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ABSTRACT. In the recent work [2] it was obtained that

€ R w@)GUu @) > al 5 2 [ gl
Rd

both in the matrix and scalar settings, where G is either the Hardy-Littlewood maximal
function or any Calderén—Zygmund operator. In this note we show that the quadratic
dependence on [w] 4, is sharp. This is done by constructing a sequence of scalar-valued
weights with blowing up characteristics so that the corresponding bounds for the Hilbert
transform and maximal function are exactly quadratic.

1. INTRODUCTION

Recall that a non-negative locally integrable function w satisfies the A; condition if
there exists a constant C' > 0 such that for every cube Q C R,

i/wgCessinfw.
Q| Q Q@

The smallest constant C' for which this property holds is denoted by [w] 4, .
In the 70s, Muckenhoupt and Wheeden [10] established weighted weak type (1,1)
bounds of the form

(11) o € R w@IT(fu @) > o}l § 22 [ I17lde

where T is either the Hilbert transform H or the Hardy—Littlewood maximal operator M.
They showed as well that w € A; is a sufficient condition for those inequalities to hold,
even though it is not necessary. Muckenhoupt and Wheeden observed that (1.1) could
be regarded as a first step to settle inequalities of the form

1—r T 1
(1.2 W (TS > o)) £ 2 Ifwds

where u, w are non-negative functions and r € [0, 1]. Note that for u = w, for r = 0 this
inequality is the standard weak type inequality and in the case r = 1 it reduces to (1.1).
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Their idea was to combine (1.2) with interpolation with change of measures in order to
obtain two weighted estimates.
Pushing forward that idea, Sawyer [13] showed that

(1.3) w <{M<Uf“) > a}) < cu,%/R\f\wda:,

where u,v € A;. This estimate combined with interpolation with change of measures
allowed him to reprove Muckenhoupt’s maximal theorem.

Since the aforementioned papers a number of works have been devoted to estimates
related to the ones above, that are known in the literature as mixed weak type estimates.
Some worth mentioning are [3] where (1.3) is extended to higher dimensions and further
operators such as Calderén—Zygmund operators via extrapolation, or [9] where it is shown
that u € A; and v € A is sufficient for (1.3) to hold.

In terms of quantitative estimates for C,,, in (1.3), and up to very recently for C,, in
(1.1), as we will mention soon, not very much is known. Some results are provided in the
aforementioned work [9] or in some other papers such as [12] or [1] for C,,, in (1.3). The
purpose of this note is to provide some insight on C,, in (1.1). However, before presenting
our main result we would like to connect this problem with the matrix weighted setting.
We devote the following lines to that purpose.

In the last years quantitative matrix weighted estimates have attracted the attention
of a number of authors. Up until now only few sharp quantitative results in the matrix
weight setting are known. Among them the sharp L?(W) bounds for the maximal oper-
ator [5], the sharp L*(TW) bound for the square function [8], and also the sharp L?(1V)
bounds in terms of the [W]4, constants with 1 < ¢ < p obtained in [6] for the maximal
operator, Calderén—Zygmund operators and commutators. Very recently Domelevo, Pe-
termichl, Treil and Volberg [4] showed the sharpness of the L?(W) bound by [W]S/ ® for
Calderén—Zygmund operators obtained previously in [11].

Making sense of endpoint matrix weighted estimates is a tricky problem. Quite recently,
Cruz-Uribe et al. [2] managed to obtain the first quantitative endpoint estimates in that
setting. In order to state this result, we first give several definitions.

Assume that W is a matrix weight, that is, W is an n x n self-adjoint matrix function
with locally integrable entries such that W (z) is positive definite for a.e. x € R% Define
the operator norm of W by

[W(z)[ = sup [W(z)el.
eeCn:|e|=1
We say that W € A; if
(W]a, == supesssup / W ()W (y)~||dz < oo.
ye@ Q)

It is easy to see that the matrix A; constant [W]4, coincides with [w]4, when n = 1.

Given a matrix weight W, a vector-valued function f R? — C" and a Calderén—
Zygmund operator T, define
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Next, define the maximal operator by

My f(x) = sup |Q|/|W ().f(y)|dy.

The operators above have the obvious interpretation in the scalar setting.
Theorem A ([2]). We have

(1.49) e € RY: i) > ot 5 P2 [ (la,

and the same holds for Myy.

At this point we are in the position to state the main result of this note.

Theorem 1.1. In the scalar-valued setting the quadratic dependence on [w]a, in (1.4) is
sharp for T, and for M,,.

As a direct consequence of Lemma 2.1 below, this result shows the sharpness of [IW]%
in Theorem A in the matrix setting as well.

An interesting phenomenon here is the contrast between the strong L?(W) and the
weak L'(TV) bounds for Calderén-Zygmund operators. As we mentioned above, the

1

recent work [4] establishes the sharpness of [W]i/f in the matrix setting. Comparing
this with the linear A; bound in the scalar case [7], we see that the sharp weighted L?
bounds for Calderéon-Zygmund operators are different in the matrix and scalar settings.
However, Theorem 1.1 shows that the sharp weighted weak L' bounds are the same in
both settings.

2. PROOF OF THEOREM 1.1

2.1. Connection between the scalar and the matrix weighted estimates.

Lemma 2.1. Assume that Gy stands either for Ty or for My,. Then if

erRd |Gw ()]>04H<c<p |a,) /|f]dx

we have that for every w € Ay
1
{z eRY : |Juf(2)] > a}| < cp(fw]a) = y |flde,
)

where J,, stands, respectively, for wT (fw™") or for wM(fw™").
Proof. Let w € A;. It is clear that W = wl,, is a matrix A; weight. Furthermore,
(W4, = [w]a,.
1\low given a scalar function f, we build f = (f,0,...,0)". Note that for these choices of
f and W, clearly

Gw f(@)] = | Juf(2)]-
This ends the proof. O
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2.2. Construction of a family of weights providing the lower bound. We prove
Theorem 1.1 via the following result.

Theorem 2.2. For any integer N > 20, there exists a scalar weight w € A;(R) satisfying
the following properties:

(1) f()lw =1;
(2) [w]Al ~ N;
(3) {x € (1,00) : w(z) > x}| = N2,

Observe that Theorem 2.2 implies Theorem 1.1 immediately because if we take f =
X[0,1], then for z > 1,

Mf(:p):é, Hf(x) = j(_?yd >é

Hence, if T is either M or H, then
[wT fllzre > [{z € (1,00) s w(@)|Tf ()] > 1}
> |{z € (1,00) : w(z) - i > 1}
2 N o= [wly, [ f Il w)-
The rest of this section will be devoted to proving Theorem 2.2.

Proof of Theorem 2.2. For k = 2,3,..., N we denote J, = [2F,21). We will split Jj,
into small intervals. Set [}, = [2F, 2"f + k) and Ly = Jip \ I, = [2¥ + k,2"1). Let L, and
L be the left and right halves of Ly, respectively. Next we define (L )! to be the right
half of L; and (L;)! the left half of L;. Then

e when (L) = [a], b)) is defined, let (Ly )7 = [al", b)7") satisfy that

A . N 1
b =aj, (L) = 1L
o when (L)) =[], d]) is defined, let (Li)7™ = [c/™", d)™") satisfy that
A =dl, L= L)
The process is stopped when we have (L; )*~! and (L} )*~! defined, and we simply define
L;
(L) =02 +k 2"+ k+ ‘Qk’“l) (L)F =28+ — ‘Qk 1’,2“1)

Now we have split Ji into disjoint intervals, namely,
k ok :
Je =10 U (L) U U (L)

j= j=

Define
k

wy =2, + Y P X
j=1
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YA =y | [y TSR
(LZ)S( i) (Ly) (Li) (Ly) (L)
(Ly)* (L)

FiGURE 1. Component intervals of Jj.

and our weight on [0, 2V*?] is

X () + 3 wi(@),  z€[0,28),
k=2
w(.flf) = 2]\/ o 2N+1
w(2Vt? — 1), € 2N+ 9N+2),

F1GURE 2. Graph of wy

F1GURE 3. Joint graph of wy, w5 and wg.

Finally we extend w(x) from [0,2V%2] to R periodically with period 2¥*2. Such a
weight trivially satisfies fol w = 1. Moreover, since w(z) > z on I}, we have

{a € (1,00) s w(x) > a}| =D Ll =) k~N
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Hence it remains to check that [w]4, ~ N. Since w is periodic on R and symmetrical
on [0,2V*2] it suffices to prove that
w(l)

~ N
reaver [T]ess inf w(z)
’ Te

(we use the standard notation w(E) = [, w).
Observe that |L, | = |L}| = 1(2" — k). Further,

(L) = LY = g (= B), =1, k= 1,
and
I = 1) = 5 (2 = B
Hence,

k
w) = 2L+ Y P (L] (L)

2Pk 4 (K — 1)(2F — k) + 2(2F — k) ~ k2.

From this, when I = [0, 2V"!] we have

N N
wll) _ v (4 +) wk(Jk)> ~ g~ (4 2 ka)
k=2

k=2
~ N = Nessinf w(z).

zel
Therefore, we are left to prove that for any I C [0,2V+1],

w(l) _
— <
(2.1) T Nesxsellnfw(x).

At this point we will make the following elementary observation. Our weight w is a
step function, and for each two adjacent intervals from its definition, the “jump” of w is
at most 2. Since the “jumps” are multiplicative we have the following.

Claim A. If I intersects at most m intervals from the definition of w, then
T < max w(x) < 2™ rilel?w(x) = 2" eszseilnfw(x).

In what follows we will prove (2.1) according to the size of I.

Case 1. |I| < 4. In this case, note that in each J, (k > 2), (L;)* ', (L;)" and
(LR (L)E are the smallest intervals, and
k
2k
Hence I intersects at most 9 intervals from the definition of w, and we are in position to
apply Claim A with m = 9.

(L) =1L =IO =T =1- 5 >

DN | —
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Case 2. |I| > 4. In this case, we may assume || € (2%, 2k0+1] with some ko > 2. We
may further assume ky < N — 10 as otherwise
w(l)

\T < 27Mw([0,28M) ~ Nesgeilrlfw(x).

Case 2a. I C [0,2%*19]. Then similarly to above,

w(l)

—ko ko+107\ ~o :
aiin < 27"w([0,2 1) =~ ko eszsellnfw(x).

Case 2b. I ¢ [0,2%719. Then I C [2*F9 2NF1] Denote by ¢, the center of Ly.

Case 2b-a. [ contains some ¢, with k& > kg + 9. Then the estimate is trivial since
I C (L)' U (L))" and we apply Claim A with m = 2.

Case 2b-b. I does not contain any c;. In this case we may assume I C (¢4, cpqq) for
some kg +8 < ¢ < N.

Suppose that I = [a,b] and a € (L)’ for some j. If j < ¢ — ko — 4, then

2t —¢

(LY = |L;|2_(j+1) ~ Tojt2

> 2hotl
so that I will intersect at most (L))’ and (L; )™ and we again apply Claim A with
m = 2.

If j > ¢ — ko — 3, note that then

¢ - 41 )

I U (LHYu U (L; ) UI,.

- j=e—ko—3( 0) z’:Z—ko—Q( er1)" U Lo
Here i > ¢ — kg — 2 since

2€+1 _ (g + 1) 2Z
2@7]6071 > 2@7]6071

(L) = — 9kt > ¢(]).

Hence we have

¢ , 41 L
w(I) , sz 3w((L})J) T KZ]; QW((LZH)Z) + w(let1)
J=Et—Ro— 1=f—Kko—
|1 ess ilnfw(x) - 9ko9l—ko—3
S
¢ . ) 041 ) '
Z 27 . 2@—] + Z 2t . 2(-1—1—1 + (g + 1)254,_2
< j=t—ko—3 i=f—ko—2 < g
~ 2@ ~

It remains to consider the case a € I,y U L, ;. However, in this case we just need to
discuss whether b € (L)’ with some j < ¢ — ky— 3 or not, which is completely similar.

This completes the proof. U
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