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Abstract. In the recent work [2] it was obtained that

|{x ∈ Rd : w(x)|G(fw−1)(x)| > α}| .
[w]2A1

α

∫
Rd

|f |dx

both in the matrix and scalar settings, where G is either the Hardy–Littlewood maximal
function or any Calderón–Zygmund operator. In this note we show that the quadratic
dependence on [w]A1

is sharp. This is done by constructing a sequence of scalar-valued
weights with blowing up characteristics so that the corresponding bounds for the Hilbert
transform and maximal function are exactly quadratic.

1. Introduction

Recall that a non-negative locally integrable function w satisfies the A1 condition if
there exists a constant C > 0 such that for every cube Q ⊂ Rd,

1

|Q|

∫
Q

w ≤ C ess inf
Q

w.

The smallest constant C for which this property holds is denoted by [w]A1 .
In the 70s, Muckenhoupt and Wheeden [10] established weighted weak type (1, 1)

bounds of the form

(1.1) |{x ∈ R : w(x)|T (fw−1)(x)| > α}| . Cw

α

∫
R
|f |dx,

where T is either the Hilbert transform H or the Hardy–Littlewood maximal operator M .
They showed as well that w ∈ A1 is a sufficient condition for those inequalities to hold,
even though it is not necessary. Muckenhoupt and Wheeden observed that (1.1) could
be regarded as a first step to settle inequalities of the form

(1.2) u1−r ({ur|Tf | > α}) . 1

α

∫
R
|f |w dx,

where u,w are non-negative functions and r ∈ [0, 1]. Note that for u = w, for r = 0 this
inequality is the standard weak type inequality and in the case r = 1 it reduces to (1.1).
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Their idea was to combine (1.2) with interpolation with change of measures in order to
obtain two weighted estimates.

Pushing forward that idea, Sawyer [13] showed that

(1.3) uv

({
M(fv)

v
> α

})
. Cu,v

1

α

∫
R
|f |uv dx,

where u, v ∈ A1. This estimate combined with interpolation with change of measures
allowed him to reprove Muckenhoupt’s maximal theorem.

Since the aforementioned papers a number of works have been devoted to estimates
related to the ones above, that are known in the literature as mixed weak type estimates.
Some worth mentioning are [3] where (1.3) is extended to higher dimensions and further
operators such as Calderón–Zygmund operators via extrapolation, or [9] where it is shown
that u ∈ A1 and v ∈ A∞ is sufficient for (1.3) to hold.

In terms of quantitative estimates for Cu,v in (1.3), and up to very recently for Cw in
(1.1), as we will mention soon, not very much is known. Some results are provided in the
aforementioned work [9] or in some other papers such as [12] or [1] for Cu,v in (1.3). The
purpose of this note is to provide some insight on Cw in (1.1). However, before presenting
our main result we would like to connect this problem with the matrix weighted setting.
We devote the following lines to that purpose.

In the last years quantitative matrix weighted estimates have attracted the attention
of a number of authors. Up until now only few sharp quantitative results in the matrix
weight setting are known. Among them the sharp Lp(W ) bounds for the maximal oper-
ator [5], the sharp L2(W ) bound for the square function [8], and also the sharp Lp(W )
bounds in terms of the [W ]Aq constants with 1 ≤ q < p obtained in [6] for the maximal
operator, Calderón–Zygmund operators and commutators. Very recently Domelevo, Pe-

termichl, Treil and Volberg [4] showed the sharpness of the L2(W ) bound by [W ]
3/2
A2

for
Calderón–Zygmund operators obtained previously in [11].

Making sense of endpoint matrix weighted estimates is a tricky problem. Quite recently,
Cruz-Uribe et al. [2] managed to obtain the first quantitative endpoint estimates in that
setting. In order to state this result, we first give several definitions.

Assume that W is a matrix weight, that is, W is an n× n self-adjoint matrix function
with locally integrable entries such that W (x) is positive definite for a.e. x ∈ Rd. Define
the operator norm of W by

‖W (x)‖ := sup
e∈Cn:|e|=1

|W (x)e|.

We say that W ∈ A1 if

[W ]A1 := sup
Q

ess sup
y∈Q

1

|Q|

∫
Q

‖W (x)W (y)−1‖dx <∞.

It is easy to see that the matrix A1 constant [W ]A1 coincides with [w]A1 when n = 1.

Given a matrix weight W , a vector-valued function ~f : Rd → Cn and a Calderón–
Zygmund operator T , define

TW ~f(x) := W (x)T (W−1 ~f)(x).
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Next, define the maximal operator by

MW
~f(x) := sup

Q3x

1

|Q|

∫
Q

|W (x)W−1(y)~f(y)|dy.

The operators above have the obvious interpretation in the scalar setting.

Theorem A ([2]). We have

(1.4) |{x ∈ Rd : |TW ~f(x)| > α}| .
[W ]2A1

α

∫
Rd

|~f |dx,

and the same holds for MW .

At this point we are in the position to state the main result of this note.

Theorem 1.1. In the scalar-valued setting the quadratic dependence on [w]A1 in (1.4) is
sharp for Tw and for Mw.

As a direct consequence of Lemma 2.1 below, this result shows the sharpness of [W ]2A1

in Theorem A in the matrix setting as well.
An interesting phenomenon here is the contrast between the strong L2(W ) and the

weak L1(W ) bounds for Calderón–Zygmund operators. As we mentioned above, the

recent work [4] establishes the sharpness of [W ]
3/2
A2

in the matrix setting. Comparing
this with the linear A2 bound in the scalar case [7], we see that the sharp weighted L2

bounds for Calderón–Zygmund operators are different in the matrix and scalar settings.
However, Theorem 1.1 shows that the sharp weighted weak L1 bounds are the same in
both settings.

2. Proof of Theorem 1.1

2.1. Connection between the scalar and the matrix weighted estimates.

Lemma 2.1. Assume that GW stands either for TW or for MW . Then if∣∣∣{x ∈ Rd : |GW
~f(x)| > α

}∣∣∣ ≤ cϕ ([W ]A1)
1

α

∫
Rd

|~f |dx,

we have that for every w ∈ A1∣∣{x ∈ Rd : |Jwf(x)| > α
}∣∣ ≤ cϕ ([w]A1)

1

α

∫
Rd

|f |dx,

where Jw stands, respectively, for wT (fw−1) or for wM(fw−1).

Proof. Let w ∈ A1. It is clear that W = wIn is a matrix A1 weight. Furthermore,

[W ]A1 = [w]A1 .

Now given a scalar function f , we build ~f = (f, 0, . . . , 0)t. Note that for these choices of
~f and W , clearly

|GW
~f(x)| = |Jwf(x)|.

This ends the proof. �
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2.2. Construction of a family of weights providing the lower bound. We prove
Theorem 1.1 via the following result.

Theorem 2.2. For any integer N > 20, there exists a scalar weight w ∈ A1(R) satisfying
the following properties:

(1)
∫ 1

0
w = 1;

(2) [w]A1 ' N ;
(3) |{x ∈ (1,∞) : w(x) > x}| & N2.

Observe that Theorem 2.2 implies Theorem 1.1 immediately because if we take f =
χ[0,1], then for x > 1,

Mf(x) =
1

x
, Hf(x) =

∫
f(y)

x− y
dy >

1

x
.

Hence, if T is either M or H, then

‖wTf‖L1,∞ ≥
∣∣{x ∈ (1,∞) : w(x)|Tf(x)| > 1}

∣∣
≥
∣∣{x ∈ (1,∞) : w(x) · 1

x
> 1}

∣∣
& N2 ' [w]2A1

‖f‖L1(w).

The rest of this section will be devoted to proving Theorem 2.2.

Proof of Theorem 2.2. For k = 2, 3, . . . , N we denote Jk = [2k, 2k+1). We will split Jk
into small intervals. Set Ik = [2k, 2k + k) and Lk = Jk \ Ik = [2k + k, 2k+1). Let L−k and
L+
k be the left and right halves of Lk, respectively. Next we define (L−k )1 to be the right

half of L−k and (L+
k )1 the left half of L+

k . Then

• when (L−k )j = [ajk, b
j
k) is defined, let (L−k )j+1 = [aj+1

k , bj+1
k ) satisfy that

bj+1
k = ajk, |(L−k )j+1| = 1

2
|(L−k )j|;

• when (L+
k )j = [cjk, d

j
k) is defined, let (L+

k )j+1 = [cj+1
k , dj+1

k ) satisfy that

cj+1
k = djk, |(L+

k )j+1| = 1

2
|(L+

k )j|.

The process is stopped when we have (L−k )k−1 and (L+
k )k−1 defined, and we simply define

(L−k )k = [2k + k, 2k + k +
|L−k |
2k−1 ), (L+

k )k = [2k+1 − |L
+
k |

2k−1 , 2
k+1).

Now we have split Jk into disjoint intervals, namely,

Jk = Ik ∪
k
∪
j=1

(L−k )j ∪
k
∪
j=1

(L+
k )j.

Define

wk = 2k+1χIk +
k∑

j=1

2jχ(L−k )j∪(L+
k )j
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I4 L4

(L−4 )1 (L+
4 )1(L−4 )2 (L+

4 )2
(L−4 )3 (L+

4 )3

(L−4 )4 (L+
4 )4

Figure 1. Component intervals of J4.

and our weight on [0, 2N+2] is

w(x) =


χ[0,4)(x) +

N∑
k=2

wk(x), x ∈ [0, 2N+1),

2N , x = 2N+1,

w(2N+2 − x), x ∈ [2N+1, 2N+2].

Figure 2. Graph of w4

Figure 3. Joint graph of w4, w5 and w6.

Finally we extend w(x) from [0, 2N+2] to R periodically with period 2N+2. Such a

weight trivially satisfies
∫ 1

0
w = 1. Moreover, since w(x) > x on Ik, we have

|{x ∈ (1,∞) : w(x) > x}| ≥
N∑
k=2

|Ik| =
N∑
k=2

k ' N2.
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Hence it remains to check that [w]A1 ' N . Since w is periodic on R and symmetrical
on [0, 2N+2], it suffices to prove that

sup
I⊂[0,2N+1]

w(I)

|I| ess inf
x∈I

w(x)
' N

(we use the standard notation w(E) =
∫
E
w).

Observe that |L−k | = |L
+
k | = 1

2
(2k − k). Further,

|(L−k )j| = |(L+
k )j| = 1

2j+1
(2k − k), j = 1, . . . , k − 1,

and

|(L−k )k| = |(L+
k )k| = 1

2k
(2k − k).

Hence,

wk(Jk) = 2k+1|Ik|+
k∑

j=1

2j
(
|(L−k )j|+ |(L+

k )j|
)

= 2k+1k + (k − 1)(2k − k) + 2(2k − k) ' k2k.

From this, when I = [0, 2N+1] we have

w(I)

|I|
= 2−(N+1)

(
4 +

N∑
k=2

wk(Jk)
)
' 2−(N+1)

(
4 +

N∑
k=2

k2k
)

' N = N ess inf
x∈I

w(x).

Therefore, we are left to prove that for any I ⊂ [0, 2N+1],

(2.1)
w(I)

|I|
. N ess inf

x∈I
w(x).

At this point we will make the following elementary observation. Our weight w is a
step function, and for each two adjacent intervals from its definition, the “jump” of w is
at most 2. Since the “jumps” are multiplicative we have the following.

Claim A. If I intersects at most m intervals from the definition of w, then

w(I)

|I|
≤ max

x∈I
w(x) ≤ 2m min

x∈I
w(x) = 2m ess inf

x∈I
w(x).

In what follows we will prove (2.1) according to the size of I.

Case 1. |I| ≤ 4. In this case, note that in each Jk (k ≥ 2), (L−k )k−1, (L−k )k and
(L+

k )k−1, (L+
k )k are the smallest intervals, and

|(L−k )k−1| = |(L−k )k| = |(L+
k )k−1| = |(L+

k )k| = 1− k

2k
≥ 1

2
.

Hence I intersects at most 9 intervals from the definition of w, and we are in position to
apply Claim A with m = 9.



SHARPNESS OF SOME QUANTITATIVE MUCKENHOUPT–WHEEDEN INEQUALITIES 7

Case 2. |I| > 4. In this case, we may assume |I| ∈ (2k0 , 2k0+1] with some k0 ≥ 2. We
may further assume k0 < N − 10 as otherwise

w(I)

|I|
. 2−Nw([0, 2N+1]) ' N ess inf

x∈I
w(x).

Case 2a. I ⊂ [0, 2k0+10]. Then similarly to above,

w(I)

|I|
< 2−k0w([0, 2k0+10]) ' k0 ess inf

x∈I
w(x).

Case 2b. I 6⊂ [0, 2k0+10]. Then I ⊂ [2k0+9, 2N+1]. Denote by ck the center of Lk.

Case 2b-a. I contains some ck with k ≥ k0 + 9. Then the estimate is trivial since
I ⊂ (L−k )1 ∪ (L+

k )1 and we apply Claim A with m = 2.

Case 2b-b. I does not contain any ck. In this case we may assume I ⊂ (c`, c`+1) for
some k0 + 8 ≤ ` ≤ N .

Suppose that I = [a, b] and a ∈ (L+
` )j for some j. If j ≤ `− k0 − 4, then

|(L+
` )j+1| = |L+

` |2
−(j+1) =

2` − `
2j+2

> 2k0+1,

so that I will intersect at most (L+
` )j and (L+

` )j+1 and we again apply Claim A with
m = 2.

If j ≥ `− k0 − 3, note that then

I ⊂
`
∪

j=`−k0−3
(L+

` )j ∪
`+1
∪

i=`−k0−2
(L−`+1)

i ∪ I`+1.

Here i ≥ `− k0 − 2 since

|(L−`+1)
`−k0−2| = 2`+1 − (`+ 1)

2`−k0−1
>

2`

2`−k0−1
= 2k0+1 ≥ `(I).

Hence we have

w(I)

|I| ess inf
x∈I

w(x)
≤

∑̀
j=`−k0−3

w((L+
` )j) +

`+1∑
i=`−k0−2

w((L−`+1)
i) + w(I`+1)

2k02`−k0−3

.

∑̀
j=`−k0−3

2j · 2`−j +
`+1∑

i=`−k0−2
2i · 2`+1−i + (`+ 1)2`+2

2`
. `.

It remains to consider the case a ∈ I`+1 ∪ L−`+1. However, in this case we just need to
discuss whether b ∈ (L−`+1)

j with some j ≤ `− k0− 3 or not, which is completely similar.
This completes the proof. �

Acknowledgement

We would like to thank the anonymous referee for his/her careful reading that helped
improving the presentation of the paper.



SHARPNESS OF SOME QUANTITATIVE MUCKENHOUPT–WHEEDEN INEQUALITIES 8

References
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