 , (C4 × C2) o C2, C4 o C4, C4 × C2

2 . In
Step 2, for the first 2 (resp. the last 3) groups G in the list, we have CG = ∅ (resp. {C3 ×G}).
Thus, C2×Q8 and C4

2 are not (4, 3)-groups. By Step 3, R
Ĝ

= ∅ for Ĝ = C3× ((C4×C2)oC2),
C3× (C4 oC4), which implies that (C4×C2)oC2 and C4 oC4 are not (4, 3)-groups. Applying

Step 3 to Ĝ = C3 × C4 × C2
2 , we have R

Ĝ
contains only one element χ and the image ρ(Ĝ)

of the special almost (5, 3)-representation ρ affording χ is generated by diag(−1, ξ4, 1, 1, 1, 1, 1)
and diag(1, 1,−1, 1, 1, 1, 1), diag(1, 1, 1,−1, 1, 1, 1) and diag(1, 1, ξ3, ξ

2
3 , ξ

2
3 , ξ3, 1). From this, we

conclude that Ĝ satisfies (ii) in Theorem 6.7, which implies that G = C4 × C2
2 is not a (4, 3)-

group. Thus, we complete the proof for the case m = 16. Similarly, we can handle all other
cases m | 25 · 33 · 5 · 7. This completes the proof of the theorem. �

Remark 6.9. Automorphisms of cubic fourfolds naturally induce automorphisms of their Fano
varieties of lines which are hyperkähler manifolds of K3[2]-type. In particular, all (4, 3)-groups

can act faithfully on hyperkähler manifolds of K3[2]-type. It would be interesting to apply our
classification of (4, 3)-groups to study (fixed point loci of) finite groups of automorphisms of

hyperkähler manifolds of K3[2]-type.

6.3. Symplectic automorphism groups. The symplectic automorphism group Auts(XF ) of
a smooth cubic fourfold XF consists of the symplectic automorphisms f of XF (i.e., the induced
action on H3,1(XF ) ∼= C is trivial). If the defining equation F and matrix generators of Aut(XF )
are explicitly given, one can directly compute Auts(XF ) via the following result.
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Lemma 6.10 ([Fu16, Lemma 3.2]). Let X be a smooth cubic fourfold defined by F (x1, . . . , x6).
Let f = [A] be an element in Aut(X), A ∈ GL(6,C), with ord(f) = ord(A) and A(F ) = λF
with λ ∈ C, then f is symplectic if and only if det(A) = λ2.

Example 6.11. The automorphism group Aut(X ′5)
∼= C48 of X ′5 is generated by the matrix

AX′5 := diag(ξ16, ξ
7
8 , ξ4,−1, 1, ξ3). Since AX′5(F ′5) = F ′5 and det(AX′5) is a 48-th primitive root of

unity, by Lemma 6.10, we have that Auts(X ′5) is trivial. More generally, if Aut(XF ) admits an

F -lifting ˜Aut(XF ) ⊂ GL(6,C), then

Auts(XF ) ∼= ( ˜Aut(XF ) ∩ SL(6,C)).

The symplectic automorphism groups Auts(X ′i) (i = 1, 2, ..., 15) can be computed similarly
and the result is summarized in the Table 1. This is consistent with [LZ22, Theorems 1.2
and 1.8] which we will recall below. By Auts(X ′i) being maximal (as indicated by X in the
last column of the table), we mean that Auts(X ′i) is not isomorphic to a proper subgroup
of Auts(X) for any smooth cubic fourfold X. In fact, by computer calculations using GAP,
Auts(X ′i) is not isomorphic to any proper subgroup of the groups in [LZ22, Theorem 1.2] if and
only if i ∈ {1, 4, 6, 7, 10, 11, 14} (see the ancillary file 43-groups.txt).

i Aut(X ′i) |Aut(X ′i)| Auts(X ′i) |Auts(X ′i)| maximal

1 C5
3 o S6 174960 C4

3 oA6 29160 X

2 ((C3 × (C3
3 o C3)) o C3) o (C4 × C2) 5832 (C3 × (C2

3 o C3)) o C2 486

3 C8 × (C2
3 o C2) 144 S3 6

4 S5 × (C2
3 o C2) 2160 A5 o S3 360 X

5 C48 48 trivial 1

6 PSL(2, 11)× C3 1980 PSL(2, 11) 660 X

7 ((C3 × (C2
3 o C3)) o C3) o (C2

4 o C2) 7776 ((C3 × (C2
3 o C3)) o C3) oQ8 1944 X

8 C32 32 trivial 1

9 C21 o C6 126 C7 o C3 21

10 M10 720 M10 720 X

11 S7 5040 A7 2520 X

12 (C8 × C2) o C2 32 QD16 16

13 PSL(3, 2) o C2 336 PSL(3, 2) 168

14 GL(2, 3) 48 GL(2, 3) 48 X

15 ((C3 × C3) oQ8) o C3 216 (C3 × C3) oQ8 72

Table 1. Symplectic automorphism groups of cubic fourfolds

Based on the global Torelli theorem for cubic fourfolds and lattice theory, Laza–Zheng [LZ22,
Theorems 1.2] identified all possible Auts(X) for smooth cubic fourfolds X. The following result
is a direct consequence of [LZ22, Theorems 1.2 and 1.8].

Theorem 6.12. A finite group G can act faithfully and symplectically on a smooth cubic fourfold
if and only if G is isomorphic to a subgroup of one of the following 7 groups:

GL(2, 3), C4
3 oA6, A7, ((C3 × (C2

3 o C3)) o C3) oQ8,M10,PSL(2, 11), A5 o S3.

Moreover, for the moduli space MG of the smooth cubic fourfolds X with Auts(X) containing
G as a subgroup, the following statements hold:

(1) If G = GL(2, 3), then dim(MG) = 1;
(2) If G = C4

3 oA6 (resp. A7, ((C3× (C2
3 oC3))oC3)oQ8,M10,PSL(2, 11), A5 oS3), then

the cardinality |MG| = 1 (resp. 2, 1, 2, 1, 1).
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Remark 6.13. Using notations in [LZ22, Theorem 1.2], the 7 groups in Theorem 6.12 are
isomorphic to T48, 34 : A6, A7, 31+4 : 2.22, M10, L2(11), A3,5 respectively. Note that T48 is one
of the 11 maximal finite groups acting on K3 surfaces faithfully and symplectically ([Mu88]).

Among the 8 smooth cubic fourfolds with maximal symplectic automorphism groups in The-
orem 6.12 (2), explicit defining equations for 6 of them are previously known (see [HM19, Table
11], [LZ22, Theorem 1.8]). Let Xi(A7) and Xi(M10) (i = 1, 2) be as in [LZ22, Theorem 1.8].
Note that X1(A7) ∼= X ′11 and X1(M10) ∼= X ′10. To the best of our knowledge, explicit defin-
ing equations for X2(A7) and X2(M10) are unknown. As a by-product of our classification of
(4, 3)-groups and (5, 3)-groups, we solve this open problem.

Theorem 6.14. Let FA7 = x31 + x32 + x33 + 12
5 x1x2x3 + x1x

2
4 + x2x

2
5 + x3x

2
6 + 4

√
15
9 x4x5x6. Then

the smooth cubic fourfold XFA7
satisfies

Auts(XFA7
) = Aut(XFA7

) ∼= A7.

In particular, XFA7
is isomorphic to X2(A7).

Proof. Let F := FA7 . Recall that F16 = F̂ = F + x37 and X16 = XF16 (see the example (16) in
Subsection 4.1). By Theorem 5.1 and Remark 5.2, we have Aut(X16) ∼= C3.A7 is generated by

AX16,1 =

(
A′X16,1

0

0 1

)
and AX16,2 =

(
A′X16,2

0

0 1

)
, where A′X16,1

:= diag(1, ξ3, ξ
2
3 ,−1, ξ3,−ξ23).

Then by Lemma 3.16, Aut(XF ) is generated by [A′X16,1
] and [A′X16,2

], which implies that

Aut(XF ) ∼= A7. Since the quotient group Aut(XF )/Auts(XF ) is abelian and A7 is a non-abelian
simple group, we have Auts(XF ) = Aut(XF ) ∼= A7. By A7

∼= Auts(X1(A7)) $ Aut(X1(A7)) ∼=
S7, the cubic fourfold X1(A7) is not isomorphic to XF . Thus, XF

∼= X2(A7). �

For M10, we prove a somewhat stronger result (note that M10 contains A6 as a normal
subgroup of index 2) via our approach of classifying (4, 3)-groups and (5, 3)-groups.

Theorem 6.15. Let X be a smooth cubic fourfold. Then the following three statements are
equivalent:

(1) Aut(X) = Auts(X) ∼= M10;
(2) M10 is isomorphic to a subgroup of Aut(X);
(3) X is isomorphic to one of the following two smooth cubic fourfolds: X ′10 and XFM10

,

where FM10 = x31 + 1/1815(1036ξ724 − 5800ξ4 − 1576ξ524 + 2016ξ6 + 4180ξ8 + 3632ξ12 −
2644ξ24 − 3939)x1x

2
2 + 1/605(1028ξ724 − 864ξ4 − 1468ξ524 − 1448ξ6 + 1280ξ324 + 3072ξ12 +

152ξ24 − 2270)x1x3x4 + 1/3993(25574ξ724 + 9032ξ4 − 20826ξ524 − 18220ξ6 − 13744ξ324 +
13592ξ12 + 22080ξ24 − 1231)x2x

2
3 + 1/3993(41818ξ724 + 64576ξ4 − 1314ξ524 − 79580ξ6 −

60500ξ324−20552ξ12+70716ξ24+43177)x2x
2
4+1/19965(−16944ξ724−50216ξ4−100168ξ524+

192272ξ6 − 55224ξ324 + 153712ξ12 − 145288ξ24 − 22288)x2x5x6 + 1/6655(−20096ξ724 +
5560ξ4+22156ξ524+6216ξ6−452ξ324−17296ξ12−11268ξ24+13556)x3x

2
5+1/6655(89336ξ724+

48240ξ4 − 8948ξ524 − 88392ξ6 − 106476ξ324 + 29824ξ12 + 50884ξ24 + 70396)x4x
2
6.

In particular, XFM10
is isomorphic to X2(M10).

Proof. The idea is to compute cubic polynomials preserved by (5, 3)-representations of C3-
covering (5, 3)-groups of M10. Let F := FM10 . By Theorem 5.1, M10 has only one C3-covering
(5, 3)-group C3.M10. By adapting Steps 2 and 3 of Strategy 5.16, we compute the set SC3.M10 of
all (5, 3)-representations up to 3-equivalence. It turns out that SC3.M10 contains exactly 2 repre-
sentations of C3.M10. An F12-lifting of the automorphism group Aut(X12) of X12 in the example
(12) in Subsection 4.1 corresponds to one representation, say ρ1, in SC3.M10 . Let ρ2 denote the
other one in SC3.M10 . It turns out the image ρ2(C3.M10) can be generated by two matrices
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A1 =

(
A′1 0
0 1

)
and A2 =

(
A′2 0
0 1

)
, where A′1 = diag(1,−1, ξ4,−ξ4, ξ78 ,−ξ8) and A′2 ∈ GL(6,C)

(the matrix A′2 is a little complicated and it can be found in the ancillary file Theorem6.15.txt

to [YYZ23]). Then by computation, the set of the homogeneous polynomials of degree 3 pre-
served by both A′1 and A′2 is {λF | λ ∈ C}. The automorphism group Aut(X

F̂
) of the smooth

cubic fivefold X
F̂

contains 〈[A1], [A2]〉 ∼= C3.M10, a maximal (5, 3)-group by Theorem 5.1. Thus,
Aut(X

F̂
) = 〈[A1], [A2]〉 and Aut(XF ) = 〈[A′1], [A′2]〉 ∼= M10. Note that A′1(F ) = A′2(F ) = F ,

ord([A′1]) = ord(A′1) = 8, ord([A′2]) = ord(A′2) = 4, and det(A′1) = det(A′2) = 1. Then by
Lemma 6.10, we have [A′1], [A

′
2] ∈ Auts(XF ) = Aut(XF ). Since ρ1 and ρ2 are not 3-equivalent,

it follows that XF12 = X
F̂ ′10

and X
F̂

are not isomorphic, which implies that X ′10 and XF are not

isomorphic. This completes the proof of the theorem. �

Remark 6.16. The automorphism groups Aut(XFA7
) and Aut(XFM10

) have no FA7-lifting and
FM10-lifting respectively.

Remark 6.17. As in the proof of Theorem 6.15, we can compute all (5, 3)-representations, up to
3-equivalence, of any (5, 3)-groups by adapting Strategy 5.16. In particular, for any (4, 3)-group
G, we can determine whether G can act faithfully and symplectically on smooth cubic fourfolds
via computing (5, 3)-representations of C3-covering (5, 3)-groups of G. In this way, we can prove
Theorem 6.12 without using the global Torelli theorem for cubic fourfolds.

Appendix A. Roles of supplementary files

In this appendix, we briefly explain the role of each supplementary file.

(1) Examples4.1.txt: This file contains the matrix generators of GXi ⊂ PGL(7,C) for all
i except i = 6, where Xi are the smooth cubic fivefolds in Subsection 4.1.

(2) Examples6.1.txt: This file contains the matrix generators of GX′i ⊂ PGL(6,C) for all

i except i = 6, where X ′i are the smooth cubic fourfolds in Subsection 6.1.
(3) 53-groups.txt: This file contains lists of all subgroups of the 20 groups Aut(Xi) in

Theorem 5.1. We use this file in Remark 5.2, Lemma 5.11, and the ancillary file
GAPsubtest-53groups.txt.

(4) 43-groups.txt: This file contains lists of all subgroups of the 15 groups Aut(X ′i) in
Theorem 6.1. Such subgroups are used in the ancillary file GAPsubtest-43groups.txt.

(5) Theorem5.12.txt: This file contains representatives of all 3-equivalence classes of (5, 3)-
representations of the 19 abelian groups in Theorem 5.12. The (5, 3)-representations
in this file and the next file can be computed by hand in principle (see e.g. [WY20,
Theorem 5.4] and Example 5.7), but we use computer algebra for efficiency.

(6) Theorem5.13.txt: This file contains representatives of all 3-equivalence classes of (5, 3)-
representations of cyclic groups of primary orders. We use this file in the proof of
Theorem 5.13.

(7) Theorem6.15.txt: This file contains the matrix A′2 in the proof of Theorem 6.15.
(8) GAPsubtest-53groups.txt: This file contains the GAP codes used in Step 1 of Strategy

5.16.
(9) GAPsubtest-43groups.txt: This file contains the GAP codes used in Steps 1 and 2 of

Strategy 6.8.
(10) LHsnewLHsnewred.txt: This file contains (5, 3)-characters and special (5, 3)-characters

of non-trivial abelian (5, 3)-groups required for Steps 2 and 3 of Strategy 5.16 and Step
3 of Strategy 6.8.

(11) GAPcodesnewforMath.txt: This file contains the GAP codes used in Steps 2 and 3 of
Strategy 5.16 and Step 3 of Strategy 6.8.

(12) CubicFivefolds.m: This file contains the Mathematica codes used in Steps 2 and 3 of
Strategy 5.16 and Step 3 of Strategy 6.8.
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(13) Theorem5.1.txt: This file contains the computation details (for non-solvable groups) in
the proof of Theorem 5.1. The computation uses Strategy 5.16.

(14) Theorem5.22.txt: This file contains the computation details (for solvable groups) in
the proof of Theorem 5.22. The computation uses Strategy 5.16.

(15) Theorem6.1.txt: This file contains the computation details in the proof of Theorem
6.1. The computation uses Strategy 6.8.

(16) Example-m96-53-groups.txt: In this file, we take the case m = 96 as an example to
illustrate how to classify (non-abelian) solvable (5, 3)-groups by using Strategy 5.16 with
the help of computer algebra (GAP, Sage and Mathematica). We use this file in the
proof of Theorem 5.22.

(17) Example-m16-43-groups.txt: In this file, we take the case m = 16 as an example
to illustrate how to classify solvable (4, 3)-groups by using Strategy 6.8 with the help
of computer algebra (GAP, Sage and Mathematica). We use this file in the proof of
Theorem 6.1.
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