ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR
ESTIMATES
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ABSTRACT. We develop both bilinear theory and commutator estimates in the context of
entangled dilations, specifically Zygmund dilations (x1, 2, z3) + (6121, 0222, d1d223) In
R?. We construct bilinear versions of recent dyadic multiresolution methods for Zygmund
dilations and apply them to prove a paraproduct free 71 theorem for bilinear singular in-
tegrals invariant under Zygmund dilations. Independently, we prove linear commutator
estimates even when the underlying singular integrals do not satisfy weighted estimates
with Zygmund weights. This requires new paraproduct estimates.

1. INTRODUCTION

“Entangled” systems of dilations, see Nagel-Wainger [22], in the m-parameter product
space R? =[], R% have the general form

(@1, -y @) > (ST G oy S S g Y Sy 6 > 0,

and appear naturally throughout analysis. For instance, in R? the Zygmund dilations
(21,22, 23) — (6121, 6222, 6102x3) are compatible with the group law of the Heisenberg
group, see e.g. Miiller-Ricci-Stein [21]. Even these simplest entangled dilations are not
completely understood, especially when it comes to the associated Calderén-Zygmund
type singular integral operators (SIOs).

Until recently, multiresolution methods were still missing in the Zygmund dilations
setting, as pointed out in [5]. This was a big restriction on how to go about developing
singular integral theory. However, the last two authors together with T. Hytonen and
E. Vuorinen recently developed this missing Zygmund multiresolution analysis in [14].
Such dyadic representation theorems and related multiresolution techniques had been
highly influential in recent advances on SIOs and their applications (see e.g. [12,13, 20,
23]), but developing them in the entangled situation required new ideas. These tools
then yielded very delicate weighted norm inequalities L”(w) — LP(w) for general non-
convolution form Zygmund singular integrals in the optimal generality of Zygmund
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weights (introduced by Fefferman-Pipher [6])

[w]a, , == sup (1/w(ac) dx) (1/w1/(p1)(x) dx)p ' < 00, 1<p<oo,
" rerz M| 1 1] Jr
where the supremum is over Zygmund rectangles I = I x Iy x I3, ((I3) = £(11)¢(12).

In fact, there is a precise threshold: if the kernel decay in terms of the deviation of
z € R3 from the “Zygmund manifold” |21 2| = |23 is not fast enough, singular integrals
invariant under Zygmund dilations fail to be bounded with Zygmund weights. We con-
structed counterexamples and showed the delicate positive result in the optimal range
using the new multiresolution analysis. Previous results include [5,6,11,24].

This rather striking threshold for weighted estimates means that it is, in particular,
unclear in what generality natural estimates for commutators [b, 7] = b7 — T'(b-) hold.
Of course, ever since the classical one-parameter result of Coifman—Rochberg—Weiss [2],
stating that ||[b, T||Lr—1» ~ [|b|lBMO, commutator estimates have been a large and fun-
damental part of the theory of SIOs and their applications. Commutator estimates in the
Zygmund dilation setting were previously considered in [5] using the so-called Cauchy
integral trick. That method requires weighted bounds with Zygmund weights — this is
because it uses the fact that natural Zygmund adapted BMO functions generate Zyg-
mund weights. But we now know [14] that such weighted bounds are quite delicate —
and it turns out that the commutator bounds are true even in the regime where weighted
estimates fail. We prove the following.

1.1. Theorem. Let b € L} and T be a linear paraproduct free Calderén-Zygmund operator
adapted to Zygmund dilations as in [14]. Let 6 € (0, 1] be the kernel exponent measuring the
decay in terms of the Zygmund ratio

0
Dy(z) := 2122 + 3]
lz3| |12l

116 Tl —r S [0llbmo,» 1 <p < o0

Then for all such 6 we have

As weighted estimates only hold with § = 1, this requires a proof based on the mul-
tiresolution decomposition [14] and a new family of “Zygmund paraproducts”. Study-
ing paraproducts is also interesting from the technical viewpoint that, generally, proofs
of T'1 theorems display a structural decomposition of SIOs into their cancellative parts
and paraproducts. The new Zygmund theory in [14] is designed for the fully cancellative
case leaving out paraproducts and BMO considerations, so this is the first paper, as far as
we know, where paraproducts are considered in the Zygmund situation. They are tricky
objects in the entangled situation. However, while this is also a step forward towards a
full T'1 theorem in the Zygmund setting, the commutator theory that we develop does
not require so-called partial paraproducts, and so the paraproduct tools developed here
are not yet sufficient to prove a 7'1 theorem in the non-cancellative case. We also men-
tion that during our proof we include some results of independent interest, mainly, a
new, extremely short proof of the A, extrapolation theorem [3].

Moving to a different direction, we push the Zygmund multiresolution methods [14]
to the multilinear setting and study bilinear SIOs invariant under Zygmund dilations. A
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classical model of an n-linear SIO T in R? is obtained by setting

T(fi, ., fa)@) =U(h®-® fu)(@,...,2), xR f:RI=C,

where U is a linear SIO in R™“. See e.g. Grafakos—Torres [9] for the basic theory. Estimates
for classical multilinear SIOs play a fundamental role in pure and applied analysis — for
example, LP estimates for the homogeneous fractional derivative D*f = F~1(|¢ 1 F(€))
of a product of two or more functions, the fractional Leibniz rules, are used in the area of
dispersive equations, see e.g. Kato—-Ponce [15] and Grafakos—Oh [8]. We do not otherwise
attempt to summarize the massive body of literature here and simply mention that the
closest existing result is perhaps [18], which develops multiresolution methods in the
non-entangled multilinear bi-parameter case.

In this paper we prove the following “paraproduct free” T'1 theorem for bilinear Zyg-
mund SIOs.

1.2. Theorem. Let T be a bilinear paraproduct free Calderén- Zygmund operator adapted to Zyg—
mund dilations as in Definition 3.5. Let 1 < p1,pa < 00 and <p< oo wlth 1.— pll + Fz'
Then we have

HT(flv fQ)HLP S HleLl’l Hf2HLP2.

Notice that we can conclude the full bilinear range, including the quasi-Banach range,
just from the paraproduct free T'1 type assumptions. Also relevant is the fact that e.g. the
appearing weak boundedness condition only involves Zygmund rectangles — that is, the
T'1 assumptions of Definition 3.5 are Zygmund adapted and in this respect weaker than
the corresponding tri-parameter assumptions.

It would also be very interesting to develop weighted theory with suitable kernel as-
sumptions like in the linear case [14]. That is, to generalize our recent paper [19] from
the standard multi-parameter setting to this entangled Zygmund setting. Recall that it
would be key to deal with “genuine” multilinear weights, i.e., only impose a joint A,
condition on the associated tuple of weights w = (wq,...,w,). While such multilinear
weighted estimates had been known for one-parameter SIOs for over 10 years by the
influential paper [16], the multi-parameter version was only recently solved in [19]. The
entangled situation is very difficult, though, and we do not achieve such estimates in
this paper. Indeed, we are splitting our operators in a way that is sufficient for the un-
bounded estimates, but not for the weighted estimates. In fact, already the unweighted
estimates are surprisingly delicate and the only way we found to achieve them was with
using this additional decomposition and even some sparse domination tools.

Here is an outline of the paper. In Section 2 we develop the fundamental Zygmund
adapted multiresolution methods in the bilinear setting. Section 3 introduces the sin-
gular integrals and the corresponding testing conditions, and Section 4 uses the kernel
estimates to bound the various coefficients arising in the multiresolution analysis. Sec-
tion 5 contains a further decomposition of our dyadic model operators — this is then
required in Section 6, where the L estimates of these model operators are proved. Sec-
tion 6 concludes with the proof of Theorem 1.2. Section 7 contains the proof of the linear
commutator estimates, Theorem 1.1, and the corresponding theory of product and lit-
tle BMO commutators in the Zygmund setting. Appendix A considers bilinear variants
of the multipliers studied by Fefferman-Pipher [6] — this is motivation for the abstract
definitions of Section 3.
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2. BILINEAR ZYGMUND MULTIRESOLUTION ANALYSIS

2.A. Dyadic intervals, Zygmund rectangles and basic randomization. Given a dyadic
grid D, I € Dand k € Z, k > 0, we use the following notation:

(1) ¢(I) is the side length of I.

(2) I®) € D is the kth parent of I, i.e., I C I®) and ¢(I*F)) = 2¥¢(TI).

(3) ch(I) is the collection of the children of I, i.e., ch(I) = {J € D: J) = I}.

(4) Erf = (f)11y is the averaging operator, where (f); = f, f = ﬁ J;f

(5) Arf is the martingale difference Ay f = Z]Ech([) E;f — FErf.

(6) Arxf or A¥f is the martingale difference block

Appf=A81f= ) Asf.
JED
JE =1

We will have use for randomization soon. While often the grids are fixed and we sup-
press the dependence on the random parameters, it will be important to understand the
definitions underneath. So we go ahead and introduce the related notation and standard
results now. Let Dy be the standard dyadic grid in R. For w € {0, 1}2, w = (wi)icz, we
define the shifted lattice

D(w) := {L+w::L+ Z Z_iwi:LEDo}.
12 270<l(L)

Let P, be the product probability measure on {0, 1}%. We recall the following notion of a
good interval from [10]. We say that G € D(w, k), k > 2,if G € D(w) and

(k)
2.1) d(G,0G%) > E(i) =220(@).
Notice that for all L € Dy and k& > 2 we have
1
(2.2) P,{w: L+w € D(w,k)}) = 7

The key implication (of practical use later) of G € D(w, k) is that for n € Z with |n| < 282
we have
(2.3) G+n)® =c®  Gin:=G+nlG).

In fact, we will not need much more of randomization — it only remains to move the
notation to our actual setting of R? = R x R?. We define for

o= (c!,0% 0% € {0,1}2 x {0,1}% x {0,1}~
that
D(0) :=D(c') x D(c?) x D(c?).

Let
Pg = ]P)o.l X ]P)Uz X ]P)Ufs.
For k = (k', k2, k%), k', k2 k3 > 2, we define

D(o,k) = D(c', k') x D(c?, k%) x D(o3, k).
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We also e.g. write
D(o, (k',0,k%)) = D(c', k') x D(0”) x D(c®, k%),

that is, a 0 will designate that we do not have goodness in that parameter.
As for most of the argument o is fixed, it makes sense to mainly suppress it from the
notation and abbreviate, whenever possible, that

D" =D(0™), D™ k™) =D"(k™), m=123

Then also
3

3
D=D(o)=[[ D", Dk =][D"G*"™).
m=1 m=1

We define the Zygmund rectangles Dz C D by setting
3
(2.4) Dy = {1 = [[ " e p: etihe(r?) = 6(13)}.
m=1

Obviously, Dz (k) is defined similarly as above but also requires anzl I e D(k).

3
m=1

2.B. Zygmund martingale differences. Given I = []
martingale difference operator

I we define the Zygmund

A],Zf = A[1A12X13f.

2.5. Remark. We highlight that the martingale difference A2, s is the one-parameter
(and not the bi-parameter) martingale difference on the rectangle % x I3:

Apyp =ApAp+ EpAp+ApEp # ApAs.

Moreover, the above operators really act on the full product space but only on the given
parameters — for instance, A1 f(z1, x2, x3) = A}lf(:vl, x9,x3) = (An f(-, 2, x3))(x1).

We recall the following facts from [14]. For a dyadic A > 0 define the dilated lattices
Dy = (1?3 € D¥* .= D? x D3 ((I%) = M(1?)}).
The basic Zygmund expansion goes as follows:

(2.6) =2 Anf=3% > Aplpaf=) Arzf.

1 1 1 1 g 2,3
IeD €D! f23ep2d, IeDy

However, the way we split our operators will not be this simple.
The following basic results hold for the martingale differences. For I, J € Dz we have

Arg fI=1,
Arzlazf = { 0 W14

Notice also that the Zygmund martingale differences satisfy
/ AI,Zf dl’l =0 and / Asz d.CCQ dLL’3 =0.
R R2

Moreover, we have

/(AI,Zf)Q = /fAI,ZQ-
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2.C. Haar functions. For an interval J C R we denote by J; and J, the left and right
halves of J, respectively. We define

O=1J7Y21; and Al =hy=|J7V21y, - 1)

The reader should carefully notice that 9 is the non-cancellative Haar function for us
and that in some other papers a different convention is used.

As we mostly work on R? = R x R? we require some Haar functions on R? as well.
For I? x I3 ¢ R? and n = (n2,n3) € {0,1}* define
h[2><13 = hng ® h?ai
Similarly, as hj1 denotes a cancellative Haar function on R, we let h2, 3 denote a can-
cellative one-parameter Haar function on I? x I3. This means that

hr2yps = h;]zX[s
for some n = (n2,7n3) € {0, 1}2 \ {(0,0)}. We only use a 0 to denote a non-cancellative

0 _ (00
Haar function: hi, ;s = hpy/)s-

We suppress this  dependence in all that follows in the sense that a finite » summation
is not written. For example, given I = I x I? x I3 € Dy C H?n:l D™ decompose

Arzf=AnApysf=(fhn @hps)hp @hpggs = (f,hrz)hr z.

2.D. Bilinear Zygmund shifts. In preparation for defining the shifts, we define the fol-
lowing notation. Let Iy, I, I3 be rectangles, [; = I} x I7 x I} = I x IJZ’S, and fi, fo, f3 be
functions defined on R3. For j, jo € {1,2,3} define

3
A][izjjz’]:; Ai_i:][i I3 fl f27f3 H f]aUI
7j=1
where
v, = h[; & hljz,s;
hp =hp and  hp=hY, j# ji;
J i
hljg,:a = h122,3 and %I?,a = h%;g, j 75 jg.
For a dyadic A > 0 define
Dy={K=K'x K?*x K3 e D: M(K")(K? = ((K?)}.
Moreover, for a rectangle I = I' x 12 x I3 and k = (k', k?, k3) define
1® = 1* 5 1) s 1),

2.7. Definition. Let k = (k', k% k%), k' € {0,1,2,...}, be fixed. A bilinear Zygmund shift
Q = Qy, of complexity k has the form

(Qr(f1, f2), f3)
- Z Z aK(I)[AﬁJIzIa‘ AJLDI”P X123 11 x 123

1 27
KeD,_j1_p2,43 I1,12,13€Dz 7 =
k

(k) _
1=K
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_Aj17j223 2,3 23+ jl’j2 2,3 2,3 2,3
1 s 1 ) 1 ) 1 s 1 ) 1 s
11X59*5X1h J3x§2 %1x52,§1xgé,%1x§2
for some j1, j2 € {1,2,3}. The coefficients ay ;) satisfy

- ‘11’1/2‘12’1/2‘]3’1/2 |]i|3/2
a1l < K2 = K2

Now, the game is to represent bilinear singular integrals using the operators ()} and
also — independently — bound the operators (), suitably. We start with the representa-
tion part and deal with bounding the operators later. We have not defined our singular
integrals carefully yet, however, a lot of the required decomposition can be formally car-
ried out for an arbitrary operator 7. The singular integral part is later required to get
sufficient decay for the appearing scalar coefficients and to handle the paraproducts.

2.E. Zygmund decomposition of (T'(f1, f2), f3). For now, we focus on the multireso-
lution part and start formally decomposing a general bilinear operator. We begin by

ertlng <T(f1> f2)7 f3> as
Yo (T(ApfApf) Apfs)

17171
I},1}, ket

= Y (T(AphApf),Apfs)
1,1}, 13eD!
0(I}),(13)>€(13)
+ Y (T(Aph,Apf).Apfs)
11,1} 13eD!
(1), 0(13)>4(13)
+ Y (T(Apf,Apf),Apfs)
1113, 1teD!
0(I3),0(13)>£(11)
+ Y (TApf,Apf).Apfs)
11,13 1teDl
(I7)>0(15)=4(13)
+ ) (TApfi,Apf).Apfs)
13,13 13eDt
(3)>0rH=(1})
+ Y (TApfi,Apf),Apfs)
11,13, 1k eD!
oI3)>0(11)=L(13)
+ > (T(Apf1,Ap f2), A fs).

11,131t eD!
(I)=e(13)=(I3)

We collapse the first six sums, which are not already diagonal sums, into diagonal sums

D

11,1}, 1teD!
((I7)=0(I3)=(13)
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This has the effect that whenever we have an inequality ¢(I}) > ¢(I ]1), the martingale
difference operator A1 corresponding with the larger cube is changed to the averaging
operator E;1. Thus, in Zthe tirst three sums we now have two averaging operators, and in
the next three we have one averaging operator. The more averaging operators we have,
the less cancellation we have, and thus the main challenge are the first three sums with
the least cancellation. We mainly focus on the first three sums for this reason.

In addition, the first three sums are symmetric, so we may focus on only one of them,
and choose to look at

Yoo (MAphAph).Apf)= Y. (T(Epf,Enf), Ay fs).
11} 13eD? 11,1}, 13eD?
0(11) £(13)>(13) (1) =0(13)=¢(13)

Now, we fix I, 13,13 € D with ((I}) = ¢(I}) = ¢(I}) and repeat the argument for
(T(Ep f1, Epyf2), Ap f3) using the lattice D?(";l), where recall that for a dyadic A > 0 we
have
DY = {I? x I’ € D** .= D? x D*: ((I*) = M(I?)}.
This produces seven terms, and we again focus on
> (T(EnEp.ph, EnErsfo), AnlApz,s fs).

12X I3 13X 13,13 xlgepj(’fl)

(IR)=0(13)=L(I3)

Altogether, our focus, for now, is on the key term

(2.8) > (T(Ern fr, Er f2), Al z f3),

I1,12,I3€Dy
£(Ih)=t(I2)=£(I3)
where ¢(1;) = ¢(I2) = ¢(I3) means that
0(ITY) = L(13") = e(I15), m=1,2,3.

This was completely generic — we now go a step further to the direction of Zygmund
shifts and start introducing Haar functions into the mix.

2.F. Further decomposition of (2.8). Write
(T(Er f1, Er, f2), Ary 2 f3) = (T(h3,, hg,) hag 2) (fr 1, )20 B3,) (F3s oty ).

Now, we perform a rather complicated decomposition of the product (f1, k9, )(f2, h9,).
To this end, start by writing

<f17 h?1><f27 h92>
= |:<f17 h?1><f2» h?2> - <f17 h?éh?f,sﬂf% h931 h?§,3> + <f1> h(;é h(I)12,3><f27 h(}é h(I)22,3>
= Al + AQ.

We then further decompose A; as follows

A = [<f1, hy ) {fa, hY,) — <f1,h?éh?f,3><f2,h(])§h?22,3>

- <f17 h?ll h?§,3><f2, h% h?§,3> + <f17 h?gl h?g,?,) <f2; h?31 h?gm)}
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o { BB} fo, By ) = (1 ) (o, By W) }.

When we later specialize to singular integrals, we will in particular make the following
assumption. We say that 7" is a paraproduct free operator, if for all cancellative Haar
functions h;1 and h;2;3 we have

(TA®1 28,101 ps),hp @1 p23) = (T (1® 13, 1@ 1), hp @1 p23)
= (T(lp@Llp®1),lp®@hps) = (T4 (1p @ 1,15 ©1),1p ® hps) =0

for all the adjoints j € {1, 2}. With this assumption in the full summation (2.8) everything
else vanishes except

Z < (hll ’ h12)7h1—3,Z> <f17 h(I)1><f2a h?2> - <f17 h?%x[f’3><f2’ h(l)§><122’3>
I,I5,I3€D
()= )=o)

— (fro by o) (Fos by ) + (B (o, W) | (o, 2)-

So we eliminated the paraproducts by assumption, and now we have to manipulate this
remaining term to a suitable form involving shifts.

In the above sum we will relabel I3 = I = I!' x I? x I? = I' x I?3. Then, for n; =

(n},n2,n3) = (n},n}?) we write

Ii=TI4mn =" +nle(I") x (I +nfe(I?) x (I* + nfe(1%) = (I' 4+ n1) x (I%° 4+ n??).
We write I5 similarly as Iy = I + ng. Notice that if nl = n2 = 0, then the term inside

the summation vanishes. Similarly, if n>® = n2® = (0, 0), the term inside the summation
vanishes. So we need to study
2 2 Clmns:

ni,no€Z3 IeDy
max(|ni|,|ng|)#0
max(|n?],[n3])#0 or max(|n?|,|n3|)#0

where

CI,n1,n2

< (hl+n17h?—i—n2)7h1,z> |:<f17h(12-i—n1><f27h(}—i—n2> - <f17h’(1]1><(12,3+ ><f27 x (12 3+ )>

- <f1> h(()]1+n%)><12,3><f27 h[()[ljrn%)sz,3> + <f17 h(}><f27 h(])>] <f3> h],Z>-

We write
: : : : CI,’I’L1,TLQ

ni,no€Z3 1€Dy
L#£0
Jax In; |#
2 3
Inax In? |70 or Inax In3|#0
(o]

- Z Z Z Cl,n1,n2

k1 k2 k3=2 ny,na€Z3 IeDy
max |nm|€(2km_3 2k™ —2]
Jj=

m=1,2,3
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oo
+ 2 2. D Clawns

k1 k2=2 ny,ng€Z3 1€Dy
max |n™|e(2¢ =3 2k =2
j=12""17
m=1,2
n%:n%:O

+ Esyma

where X, is symmetric to the second term and has n? = n3 = 0.
Recall how everything implicitly depends on the random parameter o, so that we can
average over it. By independence, like in [14], we have by (2.2) that

o
EU Z Z Z CI,TLIJ’LQ
kl,k2 k3=2 ny,ng€Z3 1€Dy
K™ —3 9k™ -2
nax In7*|€(2 2 ]
m=1,2,3
(2.9) .
1 1.2 1.3
= 8E, E E E CInynas k= (k" k* k).
k1 k2 k3=2 n1,n2€Z3 I€Dz(k)
max [n7 € (28" =3 2K 2]
j=1,2" 7
m=1,2,3

For the other two terms, where n? =0or n?’ = 0, we perform the above but do not add

goodness to the second and third parameters, respectively. For example, we have

00
Eo Z Z Z CI,n1,nz

k1 k2=2 n1,n2€Z3 I€Dy
max [n7|e (28" =3 2k 2]
j=1,2" 7
m=1,2
n?:n%zo

00
=A4E, E E g Clning-
Kl k2=2 ni,no€Z3 IeDy(k',k2,0)
m zkm—3 zkm—Q
ma [ e(24" 3,27 )
m=1,2
n?:ngzo

J

Continuing with (2.9), we write it as
C8Er > (k[ +1)%0(k)
k! k2 k3=2
Z Z Z CIni,ne
2 )
KED, IeD (k) e ? C(|k] + 1)%¢(k)

I=K maxj_ 2 |nj"|€ (2K —3,2K™ =2]
m=1,2,3

where

Dy ={K =K' x K> x K> € D: M(K)O(K?) = (K%},  A=2F"F-+
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and C'is some suitably large constant depending on 7. Recall that by (2.3) we also have
(I 4+n)® = (I 4 ny)® = 1) = K.

We have arrived to a point where we cannot go further without talking about singular
integrals. Indeed, we need kernel estimates to control the coefficients. But on a structural
level (with the paraproduct free assumption), we have obtained a reasonable representa-
tion of the main term (2.8) in terms of sums of bilinear Zygmund shifts.

3. BILINEAR ZYGMUND SINGULAR INTEGRALS

We begin by defining the required kernel estimates and cancellation conditions for
bilinear singular integrals 7" invariant under Zygmund dilations. For motivation for the
form of the kernel estimates, see Appendix A for kernel bounds of bilinear multipliers.
This viewpoint makes the kernel estimates natural — on the other hand, they are also of
the right form so that we will be able to bound the coefficients from the multiresolution
decomposition and obtain reasonable decay.

3.A. Full kernel representation. Our bilinear singular integral 7" invariant under Zyg-
mund dilations is related to a full kernel K in the following way. The kernel K is a
function

K: (R®*xR3>xR3\ A —=C,
where
A={(z,y,2) € R3 x R} x R®: x; = y; = z; for at least one i = 1,2, 3}.

We look at the action of T on rectangles like I' x I? x I3 =: [1 x I3 inR3 =R xR xR =
R x R% So let I; = I} x I? x I? be rectangles, i = 1,2,3. Assume that there exists
i1,42,j1,j2 € {1,2,3} so that I} and I}Q are disjoint and also 151’3 and I?f’ are disjoint.
Then we have the full kernel representation

(T(1r,15,), 15,) = // K (0, 2) 11, (2) 11, (9) 11, (=) d dy de.

The kernel K satisfies the following estimates.
First, we define the decay factor

2 . . 70
Do, y) = TT— (il + [wil) N 2\3«"3!+|y3! C0e(0,2,
|z3] + |ys] [Tz (il + [wil)

and the tri-parameter bilinear size factor
3
izt (il + |yz|)
We demand the following size estimate

(31) |K(x,y,z)\SDg(x—z,y—z)S(:U—z,y—z).
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Let now ¢ = (c1, ¢2, c3) be such that |¢; — z;| < max(|x; — 2, |yi — zi])/2 for i = 1,2, 3.
We assume that K satisfies the mixed size and Holder estimates

|K((01,9027903)>y72) - K(lE,y,Z)‘
(3.2) < < ler — a1
~ \wy = z1] + |y — 2|

)alDG(x — %Y= Z)S('I — %Y - Z)a

and
(3.3)
|K((x1702703)7y72)—K(x,y,z)]
‘02—5U2’ ‘63—$3| )a23
< Dy(z — 2y — 2)S(z — 2.y - 2),
~ (|Qj2—22|+|y2—z2| |$3_Z3|+|y3_2«'3| 9(17 zZ,Y Z) (37 Z,Y Z)

where aq, as3 € (0, 1]. Finally, we assume that K satisfies the Holder estimate

|K(vaaz)_K((Cla$2a$3),y7z)_K(($1702703)ay72)+K(5Ua3/72’)’
(3.4) < ( ler — 21| )al( |co — 2| N lcs — 3| )azg
~ Nz — 2|+ |y — 2 |zo — 22| + [y2 — 22| |23 — 23] + [y3 — 23]
X Do(x — 2,y — 2)S(z — 2,y — 2).

We also demand the symmetrical mixed size and Holder estimates and Holder estimates.
For j = 1,2, define the adjoint kernels K*7, K;” and K. 23 via the natural formulas, e.g.,

K*J(xa Y, Z) = K(Zvy7$)7 K;Q('xaya Z) = K(.CE, (217y27 y3)7 (yl: 22, 23))

We assume that each adjoint kernel satisfies the same estimates as the kernel K.

3.B. Partial kernel representations. Let § € (0, 1]. For every interval I' we assume that
there exists a kernel

K[l : (RQ X Rz X RQ) \ {(x2737y273,z2’3): Ty =Y = 25 fori=2ori= 3} — (C,
so that if 1]21’3 and Ii’?’ are disjoint for some ji, jo € {1,2, 3}, then

(T(1lp ® 1112,3, 1n ® 1122,3), 1n ® 1I§’3>

= // Kpi (223,523, 22,3) 128 (22,3)1 28 (y2,3)1 2.3 (22,3) Az 3 dyz 3 dzo 3.
We demand the following estimates for the kernel K;1: The size estimate

|K11(22,3, 92,3, 22,3)]

< (’Il\(!x2—2’2+!y2—22!) |z3 — 23] + [y — 23] )‘9 I
~ A\ g — 23]+ ys — 23 [T (lw2 = 22l + ly2 — 220) /12, (o — 2] + |yi — z)*
and the continuity estimate
|Kp(c2,3,y2,3,22,3) — K (22,3, y2,3, 22,3) |
< ( |ca — 2 c3 — x3] )0‘23
~ \|wg — 2o + |y2 — 22| x5 — 23] + |ys — 23]

(lfll(\x2—22|+|yz—z2\) |23 — 23] + [y3 — 23] >*9 Is

w3 — 23] + |y3 — 23] [Tz = 22l + ly2 = 221)/ [T2., (|2 — 2] + |yi — 2i])°
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whenever ¢y 3 = (c2, ¢3) is such that |¢; — x;| < max(|z; — 2], |yi — 2i|)/2 for i = 2,3. We
also assume the symmetrical continuity estimates.

We assume similar one-parameter conditions for the other partial kernel representa-
tion. That is, for every rectangle 1?3, there exists a standard bilinear Calder6n-Zygmund
kernel K2 so that if Ij and I}, are disjoint for some j1, j» € {1,2,3}, then

<T(1111 ® 12,3, 1121 ® 1p23), 1I§ & 112,3>

= // Kps(@1,y1, 20010 (w011 (y1)151 (21) day dys dz.

The kernel K23 satisfies the standard estimates
1

(ler = 21 + |yr — z1))*

71—
21 — 21| + [y — 2 [)2Hn
whenever |21 — ¢1]| < max(|z1 — 21/, |y1 — 21])/2, and the symmetric continuity estimates.
The smallest possible constant C , , in these inequalities is denoted by || K}23(/cz,,, - We
then assume that

|K12,3 (.’L‘l, Y1, Zl)‘ < CK12,3

|

|Kr23(x1,91,21) — Kpz2s(cr,y1,21)| < Ckpy (

1K 25l cza, S 1127

3.C. Cancellation assumptions: paraproduct free operators. We say that 7" is a para-
product free operator, if for all cancellative Haar functions hj1 and h2.s we have

(Tal® 1J12,3, 1® 1J22,3),h[1 X lJ§,3> = <T1*’](1 X 1J12,3, 1® 1J22,3),h11 & 1J32¢3)
= (T(lp @ L1 ®1),1p®hps) = (T4 (1n ©@1,1p ©1),1p ® hps) =0

for all the adjoints j € {1,2}. We always assume that all bilinear Zygmund operators
in this article satisfy this cancellation condition. The intention of this condition is to
guarantee that our operator is representable using cancellative shifts only.

3.D. Weak boundedness property. We say that 7" satisfies the weak boundedness prop-
erty if

(T(Lr,10), 10| < 1]
for all Zygmund rectangles I = I' x I? x I3.

3.5. Definition. We say that a bilinear operator 7" is a paraproduct free Calderén-
Zygmund operator adapted to Zygmund dilations (CZZ operator) if 7" has the full kernel
representation, the partial kernel representations, is paraproduct free and satisfies the
weak boundedness property.

4. ESTIMATES FOR THE SHIFT COEFFICIENTS

We now move to consider the shift coefficients that appeared in the decomposition
of T in Section 2.F. When T is a CZZ operator, we can estimate them. Without loss of
generality, we estimate

<T(h(1)+n1 ) h?irn2)7 h1,z)

for I € Dy and different values of ny, ny € Z3, and without loss of generality we assume
6 = 6 < 1. The coefficients related to the other terms of the decomposition (other than the
main term (2.8)) may have a different set of Haar functions, but they are treated similarly.
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We show that
3
I|2
(4.1) (T (hY s Wiy )s )| S (K| + 1>290<’f)|‘K’27
where

So(k') = 2—k1a1—k2 min{a23’9}_max{k3—k1—k270}9'

For terms of this particular form, we would not actually need to analyze some of the
diagonal cases (see Section 2.F). However, these diagonal terms would appear in some
other forms, so it makes sense to deal with them here (even though in the real situation
the Haar functions might be permuted differently, this does not matter, and the calcula-
tions we present apply). It is very helpful to study the linear case [14], since the kernel
estimates are relatively involved and we will not repeat every detail when they are simi-
lar.
Let m’ := max;_ 2 |n; |. The analysis of the coefficients splits into combinations of

mb e (283 2k 2], k'=3,4,..., (Separated)

m! =1, (Adjacent)

m! =0, (Identical)

and

(m' e (2ki_3, 2ki_2], i=2,3k'=3,4,..., (Separated)
m? < 2and m? € (2K 3 2" -2, k®=3,4,..., (Separated)
m?e (283,28 2)and m3 <2  k*=3,4,..., (Separated)
m?=1landm3 <1 (Adjacent)
m?>=0and m3 =1 (Adjacent)
m? =0 =m3. (Identical)

It is enough to consider m® = n{ since the case m’ = n} is symmetrical. We will not go
through explicitly every combination - rather, we choose some illustrative examples.

Separated/Separated. We begin with the case |n{| > 2 for all i = 1,2, 3. Hence,
2 = =] > | (1) = 2°70(T)
and _
21— 2] < nd 0T + 20(I) < 28~ Le(1?)

for i = 1,2,3. Moreover, |z; — z;| > |y; — z|/2 > 0 for : = 1,2,3. Thus, we have the
estimate

(H?l(‘xi_zi|+|yi_zi|) |23 — 23] + |ys — 23] )‘9
(lws — 28] +lys —2z3)  TTy(wi — 2] + yi — i)
N (H?l jwi — 2| w3 — zs )*9
|3 — 23] ITis |z — =il
~ <H?=1 2R y(1) 2P e(1%) >_9 = (KRR | kP kIR -0
MU [T 2T '
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Let ¢;i denote the center of the interval I ¢, Furthermore, notation like ¢; then refers
to the corresponding tuple (cj1, ¢j2, ¢y3). Using the cancellation of the Haar function we
then have

‘// K(z,y,2)h],, (@], (y)hrz(2) dxdydz‘
_ ‘/// (x,y,2) — K(x,y, (cp1, 22,3)) — K(x,y, (21,¢23)) + K(x’y’cl)>

< B, (@ )h?m (y )hIZ(z)dmdydz‘
ke B N 2k1 +k2— k3+2k3 El—k2\—0
///2 Rlai o=k | 9=k% 2 K ) h 1, (@R 5, (y)hy(z) dedy dz
3 3
_ gklar (9 k? | 9=k yass (k! HRP - | ok 1> (k) HE
K>~ |K|?

Let us then consider the case, where we have separation in the parameter 3 but not in
the parameter 2 — that is, |n?| < 2 < |n3|. Then

4.2) (H?=1(|$z‘—zi’+’yi—zi) |23 — 23] + |ys — 23] )‘9
|x3—23\+|y3—z3| H?:1(|mz—zl]+|yz—z@])
|22 — 20| + |y2 — 29 k=K | 12| 6
- ( 2k37k1u2‘ ’x2—2’2’+’y2—2’2’)

< ( |xe — 29| 2k3_k1112\)9 ( [y — 22 2k3_k1112\)9
oKk 12| |zg — 2o 2K KN 12| T Jya — 2|

and so using the mixed estimates

‘// K(:E,y,z)h?_m (z )h?_,_nz( Vhrz(2)dedydz
- ’/// (@9, 2) = K(y, (011,22,3))>h(1)+n (z )h?Jrn (y)hr,z(z) dedy dz

(\x27§2\+1|y2 29| +| 2k3_|k1||12| I)—G
g1 _ _ ok3—k1|12 To2—22|+|Yy2—22
5///2 kozl’Kl‘ 2’K3‘ 2 |12] 5

(lz2 = 22| + |y2 — 22])

X W7, (0G4, ()G (2) du dy dz

Iz 22| +|y2—z2| 2k’ =K1 12| )*9
_ 2—k1a1 ’Il ‘IS‘Q W 2k3 k1 12| + \$2—22\+|y2—22\

- 1|2 312 2
| K2 K3 (lz2 — 22| + |y — 22)

x hY, (@ 2)h0, n2 2 (y2) 2 (22) de dys d2s

3
HE
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We note that the last inequality requires a case study (see also [14, Lemma 8.5]) and we
used the standard estimate

(4.3) / du <pe,

re (1 + |ug — uf)dte ™

Symmetrical estimates hold if [n?| > 2 > |n}|.

Adjacent/Separated. We look at the example case [n?| > 2 > |n}| and |ni| = 1. By the size
estimate we have

(T (A7 1T 5,) i 2)

| 21— | +HlyL—21[)2F £(12) |3 — 23] +ys — 23] )*9
< Ll /// 23 —23]+[ys—23] * (lz1—21 |+ |y —=1]) 287 £(12)
~ 2 2
|I1’3|3/2|K2|2 |$1—21|+|y1—21|) (|x3—23|+|y3—z:3|)

X 111 3+n1 3(331 3)111 3+n1 3(y1 3)1[1 3(2’1 3) dx13dy13d2’13

Similarly as (4.2), we can split the integral into two terms. Then by (4.3) we reduce the
problem to estimating

(CETEETEm 2= 23| )’9
/// SRl (21—21lHy1—21 )27 E(I?)
2
(Jz1 — 21| + |y1 — z1]) |23 — 23]

X 111 3+n13(x1 3)111+n (yl)lp 3(2’1 3) d.iCl 3dy1 dz1 3

(w1 =21 [+ |y =z )25 £(12) lys—z3|

-0
. /// ( [ys—23] (xl—zll+|y1—Z1|)2k25(12))
(Jz1 — 21| + |y1 — 21])?|y3 — 23]

X 111,34_”%,3 (a:173) 111,34_”%,3 (y173) 111 (Z1) da:173 dy173 dzl.

Since they are similar, we only bound the first one. Note that

(<rx1 — 21|+ [y — 2125 0(12) s — 2| )79
|3 — 23] (lzy — 21| + [y — 21])2K*0(1?)
X (|z1 — 21| + |y1 — 21|) 72

< <(|901 — 21| + |y — 21))25° 0(12)
B |z3 — 23]

—2
) (e =21l +1yn = 207X 0y 22 012) s 251y

_l’_

|23 — 23] -0 —2
<(\x1 — 21|+ |y — zl\)%?e(ﬂ)) (s = 2l fyn = 21D X0 a1 22002 <yl
Then apply (4.3) to the integral over y;, then by following the linear case [14, Lemma
8.11] we get that the above integral is bounded by |/ L3|122-%°% Thus, we get

ik

0 |I2|3/2
(T (h ral

0 20—k20 2
Ting Prin, ) i z) | S Wk 2 Sk p(k)
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Adjacent/Adjacent. We again have no major changes to the linear case but in order to use
the estimate
ey )7
(1 +'%) 4
(4.4) o |f(w)|du ST Mf(0)
R t[ul
we need to first use (4.3) repeatedly. For example, consider [ni| = 1and [n?| = 1, |n}| < 1.
By the size estimate of the kernel, we need to control

(Hle(\mfzz»\+\yfzz~|>+ |wg— 23| +]ys 2] >‘9
0

s —zs]+[ys—zs] [T, (Jzs—2i ||y —2i]) 0 0
)’ DY ] 1, () (2):

3
Loy (lwi = 2l + lyi —
As before, we split this into two terms, one of them is
<H3:1(‘$|z—zz‘+|‘yz—zz|) + = |z3—23] >_9
r3—23 [Tz (=i =zl +lyi—=il) 0 0 0
Wiy (R 1, ()R (2).
2 I+ I+
[Ty (Ji — 2l + lyi — zi)) " "
We then apply (4.3) to the integral over y3, and then use the previous trick repeatedly.
That is, we write

(Hle(\ﬂfi—zz‘lJrlyi—Zi!) N x5 — 23] >—9
|23 — 23 T2 (|2 — zil + |yi — 2il)
2
< (Hi:1(|$z‘—2¢\+!yi—%\)> \ §
= |z3 — 23] {ler—z1[(|lz2—22|+ly2—22[) 2 [es — 23]}

+ ( |z3 — 23] )—QX{| (| |-+ <] I
- —z2|+|y2— <|rz—
H?:1(|33i — 2| + yi — ) z1—z1|(|r2—22|+|y2—22[)<|z3—z3

and apply (4.3) to the integral over y;. Then, after a similar argument on y,, we finally
arrive at

7, 1|ml ZZ' + ‘IJ Z3| >79
‘I’ ﬂ |z3— 23‘ Hz L |zi—zil ho. (;L«)h(])(z)dwdz

z 1 ‘xl - Zl’ frm

L
~ S IRP

Adjacent/Identical. We consider the case |nj| = 1and nf = n} = 0,7 = 1,2. We write

> (T(h] 1, 1g23, 071 ,,1029) hrz1gps).
Q?’37Q§737Q§’3€Ch(12’3)

It is enough to consider Q?’g = 3’3 = Q§’3 since otherwise we have adjacent intervals,
and we are back in the Adjacent/Adjacent case. Hence, the partial kernel representation

3.B yields that
ﬂ K 23h11+n1h11+n1h11

1 0
S ’KQ 3‘2 /// ’xl _21’ + ’yl _ZID Il+n (xl)h[hrn (yl)hfl(zl)dxl dyl dzy.

)ﬂ
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Then, first using (4.3) and then standard integration methods we get the following in-
equality

1 0 .
// (’[El - Zl’ + ’yl — z1’>2h11%n% (xl)hl1jrn%(y1)h[1 (Zl) dxl dyl le
1 1
S ul|% // ‘.%'1 — zlyh?lirn} (xl)hll (21) dxq dz;
1 ul|2
~ ‘Il‘ ]K1|2

as desired.

Identical/ldentical. Just like in above we split the pairing to

2. 2

Q1,Q5,Q3€ch(I) Q**,Q2* Q2 cch(12:3)
(T, (g} ® Lg2a) Hpyn, (Ly ® 1g39)), hrz(lgy @ 1gza))-

The cases when Q} # Ql for some i, j = 1,2,3,i # j are essentially included in the cases
of the two previous subsect1ons Hence, we consider Q} = Q} = Q1. Then there are two
cases left, that is, either Q? 3 #* Q? 3 for some i,j =1,2,3,i # j, or Q1 = %3 = 33.
Beginning from the latter one, similarly as in [14], by splitting Q3 into sub-intervals we

get
2,3
|<T(1Q% ® 1Q%’37 1Q% ® 1Q§,3), 1Q% ® 1Q%,3>‘ g ’QH’Ql

by the weak boundedness property 3.D and the Identical/ Adjacent case. Hence, we get
the desired bound

;
Qi _ 1

0 0
(T (hl+n (IQ% & IQ%,3>7hI+n2(1Q% & 1Qf’3)) hr Z(lQl o2y 1Q1 )| < T |§ K2

We handle the remaining case Qf’g #* Q?’g for some i,j = 1,2,3,7 # j. By the partial
kernel representation and its size estimate we get

):l:|f|g// KQ11 2,31 231Q§3
/// \Il \$2—Z2\+\y2—22\)+ |3 — 23] + |y3 — 23] )*9
]Illz 123]2 w3 — 23| + [y3 — 23] [T (|w2 — 22| + |y2 — 22|)

1
X || 1 231 231 23dx23dy23d223
2
izs (lws — 2l + |yi — i) @

Then using similar arguments as in the Adjacent/Adjacent case and (4.4) gives us the
desired bound.
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5. STRUCTURAL DECOMPOSITION OF ZYGMUND SHIFTS

In this section we decompose the bilinear Zygmund shifts (see Section 2.D) as a sum
of operators with simpler cancellation properties. The decomposition is not optimal (in
the sense that weighted estimates with Zygmund weights cannot be obtained via this) —
however, it is sufficient for unweighted boundedness in the full range that we later obtain
via tri-parameter theory. Recall that k& = (k!, k% k?) is the complexity of the bilinear
Zygmund shift.

5.1. Definition. Bilinear operators of the form

(52 St (ff) =D, Y aruy(fihy @ hps)(fa. by ® hypa)hug,

LeD,y I(-ej):L
J

where A\ = 2", n € Z, |n| < 3max(k’) and

Ik
ER

lap, )l <

are tri-parameter bilinear shifts of Zygmund nature if at least one rectangle I} x Ii’g, i1 =
1,3,42 = 2,3 is a Zygmund rectangle and
(1) ¢ <K' foralli,j=1,2,3;
@) (0 —0)y < (K — k) forallj =1,2,3.
Moreover, any adjoint
g5 75, .
5(111’1233)7 ]17.7273 E {07172}7

is also considered to be a tri-parameter bilinear shift of Zygmund nature. Here, the ad-
joint j5 ; means that, for example, in case j» 3 = 1 functions h?w and h 2,3 switch places.
) 1 3

Note that these operators share a ‘weaker” Zygmund structure. Ideally, we would
want to have I3 € Dy and I{ x 122’3 € Dy.

5.3. Proposition. Let Qy, k = (k',k? k3), be a bilinear Zygmund shift operator as defined in
Section 2.D. Then
c k'-1k23-1

Q=03 >, > 5"

u=1(1=0 [23=0
where S" is a bilinear operator as in Definition 5.1 with complexity depending on | and k, and

3 + >, iR >k

k231 0<I2=13<k2 -1 12=k2
L k2<I3<k3—1
E: T 1.3 2
12,3:0 Z + Z ? sz" < k °
0<I2=3<k3-1 Ek3<I2<k2-1
1B=k3

Proof. The argument is similar in spirit to the purely bi-parameter decomposition in [1].
For notational convenience, we consider a shift @, of the particular form

(Qr(f1, f2), f3)
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_ 33 433
a 2 2 aK’(Ij)[AILbJB Ao iz oy
K€D, 1 _g2443 I1,12,13€Dz
M=k
J
3,3 3,3
_ A ) A ) ]
a2 a2 g, sl 0
— 0 0 030 0 30
= > S s U b [ B B, — (s ) (o By )
KeD,_j1_p2443 I1,12,13€Dz
M=k

J
- <f17h?%h?§,3><f27h?21h?32,3> + <f17 h93><f27h93>:| '

There is no essential difference in the general case. Let us also use the usual abbreviation
D27k17k2+k3 =D,.
We define

bi,1;) = lag 1)
and

By = {fn (F2) i (fs. hry).

We can write the shift ()}, using these by replacing a with b and A with B.
Recall the notation

k-1
1 1 1
Naf= D, Auf  Puf=) Aaf
Llep? =0
(Ll)(ll):Kl
1
Exif=fiilgs,  Efaf= Y. (Aol
Liep?
(Ll)(kl):Kl
Let us define
k! 12 k! k2 A3 613 2
k2’3 k2’3_1 (l2 13) IQZ_O AK2*3‘f + l3§€2 EKQAKgf, lf k 2 k
(54) PK2,3f = Z AK2,3 f = k:Bil 5 k2_71 ) 5
123=0 SSOALLf+ Y ALLERLF i k3 < K2
13=0 12=k3

where we have the standard one-parameter definition

A%Q,gf — Z AL2,3f.
L2’3€D2’3
(LZ)(li) % (LS)(li):K2 x K3

We also use a similar shorthand for the expanded martingale blocks

k231 k23-1
AGDf = hyea)h
K23 f_ <fa L2’3> L2:3,
12:3=0 12:3=0 (L2,3)(1273):K2,3

where we allow, for example, that hy2s = h9, @ hys when k* > k? and [ = k2.
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Using this notation we define the following. For a cube I and integers [, jo € {1,2,...}
we define
Er, iij{l,...,jo—l},
(55) DI,l(j?jO) = Pla lf] = j(]a
id, iftje{jo+Ljo+2...},

where id denotes the identity operator, and if we have a rectangle 1?3 and a tuple (** we
use the modified P}ig

Let I, I>, I3 be as in the summation of ). We use the above notation in parameter one
D 1(3, jo) and for the other two parameters we use D23 2.3(j, jo). Thus, expanding to
the martingale blocks leads us to

3,3
Bll,fz,fs

Z H Klkl Jaml)DKzskzs(JamZ)fJ> <f3ah13>

mi1,mo=1j5=1

Hence, we may write

3,3 _
Z Z B11,12,13 - Z 2m1,m2

KeDy I1,I2,I3€Dy my,mo=1
W=k
J

Also, we have that

3 2
3,3 _ 2,3 . '
BI%XI%’3,[§><I22’3,I§><[§’3 = Zl H(DK2,3J€2,3 (4, m?)f]>[§X[]?»3 (f35 h13>
mo=1j=

and

3 2
3,3 =
Birrzs s s = 11Dk, (G ma) i) ez (Fs, hg)
mi1=1j=1

which gives that

3,3
B =: g 2
Z Z LIP3 1A 132 I <12 m2
KeDy I1,I2,I36Dy ma=1
1=K
J

and

3,3
B =: E »3

Z Z 1133 1A 132 1 <12

KeDy I1,I2,I3eDy mi1=1

(k) _
I]. =K

Finally, we just set

3,3 w4
Z Z 31—3713113 =2
KeDy I1,I2,I3eDy

(k) _
Ij =K
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Thus, we have the following decomposition
2 2

(Qr(f1, f2), f3) = Z Sy + Z (Z3.my — Siny)

m1,m2—1 mo=1

+sz13 ) + (233 Y5 -5+ 34,

mi1=1

First, we take one 3}, L ms with my, mg € {1,2}. For notational convenience, we choose

the case m; = mo = 2. Recall that

2,3
o= Y. Y. bra) k(PR PR fa) 1 (fs hag)-
KeDy I1,12,13€Dz

1=K

J
We expand

E'—1k>3—1
< 23f2 Z Z Z <f2,hL1 ®hL2,3><hL1 ®hL2,3>12
1=0 12:3=0 (Ll)(ll):Kl
(L2’3)(12’3):K2v3

and note that L is not necessarily a Zygmund rectangle. It holds that

kl—1k23-1

ST D YD SED SEED DN (D DI Pl 1Ly

11=0 123=0 K€D, [ (11,1213)_j 3Dy I, ILCL \K|7
k k k
=k W=k 1P=K

(f1 W% ) (f2r i) (f3, hiy).-

Now, since we can easily check that

Yy el

_ KPR |n)

2 9
L LCL \K|2 |K|
Mok 1P =k
we get a sum of operators we wanted
k1—1k23-1
£32= D > (Souemmfif2) fa),
11=0 123=0

where S 1213) 1) 18 a type of the shift (5.2). The general case Eml e
We turn to the terms X} o — X2, . Let us take, for example, the case my = 1. After

is analogous.

expanding P K273 in the first slot, Z;lm — E% can be written as

k%31

Z Z Z Z bKv(Ij)<hL2*3>12’3 fio 0= L ® hrzs )(f2) gy 28
1 |K| 2

[2:3=0 K€D, (L2,3)(12a3):K2,3 I11,12,I3

(k) _
V=K

<f17 |Il| ® hre. d><f2>1§x122«3} (f3,hi1s)-
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For the moment, we fix one (% and write g1 = (f1, hy2) and g2 = (f2) 23. We write inside
2
the brackets

2 2 k-1 2 2
H 9i KT — H gilrs = — Z (H 95) (IhHeH — H<9j>(1:§)(ll+1>)
j=1 j=1 =0 j=1 J=1

and then expand H] 1<9J>( Hah — H?:1<gj>([§)(l1+1) as

<A(131)(11+1)91>I§ <92>(1§)(11> + <91>(1§)(11+1> <A(1§)(11+1>92>I§

We get
2 2
H<gj>K1 - H<QJ>II
j=1 j=1
k-1
== Z <<A(]§)(11+1>91>I§ <92>([§)(11) + <91>(I§)(11+1)<A(I§)<zl+1)92>[§),
11=0

where we can expand
<A(1§)<zl+1>9j>13 = <9j7h(1§)<11+1>><h(1§)(zl+1)>1§~
For fixed I and /%3 the expansion leads to the term

> > > bk (1) (P gyt @ hpzs) 28

KeDy (L2,3)(1273):K2,3 I,I2,13
)

(k) _
V=K

<f17 h(]%)(llJrl) & hL273 > <f2>([§)(l1) ><122’3 <f37 h[3 >7
and to the symmetrical one, where the cancellation h (1)1 +D) is paired with the second
3

function and f; is averaged over (I3)("+1). Again, we want to reorganize the summations
and verify the correct normalization for the shifts of the form (5.2). In the first parameter

we will now take (I %)(11“) as the new top cube, that is,
(5.6)

K1 (L1l —ih =1 K236D2 132433 (Ll)(lé)(ll):Ll

Z Z CKI,Ll’[é’K2,37L2,3’[22737[§’3<f17h(Ll)(l) ®hL2’3><f2>L1><]2213<f37h[3>7

(L2,3)(l273):K2,3 [22’3713?»3
AN
(1=K
where

c 1 2,3 ;2,3
K1,L I} K23, 123 133 12

= 2 D brapthunwssa) g
117[2 123 123
(Il)(k =K1 (Iz)(k) Kt
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Moreover, we have
34,1 1,93 231
(LHD)2|13z  |L2)2| 17|15 2
[DE |K23]2

c 23 23] <
|Chr 3 k2 12 128 28] <

Notice that this is the right normalization for (5.2), since f» is related to L' and |(L')")| =
2|L'|, and we can change the averages into pairings against non-cancellative Haar func-
tions.

We conclude that for some C > 1 we have

C71(5.6) = (S((0,2:3),(1,k23),(1+1,523)) (f1, f2), [3),
where S((g,12.3),(1,k23),(114+1,k23)) 18 an operator of the desired type and of complexity
(0,1%%), (1,k%%), (I +1,k*?),
The other term and the other case of 251)’72 — Y2 are analogous.
The cases -}, 3 33, are handled almost identically, however, we need to treat

2

2
U givies = [ (o) 2

J=1

slightly differently. We expand the rectangles I in the one-parameter fashion until we
reach the smaller of the cubes K2, K. Then we continue with one-parameter expansion
with only one of the cubes until we reach the bigger of the cubes K2, K3. For example, if
k3 > k2, we expand as

2 2
H gj K23 — H gj ]23
J=1 J=1
k?-1
= - Z [<A(I§,3)(12+1,12+1)91>(13273)(12,12)<g2>([§,3)(z2,z2)
12=0
+ <91>( Y241, z2+1><A(I§73)(12+1,z2+1>92>(I§,3)(z2,z2)]
k3-1
- Z {<EK2A(I§)(Z3+1)91>K2X(13)03)<92>K2X(1§>)<l3>
13=k2

+ <91>K2X([§)(l3+1) <EK2A(13)(13+1>92>K2 ><(I§’)<13):| ;

The case k3 < k? can be expanded similarly. Similarly as in the previous cases, we can
now write the terms in the particular form (5.2). For example, related to the latter term,

KeDy [2.3¢p23 YOO K1 iy (Y el (72 (k2) g2
€3 sy (D =KY (1) D=kt (1)) =K
L2=K? (=13
(LS)(k3—13)_K3
1L23

11
CK,L,[3<f17 |_[é(1| ®h(L23)(0 1)><f27hL1 @ ‘L23|><f37h13>7
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where I* € {k?,... k* — 1}, Ay = 2% 4 and

ek, n| = ‘ > akapDlhp ® bz ray0) 1o
11,12
(1) =K
crt

1
|I3]2 |11 ||12] 1 _1 1

< > ‘K7|2|K2| 2|(L3)W| 72| LY 2

1,12

(I;) M=K

Icrt
LY )2 K2 x (L) D)2
K K2 x (L3)(D)]2

25

This normalization is an absolute constant away from the correct one since we consider

that K2 x (L3)() is the top rectangle in parameters 2 and 3.
Finally, we consider 33} 5 — X33 — X3 + %* that equals to

> 2 bk
KG'D)\ Il,IQ,IgGDZ

(k) _
(5.7) bR

2

2 2 2
[H<fj> H Fidrixzs — H(fj>K1X1§,3 + H<fj>l3} (f3,hig)-
j=1 j=1 Jj=1

J=1

As we already showed, we can expand

2 2
H< Hfj IIx K23

Jj=1
kl—1

== Z <<A(1§)(11+1>91>I§ <92>(1§)(11) + <91>(1§)(11+1)<A(1§)<11+1)92>I§)7
=0

where g; = (fj) k23, and similarly for

n 2
H< H i) KixI13?
j=1 j=1

we get same expansion with the positive sign and g; = (f;) 23

Then we sum the two expansions together and expand in the parameters 2 and 3. That

is, we will expand

D |
12
Z <h(1§)(11+1)>([§)(11) <f17 ]1)(11+1) Q —5a7 ’K2 3‘ ><f2>(1§)(l1)><}(2,3
11=0
1123

172,3)
115
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Thus, we get, for example when k? < k3, that

El—1k%2-1
11=0 12=0 K€D, Ltep? L2:3¢p?3 Is€Dy

(e =11y _ 1 2=tteLt) L2
(L) K (L2,3)(k2—l2,k3—l2):K23( 3)

X CKL13<f17h(L1)(1> ® h(L23 a, 1>><f27 Lt @ hepasyan >(f3,h13>

El—1 k3—1

1DIDID DY 2. 2

1—0 [3=k2 K€D, lepl 2,3 I3€D
rorek ’ 1112161? 1L Pyt k2 4311 (l{’leZ‘o’)
(LY ==K L2=K? (Is) ") =L
3_;3
(LS)(k —1°)_K3

X CKL13<f1>h(L1)(1) ® h(L23 (0, 1)><f27hL1 & h(LZS (0, 1)><f3,h[3>

Here
_1 _1
\CK,L713|:‘ Z QK,(Ij)|IlHL1\ 2|(L>%) W] 2{h 1y @ hp23y0))Lixr2s
I1,Io€Dy
I’?:K
3 1 1 1 3
- |I3)7 | (LY |2|L 3 (234 o | L2 | (L) W] 2| LY 2| (L*3) D)2

T @)Wp |(LHM2|(L23) ]2

We abused notation slightly by (L*3)() meaning both (L>3)(1:1) and (L*3)®1), The other
terms are handled analogously. O

6. BOUNDEDNESS OF ZYGMUND SHIFTS

In this section we prove the boundedness of Zygmund shifts. We first prove the fol-
lowing. A collection . is called v-sparse if there are pairwise disjoint subsets E(S) C S,
S € .7, with |[E(S)| > ~|S|. Often the precise value of v is not important and we just talk
about sparse collections.

6.1. Proposition. Let A\ = 2* for some k € 7 and

ol
flaf??f?) Z Z 7‘<f1’h]1>"|<f27h12>|"<f37h13>"

K2
KeDy? (1)) =K K]

Then there exists a sparse collection S C D?\’?’ such that

3
A(fi, fo. f3) S max{k® K*} Y "SI T (I £i])s

SeS Jj=1

Proof. The proof is an easy adaptation of the sparseness argument in [17, Section 5]. In
fact, we only need to check the validity of

A(f1, fo, f3) S Mfalleell follzall f3ll s



ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES 27

where p, ¢, € (1,00) and 1/p+ 1/q + 1/r = 1. This can be done by direct computation:

Mt < [ 10X (8RR (AR flhi L

KeDy?
1 1
Vi 2\ 2 Vi 2\ 2
<Uo|( 3 o) ]I 5 oiatean?),
KeDy? KeDy?
S I fillzell fall zall f3ll e
O

6.2. Proposition. Let Qx, k = (k', k%, k3), be a bilinear Zygmund shift as in Section 2.D, and
let 1 < p1,p2 <ooand% <p<oowith1% = p%%—p%.Let
pr P

wi,wy € Ap(R x R x R), and w = wt wy? .

Then, for every n € (0, 1) we have
1Qk(f1s fo)llLr(w) S m?x{ki}22kln”fIHLpl(wl)”f2||Lp2(w2)'

Proof. We prove the weighted boundedness L*(w; ) x L (wy) — L?(w), of the tri-parameter
bilinear shifts of Zygmund nature (5.2). We do this with tri-parameter weights w; € Aj4.
We then extrapolate the result to the full bilinear range using the traditional multilinear
extrapolation by Grafakos-Martell (and Duoandikoetxea) [4,7]. Our result then follows
from Proposition 5.3.

Note that if we have I3 € Dy in (5.2), then the related A in Proposition 6.1 is

262—[%—% |L1|
(For other cases, for instance if I] x 122’3 € Dy, then A = 24-4-4|L1|). Assume v €

Ay \(R?); recall that A, \(R?) is defined similarly as A,(R?) except that the supremum is
taken over rectangles R = I x J with |J| = A|I|. Then

3
SISITTAfDs = DU s(l s falo™ ) gu(S).

Ses Jj=1 SesS
Since forany R € S,

S os) = X W88 X M < [ Moo S, e, o)

SCR SCR SCR
Ses Ses Ses

by the Carleson embedding theorem we have

3
v —1
(6.3) SIS TADs S[U]AM(RQ) /R2 Mpiv?»!fl\MD§,3\f2|MD§,3(!f3\U Jv.

ses  j=1
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Now, given weights w; € A4(R3), j = 1,2, we know that w = w}/2w%/2 € A4(R3). We
have
[T 1212 0
(S fa)i f)l =D > WA(ULM;X (f2: hpy)s (f35 b))

Lt 41
IONE

Note that (w);1 € Ay, (R?) with [(w>L1}A47A(Rz) < [w] 4, for any A. Thus, applying (6.3)

with v = (w) 1 we have

[(S(f1, f2), f3)]
, [T}, 17} o .
<max{k}z Y = M pealfi, huy) Mpza (fo. hoy) Myas((f3, hyy)v ™)

LR e
(11)“1) Lt 1] ®

1L1

:mlax{ki}z/[Ra(MD|A§1f1]>L1(MD\f2|>L1 Z \1—3\ M (<f3>h11>< >L1)\L1\
I

(1) =11

‘(Z [MDIMD’A%leQ)é

Ll

< max{k'}

L4(w1)HMD1MD|f2| | 24 (w2)

N

H( [ Ak Mw>”(<f3,h1;><w>;})\L1|—1}21L1)

([1)(23) 1

L2(w)’

By the well-know square function and maximal function estimates we have

Sl zagwn)

I(52 o),

and

| Mpr Mp| folll L4 ws) S I1f2ll 24 (o) -

The estimate of the last term is a bit tricky. By the (one parameter)vector-valued estimates
(w) o : . :
of MDiﬁL1 (seee.g. [19, Proposition 4.3] for a bi-parameter version (the proof easily adapts

to the one-parameter case)), we have

(S > e o wizhin ] 1)
-

(I%)M}')):Ll

(NI

L2 (w)

- 2.1
<2 ([ D IBEMEE (s b)) I 7E] )
1 _(Ié)(%): P
1
>§

< 263 (Z Z

Lt (I%)(Z%):Ll

<o®|([ X BRI Al L]

L (I%)“Zl%):Ll

L2({w) 1)

2
s

3 fa, hyyhw) gt 1L 5

L2((w) 1)

N

L2((w) 1)



ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES 29

1
<257 3l p2 w1y,

where s = (1/1)" and in the last step we have used [19, Proposition 5.8]. Thus,
IS, f2) 22wy € max{k Y25 full gy | 2l -

Now we are able to conclude the proof of Theorem 1.2.

Proof of Theorem 1.2. By the representation formula discussed in Sections 2.E and 2.F, the
coefficient estimates in Section 4 (in particular (4.1)) we get that

_ - 9 (Quir g2 13)(f15 f2), f3)
(T(f1, f2), f3) —CEUkaQZJ;?)(:\?—i—l) cp(k)lgzj(k) R 100

Thus, for p1,p2 € (1, 00) so that p € (1, 00), we conclude by Proposition 6.2 that

oo

i 1
T f ey S D 1kl +1)%0(k) max{k P25 fll Lor o) 21l 22 o)

K2 K8 =2
S fillzer o) 12l 292 (o)

where we need to take < a;. Consequently, we can now pass the result to the full
bilinear range using the traditional multilinear extrapolation [4,7]. O

7. LINEAR COMMUTATORS IN THE ZYGMUND DILATION SETTING

In this section we return to the linear theory and complete the following commutator
estimate left open by previous results. This requires new and interesting paraproduct
estimates. For the context, see the explanation below.

7.1. Theorem. Let b € L} and T be a linear CZZ operator as in [14]. Let 6 € (0,1] be the
kernel exponent measuring the decay in terms of the Zygmund ratio

Dy(z) := <|=T1562| n |3 )—9

[z3|  |w1ae]

Then
116; Tl o e < [1bllbmo.,
whenever p € (1,00).

Here the definition of the little BMO is given by
16/lbmo, == sup sup / |b(x) — (b)g| dx < oo,
D, repy | B

where the supremum is over all d1fferent collections of Zygmund rectangles D and then
overall R € Dy.

This theorem was previously considered in [5] using the so-called Cauchy trick. That
method requires weighted bounds with Zygmund weights. But we now know [14] how
delicate such weighted bounds are — weighted bounds with Zygmund weights do not
in general hold if § < 1. However, the commutator bounds are still true — but we need
a different proof, presented here. It suffices to prove the boundedness of commutators
[b, Q] for any linear shift (), of the Zygmund dilation type.
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For § = 1 we could use the Cauchy trick and the weighted bounds from [14] — this
would give weighted commutator estimates with Zygmund weights.
We begin by recording lemmas that we need for the main proofs of this section.
7.2. Lemma. Let b be a locally integrable function. Then the following are equivalent
(1) b € bmop,,
(2)

max{ sup ||(b )11 1lIBMoO 28 o €SSSUD Hb(-,(L’Q,:L‘g)HBMo} < 00,
Ie 1}(11) (z2,23)€ER?

(3)

max{ sup H(b)p,QHBMO b3 » ©€SSSUp Hb(a:l,-,:z:g)HBMo} < 0.
12eD? Dyr2) (w1,m3)€R?

For completeness, we give the proof.

Proof. Let us begin showing that bmoz; = (2) (and by symmetry also (3)). Clearly, for
all Zygmund rectangles I = | L' I? x I? € Dy we have

3 Wlomes > g [ 10=®11> gz [ 1000 = 0

So by uniform boundedness we 1mmed1ately get

1O} allBMO o5 = sup {0) 1) r28] < [1bllbmo, < 00

Py 12 3617“ ‘123|

We move on to proving the second assertion inside (2). For fixed I' € D' we define
fr(@?,2?) = [, |b(at, 22, 2%) — (b) 1 (2?, #%)| dz'. Then for every I%3 € Dﬁ(’%) we have

3 < e b— (b — W — 7] < 20716l bmos s
<f11>123_‘1273| s ]1| <>1|+u273| . p|< )1 — (0) il < 217 |[[b][bmoy

where last inequality holds by definition and the above estimate (7.3). Now, by the
Lebesgue differentiation theorem we get for (z%,23) € R?\ N(I'), where N(I!) is a
null set depending on I', that

I (@, ) < 21 [[b]lbmo
It is then easy to conclude that
16(:, 22, z3)[[B7O < 2/[bl[bmo,

for almost every (22, 2°%) € R2.
Conversely,

/I b (B)r] < /] b (Bl + / B — )1
< |1 / 15122, ) 1m0 + 11 b1

where Cl = esssup( x3)eR2 Hb( ac , L )HBMO and CQ = Sups H< >11,1HBMOZ(I1)' O

Z(Il) S |I|(Cl + 02)7

Then the usual duality results imply the following.
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7.4. Corollary. If b € bmoy and I' is fixed, then

123\ 3
S (ke S lmos | (D0 W,smg—ﬂ)z p

2,3 -72:3 2,323
I eDzz(ll) I ED4(11)

Also, for fixed (z2,x3), we have

7 b hpier < 1bllbmoy
Itept

1;1\32
2 41
(Z ’3011| ‘Il)

Using the duality type estimates we can use the square function lower bounds to prove
the inclusion of product type spaces.

Lt

7.5. Definition. Given a lattice of Zygmund rectangles Dz and a sequence of scalars
B = (br)1ep, we define

1
2
HBHBMOprod = Sup <|Q § : ’b1’2>
1€Dy
1cQ

The inclusion of the little BMO space can be easily seen from the duality estimate
76) 1Bl12310,00 ~ sup { 2 lorllal I 2 et m> <1}

7.A. Paraproduct expansions. Here the correct expansions style is the Zygmund mar-
tingale expansion similar to [14, Equation (5.22)]. This gives

(7.7) =3 [AI,ZbALZ F4ArzbApEpsf + ApEpsbAryf
I€eDy,
+ArzbEpnApsf + ArzbEpnEpsf + ApnEpsbEpnApsf

+ EpAp,sbAsz + EnApsbAnEpsf + EpEp,sbAsz

3
= Z ai,j(bv f)7

Z’7j:1
where, for example, a1,1 = > ;cp, A1 zbAf 7 f and
a1:2 = E A]’ZbA11E12,3f,
I1€Dy

i.e., interpret so that rows correspond to the first index ¢ and columns correspond with
the second index j.

7.8. Lemma. Ifb € bmoy, then the paraproducts a; j such that (i, j) # (3, 3) are bounded. That
is,

llaij (0, Hlie S [bllbmo 1 fllze, 1 <p < oo
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Proof. Case 1: product type i # 3 # j. We begin with the paraproducts where it would
suffice to have a product BMO type assumption (but recall that little BMO is a subset).
The symmetry II = a; ; is essentially trivial. By (7.6) we have

wf. gl < [[( X 16 k)9 |I\)Q
IeDy
<|[( X danzfbi)? | Inzgl
1€Dy
SO Mzarz02)?|| ol
1€Dy

SISz lleellgll e S Il llgl o

The ‘twisted” case II = a1 2 (and the symmetrical as 1) is trickier. Indeed, to decouple
f and g we cannot blindly take maximal functions only in some parameters — this would
break the Zygmund structure. In any case, we begin with the application of (7.6) to get

1n gy \|217\3
Lf 90| 5 H( Z ’< g ®hf2“3><g’h“® \I2><I3|> m) L

The above is an L' norm, while L? would be nice. This is where A, extrapolation
comes in. We fix v € A, z, and move to estimate

1 1 217\ 3
I( Z (7 |1111 ® hras ) (9, b @ \121251133y> \Tﬂ)
We will soon show that
].Il 1]2X]3 >211)é
H( Z ’<f g ®hf2x”><g’h” “ix)/l 1) e

<z 3 aratang)™]

Itep!

L2(v)

(7.9)

L2(v)

The A, extrapolation, Theorem 7.10, then implies that this inequality holds also in L?(v),
€ (0,00), v € As,z. We take p =1 and v = 1 to get that

[(ILf, 9)| < HMZf< Z Mz(Apg) )1/2‘

Il

Ll

( > Ma209?) | <1 leellr

IteD!

< || Mz flle

It remains to prove (7.9). We write

1[1 1[2><]3 >21]>; 2
H( Z ’<f 11 ®h”“3><g’h“ /1) e
. 1[1 2 1[2><I3 2
=3 X |11|®h12”3> ‘<9’h11®|12><13|>) wir-

I'eD! j2473
€D IeD(Il)
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Fix some I' € D! Let I x I € DQ(%) and suppose ¢1, @2 and 3 are locally inte-
grable functions in R2. Then, there exists a sparse collection S = S(IZ x I3, 1, 2, ¢3) C

Dg(’il)(lg x I3) so that
Yo len e Plie2 s @s) s S Y leihglle)dleshalQl.
I2X13€D§E§1) QeS
I2xI3CIExId

We use this with the functions ¢1 = (f);1, p2 = (g, h11> and 3 = (V)1 to have that for
some sparse collection S = S(I', I3 x I3, f,g,v) C (11) there holds that

> | |11111| @ hrsrn)| (0.0 © 25 ) 00

[t |12 x I3
L AdS (1)
PxI3CIgxI3

< ST WA DR, ) DB (Q)

Qes

< <<(Mf(’?1)<f>11)(Mf(’?1)<g’h”>>>

<V>11 2
o) W@
S [ Q0 (M3 o) @)

where in the last step we used the fact that (v) 1 € A 41 (R?) and the Carleson embed-
ding theorem.

Since the last estimate holds uniformly for every I3 x I3 € D%l), we get that

> X | ylfllly @ hpsers)|
2

lr2gs \ |2
’<g’h“® |I2><XI3]>‘ i

S Z /]%2 (M5(7?1)<f>]1)2(M€2(’?1)<gah11>)2<l/>1-1

Iep?

P> / )0) (Mg ([Apgl) ) 1w
Itep!?

/R2[sz Z Mz( Allg)

IteD!

Thus, (7.9) is proved.

Case 2: little BMO paraproducts (i = 3,7 = 1,2 0r 1 = 1,2, j = 3). Actually, now we only
have “trivial” type cases with different twist. Symmetries a; 3 and a3 ; are similar as well
as az 3 and a3 2. Let us choose for example II = a; 3 first. By Corollary 7.4 we have

menals|(X (X !<f,hfz>||<gvh11h11®h123>\|11122§|) |1ff|)é

IIEDI 2,3 2,3
23eDy

Lt
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Now we again can use similar sparse method as above and for fixed I* prove
1p2
[ X K haliehnbn © bl 0

12 3€D£<11)

/ M2 (Ap £1) )M (gl L

The above estimate together with vector-valued version of Theorem 7.10 (proven in [3]
for general Muckenhoupt basis) yields

H( Z ( Z <fahlz>|<g,h11h11®h123>||111;;|) 111)5

]lepl IQ’SG,DZ(Il) ’ ‘
151\3
S H( Z MZ(Aflf)2|Il|) M
IleD?

<|[( X Mz s?) | IMzgl S 151l
1

Lt

Moving to the symmetry II = a3 2 we first get

[(TI(, f), 9)]

1723
= ‘ Z <<b>11’hl2’3><fv hp ® |1123’><97h1,z>‘
1Dy
Sl | 3 (X 10hihn @ S iy 2 )P L
~ z ’ |[123] N P AR TS R

I'eD!  I*3€D,p,
where we use the other estimate in Corollary 7.4. Like above, we continue as follows

12,3 o123 \3 1p
DD \<f,hp®,pg|>| o, b)) o

Itep! 12 3eD

| X gy \Aﬂf|>pM JlAnghnin,

Itep?
< (3 tz0n?) TS atetonar) ™,
IteD?! epl

S I llzellgll o
O

In above proof we needed the A, extrapolation with Zygmund A, weights. In fact,
we give a very simple proof of A, extrapolation [3] in general.

7.10. Theorem. Let (f,g) be a pair of non-negative functions. Assume that there is some 0 <
po < oo such that for all w € A 7z there holds

[ mw<cia,) [
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where C'is an increasing function. Then for all 0 < p < oo and all w € A z there holds

[ ro<cula) [ g

Proof. We have forall 1 < r < ooand all w € A, 7 that

[ < cula,) [@rw.

Thus, by the classical extrapolation with A,, 7 weights we have

(7.11) / (fP/m ) w < C([w]a, ) / (g"/")*w

foralll < s <ooandw € A, 7.
Finally, let 0 < p < oo and w € A, z. Then, there exists some 1 < sy < oo such that
w € Ay, z. Choose some 1 < r < oo and sy < s < oo such that

spo/r = p.
For example, we can take

5:%(@4-1) :so(£+1), T:80<p£+1>.
Po \p Po p

Since Ay, z C As 7z, we can use (7.11) with the exponents s and r to get the claim. O

7.B. Zygmund shift commutators. Let k = (k',k?), k' € {0,1,2,...}, be fixed. A Zyg-
mund shift Q = Q. of complexity k, see [14], has the form

(Qxf,9)
= > > ank(fihp @ Hps os){g, Hp p @ hyza)
Pyt k24 1(55;2?(@
or
(Qrf.9)
= Z Z argr(fihp ® hp2s)(g, Hp o @ Hpas j2s),
K,k -k2403 I(kﬁ;ii?(k)
where H; ;

(1) is supported on I U J and constant on children:

Hypj = Z brly,
Lech(I)Uch(J)
(2) is L? normalized: |H; ;| < |I|_%, and
(3) has zero average: [ Hy ;= 0.
We will be focusing on the mixed type form since it is the most interesting one. Usually
the other type is much easier and the method is easily recovered from this case.

7.12. Proposition. Let Qy be a Zygmund shift of complexity k = (k',k* k®). Let 1 < p < o0
and b € bmoy . Then we have

16, @l fllze < max(k®, k%, k) (k| + 1)%[1Bllbmo || fl| o-
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Proof. We consider the commutator [b, Qx| f: bQrf — Qr(bf) that in the dual form equals
to

Z Z arjK |:<bf, hr ®H12,37J2,3><97H117J1 ®hJ2,3>
KeD 1,J€D
Skl e

—(f,hp ® H]2,37J2,3><bg, H[17J1 ® hJ2,3>] .
Now, expanding both b f and bg with the expansion (7.7) we get the terms
<Qk(az,](b7 f))ag> and <Qkf7 aZv](b7g)>

whenever (i, j) # (3,3). These terms are directly bounded separately, in particular, we
have Q: L? — LP and a; j: LP — LP. Hence, we are left with bounding

Z Z CL[JK|: Z <b>L<AL’Zf, hn ®H12,37J2,3><g,H117J1 ®h]2,3>

KGD)\ I,JEDZ LGDZ
1(R) = g — (k)
— > OL{fhp ® Hypza goa) (AL zg, Hp o @ hy2s)
LeDy

= Z Z arjK

KeDy 1,JeDy
1(R) == j(k)

X |: Z <b>L<ALyzf, hn ®H[2,37J2,3><9,H117J1 ®hJ2,3>
LeDy
oLYY=2-* oK)
(K2) <29 g(L2) <gmax(k2 ) g 2)

- Z (b)o(fshpn @ Hpas j23)(AQ,z9, Hp o @ hj2s)|,

QeDy
QICK, ¢Qh)>e(1h)

2=k (K 2) <2k 0(Q?) <U(K?)

where we have abbreviated 2—*' —+*+#° by A. Now, we write
<f, hin ® H]2,37J2,3> = Z <ALyzf, hn ® H]2,37J2,3>
LeDy

o(LY=2-* g(K1)
E(KQ)SQkQZ(LQ)SQmaX(kZ’ks)Z(K2)

and

(9, Hp o @ hy2s) = > (AQz9, Hpi n @ hy2s)
Q€eDy
QICK!, (QY)>e(It)
2=k o(K2) <2 0(Q2) <(K?)

for the unexpanded terms. Thus, we end up with

2. > aux 2 2

KeDy 1,J€Dy LeDy QEeDy
](k):K:J(k) Z(Ll):2—k1£(K1) 1621CK1,£(§21)2Z(11)
Z(KQ)S2k2f(L2)S2max(k2’k3)Z(K2) 2=k E(KQ)SQIC E(QZ)SE(KQ)
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X 1((0)r — 0))(ALzf,hp @ Hyz2s j23)(AqQ,29, Hp o @ hy2s) |-

We write explicitly the complexity levels for () and L. That is, in the above summations
we have (L2)1) = (K2)max(0.k k%)) for some 12 € {0, ..., max(k?, k3)}, (Q1)@) = K1,
for some ¢; € {0,...,k'}, and (Q?)%2) = K? for some ¢2 € {k?,..., k> + k'}. We get

max(k2,k3)
> D aux ) > > >
KeD, 1,JeDy 12=0 q1€{0,....,k} LeDy QeDy
1M =K =J*) @e{k?, K24k} e(L)=2-F oK) (@YH=K?

(L2)0%) =(c2)(max(0,65 k%) (Q) (1) =K

x |01 = D)QNALzS b ® Hyzo 120} Bg29, Hp p @ hyas) .
Here we need to notice that R = R! x R? x R® D K, L, Q, where
R = K(k1,max((),k3fk2),k1+max(k2fk?’,0)) and R c DZ-

This is a common “Zygmund ancestor” for all of these rectangles.
Let us expand in the difference (b);, — (b)¢ in the following way

(b = (b)r — (b) o1
+ (b)) z01.1) — (b) 1 (0.2.2)

+ <b>L(0,1271,1271) - <b>L(0,12,12) + <b>L(0,l2,z2)
?—1
= Z (<b>L(O,'r2,'r2) - <b>L(0,T2+1,r2+1)> + <b>L<07l2’l2>'

r2=0
Notice that since £(L')¢(L?) = ¢(L3), we have ¢(L1)¢((L?)™) = ¢((L3)(™), i.e. rectan-
gles (Lz)(”z) X (L3)(7"2) € Dy(r1) which is desirable since we want to use the characteriza-
tion (2) in Lemma 7.2. We continue with the last term
<b>L(o,12,12) = <b>L(o,z2,z2) - <b>L(1,12,1+12)
+ <b>L(1,l2,1+l2> - <b>L(2,z2,2+z2)

<b>L(k171,l2,k171+l2) - <b>L(kl,l2,k1+l2) + <b>G
k-1
= Z (<b>L(T1’l2,T1+12) — <b>L(r1+1,l2,'r1+1+l2)) + (b)R.

rl=0
Recall that (L2)(") = (K?2)max(0k° k%) —. B2 and observe that since £((L3)* %) =
LAY EN (LYY = ¢(R2)e(KY) we get (L3)*'+1*) = R3. Thus, we end up with a sum
of terms of the forms
(7~13) <b>L(0,7‘2,7‘2) - <b>L(O,r2+1,r2+1) and <b>L(r1,l2,7‘1+l2) - <b>L(T1+1,l2,r1+1+l2)7
and we have for fixed r! and 72

|(7.13)] < [[bllbmo
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by Lemma 7.2.
By the same argument as above we get

max(0,k3—k2)+¢?—1

<b>Q = Z <b>Q<0,p2,p2> - <b>Q(0,p2+1,p2+1>
p>=0

ql
+ Z (0) oot a2 otra2) = (b) ot +1.22.01 41422)
1—0

+ (b) R,
where ¢2 = max(0, k% — k2) + ¢,
(Q2)(§’2) _ (K2)(max(0,k3—k2)) and (QS)(ql—H}Q) _ (K3)(k’1+max(k2—k3,0))'

Notice that the last term corresponds to the last term in the previous expansion, and
hence, their difference equals to zero. Again, here we have

‘<b>Q(0,p2,p2) - <b>Q(0,p2+1,p2+1) + <b>Q(p1,?z'2,pl+¢72) - <b>Q(p1+1,?z’2,p1+1+§'2)’ S.z Hb”meZ
for fixed p' and p?.

Now, we can split the commutator into the two terms

Wi = 1k > br,kArzf,
LeDy
o(LY=2-F g(K1)
o(K2)<2k p(L2)<oamax(k? k%) g 2)

where
|bL,K| /S max(k;l, k27 k3)|‘b||bmoza
and
Vierg = > bo,kAQ,29;
Q€eDyz
QICK!, (QY)>e(It)
2-H (K2 <2F (@) <e(K?)

where

b, | < max(k', k>, k%) [|b]lbmo, -
Thus, the last term of the commutator is the sum of

Z Z a]JK<W?{7kf, hyt ®H12,3’J2,3><VK7]€9,H117J1 ® hj23)

KeD, I,JeDy
IR =g =gk)

and

Z Z argk Wk f, hp ® H1213,J2v3><V?<,k97 Hp jp @ hjes).

KeD,y 1,Je€Dy
IR — = j (k)

The boundedness follows via standard methods (adapt proofs of [14, Theorem 6.2 and
Lemma 5.20].) O
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APPENDIX A. BILINEAR FEFFERMAN-PIPHER MULTIPLIERS

In this section we consider bilinear variants of multipliers studied by Fefferman-Pipher [6].
These considerations motivate the kernel estimates in Section 3. After the presented cal-
culations, the reader can easily check how everything fits with Section 3. In fact, we will
see that the bilinear Fefferman-Pipher multipliers produce kernels which satisfy the the
kernel estimates in Section 3 with

9:2, o] = 1, a273:1,
and an extra logarithm factor. In the partial kernel estimates 0 = 1 and there is also a

harmless logarithm factor.
We consider the following multi-parameter dilation on R® — define

pS,t(x7 y) = (th t.ﬁlfg, 8t$37 SY1, t?/% Sty3)a S, t> 07

and set

A1 = {(5?77) € RG: % < ’(517771)’ < 17% < ‘(‘5275377727773” < 1}

In this section we consider the parameter groups {1} and {2,3} only. The grouping
{{2}, {1, 3}} is similar, for example, we would set

A2 = {(5577) € R6: % < |(€27772)| < 1’% < |(£17€377]15n3)’ < 1}

For Schwartz functions fi, fo we define the bilinear multiplier operator

Tona(f1, f2)(@) = /R /R m(&m Fu(€) a(m)e* ) dg dn,
where the symbol m € CV is assumed to satisfy

|lm|px := sup sup sup \Ggaﬁ(mOpsyt)(f,nﬂ < 0.
2 |ofee<N 5t>0 (g,p)eA
1Blcc <N

Thus, if (£,1) € A, then by definition

(A1)
(0800 m) (&, o, st€s, sn, ta, stns)| < |m| Mlzs*m*ﬁlfarﬂ? (st)~s—hs

= HmH/\/ll 3_(a1+51)+(02+,32)(St)—(a2+ﬁg)—(a3+ﬁ3).
z

Now, for (¢1,01) # 0 and (2, (3,02, 03) # 0 denote

s = [(C1,01)l, st = |(sC2, (3, 802, 03)],
(51752753) = (%7 %a %)a (77117727773) = (%7 %; g)

Thus, (¢£,7) € Al and
(A2)
0807m(¢,0)| S mll gy (1G] + o)~ (P a2 t52)

x (1((1¢1] + [01])Cas )| + (1G] + o1 ])oa, a3)]) ~ 2 FPI st i),
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We write, with two standard partitions of unity ¢; on R? \ {0} and ¢ 3 on R*\ {0},
that

L= ¢1(2779&,27m)pos(2 7, 27775 E3, 27y, 279 ).
k€L
Via this identity we obtain
m = Z(¢1 ® $2,3 0 py-ig-k) M
j?k
= Z(¢1 ® G2,3 + (M O Pgj 9k)) © Pa—j o—k =2 Mj k.

j.k
Since ¢1 and ¢»,3 are supported in B(0,2) \ B(0, 3) in R? and R*, respectively, we know
that

sptmj i C

po 2 {(€m) : (€1,m1) € By (0,2)\ Bz (0, §), (€23, m23) € Bra(0,2)\ Bas(0, §) }-
Using this we get
Haaaﬂmj,kHLOO < 9~ Whkytk)-(at8)  and Haaaﬁmj7k||L1 < Uk k) (2= (a+5))
where 2 = (2,2,2).

Let K;(y,2) = mjx and K(y, 2) = >, K k(y, 2) — then K(z — y,z — 2) is the corre-
sponding kernel. Using similar analysis as in [14] we have

ly* =505 01 K k| 1 < (10205 (80 me) |0

< (5) (5 1@ on - oot

I<a
<a

< 9(4:k.d+k)-(2+(B+7)—(a+a))

for multi-indices o, &, 8, 7. Hence, we get
‘yBJrlZ’eragaz_;(m(y7 2)| < Q(J'JWHC)-(2+(ﬂ+'y)f(a+o7))|y5+1*a| . \zVH*d )
Taking o, &; € {0, N} we obtain
Y OO K (y, )|
<S> min{(27|yi ), (279 )P Ny mind (270 ) (272 )TN
J
x Y min{ (28ga]) 2, (2F[ya )2 TN min{ (28 z0]) 2 (25 22]) 2N Y
k
x min{ (27 |y )P, (274 g5 )P N Y minf (2774F 25]) 8 FY, (27 |z )28 N,
We can estimate the inner sum either by
> (2% [y )2 (25| zg] )2 (27 s ) P (27K g )00+
k: 2k <1/(ly2|+|22])
+ > (28 |y )21 (28 29]) 72T (27 TRy ) B (27K 25 ) o
ki 2k>1/(ly2|+220)>1/(2ly=1)
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+ > (25 [y2) 724 (2% | ) 2N (29 Ry ) o (27 F 25 )10
k: 2821/ (Jy2l+1220)>1/(2]22])
o)+ ol (@) @t
== 1

~ (yal + [22D)%2 0 (ol + 2224 (gl + [22D)PFT (Jya| + [22])
or by
> (28 |ya]) P27 (28 2|72 (27K g ) (27HH 250
k: 2k<277 /(lys|+|zs])
+ > (2% |2 )2 (28 22 ]) 2 (27 g ) BN (27K 250
k: 262277 /(lys|+|23]) =277/ (2]ys])
+ > (2%]yal) P21 (282 |) 72 (27K yg ) B (27 228N
ki 26>273 /(lys|+|23])>277/(2|23])
ly2| >+ 292! lys| P! Bl
~ 120 (lysl + [2sD1% T 29 (lysl + [2sD)= 4T (sl + [2sD)PFT (Jys| + [2s])

in both cases provided that 3> + 83 + 2 + 73 < N — 4.
The outer sum can then be estimated either by

= -[27

>, @)@
3t 20<1/(Jyrl+|z1)
+ > )N (@ )
312021/ (lyrl+|210)>1/(2y1l)
+ Z (Qj‘y1|)61+1(2j|zl|)v1+1—N_71
31 2021/ (Jy1|+|211)>1/(2|211)
T e R S e e |ys| % |23 !

<
™ (lyal + [z D12 (Jyal + |22))202 72 [(Jya | + [21]) (gl + |22 )] +2

or, if ([y1| + |z1]) (ly2] + [22]) < lys| +[23], by

> 2y )P 2|z )
35 27 <y 22/ (lysl+21)
+ > (2 [y ) (2| )
E Igﬁmzi} <Y< IylHl-IZﬂ
+ 2 @l ) ([N
35 21/ (il 1)) >1/(2]za )
+ > (27 ) N (2 2y ) Ly = T4+ T + TIT + 1V.

3+ 27>1/(jyr[+|21)>1/(2ly1l)
It is straightforward that
‘y1’51+1’21"¥1+1 ’y2‘52+1|22’72+1 |y3’53+1‘23|73+1
Qo] + T P2 (o] + 22y 57772 (Jys] + o) Fo72

% ((’yl‘ + \21|)(|y2] + ’22‘)>B1+’71+2.
lys| + 23] ’

I ~
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i ot ) e =) R R | i v Bl
(Jya] + [21))PrF71F2 (Jya| + |22|)P2 7272 (Jys| + [23]) Pt +2
x ((!yﬂ + |21) (lya| + IZz\)>52+72+2
|lys| + |23] '

11T ~ IV ~

Lastly, we have
7 Y LA 177 i -1 K 1) i
(Il + 12 D1 H2 (ya| + [22])%202H2 (|ys| + [z5]) %2
X ((\yll + [21]) (ly2| + !Zzl))mi“{ﬁl“hﬂ?ﬂ'ﬁ'+2
|ys| + |zs]

II ~

L, 3172 (Y5 2)s

where

lys| + [23] )
(lya] + [z1)) (2| + [22])
when 31 +v1 = B2 + 72 and Lg, 8, 4, 1. (¥, 2) = 1 otherwise. In conclusion, we get
1
[(ly1] + [21])(ly2| + [22]) + ys| + |z5]]Fs s+
1
X
(lyal + [21 )P ([ya| + |22]) P22
x min {1, (<Iyll +1z1)) (lyel + \z2|>)min{61+wz+m}
lys| + |23]

Lgy g (Y, 2) =1+ log (

007K (y. )| <

Lﬁl’ﬁ%“fl Y2 (y7 Z)

Partial kernel estimates. Let m € M. We define truncations of m by setting

1 2 2
myi= Y mig J=(JJ)eN.
l71< T |k|I< T2

A.3. Lemma Suppose that m € MY, Let m be defined as above and let K ; = 1n;. Then for
(y2, 22) # 0 # (y3, 2z3) we have the estzmate

‘///1 ) 18558536322333KJ($1 — Y1, Y2, Y3, T1 — 21, 22, 23) dy1 dz1 dag
It xItxI

' 1 ‘11‘(111!(@2\“22\) lys| +123] 4
(!y2\ + \»’«’2|)52+72 (lys| 4 |23] )P+ lys| + | 23] [T (Jya| + |22])
1 lys| + 23]
X . g e S S—
TG+ e o [l 22D

where I' is an interval and B2 + B3 + v2 + 73 < 1.

Proof. Since m ;(0,&2,&3,0,12,13) = 0, using the Fourier transform we know that
(A4) // 0020002013 K 1 (y1,y2, Y3, 21, 22, 23) dy1 dzg = 0.

Suppose first that |I'|(|ya| + |22]) > |ys| + |23] — by (A.4) we may equivalently estimate
the integral over I'' x (R%\ (I' x I')) instead of I' x I' x I'. By the kernel estimates we
have

‘ ///p w11k, 02002018 K 5 (w1 — Y1, Y2, Y3, B1 — 21, 22, 23) dyr dzy day
X
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<) :
~ My (2] + [22])P2t2

lys|+|z3]
1+ log r—yalos =) Qo+l

X
[(lz1 = w1l + |21 = 21])(ly2l + |22]) + [ys| + |23]}Ps st

dy; dzp dx;.

Note that we have either y; € R\ I' or z; € R\ I, and we may without loss of generality
assume y; € R\ I'. Then the integral is dominated by

1
/11 //(R\Il)xR (ly2| + [22])P2 2

_ lysltl=l
y 1+log, lz1—y1[(ly2]+22]) dy1 dzy dzy
ol T o — D (el 122 + Iyl & ool
lys|+|z3]
3 1 / / 1+ logy iy el 7D dy, dz
~ Ba+v2+B3+y3+4 lys|+|23] | A3 +73+3 '
(el + T220) R R R )

Lett := Bzmij . By a change of variables we reduce to

1
t—Bs—73—1 // 1+log, = 41 doy
(ly2| + ’22‘)ﬂ2+’72+53+’73+4 =171 % (R\¢—117) (|x1 — |+ 1),334-’)'34-3

< t—Bs—vs—1 / 1 q
~ I €1
(’y2| + ‘22|)62+72+,83+"/3+4 171 (d(IEl, 3(t’111)) + 1)/33+'Y3+2

t—Bs—v3—1
S (ly2| + |22|)B2tr2t+Bstys+4
B 1 1
 (ly2l + [22)%257253 ([ys| + |25]) sttt
N 1 , 1 1|(Ul!(!y2\ + |22]) lys| + 1231 |1
(lyal + [22)P72 (Jys| + |23])Fst7s lys| + 23] [T (ly2| + |22])
1

X — -
[L—o (sl + [2i1)

Assume then that |I|(|y2| + |22|) < |ys| + |23]- This time we integrate over I x I' x I'.
Proceeding as above we reduce to the integral

1
t-f ! L+ logy g
(|lya| + |z2|)Betr2tBsts+4 [(|2) — 41| + |21 — 21]) + 1]Pstrs+4

dyl d21 dxl

t—1Mxt—111 x¢—1]L
1

< t_BS_'YS_l 1 + 10g+ m d dx
= (lyo| + |z2])Pe 72t Bst75H4 (Jzq — gy | + 1)Ps+1a+3 Yrdr

t=1rlx¢=111
t—B3—13—1 | 1 o d
~ 1+log, ——— z
(lya| + |zo]) P12 +Batrats // (14 log, m—yn) yren
t=1r1x¢=1]1
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< t—B3—3—1
~ (lya| + |z2])P2tr2+Bstrs+4

(I (1 + log (¢ 11 71))

B S S evn s D R Y I
(ly2l + 122?72 (lys| + |23])Ps+7s lys| + [23] (Y| (ly2] + [22])
1 lys| + |2s|
X (14+1log, ——————).
[T (lyil + [2i])? ( +|11!(\y2!+|22\))
Thus, we are done. 0

With (A.2) at hand, similarly as in the linear case we can derive the following.

A5. Lemma. Let m € MY, and denote by T, the corresponding Fourier multiplier operator.
Let f1,91 € L*(R), f23, 92,3 € L*(R?) and hy € L*(R), ho,3 € L*(R?). Then

(T (f1 @ fa3,91 @ g23), 1 @ ha3) = (Tny, gy oy (F191), 1),
where My, 5 g, 5 hy 5 15 4 standard bilinear Coifman-Meyer multiplier in R satisfying the estimates
‘( d/ dfl)a( d/ dnl)ﬁmf2,3,92,3,h2,3 (617 771)’
< Il 1 f2sllzallgzsllallhzs | 2 (16| + o) 77,

Thus, Tiny, , 4 21, 15 @ convolution form bilinear Calderon-Zygmund operator. In particular,
there exists a standard bilinear Calderon-Zygmund kernel K, f, 5 g 5 h, 5 SUch that

HKm7f2,3,g2,3,h2,3HCZl(]RQ) 5 ||f2,3HL4H92,3”L4||h2,3||L2‘
Moreover, if spt f1 Nspt g1 Nspt hy = 0, then

(Trn(f1 ® f2,3,91 ® g2.3), b1 ® ha3)

= // Km,fz,s,gzﬁs,hzs(xl?y17Zl)fl(yl)gl(zl)hl(wl)dyl dzy day.

Conclusion. Notice that Lemma A.5 immediately implies that we have the weak bound-
edness property. Therefore, the bilinear multipliers satisfy Definition 3.5.
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