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Abstract

Mediation analysis is an important statistical tool in many research fields, where the

joint significance test is widely utilized for examining mediation effects. Nevertheless,

the limitation of this mediation testing method stems from its conservative Type I

error, which reduces its statistical power and imposes certain constraints on its utility.

The proposed solution to address this gap is the adjusted joint significance test for one

mediator, which introduces a novel data-adjusted approach for assessing mediation

effects that showcases significant advancements. The method is specifically designed

to be user-friendly, thereby eliminating the necessity for intricate procedures. We

further extend the adjusted joint significance test for small-scale mediation hypotheses

with family-wise error rate (FWER) control. Additionally, a novel adjusted Sobel-

type confidence interval is proposed for the mediation effects, demonstrating significant

advancements over conventional Sobel’s method. The effectiveness of our mediation

testing and confidence interval estimation is assessed through extensive simulations,

and compared against a multitude of existing approaches. Finally, we present the

application of the method to three substantive datasets with continuous, binary and

time-to-event outcomes, respectively.

Keywords: Adjusted Sobel’s test; Confidence intervals; Multiple mediators; Small-

scale mediation hypotheses.

1 Introduction

Mediation analysis plays an important role in understanding the causal mechanism that an

independent variable X affects a dependent variable Y through an intermediate variable

*Email: haixiang.zhang@tju.edu.cn (Haixiang Zhang).

1



(mediator) M . The utilization of mediation analysis is extensively prevalent across various

disciplines, such as psychology, economics, epidemiology, medicine, sociology, behavioral

science, and many others. From the perspective of methodological development, Baron and

Kenny (1986) have laid a solid foundation for mediation analysis. Subsequently, numerous

studies have been conducted on this subject. Just to name a few: Mackinnon et al. (2004)

constructed the confidence limits for indirect effect by resampling methods. Wang and

Zhang (2011) and Zhang and Wang (2013) introduced the estimating and testing methods

for mediation effects with censored data and missing data, respectively. Shen et al. (2014)

proposed an inference technique for quantile mediation effects. VanderWeele and Tchetgen

(2017) considered causal mediation analysis with time-varying exposures and mediators.

Sun et al. (2021) proposed a Bayesian modeling approach for mediation analysis. Zhou

(2022) introduced a semiparametric estimation method for mediation analysis with multiple

causally ordered mediators. Zhang and Li (2023) used the subsampled double bootstrap

and divide-and-conquer algorithms to conduct statistical mediation analysis on large-scale

datasets. He et al. (2024) developed an adaptive bootstrap framework that can be applied

to the joint significance test of mediation effect. For more results about mediation analysis,

we refer to the reviewing papers by MacKinnon et al. (2007) and Preacher (2015).

The joint significance test is a crucial statistical approach in the field of mediation anal-

ysis, which plays a pivotal role in investigating the causal mechanism underlying mediation

effects (MacKinnon, 2008). However, the main shortcoming of this method is due to the con-

servative type I error of mediation testing (MacKinnon et al., 2002), which largely prevents

its popularity for practical users. The statistical analysis of the joint significance tests for

large-scale mediation hypotheses in genome-wide epigenetic research has been extensively

investigated (Huang, 2019; Dai et al., 2022; Liu et al., 2022), whereas these methods are

not applicable to single or small-scale mediation hypotheses. Furthermore, the confidence

interval for the mediation effect is a crucial aspect in mediation analysis, which is highly

valuable in comprehending the mediation mechanism. The literature on mediation analy-

sis lacks a substantial number of studies focusing on confidence interval estimation. The

Sobel-type (or normality-based) method and Bootstrap are consistently employed to con-

struct confidence intervals of mediation effects. However, these two methods are inadequate
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when both the pathway effects along X → M and M → Y equal zero. To improve the

performances of joint significance test and Sobel-type confidence interval, we propose two

novel data-adjusted mediation analysis methods with theoretical verification. The main ad-

vantages of our proposed method are as follows: First, the adjusted joint significance test

and adjusted sobel-type confidence interval are two flexible and data-driven methods. The

implementation of the two proposed methods is particularly convenient from a practical

perspective. Specifically, our method ensures user-friendliness by eliminating complex pro-

cedures. Second, the test method we propose exhibits significant advancements in terms of

size and power when compared to the conventional joint significance test. The enhanced

powers are particularly evident for those mediation effects that are relatively weak, making

them challenging to be recognized as significant mediators by traditional methods. Third,

the explicit formulation of the coverage probability and length of the adjusted Sobel-type

confidence interval is provided for comparison with conventional Sobel’s method.

The remainder of this paper is organized as follows: In Section 2, we review some details

about the traditional joint significance test for mediation effects. Then we propose a novel

data-adjusted joint significance test for one mediator, together with the explicit expression

of size. Meanwhile, an adjusted Sobel test is also introduced, which shows a significant im-

provement compared to traditional Sobel’s method. In Section 3, we implement the adjusted

joint significance test towards small-scale multiple testing with FWER control. Section 4

introduces an adjusted Sobel-type method to construct confidence interval for the media-

tion effect. Section 5 presents some simulation studies to assess the performance of our

method. In Section 6, we perform mediation analysis for three real-world datasets with

the proposed method. Some concluding remarks are provided in Section 7. All proof de-

tails of theorems are presented in the Supplementary Material. Finally, our method offers

a publicly available and user-friendly R package, called AdjMed, which can be accessed at

https://github.com/zhxmath/AdjMed.
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Figure 1: A scenario of mediation model with one mediator (confounding variables are

omitted).

2 Adjusted Joint Significance Test

To begin with, we review some fundamental notations within the context of mediation anal-

ysis. Let X be an exposure, M be the mediator and Y be the outcome (see Figure 1). As

described by MacKinnon (2008), the aim of mediation analysis is focused on investigating

the causal mechanism along the pathway X → M → Y . Generally speaking, the causal

effect X → M is parameterized by α (after adjusting for confounders), and the causal effect

M → Y is parameterized by β (after adjusting for exposure and confounders). The mediat-

ing effect of M in this case is described by αβ, commonly known as the “product-coefficient”

approach (MacKinnon et al., 2002). To evaluate whether M plays an intermediary role be-

tween X and Y , it is customary to conduct hypothesis testing at a significance level of δ as

follows:

H0 : αβ = 0 ↔ HA : αβ ̸= 0. (2.1)

The rejection of the null hypothesis would indicate that M is a statistically significant medi-

ator in the pathway X → M → Y . The null hypothesis H0 is worth noting as it is composite.

Specifically, H0 can be decomposed equivalently into the union of three disjoint component

null hypotheses H0 = H00 ∪H01 ∪H10, where

H00 : α = 0, β = 0;
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H01 : α = 0, β ̸= 0;

H10 : α ̸= 0, β = 0.

Let Tα = α̂/σ̂α and Tβ = β̂/σ̂β be the statistics for testing α = 0 and β = 0. Here α̂ and

β̂ are the estimates for α and β, respectively; σ̂α and σ̂β are the estimated standard errors

of α̂ and β̂, respectively. Under the null hypothesis, as the sample size n tends to infinity, it

can be observed that

Tα
D−→ N(0, 1) and Tβ

D−→ N(0, 1), (2.2)

where
D−→ denotes convergence in distribution. The corresponding p-values for Tα and Tβ

are

Pα = 2{1− ΦN(0,1)(|Tα|)}, (2.3)

Pβ = 2{1− ΦN(0,1)(|Tβ|)}, (2.4)

where Tα and Tβ are defined in (2.2), ΦN(0,1)(·) is the cumulative distribution function of

N(0, 1). The joint significance (JS) test, also known as the MaxP test, is widely recognized

as one of the most popular methods for mediation analysis in the field. The purpose of the

JS test is to reject H0 when both α = 0 and β = 0 are simultaneously rejected. The JS test

statistic is

PJS = max(Pα, Pβ), (2.5)

where Pα and Pβ are given in (2.3) and (2.4), respectively. The practical applicability of

JS test has led to its widespread adoption across various research fields, including the social

and biomedical sciences. However, the JS test suffers from overly conservative type I error,

especially when both α = 0 and β = 0 (MacKinnon et al., 2002). In the literature, this is a

long-existed and unresolved problem for the JS test. To bridge this gap, we aim to propose a

novel data-adjusted method for improving the statistical efficiency of the JS test, especially

focusing on the conservative issue in the case of α = β = 0.

Under H0, the traditional JS test regards PJS as a uniform random variable over (0, 1).

i.e., PJS ∼ U(0, 1). However, the actual distribution of PJS is not U(0, 1) under the compo-

nent null hypotheses H00, which is the reason of the conservative performance of traditional
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JS test. To provide further insights on this matter, let us consider Z1 and Z2 as two inde-

pendent random variables that follow a uniform distribution U(0, 1). Let Z = max(Z1, Z2)

and its density function is fZ(z). We can derive the distribution function of Z as

FZ(z) = P(Z ≤ z) = P(Z1 ≤ z, Z2 ≤ z) = P(Z1 ≤ z)P(Z2 ≤ z) = z2,

i.e., the density function of Z is fZ(z) = 1
2
z for 0 ≤ z ≤ 1 and fZ(z) = 0, otherwise.

Therefore, the maximum of two independent p-values (PJS) does not follow U(0, 1). This

provides a theoretical view about the conservative performance of JS test when both α = 0

and β = 0. Note that the distribution function of Z2 = {max(Z1, Z2)}2 is

FZ2(z) = P(Z2 ≤ z)

= P(Z1 ≤ z1/2)P(Z2 ≤ z1/2)

=


0, z < 0,

z, 0 ≤ z < 1,

1, z ≥ 1.

(2.6)

Under H00, the squared maximum of two p-values (P 2
JS) has an uniform distribution over (0,

1). This discovery provides insight into resolving the conservative challenge of conventional

JS test.

To address the conservatism of JS test, we attempt to differentiate H00 from H01 and

H10 reasonably using a specific criterion. Under H00, we have limn→∞ P(|Tα| < λn, |Tβ| <

λn|H00) = 1, where λn = o(
√
n) and λn → ∞ as the sample size n → ∞. However,

limn→∞ P(|Tα| < λn, |Tβ| < λn|H10) = 0 and limn→∞ P(|Tα| < λn, |Tβ| < λn|H01) = 0.

The null hypothesis H0 is more likely to be regarded as H00 instead of H01 or H10 when

max{|Tα|, |Tβ|} < λn. The approach employed by He et al. (2024) in constructing bootstrap-

based testing statistics for evaluating mediation effects should be noted, while our focus lies

on the development of innovative testing statistics that eliminate the need for re-sampling

procedures. The above-mentioned concept is exemplified through a numerical illustration

provided by us. Specifically, we generate a series of random samples from the linear mediation

models: Y = 0.5 + 0.5X + βM + ϵ and M = 0.5 + αX + e, where X, ϵ and e follow from

N(0, 1). The resulting Tα and Tβ are obtained by the ordinary least square method. In
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(a) The parameter is (α, β) = (0, 0).
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(b) The parameter is (α, β) = (0.25, 0).

Figure 2: The scatter plots of Tmax = max{|Tα|, |Tβ|} and λn =
√
n/ log(n) with 1000

repetitions.

Figure 2, we present the scatter plots of Tmax = max{|Tα|, |Tβ|} and λn =
√
n/ log(n) with

1000 repetitions, where the sample size is n = 1000, the parameters (α, β) are chosen as

(α, β) = (0, 0), and (0.25, 0), respectively. The observation from Figure 2 suggests that,

under the assumption of α = β = 0, there is a high probability that Tmax is significantly

smaller than λn as n → ∞. However, Tmax is asymptotically much larger than λn when

α ̸= 0, and the same conclusion also applies to β ̸= 0.

Motivated by the aforementioned findings, we propose a novel adjusted joint significance

(AJS) test procedure for (2.1), where the p-value is defined as

PAJS =

 PJS, max{|Tα|, |Tβ|} ≥ λn,

P 2
JS, max{|Tα|, |Tβ|} < λn.

(2.7)

Here, the threshold is chosen as λn =
√
n/ log(n) satisfying λn = o(

√
n) and λn → ∞ as

n → ∞; Tα, Tβ and PJS are given in (2.2) and (2.5), respectively. In Figure 3, we provide

an illustrative example of the p-values for AJS and JS methods with (α, β) = (0, 0) and

n = 2000. The data are generated from the same models of Figure 2 with 5000 repetitions.
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The distribution of PAJS is observed to be uniform in Figure 3, whereas the histogram

indicates a right skewness in the distribution of PJS. Meanwhile, the Figure 3 provides an

intuitive explanation for the conservatism of traditional JS method when α = β = 0.
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(a) The p-values of AJS method.
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(b) The p-values of JS method.

Figure 3: The histogram of p-values for (α, β) = (0, 0) with λn =
√
n/ log(n).

The decision rule of AJS test is that the null hypothesis H0 is rejected if PAJS is much

smaller than the significance level δ, where PAJS is defined in (2.7). The explicit expression

of size in Theorem 1 is derived, providing a valuable tool for ensuring the rationality of the

AJS test.

Theorem 1 Given that λn = o(
√
n) and as the sample size n approaches infinity, with

probability approaching one, under H00 the asymptotic size of our proposed AJS test is

lim
n→∞

Size(AJS|H00) = δ, (2.8)

where δ is the significance level. Under H10, with probability approaching one, the asymptotic

size of the AJS test satisfies

lim
n→∞

Size(AJS|H10) = δ. (2.9)

Similarly, with probability approaching one, under H01 the asymptotic size of the AJS test is

lim
n→∞

Size(AJS|H01) = δ.
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Theoretically, we conduct a comparative analysis between AJS and traditional JS in

terms of size. Under H00, the size of traditional JS test for (2.1) is

Size(JS|H00) = P(PJS < δ|H00)

= P(Pα < δ|H00)P(Pβ < δ|H00)

= δ2,

which explains the conservative phenomenon of traditional JS test.

The Sobel test (Sobel, 1982) is another widely used method for mediation analysis in the

field, and the corresponding test statistic is

TSobel =
α̂β̂

{α̂2σ̂2
β + β̂2σ̂2

α}1/2
, (2.10)

where α̂ and β̂ are the estimates for α and β, respectively; σ̂α and σ̂β are the estimated

standard errors of α̂ and β̂, respectively. The decision rule of traditional Sobel test relies

on the standard asymptotic normality of TSobel. We can reject H0 if the p-value, PSobel, is

smaller than a specified significance level δ, where

PSobel = 2{1− ΦN(0,1)(|TSobel|)},

ΦN(0,1)(·) is the cumulative distribution function of N(0, 1), and TSobel is given in (2.10). The

Sobel test suffers from overly conservative type I error, especially when both α = 0 and β = 0

(MacKinnon et al., 2002). From Liu et al. (2022), the Sobel statistic Tsobel has an asymptotic

normal distribution N(0, 1) under H01 and H10, while its asymptotic distribution is N(0, 1/4)

in the case of H00. Therefore, the performance of traditional Sobel test is conservative when

α = 0 and β = 0. Similar to the idea of AJS method, we propose a novel adjusted Sobel

(ASobel) test procedure for (2.1), and the p-value is defined as

PASobel =

 2{1− ΦN(0,1)(|TSobel|)}, max{|Tα|, |Tβ|} ≥ λn,

2{1− ΦN(0,1/4)(|TSobel|)}, max{|Tα|, |Tβ|} < λn,
(2.11)

where ΦN(0,1/4)(·) is the cumulative distribution function of N(0, 1/4); TSobel is given in

(2.10); Tα, Tβ and λn are the same as that of PAJS in (2.7). The decision rule of the ASobel

test states that the null hypothesis H0 is rejected if the test statistic (PASobel) is significantly
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smaller than the predetermined significance level δ. The p-values for ASobel and Sobel

methods with (α, β) = (0, 0) and n = 2000 are illustrated in Figure S.1. The sample data

are the same as depicted in Figure 3. The distribution of PASobel appears to be uniformly

distributed in Figure S.1, while the histogram indicates a right-skewed distribution for PSobel.

The Figure S.1 further elucidates the inherent conservatism of the traditional Sobel method

when both α and β are set to zero.

Given that λn = o(
√
n) and as n → ∞, with probability approaching one, under H0 the

asymptotic size of our proposed ASobel test for (2.1) is

lim
n→∞

Size(ASobel|H0) = δ. (2.12)

The proof details of (2.12) of ASobel test are presented in the Supplemental Material. The

ASobel test, although superior to the conventional Sobel test, demonstrates inferior perfor-

mance compared to the AJS method in numerical simulations. Consequently, our focus on

hypothesis testing does not heavily emphasize the ASobel method. However, the ASobel

plays a crucial role in constructing efficient confidence intervals for mediation effects, which

will be presented in the Section 4.
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Figure 4: A scenario of mediation model with multiple mediators (confounding variables are

omitted).
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3 Multiple Mediation Testing with FWER Control

The proposed AJS method is extended in this section to address small-scale multiple testing

with FWER control, thereby excluding the focus on high-dimensional mediators. Let X

be an exposure, M = (M1, · · · ,Md)
′ be a vector of d-dimensional mediators, and Y be an

outcome of interest. Following MacKinnon (2008), it is commonly assumed that the causal

relations X → Mk and Mk → Y are parameterized by αk and βk (see Figure 4), respectively.

Let Ω = {k : αkβk ̸= 0, k = 1, · · · , d} be the index set of significant (or active) mediators.

Under the significance level δ, we are interested in the small-scale multiple testing problem:

H
(k)
0 : αkβk = 0 ↔ H

(k)
A : αkβk ̸= 0, k = 1, · · · , d, (3.1)

where d is not very large (i.e., the M is not high-dimensional), and each null hypothesis H
(k)
0

is composite with three components:

H
(k)
00 : αk = 0, βk = 0;

H
(k)
10 : αk ̸= 0, βk = 0;

H
(k)
01 : αk = 0, βk ̸= 0.

First we focus on extending the AJS method (in Section 2) for the multiple testing in

(3.1). For k = 1, · · · , d, we denote

Pαk
= 2{1− ΦN(0,1)(|Tαk

|)}, and Pβk
= 2{1− ΦN(0,1)(|Tβk

|)}, k = 1, · · · , d. (3.2)

Here Tαk
= α̂k/σ̂αk

and Tβk
= β̂k/σ̂βk

; α̂k and β̂k are the estimates for αk and βk, respectively.

σ̂αk
and σ̂βk

are the estimated standard errors of α̂k and β̂k, respectively. Specifically, let

P
(k)
JS = max(Pαk

, Pβk
), (3.3)

where Pαk
and Pβk

are given in (3.2), k = 1, · · · , d. We propose an AJS test method with

the statistic being defined as

P
(k)
AJS =

 P
(k)
JS , max{|Tαk

|, |Tβk
|} ≥ λn,

{P (k)
JS }2, max{|Tαk

|, |Tβk
|} < λn,

(3.4)
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where P
(k)
JS is given in (3.3), the value of λn is equivalent to that of PAJS in (2.7). For

controlling the FWER, we can reject H
(k)
0 if the AJS test statistic P

(k)
AJS is much smaller

than δ/d. In other words, an estimated index set of significant mediators with AJS test is

Ω̂AJS = {k : P
(k)
AJS < δ/d, k = 1, · · · , d}, where P

(k)
AJS is defined in (3.4).

Theorem 2 Under the significance level δ, with probability approaching one, the FWER of

the AJS test for (3.1) asymptotically satisfies

lim
n→∞

FWER(AJS) ≤ δ. (3.5)

Remark 1 The FWER(AJS) is asymptotically controlled below the significance level δ for

small-scale multiple testing. We emphasize that the AJS cannot be directly applied to high-

dimensional mediators. In the context of large-scale mediators, advanced high-dimensional

statistical techniques, such as employing variable screening methods for mediator dimension

reduction, are imperative, which falls beyond the scope of this paper.

Remark 2 The ASobel method can be extended in a similar manner to address the multi-

ple testing problem presented in (3.1). As discussed in section 2, AJS outperforms ASobel

numerically, hence this topic is not explored further in this paper.

4 Adjusted Sobel-Type Confidence Intervals

In the current section, we focus on the estimation method for confidence intervals of medi-

ation effects αkβk’s, which plays a crucial role in comprehending the mediation mechanism

with desirable levels of confidence. The index k in αkβk is omitted for the sake of convenience,

while maintaining the same level of generality. The AJS method in Section 2 is proposed for

conducting hypothesis testing, but it cannot be utilized for constructing confidence intervals

of mediation effects. The Sobel-type (or normality-based) method is consistently employed

in the literature to examine confidence intervals of mediation effects. To be specific, as

n → ∞, Sobel’s method assumes that

σ̂−1
αβ (α̂β̂ − αβ)

D−→ N(0, 1), (4.1)
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where
D−→ denotes convergence in distribution, α̂ and β̂ are the estimates for α and β,

respectively; σ̂α and σ̂β are the estimated standard errors of α̂ and β̂, respectively; σ̂αβ =

{α̂2σ̂2
β+β̂2σ̂2

α}1/2. The focus of our study lies in constructing 100(1−δ)% confidence intervals

for mediation effects, where δ is commonly selected as 0.05. Based on (4.1), the Sobel-type

100(1− δ)% confidence interval for αβ is given by

CISobel = [α̂β̂ −N1−δ/2(0, 1)σ̂αβ, α̂β̂ +N1−δ/2(0, 1)σ̂αβ], (4.2)

where N1−δ/2(0, 1) is the (1 − δ/2)-quantile of N(0, 1). However, the confidence interval

CISobel provided in (4.2) is excessively wide when both α and β are equal to zero. e.g., the

coverage probability of the 95% confidence interval provided in (4.2) approaches unity.

The asymptotic distribution of σ̂−1
αβ (α̂β̂ − αβ) is N(0, 1/4) instead of N(0, 1) when α =

β = 0, as stated in Liu et al. (2022). To amend the issue of CISobel in the case of α = β = 0,

we propose a novel adjusted Sobel-type confidence interval for αβ as follows,

CIASobel =

 [α̂β̂ −N1−δ/2(0, 1)σ̂αβ, α̂β̂ +N1−δ/2(0, 1)σ̂αβ], max{|Tα|, |Tβ|} ≥ λn,

[α̂β̂ −N1−δ/2(0, 1/4)σ̂αβ, α̂β̂ +N1−δ/2(0, 1/4)σ̂αβ], max{|Tα|, |Tβ|} < λn,

(4.3)

where N1−δ/2(0, 1/4) is the (1 − δ/2)-quantile of N(0, 1/4), Tα and Tβ are defined in (2.2),

and λn =
√
n/ log(n). The thresholding framework in (4.3) shares a similar concept with

the AJS and ASobel introduced in Section 2.

Theorem 3 As the sample size n approaches infinity, with probability approaching one,

the coverage probability of the 100(1− δ)% confidence interval given in (4.3) asymptotically

satisfies

lim
n→∞

P(αβ ∈ CIASobel) = 1− δ.

The subsequent discussion presents a series of comparisons between CISobel and CIASobel.

The Sobel-type confidence interval can be derived directly to fulfill the following expression:

lim
n→∞

P(αβ ∈ CISobel) =

 2ΦN(0,1/4)(N1−δ/2(0, 1))− 1, α = β = 0,

1− δ, others,
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where CISobel is given in (4.2). By deducing the difference between limn→∞ P(αβ ∈ CISobel)

and 1− δ under the case of α = β = 0, we have

lim
n→∞

P(αβ ∈ CISobel)− (1− δ) = 2ΦN(0,1/4)(N1−δ/2(0, 1))− 2 + δ

> 0.

Hence, the asymptotic coverage probability of CIASobel is much better than that of CISobel

under α = β = 0. Furthermore, the averaged length of CIASobel in the case of α =

β = 0, 2N1−δ/2(0, 1/4)σ̂αβ , is significantly shorter compared to that of CISobel, which is

2N1−δ/2(0, 1)σ̂αβ. The performance of CISobel and CIASobel will be compared through numer-

ical simulations.

5 Numerical Studies

5.1 Size and Power of Single-Mediator Testing

In this section, we conduct some simulations to evaluate the performance of the ASobel and

AJS tests for H0 : αβ = 0 in the context of one mediator. Under the framework of mediation

analysis, we consider three kinds of outcomes with one continuous mediator: linear mediation

model (continuous outcome), logistic mediation model (binary outcome) and Cox mediation

model (time-to-event outcome). Specifically, the mediator M is generated from the linear

model M = αX +η′Z+ e, where X and e follow from N(0, 1), Z = (Z1, Z2)
′ with Z1 and Z2

being independent random variables following N(0, 1), η = (0.5, 0.5)′. The random outcomes

are generated from the following three models:

• Linear mediation model: Y = γX + βM + θ′Z+ ϵ, where γ = 0.5 and θ = (0.5, 0.5)′.

• Logistic mediation model: Let Y ∈ {0, 1} be the binary outcome, and

P (Y = 1|X,M,Z) =
exp(γX + βM + θ′Z)

1 + exp(γX + βM + θ′Z)
,

where γ = 0.5 and θ = (0.5, 0.5)′.

• Cox mediation model: Let T be the failure time, and C be the censoring time. The

observed survival time is Y = min(T,C). Following Cox (1972), the conditional hazard

function of T is λ(t|X,M,Z) = λ0(t) exp(γX + βM + θ′Z), where λ0(t) = 1 is the baseline
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hazard function, γ = 0.5, θ = (0.5, 0.5)′; C is generated from U(0, c0) with c0 being chosen

as a number such that the censoring rate is about 30%.

Table 1: The size and power of hypothesis testing with linear mediation model‡.

(α, β) Sobel JS Bootstrap ASobel AJS

n = 200 (0, 0) 0 0.0016 0.0010 0.0432 0.0460

(0, 0.5) 0.0406 0.0498 0.0556 0.0406 0.0498

(0.5, 0) 0.0420 0.0522 0.0568 0.0420 0.0522

(0.15, 0.15) 0.1190 0.3068 0.2774 0.4184 0.5124

(0.25, 0.25) 0.7470 0.8814 0.7584 0.7834 0.8978

n = 500 (0, 0) 0 0.0034 0.0008 0.0482 0.0446

(0, 0.5) 0.0540 0.0568 0.0542 0.0540 0.0568

(0.5, 0) 0.0460 0.0496 0.0546 0.0460 0.0496

(0.15, 0.15) 0.6820 0.8334 0.8218 0.8740 0.9090

(0.25, 0.25) 0.9990 0.9998 0.9946 0.9990 0.9998

n = 1000 (0, 0) 0.0002 0.0026 0.0012 0.0498 0.0496

(0, 0.5) 0.0456 0.0482 0.0520 0.0456 0.0482

(0.5, 0) 0.0466 0.0476 0.0486 0.0466 0.0476

(0.15, 0.15) 0.9886 0.9950 0.9952 0.9954 0.9974

(0.25, 0.25) 1 1 1 1 1

Under the regularity conditions in Vanderweele and Vansteelandt (2009), VanderWeele

and Vansteelandt (2010) and VanderWeele (2011), the product term αβ can be interpreted

as the causal mediating effect of M along the pathway X → M → Y for the three mediation

models (see Figure 1). For comparison, we also use the traditional Sobel, JS and Bootstrap

methods for testing H0 : αβ = 0, where the significance level is δ = 0.05. The popular

quantile Bootstrap test method is employed for assessing the mediation effect, and H0 will

be rejected if 0 does not fall within the interval [Qδ/2({α̂(b)β̂(b)}Bb=1), Q1−δ/2({α̂(b)β̂(b)}Bb=1)],

where Qδ/2(·) is the (δ/2)-empirical quantile function, α̂(b) and β̂(b) are the corresponding

parameter estimators with the b-th Bootstrap samples, b = 1, · · · , B.
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All the simulation results are based on 5000 repetitions, where B = 1000 and the sample

size is chosen as n = 200, 500 and 1000, respectively. In Tables 1, S.1 and S.2, we report the

sizes and powers of the Sobel, JS, Bootstrap, ASobel and AJS methods when performing

mediation tests with three kinds of outcomes. Under α = β = 0, the size of our proposed AJS

and ASobel are much better than those of JS, Sobel and Bootstrap methods, respectively. For

small values of α and β, the power of AJS is larger than that of ASobel and the conventional

Sobel, JS and Bootstrap methods. These numerical findings are in line with the theoretical

results of Theorem 1. In Figures 5, S.2 and S.3, we present the Q-Q plots of p-values

under linear, logistic and Cox mediation models with n = 500. The Bootstrap method

does not depend on the use of p-values when conducting hypothesis tests for H0. The Q-Q

plots demonstrate that the Sobel, JS, ASobel, and AJS methods accurately approximate

the distribution of their respective test statistics under either H10 or H01. The Sobel and

JS tests, however, exhibit a conservative behavior, whereas the proposed ASobel and AJS

tests still accurately approximate the distribution of their corresponding test statistics. The

quantiles of p-values under HA increase in the following order: AJS, ASobel, JS, Sobel. The

aforementioned finding is consistent with the power performance presented in Table 1.

5.2 FWER and Power of Multiple-Mediators Testing

In this section, we investigate the performance of the AJS method when performing small-

scale multiple testing for mediation effects via numerical simulations. The dimension of

mediators is chosen as d = 10, 15 and 20, respectively. Similar to Section 5.1, we consider

three kinds of outcomes in the context of multiple mediators.

• Linear mediation model: Y = γX + β′M + θ′Z + ϵ, where X and ϵ follow from N(0, 1),

Z = (Z1, Z2)
′ with Z1 and Z2 being independent random variables following N(0, 1), γ = 0.5,

θ = (0.5, 0.5)′; M = (M1, · · · ,Md)
′ is generated from a series of linear models Mk = αkX +

η′
kZ + ek. Here ηk = (0.5, 0.5)′, and e = (e1, · · · , ed)′ is a multivariate normal vector with

mean zero and covariance matrix Σ = (0.25|i−j|)i,j. The parameter’s settings are

α = (0.15, 0.05, 0.15, 0.15, 0.05, 0.5, 0.5, 0, · · · , 0)′,

β = (0.15, 0.05, 0.15, 0.05, 0.1, 0, 0, 0.5, 0.5, 0, · · · , 0)′.
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(a) Q-Q plots of p-values under H00.
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(b) Q-Q plots of p-values under H01.
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(c) Q-Q plots of p-values under H10.
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Figure 5: Q-Q plots of p-values under linear mediation model with n = 500.
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• Logistic mediation model: Let Y ∈ {0, 1} be the binary outcome, and

P (Y = 1|X,M,Z) =
exp(γX + β′M+ θ′Z)

1 + exp(γX + β′M+ θ′Z)
,

where the variables X, M, Z remain consistent with those in those of the linear mediation

model, except for the settings for model parameters,

α = (0.15, 0.2, 0.25, 0.5, 0.25, 0.65, 0, · · · , 0)′,

β = (0.25, 0.3, 0.35, 0.65, 0.55, 0, 0.55, 0, · · · , 0)′.

• Cox mediation model: Given the covariate X, the mediator vector M and the covariates

vector Z, the Cox’s conditional hazard function of failure time T is

λ(t|X,M,Z) = λ0(t) exp(γX + β′M+ θ′Z),

where λ0(t) = 1, γ = 0.5, X, M and Z are generated in the same way as the linear mediation

model. We generate the censoring time C from U(0, c0), where c0 is being chosen such that

the censoring rate is about 30%. The settings of the model’s parameters are

α = (0.2, 0.35, 0.25, 0.15, 0.15, 0.5, 0, · · · , 0)′,

β = (0.15, 0.25, 0.3, 0.15, 0.1, 0, 0.5, 0, · · · , 0)′.

The index set of significant mediators is Ω = {1, 2, 3, 4, 5}. Based on Vanderweele and

Vansteelandt (2009; 2010) and Huang and Yang (2017), the product term αkβk describes

the causal mediation effect along the kth pathway X → Mk → Y (see Figure 4), where

k = 1, · · · , d. Under the significance level δ, we consider the multiple testing problem

H0k : αkβk = 0, k = 1, · · · , d. The proposed AJS is compared with Sobel, JS, JT Comp

(Huang, 2019), DACT (Liu et al., 2022) and Bootstrap in terms of empirical FWER and

Power. The Bootstrap test method will reject H0k if 0 does not fall within the Bonferroni

corrected interval [Qδ/(2d)({α̂(b)
k β̂

(b)
k }Bb=1), Q1−δ/(2d)({α̂(b)

k β̂
(b)
k }Bb=1)], where α̂

(b)
k and β̂

(b)
k are

the corresponding parameter estimators with the b-th Bootstrap samples, b = 1, · · · , B.

The HDMT (Dai et al., 2022) is not applicable in our simulation scenarios, as it specifically

targets high-dimensional mediation hypotheses with d → ∞. All the results are based on

5000 repetitions, where B = 1000, the sample size is n = 200, 500 and 1000, respectively.
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In Tables 2, S.3 and S.4, we report the FWERs and Powers of six test methods in the

context of linear, logistic and Cox mediation models, where the significance level is δ =

0.05. The results demonstrate that the FWER and Power of AJS outperform the other

five methods significantly. The powers of all methods are observed to increase with the

sample size, while they decline with the increase in dimension d. One explanation for this

phenomenon is due to the fact that the estimated variances of model parameters are becoming

larger as the increase of mediator’s dimension under fixed sample size.

Table 2: The FWER and power of multiple testing with linear mediation model.

Dimension Sobel JS JT Comp DACT Bootstrap AJS

n = 200 d = 10 FWER 0.0062 0.0192 0.1706 0.0116 0.0294 0.0232

Power 0.0011 0.0195 0.0032 0.0146 0.0127 0.0764

d = 15 FWER 0.0052 0.0126 0.1982 0.0252 0.0176 0.0282

Power 0.0004 0.0147 0.0034 0.0236 0.0092 0.0568

d = 20 FWER 0.0038 0.0112 0.2176 0.0486 0.0186 0.0338

Power 0.0002 0.0103 0.0042 0.0314 0.0076 0.0458

n = 500 d = 10 FWER 0.0166 0.0222 0.2074 0 0.0296 0.0262

Power 0.0452 0.1836 0.0099 0.0252 0.1265 0.3286

d = 15 FWER 0.0080 0.0134 0.2282 0.0006 0.0230 0.0306

Power 0.0299 0.1560 0.0135 0.0646 0.1094 0.2954

d = 20 FWER 0.0084 0.0108 0.2748 0.0086 0.0190 0.0388

Power 0.0216 0.1387 0.0199 0.1160 0.0965 0.2762

n = 1000 d = 10 FWER 0.0172 0.0198 0.2102 0 0.0268 0.0246

Power 0.3055 0.4042 0.0505 0.0279 0.3547 0.5211

d = 15 FWER 0.0100 0.0128 0.2382 0.0002 0.0164 0.0342

Power 0.2669 0.3864 0.0605 0.1408 0.3390 0.5004

d = 20 FWER 0.0086 0.0100 0.2748 0.0020 0.0178 0.0352

Power 0.2361 0.3734 0.0771 0.2534 0.3219 0.4857
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Table 3: The coverage probability and length of 95% confidence interval with linear mediation

model‡.

CP LCI

(αk, βk) Sobel Bootstrap ASobel Sobel Bootstrap ASobel

n = 200 (0, 0) 1 0.9986 0.9482 0.02665 0.04009 0.01388

(0.35, 0) 0.9676 0.9454 0.9632 0.10811 0.11234 0.10764

(0.5, 0) 0.9522 0.9460 0.9522 0.15321 0.15638 0.15321

(0, 0.35) 0.9706 0.9394 0.9614 0.10098 0.11246 0.10009

(0, 0.5) 0.9614 0.9414 0.9614 0.14158 0.15478 0.14158

(0.25, 0.35) 0.9376 0.9466 0.9376 0.12626 0.13371 0.12606

(0.45, 0.5) 0.9424 0.9450 0.9424 0.19413 0.20249 0.19413

n = 500 (0, 0) 0.9996 0.9972 0.9548 0.01024 0.01558 0.00513

(0.35, 0) 0.9572 0.9474 0.9572 0.06678 0.06769 0.06678

(0.5, 0) 0.9520 0.9472 0.9520 0.09488 0.09527 0.09488

(0, 0.35) 0.9604 0.9498 0.9604 0.06238 0.06834 0.06237

(0, 0.5) 0.9498 0.9440 0.9498 0.08817 0.09578 0.08817

(0.25, 0.35) 0.9474 0.9484 0.9474 0.07813 0.08223 0.07813

(0.45, 0.5) 0.9424 0.9410 0.9424 0.12088 0.12599 0.12088

n = 1000 (0, 0) 0.9996 0.9986 0.9472 0.00510 0.00776 0.00255

(0.35, 0) 0.9534 0.9454 0.9534 0.04668 0.04684 0.04668

(0.5, 0) 0.9488 0.9468 0.9488 0.06658 0.06658 0.06658

(0, 0.35) 0.9530 0.9484 0.9530 0.04376 0.04763 0.04376

(0, 0.5) 0.9480 0.9484 0.9480 0.06228 0.06755 0.06228

(0.25, 0.35) 0.9462 0.9476 0.9462 0.05483 0.05762 0.05483

(0.45, 0.5) 0.9544 0.9534 0.9544 0.08502 0.08845 0.08502

‡ “CP” denotes the empirical coverage probability; “LCI” denotes the length of 95% confidence interval;

“Sobel” denotes the CISobel in (4.2); “ASobel” denotes the proposed CIASobel in (4.3); “Bootstrap” denotes

the CIBootstrap in (5.1).
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5.3 Coverage Probability of Confidence Interval

The performance of the ASobel-type confidence interval presented in Section 4 is evaluated

through simulations conducted in this subsection. The Bootstrap confidence interval and

traditional Sobel-type confidence interval, CISobel, given in (4.2), are also considered for

comparison. The 100(1− δ)% Bootstrap confidence interval of mediation effect is given as

CIBootstrap = [Qδ/2({α̂(b)β̂(b)}Bb=1), Q1−δ/2({α̂(b)β̂(b)}Bb=1)], (5.1)

where α̂(b) and β̂(b) are the corresponding parameter estimators with the b-th Bootstrap

samples, b = 1, · · · , B.

The data are generated in a similar manner as those described in Section 5.2, with the

parameters chosen as (i) Linear mediation model : α = (0, 0.35, 0.5, 0, 0, 0.25, 0.45)′ and β =

(0, 0, 0, 0.35, 0.5, 0.35, 0.5)′; (ii) Logistic mediation model: α = (0, 0.35, 0.5, 0, 0, 0.35, 0.45)′

and β = (0, 0, 0, 0.75, 0.8, 0.75, 0.85)′; (iii) Cox mediation model: α = (0, 0.35, 0.5, 0, 0, 0.45, 0.35)′

and β = (0, 0, 0, 0.5, 0.45, 0.55, 0.35)′. All the results are based on 5000 repetitions, where

B = 1000, the sample sizes are chosen as n = 200, 500 and 1000, respectively.

The coverage probability (CP) and length of the 95% confidence interval (LCI) with

CISobel, CIBootstrap and CIASobel are reported in Tables 3, S.5 and S.6. The CIASobel out-

performs CISobel in terms of CP under α = β = 0. Additionally, the LCI of CIASobel is

significantly shorter compared to that of CISobel when αβ = 0. These findings are consistent

with the result of Theorem 3. Lastly, the ASobel confidence interval is much better than

Bootstrap method in terms of both CP and LCI in the simulations.

5.4 A comparison between AJS and He et al. (2024)’s method

In this section, we conduct a simulation to compare the AJS with the adaptive bootstrap for

JS test (AB-JS) of He et al. (2024). The numerical experiments conducted by He et al. (2024)

did not account for binary and survival outcomes with continuous mediators. Therefore, our

focus is solely on linear mediation models. For the purpose of ensuring a fair comparison,

we have adopted the same model settings as those presented in section 4 of He et al. (2024).
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To be specific, we generate random data with the following models:

Y = c+ γX + βM + θ1Z1 + θ2Z2 + ϵ,

M = cm + αX + η1Z1 + η2Z2 + e,

where the exposure variable X is generated from a Bernoulli distribution with a success

probability of 0.5; the covariate Z1 is simulated from N(0, 1); the covariate Z2 is simulated

from the Bernoulli distribution with the success probability 0.5; two error terms ϵ and e

are simulated independently from N(0, 0.25); We set the parameters (c, θ1, θ2) = (1, 1, 1),

(cm, η1, η2) = (1, 1, 1), and γ = 1. We use the AJS and AB-JS to test the hypothesis

H0 : αβ = 0, where the significance level is δ = 0.05. The AB-JS is implemented using the

codes provided in the R package ABtest, which is publicly available at https://github.

com/yinqiuhe/ABtest. The bootstrap number of AB-JS is set to 500, which is also selected

for the simulation in He et al. (2024). Additionally, in order to ensure a fair comparison

between AJS and AB-JS, the threshold parameter has been selected as λn =
√
n/ log(n) for

both methods.

In Table 4, we report the size and power of AJS and AB-JS tests, where the results are

based on 1000 repetitions. It can be seen from Table 4 that the power of AB-JS is larger

than AJS under n = 500 and 1000. However, the computation speed of our AJS method

significantly outperforms AB-JS due to the absence of a resampling procedure, which is

inherent in the bootstrap-based approach utilized by AB-JS. The AJS and AB-JS exhibit

comparable performance in terms of size and power for n = 3000. In other words, the AJS

exhibits comparable statistical efficiency to that of AB-JS when dealing with larger datasets.

6 Real Data Examples

In this section, we apply our proposed AJS method for testing the mediation effects towards

three real-world datasets with continuous, binary and time-to-event outcomes, respectively.

The details about the three datasets and mediation analysing procedures are presented as

follows:
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Table 4: The comparison between AJS and AB-JS in terms of size and power‡.

n = 500 n = 1000 n = 3000

(α, β) AJS AB-JS AJS AB-JS AJS AB-JS

(0, 0) 0.031 0.056 0.055 0.056 0.051 0.062

(0.5, 0) 0.048 0.048 0.047 0.046 0.055 0.051

(0, 0.5) 0.046 0.054 0.045 0.045 0.047 0.052

(0.15, 0.15) 0.375 0.891 0.663 0.998 0.983 1

(0.25, 0.25) 0.797 1 0.978 1 1 1

‡ “AJS” denotes our adjusted JS method; “AB-JS” refers to the adaptive bootstrap JS test (He et al., 2024).

Dataset I: (continuous outcomes). The Louisiana State University Health Sciences

Center has explored the relationship between children weight and behavior through a survey

of children, teachers and parents in Grenada. The dataset is publicly available within the R

package mma. To perform mediation analysis as that of Yu and Li (2017), we set gender as

the exposure X (Male =0; Female = 1), and the outcome Y is body mass index (BMI). We

consider three mediators: M1 (join in a sport team or not), M2 (number of hours of exercises

per week) and M3 (number of hours of sweating activities per week). Furthermore, there

are three covariates Z1 (age), Z2 (number of people in family) and Z3 (the number of cars

in family). After removing those individuals with missing data, we totally have 646 samples

when conducting mediation analysis in the context of linear mediation model. We consider

the linear mediation model to fit this dataset:

Y = c+ γX + β′M+ θ′Z+ ϵ,

Mk = ck + αkX + η′
kZ+ ek, k = 1, 2, 3,

where Y is the continuous outcome, M = (M1,M2,M3)
′ is the vector of mediators, Z =

(Z1, Z2, Z3)
′ is the vector of covariates. By VanderWeele and Vansteelandt (2010), the prod-

uct term αkβk can be interpreted as the causal mediating effect of Mk along the pathway

X → Mk → Y . Here we consider the multiple testing problem H
(k)
0 : αkβk = 0, k = 1, 2, 3.

The details of PSobel, PASobelPJS and PAJS are presented in Table 5. The estimators α̂k’s and

β̂k’s along with their standard errors are also given in Table 5. Particularly, PAJS ≤ PJS and
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PASobel ≤ PSobel demonstrate that the proposed AJS and ASobel are superior to traditional

JS and Sobel, respectively. In Table 6, we give the 95% confidence intervals for mediation

effects αkβk’s, where CISobel, CIASobel and CIBootstrap are defined in (4.2), (4.3) and (5.1),

respectively. The Bootstrap confidence CIBootstrap is calculated with B = 1000. The results

from Table 6 demonstrate that the proposed adjusted Sobel-type method yields a signifi-

cantly shorter and more reliable confidence interval compared to the conventional Sobel and

Bootstrap method.

Dataset II: (binary outcomes). The Job Search Intervention Study (JOBS II) is a

randomized field experiment that investigates the efficacy of a job training intervention on

unemployed workers. The dataset is publicly available within the R package mediation. Our

research aims to investigate whether the workshop enhances future employment prospects by

increasing job-search self-efficacy levels. To be specific, we study the mediating role of job-

search self-efficacy between job-skills workshop and employment status. For this aim, we set

the exposureX as an indicator variable for whether participant was randomly selected for the

JOBS II training program (1 = assignment to participation); the mediatorM1 is a continuous

scale measuring the level of job-search self-efficacy; the outcome Y is a binary measure of

employment (1 = employed). Furthermore, there are 9 covariates: Z1 (age), Z2 (sex; 1 =

female), Z3 (level of economic hardship pre-treatment), Z4 (measure of depressive symptoms

pre-treatment), Z5 (factor with seven categories for various occupations), Z6 (factor with

five categories for marital status), Z7 (indicator variable for race; 1 = nonwhite), Z8 (factor

with five categories for educational attainment), Z9 (factor with five categories for level of

income). After excluding individuals with missing data, we have a total of 899 samples for

conducting mediation analysis within the framework of logistic mediation models:

P(Y = 1|X,M1,Z) =
exp(c+ γX + β1M1 + θ′Z)

1 + exp(c+ γX + β1M1 + θ′Z)
,

M1 = c1 + α1X + η′Z+ e,

where Y ∈ {0, 1} is the binary outcome, M1 is the mediator, Z = (Z1, · · · , Z9)
′ is the vector

of covariates. By VanderWeele and Vansteelandt (2010), the product term α1β1 can be in-

terpreted as the causal mediating effect of M1 along the pathway X → M1 → Y . Here we
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consider the mediation testing problem H0 : α1β1 = 0. The details of PSobel, PASobel, PJS

and PAJS are presented in Table 5. The estimators α̂1’s and β̂1’s along with their standard

errors are also given in Table 5. It seems that theM1 has a significant mediating role between

exposure and outcome. Particularly, PAJS ≤ PJS and PASobel ≤ PSobel demonstrate that the

proposed method works well in practical application. The 95% confidence interval of the me-

diation effect is presented in Table 6, which yields a similar conclusion to that of the dataset I.

Dataset III: (time-to-event outcomes). We apply our proposed method to a dataset

from The Cancer Genome Atlas (TCGA) lung cancer cohort study, where the data are freely

available at https://xenabrowser.net/datapages/. There are 593 patients with non-missing

clinical and epigenetic information. From Zhang et al. (2021), we use seven DNA methylation

markers as potential mediators: M1 (cg02178957), M2 (cg08108679), M3 (cg21926276), M4

(cg26387355), M5 (cg24200525), M6 (cg07690349) and M7 (cg26478297). The exposure X

is defined as the number of packs smoked per years, and the survival time is the outcome

variable. Two hundred forty three patients died during the follow-up, and the censoring rate

is 59%. We are interested in testing the mediation effects of DNA methylation markers along

the pathways from smoking to survival of lung cancer patients. Four covariates are included:

Z1 (age at initial diagnosis), Z2 (gender; male = 1, female=0), Z3 (tumor stage; Stage I =

1, Stage II = 2, Stage III = 3, Stage IV = 4), and Z4 (radiotherapy; yes = 1, no = 0). We

use the following Cox mediation model to fit this dataset:

λ(t|X,M,Z) = λ0(t)exp(γX + β′M+ θ′Z)

Mk = ck + αkX + η′
kZ+ ek, k = 1, · · · , 7,

where λ0(t) is the baseline hazard function, M = (M1, · · · ,M7)
′ is the vector of mediators,

Z = (Z1, Z2, Z3, Z4)
′ is the vector of covariates, ek’s are random errors. Based on Huang and

Yang (2017), the term αkβk is the causal mediation effect of the kth mediator. We consider

the multiple testing H
(k)
0 : αkβk = 0, k = 1, · · · , 7. Table 5 presents the statistics PSobel,

PJS and PAJS, along with parameter estimates and their standard errors. In view of the fact

that PAJS ≤ PJS and PASobel ≤ PSobel, the proposed method is desirable when performing

mediation analysis in practical applications. The 95% confidence intervals of the mediation
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effects are presented in Table 6, which supports a similar conclusion as that derived from

the dataset I.

Table 5: The p-values and parameter estimates in three real-world examples.

Datasets Mediators PSobel PASobel PJS PAJS α̂k(σ̂αk
) β̂k(σ̂βk

)

I M1 0.03333 0.00002 0.00359 0.00001 -0.1130 (0.0388) -0.9822 (0.3150)

M2 0.25023 0.02147 0.11901 0.01416 -0.1234 (0.0791) 0.2651 (0.1557)

M3 0.26903 0.02706 0.19525 0.03812 0.1169 (0.0551) 0.2922 (0.2256)

II M1 0.21183 0.01252 0.11626 0.01352 0.0774 (0.0493) 0.1356 (0.0659)

III M1 0.12043 0.00190 0.02822 0.00080 -0.0129 (0.0059) 1.2816 (0.5841)

M2 0.02527 0.00001 0.00542 0.00003 -0.0092 (0.0024) -2.8537 (1.0262)

M3 0.10093 0.10093 0.08030 0.08030 -0.0094 (0.0054) -3.4795 (0.7357)

M4 0.10074 0.00103 0.02692 0.00072 -0.0125 (0.0051) -1.4994 (0.6776)

M5 0.15777 0.15777 0.13013 0.13013 -0.0033 (0.0022) 6.2711 (1.5944)

M6 0.05167 0.00010 0.02247 0.00051 -0.0162 (0.0071) 1.9535 (0.5246)

M7 0.08990 0.00069 0.05725 0.00328 -0.0256 (0.0068) -0.8417 (0.4426)

7 Concluding Remarks

In this paper, we have proposed an data-adjusted joint significance mediation effects test

procedure. The explicit expressions of size and power were derived. We also have extended

the AJS for performing small-scale multiple testing with FWER control. An adjusted Sobel-

type confidence interval was presented. Some simulations and three real-world examples

were used to illustrate the usefulness of our method. The method we propose provides

a publicly accessible and user-friendly R package, called AdjMed, which can be found at

https://github.com/zhxmath/AdjMed. The focus of this study was limited to a single

mediator or a small number of mediators, and the inclusion of high-dimensional mediators

was beyond the scope of this research.

There exist two possible directions for applying the proposed AJS test method in our
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Table 6: The 95% confidence intervals for mediation effects in three real-world examples.

Datasets Mediators CISobel CIBootstrap CIASobel α̂kβ̂k

I M1 [0.0088, 0.2133] [0.0234, 0.2251] [0.0599, 0.1621] 0.1110

M2 [-0.0885, 0.0231] [-0.1013, 0.0083] [-0.0606, -0.0048] -0.0327

M3 [-0.0264, 0.0947] [-0.0189, 0.1022] [0.0039, 0.0644] 0.0342

II M1 [-0.0059, 0.0269] [-0.0022, 0.0335] [0.0023, 0.0187] 0.0105

III M1 [-0.0375, 0.0044] [-0.0459, 0.0003] [-0.0271, -0.0061] -0.0166

M2 [0.0033, 0.0491] [0.0015, 0.0533] [0.0147, 0.0377] 0.0262

M3 [-0.0064, 0.0715] [-0.0062, 0.0835] [-0.0064, 0.0715] 0.0326

M4 [-0.0036, 0.0409] [-10−5, 0.0471] [0.0075, 0.0298] 0.0187

M5 [-0.0499, 0.0081] [-0.0574, 0.0086] [-0.0499, 0.0081] -0.0209

M6 [-0.0635, 0.0002] [-0.0733, -0.0044] [-0.0476, -0.0157] -0.0316

M7 [-0.0034, 0.0464] [4× 10−5, 0.0519] [0.0091, 0.0339] 0.0215

future research. (i) Microbiome Mediation Analysis. Recently, increasing studies have stud-

ied the biological mechanisms whether the microbiome play a mediating role between an

exposure and a clinical outcome (Sohn and Li, 2019). For improving the powers of media-

tion effect testing, it is desirable to use the AJS test method when performing microbiome

mediation analysis. (ii) Multiple-Mediator Testing with FDR control. We have studied the

theoretical and numerical performances of AJS test method for multiple testing with FWER

control. It is useful to investigate the AJS test for multiple mediators with FDR control in

some applications.

Supplementary Material

The Supplementary Material includes Figures S.1-S.3, Tables S.1-S.6, the proofs of Theorems

1-3, the size of ASobel test, together with the manual for R package AdjMed.
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Supplementary Materials for

Efficient Adjusted Joint Significance Test and Sobel-Type

Confidence Interval for Mediation Effect

A Proofs

In this section, we give the proof details of Theorems 1, 2, and 3.

Proof of Theorem 1. Under H00, the size of the AJS test is determined by

Size(AJS|H00) = P(PAJS < δ|H00) (S.1)

= P(PAJS < δ, Tmax ≥ λn|H00) + P(PAJS < δ, Tmax > λn|H00),

where Tmax = max{|Tα|, |Tβ|}. It follows from limn→∞ P(Tmax ≥ λn|H00) = 0 that

lim
n→∞

P(PAJS < δ, Tmax ≥ λn|H00) ≤ lim
n→∞

P(Tmax ≥ λn|H00) (S.2)

= 0.

The distribution of P 2
JS is noted to be a uniform distribution on the interval (0, 1), with

probability approaching one, under H00 we can deduce that

lim
n→∞

P(PAJS < δ, Tmax < λn|H00) = lim
n→∞

P(P 2
JS < δ, Tmax < λn|H00) (S.3)

= lim
n→∞

P(P 2
JS < δ|H00)

= δ,

where the second equality holds because of the limn→∞ P
(
Tmax < λn|H00

)
= 1. The equations

(S.1), (S.2) and (S.3) imply that the asymptotic size of AJS given H00 is bounded by δ.

Under H10, the size of the AJS test is denoted as

Size(AJS|H10) = P(PAJS < δ|H10) (S.4)

= P(PAJS < δ, Tmax ≥ λn|H10) + P(PAJS < δ, Tmax < λn|H10).
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Under H10, with probability approaching one, we can derive that

lim
n→∞

P(PAJS < δ, Tmax ≥ λn|H10) = lim
n→∞

P(PJS < δ, Tmax ≥ λn|H10) (S.5)

= lim
n→∞

P(Pβ < δ, Tmax ≥ λn|H10)

= lim
n→∞

P(Pβ < δ|H10)

= δ,

and

lim
n→∞

P(PAJS < δ, Tmax < λn|H10) ≤ lim
n→∞

P(Tmax < λn|H10) (S.6)

= 0,

where the last equality is due to limn→∞ P
(
Tmax < λn|H10

)
= 0. In view of (S.4), (S.5) and

(S.6), with probability approaching one, we have

lim
n→∞

Size(AJS|H10) = δ.

The size of the AJS test under H01 is bounded by δ in a similar manner. This ends the proof.

Proof of Theorem 2. For the multiple testing problem, we deduce the FWER of our

proposed AJS method under the significance level δ. By the definition of FWER, we can

derive that

FWER(AJS) = P

(
d⋃

k=1

{
P

(k)
AJS < δ/d

}
H

(k)
0 , k = 1, · · · , d

)

≤
d∑

k=1

P
(
P

(k)
AJS < δ/d H

(k)
0

)
=
∑
k∈Ω00

P
(
P

(k)
AJS < δ/d H

(k)
00

)
+
∑
k∈Ω10

P
(
P

(k)
AJS < δ/d H

(k)
10

)
+
∑
k∈Ω01

P
(
P

(k)
AJS < δ/d H

(k)
01

)
,

where Ω00 = {k : H
(k)
00 , k = 1, · · · , d}, Ω10 = {k : H

(k)
10 , k = 1, · · · , d} and Ω01 = {k :

H
(k)
01 , k = 1, · · · , d}. In view of the fact that∑

k∈Ω00

P
(
P

(k)
AJS < δ/d H

(k)
00

)
= R1 +R2, (S.7)
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where

R1 =
∑
k∈Ω00

P
(
P

(k)
AJS < δ/d, Tmax,k ≥ λn H

(k)
00

)
,

R2 =
∑
k∈Ω00

P
(
P

(k)
AJS < δ/d, Tmax,k < λn H

(k)
00

)
,

where Tmax,k = max(|Tαk
|, |Tβk

|). In view of the fact that limn→∞ P(Tmax,k ≥ λn H
(k)
00 ) = 0,

the term R1 satisfies the following expression:

lim
n→∞

R1 ≤
∑
k∈Ω00

lim
n→∞

P
(
Tmax,k ≥ λn H

(k)
00

)
(S.8)

= 0.

In addition, with probability approaching one, we get

lim
n→∞

R2 =
∑
k∈Ω00

lim
n→∞

P
(
P

(k)
AJS < δ/d, Tmax,k < λn H

(k)
00

)
=

∑
k∈Ω00

lim
n→∞

P
(
{P (k)

JS }
2 < δ/d, Tmax,k < λn H

(k)
00

)
=

∑
k∈Ω00

lim
n→∞

P
(
{P (k)

JS }
2 < δ/d H

(k)
00

)
= |Ω00|

δ

d
. (S.9)

Hence, with probability approaching one, it follows from (S.7), (S.8) and (S.9) that

lim
n→∞

∑
k∈Ω00

P
(
P

(k)
AJS < δ/d H

(k)
00

)
≤ |Ω00|

δ

d
. (S.10)

Next, we focus on the asymptotic upper bound of
∑d

k=1 P
(
P

(k)
AJS < δ/d H

(k)
10

)
to control

the FWER. To be specific, we note that∑
k∈Ω10

P
(
P

(k)
AJS < δ/d H

(k)
10

)
= R3 +R4, (S.11)

where

R3 =
∑
k∈Ω10

P
(
P

(k)
AJS < δ/d, Tmax,k ≥ λn H

(k)
10

)
,

R4 =
∑
k∈Ω10

P
(
P

(k)
AJS < δ/d, Tmax,k < λn H

(k)
10

)
.
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With probability approaching one, some direct deductions lead to that

lim
n→∞

R3 = lim
n→∞

∑
k∈Ω10

P
(
P

(k)
AJS < δ/d, Tmax,k ≥ λn H

(k)
10

)
= lim

n→∞

∑
k∈Ω10

P
(
P

(k)
JS < δ/d, Tmax,k ≥ λn H

(k)
10

)
≤ lim

n→∞

∑
k∈Ω10

P
(
P

(k)
JS < δ/d H

(k)
10

)
=

δ

d
|Ω10|, (S.12)

and

lim
n→∞

R4 = lim
n→∞

∑
k∈Ω10

P
(
P

(k)
AJS < δ/d, Tmax,k < λn H

(k)
10

)
(S.13)

≤ lim
n→∞

∑
k∈Ω10

P
(
Tmax,k < λn H

(k)
10

)
= 0,

where the last equality is from limn→∞ P(Tmax,k < λn|H(k)
10 ) = 0. Based on (S.11), (S.12) and

(S.13), we have

lim
n→∞

∑
k∈Ω10

P
(
P

(k)
AJS < δ/d H

(k)
10

)
≤ |Ω10|

δ

d
.

In a similar procedure, with probability approaching one, it can be demonstrated that

limn→∞
∑

k∈Ω01
P(P (k)

AJS < δ/d | H(k)
01 ) ≤ |Ω01|δ/d. Therefore, with probability approach-

ing one, the asymptotic upper bound of AJS’s FWER is

lim
n→∞

FWER(AJS) ≤ |Ω00|
δ

d
+ |Ω10|

δ

d
+ |Ω01|

δ

d

= δ,

where the last equality is due to |Ω00|+ |Ω10|+ |Ω01| = d. This completes the proof.

Proof of Theorem 3. By the definition of ASobel-type confidence interval, we have

P(αβ ∈ CIASobel|α = β = 0) (S.14)

= P(αβ ∈ CIASobel, Tmax ≥ λn|α = β = 0) + P(αβ ∈ CIASobel, Tmax < λn|α = β = 0),
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where the term Tmax = max(|Tα|, |Tβ|) satisfying limn→∞ P(Tmax ≥ λn|α = β = 0) = 0 and

limn→∞ P(Tmax < λn|α = β = 0) = 1. From the definition of CIASobel, with probability

approaching one, it is straightforward to derive the following expressions:

lim
n→∞

P (αβ ∈ CIASobel, Tmax ≥ λn|α = β = 0) ≤ lim
n→∞

P (Tmax ≥ λn|α = β = 0)

= 0, (S.15)

and

lim
n→∞

P(αβ ∈ CIASobel, Tmax < λn|α = β = 0) = 1− lim
n→∞

P(|TSobel| > N1−δ/2(0, 1/4)|α = β = 0)

= 1− δ, (S.16)

where TSobel = (α̂β̂−αβ)/σ̂αβ, and N1−δ/2(0, 1/4) denotes the (1−δ/2)-quantile of N(0, 1/4).

From (S.14), (S.15) and (S.16), with probability approaching one, we can derive that

lim
n→∞

P(αβ ∈ CIASobel|α = β = 0) = 1− δ.

Next, we derive the asymptotic coverage probability of CIASobel under α = 0, β ̸= 0. Note

that

P(αβ ∈ CIASobel|α = 0, β ̸= 0) (S.17)

= P(αβ ∈ CIASobel, Tmax ≥ λn|α = 0, β ̸= 0) + P(αβ ∈ CIASobel, Tmax < λn|α = 0, β ̸= 0).

With probability approaching one, some calculations lead to that

lim
n→∞

P(αβ ∈ CIASobel, Tmax ≥ λn|α = 0, β ̸= 0) = 1− lim
n→∞

P(|TSobel| > N1−δ/2(0, 1)|α = 0, β ̸= 0)

= 1− δ, (S.18)

together with

lim
n→∞

P(αβ ∈ CIASobel, Tmax < λn|α = 0, β ̸= 0) ≤ lim
n→∞

P(Tmax < λn|α = 0, β ̸= 0)

= 0, (S.19)

where the last equality is derived from

lim
n→∞

P(Tmax ≥ λn|α = 0, β ̸= 0) = 1− lim
n→∞

P(Tmax < λn|α = 0, β ̸= 0) = 1.
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In view of (S.17), (S.18) and (S.19), with probability approaching one, under α = 0, β ̸= 0

we can derive the asymptotic coverage probability of CIASobel as

lim
n→∞

P(αβ ∈ CIASobel|α = 0, β ̸= 0) = 1− δ.

In a similar way, with probability approaching one, it can be deduced that

lim
n→∞

P(αβ ∈ CIASobel|α ̸= 0, β = 0) = 1− δ.

Lastly, we focus on deducing the asymptotic coverage probability of CIASobel under α ̸=

0, β ̸= 0. Specifically, we can derive that

P(αβ ∈ CIASobel|α ̸= 0, β ̸= 0) (S.20)

= P(αβ ∈ CIASobel, Tmax ≥ λn|α ̸= 0, β ̸= 0) + P(αβ ∈ CIASobel, Tmax < λn|α ̸= 0, β ̸= 0),

where

lim
n→∞

P(αβ ∈ CIASobel, Tmax ≥ λn|α ̸= 0, β ̸= 0) = 1− lim
n→∞

P(|TSobel| > N1−δ/2(0, 1)|α ̸= 0, β ̸= 0)

= 1− δ, (S.21)

and

lim
n→∞

P(αβ ∈ CIASobel, Tmax < λn|α ̸= 0, β ̸= 0) ≤ lim
n→∞

P(Tmax < λn|α ̸= 0, β ̸= 0)

= 0. (S.22)

Here the last equality is due to

lim
n→∞

P(Tmax ≥ λn|α ̸= 0, β ̸= 0) = 1− lim
n→∞

P(Tmax < λn|α ̸= 0, β ̸= 0) = 1.

With probability approaching one, it follows from (S.20), (S.21) and (S.22) that limn→∞ P(αβ ∈

CIASobel|α ̸= 0, β ̸= 0) = 1− δ. This ends the proof.

B The Size of ASobel Test

In this section, we provide the proof details for the size of ASobel test. Under H00, it follows

from the decision rule of the ASobel test that

Size(ASobel|H00) = P(PASobel < δ|H00) (S.23)
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= P(PASobel < δ, Tmax < λn|H00) + P(PASobel < δ, Tmax ≥ λn|H00),

where Tmax = max(|Tα|, |Tβ|). From the definition of PASobel and limn→∞ P(Tmax ≥ λn|H00) =

0, with probability approaching one, it is straightforward to derive the following expressions:

lim
n→∞

P(PASobel < δ, Tmax ≥ λn|H00) ≤ lim
n→∞

P(Tmax ≥ λn|H00)

= 0, (S.24)

and

lim
n→∞

P(PASobel < δ, Tmax < λn|H00) = lim
n→∞

P
(
2{1− ΦN(0,1/4)(|TSobel|)} < δ H00

)
= lim

n→∞
P(|TSobel| > N1−δ/2(0, 1/4)|H00)

= δ, (S.25)

where ΦN(0,1/4)(·) is the cumulative distribution function of N(0, 1/4), and N1−δ/2(0, 1/4)

denotes the (1− δ/2)-quantile of N(0, 1/4). From (S.23), (S.24) and (S.25), with probability

approaching one, we can derive that

lim
n→∞

Size(ASobel|H00) = δ.

Under H10, we have

Size(ASobel|H10) = P(PASobel < δ|H10) (S.26)

= P(PASobel < δ, Tmax ≥ λn|H10) + P(PASobel < δ, Tmax < λn|H10).

With probability approaching one, some calculations lead to that

lim
n→∞

P(PASobel < δ, Tmax ≥ λn|H10) = lim
n→∞

P
(
2{1− ΦN(0,1)(|TSobel|)} < δ|H10

)
= lim

n→∞
P(|TSobel| > N1−δ/2(0, 1)|H10)

= δ, (S.27)

together with

lim
n→∞

P(PASobel < δ, Tmax < λn|H10) ≤ lim
n→∞

P(Tmax < λn|H10)

= 0, (S.28)
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where N1−δ/2(0, 1) is the (1− δ/2)-quantile of N(0, 1). In view of (S.26), (S.27) and (S.28),

with probability approaching one, we get

lim
n→∞

Size(ASobel|H10) = δ.

In a similar way, with probability approaching one, we can conclude that the size of ASobel

given H01 is δ as n tends to infinity. The proof for the size of ASobel test ends here.

In what follows, we provide more insights about the size of Sobel test. Note that the size

of traditional Sobel test under H00 is

Size(Sobel|H00) = P
(
2{1− ΦN(0,1)(|TSobel|) < δ|H00

)
= P

(
|TSobel| > N1−δ/2(0, 1)|H00

)
= 2{1− ΦN(0,1/4)(N1−δ/2(0, 1))}.

By deducing the difference between Size(Sobel|H00) and the significance level δ, we have

Size(Sobel|H00)− δ = 2{1− ΦN(0,1/4)(N1−δ/2(0, 1))} − δ

< 0,

which provides a theoretical explanation about the conservative performance of traditional

Sobel test under H00. Therefore, the proposed ASobel test has a significant improvement

over traditional Sobel test in terms of size under H00.

C Figures S.1-S.3 and Tables S.1-S.6

The following section provides Figures S.1-S.3, together with Tables S.1-S.6 for the simulation

section discussed in the main paper.
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(a) The p-values of ASobel method.
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(b) The p-values of Sobel method.

Figure S.1: The histogram of p-values for (α, β) = (0, 0) with λn =
√
n/ log(n).
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Table S.1: The size and power of hypothesis testing with logistic mediation model.

(α, β) Sobel JS Bootstrap ASobel AJS

n = 200 (0, 0) 0 0.0030 0.0024 0.0486 0.0478

(0.5, 0) 0.0368 0.0476 0.0524 0.0368 0.0476

(0, 0.65) 0.0182 0.0486 0.0524 0.0506 0.0724

(0.15, 0.20) 0.0350 0.1354 0.0882 0.2826 0.3206

(0.25, 0.30) 0.2542 0.4296 0.3600 0.3680 0.4974

n = 500 (0, 0) 0 0.0018 0.0020 0.0476 0.0484

(0.5, 0) 0.0448 0.0472 0.0494 0.0448 0.0472

(0, 0.65) 0.0382 0.0530 0.0570 0.0398 0.0544

(0.15, 0.20) 0.2960 0.4840 0.3982 0.6492 0.6680

(0.25, 0.30) 0.7966 0.8344 0.8354 0.8046 0.8374

n = 1000 (0, 0) 0 0.0018 0.0010 0.0518 0.0528

(0.5, 0) 0.0516 0.0532 0.0558 0.0516 0.0532

(0, 0.65) 0.0446 0.0510 0.0592 0.0446 0.0510

(0.15, 0.20) 0.7384 0.8124 0.7854 0.8570 0.8708

(0.25, 0.30) 0.9866 0.9886 0.9886 0.9866 0.9886
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Table S.2: The size and power of hypothesis testing with Cox mediation model.

(α, β) Sobel JS Bootstrap ASobel AJS

n = 200 (0, 0) 0 0.0030 0.0018 0.0428 0.0448

(0.5, 0) 0.0396 0.0498 0.0494 0.0396 0.0498

(0, 0.5) 0.0376 0.0510 0.0604 0.0382 0.0514

(0.15, 0.15) 0.0802 0.2322 0.2024 0.3552 0.4302

(0.25, 0.25) 0.5738 0.7494 0.7276 0.6522 0.7918

n = 500 (0, 0) 0.0006 0.0044 0.0028 0.0546 0.0576

(0.5, 0) 0.0512 0.0558 0.0576 0.0512 0.0558

(0, 0.5) 0.0482 0.0570 0.0572 0.0482 0.0570

(0.15, 0.15) 0.5236 0.7266 0.7100 0.8156 0.8452

(0.25, 0.25) 0.9920 0.9946 0.9946 0.9922 0.9948

n = 1000 (0, 0) 0 0.0026 0.0016 0.0482 0.0480

(0.5, 0) 0.0484 0.0494 0.0520 0.0484 0.0494

(0, 0.5) 0.0432 0.0462 0.0498 0.0432 0.0462

(0.15, 0.15) 0.9486 0.9754 0.9750 0.9786 0.9860

(0.25, 0.25) 1 1 1 1 1
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(a) Q-Q plots of p-values under H00.
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(b) Q-Q plots of p-values under H01.
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(c) Q-Q plots of p-values under H10.
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(d) Q-Q plots of p-values under HA.

Figure S.2: Q-Q plots of p-values under logistic mediation model with n = 500.
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(a) Q-Q plots of p-values under H00.
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(b) Q-Q plots of p-values under H01.
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(c) Q-Q plots of p-values under H10.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s
Sobel
ASobel
JS
AJS

α=0.15, β=0.15

(d) Q-Q plots of p-values under HA.

Figure S.3: Q-Q plots of p-values under Cox mediation model with n = 500.
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Table S.3: The FWER and power of multiple testing with logistic mediation model.

Dimension Sobel JS JT Comp DACT Bootstrap AJS

n = 200 d = 10 FWER 0.0030 0.0058 0.1480 0 0.0092 0.0438

Power 0.0722 0.1586 0.1752 0.0155 0.1645 0.2055

d = 15 FWER 0.0020 0.0050 0.1568 0.0008 0.0048 0.0474

Power 0.0546 0.1318 0.1721 0.0454 0.1204 0.1676

d = 20 FWER 0.0016 0.0038 0.1718 0.0020 0.0022 0.0500

Power 0.0401 0.1072 0.1738 0.0740 0.0756 0.1398

n = 500 d = 10 FWER 0.0046 0.0094 0.1424 0 0.0136 0.0594

Power 0.3617 0.4860 0.2967 0.0138 0.5004 0.5486

d = 15 FWER 0.0040 0.0094 0.1576 0 0.0112 0.0592

Power 0.3263 0.4522 0.3012 0.0640 0.4653 0.5116

d = 20 FWER 0.0026 0.0052 0.1650 0.0004 0.0088 0.0650

Power 0.2998 0.4316 0.3156 0.1651 0.4432 0.4887

n = 1000 d = 10 FWER 0.0058 0.0110 0.1432 0 0.0154 0.0468

Power 0.6410 0.7287 0.4536 0.0067 0.7417 0.7677

d = 15 FWER 0.0040 0.0068 0.1410 0 0.0114 0.0438

Power 0.6018 0.6985 0.4526 0.0771 0.7139 0.7382

d = 20 FWER 0.0040 0.0050 0.1710 0.0002 0.0092 0.0526

Power 0.5778 0.6809 0.4772 0.2488 0.6993 0.7216
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Table S.4: The FWER and power of multiple testing with Cox mediation model.

Dimension Sobel JS JT Comp DACT Bootstrap AJS

n = 200 d = 10 FWER 0.0030 0.0108 0.1348 0 0.0124 0.0242

Power 0.0687 0.2009 0.2116 0.0204 0.1713 0.2536

d = 15 FWER 0.0028 0.0100 0.1480 0.0002 0.0104 0.0334

Power 0.0470 0.1703 0.2049 0.0545 0.1297 0.2128

d = 20 FWER 0.0030 0.0070 0.1564 0.0036 0.0076 0.0404

Power 0.0349 0.1513 0.2118 0.1037 0.1003 0.1872

n = 500 d = 10 FWER 0.0090 0.0120 0.1550 0 0.0148 0.0286

Power 0.4104 0.5449 0.4225 0.0128 0.5412 0.6546

d = 15 FWER 0.0048 0.0082 0.1566 0 0.0106 0.0370

Power 0.3800 0.5089 0.4175 0.0876 0.5030 0.6148

d = 20 FWER 0.0038 0.0062 0.1776 0.0004 0.0092 0.0402

Power 0.3614 0.4918 0.4306 0.2160 0.4851 0.5978

n = 1000 d = 10 FWER 0.0098 0.0112 0.1666 0 0.0146 0.0254

Power 0.6741 0.7966 0.5256 0.0066 0.8020 0.8470

d = 15 FWER 0.0060 0.0072 0.1606 0 0.0100 0.0370

Power 0.6330 0.7689 0.5265 0.1056 0.7769 0.8274

d = 20 FWER 0.0028 0.0034 0.1848 0 0.0078 0.0388

Power 0.6018 0.7490 0.5414 0.3100 0.7589 0.8146
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Table S.5: The coverage probability and length of 95% confidence interval with logistic

mediation model‡.

CP LCI

(αk, βk) Sobel Bootstrap ASobel Sobel Bootstrap ASobel

n = 200 (0, 0) 1 0.9976 0.9462 0.09662 0.18394 0.05037

(0.35, 0) 0.9644 0.9396 0.9596 0.38635 0.60982 0.38482

(0.5, 0) 0.9508 0.9394 0.9508 0.54536 0.85866 0.54536

(0, 0.75) 0.9920 0.9614 0.9030 0.25726 0.38664 0.22188

(0, 0.8) 0.9870 0.9530 0.9072 0.27034 0.40778 0.24024

(0.35, 0.75) 0.9480 0.9182 0.9470 0.48502 0.94437 0.48440

(0.45, 0.85) 0.9526 0.9000 0.9526 0.60453 1.22664 0.60453

n = 500 (0, 0) 0.9998 0.9976 0.9514 0.03471 0.05171 0.01737

(0.35, 0) 0.9526 0.9416 0.9526 0.22141 0.24178 0.22141

(0.5, 0) 0.9490 0.9450 0.9490 0.31457 0.34101 0.31457

(0, 0.75) 0.9710 0.9482 0.9334 0.14251 0.15533 0.13613

(0, 0.8) 0.9712 0.9502 0.9474 0.15098 0.16404 0.14711

(0.35, 0.75) 0.9492 0.9388 0.9492 0.27651 0.29945 0.27651

(0.45, 0.85) 0.9482 0.9328 0.9482 0.34346 0.37253 0.34346

n = 1000 (0, 0) 1 0.9994 0.9478 0.01686 0.02423 0.00843

(0.35, 0) 0.9528 0.9454 0.9528 0.15165 0.15741 0.15165

(0.5, 0) 0.9516 0.9496 0.9516 0.21613 0.22400 0.21613

(0, 0.75) 0.9616 0.9472 0.9564 0.09632 0.10023 0.09582

(0, 0.8) 0.9598 0.9454 0.9582 0.10266 0.10656 0.10247

(0.35, 0.75) 0.9422 0.9392 0.9422 0.18969 0.19623 0.18969

(0.45, 0.85) 0.9498 0.9414 0.9498 0.23585 0.24425 0.23585

‡ “CP” denotes the empirical coverage probability; “LCI” denotes the length of 95% confidence interval.
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Table S.6: The coverage probability and length of 95% confidence interval with Cox media-

tion model‡.

CP LCI

(αk, βk) Sobel Bootstrap ASobel Sobel Bootstrap ASobel

n = 200 (0, 0) 0.9998 0.9984 0.9530 0.03376 0.05178 0.01757

(0.35, 0) 0.9624 0.9494 0.9568 0.13767 0.15948 0.13704

(0.5, 0) 0.9488 0.9446 0.9488 0.19484 0.22181 0.19484

(0, 0.5) 0.9688 0.9484 0.9652 0.14885 0.16165 0.14850

(0, 0.45) 0.9746 0.9482 0.9644 0.13393 0.14657 0.13277

(0.45, 0.55) 0.9402 0.9464 0.9402 0.24669 0.27106 0.24669

(0.35, 0.35) 0.9390 0.9500 0.9390 0.17099 0.18929 0.17093

n = 500 (0, 0) 0.9998 0.9982 0.9490 0.01259 0.01822 0.00632

(0.35, 0) 0.9538 0.9436 0.9538 0.08157 0.08544 0.08157

(0.5, 0) 0.9452 0.9382 0.9452 0.11612 0.12078 0.11612

(0, 0.5) 0.9554 0.9410 0.9554 0.09002 0.09254 0.09002

(0, 0.45) 0.9602 0.9458 0.9602 0.08146 0.08394 0.08146

(0.45, 0.55) 0.9506 0.9458 0.9506 0.14883 0.15322 0.14883

(0.35, 0.35) 0.9490 0.9498 0.9490 0.10299 0.10620 0.10299

n = 1000 (0, 0) 0.9996 0.9990 0.9504 0.00622 0.00882 0.00311

(0.35, 0) 0.9552 0.9492 0.9552 0.05656 0.05752 0.05656

(0.5, 0) 0.9476 0.9424 0.9476 0.08074 0.08179 0.08074

(0, 0.5) 0.9518 0.9462 0.9518 0.06271 0.06350 0.06271

(0, 0.45) 0.9568 0.9500 0.9568 0.05659 0.05731 0.05659

(0.45, 0.55) 0.9490 0.9448 0.9490 0.10378 0.10486 0.10378

(0.35, 0.35) 0.9506 0.9494 0.9506 0.07145 0.07224 0.07145

‡ “CP” denotes the empirical coverage probability; “LCI” denotes the length of 95% confidence interval.
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D The manual for R package “AdjMed”

The following section presents detailed instructions on the practical implementation of the

R package AdjMed, including two functions AJS() and ASobel(). First we can install the

AdjMed from the GitHub with the following R codes:

> library(devtools)

> devtools::install github("zhxmath/AdjMed")

The R function AJS() is used to perform adjusted joint significance test for mediation effect.

The arguments when implementing the AJS() are given as follows:

> AJS(X, M, Y, Z, Delta, Model)

Table S.7: Overview of the arguments in functions AJS() and ASobel()

Arguments Description

X a vector of exposures.

M a matrix of continuous mediators. Rows represent samples,

columns represent variables.

Y a vector of observed outcomes.

Z a matrix of covariates. Rows represent samples, columns repre-

sent variables, Z= "null" when the covariates are not available.

Model the type of outcome. Model= "Linear" for continuous out-

come; Model= "Logistic" for binary outcome; Model= "Cox"

for time-to-event outcome with Cox model.

Delta a vector of indicators for Model= "Cox", where 1=uncensored,

0=censored; Delta="null" when Model= "Linear" and Model

= "Logistic".

tau the (1-tau)% confidence level; e.g., tau=0.05 denotes 95% confi-

dence level. The term is exclusively intended for the implemen-

tation of ASobel().

The ASobel() is used to perform adjusted Sobel-type confidence interval for mediation
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effect, where the arguments are

> ASobel (X, M, Y, Z, Delta, Model,tau)

In Tables S.7 and S.8, we present the arguments and outputs of R functions AJS() and

ASobel().

Table S.8: The outputs of R functions AJS() and ASobel()

Arguments Description

alpha est coefficient estimate of exposure (X) → mediator (M).

alpha SE the standard error for alpha est.

beta est coefficient estimate of mediator (M) → outcome (Y).

beta SE the standard error for beta est.

P AJS the p-values of mediation tests towards AJS().

CI Asobel the (1-tau)% confidence intervals for mediation effects.

An illustrative R example of linear mediation model is provided as follows:

l i b r a r y (MASS)

l i b r a r y ( s u r v i v a l )

l i b r a r y (AdjMed)

p <= 5 # the dimension o f mediators

q <= 2

n <= 500

alpha <= matrix (0 , 1 , p ) # the c o e f f i c i e n t s f o r X => M

beta <= matrix (0 , 1 , p ) # the c o e f f i c i e n t s f o r M => Y

alpha [ 1 : 3 ] <= 0 .5

beta [ 1 : 3 ] <= 0 .5

s igma e <= matrix (0 , p , p )

rou <= 0 .25 # the c o r r e l a t i o n o f M

f o r ( i in 1 : p ) {

f o r ( j in 1 : p) {

s igma e [ i , j ]=( rou ˆ( abs ( i=j ) ) ) ;

}

}
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X <= matrix ( rnorm (n , mean = 0 , sd = 1) , n , 1 ) # expoure

zeta <= matrix ( 0 . 3 , p , q ) # the c o e f f i c i e n t s o f c o va r i a t e s f o r X => M

eta <= matrix ( 0 . 5 , 1 , q ) # the c o e f f i c i e n t s o f c o va r i a t e s f o r M => Y

gamma <= 0 .5 # the d i r e c t e f f e c t

gamma total <= gamma + alpha%*%t ( beta ) # the t o t a l e f f e c t

E <= matrix ( rnorm (n , mean = 0 , sd = 1) , n , 1 )

mu <= matrix (0 , p , 1 )

e <= mvrnorm(n , mu, s igma e )

M <= 0.5+ X%*%(alpha ) + e # the mediators

Y <= 0 .5 + X*gamma + M%*%t ( beta ) + E # the response Y

fit AJS <- AJS(X, M, Y, Z="null", Delta="null", Model="Linear")

fit ASobel <- ASobel(X, M, Y, Z="null", Delta="null", Model="Linear",tau=0.05)

fit AJS

fit ASobel
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