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SUMMARY

We address the problem of testing the conditional mean and conditional variance for

nonstationary data. We build e-values and p-values for four types of nonparametric com-

posite hypothesis with specified mean and variance as well as other conditions on the shape

of the data-generating distribution. These shape conditions include symmetry, unimodal-

ity and their combination. Using the obtained e-values and p-values, we construct tests via
e-processes, also known as testing by betting, as well as some tests based on combining

p-values for comparison. Although we mainly focus on one-sided tests, the two-sided test

for the mean is also studied. Simulation and empirical studies are conducted under a few

settings, and they illustrate features of the methods based on e-processes.

Some key words: E-process; E-value; P-value; Symmetry; Unimodality.

1. Introduction

Testing the mean and variance in various settings is a classic problem in statistics. In

parametric inference concerning testing the mean, well-known tests like the Student’s t-test
and z-test, as well as tests related to variance such as the chi-squared test and the F-test,
are commonly employed; see, e.g., Lehmann et al. (1986). Parametric tests always come

with assumptions about the forms of the population distribution from which samples are

derived. Deviating from these assumptions can lead to significantly flawed results. For situ-

ations where these assumptions might be compromised, nonparametric methods provide a

great alternative. Certainly, nonparametric methods may also make strong assumptions on

the underlying population, such as finite or bounded moments, but not on the specific para-

metric forms. Comprehensive and well-established methods of nonparametric techniques
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2 Yixuan Fan, Zhanyi Jiao and Ruodu Wang

for testing means and variances can be found in Conover (1999) and Hollander et al. (2013).

Different from the classic settings, we consider the problem of testing composite hypotheses

in which data are not stationary.

Suppose that a tester has sequentially arriving, possibly dependent, data points

X1,X2, . . . , each from an unknown distribution, possibly different. The tester is interested

in testing whether

E(Xi | Fi−1) 6 µi and var(Xi | Fi−1) 6 σ 2
i for each i, (1)

where Fi−1 is the σ -algebra generated by X1, . . . ,Xi−1, and µi and σi are Fi−1 measurable.

All conditional expectations are in the almost-sure sense. If independence is further assumed

then this problem reduces to the classic problem of testing the mean and variance. Testing

the conditional mean and conditional variance is common in some contexts such as fore-

casting (e.g., Henzi & Ziegel, 2022) and financial risk assessment (e.g., Fissler & Ziegel,

2016).

Problem (1) can be interpreted in two different ways, omitting ‘conditional’ here:

(A) testing both the mean and the variance,

(B) testing the mean under knowledge of an upper bound on the variance.

Interpretation (A) is relevant when the tester is interested in whether a time series has

switched away from a given regime with specified mean and variance bounds. We mainly

use interpretation (A), while keeping in mind that interpretation (B) is useful when compar-

ing with the literature. Of course, one could also interpret (1) as testing the variance under

knowledge of an upper bound on the mean.

Clearly, problem (1) is a composition of many complicated, nonparametric, composite

hypotheses on each observation. The key challenge in this setting is that the data points are

not independent and identically distributed, and hence we cannot make inference of the

distributions themselves.

This problem can be addressed with the following general methodology, called e-testing
or testing by betting, a successful example being Waudby-Smith & Ramdas (2024). We first

consider a simpler problem: constructing an e-value from one random variable from each

data point with the corresponding hypothesis on its mean and variance, which corresponds

to n = 1. For a general background on e-values in hypothesis testing, see Vovk & Wang

(2021), the review by Ramdas et al. (2023) and Grünwald et al. (2024). After obtaining

these e-values, we combine them, usually by forming an e-process, to construct a test for

the overall hypothesis. Alternatively, we can construct p-values instead of e-values, but the
power of such a strategy is usually quite weak, as seen from our experiments.

We formally describe the hypotheses and define e-variables, e-processes and p-variables.
As mentioned above, we first address the case of one data point, i.e., n = 1. We consider

four types of composite hypotheses on the mean, variance and the shape of the distribution:

symmetry, unimodality and their combination. Our main results are ways that are optimal,

in a natural sense, to constructions of p-values and e-values in this setting. Although our

main methodology is based on e-processes, we also present results for p-values, which may

be useful in multiple testing, not treated in this paper; for instance, p-values are the inputs
of the standard procedure of Benjamini & Hochberg (1995). Considering a nonparamet-

ric composite hypothesis with a given mean and variance as the baseline case, assuming

symmetry approximately improves the baseline p-variable by a multiplicative factor of 1/2,

unimodality by a factor of 4/9 and both by a factor of 2/9. Similarly, the corresponding
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Testing the mean and variance by e-processes 3

baseline e-variable is improved by multiplicative factors of 2, 1 and 2, respectively, in these

scenarios; recall that smaller p-values are more useful, whereas larger e-values are more

useful.

We propose several methods to test using multiple data points, thus addressing the main

task of the tester. The main proposals are e-process-based tests, which follow the idea of

testing by betting of Wasserman et al. (2020), Shafer (2021) and Waudby-Smith & Ramdas

(2024). Although we mainly focus on one-sided hypotheses, our methodology can be easily

adapted to test the two-sided hypothesis on the mean, that is,

E(Xi | Fi−1) ∈ [µLi ,µ
U
i ] and var(Xi | Fi−1) 6 σ 2

i for each i,

where [µLi ,µ
U
i ] is an interval or a singleton for each i; this is discussed in § 4.3.

The closest methodological work related to this paper is that of Waudby-Smith &

Ramdas (2024), where the authors tested in a nonparametric setting the conditional

mean of sequential data, which are assumed to be bounded within a prespecified range,

and thus a generally smaller class of distributions. Our problem and methodology are

different from those of Waudby-Smith & Ramdas (2024) in the sense that we assume a

bounded variance instead of a bounded range. Since a bounded range implies bounded

variance, the assumption needed to apply our methodology is weaker than in the setting

of Waudby-Smith & Ramdas (2024), following interpretation (B) of the main testing prob-

lem. Moreover, we are able to utilize the additional information on the distributional shape

to obtain better e-values than without such information. A great advantage of the tests of

Waudby-Smith &Ramdas (2024) is that their power adapts to the unknown true variance of

the distribution if data come from an independent and identically distributed population.

Ourmethod based on the growth rate of empirical e-values has a similar feature, which uses a

betting strategy similar to that of Waudby-Smith & Ramdas (2024). Another closely related

methodology is that of Wang et al. (2024), who tested statistical functions other than the

mean. Once e-variables are constructed, we build e-processes in a similar way to Wang et al.

(2024). The methods of Howard et al. (2020, 2021) and Wang & Ramdas (2023) based on

exponential test supermartingales, exponential processes that form supermartingales with

initial value one, which are e-processes, can also be applied to test (1). These methods differ

from ours as our e-process is obtained by combining individual e-variables.
We provide simulation studies for the proposed methods and compare them with the

method of Waudby-Smith & Ramdas (2024) when the model has both bounded support

and bounded variance and with methods based on the exponential test supermartingale

of Howard et al. (2021) and Wang & Ramdas (2023). Empirical studies using financial

asset return data during the 2007–8 financial crisis further demonstrate the effectiveness

of the e-process-based methods. All proofs in the paper are provided in the Supplementary

Material.

2. General setting

2.1. Hypotheses to test

We first describe our main testing problem. Let n be a positive integer or ∞, and denote

by [n] = {1, . . . , n}. Throughout, fix a sample space. Suppose that data points (Xi)i∈[n] arrive

sequentially, each possibly from a different distribution, and not necessarily independent.

A hypothesis is a collection H of probability measures that govern (Xi)i∈[n]. Denote by Fi
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the σ -field generated by X1, . . . ,Xi for i ∈ [n] with F0 being the trivial σ -field. The main

hypotheses of interest are variations, by adding shape information, of the hypothesis

H = {Q : EQ(Xi | Fi−1) 6 µi and varQ(Xi | Fi−1) 6 σ 2
i for i ∈ [n]}, (2)

where µi and σi are Fi−1 measurable for each i ∈ [n]; that is, they can be data-dependent on

past observations. A simple case is

H = {Q : EQ(Xi | Fi−1) 6 µ and varQ(Xi | Fi−1) 6 σ 2 for i ∈ [n]}, (3)

where µ and σ are two constants; that is, we would like to test whether data exhibit condi-

tional mean and conditional variance in (−∞,µ]× [0, σ 2]. Although (3) looks simpler, it is

indeed equivalent to (2) by noting that µi and σi are Fi−1 measurable and can be absorbed

into Xi by considering (Xi − µi)/σi instead of Xi. Therefore, we focus on formulation (3)

for the rest of the paper. If data are independent, but not necessarily identically distributed,

then the problem is to test the unconditional mean and variance. We sometimes omit Q in

E
Q and varQ when it is clear.

We further consider hypotheses with additional shape information, by assuming that

some, or all of the distributions of X1, . . . ,Xn are unimodal, symmetric or both. Below,

all terms like ‘increasing’ and ‘decreasing’ are in the nonstrict sense. A distribution on R

is unimodal if there exists x ∈ R such that the distribution has an increasing density on

(−∞, x) and a decreasing density on (x,∞); it may have a point mass at x. A distribution

onRwith mean µ is symmetric if, for all x ∈ R, it assigns equal probabilities to (−∞,µ−x]
and [µ+x,∞). If a distribution withmeanµ is both unimodal and symmetric then its mode

must be either µ or an interval centred at µ.

Remark 1. The main problem in Waudby-Smith & Ramdas (2024) is to test the condi-

tional mean m with data taking values in [0, 1]. Any random variable with mean at most

m and range [0, 1] has variance at most 1/4 if m > 1/2, or m(1 − m) if m < 1/2, both of

which are attained by a Bernoulli random variable. Therefore, our hypothesis with µ = m
and σ 2 = 1/4 or σ 2 = m(1 − m) has less restrictive assumptions than their setting, except

they formulated two-sided hypotheses (see Remark 2 below), and, in particular, our setting

can handle unbounded data.

Remark 2. Our hypotheses are formulated as one sided on both µ and σ 2. Certainly, all

validity results remain true for the two-sided hypotheses. Testing E
Q(Xi) > µ is symmetric

to testing E
Q(Xi) 6 µ, but such symmetry does not hold for testing the variance. Building

e-processes to test the two-sided hypothesis on the mean is discussed in § 4.3 below.

2.2. P-variables and e-variables

We formally define p-variables and e-variables, following Vovk & Wang (2021).

A p-variable P for a hypothesis H is a random variable that satisfies Q(P 6 α) 6 α for all

α ∈ (0, 1) and all Q ∈ H. In other words, a p-variable is stochastically larger than Un[0, 1],

often truncated at 1. An e-variable E for a hypothesis H is a [0,∞]-valued random vari-

able satisfying E
Q(E) 6 1 for all Q ∈ H. Often e-variables are obtained from stopping

an e-process (Et)t>0, which is a nonnegative stochastic process adapted to a prespecified

filtration, (Fi)i∈[n] in our problem, such that EQ(Eτ ) 6 1 for any stopping time τ and any

Q ∈ H.
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Testing the mean and variance by e-processes 5

Some p-variables and e-variables are useless, like P = 1 or E = 1. A p-variable P for H
is precise if supQ∈H Q(P 6 α) = α for each α ∈ (0, 1), and an e-variable E for H is precise

if supQ∈H E
Q(E) = 1. In other words, a p-variable or an e-variable being precise means

that it is not wasteful in a natural sense. For instance, if supQ∈H E
Q(E) < 1 then we can

multiply E by a constant larger than 1. Some imprecise e-variables may also be useful, such

as those built on the Hoeffding inequality; see Hoeffding (1963), Howard et al. (2021) and

Waudby-Smith & Ramdas (2024).

A p-variable P is semiprecise for H if supQ∈H Q(P 6 α) = α for each α ∈ (0, 1/2]. Semi-

precise p-variables require the sharp probability bound supQ∈H Q(P 6 α) = α only for the

case α 6 1/2, which is relevant for testing purposes. We will see that, for some hypotheses,

precise p-variables do not exist unless we rely on external randomization, but semiprecise

ones do exist.

Realizations of p-variables and e-variables are referred to as p-values and e-values. As

is customary in the literature, we sometimes, but never in mathematical statements, use the

two terms e-value and e-variable interchangeably.

3. Best p- and e-variables for one data point

3.1. Setting

Webegin by considering the simple setting where one data pointX is available, fromwhich

we build a p-variable or e-variable for the hypothesis. Although it may be unconventional to

test based on one observation, there are several situations where this construction becomes

useful.

(1) Testing by betting. To construct an e-process, one needs to sequentially obtain one

e-value from each observation, or a batch of observations. This is the main setting in

the current paper.

(2) Testing multiple hypotheses. One observation is obtained for each hypothesis, and

p-values or e-values for each of them are computed and fed into a multiple testing

procedure such as that of Benjamini & Hochberg (1995); this setting is particularly

relevant for the procedure of Wang & Ramdas (2022) based on e-values, which yields

false discovery rate control under arbitrary dependence. Even if, for some hypotheses,

there is only one data point, a p-value or e-value, evenmoderate, say e = 0.8 or e = 1.2,

from this hypothesis may be useful for the overall testing problem; see Ignatiadis et al.

(2024), where e-values are used as weights, so e = 0.8 or e = 1.2 matters.

(3) Testing a global null. One may first obtain a p-value or e-value for each experiment

and then combine them to test the global null, as in meta-analysis; see Vovk & Wang

(2020, 2021) and the references therein.

The e-values are relevant for all three contexts, and p-values are relevant for the second and

third contexts.

We focus on p-variables, which are decreasing functions of X , and e-variables, which are

increasing functions of X . Thus, a larger value of X indicates stronger evidence against the

null; this is intuitive because we are testing the mean less than or equal to µ in (3). This

assumption on p-variables and e-variables will be made throughout the rest of the paper.

Remark 3. In the contexts of multiple testing and sequential e-values, the dependence

among several e-values or p-values obtained is preserved from the dependence among

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asae049/7796539 by guest on 08 D

ecem
ber 2024



6 Yixuan Fan, Zhanyi Jiao and Ruodu Wang

the data points, if the monotonicity assumption above holds. This will be helpful when

applying statistical methods based on dependence assumptions; see Benjamini & Yekutieli

(2001) for the Benjamini–Hochberg procedure (Benjamini & Hochberg, 1995) with posi-

tive dependence and Chi et al. (2024) for the Benjamini–Hochberg procedure with negative

dependence. Both concepts of dependence are preserved under monotone transforms.

3.2. Two technical lemmas

The following lemma establishes that the infimum of p-variables based on the same

data point X is still a p-variable. This result relies on our assumption that p-variables are
decreasing functions of X .

LEMMA 1. For a given observation X and hypothesis H, the infimum of p-variables, which
are assumed to be decreasing functions of X, is a p-variable. As a consequence, there exists the
smallest p-variable.

Although the smallest p-variable forH exists, it may not be precise. Indeed, in Theorems 2

and 4 below we will see that there may not exist any precise p-variable for some hypotheses.

The following lemma allows us to convert conditions on distribution functions into

conditions on the corresponding quantile functions. For a probability measure Q, define

TQ
Y (α) = inf{x ∈ R : Q(Y 6 x) > α} for α ∈ (0, 1);

that is, TQ
Y is the left-quantile function of Y under Q.

LEMMA 2. For a random variable P and a hypothesis H,

(i) P is a p-variable if and only if infQ∈H TQ
P (α) > α for all α ∈ (0, 1),

(ii) P is a precise p-variable if and only if infQ∈H TQ
P (α) = α for all α ∈ (0, 1),

(iii) P is a semiprecise p-variable if and only if infQ∈H TQ
P (α) = α for all α ∈ (0, 1/2) and

infQ∈H TQ
P (α) > α for α ∈ [1/2, 1).

The proof of Lemma 2 is essentially identical to that of Lemma 1 of Vovk & Wang

(2020), which gives the equivalence between probability statements and quantile statements

for merging functions of p-values. Our construction for precise and semiprecise p-variables
will be based on computing α 7→ supQ∈H TQ

X (1 − α) and its inverse function.

3.3. Main results

Recall that we have only one observation, denoted X . We consider the following four

classes of nonparametric composite hypotheses, where µ ∈ R and σ > 0:

H(µ, σ) = {Q : EQ(X) 6 µ and varQ(X) 6 σ 2},

HS(µ, σ) = {Q ∈ H(µ, σ) : X is symmetrically distributed},

HU(µ, σ) = {Q ∈ H(µ, σ) : X is unimodally distributed},

HUS(µ, σ) = HU(µ, σ) ∩HS(µ, σ).

For ourmain results on the best p-variables and e-variables, it will be clear fromour proofs

that the condition varQ(X) 6 σ 2 in each hypothesis can be replaced by varQ(X) = σ 2, and

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asae049/7796539 by guest on 08 D

ecem
ber 2024



Testing the mean and variance by e-processes 7

the condition E
Q(X) 6 µ in each hypothesis can be replaced by E

Q(X) = µ. All results

remain true with any combinations of the above alternatives. Possible improvement for the

two-sided test is discussed in § 4.3 below.

The above four sets of distributions are studied in a very different context by Li et al.

(2018) to compute worst-case risk measures under model uncertainty in finance. Some of

our techniques for constructing p-variables use results from Li et al. (2018) and Bernard

et al. (2020) for finding bounds on the quantile, which is called the value at risk in finance.

In what follows, for x ∈ R, we write x+ = max(x, 0), x− = max(−x, 0), x2+ = (x+)
2 and

x2− = (x−)
2. We first consider the simplest case of testing H(µ, σ).

THEOREM 1. A precise p-variable for H(µ, σ) is P = {1 + (X − µ)2+/σ
2}−1, and a precise

e-variable for H(µ, σ) is E = (X − µ)2+/σ
2.

Theorem 1 can be seen as a consequence of Cantelli’s inequality. It may be interesting

to compare P and 1/E obtained from Theorem 1. Any e-variable can be converted to a

p-variable via the so-called calibrator e 7→ min(1/e, 1); see, e.g., Vovk & Wang (2021); this

is an immediate consequence of Markov’s inequality. As 1/E is a p-variable for an e-variable
E, we have P 6 1/E. In Theorem 1, we obtain 1/P = 1 + E > E, as expected.

In the subsequent analysis, we compare p-variables and e-variables for other hypotheses
with those in Theorem 1. For a concise presentation, we always write

P0 = {1 + (X − µ)2+/σ
2}−1 and E0 = (X − µ)2+/σ

2,

which are the p-variable and e-variable in Theorem 1, and note the connection

P0 = (1 + E0)
−1.

We next consider hypothesis HS(µ, σ) of symmetric distributions.

THEOREM 2. A semiprecise p-variable for HS(µ, σ) is P = min{(2E0)
−1,P0}, and a precise

e-variable for HS(µ, σ) is E = 2E0. Precise p-variables do not exist for HS(µ, σ).

From Theorem 2, the e-variable for HS(µ, σ
2), which we denote by ES, is improved by

a factor of 2 from E0 for H(µ, σ 2) due to the additional assumption of symmetry. On the

other hand, the p-variable in Theorem 2, denoted PS, is improved from P0 by taking an

extra minimum with 1/ES. In the most relevant case that P0 6 1/2, or, equivalently, E0 > 1,

indicating some evidence against the null, we have PS = 1/ES.

Next, wewill see that hypothesisHU(µ, σ)of unimodal distributions admits the same pre-

cise e-variable, but a quite improved p-variable, compared to P0 and E0. This class includes,

for instance, the commonly used gamma, beta and log-normal distributions.

THEOREM 3. A precise p-variable for HU(µ, σ) is

P = max

(

4

9
P0,

4P0 − 1

3

)

,

and a precise e-variable for HU(µ, σ) is E = E0.

We denote the p-variable in Theorem 3 by PU and the e-variable by EU. If P0 is smaller

than 3/8, corresponding to (X−µ)/σ > (5/3)1/2, thenPU = 4P0/9; that is, the unimodality

assumption reduces the p-variable by a multiplicative factor of 4/9 compared to H(µ, σ).
On the other hand, the e-variable EU does not get improved at all compared to E0.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asae049/7796539 by guest on 08 D

ecem
ber 2024



8 Yixuan Fan, Zhanyi Jiao and Ruodu Wang

The proof of Theorem 3, in particular on the factor of 4/9 for the p-variable, is based on

Theorem 1 of Bernard et al. (2020), which gives

sup
Q∈HU(0,1)

TQ
X (1 − α) = max

{(

4 − 9α

9α

)1/2

,

(

3 − 3α

1 + 3α

)1/2}

for α ∈ (0, 1),

and applying Lemma 2 by inverting of the above curve as a function of α.

Finally, we consider hypothesis HUS(µ, σ) of unimodal-symmetric distributions. This

class includes, for instance, the popular normal, t- and Laplace distributions. To construct

a semiprecise p-variable for this hypothesis, we use the following lemma of quantile bounds

withinHUS(µ, σ), which may be of independent interest. In what follows, 1 is the indicator

function; that is, 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise.

LEMMA 3. For α ∈ (0, 1), it holds that

sup
Q∈HUS(0,1)

TQ
X (1 − α) =

(

2

9α

)1/2

1(0,1/6](α)+ 31/2(1 − 2α)1(1/6,1/2](α).

The general formula for HUS(µ, σ) can be easily obtained from Lemma 3 via

sup
Q∈HUS(µ,σ)

TQ
X (1 − α) = µ+ σ sup

Q∈HUS(0,1)

TQ
X (1 − α).

THEOREM 4. A semiprecise p-variable for HUS(µ, σ) is

P =
2

9E0
1[4/3,∞)(E0)+

3 − (3E0)
1/2

6
1(0,4/3)(E0)+ 1{0}(E0),

and a precise e-variable for HUS(µ, σ) is E = 2E0. Precise p-variables do not exist for
HUS(µ, σ).

The proof of Theorem 4 relies on Lemma 3, which is a new technical result. The value 2/9

appeared earlier in Table 1 of Li et al. (2018) for α 6 1/6, a result weaker than Lemma 3.

We denote the p-variable obtained from Theorem 4 by PUS and the e-variable by EUS.

One may check that PUS is smaller than both PU and PS unless X 6 µ, in which case they

are equal to 1. For (X − µ)/σ > (5/3)1/2, or, equivalently, P0 6 3/8, we have the simple

relations

PS =
P0

2(1 − P0)
, PU =

4

9
P0 and PUS =

2P0

9(1 − P0)
,

implying the order P0 > PS > PU > PUS unless P0 = 0. For instance, if we observe

(X − µ)/σ = 3 then the p-values are

P0 = 1
10

= 0.1, PS = 1
18

≈ 0.056, PU = 2
45

≈ 0.044 and PUS = 2
81

≈ 0.025.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asae049/7796539 by guest on 08 D

ecem
ber 2024



Testing the mean and variance by e-processes 9

Table 1. Formulas for p-variables and e-variables

Hypothesis P-variable E-variable

H(0, 1) (1 + X 2
+)

−1 X 2
+

HS(0, 1)
1
2
X−2 if X > 1 2X 2

+

(1 + X 2
+)

−1 if X < 1

HU(0, 1)
4
9
(1 +X 2)−1 if X > (5/3)1/2 X 2

+

4
3
(1 +X 2

+)
−1 − 1

3
if X < (5/3)1/2

HUS(0, 1)
2
9
X−2 if X > (4/3)1/2 2X 2

+

1
2

− 31/2

6
X if 0 < X < (4/3)1/2

1 if X 6 0

On the other hand, the corresponding e-values are

E0 = 9, ES = 18, EU = 9 and EUS = 18.

For a comparison, if we are testing the simple parametric hypothesisN(0, 1) againstN(3, 1)
with one observation X = 3, then the corresponding Neyman–Pearson p-value is 0.001 35
and the corresponding likelihood ratio e-value is 90.02. This is not surprising as, generally,

p-values and e-values built for composite hypotheses are more conservative than those for

simple hypotheses based on the same data.

We summarize our construction formulas for p-variables and e-variables in Table 1 by

breaking them down using ranges of X . To obtain the formulas for a general (µ, σ) other

than (0, 1), it suffices to replace X in Table 1 by (X − µ)/σ .

We conclude the section by making a few technical remarks on the obtained results.

First, all results hold if the conditions EQ(X) 6 µ and varQ(X) 6 σ 2 in each hypothesis

is replaced by E
Q(X) = µ and varQ(X) = σ 2, respectively. Such modifications narrow the

hypotheses and hence all validity statements hold. The precision statements can be checked

with similar arguments to our proofs, and we omit them. Therefore, knowing varQ(X) = σ 2

on top of varQ(X) 6 σ 2, or EQ(X) = µ on top of E
Q(X) 6 µ, does not lead to more

powerful one-sided p-variables or e-variables.
Second, admissibility of the proposed p-variables and e-variables needs future research.

For e-variables, admissibility is not difficult to establish, but the picture is different for p-
variables. By Lemma 1, there always exists a smallest p-variable. It remains unclear whether

the p-variables we obtained in Theorems 1–4 are the smallest ones for the four hypotheses,

respectively.

Third, for any hypothesis H, we can define a function g : α 7→ supQ∈H TQ
X (1 − α). If g is

strictly decreasing on (0, 1), as in the case of H(µ, σ) andHU(µ, σ), then choosing f = g−1

yields a precise p-variable f (X). For H being HS(µ, σ) and HUS(µ, σ), g is flat on [1/2, 1),

making it impossible to find a decreasing f such that infQ∈H TQ
f (X)(α) = α for all α ∈ (0, 1).

4. Testing the null hypotheses

4.1. Constructing e-processes

We next build tests based on e-values and p-values. In this subsection we describe the

main methodology based on e-processes for the one-sided testing problem.
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10 Yixuan Fan, Zhanyi Jiao and Ruodu Wang

Letµ ∈ R and σ > 0.We consider the following hypotheses by keeping the same notation

as in § 3:

H(µ, σ) = {Q : EQ(Xi | Fi−1) 6 µ and varQ(Xi | Fi−1) 6 σ 2 for i ∈ [n]},

HS(µ, σ) = {Q ∈ H(µ, σ) : Xi | Fi−1 is symmetrically distributed for i ∈ [n]},

HU(µ, σ) = {Q ∈ H(µ, σ) : Xi | Fi−1 is unimodally distributed for i ∈ [n]},

HUS(µ, σ) = HU(µ, σ) ∩HS(µ, σ).

Recall that, without loss of generality, we consider µ and σ 2 as constants. We can also test

the hypotheses where some data are symmetric or unimodal and some are not, because we

build e-values from each of them separately. For simplicity, we only list the above four rep-

resentative cases. Using a similar formulation, the hypothesis of Waudby-Smith & Ramdas

(2024) is

HWSR(µ) = {Q ∈ H(µ, 1) : Xi | Fi−1 is supported in [0, 1] almost surely for i ∈ [n]}.

In the above formulation, the choice of σ = 1 is simply to remove the variance constraint;

see Remark 1.

There are several simple ways to use the results in § 3 to construct an e-variable or

p-variable for the above hypotheses; some of these methods are more useful than others.

In general, we can compute an e-variable Ei or p-variable Pi based on Xi for i ∈ [n] using
Theorems 1–4, and then combine them.

Our main proposal is to use e-processes. An e-processM = (Mt)t∈[n] can be constructed

using

Mt =

t
∏

i=1

(1 − λi + λiEi), (4)

where λi is Fi−1 measurable and takes values in [0, 1). This idea is the main methodology

behind game-theoretic statistics; see Shafer & Vovk (2019), Shafer (2021) and Waudby-

Smith & Ramdas (2024, Proposition 3). It has been used by Waudby-Smith & Ramdas

(2024) for testing the mean and byWang et al. (2024) for testing risk measures. To find good

choices of λ = (λi)i∈[n] is a nontrivial task. We propose to specify λ in two different ways.

(a) E-mixture method.We first take several λi = λ ∈ [0, 1), which is a constant for each

i ∈ [n], and then average the resulting e-processes from (4) over these choices to

get an e-process. An uninformative choice of the values of λ may be some points

in [0, 0.2]. We avoid choosing λ close to 1 because our e-value may take value 0 with

substantial probability, leading to a small value of EQ{log(1−λ+λE)}. This quantity
measures the growth rate of an e-process; see Grünwald et al. (2024) and Waudby-

Smith & Ramdas (2024). In our simulation and empirical studies, we average over

λ = 0.01 × {1, . . . , 20}.

(b) E-GREE method. In the GREE (growth-rate for empirical e-statistics) method of

Wang et al. (2024) for λi, i ∈ [n], in (4), λi is determined by solving the optimization

problem

λi =

{

argmax
λ∈[0,1)

1

i − 1

i−1
∑

j=1

log(1 − λ+ λEj)

}

∧
1

2
. (5)
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Testing the mean and variance by e-processes 11

To simplify the maximization in (5), a fast and approximate solution can be obtained

using a Taylor expansion, as in Waudby-Smith & Ramdas (2024). This leads to the

simple formula

λi =

{
∑i−1

j=1(Ej − 1)
∑i−1

j=1(Ej − 1)2

}

+

∧
1

2
. (6)

We use (6) for all e-GREE related calculations for the following results. Our un-

reported simulation suggests that using (5) and (6) yield very similar results.

When the hypothesis to test is HWRS(µ), the e-GREE method reduces to the method of

Waudby-Smith & Ramdas (2024); see § 5.2 below. An optimization procedure related to (5)

is studied by Kumon et al. (2011).

For either the e-GREE or the e-mixture method, we fix α ∈ (0, 1) and reject the

null hypothesis if the e-process M goes beyond 1/α, that is, when Mt> 1/α for the

first time. The Type-I error control is guaranteed by Ville’s inequality (Ville, 1939) as

P(supt∈[n]Mt > 1/α) 6 α, because any e-process is almost surely upper bounded by non-

negative supermartingales with initial value one; see Ramdas et al. (2022).

The result below clarifies consistency of the e-GREEmethod in themost idealistic setting.

PROPOSITION 1. Suppose that data are independent and identically distributed and gener-
ated from an alternative probability Q. The e-GREE method has asymptotic power approach-
ing 1 as n → ∞, that is, Q(supt∈[n]Mt > 1/α) → 1 for any α ∈ (0, 1) if and only if
E
Q(E1)> 1.

Although Proposition 1 requires an independent and identically distributed assumption,

this assumption is not needed for consistency in practical situations; a simulation example

is given in § 5.1 below.

4.2. Some other methods

Below we list some other methods, where we assume that n is finite. They do not generally

work well, as shown by the simulation studies, but nevertheless we list them as they follow

from our results in § 3, and they are presented only for a comparison.

(c) P-Fisher method. Construct a p-variable P using the Fisher combination

P = 1 − χ2n{−2(logP1 + · · · + logPn)},

where χ2n is the cumulative distribution function of a chi-square distribution with 2n
degrees of freedom.

(d) P-Simes method. Construct a p-variable P using the Simes combination (see Simes,

1986),

P = min
i∈[n]

n

i
P(i),

where P(i) is ith order statistic of P1, . . . ,Pn from the smallest to the largest.

Although in general the p-Fisher and p-Simes methods require independence among

p-variables, they are valid in our setting since our p-variables are conditionally valid, and
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12 Yixuan Fan, Zhanyi Jiao and Ruodu Wang

they can be combined as if they are independent and identically distributed; a proof of this

is presented in the Supplementary Material.

The next two methods use all data directly, and require independence among X1, . . . ,Xn.
A most natural statistic is the sample mean T =

∑n
i=1Xi/n. Under H(µ, σ), T has at most

mean µ and variance at most σ 2/n. Moreover, symmetry of T follows from symmetry of

X1, . . . ,Xn. Nevertheless, T is not necessarily unimodal even if X1, . . . ,Xn are unimodal,

and hence unimodality of T cannot be used. The following e-variables and p-variables are
constructed by directly applying Theorems 1–4.

(e) E-batch method. An e-variable for H(µ, σ) or HU(µ, σ) is

E0 = n(T − µ)2+/σ
2;

an e-variable for HS(µ, σ) or HUS(µ, σ) is

ES = 2n(T − µ)2+/σ
2.

(f) P-batch method. A p-variable for H(µ, σ) or HU(µ, σ) is

P0 = (1 + E0)
−1;

a p-variable for HS(µ, σ) or HUS(µ, σ) is

PS = min{(2E0)
−1,P0}.

All methods described in this section have Type-I error control under the null hypothesis

and with finite sample without requiring that the data are identically distributed. Methods

(e) and (f) additionally require independence.

4.3. Two-sided e-values testing the mean given variance

We briefly discuss the two-sided mean testing problem, where the main hypothesis

H(µL,µU , σ) to test is

{Q : EQ(Xi | Fi−1) ∈ [µL,µU ] and varQ(Xi | Fi−1) 6 σ 2 for i ∈ [n]},

where µL 6 µU are constants. The case µL = µU corresponds to testing whether the mean

is equal to a precise value.

Our methodology can be easily adapted to test this hypothesis. The e-variable E given by

E =
(X − µU)2+ + (X − µL)2−

σ 2
(7)

is a precise e-variable for H(µL,µU , σ) formulated on a single observation X . To see this, it

suffices to note that, for Q ∈ H(µL,µU , σ),

E
Q(E) = E

Q
{

(X − µU)2+ + (X − µL)2−

σ 2

}

6 E
Q
[

{X − E
Q(X)}2+ + {X − E

Q(X)}2−
σ 2

]

=
varQ(X)

σ 2
6 1.

The statement on its precision can be verified similarly to Theorem 1.
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Testing the mean and variance by e-processes 13

If µL = µU = µ then the e-variable in (7) is

E = (X − µ)2/σ 2.

This e-variable satisfies the property that EQ(E) > 1 if EQ(X) |= µ and varQ(X) = σ 2; this

condition is useful to establish consistency in Proposition 1.

Following the same procedure in § 4.1 using (7), we obtain e-processes for the two-sided
problemH(µL,µU , σ). Because of a smaller null hypothesis, this e-process is generallymore

powerful than that in § 4.1 testing the one-sided mean.

There are special, adversarial scenarios where such two-sided tests may not be powerful.

For instance, if data are independent with E(Xi) < µ and E(Xj) > µ appearing in an alter-

nating sequence; this forms a dataset that looks like independent and identically distributed

data with mean µ, and is thus very difficult to detect. The same challenge exists for other

methods based on e-processes, such as that of Waudby-Smith & Ramdas (2024).

Remark 4. Under the additional information of symmetry, the e-variable in (7) can be

used, but it cannot bemultiplied by 2 as in Theorem 2. In this case, an alternative way to take

advantage of symmetry is to build two e-processes in § 4.1: one to test E(Xi | Fi−1) 6 µU

and another to test E(−Xi | Fi−1) 6 −µL. Taking the average of these two e-processes
yields a valid e-process for the null hypothesis. As long as one of the two e-processes has
good power for the true data-generating procedure, the average e-process has good power.

4.4. Power of the e-values with fixed mean and growing variance

In this section, we analyse the power of the e-variables. For a given e-variable E, its
e-power, using the terminology of Vovk & Wang (2024), for an alternative probability Q
is defined as EQ(logE); see Shafer (2021) and Grünwald et al. (2024) for using this quantity

as a notion of power. Certainly, the power depends on the specific alternativeQ. We are par-

ticularly interested in how the e-power changes as the variance in the alternative hypothesis

grows.

For this purpose, we consider a simplistic, yet representative setting, where a class of

simple alternatives (Qσ )σ>1 is indexed by σ > 1, such that our data point X under Qσ is

distributed as σZ, where Z has a fixed distribution with mean 0 and variance 1 satisfying

the null hypothesis, which can be one of H(0, 1), HS(0, 1), HU(0, 1) and HUS(0, 1). In this

setting, the mean of the data is always 0, and only its variance grows under the alternative.

We denote by Q0 a null probability. Below, we show that the e-power of each an e-variable
grows at a rate of log σ as the alternative variance σ 2 grows, regardless of the distribution

of Z.
Let E be the e-variable computed based on X as in § 3. Because of the construction of

the e-processM in (4), the e-power of relevance is defined as

5Qσ = sup
λ∈[0,1]

E
Qσ {log(1 − λ+ λE)} = sup

λ∈[0,1]

E
Q0{log(1 − λ+ λσ 2E)},

that is, the best-achievable e-power in each multiplicative term in the e-processM.

PROPOSITION 2. Suppose that p := Q0(E > 1) > 0. For σ > 1,

(2p log σ − log 2)+ 6 5Qσ 6 2 log σ . (8)

Moreover, 0 6 5Qσ −5Qδ 6 2(log σ − log δ) for σ > δ > 1.
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14 Yixuan Fan, Zhanyi Jiao and Ruodu Wang

Proposition 2 suggests that the growth rate of the e-processM is roughly a constant times

log σ when the alternative variance σ 2 is larger than 1. An additional negative term − log 2

in (8) is not surprising, because our conditions do not guarantee 5Qσ > 0 for σ very close

to 1. Below, we give an example to illustrate the sharpness of the bounds in (8).

Example 1. Suppose that Q0(E = 0) = Q0(E = 2) = 1/2. We can compute

5Qσ = sup
λ∈[0,1]

1

2
[log(1 − λ)+ log{1 + λ(2σ 2 − 1)}] =

1

2
log

σ 4

2σ 2 − 1
.

It is clear that 5Qσ is approximately equivalent to log σ for large σ , corresponding to the

left-hand side of (8) with p = 1/2.

5. Simulation studies

5.1. A comparison of different e-combining methods

In this section, we conduct simulation studies for the nonparametric hypotheses in § 4.

We set µ = 0 and σ = 1 without loss of generality.

We first concentrate on the null hypothesisH(0, 1), as the other four cases are similar. For

all the methods stated in § 4, we do not make the assumption that the data are identically dis-

tributed. Thus, we generate a sample of n independent data points, although independence

is not needed for methods (a)–(d), alternating from two different distributions: X1,X3, . . .

follow a normal distribution, and X2,X4, . . . follow a Laplace distribution, with the same

mean ν and the same variance η2. The assumption that the two distributions have the same

mean and variance is not necessary when evaluating the power of the methods. We assume

this only for simplicity. We denote this data-generating process as NL(ν, η2) with the null

parameters being (ν, η2) = (0, 1). We consider two alternatives: (i) data generated from

NL(0, η2), where η > 1; (ii) data generated from NL(ν, 1), where ν > 0. In our setting,

the tester does not know the alternating data-generating mechanism. For each alternative

model, we compute the rejection rate over 1000 runs using the thresholds of E > 1/α and

P 6 α, with α = 0.05, for e-values and p-values, respectively.
For the e-mixture method, we experiment by averaging λ in the interval [0.01, 0.20] with

step size 0.01. The e-GREE method is similar to the e-mixture method, except that λi is

dynamically updated with different i ∈ [n] using (5).

Figure 1 shows the rejection rates for all methods with data generated from NL(0, η2)

for η ∈ [1, 4], and from NL(ν, 1) for ν ∈ [0, 1]. For the alternative model NL(0, η2), we

see that the e-mixture and e-GREE methods outperform the other methods, with the e-
mixture method being the most powerful. For η < 1.5, the rejection rates of all methods

are very low, making it challenging to distinguish their efficiency. As η > 1.5, both the

e-mixture method and the e-GREE method exhibit significantly higher rejection rates com-

pared to other methods, demonstrating their effectiveness in testingH(0, 1). The other four
methods have almost no power. For the alternative model NL(ν, 1), we observe that the

e-batch method and the p-batch method show significant high rejection rates, since they are

quite sensitive to the sample mean. Recall that these methods rely on independence, so the

central limit theorem kicks in.

Among all methods, only the e-process-based methods satisfy anytime validity, that is,

a decision can be made at any stopping time when data arrive sequentially. This situation
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Testing the mean and variance by e-processes 15
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Fig. 1. Rejection rates for all methods for testing H(0, 1) with sample size n = 100 over 1000 runs using the
threshold 20.

Table 2. Rejection rates for testing H, HS, HU and HUS with n = 100 data generated from
modelNL(0.5, 2)

E-mixture E-GREE P-Fisher P-Simes E-batch P-batch

H 0.419 0.315 0.000 0 0.639 0.664

HS 0.998 0.882 0.000 0 0.900 0.900

HU 0.419 0.315 0.006 0 0.639 0.664

HUS 0.998 0.882 0.763 0 0.900 0.900

is common in financial applications, where realized losses accumulate over time; see the

empirical study in § 6 below.

The testing procedures for HS, HU and HUS are the same as for testing H. We generate

100 data points from NL(0.5, 2) and calculated the rejection rates for testing HS, HU and

HUS with null hypotheses µ = 0 and σ = 1. Table 2 displays the rejection rates for all

hypotheses. It is clear that the extra information of symmetry improves the power.

5.2. A comparison with the GRAPA method

Recall that our model can also be interpreted as testing the mean under knowledge of

an upper bound on the variance. This allows us to compare our testing approach with the

growth rate adaptive to the particular alternative (GRAPA) method proposed by Waudby-

Smith & Ramdas (2024). The GRAPA method is similar to the e-GREE method discussed

in § 4, but it requires the random variable to be bounded. The e-process (Mt)t∈[n] for the

GRAPA method is constructed as

Mt =

t
∏

i=1

{1 + λi(Xi − µ)}, (9)

where µ is the conditional mean being tested and λi is Fi−1 measurable and takes value in

(−1/{1−µ}, 1/µ). It is clear that 1+λi(Xi−µ) is an e-variable for each i ∈ [n]. Thus, maxi-

mizing the growth of (9) is similar to (5), where λi is determined by solving the optimization

problem

λi = argmax
λ∈[−c/(1−µ),c/µ]

1

i − 1

i−1
∑

j=1

log{1 + λ(Xi − µ)}, (10)

where c ∈ (0, 1] is fixed. For faster computation in the context of confidence sequences,

Waudby-Smith & Ramdas (2024) also offered an alternative way to obtain λi, which they
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16 Yixuan Fan, Zhanyi Jiao and Ruodu Wang

called the approximate GRAPA method, and λi is determined by

λi = −
c

1 − µ
∨

µ̂i−1 − µ

σ̂ 2
i−1 + (µ̂i−1 − µ)2

∧
c

µ
, (11)

where µ̂i and σ̂
2
i are the empirical mean and variance of observations X1, . . . ,Xi. From (11),

it is clear that the GRAPAmethod is able to use the sample variance information adaptively.

In particular, our e-GREEmethod in (6) is adaptive to the empirical variance of the e-values.
In the simulation results, we use (10) and choose c = 1/2.

We compare the following five methods for testing the mean under various conditions.

(a) GRAPA: the GRAPA method with a bounded support [0, 1].

(b) E-GREE: the e-GREE method with the variance upper bound σ 2.

(c) E-mixture: the e-mixture method with the variance upper bound σ 2.

(d) E-GREE-2s: the two-sided e-GREE method with the variance upper bound σ 2.

(e) E-mixture-2s: the two-sided e-mixture method with the variance upper bound σ 2.

GRAPA is designed as a two-sided test, although it can easily be adjusted by restricting λi
in (9) to be nonnegative.

Remark 5. We could also implement the e-GREE and e-mixture methods without

an upper bounded variance, but using the bounded support, as described in Remark 1.

Although these methods are valid, they have poor power in our setting, because their

assumption is strictly weaker than both bounded variance and bounded support. We omit

these results.

We set µ = 0.35 and apply both one-sided and two-sided tests on the same dataset. We

generate a sample consisting of n independent data points from a beta distribution, denoted

Be(ν, σ 2), where ν and σ 2 represent the mean and variance of the beta distribution. None of

the methods requires that the data follow identical distributions; we use a single distribution

just for simplicity. Here, we use ν and σ 2 instead of the standard beta parameters α and β

for the sake of convenience. Parameters α and β can be easily recovered based on the given

mean ν and variance σ 2: α = ν(ν − ν2 − σ 2)/σ 2 and β = (ν2 + σ 2 − ν)(ν − 1)/σ 2. Since

the beta distribution has a bounded support [0, 1], we can make meaningful comparisons

between the GRAPA method and the e-GREE and e-mixture methods.

We first compare the rejection rates, using a threshold of 20 over 1000 runs, for all

methods mentioned above under different ν with fixed σ 2. We consider ν > 0.35 and

σ = 0.05, σ = 0.1 and σ = 0.3. We use 20 data points for each run.

Figure 2 shows the performance of the three methods. First, the e-GREE method is

always better than the e-mixture method. Second, the two-sided versions of both the

e-GREE and e-mixture methods show a slight improvement over their respective one-sided

methods, as expected. Third, in the case inwhich σ = 0.05 and σ = 0.1, the e-GREEmethod

outperforms theGRAPAmethod; in the case inwhichσ = 0.3, theGRAPAmethod demon-

strates superior performance compared to the other methods. This is intuitive, because the

variance information is less useful for larger σ ; recall that, for any distribution supported in

[0, 1] with mean µ 6 0.35, the maximum possible variance is 0.2275, and σ ≈ 0.477.

Figure 3 shows the average logarithmic e-processes for n up to 50 by using ν = µ + σ

for each alternative model. The relative rankings of these methods are consistent with their

rejection rates, with e-GREE performing the best when σ is relatively small.
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Fig. 2. Rejection rates for the GRAPA, e-GREE, e-mixture and the two-sided e-GREE-2s and e-mixture-2s
methods over 1000 runs using the threshold 20 and µ = 0.35. Data are generated from Be(ν, σ 2) with sample

size n = 20, where ν > 0.35 and σ ∈ {0.05, 0.1, 0.3}.
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Fig. 3. Average logarithmic e-processes for the GRAPA, e-GREE, e-mixture and the two-sided e-GREE-2s
and e-mixture-2s methods with varying sample size and µ = 0.35. Data are generated from Be(ν, σ 2), where

σ ∈ {0.05, 0.1, 0.3} and ν = µ+ σ .

From the simulation results, our general recommendation is to use the e-GREE method

to construct the e-process when the variance to be tested is relatively small, and to use the

GRAPA method when the variance to be tested is relatively large compared to the bounded

support.

5.3. A comparison with exponential test supermartingale methods

Next, we compare our methods with the exponential test supermartingale methods that

directly construct e-processes, rather than using a betting strategy to combine sequential

e-variables.
Wang & Ramdas (2023) extended the idea of Catoni (2012) to construct a nonnegative

test supermartingale called the Catoni supermartingale to test the mean and variance in

sequential settings. The test supermartingale is constructed as

MC
t =

t
∏

i=1

exp

[

φ{λi(Xi − µ)} −
λ2i σ

2

2

]

,

where φ is the influence function and (λi)i∈[n] is any predictable process. Following the

recommendation of Wang & Ramdas (2023), we choose the influence function

φ(x) =

{

log(1 + x+ x2/2) if x > 0,

− log(1 − x+ x2/2) if x < 0,

and (λi)i∈[n] as

λi =

{

2 log(1/α)

i(σ 2 + η2i )

}1/2

, where ηi =

{

2σ 2 log(1/α)

i − 2 log(1/α)

}1/2

.
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A different approach by Howard et al. (2021) is to use a framework for nonparametric

confidence sequences based on the concept of exponential supermartingales. They intro-

duced the concept of a ‘sub-ψ process’ in Howard et al. (2021, Definition 1). Informally,

a sub-ψ process is a pair of Ft-adapted processes (St,Vt) such that St is the zero-mean

deviation of the sample sum from its estimand at time t and Vt and ψ make the process

Mψ
t = exp{λSt − ψ(λ)Vt},

dominated by a supermartingale for each λ in an interval [0, λmax). This framework allows

for testing the mean and variance under a wide variety of assumptions, including bounded

supports, self-normalized bounds and symmetric conditions. We refer the reader to Howard

et al. (2021,Appendix J, Table 3) for a collection of commonly usedψ functions and variance

processes for St =
∑t

i=1(Xi − µ) under various assumptions. We choose two special cases

for comparison with our methods: the self-normalized bound test supermartingale, denoted

Mψ ,SN
t , and the symmetric condition test supermartingale, denotedMψ ,sym

t . For λ ∈ [0,∞),

these test supermartingales are constructed as

Mψ ,SN
t =

t
∏

i=1

exp

{

λ(Xi − µ)−
λ2(Xi − µ)2 + 2σ 2

6

}

, (12)

which also appears in Wang & Ramdas (2023, § 5), and

Mψ ,sym
t =

t
∏

i=1

exp

{

λ(Xi − µ)−
λ2(Xi − µ)2

2

}

. (13)

We follow a simple method of choosing λ suggested by Howard et al. (2021, §3.2), that is,

to use the mixture supermartingale
∫

exp{λSt − ψ(λ)Vt} d8(λ) by assuming that λ ∼ 8 =

N(0, 1). Now, we compare the following methods.

(f) WR23-Catoni: the Catoni method with the variance upper bound σ 2.

(g) HRMS21-SN: the self-normalized method with the variance upper bound σ 2.

(h) HRMS21-sym: the sub-ψ method with symmetry, but without variance information.

(i) E-GREE-sym: the e-GREEmethod with the variance upper bound σ 2 and symmetry.

(j) E-mixture-sym: the e-mixture method with the variance upper bound σ 2 and

symmetry.

We compare the above five methods, along with methods (a) and (b), the e-GREE and

e-mixture methods, that do not utilize symmetric information, in testingH(0, 1). Following
the same data-generating process as described in § 5.2, we generate n independent data points
alternating between the normal and Laplace distributions, denoted by NL(ν, η2). Figure 4

shows rejection rates for the above methods with data generated from three cases: NL(ν, 12)

for ν ∈ [0, 1], NL(ν, (1 + ν)2) for ν ∈ [0, 1] and NL(ν/5, (1 + ν)2) for ν ∈ [0, 2].

For NL(ν, 12), the Catoni method outperforms other methods, while methods utiliz-

ing symmetric information generally perform well. For NL(ν, (1 + ν)2), where both the

mean and variance of the data-generating process change, the power of the methods from

Howard et al. (2021) reduces. In contrast, the power of our e-value-basedmethods increases,

as our construction of e-values is sensitive to the changes to variance. In the last case,

NL(ν/5, (1+ν)2), the impact of changes in the mean is small and the variance effect is large;
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Fig. 4. Rejection rates for methods (a), (b) and (f)–(j) for testing H(0, 1) with sample size n = 100 over 1000
runs using the threshold 20.

e-value-based methods generally outperform others. Although method (h) benefits from

not requiring information about the variance or even the existence of variance, it demon-

strates minimal power when testing the mean with varying variance, due to its penalization

term −(Xi − µ)2 in the exponential form of (12) and (13). In summary, our methods are

comparatively more powerful when the alternative variance defers from the null.

6. Empirical study with financial data

We now conduct an empirical study to test the hypothesis H(µ, σ) on the daily losses of

financial assets. We aim to calculate the number of trading days required to detect evidence

for rejecting the null hypothesis H(µ̂, σ̂ ) during the 2007–8 financial crisis period. Here, µ̂

and σ̂ represent the sample mean and sample variance estimated from historical data prior

to the testing period. That is, we are testing whether the historical estimations before the

testing period are still valid. If the null hypothesis can be rejected at a reasonable threshold

level rather swiftly, this will serve as evidence of the effectiveness of e-process methods and

could help investors switch strategies in a timely manner.

We choose 20 stocks from 10 different sectors of the S&P 500 list with large market

capitalization in each sector. Moreover, we include two companies with the largest

market capitalization from the to-be real estate sector. Real estate became the 11th sector

of the S&P 500 in 2016. We first calculate the daily losses for each of the selected stocks

from 1 January 2001 to 31 December 2010. The daily losses are expressed as percentages

and calculated as Lt = −(St+1 −St)/St, where St is the close price at day t. A positive value

represents a loss and a negative value represents a gain. We could also use the log-loss data

instead of the linear loss data, but the difference between the two is minor. We use the loss

data from 1 January 2001 to 31 December 2006 to estimate the mean and variance for the

null hypothesis. We compute the e-values using both the e-mixture method and the e-GREE

method based on the construction of (4) as the daily loss from 1 January 2007 fed into the

e-process.
Following amethodology similar to the simulation study in § 5, we report evidence against

the null hypothesis when the e-process exceeds thresholds of 2, 5, 10 and 20. In accordance

with Jeffrey’s rule of thumb about e-values (see Jeffreys, 1998 and Vovk & Wang, 2021),

if the e-value falls within the interval of (101/2, 10), evidence against the null hypothesis is

considered substantial; if the e-value falls within the interval of (10, 103/2), evidence against

the null hypothesis is regarded as strong. Thus, e-values exceeding 5 or 10 provide substantial
evidence to reject the null hypothesis, while a threshold of 20 offers strong evidence against

the null hypothesis. Although a threshold of 2 may not be substantial enough to reject the

null hypothesis, it can still serve as an early warning that the stock’s performance may be

different from its historical path.
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Fig. 5. Sample path and logarithmic e-process using the e-GREE and e-mixture methods’ testing of H(µ̂, σ̂ )
for Simon Property (SPG) stock from January 2007 to January 2008, where µ̂ = −0.001 028 and σ̂ = 0.012 123
are the sample mean and variance estimated from historical data for stock SPG from 1 January 2001 to

31 December 2006.

To illustrate the e-process detection procedure, we first focus on a single stock as an ex-

ample. Figure 5 reports the stock price for Simon Property (SPG) throughout the detec-

tion period and its corresponding e-process initiated on 1 January 2007. Observing from

the e-process figure, it is evident that both the e-mixture method and the e-GREE method

effectively reject the null hypothesis at thresholds of 2, 5, 10 and 20 before the financial

crisis ends. Notably, the e-GREE method generally takes fewer trading days compared to

the e-mixture method to achieve this rejection across various threshold levels. Also, the null

hypothesis is rejected using the e-GREE method prior to another significant decline in the

stock price during February 2009 to June 2009, thus preventing potential larger losses and

underscoring the effectiveness of e-process methods.

Compared to the e-batch and other p-variable-based methods stated in § 4, the e-process-
based methods exhibit a unique advantage in sequential settings, particularly in financial

applications where actual losses accumulate sequentially over time. In such scenarios, the

e-process permits the early termination without a specified sampling period, potentially

preventing further losses at an earlier stage.

Table 3 displays the number of trading days required to reject the null hypothesis at var-

ious threshold levels for the selected 20 stocks from 10 different sectors and the two stocks

in real estate. The table shows that stocks in sectors significantly impacted by the 2007–8

subprime crisis, such as financials, consumer discretionary and energy, could generally be

detected using e-process-based methods. In particular, the representative companies in real

estate are rejected the earliest; see the last rows of Table 3. In contrast, for stocks in sectors

less affected by the subprime crisis, such as technology, health care and consumer staples, we

are unable to reject the null hypothesis. This is intuitive, given that their prices and returns

remain relatively stable or even increase during the financial crisis.

7. Discussion

As shown in the simulation studies, in comparison with the GRAPAmethod of Waudby-

Smith & Ramdas (2024) and with the exponential supermartingale methods of Howard

et al. (2020, 2021) and Wang & Ramdas (2023), our proposed methods have superior per-

formance in some settings and have inferior performance in other settings. A full picture of

the comparative advantages requires future work.

Our constructions of p-values and e-values are potentially useful for multiple testing,

which is not addressed in this paper. The literature on using e-values in multiple testing is

growing recently. For instance, e-values are used for false discovery control in knockoffs; see

Ren & Barber (2024) for derandomization, Ahn et al. (2023) for Bayesian linear models and
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Table 3. The number of trading days taken to detect evidence against H(µ̂, σ̂ ) using the
e-GREE method and the e-mixture method for different stocks from 1 January 2007 to
31 December 2010; an endash means that no detection was observed up to 31 December 2010

E-GREE E-mixture

Threshold 2 5 10 20 2 5 1 20

Financials Bank of America 378 385 385 393 393 394 395 403

Morgan Stanley 429 439 445 447 447 447 447 447

Utilities The Southern – – – – – – – -

Duke Energy – – – – – – – –

Communication services Verizon Comms. – – – – – – – –

AT&T – – – – – – – –

Consumer staples Walmart – – – – – – – –

PepsiCo – – – – – – – –

Consumer Ford Motor 476 491 498 565 546 594 594 594

discretionary Las Vegas Sands 442 445 447 450 451 454 457 457

Energy Texas Pacific Land 158 244 261 269 242 261 261 263

Pioneer 496 622 – – – – – –

Material Southern Copper 476 496 537 – 539 – – –

Air Products 476 516 537 – – – – –

Health care Johnson & Johnson – – – – – – – –

Pfizer – – – – – – – –

Technology Int. Business Machines – – – – – – – –

Microsoft – – – – – – – –

Industrials General Electric 537 546 578 – – – – –

United Parcel Service 476 524 542 632 542 604 – –

Real estate Simon Property 165 224 242 254 223 239 250 253

Prologis 264 271 271 296 270 271 271 275

Gablenz & Sabatti (2024) for resolution-adaptive variable selection. Finally, the obtained e-
variablesmay also be useful to build e-confidence regions, as inVovk&Wang (2023), and the

e-posterior, as inGrünwald (2023) for (µ, σ 2), althoughwemainly consider a nonparametric

setting.
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