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On zero-sum subsequences of cross number 1
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Abstract. For an additive finite abelian group G, let S = g1 · . . . · gl be a sequence
over G and k(S) = ord(g1)

−1 + · · · + ord(gl)
−1 be its cross number. Let T(G) be the

smallest integer t such that every sequence of t elements (repetition allowed) from G has a
zero-sum subsequence T with k(T ) = 1. We study the relation of the new invariant T(G)
to several classical invariants such as the Erdős–Ginzburg–Ziv constant s(G), η(G), and
t(G), a recently defined invariant (see the introduction). We also determine T(G) for some
special abelian groups, including some cyclic groups.

1. Introduction. Let G be a finite abelian group, written additively. We
denote by Cn a cyclic group of order n. For a general finite abelian group G,
we can decompose G as a direct sum of cyclic groups Cn1 ⊕ · · · ⊕ Cnr such
that 1 < n1 | · · · |nr ∈ N (if n1 = · · · = nr = n, it will be abbreviated
as Cr

n), where r and nr are respectively called the rank and exponent of G.
Usually, the exponent of G is simply denoted by exp(G). The order of an
element g of G will be written as ord(g).

Given a sequence S = g1 ·. . .·gl over G, we denote by S(d) the subsequence
of S consisting of all terms of S of order d, and SH the subsequence of S
consisting of all terms of S belonging to a subgroup H of G. We denote by
k(S) the cross number of S, defined as follows:

k(S) =
l∑

i=1

1

ord(gi)
.

The cross number is an important concept in factorization theory; for more
information we refer to [4, 8, 9, 11, 12, 13, 14, 15]. Recent progress on cross
numbers and the EGZ-constant was achieved in [1, 16].
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In the development of zero-sum theory, many invariants have been de-
fined in terms of the existence of zero-sum subsequences of restricted lengths.
For example, let s(G) (resp. η(G)) be the smallest integer t such that every
sequence of t elements (repetition allowed) from G has a zero-sum subse-
quence W of length |W | = exp(G) (resp. 1 ≤ |W | ≤ exp(G)). The invariant
s(G) is called the Erdős–Ginzburg–Ziv constant and η(G) is also a classical
invariant in zero-sum theory.

Let T(G) (resp. t(G)) be the smallest integer t such that every sequence
of t elements (repetition allowed) from G has a zero-sum subsequence W with
k(W ) = 1 (resp. k(W ) ≤ 1). The invariant t(G) was defined in 1989 [14].
The inequality t(G) ≤ |G| was first proved in [8] and new proofs were given
in [2, 4]. It has been proved that t(G) = η(G) when G is cyclic or a certain
special abelian group of rank 2 (see [7, 14, 18]).

As a zero-free sequence over a finite abelian group cannot be arbitrarily
long, its cross number cannot be arbitrarily large. A related invariant, κ(G),
was introduced in [10, Definition 5.7.12] and is the smallest positive inte-
ger l such that every sequence S ∈ F(G) satisfying exp(G)k(S) ≥ l has a
non-empty zero-sum subsequence T with k(T ) ≤ 1. Then κ(G)/exp(G) (resp.
t(G)) is the smallest cross number (resp. length) of a sequence S ∈ F(G)
which must have a non-empty zero-sum subsequence T with k(T ) ≤ 1. Fur-
ther, T(G) is the smallest length of a sequence S ∈ F(G) which must have
a zero-sum subsequence T with k(T ) = 1. However, we do not discuss t(G)
or κ(G) in this paper.

The motivation for introducing T(G) comes from the study of s(G) and
t(G). Just like t(G) = η(G) holds for all finite elementary abelian p-groups,
from the definitions of T(G) and s(G) we can prove that T(G) = s(G) holds
for all finite elementary abelian p-groups, where p is an odd prime. We state
it as follows.

Theorem 1.1. For a prime p and an integer r ≥ 1, we have

T(Cr
p) =

{
2r if p = 2,

s(Cr
p) if p ≥ 3.

We can also prove T(G) = s(G) for the following groups G, for which
s(G) has been determined.

Theorem 1.2. Let p, q be odd primes (not necessarily distinct) and r be
a positive integer. Then

T(Cr
pq) = s(Cr

pq)

in each of the following cases:
(1) r = 1.
(2) r = 2.
(3) r = 3 and p, q ∈ {3, 5}.
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For a cyclic p-groups G, we completely determine T(G).

Theorem 1.3. For a prime p and an integer a ≥ 1, we have

T(Cpa) =

{
2a + 2a−1 − 1 < s(C2a) if p = 2,
2pa − 1 = s(Cpa) if p ≥ 3.

We can also determine T(G) for some other cyclic groups G of odd order,
which all satisfy T(G) = s(G).

Theorem 1.4. Let G=Cn be the cyclic group of order n. If 4
∑

p|n
1
p ≤ 1,

and p(n) > 2ω(n), where p runs over all distinct prime divisors of n, p(n)
denotes the smallest prime divisor of n and ω(n) denotes the number of
distinct prime divisors of n, then

T(G) = 2n− 1 = s(G).

A classical invariant K(G) relating to cross numbers was formulated by
Krause [15] in 1984, defined to be the maximal cross number of minimal
zero-sum sequences over G. We remark that problems involving cross num-
bers are usually not easy even for cyclic groups. For example, the determi-
nation of K(G) for finite cyclic groups is far from complete. The equality
t(Cn) = n was conjectured by Erdős and confirmed by Kleitman and Lemke
[14, 12]. Determining T(G) for all finite cyclic groups seems to be a challeng-
ing problem.

The paper is organized as follows. Section 2 provides some notation and
concepts which will be used in what follows. In Section 3, we prove some
preliminary lemmas which are needed in the proofs of Theorems 1.2–1.4. In
Section 4, we provide the proofs of Theorems 1.1 and 1.2. And in Section 5, we
prove Theorems 1.3 and 1.4. The final section is devoted to some concluding
remarks.

2. Notation and preliminaries. Let N = {1, 2, . . .} and N0 = N∪{0}.
For any a, b ∈ N0, we set [a, b] = {x ∈ N0 | a ≤ x ≤ b}. Throughout this
paper, all abelian groups will be written additively.

Let G be an additive finite abelian group with rank r. An r-tuple
(e1, . . . , er) in G \ {0} is called a basis of G if G = ⟨e1⟩ ⊕ · · · ⊕ ⟨er⟩. We
denote by F(G) the free (abelian, multiplicative) monoid with basis G. The
elements of F(G) are called sequences over G. We write a sequence S ∈ F(G)
in the form

S =
∏
g∈G

gvg(S) with vg(S) ∈ N0 for all g ∈ G.

We call vg(S) the multiplicity of g in S, and we say that S contains g if
vg(S) > 0. A sequence S′ is called a subsequence of S, denoted by S′ |S, if



350 W. D. Gao, W. Z. Hui, X. Jiang, Y. L. Li and X. Y. Wang

vg(S
′) ≤ vg(S) for all g ∈ G, and SS′−1 denotes the subsequence obtained

from S by deleting S′. Two subsequences S1 and S2 of S are called disjoint
if S1 |SS−1

2 . The unit element ∅ ∈ F(G) is called the empty sequence.
For a sequence

S = g1 · . . . · gl =
∏
g∈G

gvg(S) ∈ F(G),

we call

• |S| = l =
∑

g∈G vg(S) ∈ N0 the length of S,
• σ(S) =

∑l
i=1 gi =

∑
g∈G vg(S)g ∈ G the sum of S,

• supp(S) = {g ∈ G | vg(S) > 0} ⊂ G the support of S,
• S a zero-sum sequence if σ(S) = 0 ∈ G,
• S a zero-sum free sequence if there is no non-empty zero-sum subsequence

of S,
• S a short zero-sum sequence if S is zero-sum and 1 ≤ |S| ≤ exp(G),
• S a tiny zero-sum sequence if S is a non-empty zero-sum sequence and
k(S) ≤ 1,

• b+ S = (b+ g1) · . . . · (b+ gl), where b ∈ G.

Every map of abelian groups φ : G → H extends to a homomorphism
φ : F(G) → F(H), where φ(S) = φ(g1) · . . . ·φ(gl). If φ is a homomorphism,
then φ(S) is a zero-sum sequence if and only if σ(S) ∈ ker(φ).

3. Auxiliary lemmas. In this section, we present several auxiliary lem-
mas that are needed in the proofs of Theorems 1.2–1.4.

Lemma 3.1.

(1) Let n be an odd integer and g be a generator of Cn. Let

S1 = gn−1 · (−g)n−1 ∈ F(Cn).

Then S1 has no zero-sum subsequence of length n. That is, S1 has no
non-empty subsequence T with σ(T ) = 0 and k(T ) ∈ Z.

(2) Let n be an even integer and g be a generator of Cn. Let

S2 = gn−1 · (−g)n/2−1 ∈ F(Cn).

Then S2 has no zero-sum subsequence of length n. That is, S2 has no
non-empty subsequence T with σ(T ) = 0 and k(T ) ∈ Z.

Proof. (1) Any subsequence R |S1 = gn−1 · (−g)n−1 with |R| = n has
the form R = gn−b · (−g)b with 1 ≤ b ≤ n− 1. It follows that

σ(R) = (n− b) · g + b · (−g) = b · (−2g) ̸= 0

since ord(−2g) = n and b ∈ [1, n− 1].
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That is, if ∅ ̸= T |S1 and σ(T ) = 0, then |T | ∈ [1, 2n − 2] \ {n}. So
k(T ) = |T |/n /∈ Z.

(2) If n = 2, the result is obvious. Therefore, below we assume n ≥ 4.
Any subsequence R |S2 = gn−1 · (−g)n/2−1 with |R| = n has the form

R = gn−b · (−g)b with 1 ≤ b ≤ n/2− 1. It follows that

σ(R) = (n− b) · g + b · (−g) = 2b · (−g) ̸= 0

since ord(−g) = n and 2b ∈ [2, n− 2].
That is, if ∅ ≠ T |S2 and σ(T ) = 0, then |T | ∈ [1, n+ n/2− 1] \ {n}. So

k(T ) = |T |/n /∈ Z.

The following problem appears in the study of T(G) by induction and is
of independent interest.

Conjecture 3.2. Let p be a prime and S =
∏2p+1

i=1 ai ∈ F(Z) with p ∤ ai
for all i ∈ [1, 2p+ 1]. Then there is a subsequence T of S such that |T | = p,
p |σ(T ) but p2 ∤ σ(T ).

The following example shows that the bound 2p + 1 in the above con-
jecture could not be improved for an odd prime p. Let p > 2 be a prime
and

W = 1p−1(1− p)(−1)p−1(−1 + p).

Note that W (mod p) = 1p(−1)p and it has exactly two subsequences 1p

and (−1)p with sum zero mod p and length p. Therefore, W has exactly two
subsequences 1p−1(1 − p) and (−1)p−1(−1 + p) with sum zero mod p and
length p. But each of these two subsequences has sum zero mod p2.

To make some progress on Conjecture 3.2 we need the following well
known result.

Lemma 3.3 (Cauchy–Davenport). Let p be a prime, and let A1, . . . , Ak

be non-empty subsets of Cp. Then

|A1 + · · ·+Ak| ≥ min {p, |A1|+ · · ·+ |Ak| − k + 1}.

Lemma 3.4. Let p be a prime and S =
∏2p+1

i=1 ai ∈ F(Z) with p ∤ ai for
all i ∈ [1, 2p+1]. If there are two terms ai, aj of S such that ai ≡ aj (mod p)
and ai ̸≡ aj (mod p2), then there is a subsequence T of S such that |T | = p,
p |σ(T ) but p2 ∤ σ(T ).

Proof. By renumbering, let

a2p ≡ a2p+1 (mod p) and a2p ̸≡ a2p+1 (mod p2).

If there is one m ∈ [1, p− 1] such that ai ≡ m (mod p) for at least p+ 1
numbers i ∈ [1, 2p− 1], then we may assume, without loss of generality, that

a1 ≡ · · · ≡ ap+1 ≡ m (mod p).
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Assume to the contrary that the conclusion of this lemma is false for S.
Then every subsequence T of

∏p+1
i=1 ai with length |T | = p has sum σ(T ) ≡

0 (mod p2). This implies that
p+1∑
i=1

ai ≡ a1 ≡ · · · ≡ ap+1 (mod p2).

Hence, a1 + · · ·+ ap ≡ pa1 ≡ pm ̸≡ 0 (mod p2), a contradiction.
Next, we suppose that, for every m ∈ [1, p − 1], there are at most p

numbers i ∈ [1, 2p − 1] such that ai ≡ m (mod p), and furthermore there
are at most p − 1 numbers i ∈ [1, 2p − 2] such that ai ≡ m (mod p). By
renumbering, we may assume that ai ̸≡ ai+p−1 (mod p) for each i ∈ [1, p−1].
For any integer n, let n ∈ Z/pZ = {0, 1, . . . , p− 1} be the residue class of n
modulo p and Ai = {ai, ai+p−1} for each i ∈ [1, p− 1].

Since Z/pZ ∼= Cp, by Lemma 3.3 we obtain

|A1 + · · ·+Ap−1| ≥ min {p, 2(p− 1)− (p− 1) + 1} = p.

This forces A1 + · · ·Ap−1 = Z/pZ. In particular, −a2p ∈ A1 + · · · + Ap−1.
Therefore, there is a subsequence W of

∏2p−2
i=1 ai with |W | = p− 1 such that

a2p + σ(W ) ≡ 0 (mod p).

Since a2p ≡ a2p+1 (mod p), we also have

a2p+1 + σ(W ) ≡ 0 (mod p).

Noting that a2p ̸≡ a2p+1 (mod p2), we find that either a2p + σ(W ) ̸≡
0 (mod p2) or a2p+1 + σ(W ) ̸≡ 0 (mod p2), completing the proof.

Lemma 3.5. Conjecture 3.2 is true for p = 2 and for p = 3.

Proof. Let S =
∏2p+1

i=1 ai ∈ F(Z) with p ∤ ai for all i ∈ [1, 2p + 1]. We
need to prove that there is a subsequence T of S such that |T | = p, p |σ(T )
but p2 ∤ σ(T ).

By Lemma 3.4, we may assume that if ai ≡ aj (mod p) for some i, j ∈
[1, 2p+ 1], then ai ≡ aj (mod p2). Let Am = {i : ai ≡ m (mod p)} for every
m ∈ [1, p− 1]. Noting that p = 2 or 3, we find that

max
1≤m≤p−1

|Am| ≥ 2p+ 1

p− 1
> p.

So there is some m0 ∈ [1, p − 1] such that |Am0 | ≥ p + 1. Let T be a
subsequence of S with |T | = p and with every term of T equal to m0 (mod p).
Then, by assumption,

σ(T ) ≡ pm0 ̸≡ 0 (mod p2),

completing the proof.
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Remark 3.6. (1) Conjecture 3.2 has been confirmed quite recently for
p = 5 and for p = 7 by Yiming Wang, one of the postgraduate students of
the first author, via a computer program.

(2) Let p be a prime, a ≥ 2 be an integer and S =
∏2p+1

i=1 ai ∈ F(Cpa)
with ai ∈ Cpa \ pCpa for every i ∈ [1, 2p+ 1]. If Conjecture 3.2 is true for p,
then there is a subsequence T of S such that |T | = p, σ(T ) ∈ pCpa \ p2Cpa .
That is,

k(T ) =
|T |
pa

=
1

pa−1
=

1

ord(σ(T ))
= k(σ(T )).

(3) For p = 2, the bound 2p + 1 = 5 in the conjecture can actually be
improved to 3. The proof is very easy and we omit it.

Lemma 3.7 ([6, Lemma 2.2]). Let n, k, t be three positive integers with
2 ≤ t < n/2+1, and let S be a sequence over Cn of length |S| = (k+1)n− t.
Suppose that S contains no zero-sum subsequence of length kn. Then there
exist two distinct elements x, y ∈ Cn such that

vx(S) + vy(S) ≥ (k + 1)n− 2t+ 2.

4. On the groups Cr
p and Cr

pq. In this section, we give the proofs of
Theorems 1.1 and 1.2.

We begin with the elementary abelian p-groups Cr
p .

Lemma 4.1. Let G be a finite abelian group of odd order |G| > 1. Then
there is always a sequence S of length |S| = s(G)− 1 such that 0 ∤ S and S
has no zero-sum subsequence of length exp(G).

Proof. Let m = exp(G). Then m > 1 is odd. By the definition of s(G),
let T be a sequence over G of length |T | = s(G) − 1 and with no zero-sum
subsequence of length m. If 0 ∤ T , then we are done, so assume that 0 |T .
Let g ∈ G with ord(g) = m.

Since m is odd, it follows that 0·g·(2g)·. . .·(m−1)g is a zero-sum sequence
of length m. Therefore, ig ∤ T for some i ∈ [1,m − 1]. Let S = (−ig) + T .
Then 0 ∤ S, |S| = |T | = s(G) − 1 and S has no zero-sum subsequence of
length m, as desired.

Proof of Theorem 1.1. Notice that every element in Cr
p \{0} has the same

order p. So for any sequence S over Cr
p \ {0}, 1 = k(S) = |S|/p if and only

if |S| = p.

Case 1: p = 2. Let S∗ =
∏

g∈Cr
2\{0}

g. Then |S∗| = 2r−1 and S∗ has no
zero-sum subsequence of length 2. This implies that T(Cr

2) ≥ |S∗|+ 1 = 2r.
Next we need to prove that T(Cr

2) ≤ 2r.
Let S ∈ F(Cr

2) be a sequence of length |S| = 2r. If 0 |S, then S has a
subsequence T = 0 such that σ(T ) = 0 and k(T ) = 1

ord(0) = 1 as desired. If
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0 ∤ S, then S is over Cr
2 \ {0}. Since |S| > 2r − 1, there exists an element

x |S such that vx(S) ≥ 2. Hence T = x2 is a zero-sum subsequence of S with
k(T ) = 1. Thus T(Cr

2) ≤ 2r.

Case 2: p ≥ 3. By Lemma 4.1, let S∗∗ be a sequence over Cr
p \ {0}

of length |S∗∗| = s(Cr
p) − 1 and with no zero-sum subsequence of length p.

This implies that T(Cr
p) ≥ |S∗∗| + 1 = s(Cr

p). Next we need to prove that
T(Cr

p) ≤ s(Cr
p).

Let S ∈ F(Cr
p) be a sequence of length |S| = s(Cr

p). If 0 |S, then S has a
subsequence T = 0 satisfying σ(T ) = 0 and k(T ) = 1

ord(0) = 1 as desired. If
0 ∤ S, then S is over Cr

p \ {0}. By the definition of s(Cr
p), S has a zero-sum

subsequence T of length |T | = p. So T is a zero-sum subsequence of S with
k(T ) = 1. Thus T(Cr

p) ≤ s(Cr
p).

This completes the proof of Theorem 1.1.

Next, we turn to the groups Cr
pq and we first prove three lemmas.

Lemma 4.2. Let p, q be primes (not necessarily distinct) and r be a
positive integer. If there exists an integer constant c = c(r, p, q) such that
s(Cr

n) = c(n− 1) + 1 for each n ∈ {p, q, pq}, then

T(Cr
pq) ≤ s(Cr

pq).

Proof. Here we just prove the case p ̸= q. The much easier case p = q
can be proved in the same way.

Let G = Cr
pq

∼= Cr
p ⊕ Cr

q and Hp
∼= Cr

p , Hq
∼= Cr

q be the subgroups of G.
For any S ∈ F(G) with |S| = s(Cr

pq) = c(pq − 1) + 1 and 0 ∤ S, we divide S
into three disjoint subsequences,

S = S(p)S(q)S(pq),

where ord(g) = p for g |S(p), ord(g) = q for g |S(q) and ord(g) = pq for
g |S(pq). Let

mp = |S(p)|, mq = |S(q)|, m = mp +mq.

Notice that ord(g) = p if and only if g ∈ Hp, and ord(g) = q if and only
if g ∈ Hq. By Theorem 1.1, if mp ≥ T(Cr

p) = s(Cr
p) = c(p − 1) + 1 or

mq ≥ T(Cr
q ) = s(Cr

q ) = c(q−1)+1, then we are done. Next, we assume that
mp ≤ c(p− 1) and mq ≤ c(q − 1). Thus

|S(pq)| = |S| −mp −mq ≥ max {s(Cr
p), s(C

r
q )}.

Let φp : G → G/Hp be the canonical homomorphism. Then φp(S(pq)) ∈
F(G/Hp) ∼= F(Cr

q ). Therefore, we can choose T1, . . . , Twp |S(pq) such that

σ(φp(Ti)) = 0 +Hp and |φp(Ti)| = exp(G/Hp) = q for i = 1, . . . , wp,
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and

wp ≥ 1 +

⌊ |φ(S(pq))| − s(G/Hp)

exp(G/Hp)

⌋
= 1 +

⌊
[c(pq − 1) + 1−m]− [c(q − 1) + 1]

q

⌋
= 1 + c(p− 1) + ⌊−m/q⌋.

Let us consider the new sequence

W = σ(T1) · . . . · σ(Twp) · S(p).

For i = 1, . . . , wp, σ(Ti) ∈ Hp since σ(φp(Ti)) = 0 +Hp. So W ∈ F(Hp). If
|W | = wp+mp ≥ s(Hp), then by the definition of s(Hp), W has a subsequence

X = σ(Tu1) · . . . · σ(Tuv) ·R,

where {u1, . . . , uv} ⊆ [1, w] and R |S(p), with the property that

σ(X) = 0 in Hp and |X| = exp(Hp) = p.

Finally, let
T = Tu1 · . . . · Tuv ·R.

Then T |S, σ(T ) = σ(X) = 0 in G and

k(T ) =
v∑

i=1

∑
g|Tui

1

ord(g)
+ k(R) = v · q · 1

pq
+ |R| · 1

p
= |X| · 1

p
= 1

as desired.
Similarly, replacing p by q above, we get wq. If wq + mq ≥ s(Hq), then

we are done too.
We claim that wp+mp ≥ s(Hp) or wq +mq ≥ s(Hq). Otherwise, we have

m = mp +mq,

wp ≥ 1 + c(p− 1) + ⌊−m/q⌋,
wp +mp ≤ s(Hp)− 1 = c(p− 1),

wq ≥ 1 + c(q − 1) + ⌊−m/p⌋,
wq +mq ≤ s(Hq)− 1 = c(q − 1).

Then we would get

0 ≥ 2 +m+ ⌊−m/q⌋+ ⌊−m/p⌋ > m−m/q −m/p,

a contradiction with the fact that m ≥ 0 and p, q are primes.
So Lemma 4.2 is proved.

Lemma 4.3. Let K = Cn1 ⊕ Cn2, where n2 is odd and 1 < n1 |n2, and
(e1, e2) be a basis of K with ord(e1) = n1 and ord(e2) = n2.
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(1) (see [10]) The sequence

S = en1−1
1 (e1 + e2)

n1−10n2−1en2−1
2

does not contain any zero-sum subsequence of length n2.
(2) (see [10]) s(Cn1 ⊕ Cn2) = 2n1 + 2n2 − 3.
(3) T(Cn1 ⊕ Cn2) ≥ 2n1 + 2n2 − 3 for odd n1n2.

Proof. (3) It is easy to check that the sequence

e2 + S = (e1 + e2)
n1−1(e1 + 2e2)

n1−1en2−1
2 (2e2)

n2−1

does not contain any zero-sum subsequence of length n2 and every element in
it has order n2. Therefore, e2+S does not contain any zero-sum subsequence
of cross number 1 and so

T(Cn1 ⊕ Cn2) ≥ |S|+ 1 = 2n1 + 2n2 − 3.

Lemma 4.4. Let K = C3
n with odd n ≥ 3 and (e1, e2, e3) be a basis of K.

For convenience, we write (m1,m2,m3) for the element m1e1+m2e2+m3e3.

(1) (See [3]) Let

T = (0, 0, 0)(0, 0, 1)(0, 1, 0)(0, 1, 1)(1, 0, 0)(1, 0, 1)(1, 0, 2)(1, 1, 2)(2, 1, 2)

and S = Tn−1. Then S does not contain any zero-sum subsequence of
length n.

(2) (See [5]) s(C3
n) = 9n − 8, where every prime divisor of n belongs to

{3, 5}.
(3) T(C3

n) ≥ 9n− 8 for odd n.

Proof. (3) It is easy to check that the sequence (1, 0, 0) + S does not
contain any zero-sum subsequence of length n and every element in it has
order n. Therefore, (1, 0, 0) + S does not contain any zero-sum subsequence
of cross number 1 and thus

T(C3
n) ≥ |S|+ 1 = 9n− 8.

We are now ready to give a proof of Theorem 1.2.

Proof of Theorem 1.2. By Lemmas 4.3(2) and 4.4(2), we know that, in
each case of Theorem 1.2, there exists an integer constant c = c(r, p, q) such
that s(Cr

n) = c(n − 1) + 1 for each n ∈ {p, q, pq}. Thus by Lemma 4.2, we
have T(Cr

pq) ≤ s(Cr
pq).

Therefore, we only need to prove T(Cr
pq) ≥ s(Cr

pq).
(1) The result follows immediately from Lemmas 3.1(1) and 4.3(2).
(2) The result follows from Lemma 4.3(2)(3).
(3) The result follows from Lemma 4.4(2)(3).
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5. On the cyclic groups. In this section, we give the proofs of Theo-
rems 1.3 and 1.4.

Proof of Theorem 1.3. We prove the theorem by induction on a. If a = 1,
by Theorem 1.1 we have

T(Cp) =

{
2 if p = 2,

2p− 1 if p ≥ 3,

and the result holds.
If a ≥ 2, we assume that the result holds for a− 1, i.e.,

T(Cpa−1) =

{
2a−1 + 2a−2 − 1 if p = 2,

2pa−1 − 1 if p ≥ 3.

By Lemma 3.1, we have

T(Cpa) ≥

{
2a + 2a−1 − 1 if p = 2,

2pa − 1 if p ≥ 3.

Therefore, we just need to prove that, for any S ∈ F(Cpa) with

|S| =

{
2a + 2a−1 − 1 if p = 2,

2pa − 1 if p ≥ 3,

there always exists a non-empty subsequence T |S with σ(T )=0 and k(T )=1.
First we divide S into two disjoint subsequences,

S = S(pa)S(<pa),

where ord(g) = pa for g |S(pa) and ord(g) < pa for g |S(<pa). Let

m = |S(<pa)|.
Notice that ord(g) < pa if and only if g ∈ pCpa

∼= Cpa−1 . If m ≥ T(Cpa−1),
then by the induction hypothesis S(<pa) has a non-empty zero-sum subse-
quence T with k(T ) = 1. Thus so does S and we are done.

If m < T(Cpa−1), we claim that either we can choose T1, . . . , Tw |S(pa)

such that

w +m ≥ T(Cpa−1), |Ti| = p and k(Ti) = k(σ(Ti)) for i = 1, . . . , w,(5.1)

or S(pa) contains a zero-sum subsequence T of length |T | = pa.
We divide the proof of the claim into the following three cases with

different prime p.

Case 1: p = 2. Here |S| = 2a + 2a−1 − 1 and m ≤ 2a−1 + 2a−2 − 2.
Then |S(2a)| = |S| − |S(<2a)| = 2a +2a−1 − 1−m ≥ 3× 2a−2 +1 > 3. By

Remark 3.6(3), we can choose T1, . . . , Tw |S(2a) with

w = 1 +

⌊ |S(2a)| − 3

2

⌋
= 2a−1 + 2a−2 − 1 + ⌊−m/2⌋ ≥ 1
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such that |Ti| = 2 and k(Ti) = k(σ(Ti)) for every i = 1, . . . , w. Moreover,

w +m = 2a−1 + 2a−2 − 1 + ⌊−m/2⌋+m

= 2a−1 + 2a−2 − 1 + ⌊m/2⌋
≥ 2a−1 + 2a−2 − 1 = T(C2a−1).

So our claim is proved in this case.

Case 2: p = 3. Here |S| = 2× 3a − 1 and m ≤ 2× 3a−1 − 2.
If m = 0, then |S(3a)| = |S| = s(C3a). Hence S(3a) contains a zero-sum

subsequence T of length 3a by the definition of s(C3a).
If 1 ≤ m ≤ 2× 3a−1 − 2, then |S(3a)| = |S| − |S(<3a)| = 2× 3a − 1−m ≥

4× 3a−1 + 1 > 7. By Lemma 3.5, we can choose T1, . . . , Tw |S(3a) with

w = 1 +

⌊ |S(3a)| − 7

3

⌋
= 2× 3a−1 − 1 +

⌊
−m− 2

3

⌋
≥ 1

such that |Ti| = 3 and k(Ti) = k(σ(Ti)) for every i = 1, . . . , w. Moreover,

w +m = 2× 3a−1 − 1 +

⌊
−m− 2

3

⌋
+m

= 2× 3a−1 − 1 +

⌊
2(m− 1)

3

⌋
≥ 2× 3a−1 − 1 = T(C3a−1).

Again, our claim is true in this case.

Case 3: p ≥ 5. Here |S| = 2pa − 1 and m ≤ 2pa−1 − 2.
If m = 0, then |S(pa)| = |S| = s(Cpa). Hence S(pa) contains a zero-sum

subsequence T of length pa by the definition of s(Cpa).
If 1 ≤ m ≤ 2pa−1 − 2 and S(pa) contains no zero-sum subsequence T of

length pa, then |S(pa)| = 2pa−(m+1) with 2 ≤ m+1 ≤ 2pa−1−1 < pa/2+1
since p ≥ 5. By Lemma 3.7 (taking n = pa, k = 1 and t = m + 1), there
exist two distinct elements x, y ∈ S(pa) |S such that

vx(S) + vy(S) ≥ 2pa − 2m.

Therefore, we can choose T1, . . . , Tw |xvx(S) · yvy(S) with

w =

⌊
vx(S)

p

⌋
+

⌊
vy(S)

p

⌋
≥ vx(S)− (p− 1)

p
+

vy(S)− (p− 1)

p

=
vx(S) + vy(S) + 2

p
− 2

≥ 2pa−1 − 2(m− 1)

p
− 2
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such that Ti = xp or yp for every i = 1, . . . , w. It follows that |Ti| = p and

k(Ti) =
|Ti|
pa

=
1

pa−1
=

1

ord(σ(Ti))
= k(σ(Ti)).

Moreover,

w +m ≥ 2pa−1 − 2(m− 1)

p
− 2 +m

= 2pa−1 − 1 +
(p− 2)(m− 1)

p

≥ 2pa−1 − 1 = T(Cpa−1).

This concludes the proof of our claim.
If S(pa) contains a zero-sum subsequence T of length pa, then T |S,

σ(T ) = 0 and k(T ) = |T |/pa = 1 as desired.
If S(pa) does not contain any zero-sum subsequence T of length pa, we

consider the sequence

W = σ(T1) · . . . · σ(Tw) · S(<pa).

Since |W | = w+m ≥ T(Cpa−1) by (5.1) and W is over pCpa ≃ Cpa−1 by the
induction assumption, W has a subsequence

U = σ(Tu1) · . . . · σ(Tuv) ·R,

where {u1, . . . , uv} ⊆ [1, w] and R |S(<pa), with the property that

σ(U) = 0 and k(U) = 1.

Finally, let
V = Tu1 · . . . · Tuv ·R.

Then V |S, σ(V ) = σ(U) = 0 and by (5.1),

k(V ) =

v∑
i=1

k(Tui) + k(R) =

v∑
i=1

k(σ(Tui)) + k(R) = k(U) = 1

as desired.
This completes the proof of Theorem 1.3.

Proof of Theorem 1.4. By the hypothesis of the theorem, n is odd. Let
p1, . . . , ps be all the distinct prime divisors of n. Then

4
s∑

i=1

1

pi
≤ 1.

Let d(n) denote the number of positive divisors (> 1) of n. We proceed
by induction on d(n). If d(n) = 1, then n is a prime, so by Theorem 1.1 the
conclusion of the theorem holds. Next we suppose the conclusion is true for
d(n) < k (k ≥ 2), and we need to prove it for d(n) = k.
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By Lemma 3.1 we have T(G) ≥ 2n − 1, so it suffices to prove that
T(G) ≤ 2n− 1.

Let S be a sequence over G of length |S| = 2n−1. We need to show that
S has a zero-sum subsequence T with k(T ) = 1. Let

Hi = piCn
∼= Cn/pi

be a subgroup of G, where i ∈ [1, s], and let

S = S(<n)S(n).

If |SHi | ≥ 2n/pi − 1 = T(Cn/pi) for some i ∈ [1, s], then SHi contains
a non-empty zero-sum subsequence T with k(T ) = 1. So does S. If S(n)

contains a zero-sum subsequence T of length |T | = n with k(T ) = |T |/n = 1,
then S contains a zero-sum subsequence T of length n with k(T ) = 1.

Next we assume that

|S(n)| ≤ s(G)− 1 = 2n− 2 and |SHi | ≤ 2
n

pi
− 2,

for all i ∈ [1, s]. Then

1 ≤ |S(<n)| ≤
s∑

i=1

|SHi | ≤
s∑

i=1

2
n

pi
− 2s.

Therefore,

2 ≤ 1 + |S(<n)| ≤
s∑

i=1

2
n

pi
− 2s+ 1 <

n

2
+ 1

because 4
∑s

i=1
1
pi

≤ 1. Since |S(n)| = |S| − |S(<n)| = 2n − 1 − |S(<n)|, it
follows from Lemma 3.7 that there exist two distinct elements x, y in S(n)

such that
vx(S(n)) + vy(S(n)) ≥ 2n− 2|S(<n)|.

Therefore, we can choose T1 · . . . · Twi |xvx(S(n))yvy(S(n)) with

wi ≥
⌈
2n− 2|S(<n)| − (2pi − 2)

pi

⌉
,

satisfying Tj = xpi or ypi for j ∈ [1, wi] and i ∈ [1, s]. It follows that |Tj | = pi,
σ(Tj) ∈ Hi and

k(Tj) = k(σ(Tj)).

If there exists some i ∈ [1, s] such that |SHi |+wi ≥ 2n/pi−1 = T(Cn/pi),
then

SHiσ(T1) · . . . · σ(Twi)

has a non-empty zero-sum subsequence U = S′
Hi

∏
k∈K σ(Tk) with k(U) = 1,

where S′
Hi

|SHi and K ⊂ [1, wi]. Then T = S′
Hi

∏
k∈K Tk is a zero-sum
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subsequence of S with

k(T ) = k(S′
Hi
) +

∑
k∈K

k(Tk) = k(S′
Hi
) +

∑
k∈K

k(σ(Tk)) = k(U) = 1,

and we are done.
Next we suppose that |SHi |+ wi ≤ 2n/pi − 2 for all i ∈ [1, s]. It follows

that

|SHi |+
⌈
2n− 2|S(<n)| − (2pi − 2)

pi

⌉
≤ 2

n

pi
− 2

for all i ∈ [1, s]. Thus,

pi|SHi | − 2|S(<n)|+ 2 ≤ 0.

Therefore,
s∑

i=1

pi|SHi | − 2s|S(<n)|+ 2s ≤ 0,

a contradiction with p(n) > 2s.
This completes the proof of Theorem 1.4.

6. Concluding remarks. It is interesting to study the relationship be-
tween T(G) and s(G) for other finite abelian groups G.

If there is a sequence S over G of length |S| = s(G)− 1 such that S has
no zero-sum subsequence with length exp(G) and every term of S has order
exp(G), then clearly S has no zero-sum subsequence with cross number 1.
Therefore, T(G) ≥ |S|+ 1 = s(G) for such groups G.

Let D(G) be the smallest integer t such that every sequence of t elements
(repetition allowed) from G has a zero-sum subsequence. The invariant D(G)
is called the Davenport constant. By the definition of T(G), the following
result is obvious.

Lemma 6.1. Let H be a subgroup of G, and S a sequence over G \H. If
any subsequence R of S with σ(R) ∈ H satisfies k(R) ̸∈ 1

exp(H)Z, then

T(G) ≥ T(H) + |S|.
In particular, such an S always exists for |S| = D(G/H)− 1 and so

T(G) ≥ T(H) + D(G/H)− 1 ≥ T(H).

However, this relationship does not hold for s(G) and s(H). First, we
present a 2010 result of Schmid and Zhuang.

Theorem 6.2 ([17]). Let p be an odd prime and G be a finite abelian
p-group. If D(G) ≤ 2 exp(G)− 1, then

s(G) ≤ D(G) + 2 exp(G)− 2.
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Example 6.3. For an odd prime p and integers r ≥ 4, α ≥ 2, let G =
Cr−1
p ⊕ Cpα and H = Cr

p . Let β = pα−1
p−1 . Then

T(G) > T(H) = s(H) > s(G)

for r ∈
[ lnβ
ln 2 + 2, β + 1

]
.

Since r ≤ β + 1, we have
D(G) = (r−1)(p−1)+(pα−1)+1 = pα+(r−1)(p−1) ≤ pα+β(p−1) = 2pα−1

and so
s(G) ≤ D(G) + 2pα − 2 = 3pα + (r − 1)(p− 1)− 2

by Theorem 6.2. On the other hand, lnβ
ln 2+2 ≤ r ≤ β+1 implies that

2r ≥ 4β ≥ 3β+r−1. But these two inequalities cannot both hold since
β = pα−1

p−1 ≥ 1+p ≥ 4. Thus 2r > 3β+r−1. By Theorem 1.1 and Lemma 6.1,

T(G) > T(H) = s(H) ≥ 2r(p− 1) + 1 > 3pα + (r − 1)(p− 1)− 2 ≥ s(G).

It is easy to check that there indeed exists an integer r ∈
[ lnβ
ln 2 +2, β+1

]
with β = pα−1

p−1 ≥ 4 for any odd prime p and any integer α ≥ 2. Moreover, it
is well known that there is always an odd prime p ∈ (m/2,m) for any integer
m ≥ 4. Therefore, when α = 2,⋃

p∈P\{2}

[
lnβ

ln 2
+ 2, β + 1

]
=

⋃
p∈P\{2}

[
ln (1 + p)

ln 2
+ 2, p+ 2

]
= [4,∞).

Corollary 6.4. For any integer r ≥ 4, there is always a finite abelian
group G of rank r such that T(G) > s(G).

Conjecture 6.5. If n is an odd integer, then for any positive integer r,
T(Cr

n) = s(Cr
n).

Regarding Conjecture 3.2, we can consider the following general prob-
lem. Let p be a prime and α be a positive integer. Let s(p, α) be the smallest
integer t such that every sequence over Z\pZ with length |S| = t has a subse-
quence T with |T | = pα, and σ(T ) ≡ 0 (mod pα) but σ(T ) ̸≡ 0 (mod pα+1).
Determine s(p, α).
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