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Abstract

Compared to conventional long-tail learning, which focuses
on addressing class-wise imbalances, generalized long-tail
(GLT) learning considers that samples within each class still
conform to long-tailed distributions due to varying attributes,
known as attribute imbalance. In the presence of such im-
balance, the assumption of equivalence between the class-
conditional probability densities of the training and testing
sets is no longer tenable. Existing GLT approaches typically
employ regularization techniques to avoid directly modeling
the class-conditional probability density (CCPD) ratio be-
tween training and test data, leading to suboptimal perfor-
mance. This study aims to directly estimate this ratio, for
which a novel class-attribute aware logit-adjusted (CALA)
loss incorporating both the CCPD ratio and the class priors is
presented. Two new GLT learning methods, named Heuristic-
CALA and Meta-CALA, are then proposed, which estimate
the CCPD ratio in the CALA loss by leveraging the neighbor-
hood information of samples. Extensive experiments across
diverse scenarios susceptible to class and attribute imbalances
showcase the state-of-the-art performance of Meta-CALA.
Furthermore, while Heuristic-CALA exhibits inferior perfor-
mance compared to Meta-CALA, it incurs only negligible ad-
ditional training time compared to the Cross-Entropy loss, yet
surpasses existing methods by a significant margin.

Introduction
Long-tail (LT) learning is a common challenge in many real-
world applications, where only a few categories are repre-
sented by a large number of instances while many others are
represented by only a few (Cui et al. 2019; Zhou, Yang, and
Wu 2023). A popular technique to address this challenge is
logit adjustment (Menon et al. 2021; Wang et al. 2024; Zhao
et al. 2022). However, existing methods (Tao et al. 2023;
Menon et al. 2021; Li et al. 2021) typically assume that the
primary difference between training and test data lies in the
prior probabilities over categories, where ptr(y) ̸= pte(y),
while the class-conditional probabilities for the training and
test data remain the same, i.e., ptr(x|y) = pte(x|y). Addi-
tionally, these methods presume uniform prior probabilities
over classes when evaluating model performance. There-
fore, the adjustment terms in existing methods (Menon et al.
2021; Cao et al. 2019) are primarily based on ptr(y). Addi-
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tionally, several imbalanced benchmarks, such as CIFAR-
LT (Cui et al. 2019), are manually constructed based on
these assumptions, making existing algorithms well-suited
for these datasets but limiting their generalizability to oth-
ers.

Recently, Tang et al. (2022) emphasized that the assump-
tion of identical class-conditional probability densities be-
tween training and test data cannot be guaranteed for real-
world datasets. They have thus identified a new type of im-
balance known as attribute imbalance. For instance, con-
cerning the color attribute, the training set may consist
mostly of white doves, whereas the number of white and
dark doves may be equal in the testing set. Attribute imbal-
ance can lead to poor performance of samples with rare at-
tributes and compromise the generalization ability of deep
learning models. Consequently, they formulated a new re-
search problem, named generalized long-tail (GLT) learn-
ing, which encompasses both class and attribute imbalances.
An example of GLT learning is shown in Fig. 1. Given the
poor performance of existing LT baselines for GLT learning,
they proposed a regularization technique to learn invariant
features. Despite demonstrating improved performance, the
challenge of attribute imbalance remains unsolved because
the fundamental issue, ptr(x|y) ̸= pte(x|y), has not been
adequately addressed.

This study pioneers the estimation of the class-conditional
probability density (CCPD) ratio between training and test
data. We first introduce a modified Cross-Entropy (CE)
loss, termed class-attribute aware logit-adjusted (CALA)
loss, which incorporates both class priors and the ratio of
class-conditional probability densities as adjustment terms
to address class and attribute imbalances. Next, we de-
velop a novel GLT method called Heuristic-CALA, which
utilizes neighborhood information of samples to estimate
the CCPD ratio within the CALA loss. Notably, Heuristic-
CALA serves as a generalization of several conventional
LT approaches. Finally, leveraging the strong performance
of meta-learning, we propose another GLT method named
Meta-CALA. This method employs an adjustment network
optimized through meta-learning to estimate the CCPD ratio
based on the neighborhood-related training characteristics of
samples. We conduct extensive experiments across various
learning scenarios prone to class and attribute imbalances:
LT learning, GLT learning, and subpopulation shift learn-
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Figure 1: Illustration of imbalances at both the class and attribute levels. Dove and Crow represent the head and tail classes,
respectively. Due to the prevalence of white feathers among doves, there exists an attribute imbalance within the Dove class.

ing. The results demonstrate that our methods consistently
achieve state-of-the-art (SOTA) performance by effectively
addressing both class and attribute imbalances.

Our main contributions can be summarized as follows:
• We conduct a pioneering exploration by directly utiliz-

ing the CCPD ratio for logit calibration. A novel logit
adjustment loss (termed CALA) that accounts for both
class priors and the ratio of class-conditional probability
densities between training and test data is then presented.

• We propose two new GLT learning methods,
Heuristic-CALA and Meta-CALA, which employ
K-neighborhood-based and meta-learning-based esti-
mation approaches, respectively, to estimate the CCPD
ratio in the CALA loss.

• We conduct extensive experiments across three learning
scenarios susceptible to class and attribute imbalances.
The results conclusively demonstrate the effectiveness of
our approaches in enhancing the generalization and ro-
bustness of deep learning models.

Related Work
Long-Tail Classification Despite success in various ap-
plications, deep neural networks still struggle with long-
tailed datasets (De Alvis and Seneviratne 2024; Mao, Fan,
and Li 2023). Different approaches have been proposed to
address this issue, including algorithms based on resam-
pling (Lin, Tsai, and Lin 2023; Tripathi, Chakraborty, and
Kopparapu 2021; Yan et al. 2019), reweighting (Wan et al.
2023; Cui et al. 2019), knowledge distillation (Zhang et al.
2023), data augmentation (Li et al. 2021; Zhou et al. 2024;
Zhou and Wu 2023), multiple experts (Wang et al. 2020;
Xiang, Ding, and Han 2020), and contrastive learning (Cui
et al. 2021). Among these methods, logit adjustment-based
approaches (Wang et al. 2024; Li, Cheung, and Lu 2022;
Menon et al. 2021) have gained popularity and demonstrated
their effectiveness. For instance, LA (Menon et al. 2021)
perturbs the logits of samples to encourage a large relative
margin between logits of rare versus dominant labels. More
recently, ALA (Zhao et al. 2022) introduces an adaptive ad-
justment term that consists of two complementary factors:
a quantity factor and a difficulty factor. However, existing
methods (Wang et al. 2024; Tao et al. 2023) primarily focus
on addressing class-wise imbalances, while overlooking the
imbalanced attribute distribution within each class.

Generalized Long-Tail Classification Tang et al. (2022)
argued that imbalanced classifications suffer from both

class- and attribute-wise imbalances and, therefore, pro-
posed the GLT learning task. They subsequently presented
an invariant feature learning (IFL) method to tackle GLT
learning by maintaining the feature center of each class
across different environments. Apart from this approach,
there are currently few dedicated solutions available to ad-
dress the emerging GLT problem. Nevertheless, some meth-
ods tailored for addressing subpopulation shift (Deng et al.
2024; Liang and Zou 2022; Koh et al. 2021) and spurious
correlation (Chen et al. 2023; Srivastava, Hashimoto, and
Liang 2020; Agarwal, Shetty, and Fritz 2020) are deemed
effective for tackling GLT learning by implicitly mitigating
the issue of attribute imbalance. However, nearly all exist-
ing studies overlook the direct modeling of attribute distribu-
tions within each class, leading to subpar performance when
dealing with attribute imbalance.

Class-Attribute Aware Logit-Adjusted Loss
Following prior studies, the classification model is formu-
lated as p(y|x), which predicts the label y from the input
x. The training and test data are drawn from different joint
distributions, namely ptr(x, y) and pte(x, y), respectively.
Utilizing Bayes’ Rule, we have ptr(y|x) ∝ ptr(x|y)ptr(y)
and pte(y|x)∝pte(x|y)pte(y). Hence, we arrive at

ptr(y|x) ∝ pte(y|x) ·
ptr(x|y)
pte(x|y)

· ptr(y)

pte(y)
. (1)

To simplify Eq. (1), existing methods commonly rely on the
following two assumptions:
Assumption 1 The class-conditional probability den-
sities of the training and testing sets are equal:
∀x, y, ptr(x|y)/pte(x|y) ≡ 1.
Assumption 2 The class priors pte(y) are assumed to be
identical when evaluating the model’s performance.

Given the two assumptions mentioned above, the objec-
tive of Eq. (1) can be expressed as

argmax pte(y|x) = argmax ptr(y|x)/ptr(y). (2)

From Eq. (2), the adjustment terms should be determined by
the class prior ptr(y), which has been adopted by existing
LT learning proposals, such as LDAM (Cao et al. 2019) and
LA (Menon et al. 2021).

Assumption 2 evidently promotes fairness across different
categories. However, we challenge the validity of Assump-
tion 1 in practical learning scenarios and argue that the ob-
jective function in Eq. (2) is overly simplified, rendering it
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Figure 2: Illustration of Heuristic-CALA. Blue and orange dots represent samples from two classes. The gray and green lines
denote the original and adjusted classifiers. The red boxes indicate the ten-nearest neighborhood N10(x). If ppr(y = yx|x′ ∈
NK(x))> (<,=)pmx(y=yx|x′∈NK(x)), then x is in a dominant (subordinate, appropriate) position in the training set. Our
adjustment term will make x easier (or harder, or leave it unchanged) than before, facilitating better adjusting the classifier.

incapable of resolving a number of issues, such as the mis-
classification of samples with rare attributes. As illustrated
in Fig. 1, although the number of samples in the Dove class
exceeds that of the Crow class, doves with dark feathers are
often misclassified as crows due to the fact that ptr(xfeather =
white|y = Dove) ≫ ptr(xfeather = dark|y = Dove) and
ptr(xfeather = white|y = Crow) ≪ ptr(xfeather = dark|y =
Crow)1. Even if the issue of class imbalance is addressed,
the presence of attribute imbalance remains and substan-
tially impairs the generalization performance of models.

Actually, the training objective without guarantying As-
sumption 1 should be

argmax pte(y|x) = argmax ptr(y|x) ·
pte(x|y)
ptr(x|y)

· 1

ptr(y)
.

(3)
Eq. (3) suggests that the adjustment terms should be deter-
mined by both the CCPD ratio and the class priors. Accord-
ingly, building on the inference method used in LA (Menon
et al. 2021), we derive a novel logit-adjusted loss that incor-
porates these two terms to mitigate attribute imbalance and
class bias. With τ1, τ2>0, the resulting loss, termed CALA,
is as follows:

ℓCALA(x)=−log
exp[fy(x) + τ1 log ptr(y)+τ2 log

ptr(x|y)
pte(x|y) ]∑

y′∈[C] exp[fy′(x)+τ1 log ptr(y′)+τ2 log
ptr(x|y′)
pte(x|y′) ]

=log[1+
∑
y′ ̸=y

(
ptr(y

′)

ptr(y)

)τ1

·
(
ptr(x|y′)pte(x|y)
pte(x|y′)ptr(x|y)

)τ2

· e
fy′ (x)

efy(x)
],

(4)
where f(·) and C represent the classifier and the number
of classes. We then explain the CALA loss from a regu-
larization perspective using Taylor expansion. Our analy-
sis indicates that the CALA loss imposes significant penal-
ties on samples from tail classes (e.g., Crow) and those
with rare attributes (e.g., dark doves). This increased pe-
nalization amplifies the impact of these samples during
model training, thereby enhancing their prediction perfor-

1It is worth noting that pte(xfeather = white|y = Dove) =
pte(xfeather = dark|y = Dove) is assumed to be established for
fairness. Consequently, ptr(x|y = Dove) ̸= pte(x|y = Dove).

mance. Detailed regularization analyses are provided in Sec-
tion A of the Appendix. However, directly obtaining the
CCPD ratio ptr(x|y)/pte(x|y) is impossible due to the un-
known pte(x|y). To this end, we propose two estimation ap-
proaches, as stated in the subsequent sections.

Learning with CALA Loss
To estimate the CCPD ratio in the CALA loss, we propose
two methods: one based on K-neighborhood and the other
based on meta-learning. Consequently, two logit adjustment
approaches, named Heuristic-CALA and Meta-CALA, are
devised for GLT learning.

Heuristic-CALA Framework
To simplify the notation, the CALA loss is expressed as

ℓCALA(x)=−log
exp[fy(x) + τ1u(y)+τ2v(x, y)]∑

y′∈[C] exp[fy′(x)+τ1u(y′)+τ2v(x, y′)]
,

(5)
where u(y) = log ptr(y) and v(x, y) =
log[ptr(x|y)/pte(x|y)]. The neighborhood information
of each sample reflects its local distribution in the feature
space, thus providing an estimate of the CCPD values.
Accordingly, we establish the following relationship, with
detailed inference provided in Section B.I of the Appendix:

pte(y|x) ≈ ptr(y|x) ·
pte (y|x′ ∈ NK(x))

ptr (y|x′ ∈ NK(x))
, (6)

where NK(x) represents the K-nearest neighbors of x.
Eq. (6) manifests that the adjustment terms should be deter-
mined by pte (y|x′ ∈ NK(x))/ptr (y|x′ ∈ NK(x)). How-
ever, the distribution of the test data is not readily avail-
able. Zhang et al. (2018) proposed a generic vicinal distribu-
tion called MixUp, which effectively estimates the unknown
data distribution and significantly improves models’ gener-
alization performance. Consequently, we employ the train-
ing data augmented using MixUp, denoted as pmx(x, y), to
approximate the test data. However, MixUp applied to im-
balanced datasets fails to balance the label distribution. To
address this, we utilize the ratio pmx(y|x′∈NK(x))/ptr(y)
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Figure 3: Illustration of Meta-CALA, which contains four main components, including the metadata construction module, the
classifier network, the training characteristics extraction module, and the adjustment network.

to substitute pte(y|x′ ∈ NK(x)). Furthermore, ptr(y|x′ ∈
NK(x)) is replaced by the predicted probability ppr(y|x′∈
NK(x)) to more precisely and dynamically adjust the clas-
sifier during training. Thus, Eq. (6) transforms into

pte(y|x) := ptr(y|x) ·
pmx(y|x′ ∈ NK(x))

ppr(y|x′ ∈ NK(x))
· 1

ptr(y)
. (7)

We observe that Eq. (7) employs the ratio
ppr(y|x′∈NK(x))/pmx(y|x′∈NK(x)) to replace the
CCPD ratio ptr(x|y)/pte(x|y) in Eq. (3). Consequently, the
adjustment term v(x, y) can be calculated as

v(x, y) = log[
ppr(y|x′∈NK(x))

pmx(y|x′∈NK(x))
], (8)

where pmx(y = c|x′ ∈ NK(x)) represents the label distri-
bution of samples within the neighborhood. Additionally,
ppr(y = c|x′ ∈ NK(x)) denotes the prediction distribu-
tion within the neighborhood, which can be calculated as∑

x′∈NK(x) qx′,c/K, where qx′ = Softmax(f(x′)) repre-
sents the probability vector. Furthermore, since neighbor-
hood information can be sensitive to border effects and out-
liers, we employ class averages of the corresponding values
within the neighborhood to smooth the values of ppr(y|x′ ∈
NK(x)) and pmx(y|x′ ∈ NK(x)). Detailed algorithmic
procedures are provided in Section B.II of the Appendix.

We then validate the rationality of our ap-
proach by elaborating on its meaning. The term
ppr(y|x′∈NK(x))/pmx(y|x′∈NK(x)) reflects the
dominance of x in the training data. As shown in Fig. 2, if
ppr(y=yx|x′∈NK(x))> (<,=)pmx(y=yx|x′∈NK(x)),
then x is in a dominant (subordinate, appropriate) position
in the training set. Our adjustment term will make x easier
(or harder, or leave it unchanged) than before, resulting in
a smaller (or larger, or unchanged) impact on the model
training. Generally, samples from tail classes and those
with rare attributes occupy a subordinate position, and their
influence will be amplified by our approach.

Furthermore, we demonstrate that several typical LT base-
lines can be viewed as special cases of Heuristic-CALA. In-
deed, the adjustment term for class c in Heuristic-CALA is
determined by ptr(y=c)· ppr(y=c|x′∈NK(x))

pmx(y=c|x′∈NK(x)) . As when K=0,
N0(x)=x, we have the following findings:

• If K =0 and ppr(y= yx|x)≡ 1, as pmx(y= yx|x)≡ 1,
then only the adjustment term for class yx is non-zero
and equals to ptr(y = yx), relying on the class propor-
tion to adjust the logit of yx. Therefore, Heuristic-CALA
is equivalent to LDAM (Cao et al. 2019) in this scenario.

• If K = 0 and ppr(y = yx|x) ̸= 1, as pmx(y = yx|x) ≡
1, then Heuristic-CALA’s adjustment term for class yx
is ptr(y = yx)ppr(y = yx|x), considering both the class
proportion and model prediction. This adjustment term is
equivalent to that of ALA (Zhao et al. 2022).

• When K = +∞, pmx(y = c|x′ ∈ N+∞(x)) approxi-
mates ptr(y = c). Thus, the adjustment term for the cth
class in Heuristic-CALA is ppr(y = c) which is simi-
lar to LA (Menon et al. 2021). The distinction is that
Heuristic-CALA in this case employs the class propor-
tions of the predicted labels, which vary with model per-
formance. We have verified that this approach is superior
and more rational compared to LA. The comparisons are
detailed in Section D.VII of the Appendix.

Meta-CALA Framework
Leveraging the universal approximation capability of deep
neural networks, we introduce an adjustment network to es-
timate the CCPD ratio of samples. The classifier and the
adjustment network are alternately updated using a meta-
learning-based optimization strategy. Consequently, another
GLT method, termed Meta-CALA, is presented. Fig. 3 il-
lustrates the pipeline of the Meta-CALA framework, which
consists of four primary components: metadata construc-
tion, classifier network, training characteristics extraction,
and adjustment network.

We first construct a metadata set with balanced classes
and attributes to represent the meta-knowledge of the
ground-truth distribution. This metadata set is then utilized
to train the adjustment network. To ensure class and attribute
balance as much as possible, samples from each class in the
training data are clustered into six groups using KMeans
with a pre-trained ResNet-50 model (He et al. 2016). We
then evenly sample instances from each group and class, as
illustrated in the first box of Fig. 3.

Considering that the CCPD ratio can be reflected by the
neighborhood information of samples, we extract a series of



Dataset CIFAR10-LT CIFAR100-LT

Imbalance ratio 100:1 10:1 100:1 10:1

Class-Balanced CE (Cui et al. 2019) 72.68% 86.90% 38.77% 57.57%
Class-Balanced Focal (Cui et al. 2019) 74.57% 87.48% 39.60% 57.99%
LDAM-DRW (Cao et al. 2019) 78.12% 88.37% 42.89% 58.78%
De-confound-TDE (Tang et al. 2020) 80.60% 88.50% 44.10% 59.60%
LA (Menon et al. 2021) 77.67% 88.93% 43.89% 58.34%
MiSLAS∗ (Zhong et al. 2021) 82.10% 90.00% 47.00% 63.20%
LADE (Hong et al. 2021) 81.17% 89.15% 45.42% 61.69%
GLC (Li, Cheung, and Lu 2022) 82.68% 89.81% 48.71% 62.97%
ALA (Zhao et al. 2022) 77.65% 88.32% 43.67% 58.92%
LDAM-DRW-SAFA (Hong et al. 2022) 80.48% 88.94% 46.04% 59.11%
BKD (Zhang et al. 2023) 82.50% 89.50% 46.50% 62.00%
CSA (Shi et al. 2023) 82.53% 90.80% 46.61% 62.60%
Heuristic-CALA (Ours) 83.91% 91.78% 50.53% 64.34%

Meta-Weight-Net (Shu et al. 2019) 73.57% 87.55% 41.61% 58.91%
MetaSAug (Li et al. 2021) 80.54% 89.44% 46.87% 61.73%
Meta-CALA (Ours) 84.79% 92.47% 52.34% 65.51%

Table 1: Accuracy comparison on the CIFAR-LT bench-
mark. Bold and underlined numbers are the best and second-
best results, respectively.

neighborhood-related training characteristics from the clas-
sifier and feed them into the adjustment network to estimate
the CCPF ratio v(x, y), thereby obtaining the adjustment
vector δx = [v(x, y1), · · · , v(x, yC)]. The characteristics
extraction module is depicted in the third box of Fig. 3. We
first extract six basic characteristics that reflect the learn-
ing difficulty of samples, including sample loss, logit vector,
loss gradient, probability vector, uncertainty which is quan-
tified by the information entropy of the Softmax output, and
sample margin. Regarding the logit and probability charac-
teristics, we utilize their values specific to the ground-truth
category. Subsequently, we consider the neighborhood ex-
tensions of the six basic characteristics. First, we compute
the mean values of these characteristics for the samples in
the neighborhood. Second, we establish the disparities be-
tween the sample’s characteristic values and the neighbor-
hood’s average values. Additionally, we incorporate three
other characteristics: 1) the ratio of samples sharing the same
label in the neighborhood, 2) the ratio of heterogeneous sam-
ples with the highest proportion in the neighborhood, and 3)
the cosine distance between the deep feature of the sample
and the average feature of the samples in the neighborhood.
Furthermore, all characteristics can be extended through the
sequence by considering the differences in these training
characteristics between the current and previous epochs. In
summary, a total number of 42 characteristics are finally ex-
tracted. The calculations of all characteristics are detailed in
Section C.I of the Appendix.

As the training characteristics are tabular data, we em-
ploy a two-layer Multilayer Perceptron as the adjustment
network. Moreover, a meta-learning-based learning strat-
egy is proposed to alternatively update the parameters in
the classifier W and the adjustment network Ω, as shown
in the second and fourth boxes of Fig. 3. Denote the
training data as Dtr = {xi, yi}Ni=1 and the metadata as
Dmeta = {xmeta

i , ymeta
i }Mi=1. First, a batch of training sam-

ples {xi, yi}ni=1 is selected, where n is the batch size and
the updating of W is formulated as

Ŵ
(t)
←W (t)−η1

1

n

∑n

i=1
∇W ℓCALA

(
f(xi), yi; δ

(t)
i

)
,

(9)

Dataset iNat 2018 Places-LT

CE loss 65.76% 30.20%
Decoupling (Kang et al. 2020) 69.49% 37.62%
LA (Menon et al. 2021) 66.36% 34.23%
DisAlign (Zhang et al. 2021) 70.06% 39.30%
MisLAS (Zhong et al. 2021) 71.51% 40.15%
LADE (Hong et al. 2021) 70.00% 38.87%
GCL (Li, Cheung, and Lu 2022) 72.01% 42.64%
LDAM-DRS-SAFA (Hong et al. 2022) 69.78% 41.53%
BKD (Zhang et al. 2023) 71.20% 38.92%
Heuristic-CALA (Ours) 73.23% 43.42%

Meta-Weight-Net (Shu et al. 2019) 67.95% 37.14%
MetaSAug (Li et al. 2021) 68.75% 39.83%
Meta-CALA (Ours) 74.05% 43.97%

Table 2: Accuracy comparison on the iNat 2018 and Places-
LT benchmarks.

where η1 is the step size and δi represents the adjustment
vector for sample xi. Then, the parameters of the adjust-
ment network Ω can be updated on a minibatch of metadata
{xmeta

i , ymeta
i }mi=1, with the following formula:

Ω(t+1) ← Ω(t)−η2
1

m

∑m

i=1
∇ΩℓCE

(
fŴ (xmeta

i ), ymeta
i

)
,

(10)
where m and η2 are the minibatch size of metadata and the
step size, respectively. Finally, the parameters of the classi-
fier are updated using the resulting adjustment terms:

W (t+1) ←W (t)−η1
1

n

∑n

i=1
∇W ℓCALA

(
f(xi), yi; δ

(t+1)
i

)
.

(11)
Utilizing the aforementioned steps, both the classifier and
the adjustment network can be effectively optimized.

Experimental Investigation
We evaluate the performance of our methods in addressing
class imbalance, attribute imbalance, and their combination
across three typical learning scenarios, including LT learn-
ing, subpopulation shift learning, and GLT learning. All ex-
periments are repeated three times using different random
seeds. Due to space constraints, details regarding the com-
parison methods and datasets are included in Section D of
the Appendix.

Experiments for Class Imbalance
Three LT benchmarks are evaluated: CIFAR-LT (Cui et al.
2019), Places-LT (Liu et al. 2019), and iNaturalist (iNat)
2018. The imbalance ratios for the CIFAR-LT benchmark
are set to 100:1 and 10:1. For all experiments, we utilize
the SGD optimizer with a momentum of 0.9. For CIFAR-
LT, we primarily follow Cao et al. (2019) and train all mod-
els with a ResNet-32 (He et al. 2016) backbone on a sin-
gle GPU, employing a multistep learning rate schedule that
reduces the learning rate by a factor of 0.01 at the 160th
and 180th epochs. For Places-LT and iNat 2018, we mainly
follow Kang et al. (2020) and use the cosine learning rate
schedule (Loshchilov and Hutter 2016) to train the ResNet-
152 and ResNet-50 backbones, respectively. For the hyper-
parameters in CALA, the neighborhood size K is selected



Figure 4: Comparison of class-wise accuracy among baseline (CE loss), LA, and Heuristic-CALA on CIFAR10 with imbalance
ratios of 10:1 (a) and 100:1 (b). Accuracy of the top and bottom five categories on CIFAR100 with an imbalance ratio of 10:1
(c) and 100:1 (d). Moving left to right, the categories progress from tail to head.

Dataset Waterbirds CMNIST

Method Avg. Worst Avg. Worst

CORAL (Sun and Saenko 2016) 90.3% 79.8% 71.8% 69.5%
IRM (Arjovsky et al. 2019) 87.5% 75.6% 72.1% 70.3%
GroupDRO (Sagawa et al. 2020) 91.8% 90.6% 72.3% 68.6%
DomainMix (Xu et al. 2020) 76.4% 53.0% 51.4% 48.0%
IB-IRM (Ahuja et al. 2021) 88.5% 76.5% 72.2% 70.7%
V-REx (Krueger et al. 2021) 88.0% 73.6% 71.7% 70.2%
Fish (Shi et al. 2022) 85.6% 64.0% 46.9% 35.6%
LISA (Yao et al. 2022) 91.8% 89.2% 74.0% 73.3%
COSMOS (Chen et al. 2023) 91.7% 89.3% 73.5% 72.4%
PDE (Deng et al. 2024) 92.4% 90.5% 78.1% 75.9%
Heuristic-CALA (Ours) 94.3% 91.8% 79.5% 77.0%

Table 3: Comparison of the average and worst-group accu-
racy on two subpopulation shift datasets.

from {20, 40, 60, 80, 100} for all experiments unless noted.
τ1 and τ2 are set to 1.5 and 1, respectively. The metadata
size is 3,000 for CIFAR-LT. For iNat 2018 and Places-LT,
one image is selected per class and group to construct the
metadata. In Meta-CALA, the adjustment network is opti-
mized using Adam with an initial learning rate of 1× 10−3.

Results. Table 1 presents the comparison results on
CIFAR-LT, while Table 2 shows the results on the iNat 2018
and Places-LT datasets, with some results sourced from the
original papers. The results are divided into two groups
based on the usage of meta-learning. Our proposed meth-
ods consistently achieve SOTA performance across various
datasets and imbalance ratios. Specifically, Heuristic-CALA
surpasses the best compared baselines by 1.11% and 1.48%
for CIFAR10-LT and CIFAR100-LT, respectively. More-
over, it outperforms the best compared baselines by 1.22%
and 0.78% for the iNat 2018 and Places-LT benchmarks, re-
spectively. Notably, Meta-IADA achieves even superior per-
formance compared to Heuristic-CALA, as it leverages the
metadata distribution to adjust the model during training.
The accuracy of each class for the three methods, including
CE loss, LA, and Heuristic-CALA, is compared in Fig. 4.
While LA improves the accuracy of the tail classes, it com-
promises the performance of some head classes. Conversely,
our approach demonstrates optimal performance without ad-
versely affecting the head classes. Additionally, we utilize
the Wilcoxon signed-rank test to establish the significance
of our performance improvement. The obtained p-value of
0.03 signifies a statistically significant enhancement.

The superior performance of CALA compared to other LT
learning methods provides evidence of attribute imbalances
in LT datasets, an aspect that has usually been overlooked by
previous LT baselines. Furthermore, our approach surpasses
De-confound-TDE, which utilizes causal intervention dur-
ing training and counterfactual reasoning during inference,
demonstrating the effectiveness of CALA in mitigating spu-
rious correlations induced by class and attribute imbalances.
We then analyze the distinct characteristics of Heuristic-
CALA and Meta-CALA. Although Meta-CALA necessi-
tates an additional metadata set and increases time complex-
ity, it achieves SOTA performance by adjusting model train-
ing using a high-quality meta dataset. In contrast, Heuristic-
CALA does not require a metadata set and incurs only a
marginal increase in computational time compared to the
CE loss. Although Heuristic-CALA demonstrates lower per-
formance compared to Meta-CALA, it significantly outper-
forms existing methods. Detailed comparisons of training
times are provided in Section D.VIII of the Appendix.

Experiments for Attribute Imbalance
Three subpopulation shift datasets are adopted: CM-
NIST (Arjovsky et al. 2019), Waterbirds (Sagawa et al.
2020), and CelebA (Liu et al. 2015), each exhibiting sig-
nificant attribute imbalances within classes. Taking the Wa-
terbirds dataset as an example, it aims to classify birds as ei-
ther “waterbirds” or “landbirds,” with the spurious attribute
being the scene context of “water” or “land.” Two groups
(“land”, “waterbird”) and (“water”, “landbird”) are minority
groups. The experimental settings follow Yao et al. (2022),
utilizing the ResNet-50 model as the backbone network.
Since none of the compared methods rely on meta-learning,
we include only Heuristic-CALA in the comparison. We set
both τ1 and τ2 to 1, and K to 10. Performance is evaluated
using both average and worst-group accuracy metrics.

Results. Table 3 presents the comparison results on the
Waterbirds and CMNIST datasets, while those for CelebA
are provided in the Appendix. Our approach surpasses
other invariant learning methods in both average and worst-
group accuracy. Specifically, Heuristic-CALA surpasses the
second-best baselines by 1.65% in average accuracy and
1.15% in worst-group accuracy. This demonstrates its effec-
tiveness in improving model generalization and enhancing
performance for samples with rare attributes.



Benchmark ImageNet-GLT MSCOCO-GLT

Protocol CLT ALT GLT CLT ALT GLT

Method Acc. Prec. Acc. Prec. Acc. Prec. Acc. Prec. Acc. Prec. Acc. Prec.

CE loss 42.52% 47.92% 41.73% 41.74% 34.75% 40.65% 72.34% 76.61% 50.17% 50.94% 63.79% 70.52%
MixUp (Zhang et al. 2018) 38.81% 45.41% 42.11% 42.42% 31.55% 37.44% 74.22% 78.61% 48.90% 49.53% 64.45% 71.13%
LDAM (Cao et al. 2019) 46.74% 46.86% 42.66% 41.80% 38.54% 39.08% 75.57% 77.70% 55.52% 56.21% 67.26% 70.70%
cRT (Kang et al. 2020) 45.92% 45.34% 41.59% 41.43% 37.57% 37.51% 73.64% 75.84% 49.97% 50.37% 64.69% 68.33%
De-confound-TDE (Tang et al. 2020) 45.70% 44.48% 41.40% 42.36% 37.56% 37.00% 73.79% 74.90% 50.76% 51.68% 66.07% 68.20%
BLSoftmax (Ren et al. 2020) 45.79% 46.27% 41.32% 41.37% 37.09% 38.08% 72.64% 75.25% 49.72% 50.65% 64.07% 68.59%
BBN (Zhou et al. 2020) 46.46% 49.86% 43.26% 43.86% 37.91% 41.77% 73.69% 77.35% 51.83% 51.77% 64.48% 70.20%
RandAug (Cubuk et al. 2020) 46.40% 52.13% 46.29% 46.32% 38.24% 44.74% 76.81% 79.88% 53.69% 54.71% 67.71% 72.73%
LA (Menon et al. 2021) 46.53% 45.56% 41.73% 41.74% 37.80% 37.56% 75.50% 76.88% 50.17% 50.94% 66.17% 68.35%
IFL (Tang et al. 2022) 45.97% 52.06% 45.89% 46.42% 37.96% 44.47% 74.31% 78.90% 52.86% 53.49% 65.31% 72.24%
RISDA (Chen et al. 2022) 46.31% 51.24% 43.65% 43.23% 38.45% 42.77% 74.34% 78.27% 51.58% 52.28% 66.85% 71.36%
CSA (Shi et al. 2023) 46.49% 50.77% 43.03% 44.05% 37.22% 42.01% 74.25% 78.56% 52.34% 52.11% 64.78% 69.10%
BKD (Zhang et al. 2023) 46.51% 50.15% 42.17% 41.83% 37.93% 41.50% 75.82% 78.23% 51.88% 51.23% 65.48% 70.59%
Heuristic-CALA (Ours) 54.13% 58.38% 51.88% 52.75% 44.71% 50.82% 79.14% 82.04% 56.67% 57.78% 69.04% 75.51%

MetaSAug (Li et al. 2021) 50.53% 55.21% 49.12% 48.56% 41.27% 47.38% 77.89% 79.45% 54.87% 54.78% 67.83% 73.05%
Meta-CALA (Ours) 55.14% 59.47% 52.76% 53.66% 45.83% 51.36% 80.05% 82.98% 58.99% 59.56% 71.05% 76.21%

Table 4: Comparison of accuracy and precision of the CLT, GLT, and ALT protocols on ImageNet-GLT and MSCOCO-GLT.

Figure 5: Influence of different τ1 and τ2 values on CIFAR-
LT with imbalance ratios of 10:1 and 100:1.

Experiments for Class & Attribute Imbalance
We consider two GLT benchmarks, ImageNet-GLT and
MSCOCO-GLT (Tang et al. 2022). Each benchmark consists
of three protocols: CLT, ALT, and GLT, involving changes
in the class, attribute, and both class and attribute distribu-
tions from training to testing. The experimental settings fol-
low those in Tang et al. (2022), utilizing ResNeXt-50 (Xie
et al. 2017) as the backbone network. For Meta-CALA, we
optimize the adjustment network using Adam with an ini-
tial learning rate of 1× 10−3. To construct the metadata, we
randomly select two samples per group and class from the
training data. Additionally, we set τ1 and τ2 to 1.5 and 1 for
the CLT protocol. Both τ1 and τ2 are set to 1 for the ALT
and GLT protocols. We report both accuracy and precision
to provide a comprehensive evaluation.

Results. The comparison results for ImageNet-GLT and
MSCOCO-GLT are presented in Table 4, with some results
sourced from the IFL (Tang et al. 2022) paper. As observed,
there is a significant performance decline from the CLT
protocol to the GLT protocol, highlighting the challenge
posed by attribute imbalance. Heuristic-CALA, which incor-
porates two adjustment terms to address both class and at-
tribute imbalances, achieves substantial improvements over
other methods across all three protocols. Furthermore, Meta-
CALA attains SOTA performance by leveraging metadata
information to adjust the model during training.

ImageNet-GLT MSCOCO-GLT

Setting Acc. Prec. Acc. Prec.

Heuristic-CALA 44.71% 50.82% 69.04% 75.51%
w/o u(y) 42.51% 46.28% 67.49% 72.34%
w/o v(x, y) 37.80% 37.56% 66.17% 68.35%

Table 5: Accuracy and precision on the GLT protocol of the
ImageNet-GLT and MSCOCO-GLT benchmarks.

Sensitivity and Ablation Studies
We perform sensitivity analyses on τ1 and τ2, which govern
the influence of the two adjustment terms. The results for
Heuristic-CALA are shown in Fig. 5. τ2 = 1 yields the best
performance across different imbalance ratios. For τ1, the
optimal value is 1 under a 10:1 ratio, while a value of 1.5 is
optimal under a 100:1 ratio. These findings suggest that as
the class imbalance becomes more pronounced, a larger τ1 is
preferable. Additionally, we perform ablation studies on the
CALA loss, considering two settings that remove u(y) and
v(x, y) separately. The results, presented in Table 5, indicate
that both terms are necessary and crucial for addressing class
and attribute imbalances. Furthermore, the role of the CCPD
ratio v(x, y) is generally more significant than that of the
class priors u(y) under GLT learning.

Conclusion
This study underscores the importance of directly estimat-
ing the CCPD ratio between the training and test data in
addressing GLT learning. We first introduce a novel logit-
adjusted loss function, termed CALA, which incorporates
both class priors and the CCPD ratio as adjustment terms.
Subsequently, we propose two methods for estimating the
CCPD ratio in the CALA loss: a K-neighborhood-based
approach and a meta-learning-based approach. These meth-
ods give rise to two logit adjustment techniques, Heuristic-
CALA and Meta-CALA. Extensive experiments validate the
efficacy of our methodologies in addressing both class- and
attribute-wise imbalances, achieving SOTA performance
across various learning scenarios.
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A Regularization Analysis of CALA Loss

We elucidate the significance of the CALA loss from a regularization perspective. The loss function, which
adjusts the logits, can be expressed as follows:

ℓ (ai, yi) = − log
exp(ai,yi +∆ai,yi)∑
c∈[C] exp(ai,c +∆ai,c)

, (A.1)

where ai = f(xi) represents the logit vector associated with sample xi. C denotes the number of classes.
The CALA loss for sample xi is defined as follows:

ℓCALA(ai, yi) = − log
exp[ai,yi

+ τ1 log ptr(y = yi) + τ2 log
ptr(x|y=yi)
pte(x|y=yi)

]∑
c∈[C] exp[ai,c + τ1 log ptr(y = c) + τ2 log

ptr(x|y=c)
pte(x|y=c) ]

. (A.2)

Accordingly, the logit adjustment term for category c is ∆ai,c = τ1 log ptr(y = c) + τ2 log
ptr(x|y=c)
pte(x|y=c) .

Utilizing the first-order Taylor expansion, we can obtain the following expression for the logit-adjusted
Cross-Entropy (CE) loss:

ℓ(a+∆a) ≈ ℓ(a) + (
∂ℓ

∂a
)T∆a = ℓ(a) + (q − y)T∆a, (A.3)

where q = Softmax(a) represents the probability vector. Consequently, the regularization term for the
logit-adjusted loss can be defined as R = (q − y)T∆a. Next, we derive the regularization term of the
CALA loss using Eq. (A.3). The derivation process is outlined as follows:

ℓCALA(ai +∆ai)

≈ ℓCE(ai) + (
∂ℓ

∂ai
)T∆ai

= ℓCE(ai) + (qi − y)T∆ai

= ℓCE(ai) + [qi,1, · · · , qi,yi
− 1, · · · , qi,C ]×



τ1 log
ptr(y=1)
ptr(y=yi)

+ τ2 log
ptr(x|y=1)/pte(x|y=1)
ptr(x|y=yi)/pte(x|y=yi)

...
0
...

τ1 log
ptr(y=C)
ptr(y=yi)

+ τ2 log
ptr(x|y=C)/pte(x|y=C)
ptr(x|y=yi)/pte(x|y=yi)


= ℓCE(ai) +

∑
c̸=yi

qi,c[τ1 log
ptr(y = c)

ptr(y = yi)
+ τ2 log

ptr(x|y = c)/pte(x|y = c)

ptr(x|y = yi)/pte(x|y = yi)
].

(A.4)

  ∗Corresponding author. 



Therefore, we can conclude that the regularization term for all samples in CALA loss is given by

RCALA =

N∑
i=1

∑
c̸=yi

qi,c[τ1 log
ptr(y = c)

ptr(y = yi)
+ τ2 log

ptr(x|y = c)/pte(x|y = c)

ptr(x|y = yi)/pte(x|y = yi)
]. (A.5)

As we can see, this regularizer applies large penalties to samples belonging to tail classes, which are
characterized by high values of ptr(y = c)/ptr(y = yi), as well as samples with rare attributes within their
respective class in the training data, as indicated by high values of ptr(x|y=c)/pte(x|y=c)

ptr(x|y=yi)/pte(x|y=yi)
. These penalties

enhance the impact of these samples on model training, thereby improving their prediction performance.

B More Details of Heuristic-CALA

B.I Detailed Derivation Process

We first present the derivation of Eq. (6) in the main text. Let Vϵ denote the volume of the neighborhood
Nϵ(x). For the class-conditional probability density, we have the following approximation:

p(x|y) ≈ p(x′ ∈ Nϵ(x)|y)
Vϵ

=
p(x′ ∈ Nϵ(x), y)

p(y)Vϵ

=
p(y|x′ ∈ Nϵ(x))p(x

′ ∈ Nϵ(x))

p(y)Vϵ

≈ p(y|x′ ∈ Nϵ(x))p(x)Vϵ

p(y)Vϵ

=
p(y|x′ ∈ Nϵ(x))p(x)

p(y)
.

(A.6)

Thus, the following formula holds:

p(x|y) ≈ p(x)

p(y)
· p(y|x′ ∈ Nϵ(x)). (A.7)

Then, we have
ptr(x|y)
pte(x|y)

≈ ptr(x)

pte(x)
· ptr(y|x

′ ∈ Nϵ(x))

pte(y|x′ ∈ Nϵ(x))
· pte(y)
ptr(y)

. (A.8)

Incorporating Eq. (A.8) into the following formula

ptr(y|x)
pte(y|x)

=
ptr(x|y)
pte(x|y)

· ptr(y)
pte(y)

· pte(x)
ptr(x)

, (A.9)

we yield

pte(y|x) ≈ ptr(y|x) ·
pte(y|x′ ∈ Nϵ(x))

ptr(y|x′ ∈ Nϵ(x))
. (A.10)

From the above relation, we know that pte(y|x′ ∈ Nϵ(x))/ptr(y|x′ ∈ Nϵ(x)) should be utilized to adjust
the logits of samples. However, ensuring the same neighborhood sizes for all samples in practice is a
challenging task due to variations in sample characteristics. Specifically, the distances between each sample
and its surrounding samples vary. To this end, we employ K-nearest neighbors NK(x) to replace Nϵ(x),
while maintaining the underlying essence of pte(y|x′ ∈ Nϵ(x))/ptr(y|x′ ∈ Nϵ(x)).

B.II Algorithmic Details

The complete algorithm for Heuristic-CALA is delineated in Algorithm A-1. The value of the hyperpa-
rameter in MixUp can be directly set as 0.2, as recommended by the original paper (Zhang et al., 2018).
During implementation, we employ the cosine distance between the deep features of training samples to
compute the neighborhood of each sample. The reason for choosing cosine distance is its ability to be
invariant to the feature space’s dimensionality and its relatively low computational complexity. Moreover,
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considering that the neighborhood information of samples may be susceptible to the border effect and
outliers, we utilize the class averages of the corresponding values in the neighborhood to smooth the values
of pmx(y = c|x′ ∈ NK(x)) and ppr(y = c|x′ ∈ NK(x)). Denote NK,c(x) contains the samples with
label c in NK(x). For ppr(y = c|x′ ∈ NK(x)), we use the following formula to smooth it:

p̃pr(y = c|x′ ∈ NK(x)) = αppr(x
′ ∈ NK,c(x)) + (1− α)ppr(y = c|x′ ∈ NK(x)), (A.11)

where ppr(x
′ ∈ NK,c(x)) represents the average value of ppr(y = c|x′ ∈ NK(x)) for all sam-

ples in NK,c(x) and α is the smooth factor, which is fixed as 0.05 in our experiments. The value
of pmx(y = c|x′ ∈ NK(x)) is smoothed in the same way and p̃mx(y = c|x′ ∈ NK(x)) can
be obtained. Finally, the term ppr(y = c|x′ ∈ NK(x))/pmx(y = c|x′ ∈ NK(x)) is replaced by
p̃pr(y = c|x′ ∈ NK(x))/p̃mx(y = c|x′ ∈ NK(x)). When α = 1, the adjustment terms for samples in a
neighborhood are at the category level.

C More Details of Meta-CALA

C.I Extracted Training Characteristics

As stated in the main text, a total number of 42 characteristics are extracted from the classifier and input
into the adjustment network to estimate ptr(x|y)/pte(x|y). Denote the loss of sample xi as ℓi; the logit
vector is ai = f(xi); and the probability vector is qi = Softmax(ai). The deep feature of sample xi is
denoted as hi, which is output by the previous layer of the logit. The average feature for all samples in the
neighborhood of NK(xi) is denoted as hNK(xi). Detailed calculations and descriptions of the extracted
characteristics are presented in Table A-1. Moreover, the 21 characteristics presented in Table A-1 can
be further expanded through the sequence, thereby obtaining ζti,22 to ζti,42. Specifically, we examine the
differences in the characteristics between the current and previous iterations. For instance, for ℓti, its
sequence-extended feature is denoted as ζti,22 = ℓti − ℓt−1

i .

C.II Algorithmic Details

We further elaborate on the optimization process of Meta-CALA, presenting more comprehensive formulas.
First, a batch of training samples {xi, yi}ni=1 is selected, where n is the batch size and the updating of W
can be formulated as

Ŵ
(t)
←W (t) − η1

1

n

∑n

i=1
∇W ℓCALA

(
f(xi), yi; δi(ζ

(t)
i ,Ω(t))

)
, (A.12)

where η1 is the step size; δi and ζi refer to the adjustment vector and the training characteristics of xi.
After extracting the characteristics from the classifier, the parameters of the adjustment network Ω can be
updated on a minibatch of metadata {xmeta

i , ymeta
i }mi=1, with the following formula:

Ω(t+1) ← Ω(t) − η2
1

m

∑m

i=1
∇ΩℓCE

(
fŴ (xmeta

i ), ymeta
i

)
, (A.13)

where m and η2 are the minibatch size of metadata and the step size, respectively. Subsequently, the
parameters of the classifier network are updated using the resulting adjustment terms

W (t+1) ←W (t) − η1
1

n

∑n

i=1
∇W ℓCALA

(
f(xi), yi; δi(ζ

(t+1)
i ,Ω(t+1))

)
. (A.14)

The algorithm of Meta-CALA is presented in Algorithm A-2.

Algorithm A-1 Algorithm of Heuristic-CALA
Input: Training data Dtr = {xi, yi}Ni=1, neighborhood size K, tuning parameters τ1 and τ2, #iteration T ,

batch size n, and other training parameters;
Output: Trained classifier fW ;

1: Initialize the classifier fW ;
2: for t = 1 to T do
3: Sample a batch of data {xi, yi}ni=1 from Dtr;
4: Augment {xi, yi}ni=1 by MixUp;
5: Calculate the adjustment terms u(y) and v(x, y) for all classes across the samples in the mini-batch;
6: Update fW using ℓCALA with the SGD optimizer;
7: end for
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Quantity Formula Description
ζti,1 ℓti Loss
ζti,2 ati,yi

The logit vector corresponding to the ground-truth
class

ζti,3 gti = ∥yi − qt
i∥ The norm of loss gradient with respect to the logit

vector
ζti,4 qti,yi

The predicted probability corresponding to the
ground-truth class

ζti,5 zti = −
∑

c∈[C] q
t
i,c log(q

t
i,c) Uncertainty

ζti,6 γt
i = qti,yi

−maxc̸=yi q
t
i,c Margin

ζti,7 ℓ
t

i =

∑
xj∈NK (xi)

ℓtj

K The average loss for samples in NK(xi)

ζti,8 ati =

∑
xj∈NK (xi)

at
j,yj

K The average logit corresponding to the ground-truth
class for samples in NK(xi)

ζti,9 gti =

∑
xj∈NK (xi)

gt
j

K The average loss gradient with respect to the logit
vector for samples in NK(xi)

ζti,10 qti =

∑
xj∈NK (xi)

qtj,yj
K The average predicted probability corresponding to

the ground-truth class for samples in NK(xi)

ζti,11 zti =

∑
xj∈NK (xi)

zt
j

K The average uncertainty for samples in NK(xi)

ζti,12 γt
i =

∑
xj∈NK (xi)

γt
j

K The average margin for samples in NK(xi)

ζti,13 ℓti − ℓ
t

i The difference between ℓti and ℓ
t

i

ζti,14 ati,yi
− ati The difference between ati,yi

and ati
ζti,15 gti − gti The difference between gti and gti
ζti,16 qti,yi

− qti The difference between qti,yi
and qti

ζti,17 zti − zti The difference between zti and zti
ζti,18 γt

i − γt
i The difference between γt

i and γt
i

ζti,19 |NK,yi(xi)|/K The ratio of samples sharing the same label with xi

in the neighborhood NK(xi)
ζti,20 maxc̸=yi

|NK,c(xi)|/K The ratio of heterogeneous samples with the highest
proportion in the neighborhood NK(xi)

ζti,21 cos(hi,hNK(xi)) The cosine distance between the deep feature of xi

and the average feature of samples in the neighbor-
hood NK(xi)

Table A-1: Formulas and descriptions of extracted training characteristics.

D More Details of Experimental Investigation

D.I Introduction of Utilized Datasets

First, we utilize three long-tail (LT) benchmarks: CIFAR-LT, iNaturalist 2018, and Places-LT, which are
detailed as follows:

CIFAR-LT is the long-tailed version of CIFAR (Krizhevsky and Hinton, 2009) dataset. The original
CIFAR10 (CIFAR100) dataset consists of 50,000 images drawn from 10 (100) classes with even data
distribution. In other words, CIFAR10 (CIFAR100) has 5,000 (500) images per class. Following Cui
et al. (2019), we discard some training samples to construct imbalanced datasets. Two training sets with
imbalance ratios of 10:1 and 100:1 are compiled. As for test sets, we use the original balanced test sets.

iNaturalist (iNat) (Horn et al., 2018) is a large-scale dataset with images collected from the real world,
which has an extremely imbalanced class distribution. The iNat 2017 includes 579,184 training images in
5,089 classes with an imbalance ratio of 3,919:9, while the iNat 2018 is composed of 435,713 images from
8,142 classes with an imbalance ratio of 500:1.
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Algorithm A-2 Algorithm of Meta-CALA
Input: Training data Dtr = {xi, yi}Ni=1, metadata Dmeta = {xmeta

i , ymeta
i }Mi=1, batch size n, meta batch

size m, #iteration T , tuning parameters τ1 and τ2, neighborhood size K, and other training parameters;
Output: Learned parametrs W and Ω;

1: Initialize W (1) and Ω(1);
2: for t = 1 to T do
3: Sample n and m samples from Dtr and Dmeta;

4: Formulate Ŵ
(t)

by Eq. (A.12);
5: Update Ω(t+1) by Eq. (A.13);
6: Update W (t+1) by Eq. (A.14) with the resulting adjustment vectors δ;
7: end for

Places-LT (Liu et al., 2019) features an imbalanced training dataset consisting of 62,500 images distributed
across 365 classes. The class distribution adheres to a natural power law pattern, with individual classes
having a maximum of 4,980 images and a minimum of just 5 images. In contrast, the validation and testing
sets are meticulously balanced, each containing 20 and 100 images per class, respectively.

Moreover, three subpopulation shift datasets, including CMNIST, Waterbirds, and CelebA are employed.
Following Yao et al. (2022), these datasets are introduced as follows:

CMNIST consists of digits classified into two classes, with class 0 containing the original digits (0, 1, 2,
3, 4), and class 1 containing the remaining digits (5, 6, 7, 8, 9). The color of the digits is considered a
spurious attribute, with the proportion of red to green samples being 8:2 in class 0, and 2:8 in class 1. In
the validation set, the proportion of green to red samples is 1:1 for both classes, while in the test set, the
proportion of green to red samples is 1:9 in class 0 and 9:1 in class 1. The training, validation, and test
sets comprise 30,000, 10,000, and 20,000 samples, respectively. Following the manner of Arjovsky et al.
(2019), labels were randomly flipped with a probability of 0.25.

Waterbirds (Sagawa et al., 2020) aims to classify birds as either "waterbirds" or "landbirds," with the
spurious attribute being the scene context of "water" or "land." The Waterbirds dataset is a synthetic
dataset that comprises images composed of a bird image taken from the CUB dataset (Wah et al., 2011)
superimposed on a background randomly sampled from the Places dataset (Zhou et al., 2017). The bird
categories in CUB consist of both landbirds and waterbirds. Two groups, including ("land" background,
"waterbird") and ("water" background, "landbird"), are considered minority groups. The training set
comprises 4,795 samples, of which 56 samples are "waterbirds on land" and 184 samples are "landbirds on
water." The remaining training samples consist of 3,498 samples of "landbirds on land" and 1,057 samples
of "waterbirds on water."

CelebA (Liu et al., 2015) is a dataset that contains face images of celebrities, with the classification labels
being the hair color of the individuals, including "blond" or "not blond." The spurious attribute in this
dataset is gender, i.e., male or female. In CelebA, the minority groups are ("blond," male) and ("not blond,"
female), with the number of samples for each group being 71,629 (dark hair, female), 66,874 (dark hair,
male), 22,880 (blond hair, female), and 1,387 (blond hair, male).

Additionally, two generalized long-tail (GLT) benchmarks, ImageNet-GLT and MSCOCO-GLT, are
utilized. Following Tang et al. (2022), they are detailed as follows:

ImageNet-GLT is a long-tailed version of the ImageNet (Russakovsky et al., 2015) dataset, which has
three protocols, including CLT, ALT, and GLT. Among them, CLT and GLT protocols share the same
training set, i.e., Train-GLT, with 113k samples over 1k classes. ALT protocol adopts a class-wise balanced
Train-CBL with 114k images. The evaluation splits {Val, Test-CBL, Test-GBL} have {30k, 60k, 60k}
samples, respectively. The number of samples for each class in Train-GLT ranges from 570 to 4, while all
classes have 114 samples in Train-CBL.

MSCOCO-GLT is a long-tailed subset of MSCOCO-Attribute (Patterson and Hays, 2016; Lin et al.,
2014) with 196 different attributes. Tang et al. (2022) cropped each object with multi-label attributes as
independent images. Under CLT and GLT protocols, there are {Train-GLT, Val, Test-CBL, Test-GBL}
with {144k, 2.9k, 5.8k, 5.8k} samples over 29 classes, where the number of samples for each class ranges
from 61k to 0.3k. The ALT protocol has {32k, 1.4k, 2.9k} images for {Train-CBL, Val, Test-GBL}.
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Figure A-1: (a): Distribution of the training data and classifiers of Baseline (CE loss), LA, and Heuristic-
CALA. (b): Distribution of the test data. (c): Accuracy of the classifiers using the three methods.

D.II Introduction of Compared Baselines

Compared Methods for LT Benchmarks In the CIFAR-LT benchmark comparison, we evaluate both
traditional and advanced LT baselines, including Class-Balanced CE loss (Cui et al., 2019), Class-Balanced
Focal loss (Cui et al., 2019; Lin et al., 2017), Label-Distribution-Aware Margin with Data Re-Weighting
strategy (LDAM-DRW) (Cao et al., 2019), Logit Adjustment (LA) (Menon et al., 2021), Adaptive
Logit Adjustment (ALA) (Zhao et al., 2022), Balanced Knowledge Distillation (BKD) (Zhang et al.,
2023), Mixup Shifted Label-Aware Smoothing model (MiSLAS) (Zhong et al., 2021), Label Distribution
DisEntangling (LADE) (Hong et al., 2021), Gaussian Clouded Logit (GCL) (Li et al., 2022), Context Shift
Augmentation (CSA) (Shi et al., 2023), and Sample-Adaptive Feature Augmentation with LDAM-DRW
(LDAM-DRW-SAFA) (Hong et al., 2022). Additionally, we incorporate De-confound-TDE (Tang et al.,
2020), which applies causal intervention during training and counterfactual reasoning during inference.
Furthermore, we examine two meta-learning-based approaches, namely Meta-Weight-Net (Shu et al., 2019)
and MetaSAug (Li et al., 2021), in the evaluation.

For iNat 2018 and Places-LT datasets, we conduct a comparison of several methods designed for LT
learning. The compared methods include Decoupling (Kang et al., 2020), LA (Menon et al., 2021),
Distribution Alignment (DisAlign) (Zhang et al., 2021), MiSLAS (Zhong et al., 2021), LADE (Hong et al.,
2021), GCL (Li et al., 2022), LDAM-DRW-SAFA (Hong et al., 2022), and BKD (Zhang et al., 2023).
Additionally, Meta-Weight-Net (Shu et al., 2019) and MetaSAug (Li et al., 2021) are also involved in the
comparison.

Compared Methods for Subpopulation Shift Datasets In accordance with Yao et al. (2022), we
conduct a comparative analysis of various robust methods for invariant feature learning. The methods
include Invariant Risk Minimization (IRM) (Arjovsky et al., 2019), Information Bottleneck Invariant Risk
Minimization (IB-IRM) (Ahuja et al., 2021), Variance Risk Extrapolation (V-REx) (Krueger et al., 2021),
Correlation Alignment (CORAL) (Sun and Saenko, 2016), Group Distributionally Robust Optimization
(GroupDRO) (Sagawa et al., 2020), Domain Mixup (DomainMix) (Xu et al., 2020), Fish (Shi et al., 2022),
Learn Invariant Predictors via Selective Augmentation (LISA) (Yao et al., 2022), Confidence-based Model
Selection (COSMOS) (Chen et al., 2023), and Progressive Data Expansion (PDE) (Deng et al., 2024).

Compared Methods for GLT Benchmarks The experimental comparisons involve several re-balancing
methods designed to achieve better feature backbones. These methods include two-stage re-sampling
approaches such as Classifier Re-training (cRT) (Kang et al., 2020), posthoc distribution adjustment
techniques such as De-confound-TDE (Tang et al., 2020) and LA (Menon et al., 2021), multi-branch models
with diverse sampling strategies such as Bilateral-Branch Network (BBN) (Zhou et al., 2020), invariant
feature learning methods such as Invariant Feature Learning (IFL) (Tang et al., 2022), implicit semantic
augmentation methods such as Reasoning-based Implicit Semantic Data Augmentation (RISDA) (Chen
et al., 2022) and MetaSAug (Li et al., 2021), re-weighting loss functions such as Balanced Softmax
(BLSoftmax) (Ren et al., 2020), LDAM (Cao et al., 2019), and BKD (Zhang et al., 2023), and data
augmentation methods such as MixUp (Zhang et al., 2018), Random Augmentation (RandAug) (Cubuk
et al., 2020), and Context Shift Augmentation (CSA) (Shi et al., 2023). These methods are compared with
Heuristic-CALA and Meta-CALA to evaluate their effectiveness in GLT learning scenarios.
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Dataset Waterbirds CMNIST CelebA

Method Avg. Worst Avg. Worst Avg. Worst

CORAL (Sun and Saenko, 2016) 90.3% 79.8% 71.8% 69.5% 93.8% 76.9%
IRM (Arjovsky et al., 2019) 87.5% 75.6% 72.1% 70.3% 94.0% 77.8%
GroupDRO (Sagawa et al., 2020) 91.8% 90.6% 72.3% 68.6% 92.1% 87.2%
DomainMix (Xu et al., 2020) 76.4% 53.0% 51.4% 48.0% 93.4% 65.6%
IB-IRM (Ahuja et al., 2021) 88.5% 76.5% 72.2% 70.7% 93.6% 85.0%
V-REx (Krueger et al., 2021) 88.0% 73.6% 71.7% 70.2% 92.2% 86.7%
Fish (Shi et al., 2022) 85.6% 64.0% 46.9% 35.6% 93.1% 61.2%
LISA (Yao et al., 2022) 91.8% 89.2% 74.0% 73.3% 92.4% 89.3%
COSMOS (Chen et al., 2023) 91.7% 89.3% 73.5% 72.4% 91.0% 88.6%
PDE (Deng et al., 2024) 92.4% 90.5% 78.1% 75.9% 92.1% 91.1%
Heuristic-CALA (Ours) 94.3% 91.8% 79.5% 77.0% 94.4% 91.9%

Table A-2: Comparison of the average and worst-group accuracy on three subpopulation shifts datasets.

D.III Experiments on Synthetic Dataset

To more intuitively demonstrate the effectiveness of the proposed CALA loss function, the assessment is
also carried out on synthetic data, with consideration for binary classification. The training data have both
class and attribute biases. For the class labeled "+1" in the training set, we generate the dataset by sampling
from two two-dimension (2D) Gaussian distributions with means of (+0.8,+0.8) and (+1.2,+1.2),
respectively. In contrast, for the class labeled "−1" in the training data, we sample the dataset from a
Gaussian distribution with a mean of (−1,−1). For the test dataset, we generate the data from a 2D
Gaussian distribution with a mean of (+1,+1) for class "+1," and from a 2D Gaussian distribution with
a mean of (−1,−1) for class "−1". The covariance matrices of all the aforementioned distributions are

equal to
[

0 1
1 0

]
.

It is obvious that there is attribute bias in the training and test data for class "+1". In order to simulate
the long-tailed distribution of the training data, we set the class imbalance ratio to 24:1. To compare the
performance of three loss functions, namely CE, LA, and CALA losses, a linear classifier of the form
f = wx + b is employed. The training and test datasets contain 10,000 samples in total, with 9,600
samples for class "+1" and 400 samples for class "−1" in the training data, and 5,000 samples for both
classes in the test data.

Fig. A-1(a) depicts the distribution of the training data and the classifiers trained with the Baseline (CE
loss), LA, and Heuristic-CALA. Fig. A-1(b) portrays the test data distribution. The accuracy of the
classifiers trained using the three losses is presented in Fig. A-1(c). Remarkably, the classifier trained
with Heuristic-CALA exhibits greater proximity to the Bayesian optimal classifier compared to those
trained using LA and CE losses. Since LA is adept at mitigating class imbalances, it outperforms Baseline.
Consequently, Heuristic-CALA yields the highest accuracy, whereas LA ranks second.

Figure A-2: Influence of different K values on CMNIST, CIFAR10-LT, and CIFAR100-LT.
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Model ResNet-110 Wide ResNet-28-10

Dataset CIFAR10 CIFAR100 CIFAR10 CIFAR100

Large Margin (Liu et al., 2016) 6.46% 28.00% 3.69% 18.48%
Disturb Label (Xie et al., 2016) 6.61% 28.46% 3.91% 18.56%
Focal loss (Lin et al., 2017) 6.68% 28.28% 3.62% 18.22%
Center loss (Wen et al., 2016) 6.38% 27.85% 3.76% 18.50%
Lq loss (Zhang and Sabuncu, 2018) 6.69% 28.78% 3.78% 18.43%
ISDA (Wang et al., 2019) 5.98% 26.35% 3.58% 17.98%
Heuristic-CALA (Ours) 5.31% 25.02% 2.80% 17.25%

Table A-3: Error rate of different methods on standard CIFAR datasets.

D.IV Complete Results on Subpopulation Shift Datasets

Table A-2 presents a comprehensive comparison of results across three subpopulation shift datasets.
The results demonstrate that Heuristic-CALA consistently achieves the highest average and worst-group
accuracy across these datasets. Specifically, Heuristic-CALA outperforms the second-best baselines by
1.23% and 1.03% in average and worst-group accuracy, respectively. This indicates its effectiveness in
enhancing model generalization and improving performance for samples with rare attributes. Additionally,
we apply the Wilcoxon signed-rank test to assess the significance of our performance improvement in
terms of both average and worst accuracy. The resulting p-value of 0.03, which is below the threshold of
0.05, indicates statistically significant enhancement.

D.V More Sensitivity Analysis

Sensitivity analyses are conducted to investigate the impact of varying values of K, which determines the
size of the neighborhood. The results for CMNIST, CIFAR10-LT, and CIFAR100-LT are presented in
Fig. A-2. The optimal performance was obtained with K = 10 for CMNIST, K = 40 for CIFAR10-LT,
and K = 80 for CIFAR100-LT. These findings suggest that as the label set size increases, a larger K
is preferable. For all our experiments, K values were selected from the set {10, 20, 40, 60, 80, 100},
consistently yielding satisfactory results. Consequently, we recommend selecting K from this set.

D.VI Experiments on Standard CIFAR Datasets

We conduct experiments to evaluate the effectiveness of the CALA loss on the standard CIFAR datasets us-
ing two widely-used networks, including ResNet-110 (He et al., 2016) and Wide ResNet-28-10 (Zagoruyko
and Komodakis, 2016). In this case, with the class distribution being balanced, only the adjustment term
v(x, y) is effective. The compared methods follow those in the ISDA paper (Wang et al., 2019), including
Large Margin (Liu et al., 2016), Disturb Label (Xie et al., 2016), Focal loss (Lin et al., 2017), Center
loss (Wen et al., 2016), Lq loss (Zhang and Sabuncu, 2018), and ISDA (Wang et al., 2019). To ensure a
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Figure A-3: Top-1 accuracy of LA and Dynamic-LA on CIFAR10-LT (a) and CIFAR100-LT (b) with the
imbalance ratios of 10:1 and 100:1.
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Networks Parameters Additional cost

CIFAR10 CIFAR100

ResNet-32 0.5M 6.6% 6.1%
ResNet-56 0.9M 6.2% 5.9%
ResNet-110 1.7M 1.9% 1.7%

DenseNet-BC-121 8.0M 0.7% 0.2%
DenseNet-BC-265 33.3M 0.5% 0.1%

Wide ResNet-16-8 11.0M 0.5% 0.1%
Wide ResNet-28-10 36.5M 0.4% 0.1%

Table A-4: Additional training time increased by Heuristic-CALA compared with CE loss.

Model Parameters Meta-Weight-Net MetaSAug Meta-CALA

ResNet-32 0.5M 8550 8612 8639
ResNet-56 0.9M 8701 8734 8766

Table A-5: Comparison of training time (s) when meta-learning is utilized in every iteration.

fair comparison, we only involve Heuristic-CALA in comparison as all compared methods do not rely on
meta-learning.

We optimize the classifiers using SGD with an initial learning rate of 0.1 and a batch size of 128. For the
ResNet model, we set the weight decay to 1×10−4 and decay the learning rate by 0.1 at the 80th and
120th epochs, with a total of 160 epochs. For the Wide ResNet model, we set the weight decay to 5×10−4

and decay the learning rate by 0.2 at the 60th, 120th, 160th, and 200th epochs, with a total of 240 epochs.
Moreover, the values of τ1 and τ2 are both set to 1.

The comparison results are presented in Table A-3. It is evident that the Heuristic-CALA approach
demonstrates superior performance and achieves state-of-the-art performance on the standard CIFAR
datasets. These outcomes suggest the presence of attribute imbalances within the standard CIFAR datasets.
Additionally, CALA loss is demonstrated to be an effective approach to address attribute imbalances and
mitigate spurious correlations that may arise as a result of such imbalances.

D.VII Comparison between LA and Dynamic-LA

As discussed in the main text, when K = +∞, Heuristic-CALA utilizes ppr(y) to adjust the logits of
samples for all classes. We refer to this adjusted approach as Dynamic-LA. The difference between LA
and Dynamic-LA is that Dynamic-LA employs the class proportions of the predicted labels, which vary
with model training. We compare the performance of these two methods on long-tailed CIFAR datasets,
with the results presented in Fig. A-3. Dynamic-LA surpasses LA in all cases as the adjustment terms in
Dynamic-LA can vary based on the model’s performance during training. Indeed, the performance gap
between classes cannot be attributed solely to the label frequency of the training data. For example, Xu
et al. (2021) have demonstrated that classes with high variances tend to be more challenging and experience
inferior performance. Thus, the variances of classes also affect their learning difficulty. A category with
high label frequency and high variance may not outperform a category with low label frequency and low
variance. Merely relying on class priors to adjust the training objective is insufficient since many other
factors, besides class priors, affect the learning difficulty of classes. The label frequency of the predicted
labels can more accurately reflect the relative learning difficulty of classes concerning the model.

D.VIII Results for Training Efficiency

We calculate the additional training time introduced by Heuristic-CALA compared with CE loss using
various backbones on standard CIFAR data, including ResNet (He et al., 2016), Wide ResNet (Zagoruyko
and Komodakis, 2016), and DenseNet (Huang et al., 2017). The experiments are conducted on a machine
equipped with a single NVIDIA RTX 3090 GPU and 128 GB of RAM. The results, as reported in
Table A-4, indicate that in comparison to the CE loss, Heuristic-CALA incurs only a marginal increase in
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computational time. In addition, we calculate the training time of Meta-CALA and previous meta-learning-
based approaches, including MetaSAug (Li et al., 2021) and Meta-Weight-Net (Shu et al., 2019). The
comparison results are reported in Table A-5, verifying that the training time required for Meta-CALA is
comparable with previous meta-learning-based algorithms.
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