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ABSTRACT. We develop both bilinear theory and commutator estimates in the context of
entangled dilations, specifically Zygmund dilations (x1, x2, x3) 7→ (δ1x1, δ2x2, δ1δ2x3) in
R3. We construct bilinear versions of recent dyadic multiresolution methods for Zygmund
dilations and apply them to prove a paraproduct free T1 theorem for bilinear singular in-
tegrals invariant under Zygmund dilations. Independently, we prove linear commutator
estimates even when the underlying singular integrals do not satisfy weighted estimates
with Zygmund weights. This requires new paraproduct estimates.

1. INTRODUCTION

“Entangled” systems of dilations, see Nagel-Wainger [22], in them-parameter product
space Rd =

∏m
i=1 Rdi have the general form

(x1, . . . , xm) 7→ (δλ111 · · · δλ1kk x1, . . . , δ
λm1
1 · · · δλmkk xm), δ1, . . . , δk > 0,

and appear naturally throughout analysis. For instance, in R3 the Zygmund dilations
(x1, x2, x3) 7→ (δ1x1, δ2x2, δ1δ2x3) are compatible with the group law of the Heisenberg
group, see e.g. Müller–Ricci–Stein [21]. Even these simplest entangled dilations are not
completely understood, especially when it comes to the associated Calderón–Zygmund
type singular integral operators (SIOs).

Until recently, multiresolution methods were still missing in the Zygmund dilations
setting, as pointed out in [5]. This was a big restriction on how to go about developing
singular integral theory. However, the last two authors together with T. Hytönen and
E. Vuorinen recently developed this missing Zygmund multiresolution analysis in [14].
Such dyadic representation theorems and related multiresolution techniques had been
highly influential in recent advances on SIOs and their applications (see e.g. [12, 13, 20,
23]), but developing them in the entangled situation required new ideas. These tools
then yielded very delicate weighted norm inequalities Lp(w) → Lp(w) for general non-
convolution form Zygmund singular integrals in the optimal generality of Zygmund
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weights (introduced by Fefferman–Pipher [6])

[w]Ap,Z := sup
I∈RZ

( 1

|I|

ˆ
I
w(x) dx

)( 1

|I|

ˆ
I
w−1/(p−1)(x) dx

)p−1
<∞, 1 < p <∞,

where the supremum is over Zygmund rectangles I = I1 × I2 × I3, `(I3) = `(I1)`(I2).
In fact, there is a precise threshold: if the kernel decay in terms of the deviation of

z ∈ R3 from the “Zygmund manifold” |z1z2| = |z3| is not fast enough, singular integrals
invariant under Zygmund dilations fail to be bounded with Zygmund weights. We con-
structed counterexamples and showed the delicate positive result in the optimal range
using the new multiresolution analysis. Previous results include [5, 6, 11, 24].

This rather striking threshold for weighted estimates means that it is, in particular,
unclear in what generality natural estimates for commutators [b, T ] = bT − T (b · ) hold.
Of course, ever since the classical one-parameter result of Coifman–Rochberg–Weiss [2],
stating that ‖[b, T ]‖Lp→Lp ∼ ‖b‖BMO, commutator estimates have been a large and fun-
damental part of the theory of SIOs and their applications. Commutator estimates in the
Zygmund dilation setting were previously considered in [5] using the so-called Cauchy
integral trick. That method requires weighted bounds with Zygmund weights – this is
because it uses the fact that natural Zygmund adapted BMO functions generate Zyg-
mund weights. But we now know [14] that such weighted bounds are quite delicate –
and it turns out that the commutator bounds are true even in the regime where weighted
estimates fail. We prove the following.

1.1. Theorem. Let b ∈ L1
loc and T be a linear paraproduct free Calderón-Zygmund operator

adapted to Zygmund dilations as in [14]. Let θ ∈ (0, 1] be the kernel exponent measuring the
decay in terms of the Zygmund ratio

Dθ(x) :=

(
|x1x2|
|x3|

+
|x3|
|x1x2|

)−θ
.

Then for all such θ we have

‖[b, T ]‖Lp→Lp . ‖b‖bmoZ , 1 < p <∞.

As weighted estimates only hold with θ = 1, this requires a proof based on the mul-
tiresolution decomposition [14] and a new family of “Zygmund paraproducts”. Study-
ing paraproducts is also interesting from the technical viewpoint that, generally, proofs
of T1 theorems display a structural decomposition of SIOs into their cancellative parts
and paraproducts. The new Zygmund theory in [14] is designed for the fully cancellative
case leaving out paraproducts and BMO considerations, so this is the first paper, as far as
we know, where paraproducts are considered in the Zygmund situation. They are tricky
objects in the entangled situation. However, while this is also a step forward towards a
full T1 theorem in the Zygmund setting, the commutator theory that we develop does
not require so-called partial paraproducts, and so the paraproduct tools developed here
are not yet sufficient to prove a T1 theorem in the non-cancellative case. We also men-
tion that during our proof we include some results of independent interest, mainly, a
new, extremely short proof of the A∞ extrapolation theorem [3].

Moving to a different direction, we push the Zygmund multiresolution methods [14]
to the multilinear setting and study bilinear SIOs invariant under Zygmund dilations. A



ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES 3

classical model of an n-linear SIO T in Rd is obtained by setting

T (f1, . . . , fn)(x) = U(f1 ⊗ · · · ⊗ fn)(x, . . . , x), x ∈ Rd, fi : Rd → C,

whereU is a linear SIO in Rnd. See e.g. Grafakos–Torres [9] for the basic theory. Estimates
for classical multilinear SIOs play a fundamental role in pure and applied analysis – for
example, Lp estimates for the homogeneous fractional derivative Dαf = F−1(|ξ|αf̂(ξ))
of a product of two or more functions, the fractional Leibniz rules, are used in the area of
dispersive equations, see e.g. Kato–Ponce [15] and Grafakos–Oh [8]. We do not otherwise
attempt to summarize the massive body of literature here and simply mention that the
closest existing result is perhaps [18], which develops multiresolution methods in the
non-entangled multilinear bi-parameter case.

In this paper we prove the following “paraproduct free” T1 theorem for bilinear Zyg-
mund SIOs.

1.2. Theorem. Let T be a bilinear paraproduct free Calderón-Zygmund operator adapted to Zyg-
mund dilations as in Definition 3.5. Let 1 < p1, p2 < ∞ and 1

2 < p < ∞ with 1
p := 1

p1
+ 1

p2
.

Then we have
‖T (f1, f2)‖Lp . ‖f1‖Lp1‖f2‖Lp2 .

Notice that we can conclude the full bilinear range, including the quasi-Banach range,
just from the paraproduct free T1 type assumptions. Also relevant is the fact that e.g. the
appearing weak boundedness condition only involves Zygmund rectangles – that is, the
T1 assumptions of Definition 3.5 are Zygmund adapted and in this respect weaker than
the corresponding tri-parameter assumptions.

It would also be very interesting to develop weighted theory with suitable kernel as-
sumptions like in the linear case [14]. That is, to generalize our recent paper [19] from
the standard multi-parameter setting to this entangled Zygmund setting. Recall that it
would be key to deal with “genuine” multilinear weights, i.e., only impose a joint Ap
condition on the associated tuple of weights ~w = (w1, . . . , wn). While such multilinear
weighted estimates had been known for one-parameter SIOs for over 10 years by the
influential paper [16], the multi-parameter version was only recently solved in [19]. The
entangled situation is very difficult, though, and we do not achieve such estimates in
this paper. Indeed, we are splitting our operators in a way that is sufficient for the un-
bounded estimates, but not for the weighted estimates. In fact, already the unweighted
estimates are surprisingly delicate and the only way we found to achieve them was with
using this additional decomposition and even some sparse domination tools.

Here is an outline of the paper. In Section 2 we develop the fundamental Zygmund
adapted multiresolution methods in the bilinear setting. Section 3 introduces the sin-
gular integrals and the corresponding testing conditions, and Section 4 uses the kernel
estimates to bound the various coefficients arising in the multiresolution analysis. Sec-
tion 5 contains a further decomposition of our dyadic model operators – this is then
required in Section 6, where the Lp estimates of these model operators are proved. Sec-
tion 6 concludes with the proof of Theorem 1.2. Section 7 contains the proof of the linear
commutator estimates, Theorem 1.1, and the corresponding theory of product and lit-
tle BMO commutators in the Zygmund setting. Appendix A considers bilinear variants
of the multipliers studied by Fefferman-Pipher [6] – this is motivation for the abstract
definitions of Section 3.
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2. BILINEAR ZYGMUND MULTIRESOLUTION ANALYSIS

2.A. Dyadic intervals, Zygmund rectangles and basic randomization. Given a dyadic
grid D, I ∈ D and k ∈ Z, k ≥ 0, we use the following notation:

(1) `(I) is the side length of I .
(2) I(k) ∈ D is the kth parent of I , i.e., I ⊂ I(k) and `(I(k)) = 2k`(I).
(3) ch(I) is the collection of the children of I , i.e., ch(I) = {J ∈ D : J (1) = I}.
(4) EIf = 〈f〉I1I is the averaging operator, where 〈f〉I =

ffl
I f = 1

|I|
´
I f .

(5) ∆If is the martingale difference ∆If =
∑

J∈ch(I)EJf − EIf .
(6) ∆I,kf or ∆k

If is the martingale difference block

∆I,kf = ∆k
If =

∑
J∈D
J(k)=I

∆Jf.

We will have use for randomization soon. While often the grids are fixed and we sup-
press the dependence on the random parameters, it will be important to understand the
definitions underneath. So we go ahead and introduce the related notation and standard
results now. Let D0 be the standard dyadic grid in R. For ω ∈ {0, 1}Z, ω = (ωi)i∈Z, we
define the shifted lattice

D(ω) :=
{
L+ ω := L+

∑
i : 2−i<`(L)

2−iωi : L ∈ D0

}
.

Let Pω be the product probability measure on {0, 1}Z. We recall the following notion of a
good interval from [10]. We say that G ∈ D(ω, k), k ≥ 2, if G ∈ D(ω) and

(2.1) d(G, ∂G(k)) ≥ `(G(k))

4
= 2k−2`(G).

Notice that for all L ∈ D0 and k ≥ 2 we have

(2.2) Pω({ω : L+ ω ∈ D(ω, k)}) =
1

2
.

The key implication (of practical use later) ofG ∈ D(ω, k) is that for n ∈ Z with |n| ≤ 2k−2

we have

(2.3) (Gu n)(k) = G(k), Gu n := G+ n`(G).

In fact, we will not need much more of randomization – it only remains to move the
notation to our actual setting of R3 = R× R2. We define for

σ = (σ1, σ2, σ3) ∈ {0, 1}Z × {0, 1}Z × {0, 1}Z

that

D(σ) := D(σ1)×D(σ2)×D(σ3).

Let
Pσ := Pσ1 × Pσ2 × Pσ3 .

For k = (k1, k2, k3), k1, k2, k3 ≥ 2, we define

D(σ, k) = D(σ1, k1)×D(σ2, k2)×D(σ3, k3).
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We also e.g. write

D(σ, (k1, 0, k3)) = D(σ1, k1)×D(σ2)×D(σ3, k3),

that is, a 0 will designate that we do not have goodness in that parameter.
As for most of the argument σ is fixed, it makes sense to mainly suppress it from the

notation and abbreviate, whenever possible, that

Dm = D(σm), D(σm, km) = Dm(km), m = 1, 2, 3.

Then also

D = D(σ) =
3∏

m=1

Dm, D(k) =
3∏

m=1

Dm(km).

We define the Zygmund rectangles DZ ⊂ D by setting

(2.4) DZ =
{
I =

3∏
m=1

Im ∈ D : `(I1)`(I2) = `(I3)
}
.

Obviously, DZ(k) is defined similarly as above but also requires
∏3
m=1 I

m ∈ D(k).

2.B. Zygmund martingale differences. Given I =
∏3
m=1 I

m we define the Zygmund
martingale difference operator

∆I,Zf := ∆I1∆I2×I3f.

2.5. Remark. We highlight that the martingale difference ∆I2×I3 is the one-parameter
(and not the bi-parameter) martingale difference on the rectangle I2 × I3:

∆I2×I3 = ∆I2∆I3 + EI2∆I3 + ∆I2EI3 6= ∆I2∆I3 .

Moreover, the above operators really act on the full product space but only on the given
parameters – for instance, ∆I1f(x1, x2, x3) = ∆1

I1f(x1, x2, x3) = (∆I1f(·, x2, x3))(x1).

We recall the following facts from [14]. For a dyadic λ > 0 define the dilated lattices

D2,3
λ = {I2,3 ∈ D2,3 := D2 ×D3 : `(I3) = λ`(I2)}.

The basic Zygmund expansion goes as follows:

f =
∑
I1∈D1

∆I1f =
∑
I1∈D1

∑
I2,3∈D2,3

`(I1)

∆I1∆I2,3f =
∑
I∈DZ

∆I,Zf.(2.6)

However, the way we split our operators will not be this simple.
The following basic results hold for the martingale differences. For I, J ∈ DZ we have

∆I,Z∆J,Zf =

{
∆I,Z if I = J,
0 if I 6= J.

Notice also that the Zygmund martingale differences satisfyˆ
R

∆I,Zf dx1 = 0 and
ˆ
R2

∆I,Zf dx2 dx3 = 0.

Moreover, we have ˆ
(∆I,Zf)g =

ˆ
f∆I,Zg.
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2.C. Haar functions. For an interval J ⊂ R we denote by Jl and Jr the left and right
halves of J , respectively. We define

h0
J = |J |−1/21J and h1

J = hJ = |J |−1/2(1Jl − 1Jr).

The reader should carefully notice that h0
I is the non-cancellative Haar function for us

and that in some other papers a different convention is used.
As we mostly work on R3 = R × R2 we require some Haar functions on R2 as well.

For I2 × I3 ⊂ R2 and η = (η2, η3) ∈ {0, 1}2 define

hη
I2×I3 = hη2

I2
⊗ hη3

I3
.

Similarly, as hI1 denotes a cancellative Haar function on R, we let hI2×I3 denote a can-
cellative one-parameter Haar function on I2 × I3. This means that

hI2×I3 = hη
I2×I3

for some η = (η2, η3) ∈ {0, 1}2 \ {(0, 0)}. We only use a 0 to denote a non-cancellative
Haar function: h0

I2×I3 = h
(0,0)
I2×I3 .

We suppress this η dependence in all that follows in the sense that a finite η summation
is not written. For example, given I = I1 × I2 × I3 ∈ DZ ⊂

∏3
m=1Dm decompose

∆I,Zf = ∆I1∆I2×I3f = 〈f, hI1 ⊗ hI2×I3〉hI1 ⊗ hI2×I3 =: 〈f, hI,Z〉hI,Z .

2.D. Bilinear Zygmund shifts. In preparation for defining the shifts, we define the fol-
lowing notation. Let I1, I2, I3 be rectangles, Ij = I1

j × I2
j × I3

j = I1
j × I

2,3
j , and f1, f2, f3 be

functions defined on R3. For j1, j2 ∈ {1, 2, 3} define

Aj1,j2I1,I2,I3
= Aj1,j2I1,I2,I3

(f1, f2, f3) :=
3∏
j=1

〈fj , vIj 〉,

where

vIj = h̃I1j
⊗ h̃

I2,3j
;

h̃I1j1
= hI1j1

and h̃I1j
= h0

I1j
, j 6= j1;

h̃
I2,3j2

= h
I2,3j2

and h̃
I2,3j

= h0
I2,3j

, j 6= j2.

For a dyadic λ > 0 define

Dλ = {K = K1 ×K2 ×K3 ∈ D : λ`(K1)`(K2) = `(K3)}.
Moreover, for a rectangle I = I1 × I2 × I3 and k = (k1, k2, k3) define

I(k) = I
(k1)
1 × I(k2)

2 × I(k3)
3 .

2.7. Definition. Let k = (k1, k2, k3), ki ∈ {0, 1, 2, . . .}, be fixed. A bilinear Zygmund shift
Q = Qk of complexity k has the form

〈Qk(f1, f2), f3〉

=
∑

K∈D
2−k1−k2+k3

∑
I1,I2,I3∈DZ
I
(k)
j =K

aK,(Ij)

[
Aj1,j2I1,I2,I3

−Aj1,j2
I1j1
×I2,31 ,I1j1

×I2,32 ,I1j1
×I2,33
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−Aj1,j2
I11×I

2,3
j2
,I12×I

2,3
j2
,I13×I

2,3
j2

+Aj1,j2
I1j1
×I2,3j2 ,I

1
j1
×I2,3j2 ,I

1
j1
×I2,3j2

]
for some j1, j2 ∈ {1, 2, 3}. The coefficients aK,(Ij) satisfy

|aK,(Ij)| ≤
|I1|1/2|I2|1/2|I3|1/2

|K|2
=
|I1|3/2

|K|2
.

Now, the game is to represent bilinear singular integrals using the operators Qk and
also – independently – bound the operators Qk suitably. We start with the representa-
tion part and deal with bounding the operators later. We have not defined our singular
integrals carefully yet, however, a lot of the required decomposition can be formally car-
ried out for an arbitrary operator T . The singular integral part is later required to get
sufficient decay for the appearing scalar coefficients and to handle the paraproducts.

2.E. Zygmund decomposition of 〈T (f1, f2), f3〉. For now, we focus on the multireso-
lution part and start formally decomposing a general bilinear operator. We begin by
writing 〈T (f1, f2), f3〉 as∑

I11 ,I
1
2 ,I

1
3∈D1

〈T (∆I11
f1,∆I12

f2),∆I13
f3〉

=
∑

I11 ,I
1
2 ,I

1
3∈D1

`(I11 ),`(I12 )>`(I13 )

〈T (∆I11
f1,∆I12

f2),∆I13
f3〉

+
∑

I11 ,I
1
2 ,I

1
3∈D1

`(I11 ),`(I13 )>`(I12 )

〈T (∆I11
f1,∆I12

f2),∆I13
f3〉

+
∑

I11 ,I
1
2 ,I

1
3∈D1

`(I12 ),`(I13 )>`(I11 )

〈T (∆I11
f1,∆I12

f2),∆I13
f3〉

+
∑

I11 ,I
1
2 ,I

1
3∈D1

`(I11 )>`(I12 )=`(I13 )

〈T (∆I11
f1,∆I12

f2),∆I13
f3〉

+
∑

I11 ,I
1
2 ,I

1
3∈D1

`(I12 )>`(I11 )=`(I13 )

〈T (∆I11
f1,∆I12

f2),∆I13
f3〉

+
∑

I11 ,I
1
2 ,I

1
3∈D1

`(I13 )>`(I11 )=`(I12 )

〈T (∆I11
f1,∆I12

f2),∆I13
f3〉

+
∑

I11 ,I
1
2 ,I

1
3∈D1

`(I11 )=`(I12 )=`(I13 )

〈T (∆I11
f1,∆I12

f2),∆I13
f3〉.

We collapse the first six sums, which are not already diagonal sums, into diagonal sums∑
I11 ,I

1
2 ,I

1
3∈D1

`(I11 )=`(I12 )=`(I13 )

.
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This has the effect that whenever we have an inequality `(I1
i ) > `(I1

j ), the martingale
difference operator ∆I1i

corresponding with the larger cube is changed to the averaging
operator EI1i . Thus, in the first three sums we now have two averaging operators, and in
the next three we have one averaging operator. The more averaging operators we have,
the less cancellation we have, and thus the main challenge are the first three sums with
the least cancellation. We mainly focus on the first three sums for this reason.

In addition, the first three sums are symmetric, so we may focus on only one of them,
and choose to look at∑

I11 ,I
1
2 ,I

1
3∈D1

`(I11 ),`(I12 )>`(I13 )

〈T (∆I11
f1,∆I12

f2),∆I13
f3〉 =

∑
I11 ,I

1
2 ,I

1
3∈D1

`(I11 )=`(I12 )=`(I13 )

〈T (EI11 f1, EI12 f2),∆I13
f3〉.

Now, we fix I1
1 , I

1
2 , I

1
3 ∈ D1 with `(I1

1 ) = `(I1
2 ) = `(I1

3 ) and repeat the argument for
〈T (EI11 f1, EI12 f2),∆I13

f3〉 using the lattice D2,3
`(I1)

, where recall that for a dyadic λ > 0 we
have

D2,3
λ = {I2 × I3 ∈ D2,3 := D2 ×D3 : `(I3) = λ`(I2)}.

This produces seven terms, and we again focus on∑
I21×I31 ,I22×I32 ,I23×I33∈D

2,3

`(I1)

`(I21 )=`(I22 )=`(I23 )

〈T (EI11EI21×I31 f1, EI12EI22×I32 f2),∆I13
∆I23×I33 f3〉.

Altogether, our focus, for now, is on the key term

(2.8)
∑

I1,I2,I3∈DZ
`(I1)=`(I2)=`(I3)

〈T (EI1f1, EI2f2),∆I3,Zf3〉,

where `(I1) = `(I2) = `(I3) means that

`(Im1 ) = `(Im2 ) = `(Im3 ), m = 1, 2, 3.

This was completely generic – we now go a step further to the direction of Zygmund
shifts and start introducing Haar functions into the mix.

2.F. Further decomposition of (2.8). Write

〈T (EI1f1, EI2f2),∆I3,Zf3〉 = 〈T (h0
I1 , h

0
I2), hI3,Z〉〈f1, h

0
I1〉〈f2, h

0
I2〉〈f3, hI3,Z〉.

Now, we perform a rather complicated decomposition of the product 〈f1, h
0
I1
〉〈f2, h

0
I2
〉.

To this end, start by writing

〈f1, h
0
I1〉〈f2, h

0
I2〉

=
[
〈f1, h

0
I1〉〈f2, h

0
I2〉 − 〈f1, h

0
I13
h0
I2,31

〉〈f2, h
0
I13
h0
I2,32

〉
]

+ 〈f1, h
0
I13
h0
I2,31

〉〈f2, h
0
I13
h0
I2,32

〉

=: A1 +A2.

We then further decompose A1 as follows

A1 =
[
〈f1, h

0
I1〉〈f2, h

0
I2〉 − 〈f1, h

0
I13
h0
I2,31

〉〈f2, h
0
I13
h0
I2,32

〉

− 〈f1, h
0
I11
h0
I2,33

〉〈f2, h
0
I12
h0
I2,33

〉+ 〈f1, h
0
I13
h0
I2,33

〉〈f2, h
0
I13
h0
I2,33

〉
]
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+
{
〈f1, h

0
I11
h0
I2,33

〉〈f2, h
0
I12
h0
I2,33

〉 − 〈f1, h
0
I13
h0
I2,33

〉〈f2, h
0
I13
h0
I2,33

〉
}
.

When we later specialize to singular integrals, we will in particular make the following
assumption. We say that T is a paraproduct free operator, if for all cancellative Haar
functions hI1 and hI2,3 we have

〈T (1⊗ 1
J2,3
1
, 1⊗ 1

J2,3
2

), hI1 ⊗ 1
J2,3
3
〉 = 〈T ∗,j1 (1⊗ 1

J2,3
1
, 1⊗ 1

J2,3
2

), hI1 ⊗ 1
J2,3
3
〉

= 〈T (1I11 ⊗ 1, 1I12 ⊗ 1), 1I13 ⊗ hI2,3〉 = 〈T ∗,j2,3 (1I11 ⊗ 1, 1I12 ⊗ 1), 1I13 ⊗ hI2,3〉 = 0

for all the adjoints j ∈ {1, 2}. With this assumption in the full summation (2.8) everything
else vanishes except∑

I1,I2,I3∈DZ
`(I1)=`(I2)=`(I3)

〈T (h0
I1 , h

0
I2),hI3,Z〉

[
〈f1, h

0
I1〉〈f2, h

0
I2〉 − 〈f1, h

0
I13×I

2,3
1

〉〈f2, h
0
I13×I

2,3
2

〉

− 〈f1, h
0
I11×I

2,3
3

〉〈f2, h
0
I12×I

2,3
3

〉+ 〈f1, h
0
I3〉〈f2, h

0
I3〉
]
〈f3, hI3,Z〉.

So we eliminated the paraproducts by assumption, and now we have to manipulate this
remaining term to a suitable form involving shifts.

In the above sum we will relabel I3 = I = I1 × I2 × I3 = I1 × I2,3. Then, for n1 =
(n1

1, n
2
1, n

3
1) = (n1

1, n
2,3
1 ) we write

I1 = I u n1 = (I1 + n1
1`(I

1))× (I2 + n2
1`(I

2))× (I3 + n3
1`(I

3)) = (I1 u n1
1)× (I2,3 u n2,3

1 ).

We write I2 similarly as I2 = I u n2. Notice that if n1
1 = n1

2 = 0, then the term inside
the summation vanishes. Similarly, if n2,3

1 = n2,3
2 = (0, 0), the term inside the summation

vanishes. So we need to study ∑
n1,n2∈Z3

max(|n1
1|,|n1

2|) 6=0

max(|n2
1|,|n2

2|) 6=0 or max(|n3
1|,|n3

2|)6=0

∑
I∈DZ

cI,n1,n2 ,

where

cI,n1,n2

= 〈T (h0
Iun1

, h0
Iun2

), hI,Z〉
[
〈f1, h

0
Iun1
〉〈f2, h

0
Iun2
〉 − 〈f1, h

0
I1×(I2,3un2,3

1 )
〉〈f2, h

0
I1×(I2,3un2,3

2 )
〉

− 〈f1, h
0
(I1un1

1)×I2,3〉〈f2, h
0
(I1un1

2)×I2,3〉+ 〈f1, h
0
I〉〈f2, h

0
I〉
]
〈f3, hI,Z〉.

We write ∑
n1,n2∈Z3

max
j=1,2

|n1
j |6=0

max
j=1,2

|n2
j |6=0 or max

j=1,2
|n3
j |6=0

∑
I∈DZ

cI,n1,n2

=

∞∑
k1,k2,k3=2

∑
n1,n2∈Z3

max
j=1,2

|nmj |∈(2k
m−3,2k

m−2]

m=1,2,3

∑
I∈DZ

cI,n1,n2
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+
∞∑

k1,k2=2

∑
n1,n2∈Z3

max
j=1,2

|nmj |∈(2k
m−3,2k

m−2]

m=1,2
n3
1=n3

2=0

∑
I∈DZ

cI,n1,n2

+ Σsym,

where Σsym is symmetric to the second term and has n2
1 = n2

2 = 0.
Recall how everything implicitly depends on the random parameter σ, so that we can

average over it. By independence, like in [14], we have by (2.2) that

Eσ
∞∑

k1,k2,k3=2

∑
n1,n2∈Z3

max
j=1,2

|nmj |∈(2k
m−3,2k

m−2]

m=1,2,3

∑
I∈DZ

cI,n1,n2

= 8Eσ
∞∑

k1,k2,k3=2

∑
n1,n2∈Z3

max
j=1,2

|nmj |∈(2k
m−3,2k

m−2]

m=1,2,3

∑
I∈DZ(k)

cI,n1,n2 , k = (k1, k2, k3).

(2.9)

For the other two terms, where n2
j = 0 or n3

j = 0, we perform the above but do not add
goodness to the second and third parameters, respectively. For example, we have

Eσ
∞∑

k1,k2=2

∑
n1,n2∈Z3

max
j=1,2

|nmj |∈(2k
m−3,2k

m−2]

m=1,2
n3
1=n3

2=0

∑
I∈DZ

cI,n1,n2

= 4Eσ
∞∑

k1,k2=2

∑
n1,n2∈Z3

max
j=1,2

|nmj |∈(2k
m−3,2k

m−2]

m=1,2
n3
1=n3

2=0

∑
I∈DZ(k1,k2,0)

cI,n1,n2 .

Continuing with (2.9), we write it as

C8Eσ
∞∑

k1,k2,k3=2

(|k|+ 1)2ϕ(k)

∑
K∈Dλ

∑
I∈DZ(k)

I(k)=K

∑
n1,n2∈Z3

maxj=1,2 |nmj |∈(2k
m−3,2k

m−2]
m=1,2,3

cI,n1,n2

C(|k|+ 1)2ϕ(k)
,

where

Dλ = {K = K1 ×K2 ×K3 ∈ D : λ`(K1)`(K2) = `(K3)}, λ = 2k
3−k1−k2 ,
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and C is some suitably large constant depending on T . Recall that by (2.3) we also have

(I u n1)(k) = (I u n2)(k) = I(k) = K.

We have arrived to a point where we cannot go further without talking about singular
integrals. Indeed, we need kernel estimates to control the coefficients. But on a structural
level (with the paraproduct free assumption), we have obtained a reasonable representa-
tion of the main term (2.8) in terms of sums of bilinear Zygmund shifts.

3. BILINEAR ZYGMUND SINGULAR INTEGRALS

We begin by defining the required kernel estimates and cancellation conditions for
bilinear singular integrals T invariant under Zygmund dilations. For motivation for the
form of the kernel estimates, see Appendix A for kernel bounds of bilinear multipliers.
This viewpoint makes the kernel estimates natural – on the other hand, they are also of
the right form so that we will be able to bound the coefficients from the multiresolution
decomposition and obtain reasonable decay.

3.A. Full kernel representation. Our bilinear singular integral T invariant under Zyg-
mund dilations is related to a full kernel K in the following way. The kernel K is a
function

K : (R3 × R3 × R3) \∆→ C,

where

∆ = {(x, y, z) ∈ R3 × R3 × R3 : xi = yi = zi for at least one i = 1, 2, 3}.

We look at the action of T on rectangles like I1× I2× I3 =: I1× I2,3 in R3 = R×R×R =
R × R2. So let Ii = I1

i × I2
i × I3

i be rectangles, i = 1, 2, 3. Assume that there exists
i1, i2, j1, j2 ∈ {1, 2, 3} so that I1

i1
and I1

i2
are disjoint and also I2,3

j1
and I2,3

j2
are disjoint.

Then we have the full kernel representation

〈T (1I1 , 1I2), 1I3〉 =

˚
K(x, y, z)1I1(x)1I2(y)1I3(z) dx dy dz.

The kernel K satisfies the following estimates.
First, we define the decay factor

Dθ(x, y) =

(∏2
i=1(|xi|+ |yi|)
|x3|+ |y3|

+
|x3|+ |y3|∏2
i=1(|xi|+ |yi|)

)−θ
, θ ∈ (0, 2],

and the tri-parameter bilinear size factor

S(x, y) =
3∏
i=1

1(
|xi|+ |yi|

)2 .
We demand the following size estimate

(3.1) |K(x, y, z)| . Dθ(x− z, y − z)S(x− z, y − z).
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Let now c = (c1, c2, c3) be such that |ci − xi| ≤ max(|xi − zi|, |yi − zi|)/2 for i = 1, 2, 3.
We assume that K satisfies the mixed size and Hölder estimates

|K((c1,x2, x3), y, z)−K(x, y, z)|

.
( |c1 − x1|
|x1 − z1|+ |y1 − z1|

)α1

Dθ(x− z, y − z)S(x− z, y − z),
(3.2)

and

|K((x1, c2, c3), y, z)−K(x, y, z)|

.
( |c2 − x2|
|x2 − z2|+ |y2 − z2|

+
|c3 − x3|

|x3 − z3|+ |y3 − z3|

)α23

Dθ(x− z, y − z)S(x− z, y − z),

(3.3)

where α1, α23 ∈ (0, 1]. Finally, we assume that K satisfies the Hölder estimate

|K(c, y, z)−K((c1, x2, x3), y, z)−K((x1, c2, c3), y, z) +K(x, y, z)|

.
( |c1 − x1|
|x1 − z1|+ |y1 − z1|

)α1
( |c2 − x2|
|x2 − z2|+ |y2 − z2|

+
|c3 − x3|

|x3 − z3|+ |y3 − z3|

)α23

×Dθ(x− z, y − z)S(x− z, y − z).

(3.4)

We also demand the symmetrical mixed size and Hölder estimates and Hölder estimates.
For j = 1, 2, define the adjoint kernels K∗,j , K∗,j1 and K∗,j2,3 via the natural formulas, e.g.,

K∗,1(x, y, z) = K(z, y, x), K∗,21 (x, y, z) = K(x, (z1, y2, y3), (y1, z2, z3)).

We assume that each adjoint kernel satisfies the same estimates as the kernel K.

3.B. Partial kernel representations. Let θ̃ ∈ (0, 1]. For every interval I1 we assume that
there exists a kernel

KI1 : (R2 × R2 × R2) \ {(x2,3, y2,3, z2,3) : xi = yi = zi for i = 2 or i = 3} → C,

so that if I2,3
j1

and I2,3
j2

are disjoint for some j1, j2 ∈ {1, 2, 3}, then

〈T (1I1 ⊗ 1
I2,31

, 1I1 ⊗ 1
I2,32

), 1I1 ⊗ 1
I2,33
〉

=

˚
KI1(x2,3, y2,3, z2,3)1

I2,31
(x2,3)1

I2,32
(y2,3)1

I2,33
(z2,3) dx2,3 dy2,3 dz2,3.

We demand the following estimates for the kernel KI1 : The size estimate

|KI1(x2,3, y2,3, z2,3)|

.
( |I1|(|x2 − z2|+ |y2 − z2|)
|x3 − z3|+ |y3 − z3|

+
|x3 − z3|+ |y3 − z3|

|I1|(|x2 − z2|+ |y2 − z2|)

)−θ̃ |I1|∏3
i=2

(
|xi − zi|+ |yi − zi|

)2
and the continuity estimate

|KI1(c2,3, y2,3, z2,3)−KI1(x2,3, y2,3, z2,3)|

.
( |c2 − x2|
|x2 − z2|+ |y2 − z2|

+
|c3 − x3|

|x3 − z3|+ |y3 − z3|

)α23

×
( |I1|(|x2 − z2|+ |y2 − z2|)
|x3 − z3|+ |y3 − z3|

+
|x3 − z3|+ |y3 − z3|

|I1|(|x2 − z2|+ |y2 − z2|)

)−θ̃ |I1|∏3
i=2

(
|xi − zi|+ |yi − zi|

)2
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whenever c2,3 = (c2, c3) is such that |ci − xi| ≤ max(|xi − zi|, |yi − zi|)/2 for i = 2, 3. We
also assume the symmetrical continuity estimates.

We assume similar one-parameter conditions for the other partial kernel representa-
tion. That is, for every rectangle I2,3, there exists a standard bilinear Calderón-Zygmund
kernel KI2,3 so that if I1

j1
and I1

j2
are disjoint for some j1, j2 ∈ {1, 2, 3}, then

〈T (1I11 ⊗ 1I2,3 , 1I12 ⊗ 1I2,3), 1I13 ⊗ 1I2,3〉

=

˚
KI2,3(x1, y1, z1)1I11 (x1)1I12 (y1)1I13 (z1) dx1 dy1 dz1.

The kernel KI2,3 satisfies the standard estimates

|KI2,3(x1, y1, z1)| ≤ CKI2,3
1

(|x1 − z1|+ |y1 − z1|)2
,

|KI2,3(x1, y1, z1)−KI2,3(c1, y1, z1)| ≤ CKI2,3
|x1 − c1|α1

(|x1 − z1|+ |y1 − z1|)2+α1

whenever |x1− c1| ≤ max(|x1− z1|, |y1− z1|)/2, and the symmetric continuity estimates.
The smallest possible constant CKI2,3 in these inequalities is denoted by ‖KI2,3‖CZα1 . We
then assume that

‖KI2,3‖CZα1 . |I
2,3|.

3.C. Cancellation assumptions: paraproduct free operators. We say that T is a para-
product free operator, if for all cancellative Haar functions hI1 and hI2,3 we have

〈T (1⊗ 1
J2,3
1
, 1⊗ 1

J2,3
2

), hI1 ⊗ 1
J2,3
3
〉 = 〈T ∗,j1 (1⊗ 1

J2,3
1
, 1⊗ 1

J2,3
2

), hI1 ⊗ 1
J2,3
3
〉

= 〈T (1I11 ⊗ 1, 1I12 ⊗ 1), 1I13 ⊗ hI2,3〉 = 〈T ∗,j2,3 (1I11 ⊗ 1, 1I12 ⊗ 1), 1I13 ⊗ hI2,3〉 = 0

for all the adjoints j ∈ {1, 2}. We always assume that all bilinear Zygmund operators
in this article satisfy this cancellation condition. The intention of this condition is to
guarantee that our operator is representable using cancellative shifts only.

3.D. Weak boundedness property. We say that T satisfies the weak boundedness prop-
erty if

|〈T (1I , 1I), 1I〉| . |I|
for all Zygmund rectangles I = I1 × I2 × I3.

3.5. Definition. We say that a bilinear operator T is a paraproduct free Calderón-
Zygmund operator adapted to Zygmund dilations (CZZ operator) if T has the full kernel
representation, the partial kernel representations, is paraproduct free and satisfies the
weak boundedness property.

4. ESTIMATES FOR THE SHIFT COEFFICIENTS

We now move to consider the shift coefficients that appeared in the decomposition
of T in Section 2.F. When T is a CZZ operator, we can estimate them. Without loss of
generality, we estimate

〈T (h0
I+̇n1

, h0
I+̇n2

), hI,Z〉
for I ∈ DZ and different values of n1, n2 ∈ Z3, and without loss of generality we assume
θ = θ̃ < 1. The coefficients related to the other terms of the decomposition (other than the
main term (2.8)) may have a different set of Haar functions, but they are treated similarly.
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We show that

(4.1) |〈T (h0
I+̇n1

, h0
I+̇n2

), hI,Z〉| . (|k|+ 1)2ϕ(k)
|I|

3
2

|K|2
,

where
ϕ(k) := 2−k

1α1−k2 min{α23,θ}−max{k3−k1−k2,0}θ.

For terms of this particular form, we would not actually need to analyze some of the
diagonal cases (see Section 2.F). However, these diagonal terms would appear in some
other forms, so it makes sense to deal with them here (even though in the real situation
the Haar functions might be permuted differently, this does not matter, and the calcula-
tions we present apply). It is very helpful to study the linear case [14], since the kernel
estimates are relatively involved and we will not repeat every detail when they are simi-
lar.

Let mi := maxj=1,2 |nij |. The analysis of the coefficients splits into combinations of
m1 ∈ (2k

1−3, 2k
1−2], k1 = 3, 4, . . . , (Separated)

m1 = 1, (Adjacent)
m1 = 0, (Identical)

and 

mi ∈ (2k
i−3, 2k

i−2], i = 2, 3, ki = 3, 4, . . . , (Separated)
m2 < 2 and m3 ∈ (2k

3−3, 2k
3−2], k3 = 3, 4, . . . , (Separated)

m2 ∈ (2k
2−3, 2k

2−2] and m3 < 2 k2 = 3, 4, . . . , (Separated)
m2 = 1 and m3 ≤ 1 (Adjacent)
m2 = 0 and m3 = 1 (Adjacent)
m2 = 0 = m3. (Identical)

It is enough to consider mi = ni1 since the case mi = ni2 is symmetrical. We will not go
through explicitly every combination – rather, we choose some illustrative examples.

Separated/Separated. We begin with the case |ni1| ≥ 2 for all i = 1, 2, 3. Hence,

|xi − zi| ≥ |ni1|`(Ii) ≥ 2k
i−3`(Ii)

and
|xi − zi| ≤ |ni1|`(Ii) + 2`(Ii) ≤ 2k

i−1`(Ii)

for i = 1, 2, 3. Moreover, |xi − zi| ≥ |yi − zi|/2 ≥ 0 for i = 1, 2, 3. Thus, we have the
estimate (∏2

i=1(|xi − zi|+ |yi − zi|)
(|x3 − z3|+ |y3 − z3|)

+
|x3 − z3|+ |y3 − z3|∏2
i=1(|xi − zi|+ |yi − zi|)

)−θ
∼
(∏2

i=1 |xi − zi|
|x3 − z3|

+
|x3 − z3|∏2
i=1 |xi − zi|

)−θ
∼
(∏2

i=1 2k
i
`(Ii)

2k3`(I3)
+

2k
3
`(I3)∏2

i=1 2ki`(Ii)

)−θ
= (2k

1+k2−k3 + 2k
3−k1−k2)−θ.
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Let cIi denote the center of the interval Ii. Furthermore, notation like cI then refers
to the corresponding tuple (cI1 , cI2 , cI3). Using the cancellation of the Haar function we
then have∣∣∣˚ K(x, y, z)h0

I+̇n1
(x)h0

I+̇n2
(y)hI,Z(z) dx dy dz

∣∣∣
=
∣∣∣˚ (

K(x, y, z)−K(x, y, (cI1 , z2,3))−K(x, y, (z1, cI2,3)) +K(x, y, cI)
)

× h0
I+̇n1

(x)h0
I+̇n2

(y)hI,Z(z) dx dy dz
∣∣∣

.
˚

2−k
1α1(2−k

2
+ 2−k

3
)α23

(2k
1+k2−k3 + 2k

3−k1−k2)−θ

|K|2
h0
I+̇n1

(x)h0
I+̇n2

(y)h0
I(z) dx dy dz

= 2−k
1α1(2−k

2
+ 2−k

3
)α23(2k

1+k2−k3 + 2k
3−k1−k2)−θ

|I|
3
2

|K|2
≤ ϕ(k)

|I|
3
2

|K|2
.

Let us then consider the case, where we have separation in the parameter 3 but not in
the parameter 2 – that is, |n2

1| < 2 ≤ |n3
1|. Then

(∏2
i=1(|xi − zi|+ |yi − zi|)
|x3 − z3|+ |y3 − z3|

+
|x3 − z3|+ |y3 − z3|∏2
i=1(|xi − zi|+ |yi − zi|)

)−θ
(4.2)

∼
( |x2 − z2|+ |y2 − z2|

2k3−k1 |I2|
+

2k
3−k1 |I2|

|x2 − z2|+ |y2 − z2|

)−θ
.
( |x2 − z2|

2k3−k1 |I2|
+

2k
3−k1 |I2|
|x2 − z2|

)−θ
+
( |y2 − z2|

2k3−k1 |I2|
+

2k
3−k1 |I2|
|y2 − z2|

)−θ
,

and so using the mixed estimates

∣∣∣˚ K(x, y, z)h0
I+̇n1

(x)h0
I+̇n2

(y)hI,Z(z) dx dy dz
∣∣∣

=
∣∣∣˚ (

K(x, y, z)−K(x, y, (cI1 , z2,3))
)
h0
I+̇n1

(x)h0
I+̇n2

(y)hI,Z(z) dx dy dz
∣∣∣

.
˚

2−k
1α1 |K1|−2|K3|−2

(
|x2−z2|+|y2−z2|

2k3−k1 |I2|
+ 2k

3−k1 |I2|
|x2−z2|+|y2−z2|

)−θ
(
|x2 − z2|+ |y2 − z2|

)2
× h0

I+̇n1
(x)h0

I+̇n2
(y)h0

I(z) dx dy dz

= 2−k
1α1
|I1|

3
2 |I3|

3
2

|K1|2|K3|2

˚ (
|x2−z2|+|y2−z2|

2k3−k1 |I2|
+ 2k

3−k1 |I2|
|x2−z2|+|y2−z2|

)−θ
(
|x2 − z2|+ |y2 − z2|

)2
× h0

I2+̇n2
1
(x2)h0

I2+̇n2
2
(y2)h0

I2(z2) dx2 dy2 dz2

. ϕ(k)
|I|

3
2

|K|2
.
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We note that the last inequality requires a case study (see also [14, Lemma 8.5]) and we
used the standard estimate ˆ

Rd

du

(r + |u0 − u|)d+α
. r−α.(4.3)

Symmetrical estimates hold if |n2
1| ≥ 2 > |n3

1|.

Adjacent/Separated. We look at the example case |n2
1| ≥ 2 > |n3

1| and |n1
1| = 1. By the size

estimate we have

|〈T (h0
I+̇n1

, h0
I+̇n2

), hI,Z〉|

.
|I2|3/2

|I1,3|3/2|K2|2

˚ (
(|x1−z1|+|y1−z1|)2k

2
`(I2)

|x3−z3|+|y3−z3| + |x3−z3|+|y3−z3|
(|x1−z1|+|y1−z1|)2k2`(I2)

)−θ
(
|x1 − z1|+ |y1 − z1|

)2(|x3 − z3|+ |y3 − z3|
)2

× 1
I1,3+̇n1,3

1
(x1,3)1

I1,3+̇n1,3
2

(y1,3)1I1,3(z1,3) dx1,3 dy1,3 dz1,3.

Similarly as (4.2), we can split the integral into two terms. Then by (4.3) we reduce the
problem to estimating

˚ (
(|x1−z1|+|y1−z1|)2k

2
`(I2)

|x3−z3| + |x3−z3|
(|x1−z1|+|y1−z1|)2k2`(I2)

)−θ
(
|x1 − z1|+ |y1 − z1|

)2|x3 − z3|
× 1

I1,3+̇n1,3
1

(x1,3)1I1+̇n1
2
(y1)1I1,3(z1,3) dx1,3 dy1 dz1,3

+

˚
(

(|x1−z1|+|y1−z1|)2k
2
`(I2)

|y3−z3| + |y3−z3|(
|x1−z1|+|y1−z1|

)
2k2`(I2)

)−θ
(|x1 − z1|+ |y1 − z1|)2|y3 − z3|

× 1
I1,3+̇n1,3

1
(x1,3)1

I1,3+̇n1,3
2

(y1,3)1I1(z1) dx1,3 dy1,3 dz1.

Since they are similar, we only bound the first one. Note that((|x1 − z1|+ |y1 − z1|)2k
2
`(I2)

|x3 − z3|
+

|x3 − z3|
(|x1 − z1|+ |y1 − z1|)2k2`(I2)

)−θ
× (|x1 − z1|+ |y1 − z1|)−2

≤
((|x1 − z1|+ |y1 − z1|)2k

2
`(I2)

|x3 − z3|

)−θ
(|x1 − z1|+ |y1 − z1|)−2χ{|x1−z1|2k2`(I2)≥|x3−z3|}

+
( |x3 − z3|

(|x1 − z1|+ |y1 − z1|)2k2`(I2)

)−θ
(|x1 − z1|+ |y1 − z1|)−2χ{|x1−z1|2k2`(I2)<|x3−z3|}.

Then apply (4.3) to the integral over y1, then by following the linear case [14, Lemma
8.11] we get that the above integral is bounded by |I1,3|k22−k

2θ. Thus, we get

|〈T (h0
I+̇n1

, h0
I+̇n2

), hI,Z〉| .
|I2|3/2

|I1,3|1/2|K2|2
k22−k

2θ . k2ϕ(k)
|I|

3
2

|K|2
.
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Adjacent/Adjacent. We again have no major changes to the linear case but in order to use
the estimate

(4.4)
ˆ
R

(
t
|u| + |u|

t

)−θ
t|u|

|f(u)|du . t−1Mf(0)

we need to first use (4.3) repeatedly. For example, consider |n1
1| = 1 and |n2

1| = 1, |n3
1| ≤ 1.

By the size estimate of the kernel, we need to control(∏2
i=1(|xi−zi|+|yi−zi|)
|x3−z3|+|y3−z3| + |x3−z3|+|y3−z3|∏2

i=1(|xi−zi|+|yi−zi|)

)−θ
∏3
i=1

(
|xi − zi|+ |yi − zi|

)2 h0
I+̇n1

(x)h0
I+̇n2

(y)h0
I(z).

As before, we split this into two terms, one of them is(∏2
i=1(|xi−zi|+|yi−zi|)

|x3−z3| + |x3−z3|∏2
i=1(|xi−zi|+|yi−zi|)

)−θ
∏3
i=1

(
|xi − zi|+ |yi − zi|

)2 h0
I+̇n1

(x)h0
I+̇n2

(y)h0
I(z).

We then apply (4.3) to the integral over y3, and then use the previous trick repeatedly.
That is, we write(∏2

i=1(|xi − zi|+ |yi − zi|)
|x3 − z3|

+
|x3 − z3|∏2

i=1(|xi − zi|+ |yi − zi|)

)−θ
≤
(∏2

i=1(|xi − zi|+ |yi − zi|)
|x3 − z3|

)−θ
χ{|x1−z1|(|x2−z2|+|y2−z2|)≥|x3−z3|}

+
( |x3 − z3|∏2

i=1(|xi − zi|+ |yi − zi|)

)−θ
χ{|x1−z1|(|x2−z2|+|y2−z2|)<|x3−z3|}

and apply (4.3) to the integral over y1. Then, after a similar argument on y2, we finally
arrive at

1

|I|
1
2

¨ (∏2
i=1 |xi−zi|
|x3−z3| + |x3−z3|∏2

i=1 |xi−zi|

)−θ
∏3
i=1 |xi − zi|

h0
I+̇n1

(x)h0
I(z) dx dz

.
1

|I|
1
2

.
|I|

3
2

|K|2
.

Adjacent/Identical. We consider the case |n1
1| = 1 and n2

j = n3
j = 0, j = 1, 2. We write∑

Q2,3
1 ,Q2,3

2 ,Q2,3
3 ∈ch(I2,3)

〈T (h0
I+̇n1

1
Q2,3

1
, h0

I+̇n2
1
Q2,3

2
), hI,Z1

Q2,3
3
〉.

It is enough to consider Q2,3
1 = Q2,3

2 = Q2,3
3 since otherwise we have adjacent intervals,

and we are back in the Adjacent/Adjacent case. Hence, the partial kernel representation
3.B yields that∣∣∣± |I2,3|−

3
2

˚
K
Q2,3

1
h0
I1+̇n1

1
h0
I1+̇n1

2
hI1
∣∣∣

.
|I2,3|

3
2

|K2,3|2

˚
1

(|x1 − z1|+ |y1 − z1|)2
h0
I1+̇n1

1
(x1)h0

I1+̇n1
2
(y1)hI1(z1) dx1 dy1 dz1.
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Then, first using (4.3) and then standard integration methods we get the following in-
equality

˚
1

(|x1 − z1|+ |y1 − z1|)2
h0
I1+̇n1

1
(x1)h0

I1+̇n1
2
(y1)hI1(z1) dx1 dy1 dz1

.
1

|I1|
1
2

¨
1

|x1 − z1|
h0
I1+̇n1

1
(x1)hI1(z1) dx1 dz1

.
1

|I1|
1
2

∼ |I
1|

3
2

|K1|2

as desired.

Identical/Identical. Just like in above we split the pairing to∑
Q1

1,Q
1
2,Q

1
3∈ch(I1)

∑
Q2,3

1 ,Q2,3
2 ,Q2,3

3 ∈ch(I2,3)

〈T (h0
I+̇n1

(1Q1
1
⊗ 1

Q2,3
1

), h0
I+̇n2

(1Q1
2
⊗ 1

Q2,3
2

)), hI,Z(1Q1
3
⊗ 1

Q2,3
3

)〉.

The cases when Q1
i 6= Q1

j for some i, j = 1, 2, 3, i 6= j are essentially included in the cases
of the two previous subsections. Hence, we consider Q1

1 = Q1
2 = Q1

3. Then there are two
cases left, that is, either Q2,3

i 6= Q2,3
j for some i, j = 1, 2, 3, i 6= j, or Q2,3

1 = Q2,3
2 = Q2,3

3 .

Beginning from the latter one, similarly as in [14], by splitting Q3
1 into sub-intervals we

get

|〈T (1Q1
1
⊗ 1

Q2,3
1
, 1Q1

1
⊗ 1

Q2,3
1

), 1Q1
1
⊗ 1

Q2,3
1
〉| . |Q1

1||Q
2,3
1 |

by the weak boundedness property 3.D and the Identical/Adjacent case. Hence, we get
the desired bound

|〈T (h0
I+̇n1

(1Q1
1
⊗ 1

Q2,3
1

), h0
I+̇n2

(1Q1
1
⊗ 1

Q2,3
1

)), hI,Z(1Q1
1
⊗ 1

Q2,3
1

)〉| . |Q1|
|I|

3
2

≤ |I|
3
2

|K|2
.

We handle the remaining case Q2,3
i 6= Q2,3

j for some i, j = 1, 2, 3, i 6= j. By the partial
kernel representation and its size estimate we get∣∣∣± |I|− 3

2

˚
KQ1

1
1
Q2,3

1
1
Q2,3

2
1
Q2,3

3

∣∣∣
.

1

|I1|
1
2

1

|I2,3|
3
2

˚ ( |I1|(|x2 − z2|+ |y2 − z2|)
|x3 − z3|+ |y3 − z3|

+
|x3 − z3|+ |y3 − z3|

|I1|(|x2 − z2|+ |y2 − z2|)

)−θ
×

3∏
i=2

1(
|xi − zi|+ |yi − zi|

)2 1
Q2,3

1
1
Q2,3

2
1
Q2,3

3
dx2,3 dy2,3 dz2,3.

Then using similar arguments as in the Adjacent/Adjacent case and (4.4) gives us the
desired bound.
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5. STRUCTURAL DECOMPOSITION OF ZYGMUND SHIFTS

In this section we decompose the bilinear Zygmund shifts (see Section 2.D) as a sum
of operators with simpler cancellation properties. The decomposition is not optimal (in
the sense that weighted estimates with Zygmund weights cannot be obtained via this) –
however, it is sufficient for unweighted boundedness in the full range that we later obtain
via tri-parameter theory. Recall that k = (k1, k2, k3) is the complexity of the bilinear
Zygmund shift.

5.1. Definition. Bilinear operators of the form

(5.2) S(l1,l2,l3)(f1, f2) =
∑
L∈Dλ

∑
I
(`j)

j =L

aL,(Ij)〈f1, hI11 ⊗ h
0
I2,31

〉〈f2, h
0
I12
⊗ h

I2,32
〉hI3 ,

where λ = 2n, n ∈ Z, |n| ≤ 3 max(ki) and

|aL,(Ij)| ≤
|Ij |

3
2

|L|2
,

are tri-parameter bilinear shifts of Zygmund nature if at least one rectangle I1
i1
×I2,3

i2
, i1 =

1, 3, i2 = 2, 3 is a Zygmund rectangle and

(1) `ij ≤ ki for all i, j = 1, 2, 3;
(2) (`3j − `2j )+ ≤ (k3 − k2)+ for all j = 1, 2, 3.

Moreover, any adjoint

S
j∗1 ,j
∗
2,3

(l1,l2,l3), j1, j2,3 ∈ {0, 1, 2},

is also considered to be a tri-parameter bilinear shift of Zygmund nature. Here, the ad-
joint j∗2,3 means that, for example, in case j2,3 = 1 functions h0

I2,31

and h
I2,33

switch places.

Note that these operators share a ‘weaker’ Zygmund structure. Ideally, we would
want to have I3 ∈ DZ and I1

1 × I
2,3
2 ∈ DZ .

5.3. Proposition. Let Qk, k = (k1, k2, k3), be a bilinear Zygmund shift operator as defined in
Section 2.D. Then

Qk = C
c∑

u=1

k1−1∑
l1=0

k2,3−1∑
l2,3=0

Su,

where Su is a bilinear operator as in Definition 5.1 with complexity depending on l and k, and

k2,3−1∑
l2,3=0

:=



∑
0≤l2=l3≤k2−1

+
∑
l2=k2

k2≤l3≤k3−1

, if k3 ≥ k2

∑
0≤l2=l3≤k3−1

+
∑

k3≤l2≤k2−1
l3=k3

, if k3 < k2.

Proof. The argument is similar in spirit to the purely bi-parameter decomposition in [1].
For notational convenience, we consider a shift Qk of the particular form

〈Qk(f1, f2), f3〉
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=
∑

K∈D
2−k1−k2+k3

∑
I1,I2,I3∈DZ
I
(k)
j =K

aK,(Ij)

[
A3,3
I1,I2,I3

−A3,3

I13×I
2,3
1 ,I13×I

2,3
2 ,I3

−A3,3

I11×I
2,3
3 ,I12×I

2,3
3 ,I3

+A3,3
I3,I3,I3

]
=

∑
K∈D

2−k1−k2+k3

∑
I1,I2,I3∈DZ
I
(k)
j =K

aK,(Ij)〈f3, hI3〉
[
〈f1, h

0
I1〉〈f2, h

0
I2〉 − 〈f1, h

0
I13
h0
I2,31

〉〈f2, h
0
I13
h0
I2,32

〉

− 〈f1, h
0
I11
h0
I2,33

〉〈f2, h
0
I12
h0
I2,33

〉+ 〈f1, h
0
I3〉〈f2, h

0
I3〉
]
.

There is no essential difference in the general case. Let us also use the usual abbreviation
D

2−k1−k2+k3 = Dλ.
We define

bK,(Ij) = |I1|aK,(Ij)
and

B3,3
I1,I2,I3

= 〈f1〉I1〈f2〉I2〈f3, hI3〉.

We can write the shift Qk using these by replacing a with b and A with B.
Recall the notation

∆l1

K1f =
∑
L1∈D1

(L1)(l
1)=K1

∆L1f, P k
1

K1f =
k1−1∑
l1=0

∆l1

K1f,

EK1f = 〈f〉K11K1 , Ek
1

K1f =
∑
L1∈D1

(L1)(k
1)=K1

〈f〉L11L1 .

Let us define

(5.4) P k
2,3

K2,3f :=

k2,3−1∑
l2,3=0

∆
(l2,l3)
K2,3 f :=


k2−1∑
l2=0

∆l2

K2,3f +
k3−1∑
l3=k2

Ek
2

K2∆l3

K3f, if k3 ≥ k2

k3−1∑
l3=0

∆l3

K2,3f +
k2−1∑
l2=k3

∆l2

K2E
k3

K3f, if k3 < k2,

where we have the standard one-parameter definition

∆li

K2,3f =
∑

L2,3∈D2,3

(L2)(l
i)×(L3)(l

i)=K2×K3

∆L2,3f.

We also use a similar shorthand for the expanded martingale blocks

k2,3−1∑
l2,3=0

∆
(l2,l3)
K2,3 f =

k2,3−1∑
l2,3=0

∑
(L2,3)(l

2,3)=K2,3

〈f, hL2,3〉hL2,3 ,

where we allow, for example, that hL2,3 = h0
L2 ⊗ hL3 when k3 > k2 and l2 = k2.
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Using this notation we define the following. For a cube I and integers l, j0 ∈ {1, 2, . . . }
we define

(5.5) DI,l(j, j0) =


EI , if j ∈ {1, . . . , j0 − 1},
P lI , if j = j0,

id, if j ∈ {j0 + 1, j0 + 2, . . . },

where id denotes the identity operator, and if we have a rectangle I2,3 and a tuple l2,3 we
use the modified P l

2,3

I2,3 .
Let I1, I2, I3 be as in the summation ofQk. We use the above notation in parameter one

DI1,l1(j, j0) and for the other two parameters we use DI2,3,l2,3(j, j0). Thus, expanding to
the martingale blocks leads us to

B3,3
I1,I2,I3

=

3∑
m1,m2=1

2∏
j=1

〈D1
K1,k1(j,m1)D2,3

K2,3,k2,3
(j,m2)fj〉Ij 〈f3, hI3〉.

Hence, we may write

∑
K∈Dλ

∑
I1,I2,I3∈DZ
I
(k)
j =K

B3,3
I1,I2,I3

=:
3∑

m1,m2=1

Σ1
m1,m2

.

Also, we have that

B3,3

I13×I
2,3
1 ,I13×I

2,3
2 ,I13×I

2,3
3

=
3∑

m2=1

2∏
j=1

〈D2,3
K2,3,k2,3

(j,m2)fj〉I13×I2,3j 〈f3, hI3〉

and

B3,3

I11×I
2,3
3 ,I12×I

2,3
3 ,I13×I

2,3
3

=

3∑
m1=1

2∏
j=1

〈D1
K1,k1

(j,m1)fj〉I1j×I2,33
〈f3, hI3〉,

which gives that

∑
K∈Dλ

∑
I1,I2,I3∈DZ
I
(k)
j =K

B3,3

I13×I
2,3
1 ,I13×I

2,3
2 ,I13×I

2,3
3

=:

3∑
m2=1

Σ2
m2

and ∑
K∈Dλ

∑
I1,I2,I3∈DZ
I
(k)
j =K

B3,3

I11×I
2,3
3 ,I12×I

2,3
3 ,I13×I

2,3
3

=:

3∑
m1=1

Σ3
m1
.

Finally, we just set ∑
K∈Dλ

∑
I1,I2,I3∈DZ
I
(k)
j =K

B3,3
I3,I3,I3

=: Σ4.
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Thus, we have the following decomposition

〈Qk(f1, f2), f3〉 =

2∑
m1,m2=1

Σ1
m1,m2

+

2∑
m2=1

(Σ1
3,m2
− Σ2

m2
)

+
2∑

m1=1

(Σ1
m1,3 − Σ3

m1
) + (Σ1

3,3 − Σ2
3 − Σ3

3 + Σ4).

First, we take one Σ1
m1,m2

withm1,m2 ∈ {1, 2}. For notational convenience, we choose
the case m1 = m2 = 2. Recall that

Σ1
2,2 =

∑
K∈Dλ

∑
I1,I2,I3∈DZ
I
(k)
j =K

bK,(Ij)〈f1〉K〈P k
1

K1P
k2,3

K2,3f2〉I2〈f3, hI3〉.

We expand

〈P k1K1P
k2,3

K2,3f2〉I2 =
k1−1∑
l1=0

k2,3−1∑
l2,3=0

∑
(L1)(l

1)=K1

(L2,3)(l
2,3)=K2,3

〈f2, hL1 ⊗ hL2,3〉〈hL1 ⊗ hL2,3〉I2

and note that L is not necessarily a Zygmund rectangle. It holds that

Σ1
2,2 =

k1−1∑
l1=0

k2,3−1∑
l2,3=0

∑
K∈Dλ

∑
L(l1,l2,l3)=K

∑
I3∈DZ
I
(k)
3 =K

( ∑
I1

I
(k)
1 =K

∑
I2⊂L
I
(k)
2 =K

bK,(Ij)〈hL〉I2
|K|

1
2

)

〈f1, h
0
K〉〈f2, hL〉〈f3, hI3〉.

Now, since we can easily check that∣∣∣ ∑
I1

I
(k)
1 =K

∑
I2⊂L
I
(k)
2 =K

bK,(Ij)〈hL〉I2
|K|

1
2

∣∣∣ ≤ |K| 12 |L| 12 |I3|
1
2

|K|2
,

we get a sum of operators we wanted

Σ1
2,2 =

k1−1∑
l1=0

k2,3−1∑
l2,3=0

〈S(0,(l1,l2,l3),k)(f1, f2), f3〉,

where S(0,(l1,l2,l3),k) is a type of the shift (5.2). The general case Σ1
m1,m2

is analogous.
We turn to the terms Σ1

3,m2
− Σ2

m2
. Let us take, for example, the case m2 = 1. After

expanding P k
2,3

K2,3 in the first slot, Σ1
3,1 − Σ2

1 can be written as

k2,3−1∑
l2,3=0

∑
K∈Dλ

∑
(L2,3)(l

2,3)=K2,3

∑
I1,I2,I3

I
(k)
j =K

bK,(Ij)〈hL2,3〉I2,31

[〈
f1,

1K1

|K1|
⊗ hL2,3

〉
〈f2〉K1×I2,32

−
〈
f1,

1I13
|I1

3 |
⊗ hL2,3

〉
〈f2〉I13×I2,32

]
〈f3, hI3〉.
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For the moment, we fix one l2,3 and write g1 = 〈f1, hL2〉 and g2 = 〈f2〉I2,32
. We write inside

the brackets
2∏
j=1

〈gj〉K1 −
2∏
j=1

〈gj〉I13 = −
k1−1∑
l1=0

( 2∏
j=1

〈gj〉(I13 )(l
1) −

2∏
j=1

〈gj〉(I13 )(l
1+1)

)
and then expand

∏2
j=1〈gj〉(I13 )(l

1) −
∏2
j=1〈gj〉(I13 )(l

1+1) as

〈∆
(I13 )(l

1+1)g1〉I13 〈g2〉(I13 )(l
1) + 〈g1〉(I13 )(l

1+1)〈∆(I13 )(l
1+1)g2〉I13 .

We get

2∏
j=1

〈gj〉K1 −
2∏
j=1

〈gj〉I13

= −
k1−1∑
l1=0

(
〈∆

(I13 )(l
1+1)g1〉I13 〈g2〉(I13 )(l

1) + 〈g1〉(I13 )(l
1+1)〈∆(I13 )(l

1+1)g2〉I13
)
,

where we can expand

〈∆
(I13 )(l

1+1)gj〉I13 = 〈gj , h(I13 )(l
1+1)〉〈h(I13 )(l

1+1)〉I13 .

For fixed l1 and l2,3 the expansion leads to the term∑
K∈Dλ

∑
(L2,3)(l

2,3)=K2,3

∑
I1,I2,I3

I
(k)
j =K

bK,(Ij)〈h(I13 )(l
1+1) ⊗ hL2,3〉I13×I2,31

〈
f1, h(I13 )(l

1+1) ⊗ hL2,3

〉
〈f2〉(I13 )(l

1)×I2,32
〈f3, hI3〉,

and to the symmetrical one, where the cancellation h
(I13 )(l

1+1) is paired with the second

function and f1 is averaged over (I1
3 )(l1+1).Again, we want to reorganize the summations

and verify the correct normalization for the shifts of the form (5.2). In the first parameter
we will now take (I1

3 )(l1+1) as the new top cube, that is,

∑
K1

∑
(L1)(k

1−l1)=K1

∑
K2,3∈D

2−l1−k2+k3 `(L1)

∑
(I13 )(l

1)=L1∑
(L2,3)(l

2,3)=K2,3

∑
I2,32 ,I2,33

(Iij)
(ki)=Ki

c
K1,L1,I13 ,K

2,3,L2,3,I2,32 ,I2,33

〈
f1, h(L1)(1) ⊗ hL2,3

〉
〈f2〉L1×I2,32

〈f3, hI3〉,

(5.6)

where
c
K1,L1,I13 ,K

2,3,L2,3,I2,32 ,I2,33

=
∑
I11 ,I

1
2

(I1j )(k
1)=K1

∑
I2,31 ⊂L2,3

(Ii1)(k
i)=Ki

bK,(Ij)〈h(L1)(1)×L2,3〉I13×I2,31
.
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Moreover, we have

|c
K1,L1,I13 ,K

2,3,L2,3,I2,32 ,I2,33
| ≤ |(L

1)(1)|
3
2 |I1

3 |
1
2

|(L1)(1)|2
× |L

2,3|
1
2 |I2,3

2 ||I
2,3
3 |

1
2

|K2,3|2
.

Notice that this is the right normalization for (5.2), since f2 is related to L1 and |(L1)(1)| =
2|L1|, and we can change the averages into pairings against non-cancellative Haar func-
tions.

We conclude that for some C ≥ 1 we have

C−1(5.6) = 〈S((0,l2,3),(1,k2,3),(l1+1,k2,3))(f1, f2), f3〉,

where S((0,l2,3),(1,k2,3),(l1+1,k2,3)) is an operator of the desired type and of complexity

(0, l2,3), (1, k2,3), (l1 + 1, k2,3).

The other term and the other case of Σ1
3,2 − Σ2

2 are analogous.
The cases Σ1

m1,3
− Σ3

m1
are handled almost identically, however, we need to treat

2∏
j=1

〈gj〉K2,3 −
2∏
j=1

〈gj〉I2,33

slightly differently. We expand the rectangles I2,3
3 in the one-parameter fashion until we

reach the smaller of the cubes K2,K3. Then we continue with one-parameter expansion
with only one of the cubes until we reach the bigger of the cubes K2,K3. For example, if
k3 > k2, we expand as

2∏
j=1

〈gj〉K2,3 −
2∏
j=1

〈gj〉I2,33

= −
k2−1∑
l2=0

[
〈∆

(I2,33 )(l
2+1,l2+1)g1〉(I2,33 )(l

2,l2)〈g2〉(I2,33 )(l
2,l2)

+ 〈g1〉(I2,33 )(l
2+1,l2+1)〈∆(I2,33 )(l

2+1,l2+1)g2〉(I2,33 )(l
2,l2)

]
−

k3−1∑
l3=k2

[
〈EK2∆

(I33 )(l
3+1)g1〉K2×(I33 )(l

3)〈g2〉K2×(I33 )(l
3)

+ 〈g1〉K2×(I33 )(l
3+1)〈EK2∆

(I3)(l
3+1)g2〉K2×(I33 )(l

3)

]
,

The case k3 ≤ k2 can be expanded similarly. Similarly as in the previous cases, we can
now write the terms in the particular form (5.2). For example, related to the latter term,∑

K∈Dλ

∑
L2,3∈D2,3

λl,k`(K
1)

L2=K2

(L3)(k
3−l3)=K3

∑
(L1)(l

1)=K1

∑
(I13 )(k

1)=K1

∑
(I23 )(k

2)=K2

(I33 )(l
3)=L3

cK,L,I3

〈
f1,

1K1

|K1|
⊗ h(L2,3)(0,1)

〉〈
f2, hL1 ⊗

1L2,3

|L2,3|

〉
〈f3, hI3〉,
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where l3 ∈ {k2, . . . , k3 − 1}, λl,k = 2−k
1−k2+l3 and

|cK,L,I3 | =
∣∣∣ ∑

I1,I2
(Ij)

(k)=K

I12⊂L1

aK,(Ij)|I1|〈hL1 ⊗ hK2×(L3)(1)〉I12×K2×L3

∣∣∣

≤
∑
I1,I2

(Ij)
(k)=K

I12⊂L1

|I3|
1
2 |I1||I2|
|K|2

|K2|−
1
2 |(L3)(1)|−

1
2 |L1|−

1
2

=
|L1|

1
2

|K1|
|I3|

1
2 |K2 × (L3)(1)|

3
2

|K2 × (L3)(1)|2
.

This normalization is an absolute constant away from the correct one since we consider
that K2 × (L3)(1) is the top rectangle in parameters 2 and 3.

Finally, we consider Σ1
3,3 − Σ2

3 − Σ3
3 + Σ4 that equals to∑

K∈Dλ

∑
I1,I2,I3∈DZ
I
(k)
j =K

bK,(Ij)

[ 2∏
j=1

〈fj〉K −
2∏
j=1

〈fj〉I13×K2,3 −
2∏
j=1

〈fj〉K1×I2,33
+

2∏
j=1

〈fj〉I3
]
〈f3, hI3〉.

(5.7)

As we already showed, we can expand

2∏
j=1

〈fj〉K −
2∏
j=1

〈fj〉I13×K2,3

= −
k1−1∑
l1=0

(
〈∆

(I13 )(l
1+1)g1〉I13 〈g2〉(I13 )(l

1) + 〈g1〉(I13 )(l
1+1)〈∆(I13 )(l

1+1)g2〉I13
)
,

where gj = 〈fj〉K2,3 , and similarly for

n∏
j=1

〈fj〉I3 −
2∏
j=1

〈fj〉K1×I2,33

we get same expansion with the positive sign and gj = 〈fj〉I2,33
.

Then we sum the two expansions together and expand in the parameters 2 and 3. That
is, we will expand

k1−1∑
l1=0

〈h
(I13 )(l

1+1)〉(I13 )(l
1)

〈
f1, h(I13 )(l

1+1) ⊗
1K2,3

|K2,3|

〉
〈f2〉(I13 )(l

1)×K2,3

−
〈
f1, h(I13 )(l

1+1) ⊗
1
I2,33

|I2,3
3 |

〉
〈f2〉(I13 )(l

1)×I2,33
.
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Thus, we get, for example when k2 < k3, that

k1−1∑
l1=0

k2−1∑
l2=0

∑
K∈Dλ

∑
L1∈D1

(L1)(k
1−l1)=K1

∑
L2,3∈D2,3

2−l1 `(L1)

(L2,3)(k
2−l2,k3−l2)=K2,3

∑
I3∈DZ

(I3)(l
1,l2,l2)=L

× cK,L,I3
〈
f1, h(L1)(1) ⊗ h

0
(L2,3)(1,1)

〉〈
f2, h

0
L1 ⊗ h(L2,3)(1,1)

〉
〈f3, hI3〉

+

k1−1∑
l1=0

k3−1∑
l3=k2

∑
K∈Dλ

∑
L1∈D1

(L1)(k
1−l1)=K1

∑
L2,3∈D

2−l1−k2+l3 `(L1)

L2=K2

(L3)(k
3−l3)=K3

∑
I3∈DZ

(I3)(l
1,k2,l3)=L

× cK,L,I3
〈
f1, h(L1)(1) ⊗ h

0
(L2,3)(0,1)

〉〈
f2, h

0
L1 ⊗ h(L2,3)(0,1)

〉
〈f3, hI3〉.

Here

|cK,L,I3 | =
∣∣∣ ∑
I1,I2∈DZ
Ikj =K

aK,(Ij)|I1||L1|−
1
2 |(L2,3)(1)|−

1
2 〈h(L1)(1) ⊗ h(L2,3)(1)〉L1×L2,3

∣∣∣
≤ |I3|

1
2 |(L1)(1)|

3
2

|(L)(1)|2
|L1|−

1
2 |(L2,3)(1)|−

1
2 ∼ |I3|

1
2 |(L1)(1)|

1
2 |L1|

1
2 |(L2,3)(1)|

3
2

|(L1)(1)|2|(L2,3)(1)|2
.

We abused notation slightly by (L2,3)(1) meaning both (L2,3)(1,1) and (L2,3)(0,1). The other
terms are handled analogously. �

6. BOUNDEDNESS OF ZYGMUND SHIFTS

In this section we prove the boundedness of Zygmund shifts. We first prove the fol-
lowing. A collection S is called γ-sparse if there are pairwise disjoint subsets E(S) ⊂ S,
S ∈ S , with |E(S)| ≥ γ|S|. Often the precise value of γ is not important and we just talk
about sparse collections.

6.1. Proposition. Let λ = 2k for some k ∈ Z and

Λ(f1, f2, f3) =
∑

K∈D2,3
λ

∑
(Ij)

(`j)=K

∏3
j=1 |Ij |

1
2

|K|2
|〈f1, h

0
I1〉| · |〈f2, hI2〉| · |〈f3, hI3〉|.

Then there exists a sparse collection S ⊂ D2,3
λ such that

Λ(f1, f2, f3) . max{k2, k3}
∑
S∈S
|S|

3∏
j=1

〈|fj |〉S .

Proof. The proof is an easy adaptation of the sparseness argument in [17, Section 5]. In
fact, we only need to check the validity of

Λ(f1, f2, f3) . ‖f1‖Lp‖f2‖Lq‖f3‖Lr ,
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where p, q, r ∈ (1,∞) and 1/p+ 1/q + 1/r = 1. This can be done by direct computation:

Λ(f1, f2, f3) ≤
ˆ
f1

∑
K∈D2,3

λ

〈|∆`2
Kf2|〉K〈|∆`3

Kf3|〉K1K

≤ ‖f1‖Lp
∥∥∥( ∑

K∈D2,3
λ

[
MD2,3

λ
|∆`2

Kf2|
]2) 1

2
∥∥∥
Lq

∥∥∥( ∑
K∈D2,3

λ

[
MD2,3

λ
|∆`3

Kf3|
]2) 1

2
∥∥∥
Lr

. ‖f1‖Lp‖f2‖Lq‖f3‖Lr .

�

6.2. Proposition. Let Qk, k = (k1, k2, k3), be a bilinear Zygmund shift as in Section 2.D, and
let 1 < p1, p2 <∞ and 1

2 < p <∞ with 1
p := 1

p1
+ 1

p2
. Let

w1, w2 ∈ Ap(R× R× R), and w := w
p
p1
1 w

p
p2
2 .

Then, for every η ∈ (0, 1) we have

‖Qk(f1, f2)‖Lp(w) . max
i
{ki}22k

1η‖f1‖Lp1 (w1)‖f2‖Lp2 (w2).

Proof. We prove the weighted boundednessL4(w1)×L4(w2)→ L2(w), of the tri-parameter
bilinear shifts of Zygmund nature (5.2). We do this with tri-parameter weights wi ∈ A4.
We then extrapolate the result to the full bilinear range using the traditional multilinear
extrapolation by Grafakos–Martell (and Duoandikoetxea) [4, 7]. Our result then follows
from Proposition 5.3.

Note that if we have I3 ∈ DZ in (5.2), then the related λ in Proposition 6.1 is

2`
3
3−`23−`13 |L1|.

(For other cases, for instance if I1
1 × I2,3

2 ∈ DZ , then λ = 2`
3
2−`22−`11 |L1|). Assume v ∈

A4,λ(R2); recall that Ap,λ(R2) is defined similarly as Ap(R2) except that the supremum is
taken over rectangles R = I × J with |J | = λ|I|. Then

∑
S∈S
|S|

3∏
j=1

〈|fj |〉S =
∑
S∈S
〈|f1|〉S〈|f2|〉S〈|f3|v−1〉vSv(S).

Since for any R ∈ S,∑
S⊂R
S∈S

v(S) =
∑
S⊂R
S∈S

v(S)

|S|
|S| .

∑
S⊂R
S∈S

v(S)

|S|
|ES | ≤

ˆ
R
MD2,3

λ
(v1R) .[v]A4,λ(R2)

v(R),

by the Carleson embedding theorem we have

(6.3)
∑
S∈S
|S|

3∏
j=1

〈|fj |〉S .[v]A4,λ(R2)

ˆ
R2

MD2,3
λ
|f1|MD2,3

λ
|f2|Mv

D2,3
λ

(|f3|v−1)v.
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Now, given weights wj ∈ A4(R3), j = 1, 2, we know that w = w
1/2
1 w

1/2
2 ∈ A4(R3). We

have

|〈S(f1, f2), f3〉| =
∑
L1

∑
(I1j )

(`1
j
)
=L1

∏3
j=1 |I1

j |
1
2

|L1|2
Λ(〈f1, hI11 〉, 〈f2, h

0
I12
〉, 〈f3, hI13 〉).

Note that 〈w〉L1 ∈ A4,λ(R2) with [〈w〉L1 ]A4,λ(R2) ≤ [w]A4 for any λ. Thus, applying (6.3)
with v = 〈w〉L1 we have

|〈S(f1, f2), f3〉|

. max
i
{ki}

∑
L1

∑
(I1j )

(`1
j
)
=L1

∏3
j=1 |I1

j |
1
2

|L1|2

ˆ
R2

MD2,3
λ
〈f1, hI11 〉MD2,3

λ
〈f2, h

0
I12
〉Mv
D2,3
λ

(〈f3, hI13 〉v
−1)v

= max
i
{ki}

∑
L1

ˆ
R3

〈MD|∆
`11
L1f1|〉L1〈MD|f2|〉L1

∑
(I13 )(`

1
3)=L1

|I1
3 |

1
2M

〈w〉L1

D2,3
λ

(〈f3, hI13 〉〈w〉
−1
L1 )

1L1

|L1|
w

≤ max
i
{ki}

∥∥∥(∑
L1

[
MD1MD|∆

`11
L1f1|

]2) 1
2
∥∥∥
L4(w1)

‖MD1MD|f2|‖L4(w2)

×
∥∥∥(∑

L1

[ ∑
(I13 )(`

1
3)=L1

|I1
3 |

1
2M

〈w〉L1

D2,3
λ

(〈f3, hI13 〉〈w〉
−1
L1 )|L1|−1

]2
1L1

) 1
2
∥∥∥
L2(w)

.

By the well-know square function and maximal function estimates we have∥∥∥(∑
L1

[
MD1MD|∆

`11
L1f1|

]2) 1
2
∥∥∥
L4(w1)

. ‖f1‖L4(w1)

and

‖MD1MD|f2|‖L4(w2) . ‖f2‖L4(w2).

The estimate of the last term is a bit tricky. By the (one parameter)vector-valued estimates
ofM 〈w〉L1

D2,3
λ

(see e.g. [19, Proposition 4.3] for a bi-parameter version (the proof easily adapts

to the one-parameter case)), we have∥∥∥(∑
L1

[ ∑
(I13 )(`

1
3)=L1

|I1
3 |

1
2M

〈w〉L1

D2,3
λ

(〈f3, hI13 〉〈w〉
−1
L1 )|L1|−1

]2
1L1

) 1
2
∥∥∥
L2(w)

≤ 2`
1
3η
∥∥∥(∑

L1

[ ∑
(I13 )(`

1
3)=L1

|I1
3 |

s
2M

〈w〉L1

D2,3
λ

(〈f3, hI13 〉〈w〉
−1
L1 )s|L1|−

s
2

] 2
s
) 1

2
∥∥∥
L2(〈w〉L1 )

. 2`
1
3η
∥∥∥(∑

L1

[ ∑
(I13 )(`

1
3)=L1

|I1
3 |

s
2

∣∣〈f3, hI13 〉〈w〉
−1
L1

∣∣s|L1|−
s
2

] 2
s
) 1

2
∥∥∥
L2(〈w〉L1 )

≤ 2`
1
3η
∥∥∥(∑

L1

[ ∑
(I13 )(`

1
3)=L1

|I1
3 |

1
2 |〈f3, hI13 〉|〈w〉

−1
L1 |L1|−

1
2

]2) 1
2
∥∥∥
L2(〈w〉L1 )
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. 2`
1
3η‖f3‖L2(w−1),

where s = (1/η)′ and in the last step we have used [19, Proposition 5.8]. Thus,

‖S(f1, f2)‖L2(w) . max
i
{ki}2k1η‖f1‖L4(w1)‖f2‖L4(w2).

�

Now we are able to conclude the proof of Theorem 1.2.

Proof of Theorem 1.2. By the representation formula discussed in Sections 2.E and 2.F, the
coefficient estimates in Section 4 (in particular (4.1)) we get that

〈T (f1, f2), f3〉 =CEσ
∞∑

k1,k2,k3=2

(|k|+ 1)2ϕ(k)
∑

I∈DZ(k)

〈Q(k1,k2,k3)(f1, f2), f3〉
C(|k|+ 1)2ϕ(k)

.

Thus, for p1, p2 ∈ (1,∞) so that p ∈ (1,∞), we conclude by Proposition 6.2 that

‖T (f1, f2)‖Lp(w) .
∞∑

k1,k2,k3=2

(|k|+ 1)2ϕ(k) max
i
{ki}22k

1η‖f1‖Lp1 (w1)‖f2‖Lp2 (w2)

. ‖f1‖Lp1 (w1)‖f2‖Lp2 (w2),

where we need to take η < α1. Consequently, we can now pass the result to the full
bilinear range using the traditional multilinear extrapolation [4, 7]. �

7. LINEAR COMMUTATORS IN THE ZYGMUND DILATION SETTING

In this section we return to the linear theory and complete the following commutator
estimate left open by previous results. This requires new and interesting paraproduct
estimates. For the context, see the explanation below.

7.1. Theorem. Let b ∈ L1
loc and T be a linear CZZ operator as in [14]. Let θ ∈ (0, 1] be the

kernel exponent measuring the decay in terms of the Zygmund ratio

Dθ(x) :=
( |x1x2|
|x3|

+
|x3|
|x1x2|

)−θ
.

Then
‖[b, T ]‖Lp→Lp . ‖b‖bmoZ

whenever p ∈ (1,∞).

Here the definition of the little BMO is given by

‖b‖bmoZ := sup
DZ

sup
R∈DZ

1

|R|

ˆ
R
|b(x)− 〈b〉R| dx <∞,

where the supremum is over all different collections of Zygmund rectanglesDZ and then
over all R ∈ DZ .

This theorem was previously considered in [5] using the so-called Cauchy trick. That
method requires weighted bounds with Zygmund weights. But we now know [14] how
delicate such weighted bounds are – weighted bounds with Zygmund weights do not
in general hold if θ < 1. However, the commutator bounds are still true – but we need
a different proof, presented here. It suffices to prove the boundedness of commutators
[b,Qk] for any linear shift Qk of the Zygmund dilation type.
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For θ = 1 we could use the Cauchy trick and the weighted bounds from [14] – this
would give weighted commutator estimates with Zygmund weights.

We begin by recording lemmas that we need for the main proofs of this section.

7.2. Lemma. Let b be a locally integrable function. Then the following are equivalent
(1) b ∈ bmoDZ ,
(2)

max
{

sup
I1∈D1

‖〈b〉I1,1‖BMO
D2,3

`(I1)

, ess sup
(x2,x3)∈R2

‖b(·, x2, x3)‖BMO

}
<∞,

(3)
max

{
sup
I2∈D2

‖〈b〉I2,2‖BMO
D2,3

`(I2)

, ess sup
(x1,x3)∈R2

‖b(x1, ·, x3)‖BMO

}
<∞.

For completeness, we give the proof.

Proof. Let us begin showing that bmoZ =⇒ (2) (and by symmetry also (3)). Clearly, for
all Zygmund rectangles I = I1 × I2 × I3 ∈ DZ we have

‖b‖bmoZ ≥
1

|I|

ˆ
I
|b− 〈b〉I | ≥

1

|I2,3|

ˆ
I2,3
|〈b〉I1,1 − 〈b〉I |.(7.3)

So by uniform boundedness we immediately get

‖〈b〉I1,1‖BMO
D2,3

`(I1)

:= sup
I2,3∈D2,3

`(I1)

1

|I2,3|

ˆ
I2,3
|〈b〉I1,1 − 〈〈b〉I1,1〉I2,3 | ≤ ‖b‖bmoZ <∞.

We move on to proving the second assertion inside (2). For fixed I1 ∈ D1 we define
fI1(x2, x3) :=

´
I1 |b(x

1, x2, x3)− 〈b〉I1(x2, x3)| dx1. Then for every I2,3 ∈ D2,3
`(I1)

we have

〈fI1〉I2,3 ≤
1

|I2,3|

ˆ
I2,3

ˆ
I1
|b− 〈b〉I |+

1

|I2,3|

ˆ
I2,3

ˆ
I1
|〈b〉I1,1 − 〈b〉I | ≤ 2|I1|‖b‖bmoZ ,

where last inequality holds by definition and the above estimate (7.3). Now, by the
Lebesgue differentiation theorem we get for (x2, x3) ∈ R2 \ N(I1), where N(I1) is a
null set depending on I1, that

fI1(x2, x3) ≤ 2|I1|‖b‖bmoZ .

It is then easy to conclude that

‖b(·, x2, x3)‖BMO ≤ 2‖b‖bmoZ

for almost every (x2, x3) ∈ R2.
Conversely,ˆ

I
|b− 〈b〉I | ≤

ˆ
I
|b− 〈b〉I1,1|+

ˆ
I
|〈b〉I1,1 − 〈b〉I |

≤ |I1|
ˆ
I2,3
‖b(·, x2, x3)‖BMO + |I|‖〈b〉I1,1‖BMO`(I1)

≤ |I|(C1 + C2),

where C1 := ess sup(x2,x3)∈R2 ‖b(·, x2, x3)‖BMO and C2 := supI1 ‖〈b〉I1,1‖BMO`(I1)
. �

Then the usual duality results imply the following.
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7.4. Corollary. If b ∈ bmoZ and I1 is fixed, then∑
I2,3∈D2,3

`(I1)

〈〈b〉I1 , hI2,3〉ϕI2,3 . ‖b‖bmoZ

∥∥∥( ∑
I2,3∈D2,3

`(I1)

|ϕI2,3 |2
1I2,3

|I2,3|

) 1
2
∥∥∥
L1
.

Also, for fixed (x2, x3), we have∑
I1∈D1

〈b, hI1〉1ϕI1 . ‖b‖bmoZ

∥∥∥( ∑
I1∈D1

|ϕI1 |2
1I1

|I1|

) 1
2
∥∥∥
L1
.

Using the duality type estimates we can use the square function lower bounds to prove
the inclusion of product type spaces.

7.5. Definition. Given a lattice of Zygmund rectangles DZ and a sequence of scalars
B = (bI)I∈DZ we define

‖B‖BMOprod
:= sup

Ω

(
1

|Ω|
∑
I∈DZ
I⊂Ω

|bI |2
) 1

2

.

The inclusion of the little BMO space can be easily seen from the duality estimate

(7.6) ‖B‖BMOprod
∼ sup

{ ∑
I∈DZ

|aI ||bI | :
∥∥∥( ∑

I∈DZ

|aI |2
1I
|I|

) 1
2
∥∥∥
L1
≤ 1
}
.

7.A. Paraproduct expansions. Here the correct expansions style is the Zygmund mar-
tingale expansion similar to [14, Equation (5.22)]. This gives

bf =
∑
I∈DZ

[
∆I,Zb∆I,Zf + ∆I,Zb∆I1EI2,3f + ∆I1EI2,3b∆I,Zf(7.7)

+ ∆I,ZbEI1∆I2,3f + ∆I,ZbEI1EI2,3f + ∆I1EI2,3bEI1∆I2,3f

+ EI1∆I2,3b∆I,Zf + EI1∆I2,3b∆I1EI2,3f + EI1EI2,3b∆I,Zf
]

=:

3∑
i,j=1

ai,j(b, f),

where, for example, a1,1 =
∑

I∈DZ ∆I,Zb∆I,Zf and

a1,2 =
∑
I∈DZ

∆I,Zb∆I1EI2,3f,

i.e., interpret so that rows correspond to the first index i and columns correspond with
the second index j.

7.8. Lemma. If b ∈ bmoZ , then the paraproducts ai,j such that (i, j) 6= (3, 3) are bounded. That
is,

‖ai,j(b, f)‖Lp . ‖b‖bmoZ‖f‖Lp , 1 < p <∞.
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Proof. Case 1: product type i 6= 3 6= j. We begin with the paraproducts where it would
suffice to have a product BMO type assumption (but recall that little BMO is a subset).
The symmetry Π = a1,1 is essentially trivial. By (7.6) we have

|〈Πf, g〉| .
∥∥∥( ∑

I∈DZ

|〈f, hI,Z〉|2〈|g|〉2I
1I
|I|

) 1
2
∥∥∥
L1

≤
∥∥∥( ∑

I∈DZ

〈|∆I,Zf |〉2I1I
) 1

2
∥∥∥
Lp
‖MZg‖Lp′

.
∥∥∥( ∑

I∈DZ

MZ(∆I,Zf)2
) 1

2
∥∥∥
Lp
‖g‖Lp′

. ‖SZf‖Lp‖g‖Lp′ . ‖f‖Lp‖g‖Lp′ .
The ‘twisted’ case Π = a1,2 (and the symmetrical a2,1) is trickier. Indeed, to decouple

f and g we cannot blindly take maximal functions only in some parameters – this would
break the Zygmund structure. In any case, we begin with the application of (7.6) to get

|〈Πf, g〉| .
∥∥∥( ∑

I∈DZ

∣∣∣〈f, 1I1

|I1|
⊗ hI2×I3

〉〈
g, hI1 ⊗

1I2×I3

|I2 × I3|

〉∣∣∣2 1I
|I|

) 1
2
∥∥∥
L1
.

The above is an L1 norm, while L2 would be nice. This is where A∞ extrapolation
comes in. We fix ν ∈ A∞,Z , and move to estimate∥∥∥( ∑

I∈DZ

∣∣∣〈f, 1I1

|I1|
⊗ hI2×I3

〉〈
g, hI1 ⊗

1I2×I3

|I2 × I3|

〉∣∣∣2 1I
|I|

) 1
2
∥∥∥
L2(ν)

.

We will soon show that∥∥∥( ∑
I∈DZ

∣∣∣〈f, 1I1

|I1|
⊗ hI2×I3

〉〈
g, hI1 ⊗

1I2×I3

|I2 × I3|

〉∣∣∣2 1I
|I|

) 1
2
∥∥∥
L2(ν)

.
∥∥∥MZf

( ∑
I1∈D1

MZ(∆I1g)2
)1/2∥∥∥

L2(ν)
.

(7.9)

TheA∞ extrapolation, Theorem 7.10, then implies that this inequality holds also inLp(ν),
p ∈ (0,∞), ν ∈ A∞,Z . We take p = 1 and ν ≡ 1 to get that

|〈Πf, g〉| .
∥∥∥MZf

( ∑
I1∈D1

MZ(∆I1g)2
)1/2∥∥∥

L1

≤ ‖MZf‖Lp
∥∥∥( ∑

I1∈D1

MZ(∆I1g)2
)1/2∥∥∥

Lp
′ . ‖f‖Lp‖g‖Lp′ .

It remains to prove (7.9). We write∥∥∥( ∑
I∈DZ

∣∣∣〈f, 1I1

|I1|
⊗ hI2×I3

〉〈
g, hI1 ⊗

1I2×I3

|I2 × I3|

〉∣∣∣2 1I
|I|

) 1
2
∥∥∥2

L2(ν)

=
∑
I1∈D1

∑
I2×I3∈D2,3

`(I1)

∣∣∣〈f, 1I1

|I1|
⊗ hI2×I3

〉∣∣∣2∣∣∣〈g, hI1 ⊗ 1I2×I3

|I2 × I3|

〉∣∣∣2〈ν〉I .
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Fix some I1 ∈ D1. Let I2
0 × I3

0 ∈ D
2,3
`(I1)

and suppose ϕ1, ϕ2 and ϕ3 are locally inte-
grable functions in R2. Then, there exists a sparse collection S = S(I2

0 × I3
0 , ϕ1, ϕ2, ϕ3) ⊂

D2,3
`(I1)

(I2
0 × I3

0 ) so that∑
I2×I3∈D2,3

`(I1)

I2×I3⊂I20×I30

|〈ϕ1, hI2×I3〉|2|〈ϕ2〉I2×I3 |2〈ϕ3〉I2×I3 .
∑
Q∈S
〈|ϕ1|〉2Q〈|ϕ2|〉2Q〈|ϕ3|〉Q|Q|.

We use this with the functions ϕ1 = 〈f〉I1 , ϕ2 = 〈g, hI1〉 and ϕ3 = 〈ν〉I1 to have that for
some sparse collection S = S(I1, I2

0 × I3
0 , f, g, ν) ⊂ D2,3

`(I1)
there holds that∑

I2×I3∈D2,3

`(I1)

I2×I3⊂I20×I30

∣∣∣〈f, 1I1

|I1|
⊗ hI2×I3

〉∣∣∣2∣∣∣〈g, hI1 ⊗ 1I2×I3

|I2 × I3|

〉∣∣∣2〈ν〉I
.
∑
Q∈S
〈|〈f〉I1 |〉2Q〈|〈g, hI1〉|〉2Q〈ν〉I1(Q)

≤
∑
Q∈S

(〈(
M2,3
`(I1)
〈f〉I1

)(
M2,3
`(I1)
〈g, hI1〉

)〉〈ν〉I1
Q

)2
〈ν〉I1(Q)

.
ˆ
R2

(
M2,3
`(I1)
〈f〉I1

)2(
M2,3
`(I1)
〈g, hI1〉

)2〈ν〉I1 ,
where in the last step we used the fact that 〈ν〉I1 ∈ A∞,`(I1)(R2) and the Carleson embed-
ding theorem.

Since the last estimate holds uniformly for every I2
0 × I3

0 ∈ D
2,3
`(I1)

, we get that∑
I1∈D1

∑
I2×I3∈D2,3

`(I1)

∣∣∣〈f, 1I1

|I1|
⊗ hI2×I3

〉∣∣∣2∣∣∣〈g, hI1 ⊗ 1I2×I3

|I2 × I3|

〉∣∣∣2〈ν〉I
.
∑
I1∈D1

ˆ
R2

(
M2,3
`(I1)
〈f〉I1

)2(
M2,3
`(I1)
〈g, hI1〉

)2〈ν〉I1
≤
∑
I1∈D1

ˆ
R3

(
M2,3
`(I1)
〈f〉I1

)2(
M2,3
`(I1)
〈|∆I1g|〉I1

)2
1I1ν

≤
ˆ
R2

[MZf ]2
∑
I1∈D1

MZ(∆I1g)2ν.

Thus, (7.9) is proved.
Case 2: little BMO paraproducts (i = 3, j = 1, 2 or i = 1, 2, j = 3). Actually, now we only

have “trivial” type cases with different twist. Symmetries a1,3 and a3,1 are similar as well
as a2,3 and a3,2. Let us choose for example Π = a1,3 first. By Corollary 7.4 we have

|〈Π(b, f), g〉| .
∥∥∥( ∑

I1∈D1

( ∑
I2,3∈D2,3

`(I1)

|〈f, hI,Z〉||〈g, hI1hI1 ⊗ hI2,3〉|
1I2,3

|I2,3|

)2 1I1

|I1|

) 1
2
∥∥∥
L1
.
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Now we again can use similar sparse method as above and for fixed I1 proveˆ ∑
I2,3∈D`(I1)

|〈f, hI,Z〉||〈g, hI1hI1 ⊗ hI2,3〉|
1I2,3

|I2,3|
〈ν〉I1

.
ˆ
M2,3
`(I1)

(〈|∆I1f |〉I1)M2,3
`(I1)
〈|g|〉I11I1ν.

The above estimate together with vector-valued version of Theorem 7.10 (proven in [3]
for general Muckenhoupt basis) yields∥∥∥( ∑

I1∈D1

( ∑
I2,3∈D`(I1)

|〈f, hI,Z〉||〈g, hI1hI1 ⊗ hI2,3〉|
1I2,3

|I2,3|

)2 1I1

|I1|

) 1
2
∥∥∥
L1

.
∥∥∥( ∑

I1∈D1

MZ(∆I1f)2 1I1

|I1|

) 1
2
MZg

∥∥∥
L1

≤
∥∥∥( ∑

I1∈D1

MZ(∆I1f)2
)1/2∥∥∥

Lp
‖MZg‖Lp′ . ‖f‖Lp‖g‖Lp′ .

Moving to the symmetry Π = a3,2 we first get

|〈Π(b, f), g〉|

=
∣∣∣ ∑
I∈DZ

〈〈b〉I1 , hI2,3〉
〈
f, hI1 ⊗

1I2,3

|I2,3|

〉
〈g, hI,Z〉

∣∣∣
. ‖b‖bmoZ

∥∥∥ ∑
I1∈D1

( ∑
I2,3∈D`(I1)

|〈f, hI1 ⊗
1I2,3

|I2,3|
〉|2|〈g, hI,Z〉|2

1I2,3

|I2,3|

) 1
2 1I1

|I1|

∥∥∥
L1
,

where we use the other estimate in Corollary 7.4. Like above, we continue as follows∥∥∥ ∑
I1∈D1

( ∑
I2,3∈D`(I1)

|〈f, hI1 ⊗
1I2,3

|I2,3|
〉|2|〈g, hI,Z〉|2

1I2,3

|I2,3|

) 1
2 1I1

|I1|

∥∥∥
L1

.
∥∥∥ ∑
I1∈D1

M2,3
`(I1)
〈|∆I1f |〉I1M

2,3
`(I1)
〈|∆I1g|〉I11I1

∥∥∥
L1

≤
∥∥∥( ∑

I1∈D1

MZ(∆I1f)2
)1/2∥∥∥

Lp

∥∥∥( ∑
I1∈D1

MZ(∆I1g)2
)1/2∥∥∥

Lp′

. ‖f‖Lp‖g‖Lp′ .

�

In above proof we needed the A∞ extrapolation with Zygmund A∞ weights. In fact,
we give a very simple proof of A∞ extrapolation [3] in general.

7.10. Theorem. Let (f, g) be a pair of non-negative functions. Assume that there is some 0 <
p0 <∞ such that for all w ∈ A∞,Z there holdsˆ

fp0w ≤ C([w]A∞,Z )

ˆ
gp0w,
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where C is an increasing function. Then for all 0 < p <∞ and all w ∈ A∞,Z there holdsˆ
fpw ≤ C([w]A∞,Z )

ˆ
gpw.

Proof. We have for all 1 < r <∞ and all w ∈ Ar,Z thatˆ
(fp0/r)rw ≤ C([w]Ar,Z )

ˆ
(gp0/r)rw.

Thus, by the classical extrapolation with Ap,Z weights we have

(7.11)
ˆ

(fp0/r)sw ≤ C([w]As,Z )

ˆ
(gp0/r)sw

for all 1 < s <∞ and w ∈ As,Z .
Finally, let 0 < p < ∞ and w ∈ A∞,Z . Then, there exists some 1 < s0 < ∞ such that

w ∈ As0,Z . Choose some 1 < r <∞ and s0 ≤ s <∞ such that

sp0/r = p.

For example, we can take

s =
s0p

p0

(p0

p
+ 1
)

= s0

( p
p0

+ 1
)
, r = s0

(p0

p
+ 1
)
.

Since As0,Z ⊂ As,Z , we can use (7.11) with the exponents s and r to get the claim. �

7.B. Zygmund shift commutators. Let k = (k1, k2), ki ∈ {0, 1, 2, . . .}, be fixed. A Zyg-
mund shift Q = Qk of complexity k, see [14], has the form

〈Qkf, g〉

=
∑

K∈D
2−k1−k2+k3

∑
I,J∈DZ

I(k)=K=J(k)

aIJK〈f, hI1 ⊗HI2,3,J2,3〉〈g,HI1,J1 ⊗ hJ2,3〉

or

〈Qkf, g〉

=
∑

K∈D
2−k1−k2+k3

∑
I,J∈DZ

I(k)=K=J(k)

aIJK〈f, hI1 ⊗ hI2,3〉〈g,HI1,J1 ⊗HI2,3,J2,3〉,

where HI,J

(1) is supported on I ∪ J and constant on children:

HI,J =
∑

L∈ch(I)∪ch(J)

bL1L

(2) is L2 normalized: |HI,J | ≤ |I|−
1
2 , and

(3) has zero average:
´
HI,J = 0.

We will be focusing on the mixed type form since it is the most interesting one. Usually
the other type is much easier and the method is easily recovered from this case.

7.12. Proposition. Let Qk be a Zygmund shift of complexity k = (k1, k2, k3). Let 1 < p < ∞
and b ∈ bmoZ . Then we have

‖[b,Qk]f‖Lp . max(k1, k2, k3)(|k|+ 1)2‖b‖bmoZ‖f‖Lp .
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Proof. We consider the commutator [b,Qk]f : bQkf −Qk(bf) that in the dual form equals
to ∑

K∈D
2−k1−k2+k3

∑
I,J∈DZ

I(k)=K=J(k)

aIJK

[
〈bf, hI1 ⊗HI2,3,J2,3〉〈g,HI1,J1 ⊗ hJ2,3〉

−〈f, hI1 ⊗HI2,3,J2,3〉〈bg,HI1,J1 ⊗ hJ2,3〉
]
.

Now, expanding both bf and bg with the expansion (7.7) we get the terms

〈Qk(ai,j(b, f)), g〉 and 〈Qkf, ai,j(b, g)〉

whenever (i, j) 6= (3, 3). These terms are directly bounded separately, in particular, we
have Qk : Lp → Lp and ai,j : Lp → Lp. Hence, we are left with bounding∑

K∈Dλ

∑
I,J∈DZ

I(k)=K=J(k)

aIJK

[ ∑
L∈DZ

〈b〉L〈∆L,Zf, hI1 ⊗HI2,3,J2,3〉〈g,HI1,J1 ⊗ hJ2,3〉

−
∑
L∈DZ

〈b〉L〈f, hI1 ⊗HI2,3,J2,3〉〈∆L,Zg,HI1,J1 ⊗ hJ2,3〉
]

=
∑
K∈Dλ

∑
I,J∈DZ

I(k)=K=J(k)

aIJK

×
[ ∑

L∈DZ
`(L1)=2−k

1
`(K1)

`(K2)≤2k
2
`(L2)≤2max(k2,k3)`(K2)

〈b〉L〈∆L,Zf, hI1 ⊗HI2,3,J2,3〉〈g,HI1,J1 ⊗ hJ2,3〉

−
∑
Q∈DZ

Q1⊂K1, `(Q1)≥`(I1)

2−k
1
`(K2)≤2k

2
`(Q2)≤`(K2)

〈b〉Q〈f, hI1 ⊗HI2,3,J2,3〉〈∆Q,Zg,HI1,J1 ⊗ hJ2,3〉
]
,

where we have abbreviated 2−k
1−k2+k3 by λ. Now, we write

〈f, hI1 ⊗HI2,3,J2,3〉 =
∑
L∈DZ

`(L1)=2−k
1
`(K1)

`(K2)≤2k
2
`(L2)≤2max(k2,k3)`(K2)

〈∆L,Zf, hI1 ⊗HI2,3,J2,3〉

and
〈g,HI1,J1 ⊗ hJ2,3〉 =

∑
Q∈DZ

Q1⊂K1, `(Q1)≥`(I1)

2−k
1
`(K2)≤2k

2
`(Q2)≤`(K2)

〈∆Q,Zg,HI1,J1 ⊗ hJ2,3〉

for the unexpanded terms. Thus, we end up with∑
K∈Dλ

∑
I,J∈DZ

I(k)=K=J(k)

aIJK
∑
L∈DZ

`(L1)=2−k
1
`(K1)

`(K2)≤2k
2
`(L2)≤2max(k2,k3)`(K2)

∑
Q∈DZ

Q1⊂K1, `(Q1)≥`(I1)

2−k
1
`(K2)≤2k

2
`(Q2)≤`(K2)



ZYGMUND DILATIONS: BILINEAR ANALYSIS AND COMMUTATOR ESTIMATES 37

×
[
(〈b〉L − 〈b〉Q)〈∆L,Zf, hI1 ⊗HI2,3,J2,3〉〈∆Q,Zg,HI1,J1 ⊗ hJ2,3〉

]
.

We write explicitly the complexity levels forQ andL. That is, in the above summations
we have (L2)(l2) = (K2)(max(0,k3−k2)) for some l2 ∈ {0, . . . ,max(k2, k3)}, (Q1)(q1) = K1,

for some q1 ∈ {0, . . . , k1}, and (Q2)(q2) = K2 for some q2 ∈ {k2, . . . , k2 + k1}. We get

∑
K∈Dλ

∑
I,J∈DZ

I(k)=K=J(k)

aIJK

max(k2,k3)∑
l2=0

∑
q1∈{0,...,k1}

q2∈{k2,...,k2+k1}

∑
L∈DZ

`(L1)=2−k
1
`(K1)

(L2)(l
2)=(K2)(max(0,k3−k2))

∑
Q∈DZ

(Q1)(q1)=K1

(Q2)(q2)=K2

×
[
(〈b〉L − 〈b〉Q)〈∆L,Zf, hI1 ⊗HI2,3,J2,3〉〈∆Q,Zg,HI1,J1 ⊗ hJ2,3〉

]
.

Here we need to notice that R = R1 ×R2 ×R3 ⊃ K,L,Q, where

R = K(k1,max(0,k3−k2),k1+max(k2−k3,0)) and R ∈ DZ .
This is a common “Zygmund ancestor” for all of these rectangles.

Let us expand in the difference 〈b〉L − 〈b〉Q in the following way

〈b〉L = 〈b〉L − 〈b〉L(0,1,1)

+ 〈b〉L(0,1,1) − 〈b〉L(0,2,2)

...

+ 〈b〉
L(0,l2−1,l2−1) − 〈b〉L(0,l2,l2) + 〈b〉

L(0,l2,l2)

=
l2−1∑
r2=0

(
〈b〉

L(0,r2,r2) − 〈b〉L(0,r2+1,r2+1)

)
+ 〈b〉

L(0,l2,l2) .

Notice that since `(L1)`(L2) = `(L3), we have `(L1)`((L2)(r2)) = `((L3)(r2)), i.e. rectan-
gles (L2)(r2) × (L3)(r2) ∈ D`(L1) which is desirable since we want to use the characteriza-
tion (2) in Lemma 7.2. We continue with the last term

〈b〉
L(0,l2,l2) = 〈b〉

L(0,l2,l2) − 〈b〉L(1,l2,1+l2)

+ 〈b〉
L(1,l2,1+l2) − 〈b〉L(2,l2,2+l2)

...

〈b〉
L(k1−1,l2,k1−1+l2) − 〈b〉L(k1,l2,k1+l2) + 〈b〉G

=
k1−1∑
r1=0

(
〈b〉

L(r1,l2,r1+l2) − 〈b〉L(r1+1,l2,r1+1+l2)

)
+ 〈b〉R.

Recall that (L2)(l2) = (K2)(max(0,k3−k2)) =: R2 and observe that since `((L3)(k1+l2)) =

`((L2)(l2))`((L1)(k1)) = `(R2)`(K1) we get (L3)(k1+l2) = R3. Thus, we end up with a sum
of terms of the forms

〈b〉
L(0,r2,r2) − 〈b〉L(0,r2+1,r2+1) and 〈b〉

L(r1,l2,r1+l2) − 〈b〉L(r1+1,l2,r1+1+l2) ,(7.13)

and we have for fixed r1 and r2

|(7.13)| . ‖b‖bmoZ
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by Lemma 7.2.
By the same argument as above we get

〈b〉Q =

max(0,k3−k2)+q2−1∑
ρ2=0

〈b〉
Q(0,ρ2,ρ2) − 〈b〉Q(0,ρ2+1,ρ2+1)

+

q1∑
ρ1=0

〈b〉
Q(ρ1,q̃2,ρ1+q̃2) − 〈b〉Q(ρ1+1,q̃2,ρ1+1+q̃2)

+ 〈b〉R,

where q̃2 = max(0, k3 − k2) + q2,

(Q2)(q̃2) = (K2)(max(0,k3−k2)) and (Q3)(q1+q̃2) = (K3)(k1+max(k2−k3,0)).

Notice that the last term corresponds to the last term in the previous expansion, and
hence, their difference equals to zero. Again, here we have

|〈b〉
Q(0,ρ2,ρ2) − 〈b〉Q(0,ρ2+1,ρ2+1) + 〈b〉

Q(ρ1,q̃2,ρ1+q̃2) − 〈b〉Q(ρ1+1,q̃2,ρ1+1+q̃2) | . ‖b‖bmoZ

for fixed ρ1 and ρ2.
Now, we can split the commutator into the two terms

Wb
K,kf = 1K

∑
L∈DZ

`(L1)=2−k
1
`(K1)

`(K2)≤2k
2
`(L2)≤2max(k2,k3)`(K2)

bL,K∆L,Zf,

where
|bL,K | . max(k1, k2, k3)‖b‖bmoZ ,

and
VbK,kg =

∑
Q∈DZ

Q1⊂K1, `(Q1)≥`(I1)

2−k
1
`(K2)≤2k

2
`(Q2)≤`(K2)

bQ,K∆Q,Zg,

where
|bQ,K | . max(k1, k2, k3)‖b‖bmoZ .

Thus, the last term of the commutator is the sum of∑
K∈Dλ

∑
I,J∈DZ

I(k)=K=J(k)

aIJK〈Wb
K,kf, hI1 ⊗HI2,3,J2,3〉〈VK,kg,HI1,J1 ⊗ hJ2,3〉

and ∑
K∈Dλ

∑
I,J∈DZ

I(k)=K=J(k)

aIJK〈WK,kf, hI1 ⊗HI2,3,J2,3〉〈VbK,kg,HI1,J1 ⊗ hJ2,3〉.

The boundedness follows via standard methods (adapt proofs of [14, Theorem 6.2 and
Lemma 5.20].) �
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APPENDIX A. BILINEAR FEFFERMAN-PIPHER MULTIPLIERS

In this section we consider bilinear variants of multipliers studied by Fefferman-Pipher [6].
These considerations motivate the kernel estimates in Section 3. After the presented cal-
culations, the reader can easily check how everything fits with Section 3. In fact, we will
see that the bilinear Fefferman-Pipher multipliers produce kernels which satisfy the the
kernel estimates in Section 3 with

θ = 2, α1 = 1, α2,3 = 1,

and an extra logarithm factor. In the partial kernel estimates θ̃ = 1 and there is also a
harmless logarithm factor.

We consider the following multi-parameter dilation on R6 – define

ρs,t(x, y) = (sx1, tx2, stx3, sy1, ty2, sty3), s, t > 0,

and set
A1 := {(ξ, η) ∈ R6 : 1

2 < |(ξ1, η1)| ≤ 1, 1
2 < |(ξ2, ξ3, η2, η3)| ≤ 1}.

In this section we consider the parameter groups {1} and {2, 3} only. The grouping
{{2}, {1, 3}} is similar, for example, we would set

A2 := {(ξ, η) ∈ R6 : 1
2 < |(ξ2, η2)| ≤ 1, 1

2 < |(ξ1, ξ3, η1, η3)| ≤ 1}.

For Schwartz functions f1, f2 we define the bilinear multiplier operator

Tm,1(f1, f2)(x) =

ˆ
R3

ˆ
R3

m(ξ, η)f̂1(ξ)f̂2(η)e2πix·(ξ+η) dξ dη,

where the symbol m ∈ CN is assumed to satisfy

‖m‖M1
Z

:= sup
|α|∞≤N
|β|∞≤N

sup
s,t>0

sup
(ξ,η)∈A1

|∂αξ ∂βη (m ◦ ρs,t)(ξ, η)| <∞.

Thus, if (ξ, η) ∈ A1, then by definition

|(∂αξ ∂βηm)(sξ1, tξ2, stξ3, sη1, tη2, stη3)| ≤ ‖m‖M1
Z
s−α1−β1t−α2−β2(st)−α3−β3

(A.1)

= ‖m‖M1
Z
s−(α1+β1)+(α2+β2)(st)−(α2+β2)−(α3+β3).

Now, for (ζ1, σ1) 6= 0 and (ζ2, ζ3, σ2, σ3) 6= 0 denote

s = |(ζ1, σ1)|, st = |(sζ2, ζ3, sσ2, σ3)|,

(ξ1, ξ2, ξ3) =
(ζ1

s
,
ζ2

t
,
ζ3

st

)
, (η1, η2, η3) =

(σ1

s
,
σ2

t
,
σ3

st

)
.

Thus, (ξ, η) ∈ A1 and

|∂αζ ∂βσm(ζ, σ)| . ‖m‖M1
Z

(|ζ1|+ |σ1|)−(α1+β1)+(α2+β2)

(A.2)

×
(
|((|ζ1|+ |σ1|)ζ2, ζ3)|+ |((|ζ1|+ |σ1|)σ2, σ3)|

)−(α2+β2)−(α3+β3)
.
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We write, with two standard partitions of unity φ1 on R2 \ {0} and φ2,3 on R4 \ {0},
that

1 =
∑
j,k∈Z

φ1(2−jξ1, 2
−jη1)φ2,3(2−kξ2, 2

−j−kξ3, 2
−kη2, 2

−j−kη3).

Via this identity we obtain

m =
∑
j,k

(φ1 ⊗ φ2,3 ◦ ρ2−j ,2−k) ·m

=
∑
j,k

(φ1 ⊗ φ2,3 · (m ◦ ρ2j ,2k)) ◦ ρ2−j ,2−k =: mj,k.

Since φ1 and φ2,3 are supported in B̄(0, 2) \ B(0, 1
2) in R2 and R4, respectively, we know

that

sptmj,k ⊂

ρ2j ,2k

{
(ξ, η) : (ξ1, η1) ∈ B̄R2(0, 2) \BR2(0, 1

2), (ξ2,3, η2,3) ∈ B̄R4(0, 2) \BR4(0, 1
2)
}
.

Using this we get

‖∂α∂βmj,k‖L∞ . 2−(j,k,j+k)·(α+β) and ‖∂α∂βmj,k‖L1 . 2(j,k,j+k)·(2−(α+β)),

where 2 = (2, 2, 2).
Let Kj,k(y, z) = m̌j,k and K(y, z) =

∑
j,kKj,k(y, z) – then K(x − y, x − z) is the corre-

sponding kernel. Using similar analysis as in [14] we have

‖yαzα̃∂βy ∂γzKj,k‖L∞ . ‖∂αξ ∂α̃η (ξβηγmj,k)‖L1

≤
∑
l≤α
l̃≤α̃

(
α

l

)(
α̃

l̃

)
‖∂l(ξβ)∂ l̃(ηγ) · ∂α−l∂α̃−l̃mj,k)‖L1

. 2(j,k,j+k)·(2+(β+γ)−(α+α̃))

for multi-indices α, α̃, β, γ. Hence, we get

|yβ+1zγ+1∂βy ∂
γ
zKj,k(y, z)| . 2(j,k,j+k)·(2+(β+γ)−(α+α̃))|yβ+1−α| · |zγ+1−α̃|.

Taking αi, α̃i ∈ {0, N}we obtain

|yβ+1zγ+1∂βy ∂
γ
zK(y, z)|

.
∑
j

min{(2j |y1|)β1+1, (2j |y1|)β1+1−N}min{(2j |z1|)γ1+1, (2j |z1|)γ1+1−N}

×
∑
k

min{(2k|y2|)β2+1, (2k|y2|)β2+1−N}min{(2k|z2|)γ2+1, (2k|z2|)γ2+1−N}

×min{(2j+k|y3|)β3+1, (2j+k|y3|)β3+1−N}min{(2j+k|z3|)γ3+1, (2j+k|z3|)γ3+1−N}.
We can estimate the inner sum either by∑

k : 2k<1/(|y2|+|z2|)

(2k|y2|)β2+1(2k|z2|)γ2+1(2j+k|y3|)β3+1(2j+k|z3|)γ3+1

+
∑

k : 2k≥1/(|y2|+|z2|)≥1/(2|y2|)

(2k|y2|)β2+1−N (2k|z2|)γ2+1(2j+k|y3|)β3+1(2j+k|z3|)γ3+1
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+
∑

k : 2k≥1/(|y2|+|z2|)>1/(2|z2|)

(2k|y2|)β2+1(2k|z2|)γ2+1−N (2j+k|y3|)β3+1(2j+k|z3|)γ3+1

.
|y2|β2+1

(|y2|+ |z2|)β2+1
· |z2|γ2+1

(|y2|+ |z2|)γ2+1
· (2j |y3|)β3+1

(|y2|+ |z2|)β3+1
· (2j |z3|)γ3+1

(|y2|+ |z2|)γ3+1
=: I1

or by ∑
k : 2k<2−j/(|y3|+|z3|)

(2k|y2|)β2+1(2k|z2|)γ2+1(2j+k|y3|)β3+1(2j+k|z3|)γ3+1

+
∑

k : 2k≥2−j/(|y3|+|z3|)≥2−j/(2|y3|)

(2k|y2|)β2+1(2k|z2|)γ2+1(2j+k|y3|)β3+1−N (2j+k|z3|)γ3+1

+
∑

k : 2k≥2−j/(|y3|+|z3|)>2−j/(2|z3|)

(2k|y2|)β2+1(2k|z2|)γ2+1(2j+k|y3|)β3+1(2j+k|z3|)γ3+1−N

.
|y2|β2+1

[2j(|y3|+ |z3|)]β2+1
· |z2|γ2+1

[2j(|y3|+ |z3|)]γ2+1
· |y3|β3+1

(|y3|+ |z3|)β3+1
· |z3|γ3+1

(|y3|+ |z3|)γ3+1
=: I2,

in both cases provided that β2 + β3 + γ2 + γ3 < N − 4.
The outer sum can then be estimated either by∑

j : 2j<1/(|y1|+|z1|)

(2j |y1|)β1+1(2j |z1|)γ1+1I1

+
∑

j : 2j≥1/(|y1|+|z1|)≥1/(2|y1|)

(2j |y1|)β1+1−N (2j |z1|)γ1+1I1

+
∑

j : 2j≥1/(|y1|+|z1|)>1/(2|z1|)

(2j |y1|)β1+1(2j |z1|)γ1+1−NI1

.
|y1|β1+1|z1|γ1+1

(|y1|+ |z1|)β1+γ1+2

|y2|β2+1|z2|γ2+1

(|y2|+ |z2|)β2+γ2+2

|y3|β3+1|z3|γ3+1

[(|y1|+ |z1|)(|y2|+ |z2|)]β3+γ3+2

or, if (|y1|+ |z1|)(|y2|+ |z2|) ≤ |y3|+ |z3|, by∑
j : 2j<(|y2|+|z2|)/(|y3|+|z3|)

(2j |y1|)β1+1(2j |z1|)γ1+1I1

+
∑

j :
|y2|+|z2|
|y3|+|z3|

≤2j≤ 1
|y1|+|z1|

(2j |y1|)β1+1(2j |z1|)γ1+1I2

+
∑

j : 2j>1/(|y1|+|z1|)>1/(2|z1|)

(2j |y1|)β1+1(2j |z1|)γ1+1−NI2

+
∑

j : 2j>1/(|y1|+|z1|)>1/(2|y1|)

(2j |y1|)β1+1−N (2j |z1|)γ1+1I2 =: I + II + III + IV.

It is straightforward that

I ∼ |y1|β1+1|z1|γ1+1

(|y1|+ |z1|)β1+γ1+2

|y2|β2+1|z2|γ2+1

(|y2|+ |z2|)β2+γ2+2

|y3|β3+1|z3|γ3+1

(|y3|+ |z3|)β3+γ3+2

×
((|y1|+ |z1|)(|y2|+ |z2|)

|y3|+ |z3|

)β1+γ1+2
;
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III ∼ IV ∼ |y1|β1+1|z1|γ1+1

(|y1|+ |z1|)β1+γ1+2

|y2|β2+1|z2|γ2+1

(|y2|+ |z2|)β2+γ2+2

|y3|β3+1|z3|γ3+1

(|y3|+ |z3|)β3+γ3+2

×
((|y1|+ |z1|)(|y2|+ |z2|)

|y3|+ |z3|

)β2+γ2+2
.

Lastly, we have

II ∼ |y1|β1+1|z1|γ1+1

(|y1|+ |z1|)β1+γ1+2

|y2|β2+1|z2|γ2+1

(|y2|+ |z2|)β2+γ2+2

|y3|β3+1|z3|γ3+1

(|y3|+ |z3|)β3+γ3+2

×
((|y1|+ |z1|)(|y2|+ |z2|)

|y3|+ |z3|

)min{β1+γ1,β2+γ2}+2
Lβ1,β2,γ1,γ2(y, z),

where

Lβ1,β2,γ1,γ2(y, z) := 1 + log+

( |y3|+ |z3|
(|y1|+ |z1|)(|y2|+ |z2|)

)
when β1 + γ1 = β2 + γ2 and Lβ1,β2,γ1,γ2(y, z) = 1 otherwise. In conclusion, we get

|∂βy ∂γzK(y, z)| . 1

[(|y1|+ |z1|)(|y2|+ |z2|) + |y3|+ |z3|]β3+γ3+4

× 1

(|y1|+ |z1|)β1+γ1(|y2|+ |z2|)β2+γ2

×min
{

1,
((|y1|+ |z1|)(|y2|+ |z2|)

|y3|+ |z3|

)min{β1+γ1,β2+γ2}}
Lβ1,β2,γ1,γ2(y, z).

Partial kernel estimates. Let m ∈M1
Z . We define truncations of m by setting

mJ :=
∑

|j|≤J1,|k|≤J2

mj,k, J = (J1, J2) ∈ N2.

A.3. Lemma. Suppose that m ∈ M1
Z . Let mJ be defined as above and let KJ = m̌J . Then for

(y2, z2) 6= 0 6= (y3, z3) we have the estimate∣∣∣˚
I1×I1×I1

∂β2y2 ∂
β3
y3 ∂

γ2
z2 ∂

γ3
z3KJ(x1 − y1, y2, y3, x1 − z1, z2, z3) dy1 dz1 dx1

∣∣∣
.

1

(|y2|+ |z2|)β2+γ2
· 1

(|y3|+ |z3|)β3+γ3
|I1|( |I

1|(|y2|+ |z2|)
|y3|+ |z3|

+
|y3|+ |z3|

|I1|(|y2|+ |z2|)
)−1

× 1∏3
i=2(|yi|+ |zi|)2

·
(
1 + log+

|y3|+ |z3|
|I1|(|y2|+ |z2|)

)
,

where I1 is an interval and β2 + β3 + γ2 + γ3 ≤ 1.

Proof. Since mJ(0, ξ2, ξ3, 0, η2, η3) = 0, using the Fourier transform we know that

(A.4)
¨

R2

∂β2y2 ∂
β3
y3 ∂

γ2
z2 ∂

γ3
z3KJ(y1, y2, y3, z1, z2, z3) dy1 dz1 = 0.

Suppose first that |I1|(|y2| + |z2|) ≥ |y3| + |z3| – by (A.4) we may equivalently estimate
the integral over I1 × (R2 \ (I1 × I1)) instead of I1 × I1 × I1. By the kernel estimates we
have ∣∣∣˚

I1×(R2\(I1×I1))
∂β2y2 ∂

β3
y3 ∂

γ2
z2 ∂

γ3
z3KJ(x1 − y1, y2, y3, x1 − z1, z2, z3) dy1 dz1 dx1

∣∣∣
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.
ˆ
I1

¨
R2\(I1×I1)

1

(|y2|+ |z2|)β2+γ2

×
1 + log+

|y3|+|z3|
(|x1−y1|+|x1−z1|)(|y2|+|z2|)

[(|x1 − y1|+ |x1 − z1|)(|y2|+ |z2|) + |y3|+ |z3|]β3+γ3+4
dy1 dz1 dx1.

Note that we have either y1 ∈ R\I1 or z1 ∈ R\I1, and we may without loss of generality
assume y1 ∈ R \ I1. Then the integral is dominated by
ˆ
I1

¨
(R\I1)×R

1

(|y2|+ |z2|)β2+γ2

×
1 + log+

|y3|+|z3|
|x1−y1|(|y2|+|z2|)

[(|x1 − y1|+ |x1 − z1|)(|y2|+ |z2|) + |y3|+ |z3|]β3+γ3+4
dy1 dz1 dx1

.
1

(|y2|+ |z2|)β2+γ2+β3+γ3+4

ˆ
I1

ˆ
R\I1

1 + log+
|y3|+|z3|

|x1−y1|(|y2|+|z2|)(
|x1 − y1|+ |y3|+|z3|

|y2|+|z2|
)β3+γ3+3

dy1 dx1.

Let t := |y3|+|z3|
|y2|+|z2| . By a change of variables we reduce to

t−β3−γ3−1

(|y2|+ |z2|)β2+γ2+β3+γ3+4

¨
t−1I1×(R\t−1I1)

1 + log+
1

|x1−y1|(
|x1 − y1|+ 1

)β3+γ3+3
dy1 dx1

.
t−β3−γ3−1

(|y2|+ |z2|)β2+γ2+β3+γ3+4

ˆ
t−1I1

1(
d(x1, ∂(t−1I1)) + 1

)β3+γ3+2
dx1

.
t−β3−γ3−1

(|y2|+ |z2|)β2+γ2+β3+γ3+4

=
1

(|y2|+ |z2|)β2+γ2+3

1

(|y3|+ |z3|)β3+γ3+1

∼ 1

(|y2|+ |z2|)β2+γ2
· 1

(|y3|+ |z3|)β3+γ3
|I1|( |I

1|(|y2|+ |z2|)
|y3|+ |z3|

+
|y3|+ |z3|

|I1|(|y2|+ |z2|)
)−1

× 1∏3
i=2(|yi|+ |zi|)2

.

Assume then that |I1|(|y2|+ |z2|) < |y3|+ |z3|. This time we integrate over I1× I1× I1.
Proceeding as above we reduce to the integral

˚

t−1I1×t−1I1×t−1I1

t−β3−γ3−1

(|y2|+ |z2|)β2+γ2+β3+γ3+4

1 + log+
1

(|x1−y1|+|x1−z1|)

[(|x1 − y1|+ |x1 − z1|) + 1]β3+γ3+4
dy1 dz1 dx1

≤
¨

t−1I1×t−1I1

t−β3−γ3−1

(|y2|+ |z2|)β2+γ2+β3+γ3+4

1 + log+
1

|x1−y1|

(|x1 − y1|+ 1)β3+γ3+3
dy1 dx1

∼ t−β3−γ3−1

(|y2|+ |z2|)β2+γ2+β3+γ3+4

¨

t−1I1×t−1I1

(
1 + log+

1

|x1 − y1|
)

dy1 dx1
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.
t−β3−γ3−1

(|y2|+ |z2|)β2+γ2+β3+γ3+4
(t−1|I1|)2(1 + log+(t|I1|−1))

=
1

(|y2|+ |z2|)β2+γ2
· 1

(|y3|+ |z3|)β3+γ3
|I1|( |I

1|(|y2|+ |z2|)
|y3|+ |z3|

+
|y3|+ |z3|

|I1|(|y2|+ |z2|)
)−1

× 1∏3
i=2(|yi|+ |zi|)2

·
(
1 + log+

|y3|+ |z3|
|I1|(|y2|+ |z2|)

)
.

Thus, we are done. �

With (A.2) at hand, similarly as in the linear case we can derive the following.

A.5. Lemma. Let m ∈M1
Z and denote by Tm the corresponding Fourier multiplier operator.

Let f1, g1 ∈ L4(R), f2,3, g2,3 ∈ L4(R2) and h1 ∈ L2(R), h2,3 ∈ L2(R2). Then

〈Tm(f1 ⊗ f2,3, g1 ⊗ g2,3), h1 ⊗ h2,3〉 = 〈Tmf2,3,g2,3,h2,3 (f1, g1), h1〉,

wheremf2,3,g2,3,h2,3 is a standard bilinear Coifman-Meyer multiplier in R satisfying the estimates

|( d/ dξ1)α( d/ dη1)βmf2,3,g2,3,h2,3(ξ1, η1)|

. ‖m‖M1
Z
‖f2,3‖L4‖g2,3‖L4‖h2,3‖L2(|ξ1|+ |η1|)−α−β.

Thus, Tmf2,3,g2,3,h2,3 is a convolution form bilinear Calderón-Zygmund operator. In particular,
there exists a standard bilinear Calderón-Zygmund kernel Km,f2,3,g2,3,h2,3 such that

‖Km,f2,3,g2,3,h2,3‖CZ1(R2) . ‖f2,3‖L4‖g2,3‖L4‖h2,3‖L2 .

Moreover, if spt f1 ∩ spt g1 ∩ spth1 = ∅, then

〈Tm(f1 ⊗ f2,3, g1 ⊗ g2,3), h1 ⊗ h2,3〉

=

˚
Km,f2,3,g2,3,h2,3(x1, y1, z1)f1(y1)g1(z1)h1(x1) dy1 dz1 dx1.

Conclusion. Notice that Lemma A.5 immediately implies that we have the weak bound-
edness property. Therefore, the bilinear multipliers satisfy Definition 3.5.
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