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SUMMARY

We address the problem of testing the conditional mean and conditional variance for
nonstationary data. We build e-values and p-values for four types of nonparametric com-
posite hypothesis with specified mean and variance as well as other conditions on the shape
of the data-generating distribution. These shape conditions include symmetry, unimodal-
ity and their combination. Using the obtained e-values and p-values, we construct tests via
e-processes, also known as testing by betting, as well as some tests based on combining
p-values for comparison. Although we mainly focus on one-sided tests, the two-sided test
for the mean is also studied. Simulation and empirical studies are conducted under a few
settings, and they illustrate features of the methods based on e-processes.

Some key words: E-process; E-value; P-value; Symmetry; Unimodality.

1. INTRODUCTION

Testing the mean and variance in various settings is a classic problem in statistics. In
parametric inference concerning testing the mean, well-known tests like the Student’s z-test
and z-test, as well as tests related to variance such as the chi-squared test and the F-test,
are commonly employed; see, e.g., Lehmann et al. (1986). Parametric tests always come
with assumptions about the forms of the population distribution from which samples are
derived. Deviating from these assumptions can lead to significantly flawed results. For situ-
ations where these assumptions might be compromised, nonparametric methods provide a
great alternative. Certainly, nonparametric methods may also make strong assumptions on
the underlying population, such as finite or bounded moments, but not on the specific para-
metric forms. Comprehensive and well-established methods of nonparametric techniques
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for testing means and variances can be found in Conover (1999) and Hollander et al. (2013).
Different from the classic settings, we consider the problem of testing composite hypotheses
in which data are not stationary.

Suppose that a tester has sequentially arriving, possibly dependent, data points
X1, X5, ..., each from an unknown distribution, possibly different. The tester is interested
in testing whether

E(X; | Fi—1) < and var(X; | Fi_y) < o? foreachi, (1)
where F;_1 is the o-algebra generated by X1, ..., X;_1, and u; and o; are F;_; measurable.
All conditional expectations are in the almost-sure sense. If independence is further assumed
then this problem reduces to the classic problem of testing the mean and variance. Testing
the conditional mean and conditional variance is common in some contexts such as fore-
casting (e.g., Henzi & Ziegel, 2022) and financial risk assessment (e.g., Fissler & Ziegel,
2016).

Problem (1) can be interpreted in two different ways, omitting ‘conditional’ here:

(A) testing both the mean and the variance,
(B) testing the mean under knowledge of an upper bound on the variance.

Interpretation (A) is relevant when the tester is interested in whether a time series has
switched away from a given regime with specified mean and variance bounds. We mainly
use interpretation (A), while keeping in mind that interpretation (B) is useful when compar-
ing with the literature. Of course, one could also interpret (1) as testing the variance under
knowledge of an upper bound on the mean.

Clearly, problem (1) is a composition of many complicated, nonparametric, composite
hypotheses on each observation. The key challenge in this setting is that the data points are
not independent and identically distributed, and hence we cannot make inference of the
distributions themselves.

This problem can be addressed with the following general methodology, called e-testing
or testing by betting, a successful example being Waudby-Smith & Ramdas (2024). We first
consider a simpler problem: constructing an e-value from one random variable from each
data point with the corresponding hypothesis on its mean and variance, which corresponds
to n = 1. For a general background on e-values in hypothesis testing, see Vovk & Wang
(2021), the review by Ramdas et al. (2023) and Griinwald et al. (2024). After obtaining
these e-values, we combine them, usually by forming an e-process, to construct a test for
the overall hypothesis. Alternatively, we can construct p-values instead of e-values, but the
power of such a strategy is usually quite weak, as seen from our experiments.

We formally describe the hypotheses and define e-variables, e-processes and p-variables.
As mentioned above, we first address the case of one data point, i.e., n = 1. We consider
four types of composite hypotheses on the mean, variance and the shape of the distribution:
symmetry, unimodality and their combination. Our main results are ways that are optimal,
in a natural sense, to constructions of p-values and e-values in this setting. Although our
main methodology is based on e-processes, we also present results for p-values, which may
be useful in multiple testing, not treated in this paper; for instance, p-values are the inputs
of the standard procedure of Benjamini & Hochberg (1995). Considering a nonparamet-
ric composite hypothesis with a given mean and variance as the baseline case, assuming
symmetry approximately improves the baseline p-variable by a multiplicative factor of 1/2,
unimodality by a factor of 4/9 and both by a factor of 2/9. Similarly, the corresponding

20z Joquieoaq g0 uo 1sonb AQ 6£596.//609BSEAOWIOIN/EE0L "0 /I0P/2|OIE-80UBADE/JBWOIC/ W00 dNO"dIWspeoe)/:Sdjjy WOJ) POPEOJUMOQ



Testing the mean and variance by e-processes 3

baseline e-variable is improved by multiplicative factors of 2, 1 and 2, respectively, in these
scenarios; recall that smaller p-values are more useful, whereas larger e-values are more
useful.

We propose several methods to test using multiple data points, thus addressing the main
task of the tester. The main proposals are e-process-based tests, which follow the idea of
testing by betting of Wasserman et al. (2020), Shafer (2021) and Waudby-Smith & Ramdas
(2024). Although we mainly focus on one-sided hypotheses, our methodology can be easily
adapted to test the two-sided hypothesis on the mean, that is,

E(X; | Fiop) € [uf.nf1 and  var(X;| Fioy) < of for each i,
where [,ul.L, leU ] is an interval or a singleton for each 7; this is discussed in §4.3.

The closest methodological work related to this paper is that of Waudby-Smith &
Ramdas (2024), where the authors tested in a nonparametric setting the conditional
mean of sequential data, which are assumed to be bounded within a prespecified range,
and thus a generally smaller class of distributions. Our problem and methodology are
different from those of Waudby-Smith & Ramdas (2024) in the sense that we assume a
bounded variance instead of a bounded range. Since a bounded range implies bounded
variance, the assumption needed to apply our methodology is weaker than in the setting
of Waudby-Smith & Ramdas (2024), following interpretation (B) of the main testing prob-
lem. Moreover, we are able to utilize the additional information on the distributional shape
to obtain better e-values than without such information. A great advantage of the tests of
Waudby-Smith & Ramdas (2024) is that their power adapts to the unknown true variance of
the distribution if data come from an independent and identically distributed population.
Our method based on the growth rate of empirical e-values has a similar feature, which uses a
betting strategy similar to that of Waudby-Smith & Ramdas (2024). Another closely related
methodology is that of Wang et al. (2024), who tested statistical functions other than the
mean. Once e-variables are constructed, we build e-processes in a similar way to Wang et al.
(2024). The methods of Howard et al. (2020, 2021) and Wang & Ramdas (2023) based on
exponential test supermartingales, exponential processes that form supermartingales with
initial value one, which are e-processes, can also be applied to test (1). These methods differ
from ours as our e-process is obtained by combining individual e-variables.

We provide simulation studies for the proposed methods and compare them with the
method of Waudby-Smith & Ramdas (2024) when the model has both bounded support
and bounded variance and with methods based on the exponential test supermartingale
of Howard et al. (2021) and Wang & Ramdas (2023). Empirical studies using financial
asset return data during the 2007-8 financial crisis further demonstrate the effectiveness
of the e-process-based methods. All proofs in the paper are provided in the Supplementary
Material.

2. GENERAL SETTING

2.1. Hypotheses to test

We first describe our main testing problem. Let n be a positive integer or oo, and denote
by [n] = {1,...,n}. Throughout, fix a sample space. Suppose that data points (X;);c[,) arrive
sequentially, each possibly from a different distribution, and not necessarily independent.
A hypothesis is a collection H of probability measures that govern (X;);c[,. Denote by F;
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the o-field generated by Xi,...,X; for i € [n] with F{ being the trivial o-field. The main
hypotheses of interest are variations, by adding shape information, of the hypothesis

H={0:E2(X; | Fi_1) < w;and var®(X; | Fi_1) < o for i € [n]}, )

where u; and o; are F;_| measurable for each i € [n]; that is, they can be data-dependent on
past observations. A simple case is

H={0: E2(X; | Fi_1) < wand var®(X; | Fi_1) < o for i € [n]}, 3)

where 1 and o are two constants; that is, we would like to test whether data exhibit condi-
tional mean and conditional variance in (—oo, u] x [0, o%]. Although (3) looks simpler, it is
indeed equivalent to (2) by noting that u; and o; are F;_| measurable and can be absorbed
into X; by considering (X; — u;)/o; instead of X;. Therefore, we focus on formulation (3)
for the rest of the paper. If data are independent, but not necessarily identically distributed,
then the problem is to test the unconditional mean and variance. We sometimes omit Q in
E€ and var€ when it is clear.

We further consider hypotheses with additional shape information, by assuming that
some, or all of the distributions of Xi,..., X, are unimodal, symmetric or both. Below,
all terms like ‘increasing’ and ‘decreasing’ are in the nonstrict sense. A distribution on R
is unimodal if there exists x € R such that the distribution has an increasing density on
(—00, x) and a decreasing density on (x, c0); it may have a point mass at x. A distribution
on R with mean p is symmetric if, for all x € R, it assigns equal probabilities to (—oo, it — x]
and [+ x, 00). If a distribution with mean w is both unimodal and symmetric then its mode
must be either u or an interval centred at p.

Remark 1. The main problem in Waudby-Smith & Ramdas (2024) is to test the condi-
tional mean m with data taking values in [0, 1]. Any random variable with mean at most
m and range [0, 1] has variance at most 1/4 if m > 1/2, or m(1 — m) if m < 1/2, both of
which are attained by a Bernoulli random variable. Therefore, our hypothesis with 4 = m
and 02 = 1/4 or 62 = m(1 — m) has less restrictive assumptions than their setting, except
they formulated two-sided hypotheses (see Remark 2 below), and, in particular, our setting
can handle unbounded data.

Remark 2. Our hypotheses are formulated as one sided on both x and o2. Certainly, all
validity results remain true for the two-sided hypotheses. Testing E€(X;) > u is symmetric
to testing EZ(X;) < w, but such symmetry does not hold for testing the variance. Building
e-processes to test the two-sided hypothesis on the mean is discussed in §4.3 below.

2.2. P-variables and e-variables

We formally define p-variables and e-variables, following Vovk & Wang (2021).
A p-variable P for a hypothesis H is a random variable that satisfies Q(P < «) < « for all
a € (0,1)and all Q € H. In other words, a p-variable is stochastically larger than Un[O0, 1],
often truncated at 1. An e-variable E for a hypothesis H is a [0, co]-valued random vari-
able satisfying E2(E) < 1 for all Q € H. Often e-variables are obtained from stopping
an e-process (E;);>0, which is a nonnegative stochastic process adapted to a prespecified
filtration, (F;)e[,) 1n our problem, such that E9(E;) < 1 for any stopping time 7 and any
QeH.
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Some p-variables and e-variables are useless, like P = 1 or £ = 1. A p-variable P for H
is precise if Supgey QP <) =« for each @ € (0, 1), and an e-variable E for H is precise
if suppey E(E) = 1. In other words, a p-variable or an e-variable being precise means
that it is not wasteful in a natural sense. For instance, if SUPpec E2(E) < 1 then we can
multiply E by a constant larger than 1. Some imprecise e-variables may also be useful, such
as those built on the Hoeffding inequality; see Hoeffding (1963), Howard et al. (2021) and
Waudby-Smith & Ramdas (2024).

A p-variable P is semiprecise for H if suppe g Q(P < a) = « for each « € (0, 1/2]. Semi-
precise p-variables require the sharp probability bound supy.y O(P < o) = « only for the
case o < 1/2, which is relevant for testing purposes. We will see that, for some hypotheses,
precise p-variables do not exist unless we rely on external randomization, but semiprecise
ones do exist.

Realizations of p-variables and e-variables are referred to as p-values and e-values. As
is customary in the literature, we sometimes, but never in mathematical statements, use the
two terms e-value and e-variable interchangeably.

3. BEST P- AND €-VARIABLES FOR ONE DATA POINT

3.1. Setting

We begin by considering the simple setting where one data point X is available, from which
we build a p-variable or e-variable for the hypothesis. Although it may be unconventional to
test based on one observation, there are several situations where this construction becomes
useful.

(1) Testing by betting. To construct an e-process, one needs to sequentially obtain one
e-value from each observation, or a batch of observations. This is the main setting in
the current paper.

(2) Testing multiple hypotheses. One observation is obtained for each hypothesis, and
p-values or e-values for each of them are computed and fed into a multiple testing
procedure such as that of Benjamini & Hochberg (1995); this setting is particularly
relevant for the procedure of Wang & Ramdas (2022) based on e-values, which yields
false discovery rate control under arbitrary dependence. Even if, for some hypotheses,
there is only one data point, a p-value or e-value, even moderate, say e = 0.8 ore = 1.2,
from this hypothesis may be useful for the overall testing problem; see Ignatiadis et al.
(2024), where e-values are used as weights, so e = 0.8 or e = 1.2 matters.

(3) Testing a global null. One may first obtain a p-value or e-value for each experiment
and then combine them to test the global null, as in meta-analysis; see Vovk & Wang
(2020, 2021) and the references therein.

The e-values are relevant for all three contexts, and p-values are relevant for the second and
third contexts.

We focus on p-variables, which are decreasing functions of X, and e-variables, which are
increasing functions of X. Thus, a larger value of X indicates stronger evidence against the
null; this is intuitive because we are testing the mean less than or equal to u in (3). This
assumption on p-variables and e-variables will be made throughout the rest of the paper.

Remark 3. In the contexts of multiple testing and sequential e-values, the dependence
among several e-values or p-values obtained is preserved from the dependence among
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the data points, if the monotonicity assumption above holds. This will be helpful when
applying statistical methods based on dependence assumptions; see Benjamini & Yekutieli
(2001) for the Benjamini—-Hochberg procedure (Benjamini & Hochberg, 1995) with posi-
tive dependence and Chi et al. (2024) for the Benjamini-Hochberg procedure with negative
dependence. Both concepts of dependence are preserved under monotone transforms.

3.2. Two technical lemmas

The following lemma establishes that the infimum of p-variables based on the same
data point X is still a p-variable. This result relies on our assumption that p-variables are
decreasing functions of X.

LEMMA 1. For a given observation X and hypothesis H, the infimum of p-variables, which
are assumed to be decreasing functions of X, is a p-variable. As a consequence, there exists the
smallest p-variable.

Although the smallest p-variable for H exists, it may not be precise. Indeed, in Theorems 2
and 4 below we will see that there may not exist any precise p-variable for some hypotheses.

The following lemma allows us to convert conditions on distribution functions into
conditions on the corresponding quantile functions. For a probability measure Q, define

T @) = inf{x e R: Q(Y < x) >a} fora e (0,1);

that is, Tg is the left-quantile function of Y under Q.

LEMMA 2. For a random variable P and a hypothesis H,

(1) P is a p-variable if and only if inf gcpy Tg(oe) > aforalla € (0,1),
(1) P is a precise p-variable if and only if inf ge Tg(a) =a foralla € (0,1),
(ii1) P is a semiprecise p-variable if and only if inf gc Tg(a) =aforalla € (0,1/2) and
infoey Tp (@) > o fora € [1/2,1).

The proof of Lemma 2 is essentially identical to that of Lemma 1 of Vovk & Wang
(2020), which gives the equivalence between probability statements and quantile statements
for merging functions of p-values. Our construction for precise and semiprecise p-variables
will be based on computing & > suppey T g(l — «) and its inverse function.

3.3. Main results
Recall that we have only one observation, denoted X. We consider the following four

classes of nonparametric composite hypotheses, where u € R and o > 0:
H(u,0) = {Q: E2(X) < pand varl(X) < o2},
Hs(u,0) ={0 € H(u,0): X is symmetrically distributed},
Hy(u,0) ={0 € H(u,0): X is unimodally distributed},
Hys(u,o0) = Hu(w,0) N Hs(u,0).

For our main results on the best p-variables and e-variables, it will be clear from our proofs
that the condition var2(X) < o2 in each hypothesis can be replaced by var2(X) = o2, and
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the condition E€(X) < u in each hypothesis can be replaced by E€(X) = u. All results
remain true with any combinations of the above alternatives. Possible improvement for the
two-sided test is discussed in §4.3 below.

The above four sets of distributions are studied in a very different context by Li et al.
(2018) to compute worst-case risk measures under model uncertainty in finance. Some of
our techniques for constructing p-variables use results from Li et al. (2018) and Bernard
et al. (2020) for finding bounds on the quantile, which is called the value at risk in finance.

In what follows, for x € R, we write x; = max(x, 0), x_ = max(—x,0), x%r = (x;)?and
x2 = (x_)2. We first consider the simplest case of testing H (i1, o).

THEOREM 1. A precise p-variable for H(u,0) is P = {1 + (X — /,L)i/az}_l, and a precise
e-variable for H(ju,0) is E = (X — ,u)i/oz.

Theorem 1 can be seen as a consequence of Cantelli’s inequality. It may be interesting
to compare P and 1/FE obtained from Theorem 1. Any e-variable can be converted to a
p-variable via the so-called calibrator e — min(1/e, 1); see, e.g., Vovk & Wang (2021); this
is an immediate consequence of Markov’s inequality. As 1/E is a p-variable for an e-variable
E, we have P < 1/E. In Theorem 1, we obtain 1/P = 1+ E > E, as expected.

In the subsequent analysis, we compare p-variables and e-variables for other hypotheses
with those in Theorem 1. For a concise presentation, we always write

Po={1+ X —wi/o?}"" and Ey= (X —p)3/o",

which are the p-variable and e-variable in Theorem 1, and note the connection
Po= (14 Ey~L
We next consider hypothesis Hs(u, o) of symmetric distributions.

THEOREM 2. A semiprecise p-variable for Hs(ju, o) is P = min{(2Ey) "}, Py}, and a precise
e-variable for Hs(ju,0) is E = 2Ey. Precise p-variables do not exist for Hs(u, o).

From Theorem 2, the e-variable for Hg(u, o02), which we denote by Es, is improved by
a factor of 2 from Ey for H(u,o?) due to the additional assumption of symmetry. On the
other hand, the p-variable in Theorem 2, denoted Pg, is improved from Py by taking an
extra minimum with 1/FEg. In the most relevant case that Py < 1/2, or, equivalently, Ey > 1,
indicating some evidence against the null, we have Ps = 1/FEs.

Next, we will see that hypothesis Hy (i, o) of unimodal distributions admits the same pre-
cise e-variable, but a quite improved p-variable, compared to Py and Ej. This class includes,
for instance, the commonly used gamma, beta and log-normal distributions.

THEOREM 3. A precise p-variable for Hy(u, o) is

P = max P 0 !
— _
9 0 3 ’

and a precise e-variable for Hy(u, o) is E = Ej.

We denote the p-variable in Theorem 3 by Py and the e-variable by Ey. If Py is smaller
than 3/8, corresponding to (X —u)/o > (5/3)!/2, then Py = 4Py /9; that is, the unimodality
assumption reduces the p-variable by a multiplicative factor of 4/9 compared to H(u, o).
On the other hand, the e-variable Ey does not get improved at all compared to Ej.
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The proof of Theorem 3, in particular on the factor of 4/9 for the p-variable, is based on
Theorem 1 of Bernard et al. (2020), which gives

4—9a\"? /3 -3a\?
sup Tg(l—a)zmaxK a) ,( a) } fora € (0,1),
QcHy(0,1) 9« 1+30[

and applying Lemma 2 by inverting of the above curve as a function of «.

Finally, we consider hypothesis Hys(u, o) of unimodal-symmetric distributions. This
class includes, for instance, the popular normal, #- and Laplace distributions. To construct
a semiprecise p-variable for this hypothesis, we use the following lemma of quantile bounds
within Hys(u, o), which may be of independent interest. In what follows, 1 is the indicator
function; thatis, 1 4(x) = 1 if x € 4 and 1 4(x) = 0 otherwise.

LEMMA 3. For o € (0,1), it holds that

2\ 112
sup Tg(l —a) = (%) ]1(0,1/6](05) + 31/2(1 — 20‘)]1(1/6,1/2](05)-
QeHys(0,1)

The general formula for Hys(u, o) can be easily obtained from Lemma 3 via

sup Tg(l—a)z,u—l—o sup T)g(l—a).
QeHuys(n.0) QeHys(0,1)

THEOREM 4. A semiprecise p-variable for Hys(u, o) is

3 — (3Ey)!/?
6

2
P T14/3,00) (E0) +

~ 9E, 1 Eo) + 10y (Ey),
9E 0.4/3)(Eo) + L0y (Eo)

and a precise e-variable for Hys(u,o) is E = 2Eq. Precise p-variables do not exist for

Hys(w,0).

The proof of Theorem 4 relies on Lemma 3, which is a new technical result. The value 2/9
appeared earlier in Table 1 of Li et al. (2018) for & < 1/6, a result weaker than Lemma 3.

We denote the p-variable obtained from Theorem 4 by Pys and the e-variable by Eys.
One may check that Pyg is smaller than both Py and Ps unless X < u, in which case they
are equal to 1. For (X — pu)/o > (5/3)!/2, or, equivalently, Py < 3/8, we have the simple
relations

Py 4 2P

PU=—P0 and PUS:M’

Pg=——2
ST 20 =Py’ 9

implying the order Py > Ps > Py > Puys unless Py = 0. For instance, if we observe
(X — w)/o = 3 then the p-values are

Pp=1=01 Ps=~005, Py=A~0044 and Pys= & ~ 0.025.
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Table 1. Formulas for p-variables and e-variables

Hypothesis P-variable E-variable
H(O, 1) 1+xH)™! X2
Hs(0,1) IX72if x> 1 2x2
A+xHMifx <1

Hy(0,1) A+ X)X > (5/3)12 X2
1A+ X)) —Lif X < (5/3)1?

Hys(0,1) XA X > (4/3)1? 2x2
L_3BYif 0< X < 4/3)7?
1if X<0

On the other hand, the corresponding e-values are
E0=9, Es=18, EU=9 and EUs=18.

For a comparison, if we are testing the simple parametric hypothesis N (0, 1) against N(3, 1)
with one observation X = 3, then the corresponding Neyman—Pearson p-value is 0.001 35
and the corresponding likelihood ratio e-value is 90.02. This is not surprising as, generally,
p-values and e-values built for composite hypotheses are more conservative than those for
simple hypotheses based on the same data.

We summarize our construction formulas for p-variables and e-variables in Table 1 by
breaking them down using ranges of X. To obtain the formulas for a general (u, o) other
than (0, 1), it suffices to replace X in Table 1 by (X — u)/o.

We conclude the section by making a few technical remarks on the obtained results.

First, all results hold if the conditions EZ(X) < u and var2(X) < o2 in each hypothesis
is replaced by EZ(X) = p and var2(X) = o2, respectively. Such modifications narrow the
hypotheses and hence all validity statements hold. The precision statements can be checked
with similar arguments to our proofs, and we omit them. Therefore, knowing var2(X) = o2
on top of var2(X) < o2, or E2(X) = u on top of E2(X) < u, does not lead to more
powerful one-sided p-variables or e-variables.

Second, admissibility of the proposed p-variables and e-variables needs future research.
For e-variables, admissibility is not difficult to establish, but the picture is different for p-
variables. By Lemma 1, there always exists a smallest p-variable. It remains unclear whether
the p-variables we obtained in Theorems 1-4 are the smallest ones for the four hypotheses,
respectively.

Third, for any hypothesis H, we can define a function g: & > supgey T )g(l —a). If gis
strictly decreasing on (0, 1), as in the case of H(u,o) and Hy (i, o), then choosing f = g~!
yields a precise p-variable f(X). For H being Hs(ut,0) and Hys(u, o), gisflat on [1/2,1),

making it impossible to find a decreasing f such that inf pc g TfQ( ¥ () =aforalla € (0,1).

4. TESTING THE NULL HYPOTHESES

4.1. Constructing e-processes

We next build tests based on e-values and p-values. In this subsection we describe the
main methodology based on e-processes for the one-sided testing problem.
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10 YIXUAN FAN, ZHANYI JIAO AND RUODU WANG

Let u € Rand o > 0. We consider the following hypotheses by keeping the same notation
asin§3:

H(u,0) = {Q: EC(X; | Fi1) < pand var®(X; | Fi_y) < o for i € [n]),
Hs(u,0) ={0Q € H(u,0): X; | Fi_1 is symmetrically distributed for i € [n]},
Hy(u,0) ={0 € H(u,0): X; | Fi_1 is unimodally distributed for i € [n]},

Hys(u,0) = Hu(w,0) N Hs(,0).

Recall that, without loss of generality, we consider x and 0% as constants. We can also test
the hypotheses where some data are symmetric or unimodal and some are not, because we
build e-values from each of them separately. For simplicity, we only list the above four rep-
resentative cases. Using a similar formulation, the hypothesis of Waudby-Smith & Ramdas
(2024) is

Hwsr () ={0 € H(u,1): X; | F;_ is supported in [0, 1] almost surely for i € [n]}.

In the above formulation, the choice of o = 1 is simply to remove the variance constraint;
see Remark 1.

There are several simple ways to use the results in §3 to construct an e-variable or
p-variable for the above hypotheses; some of these methods are more useful than others.
In general, we can compute an e-variable E; or p-variable P; based on X; for i € [n] using
Theorems 1-4, and then combine them.

Our main proposal is to use e-processes. An e-process M = (M;)c[) can be constructed
using

t
M, = 1_[(1 — Xi + AME)), “)

i=1
where A; is F;_1 measurable and takes values in [0, 1). This idea is the main methodology
behind game-theoretic statistics; see Shafer & Vovk (2019), Shafer (2021) and Waudby-
Smith & Ramdas (2024, Proposition 3). It has been used by Waudby-Smith & Ramdas
(2024) for testing the mean and by Wang et al. (2024) for testing risk measures. To find good

choices of A = (A;)ic[n 1s @ nontrivial task. We propose to specify A in two different ways.

(a) E-mixture method. We first take several A; = A € [0, 1), which is a constant for each
i € [n], and then average the resulting e-processes from (4) over these choices to
get an e-process. An uninformative choice of the values of A may be some points
in [0, 0.2]. We avoid choosing X close to 1 because our e-value may take value 0 with
substantial probability, leading to a small value of E€{log(1 —A+AE)}. This quantity
measures the growth rate of an e-process; see Griinwald et al. (2024) and Waudby-
Smith & Ramdas (2024). In our simulation and empirical studies, we average over
A=0.01x{1,...,20}.

(b) E-GREE method. In the GREE (growth-rate for empirical e-statistics) method of
Wang et al. (2024) for X;, i € [n], in (4), X; is determined by solving the optimization
problem

[ 1
A= {argmax, Zlog(l -1+ UEJ-)} A 3 %)

sefoy =1 =
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Testing the mean and variance by e-processes 11

To simplify the maximization in (5), a fast and approximate solution can be obtained
using a Taylor expansion, as in Waudby-Smith & Ramdas (2024). This leads to the

simple formula
i—1
—(Ei—1)
Ap = [—ZJ_I / ] A
Jr

. (©6)
SC(E — 1)

1
5
We use (6) for all e-GREE related calculations for the following results. Our un-
reported simulation suggests that using (5) and (6) yield very similar results.

When the hypothesis to test is Hwrs(1), the e-GREE method reduces to the method of
Waudby-Smith & Ramdas (2024); see § 5.2 below. An optimization procedure related to (5)
is studied by Kumon et al. (2011).

For either the e-GREE or the e-mixture method, we fix « € (0,1) and reject the
null hypothesis if the e-process M goes beyond 1/, that is, when M, > 1/« for the
first time. The Type-I error control is guaranteed by Ville’s inequality (Ville, 1939) as
P(sup,epy M; > 1/a) < «, because any e-process is almost surely upper bounded by non-
negative supermartingales with initial value one; see Ramdas et al. (2022).

The result below clarifies consistency of the e-GREE method in the most idealistic setting.

PROPOSITION 1. Suppose that data are independent and identically distributed and gener-
ated from an alternative probability Q. The e-GREE method has asymptotic power approach-
ing 1 as n — oo, that is, Q(sup,cpy My > 1/a) — 1 for any a€(0,1) if and only if
EQ(E)) > 1.

Although Proposition 1 requires an independent and identically distributed assumption,
this assumption is not needed for consistency in practical situations; a simulation example
is given in § 5.1 below.

4.2. Some other methods

Below we list some other methods, where we assume that 7 is finite. They do not generally
work well, as shown by the simulation studies, but nevertheless we list them as they follow
from our results in § 3, and they are presented only for a comparison.

(c) P-Fisher method. Construct a p-variable P using the Fisher combination
P=1—yo,{—2(log Py + - +log P,)},

where y», is the cumulative distribution function of a chi-square distribution with 2n
degrees of freedom.
(d) P-Simes method. Construct a p-variable P using the Simes combination (see Simes,

1986),
n
P =min —-P;,
et 1
where P;) is ith order statistic of Py,..., P, from the smallest to the largest.

Although in general the p-Fisher and p-Simes methods require independence among
p-variables, they are valid in our setting since our p-variables are conditionally valid, and
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12 YIXUAN FAN, ZHANYI JIAO AND RUODU WANG

they can be combined as if they are independent and identically distributed; a proof of this
is presented in the Supplementary Material.

The next two methods use all data directly, and require independence among X1, ..., Xj,.
A most natural statistic is the sample mean 7= )/, X;/n. Under H(u,0), T has at most
mean p and variance at most o2/n. Moreover, symmetry of 7 follows from symmetry of
X1,...,X,. Nevertheless, T is not necessarily unimodal even if Xi,..., X}, are unimodal,
and hence unimodality of 7 cannot be used. The following e-variables and p-variables are
constructed by directly applying Theorems 1-4.

(e) E-batch method. An e-variable for H(ju,0) or Hy(i, o) 18
Eo=n(T — p)3 /o
an e-variable for Hs(u, o) or Hys(i, o) is
Es =2n(T — )% /o>
(f) P-batch method. A p-variable for H(uu, o) or Hy(u, o) is
Py=(+Ep "
a p-variable for Hs(u, o) or Hys(u, o) is
Ps = min{(2Ey) ", Py}.

All methods described in this section have Type-I error control under the null hypothesis
and with finite sample without requiring that the data are identically distributed. Methods
(e) and (f) additionally require independence.

4.3. Two-sided e-values testing the mean given variance
We briefly discuss the two-sided mean testing problem, where the main hypothesis

Hur, 1Y, o) to test is
(0: EC(X; | Fiiy) € [uh, nY and var@(X; | Fiiy) < o for i € [n]},

where u’ < Y are constants. The case u” = uY corresponds to testing whether the mean
is equal to a precise value.
Our methodology can be easily adapted to test this hypothesis. The e-variable E given by

X — U2+X— L2_
( M)+2( w-) ™

E =
o

is a precise e-variable for H(u!, Y, o) formulated on a single observation X. To see this, it
suffices to note that, for Q € H(u", uY,0),

X —puDi+ (X - uL>2_}
o2

EC(E) = EQ{

< 1.

< IEQ[{X —E2XN)) +{X - EQ(X)}Z} _ var(X) _

o? o2

The statement on its precision can be verified similarly to Theorem 1.
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Testing the mean and variance by e-processes 13

If & = Y = u then the e-variable in (7) is
E=(X-p?/c>

This e-variable satisfies the property that E(E) > 1 if E2(X) % u and var2(X) = o2; this
condition is useful to establish consistency in Proposition 1.

Following the same procedure in §4.1 using (7), we obtain e-processes for the two-sided
problem H(u”, uY, o). Because of a smaller null hypothesis, this e-process is generally more
powerful than that in §4.1 testing the one-sided mean.

There are special, adversarial scenarios where such two-sided tests may not be powerful.
For instance, if data are independent with E(X;) < n and E(X;) > u appearing in an alter-
nating sequence; this forms a dataset that looks like independent and identically distributed
data with mean u, and is thus very difficult to detect. The same challenge exists for other
methods based on e-processes, such as that of Waudby-Smith & Ramdas (2024).

Remark 4. Under the additional information of symmetry, the e-variable in (7) can be
used, but it cannot be multiplied by 2 as in Theorem 2. In this case, an alternative way to take
advantage of symmetry is to build two e-processes in §4.1: one to test E(X; | Fi_1) < uY
and another to test E(—X; | Fi_1) < —u’. Taking the average of these two e-processes
yields a valid e-process for the null hypothesis. As long as one of the two e-processes has
good power for the true data-generating procedure, the average e-process has good power.

4.4. Power of the e-values with fixed mean and growing variance

In this section, we analyse the power of the e-variables. For a given e-variable E, its
e-power, using the terminology of Vovk & Wang (2024), for an alternative probability Q
is defined as E€(log E); see Shafer (2021) and Griinwald et al. (2024) for using this quantity
as a notion of power. Certainly, the power depends on the specific alternative Q. We are par-
ticularly interested in how the e-power changes as the variance in the alternative hypothesis
grows.

For this purpose, we consider a simplistic, yet representative setting, where a class of
simple alternatives (O, )1 1s indexed by o > 1, such that our data point X under Q, is
distributed as o Z, where Z has a fixed distribution with mean 0 and variance 1 satisfying
the null hypothesis, which can be one of H(0, 1), Hs(0, 1), Hy(0, 1) and Hys(0, 1). In this
setting, the mean of the data is always 0, and only its variance grows under the alternative.
We denote by Qg a null probability. Below, we show that the e-power of each an e-variable
grows at a rate of logo as the alternative variance o2 grows, regardless of the distribution
of Z.

Let E be the e-variable computed based on X as in §3. Because of the construction of
the e-process M in (4), the e-power of relevance is defined as

% = sup E%{log(l — A+ AE)} = sup EQ{log(l — A + Ao 2E)},
1€[0,1] 1€[0,1]

that is, the best-achievable e-power in each multiplicative term in the e-process M.
PROPOSITION 2. Suppose that p .= Qo(E > 1) > 0. Foro > 1,
@plogo —log2); < M2 < 2logo. ®)

Moreover, 0 < 19 — 112 < 2(logo — log$) foro > § > 1.
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14 YIXUAN FAN, ZHANYI JIAO AND RUODU WANG

Proposition 2 suggests that the growth rate of the e-process M is roughly a constant times
log o when the alternative variance o2 is larger than 1. An additional negative term — log 2
in (8) is not surprising, because our conditions do not guarantee [1%> > 0 for o very close
to 1. Below, we give an example to illustrate the sharpness of the bounds in (8).

Example 1. Suppose that Qp(E = 0) = Qo(E = 2) = 1/2. We can compute

4

1 1 o
n — —[log(1 — A) + log{l + 1202 — D} = =1 .
A21[%)1?1]2[og( ) +log{l + A(20 ) 510855

It is clear that [T is approximately equivalent to logo for large o, corresponding to the
left-hand side of (8) with p = 1/2.

5. SIMULATION STUDIES

5.1. A comparison of different e-combining methods

In this section, we conduct simulation studies for the nonparametric hypotheses in §4.
We set © = 0 and o = 1 without loss of generality.

We first concentrate on the null hypothesis H (0, 1), as the other four cases are similar. For
all the methods stated in § 4, we do not make the assumption that the data are identically dis-
tributed. Thus, we generate a sample of 7 independent data points, although independence
is not needed for methods (a)—(d), alternating from two different distributions: X7, X3, ...
follow a normal distribution, and X», X4, ... follow a Laplace distribution, with the same
mean v and the same variance n2. The assumption that the two distributions have the same
mean and variance is not necessary when evaluating the power of the methods. We assume
this only for simplicity. We denote this data-generating process as NL(v, n%) with the null
parameters being (v, n%) = (0, 1). We consider two alternatives: (i) data generated from
NL(0, »%), where n > 1; (ii) data generated from NL(v, 1), where v > 0. In our setting,
the tester does not know the alternating data-generating mechanism. For each alternative
model, we compute the rejection rate over 1000 runs using the thresholds of £ > 1/« and
P < a, with a = 0.05, for e-values and p-values, respectively.

For the e-mixture method, we experiment by averaging A in the interval [0.01, 0.20] with
step size 0.01. The e-GREE method is similar to the e-mixture method, except that A; is
dynamically updated with different i € [n] using (5).

Figure 1 shows the rejection rates for all methods with data generated from NL(0, 2)
for n € [1,4], and from NL(v, 1) for v € [0, 1]. For the alternative model NL(0, n%), we
see that the e-mixture and e-GREE methods outperform the other methods, with the e-
mixture method being the most powerful. For n < 1.5, the rejection rates of all methods
are very low, making it challenging to distinguish their efficiency. As n > 1.5, both the
e-mixture method and the e-GREE method exhibit significantly higher rejection rates com-
pared to other methods, demonstrating their effectiveness in testing H(0, 1). The other four
methods have almost no power. For the alternative model NL(v, 1), we observe that the
e-batch method and the p-batch method show significant high rejection rates, since they are
quite sensitive to the sample mean. Recall that these methods rely on independence, so the
central limit theorem kicks in.

Among all methods, only the e-process-based methods satisfy anytime validity, that is,
a decision can be made at any stopping time when data arrive sequentially. This situation
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Fig. 1. Rejection rates for all methods for testing H (0, 1) with sample size n = 100 over 1000 runs using the
threshold 20.

Table 2. Rejection rates for testing H, Hs, Hy and Hys with n = 100 data generated from
model NL(0.5,2)

E-mixture E-GREE P-Fisher P-Simes E-batch P-batch
H 0.419 0.315 0.000 0 0.639 0.664
Hs 0.998 0.882 0.000 0 0.900 0.900
Hy 0.419 0.315 0.006 0 0.639 0.664
Hys 0.998 0.882 0.763 0 0.900 0.900

is common in financial applications, where realized losses accumulate over time; see the
empirical study in § 6 below.

The testing procedures for Hs, Hy and Hys are the same as for testing H. We generate
100 data points from NL(0.5, 2) and calculated the rejection rates for testing Hs, Hy and
Hys with null hypotheses ©# = 0 and o = 1. Table 2 displays the rejection rates for all
hypotheses. It is clear that the extra information of symmetry improves the power.

5.2. A comparison with the GRAPA method

Recall that our model can also be interpreted as testing the mean under knowledge of
an upper bound on the variance. This allows us to compare our testing approach with the
growth rate adaptive to the particular alternative (GRAPA) method proposed by Waudby-
Smith & Ramdas (2024). The GRAPA method is similar to the e-GREE method discussed
in §4, but it requires the random variable to be bounded. The e-process (M;)c[, for the
GRAPA method is constructed as

t
M=+ aiXi — ), )

i=1

where w is the conditional mean being tested and A; is F;_; measurable and takes value in
(—=1/{1 —u}, 1/w). It is clear that 1 4+ A;(X; — w) is an e-variable for each i € [n]. Thus, maxi-
mizing the growth of (9) is similar to (5), where 1; is determined by solving the optimization
problem

i—1

hi= argmax ——» log{l+A(Xi — ), (10)
rel—c/(-wye/i =113

where ¢ € (0, 1] is fixed. For faster computation in the context of confidence sequences,
Waudby-Smith & Ramdas (2024) also offered an alternative way to obtain %;, which they
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16 YIXUAN FAN, ZHANYI JIAO AND RUODU WANG
called the approximate GRAPA method, and A; is determined by
c_, i1 — 1 c

- - - A=, (11)
L—p 62 + (i —w?  w

i =

where [1; and 5;'2 are the empirical mean and variance of observations X1, ..., X;. From (11),
itis clear that the GRAPA method is able to use the sample variance information adaptively.
In particular, our e-GREE method in (6) is adaptive to the empirical variance of the e-values.
In the simulation results, we use (10) and choose ¢ = 1/2.

We compare the following five methods for testing the mean under various conditions.

(a) GRAPA: the GRAPA method with a bounded support [0, 1].

(b) E-GREE: the e-GREE method with the variance upper bound o 2.

(c) E-mixture: the e-mixture method with the variance upper bound o 2.

(d) E-GREE-2s: the two-sided e-GREE method with the variance upper bound o2.
(e) E-mixture-2s: the two-sided e-mixture method with the variance upper bound o 2.

GRAPA is designed as a two-sided test, although it can easily be adjusted by restricting A;
in (9) to be nonnegative.

Remark 5. We could also implement the e-GREE and e-mixture methods without
an upper bounded variance, but using the bounded support, as described in Remark 1.
Although these methods are valid, they have poor power in our setting, because their
assumption is strictly weaker than both bounded variance and bounded support. We omit
these results.

We set u = 0.35 and apply both one-sided and two-sided tests on the same dataset. We
generate a sample consisting of # independent data points from a beta distribution, denoted
Be(v, 02), where v and o2 represent the mean and variance of the beta distribution. None of
the methods requires that the data follow identical distributions; we use a single distribution
just for simplicity. Here, we use v and o2 instead of the standard beta parameters « and f
for the sake of convenience. Parameters « and 8 can be easily recovered based on the given
mean v and variance 02 @ = v(v — v — 02)/(72 and 8 = W +o2—v)(-— 1)/(72. Since
the beta distribution has a bounded support [0, 1], we can make meaningful comparisons
between the GRAPA method and the e-GREE and e-mixture methods.

We first compare the rejection rates, using a threshold of 20 over 1000 runs, for all
methods mentioned above under different v with fixed o2. We consider v > 0.35 and
o =0.05,0 = 0.1 and o0 = 0.3. We use 20 data points for each run.

Figure 2 shows the performance of the three methods. First, the e-GREE method is
always better than the e-mixture method. Second, the two-sided versions of both the
¢e-GREE and e-mixture methods show a slight improvement over their respective one-sided
methods, as expected. Third, in the case in whicho = 0.05and o = 0.1, the e-GREE method
outperforms the GRAPA method; in the case in which o = 0.3, the GRAPA method demon-
strates superior performance compared to the other methods. This is intuitive, because the
variance information is less useful for larger o; recall that, for any distribution supported in
[0, 1T with mean p < 0.35, the maximum possible variance is 0.2275, and o ~ 0.477.

Figure 3 shows the average logarithmic e-processes for n up to 50 by usingv = u + o
for each alternative model. The relative rankings of these methods are consistent with their
rejection rates, with e-GREE performing the best when o is relatively small.
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Fig. 2. Rejection rates for the GRAPA, e-GREE, e-mixture and the two-sided e-GREE-2s and e-mixture-2s
methods over 1000 runs using the threshold 20 and p = 0.35. Data are generated from Be(v, o) with sample
size n = 20, where v > 0.35 and o € {0.05,0.1, 0.3}.

—_ v=04,05=0.05 —_ v=045,0=0.1 — v=0.65,0=0.3
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o0 o0 en
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Fig. 3. Average logarithmic e-processes for the GRAPA, e-GREE, e-mixture and the two-sided e-GREE-2s
and e-mixture-2s methods with varying sample size and i = 0.35. Data are generated from Be(v, %), where
o €{0.05,0.1,0.3}andv=pu+o.

From the simulation results, our general recommendation is to use the e-GREE method
to construct the e-process when the variance to be tested is relatively small, and to use the
GRAPA method when the variance to be tested is relatively large compared to the bounded
support.

5.3. A comparison with exponential test supermartingale methods

Next, we compare our methods with the exponential test supermartingale methods that
directly construct e-processes, rather than using a betting strategy to combine sequential
e-variables.

Wang & Ramdas (2023) extended the idea of Catoni (2012) to construct a nonnegative
test supermartingale called the Catoni supermartingale to test the mean and variance in
sequential settings. The test supermartingale is constructed as

c ! Ao
M; = gexp [qﬁ{li(Xf — W} - ZT]

where ¢ is the influence function and (X;);c[n) 1s any predictable process. Following the
recommendation of Wang & Ramdas (2023), we choose the influence function

S(x) = log(1 + x + x%/2) if x>0,
| —log(1 —x+x?/2) if x <0,
and (X)je[n) as

o 2log(l/a) 172 o 202 log(1/a) 172
A_{z'<o2+n%>} o Where "’_{i—zloga/a)} '
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A different approach by Howard et al. (2021) is to use a framework for nonparametric
confidence sequences based on the concept of exponential supermartingales. They intro-
duced the concept of a ‘sub-yr process’ in Howard et al. (2021, Definition 1). Informally,
a sub-y process is a pair of Fy-adapted processes (S;, V;) such that S; is the zero-mean
deviation of the sample sum from its estimand at time 7 and V; and 1 make the process

M = exp(iS, — Y (W) Vi),

dominated by a supermartingale for each A in an interval [0, Ayax). This framework allows
for testing the mean and variance under a wide variety of assumptions, including bounded
supports, self-normalized bounds and symmetric conditions. We refer the reader to Howard
etal. (2021, Appendix J, Table 3) for a collection of commonly used v functions and variance
processes for S; = ZEZI(X ; — 1) under various assumptions. We choose two special cases
for comparison with our methods: the self-normalized bound test supermartingale, denoted
M ,w ’SN, and the symmetric condition test supermartingale, denoted M, ,"” Y For A e [0, 00),
these test supermartingales are constructed as

t 2 2 2

A (X — + 20
MY = [Texp {wc- -y ) } (12)

i=1
which also appears in Wang & Ramdas (2023, §5), and
t 2 2
(X —

M;’“Sym:nexp{mx,-—u)—’fm}. (13)

i=1

We follow a simple method of choosing A suggested by Howard et al. (2021, §3.2), that is,
to use the mixture supermartingale [ exp{AS; — ¥ (1) V;} d® (1) by assuming that A ~ ¢ =
N (0, 1). Now, we compare the following methods.

(f) WR23-Catoni: the Catoni method with the variance upper bound o2
(g) HRMS21-SN: the self-normalized method with the variance upper bound o 2.

(h) HRMS21-sym: the sub-y method with symmetry, but without variance information.
(i) E-GREE-sym: the e-GREE method with the variance upper bound o2 and symmetry.
(j) E-mixture-sym: the e-mixture method with the variance upper bound o2 and

symmetry.

We compare the above five methods, along with methods (a) and (b), the e-GREE and
e-mixture methods, that do not utilize symmetric information, in testing H (0, 1). Following
the same data-generating process as described in § 5.2, we generate n independent data points
alternating between the normal and Laplace distributions, denoted by NL(v, n%). Figure 4
shows rejection rates for the above methods with data generated from three cases: NL(v, 12)
for v € [0, 1], NL(v, (1 + v)?) for v € [0, 1] and NL©w/5, (1 + v)?) for v € [0, 2].

For NL(v, 1), the Catoni method outperforms other methods, while methods utiliz-
ing symmetric information generally perform well. For NL(v, (1 + v)?), where both the
mean and variance of the data-generating process change, the power of the methods from
Howard et al. (2021) reduces. In contrast, the power of our e-value-based methods increases,
as our construction of e-values is sensitive to the changes to variance. In the last case,
NL(v/5, (14v)?), the impact of changes in the mean is small and the variance effect is large;
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NL(v, (1+v)) NL(v/5, (1+v)?)

E-GREE-sym
HRMS21-SN

0.5

23-Ca
E-mixture ‘WR23-Catoni

E-GREE

HRMS21-SN

Rejection rate
Rejection rate
Rejection rate

HRMS21-SN

e
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Fig. 4. Rejection rates for methods (a), (b) and (f)—(j) for testing H (0, 1) with sample size » = 100 over 1000
runs using the threshold 20.

e-value-based methods generally outperform others. Although method (h) benefits from
not requiring information about the variance or even the existence of variance, it demon-
strates minimal power when testing the mean with varying variance, due to its penalization
term —(X; — )? in the exponential form of (12) and (13). In summary, our methods are
comparatively more powerful when the alternative variance defers from the null.

6. EMPIRICAL STUDY WITH FINANCIAL DATA

We now conduct an empirical study to test the hypothesis H (i, o) on the daily losses of
financial assets. We aim to calculate the number of trading days required to detect evidence
for rejecting the null hypothesis H(j1,6) during the 2007-8 financial crisis period. Here, [i
and 6 represent the sample mean and sample variance estimated from historical data prior
to the testing period. That is, we are testing whether the historical estimations before the
testing period are still valid. If the null hypothesis can be rejected at a reasonable threshold
level rather swiftly, this will serve as evidence of the effectiveness of e-process methods and
could help investors switch strategies in a timely manner.

We choose 20 stocks from 10 different sectors of the S&P 500 list with large market
capitalization in each sector. Moreover, we include two companies with the largest
market capitalization from the to-be real estate sector. Real estate became the 11th sector
of the S&P 500 in 2016. We first calculate the daily losses for each of the selected stocks
from 1 January 2001 to 31 December 2010. The daily losses are expressed as percentages
and calculated as L; = —(S;1.1 — Sy)/S:, where S; is the close price at day 7. A positive value
represents a loss and a negative value represents a gain. We could also use the log-loss data
instead of the linear loss data, but the difference between the two is minor. We use the loss
data from 1 January 2001 to 31 December 2006 to estimate the mean and variance for the
null hypothesis. We compute the e-values using both the e-mixture method and the e-GREE
method based on the construction of (4) as the daily loss from 1 January 2007 fed into the
e-process.

Following a methodology similar to the simulation study in § 5, we report evidence against
the null hypothesis when the e-process exceeds thresholds of 2, 5, 10 and 20. In accordance
with Jeffrey’s rule of thumb about e-values (see Jeffreys, 1998 and Vovk & Wang, 2021),
if the e-value falls within the interval of (10!/2, 10), evidence against the null hypothesis is
considered substantial; if the e-value falls within the interval of (10, 103/2), evidence against
the null hypothesis is regarded as strong. Thus, e-values exceeding 5 or 10 provide substantial
evidence to reject the null hypothesis, while a threshold of 20 offers strong evidence against
the null hypothesis. Although a threshold of 2 may not be substantial enough to reject the
null hypothesis, it can still serve as an early warning that the stock’s performance may be
different from its historical path.
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Fig.5. Sample path and logarithmic e-process using the e-GREE and e-mixture methods’ testing of H(j1,5)

for Simon Property (SPG) stock from January 2007 to January 2008, where i = —0.001 028 and 6 = 0.012 123

are the sample mean and variance estimated from historical data for stock SPG from 1 January 2001 to
31 December 2006.

To illustrate the e-process detection procedure, we first focus on a single stock as an ex-
ample. Figure 5 reports the stock price for Simon Property (SPG) throughout the detec-
tion period and its corresponding e-process initiated on 1 January 2007. Observing from
the e-process figure, it is evident that both the e-mixture method and the e-GREE method
effectively reject the null hypothesis at thresholds of 2, 5, 10 and 20 before the financial
crisis ends. Notably, the e-GREE method generally takes fewer trading days compared to
the e-mixture method to achieve this rejection across various threshold levels. Also, the null
hypothesis is rejected using the e-GREE method prior to another significant decline in the
stock price during February 2009 to June 2009, thus preventing potential larger losses and
underscoring the effectiveness of e-process methods.

Compared to the e-batch and other p-variable-based methods stated in §4, the e-process-
based methods exhibit a unique advantage in sequential settings, particularly in financial
applications where actual losses accumulate sequentially over time. In such scenarios, the
e-process permits the early termination without a specified sampling period, potentially
preventing further losses at an earlier stage.

Table 3 displays the number of trading days required to reject the null hypothesis at var-
ious threshold levels for the selected 20 stocks from 10 different sectors and the two stocks
in real estate. The table shows that stocks in sectors significantly impacted by the 2007-8
subprime crisis, such as financials, consumer discretionary and energy, could generally be
detected using e-process-based methods. In particular, the representative companies in real
estate are rejected the earliest; see the last rows of Table 3. In contrast, for stocks in sectors
less affected by the subprime crisis, such as technology, health care and consumer staples, we
are unable to reject the null hypothesis. This is intuitive, given that their prices and returns
remain relatively stable or even increase during the financial crisis.

7. DISCUSSION

As shown in the simulation studies, in comparison with the GRAPA method of Waudby-
Smith & Ramdas (2024) and with the exponential supermartingale methods of Howard
et al. (2020, 2021) and Wang & Ramdas (2023), our proposed methods have superior per-
formance in some settings and have inferior performance in other settings. A full picture of
the comparative advantages requires future work.

Our constructions of p-values and e-values are potentially useful for multiple testing,
which is not addressed in this paper. The literature on using e-values in multiple testing is
growing recently. For instance, e-values are used for false discovery control in knockoffs; see
Ren & Barber (2024) for derandomization, Ahn et al. (2023) for Bayesian linear models and
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Table 3. The number of trading days taken to detect evidence against H([i,5) using the
e-GREE method and the e-mixture method for different stocks from 1 January 2007 to
31 December 2010, an endash means that no detection was observed up to 31 December 2010

E-GREE E-mixture
Threshold 2 5 10 20 2 5 1 20
Financials Bank of America 378 385 385 393 393 394 395 403
Morgan Stanley 429 439 445 447 447 447 447 447
Utilities The Southern - - - - - - - -
Duke Energy - - - - - - - -
Communication services Verizon Comms. - - - - - - - -
AT&T - - - - - - - -
Consumer staples Walmart - - - - - - - -
PepsiCo - - - - - - - -
Consumer Ford Motor 476 491 498 565 546 594 594 594
discretionary Las Vegas Sands 442 445 447 450 451 454 457 457
Energy Texas Pacific Land 158 244 261 269 242 261 261 263
Pioneer 496 622 - - - - - -
Material Southern Copper 476 496 537 - 539 - - -
Air Products 476 516 537 - - - - -
Health care Johnson & Johnson - - - - - - - -
Pfizer - - - - - - - -
Technology Int. Business Machines - - - - - - - -
Microsoft - - - - - - - -
Industrials General Electric 537 546 578 - - - - -
United Parcel Service 476 524 542 632 542 604 - -
Real estate Simon Property 165 224 242 254 223 239 250 253
Prologis 264 271 271 296 270 271 271 275

Gablenz & Sabatti (2024) for resolution-adaptive variable selection. Finally, the obtained e-
variables may also be useful to build e-confidence regions, as in Vovk & Wang (2023), and the
e-posterior, as in Griinwald (2023) for (i, o2), although we mainly consider a nonparametric
setting.
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