Efficient Adjusted Joint Significance Test and Sobel-Type
Confidence Interval for Mediation Effect

Haixiang Zhang

Center for Applied Mathematics, Tianjin University, Tiangin 300072, China

Abstract

Mediation analysis is an important statistical tool in many research fields, where the
joint significance test is widely utilized for examining mediation effects. Nevertheless,
the limitation of this mediation testing method stems from its conservative Type I
error, which reduces its statistical power and imposes certain constraints on its utility.
The proposed solution to address this gap is the adjusted joint significance test for one
mediator, which introduces a novel data-adjusted approach for assessing mediation
effects that showcases significant advancements. The method is specifically designed
to be user-friendly, thereby eliminating the necessity for intricate procedures. We
further extend the adjusted joint significance test for small-scale mediation hypotheses
with family-wise error rate (FWER) control. Additionally, a novel adjusted Sobel-
type confidence interval is proposed for the mediation effects, demonstrating significant
advancements over conventional Sobel’s method. The effectiveness of our mediation
testing and confidence interval estimation is assessed through extensive simulations,
and compared against a multitude of existing approaches. Finally, we present the
application of the method to three substantive datasets with continuous, binary and
time-to-event outcomes, respectively.

Keywords: Adjusted Sobel’s test; Confidence intervals; Multiple mediators; Small-

scale mediation hypotheses.

1 Introduction

Mediation analysis plays an important role in understanding the causal mechanism that an

independent variable X affects a dependent variable Y through an intermediate variable
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(mediator) M. The utilization of mediation analysis is extensively prevalent across various
disciplines, such as psychology, economics, epidemiology, medicine, sociology, behavioral
science, and many others. From the perspective of methodological development, Baron and
Kenny (1986) have laid a solid foundation for mediation analysis. Subsequently, numerous
studies have been conducted on this subject. Just to name a few: Mackinnon et al. (2004)
constructed the confidence limits for indirect effect by resampling methods. Wang and
Zhang (2011) and Zhang and Wang (2013) introduced the estimating and testing methods
for mediation effects with censored data and missing data, respectively. Shen et al. (2014)
proposed an inference technique for quantile mediation effects. VanderWeele and Tchetgen
(2017) considered causal mediation analysis with time-varying exposures and mediators.
Sun et al. (2021) proposed a Bayesian modeling approach for mediation analysis. Zhou
(2022) introduced a semiparametric estimation method for mediation analysis with multiple
causally ordered mediators. Zhang and Li (2023) used the subsampled double bootstrap
and divide-and-conquer algorithms to conduct statistical mediation analysis on large-scale
datasets. He et al. (2024) developed an adaptive bootstrap framework that can be applied
to the joint significance test of mediation effect. For more results about mediation analysis,
we refer to the reviewing papers by MacKinnon et al. (2007) and Preacher (2015).

The joint significance test is a crucial statistical approach in the field of mediation anal-
ysis, which plays a pivotal role in investigating the causal mechanism underlying mediation
effects (MacKinnon, 2008). However, the main shortcoming of this method is due to the con-
servative type I error of mediation testing (MacKinnon et al., 2002), which largely prevents
its popularity for practical users. The statistical analysis of the joint significance tests for
large-scale mediation hypotheses in genome-wide epigenetic research has been extensively
investigated (Huang, 2019; Dai et al., 2022; Liu et al., 2022), whereas these methods are
not applicable to single or small-scale mediation hypotheses. Furthermore, the confidence
interval for the mediation effect is a crucial aspect in mediation analysis, which is highly
valuable in comprehending the mediation mechanism. The literature on mediation analy-
sis lacks a substantial number of studies focusing on confidence interval estimation. The
Sobel-type (or normality-based) method and Bootstrap are consistently employed to con-

struct confidence intervals of mediation effects. However, these two methods are inadequate



when both the pathway effects along X — M and M — Y equal zero. To improve the
performances of joint significance test and Sobel-type confidence interval, we propose two
novel data-adjusted mediation analysis methods with theoretical verification. The main ad-
vantages of our proposed method are as follows: First, the adjusted joint significance test
and adjusted sobel-type confidence interval are two flexible and data-driven methods. The
implementation of the two proposed methods is particularly convenient from a practical
perspective. Specifically, our method ensures user-friendliness by eliminating complex pro-
cedures. Second, the test method we propose exhibits significant advancements in terms of
size and power when compared to the conventional joint significance test. The enhanced
powers are particularly evident for those mediation effects that are relatively weak, making
them challenging to be recognized as significant mediators by traditional methods. Third,
the explicit formulation of the coverage probability and length of the adjusted Sobel-type
confidence interval is provided for comparison with conventional Sobel’s method.

The remainder of this paper is organized as follows: In Section 2, we review some details
about the traditional joint significance test for mediation effects. Then we propose a novel
data-adjusted joint significance test for one mediator, together with the explicit expression
of size. Meanwhile, an adjusted Sobel test is also introduced, which shows a significant im-
provement compared to traditional Sobel’s method. In Section 3, we implement the adjusted
joint significance test towards small-scale multiple testing with FWER control. Section 4
introduces an adjusted Sobel-type method to construct confidence interval for the media-
tion effect. Section 5 presents some simulation studies to assess the performance of our
method. In Section 6, we perform mediation analysis for three real-world datasets with
the proposed method. Some concluding remarks are provided in Section 7. All proof de-
tails of theorems are presented in the Supplementary Material. Finally, our method offers
a publicly available and user-friendly R package, called AdjMed, which can be accessed at
https://github.com/zhxmath/AdjMed.


https://github.com/zhxmath/AdjMed
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Figure 1: A scenario of mediation model with one mediator (confounding variables are

omitted).

2 Adjusted Joint Significance Test

To begin with, we review some fundamental notations within the context of mediation anal-
ysis. Let X be an exposure, M be the mediator and Y be the outcome (see Figure 1). As
described by MacKinnon (2008), the aim of mediation analysis is focused on investigating
the causal mechanism along the pathway X — M — Y. Generally speaking, the causal
effect X — M is parameterized by « (after adjusting for confounders), and the causal effect
M — Y is parameterized by [ (after adjusting for exposure and confounders). The mediat-
ing effect of M in this case is described by a3, commonly known as the “product-coefficient”
approach (MacKinnon et al., 2002). To evaluate whether M plays an intermediary role be-
tween X and Y, it is customary to conduct hypothesis testing at a significance level of § as

follows:
Hy: af=0 < Hj:af #0. (2.1)

The rejection of the null hypothesis would indicate that M is a statistically significant medi-
ator in the pathway X — M — Y. The null hypothesis Hy is worth noting as it is composite.
Specifically, Hy can be decomposed equivalently into the union of three disjoint component

null hypotheses HQ = HOO U H()l U Hlo, where
Hypp: a=0,8=0;
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Hy 1 a=0,8+#0;
Hloi a#O,ﬁzO

Let T, = &/6, and Ty = 3/65 be the statistics for testing o = 0 and 8 = 0. Here & and
B are the estimates for a and 3, respectively; ¢, and 64 are the estimated standard errors
of & and 5’ , respectively. Under the null hypothesis, as the sample size n tends to infinity, it

can be observed that

T, 25 N(0,1) and Ts -2 N(0,1), (2.2)

where —25 denotes convergence in distribution. The corresponding p-values for 7, and Tj

are

Po = 2{1 = ®non(Ta])}, (2.3)

Py = 2{1—®n(o1)(|T5])}, (2.4)

where T;, and T are defined in (2.2), ®n(o,1)(-) is the cumulative distribution function of
N(0,1). The joint significance (JS) test, also known as the MaxP test, is widely recognized
as one of the most popular methods for mediation analysis in the field. The purpose of the
JS test is to reject Hy when both a = 0 and 8 = 0 are simultaneously rejected. The JS test

statistic is
PJS = max(Pa, PB)’ (25)

where P, and Pj are given in (2.3) and (2.4), respectively. The practical applicability of
JS test has led to its widespread adoption across various research fields, including the social
and biomedical sciences. However, the JS test suffers from overly conservative type I error,
especially when both a = 0 and 8 = 0 (MacKinnon et al., 2002). In the literature, this is a
long-existed and unresolved problem for the JS test. To bridge this gap, we aim to propose a
novel data-adjusted method for improving the statistical efficiency of the JS test, especially
focusing on the conservative issue in the case of @ = 5 = 0.

Under Hy, the traditional JS test regards Pjgs as a uniform random variable over (0, 1).
i.e., P;s ~ U(0,1). However, the actual distribution of Pj;g is not U(0,1) under the compo-

nent null hypotheses Hyg, which is the reason of the conservative performance of traditional
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JS test. To provide further insights on this matter, let us consider Z; and Z, as two inde-
pendent random variables that follow a uniform distribution U(0,1). Let Z = max(Z;, Z,)

and its density function is fz(z). We can derive the distribution function of Z as
Fr(2) =P(Z<2)=P(Z, < 2,7, < 2) =P(Z, < 2)P(Zy < 2) = 27,

i.c., the density function of Z is fz(z) = 3z for 0 < z < 1 and fz(z) = 0, otherwise.
Therefore, the maximum of two independent p-values (Pjg) does not follow U(0,1). This
provides a theoretical view about the conservative performance of JS test when both a =0

and 3 = 0. Note that the distribution function of Z? = {max(Zi, Z,)}* is

Fp(z) = P(Z%<2)
= P(Z, < 2V2)P(Z, < 21/?)

0, z<0,
1, z>1.

Y

Under Hyp, the squared maximum of two p-values (P%g) has an uniform distribution over (0,
1). This discovery provides insight into resolving the conservative challenge of conventional
JS test.

To address the conservatism of JS test, we attempt to differentiate Hyg from Hy; and
H, reasonably using a specific criterion. Under Hyg, we have lim,_,o P(|T0| < An, [T3] <
A|Hpo) = 1, where A\, = o(y/n) and )\, — oo as the sample size n — oo. However,
lim, oo P(|70| < Any |18 < An|Hio) = 0 and lim, oo P(|T0| < A, [T < An|Hor) = 0.
The null hypothesis Hy is more likely to be regarded as Hyy instead of Hy, or Hyg when
max{|T,|, |Ts|} < An. The approach employed by He et al. (2024) in constructing bootstrap-
based testing statistics for evaluating mediation effects should be noted, while our focus lies
on the development of innovative testing statistics that eliminate the need for re-sampling
procedures. The above-mentioned concept is exemplified through a numerical illustration
provided by us. Specifically, we generate a series of random samples from the linear mediation
models: Y = 0.5+ 05X + M + e and M = 0.5+ aX + ¢, where X, € and e follow from
N(0,1). The resulting T;, and T are obtained by the ordinary least square method. In
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Figure 2: The scatter plots of T,,.. = max{|Ty.|,|Ts|} and X\, = /n/log(n) with 1000

repetitions.

Figure 2, we present the scatter plots of T4, = max{|T,|,|Ts|} and A\, = /n/log(n) with
1000 repetitions, where the sample size is n = 1000, the parameters («, ) are chosen as
(a, B) = (0,0), and (0.25, 0), respectively. The observation from Figure 2 suggests that,
under the assumption of @« = 8 = 0, there is a high probability that T},,, is significantly
smaller than A\, as n — oo. However, T,,,. is asymptotically much larger than A\, when
a # 0, and the same conclusion also applies to § # 0.

Motivated by the aforementioned findings, we propose a novel adjusted joint significance

(AJS) test procedure for (2.1), where the p-value is defined as

Pjs, max{|T,|, T3]} > A\,
Pre — 7S UTal, 1 T5]} 27)
Pls, max{|T.],[Tol} < M.

Here, the threshold is chosen as A\, = y/n/log(n) satisfying A\, = o(y/n) and A\, — oo as
n — oo; T,, T and P;g are given in (2.2) and (2.5), respectively. In Figure 3, we provide
an illustrative example of the p-values for AJS and JS methods with (a, ) = (0,0) and

n = 2000. The data are generated from the same models of Figure 2 with 5000 repetitions.



The distribution of P;g is observed to be uniform in Figure 3, whereas the histogram
indicates a right skewness in the distribution of P;g. Meanwhile, the Figure 3 provides an

intuitive explanation for the conservatism of traditional JS method when oo = 3 = 0.
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Figure 3: The histogram of p-values for (o, 8) = (0,0) with \, = /n/log(n).

The decision rule of AJS test is that the null hypothesis Hj is rejected if P4 ;g is much
smaller than the significance level §, where P4 g is defined in (2.7). The explicit expression

of size in Theorem 1 is derived, providing a valuable tool for ensuring the rationality of the

AJS test.

Theorem 1 Given that \, = o(y/n) and as the sample size n approaches infinity, with
probability approaching one, under Hyy the asymptotic size of our proposed AJS test is

lim Size(AJS|Hyy) = 9, (2.8)

n—oo
where § is the significance level. Under Hyy, with probability approaching one, the asymptotic

size of the AJS test satisfies

n—oo

Simalarly, with probability approaching one, under Hy, the asymptotic size of the AJS test is

lim Size(AJS|Hpy) = 6.

n—oo



Theoretically, we conduct a comparative analysis between AJS and traditional JS in

terms of size. Under Hyy, the size of traditional JS test for (2.1) is

Size(JS|Hy) = P(Prg < 8|Hoy)
= P(P, < §|Hy)P(Ps < 6| Hyo)

which explains the conservative phenomenon of traditional JS test.
The Sobel test (Sobel, 1982) is another widely used method for mediation analysis in the
field, and the corresponding test statistic is
i
{6262 + 262 }1/2

T'sobel = (2.10)

where & and /3 are the estimates for o and B, respectively; 0, and 04 are the estimated
standard errors of & and B , respectively. The decision rule of traditional Sobel test relies
on the standard asymptotic normality of Tsue. We can reject Hy if the p-value, Psgper, is

smaller than a specified significance level §, where

Psoper = 2{1 — @0, (| Tsobet]) }»

P n(o,1)(+) is the cumulative distribution function of N(0,1), and Tsepe is given in (2.10). The
Sobel test suffers from overly conservative type I error, especially when both o =0 and § =0
(MacKinnon et al., 2002). From Liu et al. (2022), the Sobel statistic Ty has an asymptotic
normal distribution N (0, 1) under Hy; and Hjg, while its asymptotic distribution is N (0,1/4)
in the case of Hyy. Therefore, the performance of traditional Sobel test is conservative when
a = 0 and g = 0. Similar to the idea of AJS method, we propose a novel adjusted Sobel
(ASobel) test procedure for (2.1), and the p-value is defined as

2{1 - (I)N 0,1 (’TSobelD}a maX{’Ta’a |T,3|} Z )\na
Pasovet = o (2.11)

2{1 — ®n0,1/4) (| Tsober]) }, max{|T,|, [T} < An,

where ®yo1/4)(-) is the cumulative distribution function of N(0,1/4); Tseper is given in
(2.10); Ty, T3 and A, are the same as that of P4 g in (2.7). The decision rule of the ASobel

test states that the null hypothesis Hy is rejected if the test statistic (Pagepe) is significantly
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smaller than the predetermined significance level §. The p-values for ASobel and Sobel
methods with (o, 8) = (0,0) and n = 2000 are illustrated in Figure S.1. The sample data
are the same as depicted in Figure 3. The distribution of Pssee appears to be uniformly
distributed in Figure S.1, while the histogram indicates a right-skewed distribution for Pggpe;.
The Figure S.1 further elucidates the inherent conservatism of the traditional Sobel method
when both « and [ are set to zero.

Given that \, = o(y/n) and as n — oo, with probability approaching one, under Hy the
asymptotic size of our proposed ASobel test for (2.1) is

lim Size(ASobel|Hy) = 6. (2.12)

n—oo

The proof details of (2.12) of ASobel test are presented in the Supplemental Material. The
ASobel test, although superior to the conventional Sobel test, demonstrates inferior perfor-
mance compared to the AJS method in numerical simulations. Consequently, our focus on
hypothesis testing does not heavily emphasize the ASobel method. However, the ASobel
plays a crucial role in constructing efficient confidence intervals for mediation effects, which

will be presented in the Section 4.

Figure 4: A scenario of mediation model with multiple mediators (confounding variables are

omitted).
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3 Multiple Mediation Testing with FWER Control

The proposed AJS method is extended in this section to address small-scale multiple testing
with FWER control, thereby excluding the focus on high-dimensional mediators. Let X
be an exposure, M = (M, ---, M,)" be a vector of d-dimensional mediators, and Y be an
outcome of interest. Following MacKinnon (2008), it is commonly assumed that the causal
relations X — M}, and My, — Y are parameterized by oy, and S (see Figure 4), respectively.
Let Q = {k: ayfr # 0,k = 1,--- ,d} be the index set of significant (or active) mediators.

Under the significance level d, we are interested in the small-scale multiple testing problem:
H(k)'ozﬂ—o o g . -1 ...

0o - kMPk — A 'akﬂk#oa k_lv 7d> (31)
where d is not very large (i.e., the M is not high-dimensional), and each null hypothesis Hék)
is composite with three components:

HE < ap, =0, =0
HYg i # 0,5 = 0;
H¥ - ap =0, 8, #0.
First we focus on extending the AJS method (in Section 2) for the multiple testing in

(3.1). For k=1,--- ,d, we denote
Pak = 2{1 — CI)N(O,l)(|Tak|>}7 and Pﬂk = 2{1 - ¢N(0,1)(‘Tﬁk|)}7 k= ]_, ce 7d. (32)

Here T,,, = du;/6,, and T, = Bk/5ﬁk§ &y, and Bk are the estimates for oy, and [, respectively.

0q, and 0, are the estimated standard errors of ¢&; and Bk, respectively. Specifically, let
P = max(P,,, Ps,) (3.3)
JS max{ Loy, 178 )s .

where P,, and Pjs, are given in (3.2), k = 1,--- ,d. We propose an AJS test method with

the statistic being defined as

k
P(k) _ Pags)’ maX{’Tak’7 |T5k|} > )‘na (3 4)
AJS T k .
(P2, max{|T, |, |Ts|} < An,
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where P}? is given in (3.3), the value of A, is equivalent to that of P,;g in (2.7). For

controlling the FWER, we can reject Hék) if the AJS test statistic PX‘TJ)S is much smaller
than 0/d. In other words, an estimated index set of significant mediators with AJS test is

Qass = {k: PV <6/dk=1,---  d}, where PV is defined in (3.4).

Theorem 2 Under the significance level §, with probability approaching one, the FWER of
the AJS test for (3.1) asymptotically satisfies

lim FWER(AJS) < 6. (3.5)

n—o0

Remark 1 The FWER(AJS) is asymptotically controlled below the significance level § for
small-scale multiple testing. We emphasize that the AJS cannot be directly applied to high-
dimensional mediators. In the context of large-scale mediators, advanced high-dimensional
statistical techniques, such as employing variable screening methods for mediator dimension

reduction, are imperative, which falls beyond the scope of this paper.

Remark 2 The ASobel method can be extended in a similar manner to address the multi-
ple testing problem presented in (3.1). As discussed in section 2, AJS outperforms ASobel

numerically, hence this topic is not explored further in this paper.

4 Adjusted Sobel-Type Confidence Intervals

In the current section, we focus on the estimation method for confidence intervals of medi-
ation effects ay(0,’s, which plays a crucial role in comprehending the mediation mechanism
with desirable levels of confidence. The index & in oy ) is omitted for the sake of convenience,
while maintaining the same level of generality. The AJS method in Section 2 is proposed for
conducting hypothesis testing, but it cannot be utilized for constructing confidence intervals
of mediation effects. The Sobel-type (or normality-based) method is consistently employed
in the literature to examine confidence intervals of mediation effects. To be specific, as

n — 00, Sobel’s method assumes that

o3G5 — aB) 2 N(0,1), (4.1)
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where —25 denotes convergence in distribution, & and B are the estimates for o and j,
respectively; 6, and 04 are the estimated standard errors of & and B, respectively; 0,5 =
{&2&%+82&3}1/ 2. The focus of our study lies in constructing 100(1—4)% confidence intervals
for mediation effects, where ¢ is commonly selected as 0.05. Based on (4.1), the Sobel-type
100(1 — §)% confidence interval for a5 is given by

Clsober = [68 — N1_5/2(0, 1)Gag, &8 + Ni_52(0,1)Fag], (4.2)

where Ni_s5/2(0,1) is the (1 — 6/2)-quantile of N(0,1). However, the confidence interval
Clgopel provided in (4.2) is excessively wide when both « and 3 are equal to zero. e.g., the
coverage probability of the 95% confidence interval provided in (4.2) approaches unity.

The asymptotic distribution of 6;&(&& —af) is N(0,1/4) instead of N(0,1) when a =
B =0, as stated in Liu et al. (2022). To amend the issue of Clggpe in the case of « = 5 =0,

we propose a novel adjusted Sobel-type confidence interval for af as follows,

- (68 = N1_5/5(0,1)605, 43 + Ni_s/2(0, )65, max{|Tal, [T5]} > A,
ASobel ~ ~
[CAYB — Nl_(;/g((), 1/4)6}15, @ﬁ + N1_5/2(07 1/4)5’a5], max{|Ta|, |T5|} < )\m
(4.3)

where Ni_;5/2(0,1/4) is the (1 — 6/2)-quantile of N(0,1/4), T,, and T} are defined in (2.2),
and \, = y/n/log(n). The thresholding framework in (4.3) shares a similar concept with
the AJS and ASobel introduced in Section 2.

Theorem 3 As the sample size n approaches infinity, with probability approaching one,
the coverage probability of the 100(1 — 0)% confidence interval given in (4.3) asymptotically

satisfies

lim ]P)(Oéﬁ S CIASobel) =1-4.

n—oo

The subsequent discussion presents a series of comparisons between Clggpe and Clagopel-

The Sobel-type confidence interval can be derived directly to fulfill the following expression:

2¢) N — O, 1 - 17 o = = O’
lim P(af € Clgope) = N(0,1/4) (N1-s/2( ) 15}

nree 1—96, others,
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where Clgope is given in (4.2). By deducing the difference between lim,, o, P(af € Clgopel)

and 1 — 0 under the case of « = § = 0, we have

lim P(Ozﬁ € CISobel) — (1 - 5) = 2@]\[(071/4)(]\71_5/2(0, 1)) -2+ 4]

n—o0

> 0.

Hence, the asymptotic coverage probability of Clageper is much better than that of Clggpe
under « = [ = 0. Furthermore, the averaged length of Clagohe in the case of a =
B =0, 2N1_5/2(0,1/4)64p , is significantly shorter compared to that of Clgephe, which is
2N1_5/2(0,1)G43. The performance of Clggher and Claggher Will be compared through numer-

ical simulations.

5 Numerical Studies

5.1 Size and Power of Single-Mediator Testing

In this section, we conduct some simulations to evaluate the performance of the ASobel and
AJS tests for Hy : af = 0 in the context of one mediator. Under the framework of mediation
analysis, we consider three kinds of outcomes with one continuous mediator: linear mediation
model (continuous outcome), logistic mediation model (binary outcome) and Coz mediation
model (time-to-event outcome). Specifically, the mediator M is generated from the linear
model M = aX +n'Z+ e, where X and e follow from N(0,1), Z = (Z1, Z»)" with Z; and Z,
being independent random variables following N(0,1), n = (0.5,0.5)". The random outcomes
are generated from the following three models:

e Linear mediation model: Y =~X + M + 0'Z + ¢, where v = 0.5 and 6 = (0.5,0.5)".

e Logistic mediation model: Let Y € {0,1} be the binary outcome, and

exp(vX + M + 0'7Z)

PY =1XM7Z) =
( X, M, Z) 1+exp(vX + BM + 0'Z)’

where v = 0.5 and 6 = (0.5,0.5)".
e Cozx mediation model: Let T be the failure time, and C be the censoring time. The

observed survival time is Y = min(7,C). Following Cox (1972), the conditional hazard
function of T"is A(t|X, M,Z) = A\(t) exp(yX + SM + @'Z), where \o(t) = 1 is the baseline
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hazard function, v = 0.5, @ = (0.5,0.5)"; C' is generated from U (0, ¢y) with ¢y being chosen

as a number such that the censoring rate is about 30%.

Table 1: The size and power of hypothesis testing with linear mediation model®.

(o, B) Sobel JS Bootstrap ASobel  AJS
n =200 (0, 0) 0 0.0016 0.0010 0.0432  0.0460
(0, 0.5) 0.0406 0.0498  0.0556 0.0406  0.0498
(0.5, 0) 0.0420 0.0522 0.0568 0.0420 0.0522
(0.15, 0.15) 0.1190 0.3068 0.2774 0.4184 0.5124
(0.25, 0.25) 0.7470 0.8814  0.7584 0.7834  0.8978
n =500 (0, 0) 0 0.0034 0.0008 0.0482  0.0446
(0, 0.5) 0.0540 0.0568  0.0542 0.0540  0.0568
(0.5, 0) 0.0460 0.0496 0.0546 0.0460 0.0496
(0.15, 0.15) 0.6820 0.8334 0.8218 0.8740  0.9090
(0.25, 0.25) 0.9990 0.9998  0.9946 0.9990  0.9998
n = 1000 (0, 0) 0.0002  0.0026 0.0012 0.0498  0.0496
(0, 0.5) 0.0456 0.0482  0.0520 0.0456  0.0482
(0.5, 0) 0.0466 0.0476  0.0486 0.0466  0.0476
(0.15, 0.15) 0.9886 0.9950 0.9952 0.9954 0.9974
(0.25, 0.25) 1 1 1 1 1

Under the regularity conditions in Vanderweele and Vansteelandt (2009), VanderWeele
and Vansteelandt (2010) and VanderWeele (2011), the product term a5 can be interpreted
as the causal mediating effect of M along the pathway X — M — Y for the three mediation
models (see Figure 1). For comparison, we also use the traditional Sobel, JS and Bootstrap
methods for testing Hy : af = 0, where the significance level is 6 = 0.05. The popular
quantile Bootstrap test method is employed for assessing the mediation effect, and Hy will
be rejected if 0 does not fall within the interval [Qs2({a®BOYE), Q1 s2({a®BOYIE )],
where Qs/2(+) is the (6/2)-empirical quantile function, a® and B® are the corresponding

parameter estimators with the b-th Bootstrap samples, b=1,--- , B.

15



All the simulation results are based on 5000 repetitions, where B = 1000 and the sample
size is chosen as n = 200, 500 and 1000, respectively. In Tables 1, S.1 and S.2, we report the
sizes and powers of the Sobel, JS, Bootstrap, ASobel and AJS methods when performing
mediation tests with three kinds of outcomes. Under o = 3 = 0, the size of our proposed AJS
and ASobel are much better than those of JS, Sobel and Bootstrap methods, respectively. For
small values of a and 3, the power of AJS is larger than that of ASobel and the conventional
Sobel, JS and Bootstrap methods. These numerical findings are in line with the theoretical
results of Theorem 1. In Figures 5, S.2 and S.3, we present the Q-Q plots of p-values
under linear, logistic and Cox mediation models with n = 500. The Bootstrap method
does not depend on the use of p-values when conducting hypothesis tests for Hy. The Q-Q
plots demonstrate that the Sobel, JS, ASobel, and AJS methods accurately approximate
the distribution of their respective test statistics under either Hyy or Hy;. The Sobel and
JS tests, however, exhibit a conservative behavior, whereas the proposed ASobel and AJS
tests still accurately approximate the distribution of their corresponding test statistics. The
quantiles of p-values under H,4 increase in the following order: AJS, ASobel, JS, Sobel. The

aforementioned finding is consistent with the power performance presented in Table 1.

5.2 FWER and Power of Multiple-Mediators Testing

In this section, we investigate the performance of the AJS method when performing small-
scale multiple testing for mediation effects via numerical simulations. The dimension of
mediators is chosen as d = 10, 15 and 20, respectively. Similar to Section 5.1, we consider
three kinds of outcomes in the context of multiple mediators.

e Linear mediation model: Y = ~vX + B'M + 0'Z + ¢, where X and ¢ follow from N(0,1),
Z = (Zy, Z,) with Z; and Z, being independent random variables following N (0, 1), v = 0.5,
0 = (0.5,0.5); M = (My,---, My)" is generated from a series of linear models My = a; X +
M. Z + e. Here np = (0.5,0.5), and e = (e, -+ ,e4)’ is a multivariate normal vector with

mean zero and covariance matrix ¥ = (0.25/79), ;. The parameter’s settings are

= (0.15,0.05,0.15,0.15,0.05,0.5,0.5,0,- - - ,0)’,

= (0.15,0.05,0.15,0.05,0.1,0,0,0.5,0.5,0,- - - ,0)".
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Figure 5: Q-Q plots of p-values under linear mediation model with n = 500.

17



e Logistic mediation model: Let Y € {0,1} be the binary outcome, and

POY = 11X, M, Z) = exp(7X + B'M + 0'Z)
N T It exp(y X + BM 4 0'Z)

where the variables X, M, Z remain consistent with those in those of the linear mediation

model, except for the settings for model parameters,

a = (0.15,0.2,0.25,0.5,0.25,0.65,0,-- - ,0),

B = (0.25,0.3,0.35,0.65,0.55,0,0.55,0,---,0)".

e Cox mediation model: Given the covariate X, the mediator vector M and the covariates

vector Z, the Cox’s conditional hazard function of failure time 7' is
At X, M, Z) = \o(t) exp(7X + B M + 0'Z),

where A\g(t) = 1, v = 0.5, X, M and Z are generated in the same way as the linear mediation
model. We generate the censoring time C' from U(0, ¢g), where ¢y is being chosen such that

the censoring rate is about 30%. The settings of the model’s parameters are

= (0.2,0.35,0.25,0.15,0.15,0.5,0,--- ,0)’,

= (0.15,0.25,0.3,0.15,0.1,0,0.5,0,--- ,0)".

The index set of significant mediators is Q = {1,2,3,4,5}. Based on Vanderweele and
Vansteelandt (2009; 2010) and Huang and Yang (2017), the product term a5 describes
the causal mediation effect along the kth pathway X — M, — Y (see Figure 4), where
k = 1,---,d. Under the significance level d, we consider the multiple testing problem
Hy, : apfr =0, k=1,---,d. The proposed AJS is compared with Sobel, JS, JT_Comp
(Huang, 2019), DACT (Liu et al., 2022) and Bootstrap in terms of empirical FWER and
Power. The Bootstrap test method will reject Hyy if 0 does not fall within the Bonferroni
corrected interval [Q(;/(gd)({d/’ib) A,(ﬁb)}szl), Q1_5/(2d)({@,(€b) A,({b)}le)], where d,(gb) and B,(Cb) are
the corresponding parameter estimators with the b-th Bootstrap samples, b = 1,--- | B.
The HDMT (Dai et al., 2022) is not applicable in our simulation scenarios, as it specifically
targets high-dimensional mediation hypotheses with d — oo. All the results are based on

5000 repetitions, where B = 1000, the sample size is n = 200, 500 and 1000, respectively.
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In Tables 2, S.3 and S.4, we report the FWERs and Powers of six test methods in the
context of linear, logistic and Cox mediation models, where the significance level is § =
0.05. The results demonstrate that the FWER and Power of AJS outperform the other
five methods significantly. The powers of all methods are observed to increase with the
sample size, while they decline with the increase in dimension d. One explanation for this
phenomenon is due to the fact that the estimated variances of model parameters are becoming

larger as the increase of mediator’s dimension under fixed sample size.

Table 2: The FWER and power of multiple testing with linear mediation model.

Dimension Sobel JS JT_Comp DACT Bootstrap AJS
n=200 d=10 FWER 0.0062 0.0192  0.1706 0.0116 0.0294 0.0232
Power 0.0011 0.0195  0.0032 0.0146 0.0127 0.0764
d=15 FWER 0.0052 0.0126  0.1982 0.0252 0.0176 0.0282
Power 0.0004 0.0147  0.0034 0.0236 0.0092 0.0568
d =20 FWER 0.0038 0.0112  0.2176 0.0486 0.0186 0.0338

Power 0.0002 0.0103 0.0042 0.0314 0.0076 0.0458

n=>500 d=10 FWER 0.0166 0.0222 0.2074 0 0.0296 0.0262
Power 0.0452 0.1836 0.0099 0.0252 0.1265 0.3286

d=15 FWER 0.0080 0.0134 0.2282 0.0006 0.0230 0.0306
Power 0.0299 0.1560 0.0135 0.0646 0.1094 0.2954
d =20 FWER 0.0084 0.0108 0.2748 0.0086 0.0190 0.0388

Power 0.0216 0.1387  0.0199 0.1160 0.0965 0.2762

n =1000 d=10 FWER 0.0172 0.0198 0.2102 0 0.0268 0.0246
Power 0.3055 0.4042 0.0505 0.0279 0.3547 0.5211

d=15 FWER 0.0100 0.0128 0.2382 0.0002 0.0164 0.0342

Power 0.2669 0.3864  0.0605 0.1408 0.3390 0.5004

d =20 FWER 0.0086 0.0100 0.2748 0.0020 0.0178 0.0352

Power 0.2361 0.3734 0.0771 0.2534 0.3219 0.4857
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Table 3: The coverage probability and length of 95% confidence interval with linear mediation

model*.
Cp LCI
(o, Br) Sobel  Bootstrap ASobel Sobel  Bootstrap ASobel
n =200 (0, 0) 1 0.9986 0.9482 0.02665  0.04009  0.01388
(0.35, 0) 0.9676 0.9454 0.9632 0.10811  0.11234  0.10764
(0.5, 0) 0.9522  0.9460 0.9522 0.15321  0.15638  0.15321
(0, 0.35) 0.9706 0.9394 0.9614 0.10098  0.11246  0.10009
(0, 0.5) 0.9614 0.9414 0.9614 0.14158  0.15478  0.14158
(0.25, 0.35) 0.9376  0.9466 0.9376 0.12626  0.13371  0.12606
(0.45, 0.5) 0.9424 0.9450 0.9424 0.19413  0.20249  0.19413
n =500 (0, 0) 0.9996  0.9972 0.9548 0.01024  0.01558  0.00513
(0.35, 0) 0.9572 0.9474 0.9572 0.06678  0.06769  0.06678
(0.5, 0) 0.9520 0.9472 0.9520 0.09488  0.09527  0.09488
(0, 0.35) 0.9604  0.9498 0.9604 0.06238  0.06834  0.06237
(0, 0.5) 0.9498 0.9440 0.9498 0.08817  0.09578  0.08817
(0.25, 0.35) 0.9474 0.9484 0.9474 0.07813  0.08223  0.07813
(0.45, 0.5) 0.9424  0.9410 0.9424 0.12088  0.12599  0.12088
n = 1000 (0, 0) 0.9996 0.9986 0.9472 0.00510  0.00776  0.00255
(0.35, 0) 0.9534  0.9454 0.9534 0.04668  0.04684  0.04668
(0.5, 0) 0.9488 0.9468 0.9488 0.06658  0.06658  0.06658
(0, 0.35) 0.9530 0.9484 0.9530 0.04376  0.04763  0.04376
(0, 0.5) 0.9480  0.9484 0.9480 0.06228  0.06755  0.06228
(0.25, 0.35) 0.9462 0.9476 0.9462 0.05483  0.05762  0.05483
(0.45, 0.5) 0.9544 0.9534 0.9544 0.08502  0.08845  0.08502

1 “CP” denotes the empirical coverage probability; “LCI” denotes the length of 95% confidence interval;
“Sobel” denotes the Clgoper in (4.2); “ASobel” denotes the proposed Clagobel in (4.3); “Bootstrap” denotes

the CIBootstrap in (51)
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5.3 Coverage Probability of Confidence Interval

The performance of the ASobel-type confidence interval presented in Section 4 is evaluated
through simulations conducted in this subsection. The Bootstrap confidence interval and
traditional Sobel-type confidence interval, Clgype, given in (4.2), are also considered for

comparison. The 100(1 — §)% Bootstrap confidence interval of mediation effect is given as

Clpootstrap = [Qs/2({a" 5O }L1), Qusp({aV 5L, (5.1)

where &® and B(b) are the corresponding parameter estimators with the b-th Bootstrap
samples, b=1,---, B.

The data are generated in a similar manner as those described in Section 5.2, with the
parameters chosen as (i) Linear mediation model : a = (0,0.35,0.5,0,0,0.25,0.45)" and 8 =
(0,0,0,0.35,0.5,0.35,0.5)"; (ii) Logistic mediation model: a = (0,0.35,0.5,0,0,0.35,0.45)’
and 3 = (0,0,0,0.75,0.8,0.75,0.85)"; (iii) Cox mediation model: e = (0,0.35,0.5,0,0,0.45,0.35)’
and B8 = (0,0,0,0.5,0.45,0.55,0.35)". All the results are based on 5000 repetitions, where
B = 1000, the sample sizes are chosen as n = 200, 500 and 1000, respectively.

The coverage probability (CP) and length of the 95% confidence interval (LCI) with
Clsobel, Clpootstrap and Clagoner are reported in Tables 3, S.5 and S.6. The Clagoher out-
performs Clggpe in terms of CP under o« = § = 0. Additionally, the LCI of Clagoper is
significantly shorter compared to that of Clgae when af = 0. These findings are consistent
with the result of Theorem 3. Lastly, the ASobel confidence interval is much better than
Bootstrap method in terms of both CP and LCI in the simulations.

5.4 A comparison between AJS and He et al. (2024)’s method

In this section, we conduct a simulation to compare the AJS with the adaptive bootstrap for
JS test (AB-JS) of He et al. (2024). The numerical experiments conducted by He et al. (2024)
did not account for binary and survival outcomes with continuous mediators. Therefore, our
focus is solely on linear mediation models. For the purpose of ensuring a fair comparison,

we have adopted the same model settings as those presented in section 4 of He et al. (2024).
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To be specific, we generate random data with the following models:

Y = C+7X+BM+0121+02Z2+6,

= Cm—|—OéX+T]121 +7’IQZQ +€,

where the exposure variable X is generated from a Bernoulli distribution with a success
probability of 0.5; the covariate Z; is simulated from N(0,1); the covariate Z5 is simulated
from the Bernoulli distribution with the success probability 0.5; two error terms e and e
are simulated independently from N(0,0.25); We set the parameters (c,6q,605) = (1,1,1),
(Cmym,m2) = (1,1,1), and v = 1. We use the AJS and AB-JS to test the hypothesis
Hy : af = 0, where the significance level is 6 = 0.05. The AB-JS is implemented using the
codes provided in the R package ABtest, which is publicly available at https://github.
com/yingiuhe/ABtest. The bootstrap number of AB-JS is set to 500, which is also selected
for the simulation in He et al. (2024). Additionally, in order to ensure a fair comparison
between AJS and AB-JS, the threshold parameter has been selected as A, = v/n/log(n) for
both methods.

In Table 4, we report the size and power of AJS and AB-JS tests, where the results are
based on 1000 repetitions. It can be seen from Table 4 that the power of AB-JS is larger
than AJS under n = 500 and 1000. However, the computation speed of our AJS method
significantly outperforms AB-JS due to the absence of a resampling procedure, which is
inherent in the bootstrap-based approach utilized by AB-JS. The AJS and AB-JS exhibit
comparable performance in terms of size and power for n = 3000. In other words, the AJS

exhibits comparable statistical efficiency to that of AB-JS when dealing with larger datasets.

6 Real Data Examples

In this section, we apply our proposed AJS method for testing the mediation effects towards
three real-world datasets with continuous, binary and time-to-event outcomes, respectively.
The details about the three datasets and mediation analysing procedures are presented as

follows:
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Table 4: The comparison between AJS and AB-JS in terms of size and power*.

n = 500 n = 1000 n = 3000
(o, B) AJS AB-JS AJS AB-JS AJS AB-JS
(0, 0) 0.031 0.056 0.055 0.056 0.051 0.062
(0.5, 0) 0.048 0.048 0.047 0.046 0.055 0.051
(0, 0.5) 0.046 0.054 0.045 0.045 0.047 0.052
(0.15, 0.15) 0.375 0.891 0.663 0.998 0.983 1
(0.25, 0.25) 0.797 1 0.978 1 1 1

I “AJS” denotes our adjusted JS method; “AB-JS” refers to the adaptive bootstrap JS test (He et al., 2024).

Dataset I: (continuous outcomes). The Louisiana State University Health Sciences
Center has explored the relationship between children weight and behavior through a survey
of children, teachers and parents in Grenada. The dataset is publicly available within the R
package mma. To perform mediation analysis as that of Yu and Li (2017), we set gender as
the exposure X (Male =0; Female = 1), and the outcome Y is body mass index (BMI). We
consider three mediators: M; (join in a sport team or not), M, (number of hours of exercises
per week) and Mj (number of hours of sweating activities per week). Furthermore, there
are three covariates Z; (age), Zo (number of people in family) and Zs (the number of cars
in family). After removing those individuals with missing data, we totally have 646 samples
when conducting mediation analysis in the context of linear mediation model. We consider

the linear mediation model to fit this dataset:

Y = ¢+ X +08M+0Z+e,

Mk = ck+osz+n;€Z—|—ek, k:1,2,3,

where Y is the continuous outcome, M = (M;, My, M3)' is the vector of mediators, Z =
(Zy1, Zy, Z3)" is the vector of covariates. By VanderWeele and Vansteelandt (2010), the prod-
uct term oy, can be interpreted as the causal mediating effect of M) along the pathway
X — M — Y. Here we consider the multiple testing problem H(()k) Cafr=0,k=1,2,3.
The details of Psyper, Pasober P7s and Py jg are presented in Table 5. The estimators &;’s and

Bk’s along with their standard errors are also given in Table 5. Particularly, Ps;s < Pjs and
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Pusoper < Psoper demonstrate that the proposed AJS and ASobel are superior to traditional
JS and Sobel, respectively. In Table 6, we give the 95% confidence intervals for mediation
effects ayBr’s, where Clgoper, Clasober and Clpootstrap are defined in (4.2), (4.3) and (5.1),
respectively. The Bootstrap confidence Clpootstrap is calculated with B = 1000. The results
from Table 6 demonstrate that the proposed adjusted Sobel-type method yields a signifi-
cantly shorter and more reliable confidence interval compared to the conventional Sobel and

Bootstrap method.

Dataset II: (binary outcomes). The Job Search Intervention Study (JOBS II) is a
randomized field experiment that investigates the efficacy of a job training intervention on
unemployed workers. The dataset is publicly available within the R package mediation. Our
research aims to investigate whether the workshop enhances future employment prospects by
increasing job-search self-efficacy levels. To be specific, we study the mediating role of job-
search self-efficacy between job-skills workshop and employment status. For this aim, we set
the exposure X as an indicator variable for whether participant was randomly selected for the
JOBS II training program (1 = assignment to participation); the mediator M is a continuous
scale measuring the level of job-search self-efficacy; the outcome Y is a binary measure of
employment (1 = employed). Furthermore, there are 9 covariates: Z; (age), Zs (sex; 1 =
female), Z3 (level of economic hardship pre-treatment), Z, (measure of depressive symptoms
pre-treatment), Z5 (factor with seven categories for various occupations), Zg (factor with
five categories for marital status), Z; (indicator variable for race; 1 = nonwhite), Zg (factor
with five categories for educational attainment), Zg (factor with five categories for level of
income). After excluding individuals with missing data, we have a total of 899 samples for
conducting mediation analysis within the framework of logistic mediation models:
exp(c+vX + /1My + 0'Z)

1 +exp(c+yX + BiM, + 0'Z)’
M, = e+ X+10Z+e,

P(Y = 1|X, My, Z)

where Y € {0, 1} is the binary outcome, M is the mediator, Z = (Zy,-- - , Zy)' is the vector
of covariates. By VanderWeele and Vansteelandt (2010), the product term a3 can be in-
terpreted as the causal mediating effect of M; along the pathway X — M; — Y. Here we
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consider the mediation testing problem Hy : «a;8; = 0. The details of Psgper, Pasober; Prs
and Pjjs are presented in Table 5. The estimators &;’s and @Al’s along with their standard
errors are also given in Table 5. It seems that the M; has a significant mediating role between
exposure and outcome. Particularly, P4js < Pjs and Pagsoper < Psoper demonstrate that the
proposed method works well in practical application. The 95% confidence interval of the me-

diation effect is presented in Table 6, which yields a similar conclusion to that of the dataset I.

Dataset III: (time-to-event outcomes). We apply our proposed method to a dataset
from The Cancer Genome Atlas (TCGA) lung cancer cohort study, where the data are freely
available at https://xenabrowser.net/datapages/. There are 593 patients with non-missing
clinical and epigenetic information. From Zhang et al. (2021), we use seven DNA methylation
markers as potential mediators: M; (cg02178957), M, (cg08108679), M; (cg21926276), M,
(cg26387355), Ms (cg24200525), Mg (cg07690349) and M; (cg26478297). The exposure X
is defined as the number of packs smoked per years, and the survival time is the outcome
variable. Two hundred forty three patients died during the follow-up, and the censoring rate
is 59%. We are interested in testing the mediation effects of DNA methylation markers along
the pathways from smoking to survival of lung cancer patients. Four covariates are included:
Z, (age at initial diagnosis), Z, (gender; male = 1, female=0), Z3 (tumor stage; Stage I =
1, Stage II = 2, Stage III = 3, Stage IV = 4), and Z; (radiotherapy; yes = 1, no = 0). We

use the following Cox mediation model to fit this dataset:

At X, M,Z) = X(t)exp(h X + M + 0'Z)

Mk = ck+akX+n;€Z+ek, l{:1,"',7,

where \g(t) is the baseline hazard function, M = (M, --- , M;)" is the vector of mediators,
Z = (Zy,Zy,Z3, Zy) is the vector of covariates, e;’s are random errors. Based on Huang and
Yang (2017), the term ay S is the causal mediation effect of the kth mediator. We consider
the multiple testing Hék) apfe =0, k=1,---,7. Table 5 presents the statistics Pgoper,
Pjs and Pajg, along with parameter estimates and their standard errors. In view of the fact
that Pajs < Pjs and Pagoper < Psoper, the proposed method is desirable when performing

mediation analysis in practical applications. The 95% confidence intervals of the mediation

25



effects are presented in Table 6, which supports a similar conclusion as that derived from

the dataset 1.

Table 5: The p-values and parameter estimates in three real-world examples.

Datasets Mediators Psober  Pasober Pjg Pyys a(Gay) Br(63,)
I My 0.03333 0.00002 0.00359 0.00001 -0.1130 (0.0388) -0.9822 (0.3150)
Moy 0.25023 0.02147 0.11901 0.01416 -0.1234 (0.0791)  0.2651 (0.1557)
M3 0.26903 0.02706 0.19525 0.03812 0.1169 (0.0551)  0.2922 (0.2256)
11 My 0.21183 0.01252 0.11626 0.01352 0.0774 (0.0493)  0.1356 (0.0659)
11 M, 0.12043 0.00100 0.02822 0.00080 -0.0129 (0.0059) 1.2816 (0.5841)
Mo 0.02527 0.00001 0.00542 0.00003 -0.0092 (0.0024) -2.8537 (1.0262)
Ms 0.10093 0.10093 0.08030 0.08030 -0.0094 (0.0054) -3.4795 (0.7357)
My 0.10074 0.00103 0.02692 0.00072 -0.0125 (0.0051) -1.4994 (0.6776)
Ms 0.15777 0.15777 0.13013 0.13013 -0.0033 (0.0022) 6.2711 (1.5944)
Mg 0.05167 0.00010 0.02247 0.00051 -0.0162 (0.0071) 1.9535 (0.5246)
M~ 0.08990 0.00069 0.05725 0.00328 -0.0256 (0.0068) -0.8417 (0.4426)

7 Concluding Remarks

In this paper, we have proposed an data-adjusted joint significance mediation effects test

procedure. The explicit expressions of size and power were derived. We also have extended

the AJS for performing small-scale multiple testing with FWER control. An adjusted Sobel-

type confidence interval was presented. Some simulations and three real-world examples

were used to illustrate the usefulness of our method. The method we propose provides

a publicly accessible and user-friendly R package, called AdjMed, which can be found at

https://github.com/zhxmath/AdjMed. The focus of this study was limited to a single

mediator or a small number of mediators, and the inclusion of high-dimensional mediators

was beyond the scope of this research.

There exist two possible directions for applying the proposed AJS test method in our
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Table 6: The 95% confidence intervals for mediation effects in three real-world examples.

Datasets Mediators

CISobel

CIBootstrap

CIAsobel

A By

I M,

0.0088, 0.2133]
0.0885, 0.0231
0.0264, 0.0947

[0.0234, 0.2251]
0.1013, 0.0083
0.0189, 0.1022

0.0599, 0.1621]
[-0.0606, -0.0048]
[0.0039, 0.0644]

0.1110
-0.0327
0.0342

II My

0.0059, 0.0269

0.0022, 0.0335

0.0023, 0.0187]

0.0105

11 M,

- ]
- ]
- ]
[-0.0375, 0.0044]
0.0033, 0.0491]
[-0.0064, 0.0715]
[-0.0036, 0.0409]
[-0.0499, 0.0081]
[-0.0635, 0.0002]
[-0.0034, 0.0464]

[- ]
- ]
- ]
-0.0459, 0.0003]
[0.0015, 0.0533]
-0.0062, 0.0835]
[-107°, 0.0471]
-0.0574, 0.0086]
[-0.0733, -0.0044]
[4 x 1075, 0.0519]

[-0.0271, -0.0061]
0.0147, 0.0377]
[-0.0064, 0.0715]
0.0075, 0.0298]
-0.0499, 0.0081]
[-0.0476, -0.0157]
0.0091, 0.0339]

-0.0166
0.0262
0.0326
0.0187
-0.0209
-0.0316
0.0215

future research. (i) Microbiome Mediation Analysis. Recently, increasing studies have stud-

ied the biological mechanisms whether the microbiome play a mediating role between an

exposure and a clinical outcome (Sohn and Li, 2019). For improving the powers of media-

tion effect testing, it is desirable to use the AJS test method when performing microbiome

mediation analysis. (ii) Multiple-Mediator Testing with FDR control. We have studied the

theoretical and numerical performances of AJS test method for multiple testing with FWER

control. It is useful to investigate the AJS test for multiple mediators with FDR control in

some applications.

Supplementary Material

The Supplementary Material includes Figures S.1-S.3, Tables S.1-S.6, the proofs of Theorems

1-3, the size of ASobel test, together with the manual for R package AdjMed.
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Supplementary Materials for
Efficient Adjusted Joint Significance Test and Sobel-Type
Confidence Interval for Mediation Effect

A  Proofs

In this section, we give the proof details of Theorems 1, 2, and 3.

Proof of Theorem 1. Under Hyg, the size of the AJS test is determined by

SZZ@(AJS’HO()) = ]P)(PAJS < (S‘Hoo) (Sl)

= ]P)(PAJS < 5, Tma:c Z )\n|HOO) + ]P)(PAJS < 67 Tmaar: > )\n|H00)7

where T4, = max{|T,|,|1s|}. It follows from lim,_,oo P(Tynaz > An|Hoo) = 0 that

lim ]P)(PAJS < (S, Tmaz 2 )\n‘HOO) S lim ]P)(Tma:v Z )\n‘HOO) (82)
n—00 n—00
= 0.

The distribution of P%g is noted to be a uniform distribution on the interval (0,1), with

probability approaching one, under Hy, we can deduce that

lim P(Pass < 6, Thnaz < M|Hoo) = 1lim P(P7g < 6, Trnaz < An|Hoo) (S.3)
n—oo n—o0

= lim P(PJs < §|Hy)
n—oo
= 9,

where the second equality holds because of the lim,, }P’(Tmm < A\ |H 00) = 1. The equations
(S.1), (S.2) and (S.3) imply that the asymptotic size of AJS given Hyg is bounded by 4.
Under Hig, the size of the AJS test is denoted as

SZZ€(AJS’H10) = IP(PAJS < 6|H10) (84)

= IED<PAJS < 57 Tmaz Z )\n|H10> + ]P(PAJS < 6; Tmax < )\n|H10>
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Under Hiy, with probability approaching one, we can derive that

lim ]P)(PAJS < (S, Tmaaz Z )\n|H10> = lim ]:P)(PJS < 5, Tmax Z )\n|H10) (85)
n—o00

n—oo

= lim P(Pﬂ < 57 Tmaa: 2 )‘n|H10)

n—0o0

n—00

pr— 6’
and

m P(Pass < 6, Thnae < An|Hio) < lim P(Thae < An|Hio) (S.6)
n—oo

n—oo

= 0,

where the last equality is due to lim,,_,« P(Tmam < )\n]Hlo) = 0. In view of (S.4), (S.5) and

(S.6), with probability approaching one, we have

lim Size(AJS|Hyy) = .

n—oo

The size of the AJS test under Hy, is bounded by ¢ in a similar manner. This ends the proof.

Proof of Theorem 2. For the multiple testing problem, we deduce the FWER of our
proposed AJS method under the significance level §. By the definition of FWER, we can
derive that

d

rwentass) = () {pil <o} [m6=1a)

k=1

= S p(Pls <o HY) + 3 P (PE < a/a| BE) + 3 P (PO <a/d| HY),

keQoo keQo keQor

where Qg = {k : HW k= 1,---,d}, Qo = {k : HD k = 1,---,d} and Qo = {k :
Hé]f),k =1,---,d}. In view of the fact that

ST P (Pg’f,)s <6/d \ Hg’(?) — Ry + Ry, (S.7)

keQoo
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where

Rl = Y P (PX‘}S <6/d,T, Hé§)>,
keQoo

Ry, = Z P (PIEXITI)S < 5/d7 Tmaw,k <A 00))7
keQoo

where T4, = max(|Ty,, |, |T3,])- In view of the fact that lim, oo P(Thaar > An ‘ Hég)) =0,

the term R; satisfies the following expression:

im R < > lim P (Tmm,k >\, Hgg>) (S.8)
n—oo kEQOO n—oo
_

In addition, with probability approaching one, we get

lim By, = > lim IP’( ) < 6/d, Taos < An
n—oo

n—oo
kEQoo

- 3 hmP({PJ }? < 6/d, Trazse < An

kEQoQ

k
)

)
00

= Z hm P({PJ }2<5/d‘H0(’8)

Eoo

00l y (5.9)
Hence, with probability approaching one, it follows from (S.7), (S.8) and (S.9) that

: k k g
Jim Z P <P1£1J)S <d/d ‘ H(go)> < |Qoo|a- (S.10)
kEQoo

Next, we focus on the asymptotic upper bound of ZZZI P (PXT}S <d/d ‘ H{?) to control
the FWER. To be specific, we note that

S B (Pl <o/d| H) = Ry + Ry, (8.11)
keQio
where
Ry = 3 (P < 6/d Tpes > M| HY).
keQio
R4 = Z P (PIEXITI)S < 5/d, Tm(zm,k < )\n Hl(é:)>
keQio
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With probability approaching one, some direct deductions lead to that

lim Ry = lim Y P (PAJS < 6/d, Tase = M

n—oo n—o0

keQo
= lim > P (P < 0/d, Taep = A,

keQio

. k) k)
< Jfim 30 PP < o] )
keQio

)
= E|Qlo|’ (S.12)

")

W)

and

lim Ry = lim ZIP( PP < 5/d, Trawk < An

n—00 n—00
(k)
10

H{’g)) (S.13)
keQio

< .

=~ 1}1_{20 Z P (Tmaa:,k < )\n

kEQm

= 0,

where the last equality is from lim,, oo P(Thna0 ke < An|H{§)) = 0. Based on (S.11), (S.12) and
(S.13), we have

i 3 P (e <ojalmy) < touly

In a similar procedure, with probability approaching one, it can be demonstrated that
im0 Y reao, ]P’(PAIZ)S < d0/d | Holf)) < |Q01|0/d. Therefore, with probability approach-
ing one, the asymptotic upper bound of AJS’s FWER is

. ) ) )
lim FWER(AJS) < |Qoo|a + |QIO‘E + |QOI|E

n—0o0

= 4,

where the last equality is due to |Qgo| + |Q10] + Q01| = d. This completes the proof.

Proof of Theorem 3. By the definition of ASobel-type confidence interval, we have
]P)(Oéﬁ € CIASobel\a = 6 = O) (8.14)
= P(aﬁ S CIASOb617 maxr )\ |Of - - O) + ]P)(CYB € CIASobela Tma:c < )\n|a = /6 = O)a
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where the term T,,,,, = max(|T,|, |T3|) satisfying lim, oo P(Trae > An|lao = 5 =0) = 0 and
limy, o0 P(Thae < AnJa = 8 = 0) = 1. From the definition of Clagene, With probability

approaching one, it is straightforward to derive the following expressions:

lim ]P)(Oéﬁ € CIASObelaTmax > )\n‘a = 5 = O) S lim P<Tmaa: 2 )\n|@ = ﬁ = 0)

n—o0 n—oo

= 0, (S.15)
and

lim P(af € Clasobel, Trnaz < Anla=5=0) = 1— li_)m P(|Tsober| > Ni—5/2(0,1/4)|ac = B = 0)

n—oo

- 1-4 (S.16)

where Tsoper = (@3 —f3) /6o, and Ni_5/2(0,1/4) denotes the (1—§/2)-quantile of N(0,1/4).
From (S.14), (S.15) and (S.16), with probability approaching one, we can derive that

lim P(Oéﬁ € CIASobel‘Oé = 5 = 0) =1-4.
n—00

Next, we derive the asymptotic coverage probability of Clagene under a = 0, 5 # 0. Note
that

]P)(O./ﬁ € CIAsobe1|a = O,ﬁ 7é 0) (817)
- ]P)<046 S CIASobelaTmaz Z >\n|a - 07 /8 7é 0) + P(O{ﬁ S CIASobelaTmaac < /\n|05 - 076 7é 0)
With probability approaching one, some calculations lead to that

lim ]P(Oéﬁ S CIASobebTmam > )\nla = 076 7£ O) = 1-— lim IED(uﬂ’SObel| > N1—6/2(07 1)‘@ = 075 # O)
n—»00

n—oo

= 1-—9, (S.18)
together with

lim P(@ﬁ € Clasobels Trnaz < )\n|oz =0,0 7& O) < lim P(Tmam < )\n|0é =0,0 7é 0)

n—00 n—oo

= 0, (S.19)
where the last equality is derived from
m P(Thee = Mja=0,8#0)=1— lim P(T,,0. < \|Ja=0,8#0)=1.
n—ro0 n—oo
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In view of (S.17), (S.18) and (S.19), with probability approaching one, under ao = 0,8 # 0

we can derive the asymptotic coverage probability of Clagepel as
lim P(Oéﬁ S CIASobel|a = 0,5 7é 0) = 1-09.
n—oo
In a similar way, with probability approaching one, it can be deduced that

lim P(af € Clasopa|a # 0,6 =0) =1—4.

n—oo
Lastly, we focus on deducing the asymptotic coverage probability of Clageper under o #

0, 8 # 0. Specifically, we can derive that
P(Ozﬂ € CIAsObella 75 0,8 7£ 0) (SQO)
- ]P)<Oéﬁ S CIASobel; Tmax 2 )\n|a 7A 07 B ?A 0) + ]P)(Oéﬁ S CIASobelaTmam < >\n|a 7é Ovﬁ 7& 0)7

where

nh—>nolo]P)(aB € CIASobelaTmam Z )\nla # Oa ﬁ 7é O) = 1- nh—>Holo ]P)(’TSobel| > N1—6/2(07 1)|Oé # 07 5 % O)
- 1.4 (S.21)

and

lim P(af € Clasobels Tnae < Anla £ 0,8 #£0) < lim P(Thae < Anla £ 0,8 # 0)
n—0o0

n— o0

= 0. (S.22)
Here the last equality is due to
Tim B(Tae > Adla# 0,6 #0) = 1 lim P(Tar < Ao # 0,5 #0) = 1.
With probability approaching one, it follows from (S.20), (S.21) and (S.22) that lim,, . P(af €
Clasobel|@ # 0,8 # 0) = 1 — 4. This ends the proof.

B The Size of ASobel Test

In this section, we provide the proof details for the size of ASobel test. Under Hyy, it follows
from the decision rule of the ASobel test that

SiZG(ASObG”HO()) = ]P(PASobel <5|H00) (823)
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- ]P(PASObel < 57 Tma:v < /\n|HOO) + ]P(PASObel < 57 Tma:v Z /\n|H00)7

where T}, = max(|T,|, |T3|). From the definition of Pagepe; and limy, oo P(Thnaz > An|Hoo) =

0, with probability approaching one, it is straightforward to derive the following expressions:

lim P(-PASobel < 5; Tmaw Z /\n|HOO) S lim ]P(Tmax Z /\n|HOO)

n—0o0 n—oo
=0, (S.24)
and
Tim P(Pasuer < 6, Tnaw < Ml Hoo) = lim P(2{1 = Do (| Tsona)} < 0| Hoo

= TLILIEO]P)(lTSobe” > Ni_s5/2(0,1/4)|Hyo)
_ 5, (S.25)

where ®x(1/4)(-) is the cumulative distribution function of N(0,1/4), and Ni_;5,2(0,1/4)
denotes the (1 —4§/2)-quantile of N(0,1/4). From (S.23), (S.24) and (S.25), with probability

approaching one, we can derive that

lim Size(ASobel|Hyy) = 0.

n—oo

Under H,y, we have

SiZG(ASOb@”Hlo) = P(PASobel < 5|H10) (826)

= IP>(PAS0bel < 57 Tmax Z An’Hlo) + IED(PASObel < 57 Tmaoc < An’Hlo)
With probability approaching one, some calculations lead to that

Tim P(Pasorer < 8, Tonae > Ml Hio) = lim P(2{1 = (0.1 (| Tt )} < 6| Ho)

= JLI&POTSOIE” > Ni_5/2(0,1)|Hyo)
_ 5 (S.27)

together with

lim IP><PASobel < 67 Tmax < )\n’Hlo) S lim ]P)<Tmax < )\n|H10)
n—oo

n—oo

= 0, (S.28)
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where Ny_5/5(0,1) is the (1 — §/2)-quantile of N(0,1). In view of (S.26), (S.27) and (S.28),
with probability approaching one, we get

lim Size(ASobel|Hyy) = 0.

n—oo

In a similar way, with probability approaching one, we can conclude that the size of ASobel
given Hy; is 6 as n tends to infinity. The proof for the size of ASobel test ends here.
In what follows, we provide more insights about the size of Sobel test. Note that the size

of traditional Sobel test under Hy is

SiZG(SObel’Hoo) =P (2{1 — (I)N(O,l)(’TSobel’) < 5’[‘[00)
= P (|Tsober] > Ni—5/2(0,1)|Hoo)

= 2{1 — Pno1/9(N1-52(0,1))}.
By deducing the difference between Size(Sobel|Hy) and the significance level §, we have

SZ‘ZG(SOZ)G”HO()) -0 = 2{1 - (I)N(071/4)(N1,5/2(0, 1))} -0

< 0,

which provides a theoretical explanation about the conservative performance of traditional
Sobel test under Hyy. Therefore, the proposed ASobel test has a significant improvement

over traditional Sobel test in terms of size under Hyy.

C Figures S.1-S.3 and Tables S.1-S.6

The following section provides Figures S.1-S.3, together with Tables S.1-S.6 for the simulation

section discussed in the main paper.
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Figure S.1: The histogram of p-values for («, 5) = (0,0) with A, = v/n/log(n).
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Table S.1: The size and power of hypothesis testing with logistic mediation model.

0.15, 0.20) 0.7384 0.8124 0.7854 0.8570  0.8708
0.25, 0.30) 0.9866 0.9886 0.9886 0.9866 0.9886

(o, B) Sobel JS Bootstrap ASobel  AJS
n =200 (0, 0) 0 0.0030 0.0024 0.0486  0.0478
(0.5, 0) 0.0368 0.0476  0.0524 0.0368 0.0476
(0, 0.65) 0.0182 0.0486 0.0524 0.0506 0.0724
(0.15, 0.20) 0.0350 0.1354 0.0882 0.2826  0.3206
(0.25, 0.30) 0.2542 0.4296  0.3600 0.3680  0.4974
n =500 (0, 0) 0 0.0018 0.0020 0.0476  0.0484
(0.5, 0) 0.0448 0.0472 0.0494 0.0448 0.0472
(0, 0.65) 0.0382 0.0530  0.0570 0.0398  0.0544
(0.15, 0.20) 0.2960 0.4840 0.3982 0.6492  0.6680
(0.25, 0.30) 0.7966 0.8344 0.8354 0.8046 0.8374
n = 1000 (0, 0) 0 0.0018 0.0010 0.0518  0.0528
(0.5, 0) 0.0516 0.0532 0.0558 0.0516  0.0532
(0, 0.65) 0.0446 0.0510  0.0592 0.0446  0.0510
(
(
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Table S.2: The size and power of hypothesis testing with Cox mediation model.

(o, B) Sobel JS Bootstrap ASobel  AJS
n =200 (0, 0) 0 0.0030 0.0018 0.0428  0.0448
(0.5, 0) 0.0396 0.0498  0.0494 0.0396  0.0498
(0, 0.5) 0.0376 0.0510 0.0604 0.0382 0.0514
(0.15, 0.15) 0.0802 0.2322 0.2024 0.3552  0.4302
(0.25, 0.25) 0.5738 0.7494  0.7276 0.6522  0.7918
n=>500 (0, 0) 0.0006 0.0044 0.0028 0.0546  0.0576
(0.5, 0) 0.0512 0.0558 0.0576 0.0512  0.0558
(0, 0.5) 0.0482 0.0570  0.0572 0.0482  0.0570
(0.15, 0.15) 0.5236 0.7266 0.7100 0.8156  0.8452
(0.25, 0.25) 0.9920 0.9946 0.9946 0.9922  0.9948
n = 1000 (0, 0) 0 0.0026 0.0016 0.0482  0.0480
(0.5, 0) 0.0484 0.0494 0.0520 0.0484 0.0494
(0, 0.5) 0.0432 0.0462  0.0498 0.0432  0.0462
(0.15, 0.15) 0.9486 0.9754 0.9750 0.9786 0.9860
(0.25, 0.25) 1 1 1 1 1
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Figure S.2: Q-Q plots of p-values under logistic mediation model with n = 500.
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Figure S.3: Q-Q plots of p-values under Cox mediation model with n = 500.

43



Table S.3: The FWER and power of multiple testing with logistic mediation model.

Dimension Sobel JS JT_Comp DACT Bootstrap AJS
n=200 d=10 FWER 0.0030 0.0058  0.1480 0 0.0092 0.0438
Power 0.0722 0.1586  0.1752  0.0155 0.1645 0.2055
d=15 FWER 0.0020 0.0050  0.1568  0.0008 0.0048  0.0474
Power 0.0546 0.1318  0.1721 0.0454 0.1204  0.1676
d=20 FWER 0.0016 0.0038  0.1718  0.0020 0.0022 0.0500
Power 0.0401 0.1072  0.1738  0.0740 0.0756  0.1398
n=>500 d=10 FWER 0.0046 0.0094  0.1424 0 0.0136  0.0594
Power 0.3617 0.4860  0.2967  0.0138 0.5004  0.5486
d=15 FWER 0.0040 0.0094  0.1576 0 0.0112 0.0592
Power 0.3263 0.4522  0.3012  0.0640 0.4653  0.5116
d =20 FWER 0.0026 0.0052  0.1650  0.0004 0.0088  0.0650
Power 0.2998 0.4316  0.3156  0.1651 0.4432 0.4887
n =1000 d=10 FWER 0.0058 0.0110  0.1432 0 0.0154  0.0468
Power 0.6410 0.7287  0.4536  0.0067 0.7417  0.7677
d=15 FWER 0.0040 0.0068  0.1410 0 0.0114  0.0438
Power 0.6018 0.6985  0.4526  0.0771 0.7139  0.7382
d=20 FWER 0.0040 0.0050  0.1710  0.0002 0.0092 0.0526
Power 0.5778 0.6809  0.4772  0.2488 0.6993  0.7216
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Table S.4: The FWER and power of multiple testing with Cox mediation model.

Dimension Sobel JS JT_Comp DACT Bootstrap AJS
n=200 d=10 FWER 0.0030 0.0108  0.1348 0 0.0124  0.0242
Power 0.0687 0.2009  0.2116  0.0204 0.1713  0.2536
d=15 FWER 0.0028 0.0100  0.1480  0.0002 0.0104  0.0334
Power 0.0470 0.1703  0.2049  0.0545 0.1297  0.2128
d=20 FWER 0.0030 0.0070  0.1564  0.0036 0.0076  0.0404
Power 0.0349 0.1513  0.2118  0.1037 0.1003  0.1872
n=>500 d=10 FWER 0.0090 0.0120  0.1550 0 0.0148  0.0286
Power 0.4104 0.5449  0.4225  0.0128 0.5412 0.6546
d=15 FWER 0.0048 0.0082  0.1566 0 0.0106  0.0370
Power 0.3800 0.5089  0.4175  0.0876 0.5030  0.6148
d=20 FWER 0.0038 0.0062  0.1776  0.0004 0.0092 0.0402
Power 0.3614 0.4918  0.4306  0.2160 0.4851 0.5978
n =1000 d=10 FWER 0.0098 0.0112  0.1666 0 0.0146  0.0254
Power 0.6741 0.7966  0.5256  0.0066 0.8020  0.8470
d=15 FWER 0.0060 0.0072  0.1606 0 0.0100  0.0370
Power 0.6330 0.7689  0.5265  0.1056 0.7769  0.8274
d=20 FWER 0.0028 0.0034  0.1848 0 0.0078  0.0388
Power 0.6018 0.7490  0.5414  0.3100 0.7589  0.8146
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Table S.5: The coverage probability and length of 95% confidence interval with logistic

mediation model?.

Cp LCI
(ozk, Bk) Sobel Bootstrap ASobel Sobel  Bootstrap ASobel
n =200 (0, 1 0.9976 0.9462 0.09662  0.18394  0.05037
(0.35, 0) 0.9644 0.9396 0.9596 0.38635  0.60982  0.38482
(0.5, 0) 0.9508 0.9394 0.9508 0.54536  0.85866  0.54536
(0, 0.75) 0.9920 0.9614 0.9030 0.25726  0.38664  0.22188
(0, 0.8) 0.9870 0.9530 0.9072 0.27034  0.40778  0.24024
(0.35, 0.75) 0.9480 0.9182 0.9470 0.48502  0.94437  0.48440
(0.45, 0.85) 0.9526 0.9000 0.9526 0.60453  1.22664  0.60453
n=>500 (0, 0) 0.9998 0.9976 0.9514 0.03471  0.05171  0.01737
(0.35, 0) 0.9526 0.9416 0.9526 0.22141  0.24178  0.22141
(0.5, 0) 0.9490 0.9450 0.9490 0.31457  0.34101  0.31457
(0, 0.75) 0.9710 0.9482 0.9334 0.14251  0.15533  0.13613
(0, 0.8) 0.9712 0.9502 0.9474 0.15098  0.16404  0.14711
(0.35, 0.75) 0.9492 0.9388 0.9492 0.27651  0.29945  0.27651
(0.45, 0.85) 0.9482 0.9328 0.9482 0.34346  0.37253  0.34346
n = 1000 (0, 0) 1 0.9994 0.9478 0.01686  0.02423  0.00843
(0.35, 0) 0.9528 0.9454 0.9528 0.15165  0.15741  0.15165
(0.5, 0) 0.9516 0.9496 0.9516 0.21613  0.22400  0.21613
(0, 0.75) 0.9616 0.9472 0.9564 0.09632  0.10023  0.09582
(0, 0.8) 0.9598 0.9454 0.9582 0.10266  0.10656  0.10247
(0.35, 0.75) 0.9422 0.9392 0.9422 0.18969  0.19623  0.18969
(0.45, 0.85) 0.9498 0.9414 0.9498 0.23585  0.24425  0.23585

T “CP” denotes the empirical coverage probability; “LCI” denotes the length of 95% confidence interval.
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Table S.6: The coverage probability and length of 95% confidence interval with Cox media-

tion modelt.

Cp LCI
(ozk, Bk) Sobel Bootstrap ASobel Sobel  Bootstrap ASobel
n =200 (0, 0.9998 0.9984 0.9530 0.03376  0.05178  0.01757
(0.35, 0) 0.9624 0.9494 0.9568 0.13767  0.15948  0.13704
(0.5, 0) 0.9488 0.9446 0.9488 0.19484  0.22181  0.19484
(0, 0.5) 0.9688 0.9484 0.9652 0.14885  0.16165  0.14850
(0, 0.45) 0.9746 0.9482 0.9644 0.13393  0.14657  0.13277
(0.45, 0.55) 0.9402 0.9464 0.9402 0.24669  0.27106  0.24669
(0.35, 0.35) 0.9390 0.9500 0.9390 0.17099  0.18929  0.17093
n=>500 (0, 0) 0.9998 0.9982 0.9490 0.01259  0.01822  0.00632
(0.35, 0) 0.9538 0.9436 0.9538 0.08157  0.08544  0.08157
(0.5, 0) 0.9452 0.9382 0.9452 0.11612  0.12078  0.11612
(0, 0.5) 0.9554 0.9410 0.9554 0.09002  0.09254  0.09002
(0, 0.45) 0.9602 0.9458 0.9602 0.08146  0.08394  0.08146
(0.45, 0.55) 0.9506 0.9458 0.9506 0.14883  0.15322  0.14883
(0.35, 0.35) 0.9490 0.9498 0.9490 0.10299  0.10620  0.10299
n = 1000 (0, 0) 0.9996 0.9990 0.9504 0.00622  0.00882  0.00311
(0.35, 0) 0.9552 0.9492 0.9552 0.05656  0.05752  0.05656
(0.5, 0) 0.9476 0.9424 0.9476 0.08074  0.08179  0.08074
(0, 0.5) 0.9518 0.9462 0.9518 0.06271  0.06350  0.06271
(0, 0.45) 0.9568 0.9500 0.9568 0.05659  0.05731  0.05659
(0.45, 0.55) 0.9490 0.9448 0.9490 0.10378  0.10486  0.10378
(0.35, 0.35) 0.9506 0.9494 0.9506 0.07145  0.07224  0.07145

T “CP” denotes the empirical coverage probability; “LCI” denotes the length of 95% confidence interval.
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D The manual for R package “AdjMed”

The following section presents detailed instructions on the practical implementation of the

R package AdjMed, including two functions AJS() and ASobel(). First we can install the

AdjMed from the GitHub with the following R codes:

> library(devtools)

> devtools::install _github("zhxmath/AdjMed")

The R function AJS() is used to perform adjusted joint significance test for mediation effect.

The arguments when implementing the AJS() are given as follows:

> AJS(X, M, Y, Z, Delta, Model)

Table S.7: Overview of the arguments in functions AJS() and ASobel ()

Arguments

Description

X
M

Model

Delta

tau

a vector of exposures.

a matrix of continuous mediators. Rows represent samples,
columns represent variables.

a vector of observed outcomes.

a matrix of covariates. Rows represent samples, columns repre-
sent variables, Z= "null" when the covariates are not available.
the type of outcome. Model= "Linear" for continuous out-
come; Model= "Logistic" for binary outcome; Model= "Cox"
for time-to-event outcome with Cox model.

a vector of indicators for Model= "Cox", where 1=uncensored,
O=censored; Delta="null" when Model= "Linear" and Model
= "Logistic".

the (1-tau)% confidence level; e.g., tau=0.05 denotes 95% confi-
dence level. The term is exclusively intended for the implemen-

tation of ASobel().

The ASobel () is used to perform adjusted Sobel-type confidence interval for mediation
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effect, where the arguments are
> ASobel (X, M, Y, Z, Delta, Model,tau)

In Tables S.7 and S.8, we present the arguments and outputs of R functions AJS() and

ASobel ().

Table S.8: The outputs of R functions AJS() and ASobel ()
Arguments Description
alpha_est coeflicient estimate of exposure (X) — mediator (M).
alpha SE the standard error for alpha_est.
beta_est coefficient estimate of mediator (M) — outcome (Y).
beta_SE the standard error for beta_est.
P_AJS the p-values of mediation tests towards AJS().
CI_Asobel the (1-tau)% confidence intervals for mediation effects.

An illustrative R example of linear mediation model is provided as follows:

library (MASS)
library (survival)
library (AdjMed)
p <— 5 # the dimension of mediators
q<— 2
n <— 500
alpha <— matrix(0,1,p) # the coefficients for X —>M
beta <— matrix(0,1,p) # the coefficients for M—>Y
alpha[1:3] <— 0.5
beta[1:3] <— 0.5
sigma_e <— matrix (0,p,p)
rou <— 0.25 # the correlation of M
for (i in 1:p) {

for (j in 1:p)

sigma_e[i,]j]=(rou"(abs(i—j)));
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X <~ matrix(rnorm (n, mean = 0, sd = 1),n,1) # expoure

zeta <— matrix (0.3,p,q) # the coefficients of covariates for X —> M
eta <— matrix(0.5,1,q) # the coefficients of covariates for M—>Y
gamma <— 0.5 # the direct effect

gamma_total <— gamma + alpha%«%t (beta) # the total effect

E <— matrix(rnorm(n, mean = 0, sd = 1),n,1)

mu <— matrix (0,p,1)

e <— mvrnorm(n, mu, sigma_e)

M <~ 0.5+ X%*%(alpha) + e # the mediators

Y <— 0.5 + Xsgamma + M=%t (beta) + E # the response Y

fit_AJS <- AJS(X, M, Y, Z="null", Delta="null", Model="Linear")
fit_ASobel <- ASobel(X, M, Y, Z="null", Delta="null", Model="Linear",tau=0.05)
fit_AJS

fit_ASobel
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