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Abstract. We focus on the Cauchy problem of the magnetic Zakharov system

in two-dimensional space:

iE1t + ∆E1 − nE1 + ηE2

(
E1E2 − E1E2

)
= 0,

iE2t + ∆E2 − nE2 + ηE1

(
E1E2 − E1E2

)
= 0,

nt +∇ · v = 0,

vt +∇n+∇
(
|E1|2 + |E2|2

)
= 0,

(G− Z)

(E1, E2, n,v)(0, x) = (E10, E20, n0,v0)(x). (G− Z − I)
System (G-Z) describes the spontaneous generation of a magnetic field without
the skin effect in a cold plasma, and η > 0 is the magnetic coefficient. The

nonlinear cubic coupling terms E2

(
E1E2 − E1E2

)
and E1

(
E1E2 − E1E2

)
generated by the cold magnetic field bring additional difficulties compared

with the classical Zakharov system. If the initial mass meets a presettable

condition

||Q||2
L2(R2)

1 + η
< ||E10||2L2(R2)

+ ||E20||2L2(R2)
<
||Q||2

L2(R2)

η
,

whereQ is the unique radially positive solution of the equation−∆V +V = V 3,

we prove that there is a constant c > 0 depending only on the initial data such

that for t near T (the blow-up time),

‖(E1, E2, n,v)‖H1(R2)×H1(R2)×L2(R2)×L2(R2) >
c

T − t
.

As the magnetic coefficient η tends to 0, the blow-up rate recovers the result

for the classical 2-D Zakharov system due to Merle [16]. On the other hand,

for any positive η, the result of this paper reveals a rigorous justification that
the optimal lower bound of the blow-up rates is not affected by the presence

of magnetic field without the skin effect in a cold plasma.
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1. Introduction and main results

The magnetic Zakharov system

iEt +∇∇ ·E− nE− α∇× (∇×E) + i(E ∧B) = 0,

∂tn = −∇ · v,

∂tv = −∇n−∇|E|2,

∆B− iη∇×∇×
(
E ∧E

)
+ A = 0,

(I)

is proposed to describe the spontaneous generation of a magnetic field in a cold
plasma [12]. Here, E = (E1, E2, E3) ∈ C3 denotes the slowly varying complex
amplitudes of the high-frequency electric field, n the fluctuation of the electron
density from its equilibrium, B the self-generated magnetic field in a cold plasma,
A = δB, δ ≤ 0, η > 0 and α ≥ 1 are all physical constants. In particular, the
Zakharov system (I) is a Schrödinger-wave coupled system with different scalings.
It keeps two conservation laws including the total mass

‖E‖2L2(R2) = ‖E1‖2L2(R2) + ‖E2‖2L2(R2) + ‖E3‖2L2(R2), (II)

as well as the total energy

H := ||∇ ×E||2L2(R2) + ||∇ ·E||2L2(R2)

+
1

2
||n||2L2(R2) +

1

2
||v||2L2(R2) +

∫
R2

n|E|2dx

+
η

2

∫
R2

1

|ξ|2 − δ

(∣∣ξ · F(E×E)
∣∣2 − |ξ|2 ∣∣F(E×E)

∣∣2) dξ.
(III)

In the cold plasma, the term δB describes the classical (collisionless) skin effect, α
is related to the velocity of electrons and the plasma frequency [12]. In the present
paper, we shall mainly focus on the case of δ = 0 and α = 1, that is, the skin effect
would not be involved and the velocity of electrons increases synchronously with
the frequency of plasma.

From a physical point of view, the two-dimensional case for E is essential since
the electric fields usually traverse straightly with the reference planes. Let

E(t, x) = (E1(t, x), E2(t, x), 0) , x ∈ R2.

Through standard computations, one obtains

B(t, x) = (0, 0, B3(t, x)) =
(
0, 0,−iη

(
E1E2 − E1E2

))
by the fact that∇·

(
E ∧E

)
= 0 and the vectorial identity ∆E = ∇(∇·E)−∇×∇×E.

On the other hand, the interaction term involving the electronic and magnetic fields
enjoys the following expression:

iE ∧B = ηE ∧E ∧E = η
(
E2

(
E1E2 − E1E2

)
, E1

(
E1E2 − E1E2

)
, 0
)
.
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Then (I) becomes a system

i∂tE1 + ∆E1 − nE1 + ηE2

(
E1E2 − E1E2

)
= 0, (1.1− 1)

i∂tE2 + ∆E2 − nE2 + ηE1

(
E1E2 − E1E2

)
= 0, (1.1− 2)

∂tn+∇ · v = 0, (1.1− 3)

∂tv +∇n+∇
(
|E1|2 + |E2|2

)
= 0, (1.1− 4)

(1.1)

where E1(t, x), E2(t, x) : R+×R2 → C, n(t, x) : R+×R2 → R, v(t, x) : R+×R2 →
R2 are physical quantities mentioned earlier.

We supplement (1.1) with the initial condition:{
E1(0, x) = E10(x), E2(0, x) = E20(x),

n(0, x) = n0(x), v(0, x) = v0(x).
(1.2)

Due to the identity (III), the Hamiltonian for (1.1) can be schematically written in
the form

H(E1, E2, n,v)

= ‖∇E1‖2L2 + ‖∇E2‖2L2 +
1

2
‖n‖2L2 +

1

2
‖v‖2L2

+

∫
R2

n
(
|E1|2 + |E2|2

)
dx− η

2

∫
R2

∣∣E1E2 − E2E1

∣∣2 dx.
(1.3)

Clearly it is a well-defined functional on the energy space

H1 := H1(R2)×H1(R2)× L2(R2)× L2(R2). (1.3∗)

The blow-up dynamics of the two dimensional classical Zakharov system have been
studied in detail by several authors [10, 11, 15, 16]. For the Zakharov system
with magnetic field effect (I), Laurey in [13] proved the global existence of weak
solutions for small initial data as well as the local existence and uniqueness of
smooth solutions in both two-dimensional and three-dimensional spaces. Based
on Laurey’s work [13], over the last decade, finite time blow-up dynamics for (I)
were considered. Gan, Guo and Huang in [7] constructed a family of blow-up
solutions in two-dimensional space, proved the existence of self-similar blow-up
solutions and established the instability and the concentration property of a class
of periodic solutions. In [6], the authors studied the Virial type blow-up solutions
of the Cauchy problem for (I). Later, the authors in [8] established the space-time
integral estimate of the blow-up rate for the finite time blow-up solutions to (I) in
three dimensional space. These arguments naturally carry on system (1.1).

To our best knowledge, very few results on the lower bound of the blow-up rates
are known for Zakharov system, especially for (1.1). Our aim here is to establish
the (essentially optimal) lower bound of the blow-up rates for the finite time blow-
up solutions to system (1.1).

Let us state a few preliminary results.
Firstly, with the methods used in [1, 2, 3, 9], the local well-posedness of mild

solutions of (1.1) in the energy space can be established:

Proposition 1.1. The two dimensional magnetic Zakharov system (1.1) is locally
well-posed in the energy space H1, which is defined by (1.3*). That is, there exists
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a unique solution (E1, E2, n,v) satisfying

‖(E1, E2, n,v)(t)‖H1
≤ C, ∀t ∈ [0, T ),

where T is the maximal existence time of the solution and C is a constant depending
only on initial data. �

Next, following Gan, Guo, Han and Zhang [6], we claim the virial-type blow-up
result for the Cauchy problem (1.1)-(1.2).

Proposition 1.2. Let η > 0 and let the solutions (E1, E2, n,v) (t) to the Cauchy
problem (1.1)-(1.2) be radially symmetric functions on R2 for all time. If
H (E10, E20, n0,v0) < 0, then the following alternative holds:

(i) (E1, E2, n,v) (t) blows up in finite time,

(ii) (E1, E2, n,v) (t) blows up at infinity. That is, (E1, E2, n,v) (t) is defined for
all t and

lim
t→+∞

‖(E1, E2, n,v)‖H1(R2)×H1(R2)×L2(R2)×L2(R2) = +∞. �

With these results, it is natural to expect more quantitative descriptions on the
behaviour of solutions as t near T , where T < ∞ is the blow-up time. Com-
pared with the classical Zakharov system, the two extra nonlinear cubic coupling
terms E2

(
E1E2 − E1E2

)
and E1

(
E1E2 − E1E2

)
in (1.1) generated by the cold

magnetic field without the skin effect do bring a further challenge. If the initial
mass meets the presettable condition:

||Q||2L2(R2)

1 + η
< ||E10||2L2(R2) + ||E20||2L2(R2) <

||Q||2L2(R2)

η
, (1.4)

where Q is the unique radially positive solution of the equation

−∆V + V = V 3, (1.5)

we can prove that there is a constant c > 0 depending only on the initial data such
that for t near T (the blow-up time),

‖(E1, E2, n,v)‖H1
>

c

T − t
.

The main result of this paper is as follows:

Theorem 1.3. Let (E1, E2, n,v) (t) be the finite time blow-up solution of the
Cauchy problem (1.1)-(1.2), and T < ∞ be the blow-up time. Suppose that the
initial data (E10, E20) satisfies the condition (1.4), where Q is the unique radial
positive solution of equation (1.5), then there exist constants c > 0, c̃ > 0 depending
only on initial data, such that as t near T ,
(1)

‖(E1, E2, n, v)(t)‖H1
>

c

T − t
, (1.6)(

‖∇E1(t)‖2L2(R2) + ‖∇E2(t)‖2L2(R2)

) 1
2

>
c̃

T − t
, (1.7)

||n(t)||L2(R2) >
c̃

T − t
. (1.8)

More precisely, we have
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(2) (
||∇E1(t)||2L2(R2) + ||∇E2(t)||2L2(R2)

) 1
2

>
c(

||E10||2L2(R2) + ||E20||2L2(R2) −
||Q||2

L2(R2)

1+η

) 1
2

1

T − t
, (1.9)

‖n(t)‖L2(R2) >
c(

||E10||2L2(R2) + ||E20||2L2(R2) −
||Q||2

L2(R2)

1+η

) 1
2

1

T − t
. (1.10)

The assumption on the lower bound for the initial mass is natural, especially
for small η > 0, as it is basically the minimal mass needed for blow-up to occur.
Indeed, as the magnetic coefficient η tends to 0, the blow-up rate recovers the
result of the classical 2-D Zakharov system due to Merle [16]. Whether or not the
upper bound given in (1.4) is optimal remains open, but the assumption satisfies
automatically for prescribed finite mass if η is sufficiently small. For large η, on
the other hand, our result is in some sense more intriguing. It provides a mass
band in which one can get more precise information for blow-ups. Indeed, under
the presettable condition (1.4), Theorem 1.3 provides a rigorous justification that
the presence of magnetic effects without the skin effect in the cold plasma does not
change the optimal lower bound for the blow-up rates.

Remark 1.4. In [7], Gan, Guo and Huang constructed a family of blow-up solutions
to the Cauchy problem (1.1)-(1.2):

E1(t, x) = ω
T−te

i

(
θ+

|x|2
4(−T+t)

− ω2

−T+t

)
P̃ ( xω

T−t )
√

2
,

E2(t, x) = −iE1(t, x),

n(t, x) = ω2

(T−t)2 Ñ
(
xω
T−t

)
,

(1.11)

where P̃ (x) = P̃ (|x|), Ñ(x) = Ñ(|x|) are radial functions on R2, θ ∈ R and ω > 0.

Let P̃ = P

(1+η)
1
2
, Ñ = N

1+η , then (P,N) satisfies{
∆P − P + η

η+1P
3 = 1

η+1NP,

1
ω2 (r2Nrr + 6rNr + 6N)−∆N = ∆|P |2.

(1.12)

A straightforward calculation yields

||∇E1(t)||L2(R2) = ω
T−t ||∇P̃ ||L2(R2),

||∇E2(t)||L2(R2) = ω
T−t ||∇P̃ ||L2(R2),

||n(t)||L2(R2) = ω
T−t ||N ||L2(R2),

||v(t)||L2(R2) = ωc(P,N)
T−t .

(1.13)

These estimates imply that the lower bound estimates of blow-up rate (1.6), (1.7)
and (1.8) in Theorem 1.3 are indeed optimal. On the other hand, letting ω → +∞
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and (P,N) → (Q,−Q2), it yields that (1.9) and (1.10) in Theorem 1.3 are also
optimal. �

Let us emphasize that the Zakharov system (1.1) is a Hamiltonian system and
admits conservations of the total mass and total energy:

‖E1‖2L2(R2) + ‖E2‖2L2(R2) = ‖E10‖2L2(R2) + ‖E20‖2L2(R2), (1.14)

H(E1, E2, n,v) = H(E10, E20, n0,v0) = H0, (1.15)

where H(E1, E2, n,v) is defined in (1.3).
In stark contrast to the Zakharov system without the magnetic field effect, the

presence of extra nonlinear terms E2

(
E1E2 − E1E2

)
and E1

(
E1E2 − E1E2

)
(gen-

erated by the cold magnetic field) in (1.1) brings new difficulties in establishing
the lower bound of the blow-up rates. To this end, motivated by Merle’s heuristic
arguments covering the geometrical estimate, the non-vanishing estimate and the
compactness argument, involved in [16], we need to establish additional a priori
estimates for the extra nonlinear terms. On the other hand, we also need addi-
tional techniques from those adopted in [16]. In particular, to obtain the optimal
lower bound of blow-up rate, the initial mass needs to satisfy (1.4) so that we can
establish indispensable a priori estimates involving higher order nonlinear terms.
As mentioned earlier, the mass condition (1.4) is natural from both physical and
mathematical points of view. Indeed, by Lemma 2.2 in Section 2, it is standard to
conclude that the mild (no blow up) solution of (1.1) is globally well-defined if the
initial data (E10, E20) satisfies

||E10||2L2(R2) + ||E20||2L2(R2) <
||Q||2L2(R2)

1 + η
.

In [7] the authors pointed out that there is no mass-concentration at a finite time
provided

||E10||2L2(R2) + ||E20||2L2(R2) =
||Q||2L2(R2)

1 + η
.

Remark 1.5. The condition (1.4) is consistent with the blow-up dynamics of the
classical Zakharov system [11] when η → 0. The upper bound

||E10||2L2(R2) + ||E20||2L2(R2) <
||Q||2L2(R2)

η
.

means that multiple bubbles blow-ups may occur, even the blow-up rates are of
different orders. It is a very interesting issue for further study. �

The outline of the paper is as follows. The Section 2 (Preliminary) is mainly
devoted to some preparatory materials and technical results. Section 3 concerns
the analysis of the rescaled Zakharov system. In section 4 we prove the optimal
lower-bound of finite time blow-up rate (Theorem 1.3).

2. Preliminaries

In this section, we give some notations and basic estimates. Firstly we recall
several lemmas in [4, 5, 17].
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Lemma 2.1. Let Ω be a smooth bounded domain in Rn with n > 2 and 1
p + 1

q =

1. If fk ⇀ f in Lp(Ω), and gk → g in Lq(Ω) as k → +∞, then∫
Ω

fkgkdx→
∫

Ω

fgdx as k → +∞. �

Lemma 2.2. (Weinstein [17]) For all u ∈ H1(R2),

1

2
‖u‖4L4(R2) 6

(
‖u‖2L2(R2)

‖Q‖2L2(R2)

)
‖∇u‖2L2(R2),

where Q is the unique positive solution of (1.5). �

Since (1.1-1)-(1.1-2) and (1.1-3)-(1.1-4) have the same scaling on the spatial
structure but different space-time structures, it will conserve (1.1-1)-(1.1-2) and
(1.1-3)-(1.1-4), respectively. Taking a suitable space-time scaling to the Zakharov
system (1.1) can yield a rescaled system.

Proposition 2.3. Let (E1, E2, n,v) be the finite-time blow-up solutions to the
Zakharov system (1.1) and T be its blow-up time. For any t ∈ [0, T ), let

Ẽ1(t, s, x) = 1
λ(t)E1

(
t+ s

λ(t) ,
x
λ(t)

)
,

Ẽ2(t, s, x) = 1
λ(t)E2

(
t+ s

λ(t) ,
x
λ(t)

)
,

ñ(t, s, x) = 1
λ2(t)n

(
t+ s

λ(t) ,
x
λ(t)

)
,

ṽ(t, s, x) = 1
λ2(t)v

(
t+ s

λ(t) ,
x
λ(t)

)
,

(2.1)

where s ∈ [0, λ(t)(T − t)),

λ2(t) = ‖(E1, E2, n,v)‖2H1(R2)×H1(R2)×L2(R2)×L2(R2)

=

∫
R2

|∇E1(t, x)|2 dx+

∫
R2

|∇E2(t, x)|2 dx

+
1

2

∫
R2

|n(t, x)|2 dx+
1

2

∫
R2

|v(t, x)|2 dx.

(2.2)

Then (Ẽ1, Ẽ2, ñ, ṽ)(s) satisfies the following rescaled Zakharov system:

1
λ iẼ1s + ∆Ẽ1 − ñẼ1 + ηẼ2

(
Ẽ1Ẽ2 − Ẽ1Ẽ2

)
= 0, (2.3a)

1
λ iẼ2s + ∆Ẽ2 − ñẼ2 + ηẼ1

(
Ẽ1Ẽ2 − Ẽ1Ẽ2

)
= 0, (2.3b)

ñs +∇ · ṽ = 0, (2.3c)

ṽs +∇
(
ñ+ |Ẽ1|2 + |Ẽ2|2

)
= 0. (2.3d)

(2.3)
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In addition, there hold
(1)

lims→λ(t)(T−t)

∥∥∥(Ẽ1, Ẽ2, ñ, ṽ
)

(s)
∥∥∥2

H1(R2)×H1(R2)×L2(R2)×L2(R2)

= lims→λ(t)(T−t)

(∥∥∥∇Ẽ1(s)
∥∥∥2

L2(R2)
+
∥∥∥∇Ẽ2(s)

∥∥∥2

L2(R2)

+ 1
2 ||ñ(s)||2L2(R2) + 1

2 ||ṽ(s)||2L2(R2)

)
= +∞,

(2.4)

(2)∫
R2

(∣∣∣∇Ẽ1(t, 0, x)
∣∣∣2 +

∣∣∣∇Ẽ2(t, 0, x)
∣∣∣2 +

1

2
|ñ(t, 0, x)|2 +

1

2
|ṽ(t, 0, x)|2

)
dx = 1,

(2.5)
(3) ∥∥∥Ẽ1(t, s, x)

∥∥∥2

L2(R2)
+
∥∥∥Ẽ2(t, s, x)

∥∥∥2

L2(R2)

=
∥∥∥Ẽ1(t, 0, x)

∥∥∥2

L2(R2)
+
∥∥∥Ẽ2(t, 0, x)

∥∥∥2

L2(R2)

= ‖E10‖2L2(R2) + ‖E20‖2L2(R2) ,

(2.6)

and
(4)

H(Ẽ1, Ẽ2, ñ, ṽ)

=
∥∥∥∇Ẽ1

∥∥∥2

L2(R2)
+
∥∥∥∇Ẽ2

∥∥∥2

L2(R2)
+ 1

2 ||ñ||
2
L2(R2) + 1

2 ||ṽ||
2
L2(R2)

+

∫
R2

ñ
(
|Ẽ1|2 + |Ẽ2|2

)
dx− η

∫
R2

|Ẽ1|2|Ẽ2|2 dx

+
η

2

∫
R2

((
Ẽ1

)2 (
Ẽ2

)2

+
(
Ẽ1

)2 (
Ẽ2

)2
)
dx

=
1

λ2(t)
H(E1, E2, n,v)

=
1

λ2(t)
H(E10, E20, n0,v0).

(2.7)

Proof. According to (2.1), direct calculation provides
Ẽ1s = 1

λ2(t)E1t, ∆Ẽ1 = 1
λ3(t)∆E1, ∇

∣∣∣Ẽ1

∣∣∣2 = 1
λ3(t)∇|E1|2,

Ẽ2s = 1
λ2(t)E2t, ∆Ẽ2 = 1

λ3(t)∆E2, ∇
∣∣∣Ẽ2

∣∣∣2 = 1
λ3(t)∇|E2|2,

ñs = 1
λ3(t)nt, ∇ñ = 1

λ3(t)∇n, ∇ · ṽ = 1
λ3(t)∇ · v, ṽs = 1

λ3(t)vt.

(2.8)
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Taking (2.8) into (1.1) yields the rescaled Zakharov system (2.3). Similarly, we
deduces that ∥∥∥(Ẽ1, Ẽ2, ñ, ṽ

)
(t, s, x)

∥∥∥2

H1

=
∥∥∥∇Ẽ1(t, s, x)

∥∥∥2

L2(R2)
+
∥∥∥∇Ẽ2(t, s, x)

∥∥∥2

L2(R2)

+
1

2
‖ñ(t, s, x)‖2L2(R2) +

1

2
‖ṽ(t, s, x)‖2L2(R2)

=

∥∥∥∥ 1

λ2(t)
∇E1

∥∥∥∥2

L2(R2)

+

∥∥∥∥ 1

λ2(t)
∇E2

∥∥∥∥2

L2(R2)

+
1

2

∥∥∥∥ 1

λ2(t)
n

∥∥∥∥2

L2(R2)

+
1

2

∥∥∥∥ 1

λ2(t)
v

∥∥∥∥2

L2(R2)

=
1

λ2(t)

∫
R2

(
|∇E1|2 + |∇E2|2 +

1

2
|n|2 +

1

2
|v|2

)
(
t+

s

λ(t)
,
x

λ(t)

)
d

(
x

λ(t)

)
.

(2.9)

Note that t+ s
λ(t) → T as s→ λ(t)(T − t), one has

lim
s→λ(t)(T−t)

∫
R2

(
|∇E1|2 + |∇E2|2 +

1

2
|n|2 +

1

2
|v|2

)
(
t+

s

λ(t)
,
x

λ(t)

)
d

(
x

λ(t)

)
= +∞.

(2.10)

That is,

lim
s→λ(t)(T−t)

∥∥∥(Ẽ1, Ẽ2, ñ, ṽ
)

(t, s, x)
∥∥∥2

H1(R2)×H1(R2)×L2(R2)×L2(R2)
= +∞, (2.11)

this is the estimate (2.4). Furthermore, taking the inner product of (2.3a) with Ẽ1

and of (2.3b) with Ẽ2, integrating with respect to the spatial variable x, and taking
the imaginary part of the resulting equations yield

Im

∫
R2

[
i

λ
Ẽ1s · Ẽ1 + ∆Ẽ1 · Ẽ1 − ñẼ1 · Ẽ1 + ηẼ1Ẽ2

(
Ẽ1Ẽ2 − Ẽ1Ẽ2

)]
dx

= Re

∫
R2

1

λ
Ẽ1s · Ẽ1 dx− Im

∫
R2

η
(
Ẽ1

)2 (
Ẽ2

)2

dx

=
1

2λ

d

ds

∫
R2

∣∣∣Ẽ1

∣∣∣2 dx− Im ∫
R2

η
(
Ẽ1

)2 (
Ẽ2

)2

dx

= 0.
(2.12)

That is,
1

2λ

d

ds

∫
R2

∣∣∣Ẽ1

∣∣∣2 dx− Im ∫
R2

η
(
Ẽ1

)2 (
Ẽ2

)2

dx = 0. (2.13)

A similar argument gives

1

2λ

d

ds

∫
R2

∣∣∣Ẽ2

∣∣∣2 dx− Im ∫
R2

η
(
Ẽ1

)2 (
Ẽ2

)2

dx = 0. (2.14)
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(2.13) and (2.14) yield

d

ds

∫
R2

(∣∣∣Ẽ1

∣∣∣2 +
∣∣∣Ẽ2

∣∣∣2) dx = 0. (2.15)

Here we use the identity: Im
(
f2g2 + f

2
g2
)

= 0, ∀f, g ∈ C. Hence there holds

∥∥∥Ẽ1(t, s, x)
∥∥∥2

L2(R2)
+
∥∥∥Ẽ2(t, s, x)

∥∥∥2

L2(R2)

=
∥∥∥Ẽ1(t, 0, x)

∥∥∥2

L2(R2)
+
∥∥∥Ẽ2(t, 0, x)

∥∥∥2

L2(R2)
.

(2.16)

In addition, from the mass conservation (1.14) it follows that

∥∥∥Ẽ1(t, 0, x)
∥∥∥2

L2(R2)
+
∥∥∥Ẽ2(t, 0, x)

∥∥∥2

L2(R2)

=

∫
R2

(∣∣∣Ẽ1(t, 0, x)
∣∣∣2 +

∣∣∣Ẽ2(t, 0, x)
∣∣∣2) dx

=

∫
R2

1

λ2(t)

(
|E1|2 + |E2|2

)(
t,

x

λ(t)

)
dx

=

∫
R2

(
|E1|2 + |E2|2

)(
t,

x

λ(t)

)
d

(
x

λ(t)

)
= ‖E10‖2L2(R2) + ‖E20‖2L2(R2).

(2.17)

Note that

λ2(t) =

∫
R2

|∇E1|2 dx+

∫
R2

|∇E2|2 dx+
1

2

∫
R2

|n|2 dx+
1

2

∫
R2

|v|2 dx, (2.18)

one gets∫
R2

(
|∇Ẽ1(t, 0, x)|2 + |∇Ẽ2(t, 0, x)|2 +

1

2
|ñ(t, 0, x)|2 +

1

2
|ṽ(t, 0, x)|2

)
dx

=
1

λ2(t)

∫
R2

(
|∇E1(t, x)|2 + |∇E2(t, x)|2 +

1

2
|n(t, x)|2 +

1

2
|v(t, x)|2

)
dx

= 1. (2.19)

The above arguments imply (2.5) and (2.6).

Finally, taking the inner product of (2.3a) with Ẽ1s and of (2.3b) with Ẽ2s, in-
tegrating with respect to spatial variable x, then taking the real part of the result
equations, we have

Re

∫
R2

[
i

λ
Ẽ1s · Ẽ1s + ∆Ẽ1 · Ẽ1s − ñẼ1 · Ẽ1s + ηẼ1sẼ2

(
Ẽ1Ẽ2 − Ẽ1Ẽ2

)]
dx = 0,
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that is,

Re

∫
R2

i

λ

∣∣∣Ẽ1s

∣∣∣2 dx− 1

2

d

ds

∫
R2

∣∣∣∇Ẽ1

∣∣∣2 dx− ∫
R2

ñ
1

2

d

ds

∣∣∣Ẽ1

∣∣∣2 dx
+
η

2

∫
R2

∣∣∣Ẽ2

∣∣∣2 · d
ds

∣∣∣Ẽ1

∣∣∣2 dx− η

2
Re

∫
R2

(
Ẽ2

)2

· d
ds

(
Ẽ1

)2

dx

= −1

2

d

ds

∫
R2

∣∣∣∇Ẽ1

∣∣∣2 dx− 1

2

∫
R2

ñ · d
ds

∣∣∣Ẽ1

∣∣∣2 dx
+
η

2

∫
R2

∣∣∣Ẽ2

∣∣∣2 d

ds

∣∣∣Ẽ1

∣∣∣2 dx− η

2
Re

∫
R2

(
Ẽ2

)2 d

ds

(
Ẽ1

)2

dx

= 0.

(2.20)

Using an argument similar to the one in the derivation of (2.20), one obtains

Re

∫
R2

[
i

λ
Ẽ2s · Ẽ2s + ∆Ẽ2 · Ẽ2s − ñẼ2 · Ẽ2s + ηẼ2sẼ1

(
Ẽ1Ẽ2 − Ẽ1Ẽ2

)]
dx = 0,

and hence

−1

2

d

ds

∫
R2

|∇Ẽ2|2dx−
1

2

∫
R2

ñ · d
ds
|Ẽ2|2dx

+
η

2

∫
R2

|Ẽ1|2
d

ds
|Ẽ2|2dx−

η

2
Re

∫
R2

(Ẽ1)2 d

ds

(
Ẽ2

)2

dx

= 0.

(2.21)

Next, taking the inner product of (2.3c) with ñ yields∫
R2

(ñsñ+ (∇ · ṽ) ñ) dx =
1

2

d

ds

∫
R2

|ñ|2dx−
∫
R2

ṽ · ∇ñdx = 0, (2.22)

On the other hand, taking the inner product of (2.3d) with ṽ implies∫
R2

[
ṽs · ṽ +∇

(
ñ+ |Ẽ1|2 + |Ẽ2|2

)
· ṽ
]
dx =

1

2

d

ds

∫
R2

|ṽ|2dx−
∫
R2

ñ∇ · ṽdx

+

∫
R2

ñs

(
|Ẽ1|2 + |Ẽ2|2

)
dx = 0.

(2.23)
Combining (2.21) with (2.22) and (2.23) gives

d

ds

∫
R2

(∣∣∣∇Ẽ1

∣∣∣2 +
∣∣∣∇Ẽ2

∣∣∣2 +
1

2
|ñ|2 +

1

2
|ṽ|2 + ñ

(∣∣∣Ẽ1

∣∣∣2 +
∣∣∣Ẽ2

∣∣∣2)) dx
− d

ds

∫
R2

[
η
∣∣∣Ẽ1

∣∣∣2 ∣∣∣Ẽ2

∣∣∣2 +
η

2

((
Ẽ1

)2 (
Ẽ2

)2

+
(
Ẽ1

)2 (
Ẽ2

)2
)]

dx = 0,

which implies

H
(
Ẽ1, Ẽ2, ñ, ṽ

)
(t, s, x) = H

(
Ẽ1, Ẽ2, ñ, ṽ

)
(t, 0, x). (2.24)

According to the conservation of Hamiltonian (1.15), we have

H
(
Ẽ1, Ẽ2, ñ, ṽ

)
(t, 0, x)

=
∥∥∥∇Ẽ1(t, 0, x)

∥∥∥2

L2(R2)
+
∥∥∥∇Ẽ2(t, 0, x)

∥∥∥2

L2(R2)
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+
1

2
‖ñ(t, 0, x)‖2L2(R2) +

1

2
‖ṽ(t, 0, x)‖2L2(R2)

+

∫
R2

ñ(t, 0, x)

(∣∣∣Ẽ1(t, 0, x)
∣∣∣2 +

∣∣∣Ẽ2(t, 0, x)
∣∣∣2) dx

− η
∫
R2

∣∣∣Ẽ1(t, 0, x)
∣∣∣2 ∣∣∣Ẽ2(t, 0, x)

∣∣∣2 dx
+
η

2

∫
R2

((
Ẽ1 (t, 0, x)

)2 (
Ẽ2 (t, 0, x)

)2

+
(
Ẽ1 (t, 0, x)

)2 (
Ẽ2 (t, 0, x)

)2
)
dx

=

∥∥∥∥ 1

λ2(t)
∇E1(t)

∥∥∥∥2

L2(R2)

+

∥∥∥∥ 1

λ2(t)
∇E2(t)

∥∥∥∥2

L2(R2)

+
1

2

∥∥∥∥ 1

λ2(t)
n(t)

∥∥∥∥2

L2(R2)

+
1

2

∥∥∥∥ 1

λ2(t)
v(t)

∥∥∥∥2

L2(R2)

+

∫
R2

1

λ4(t)
n(t)

(
|E1(t)|2 + |E2(t)|2

)
dx

− η
∫
R2

1

λ4(t)
|E1(t)|2 |E2(t)|2 dx

+
η

2

∫
R2

1

λ4(t)

(
(E1 (t))

2 (
E2 (t)

)2
+
(
E1 (t)

)2
(E2 (t))

2
)
dx

=
1

λ2(t)
H (E1, E2, n,v) (t)

=
1

λ2(t)
H (E10, E20, n0,v0) , (2.25)

which is just the estimate (2.7). This finishes the proof of Proposition 2.3. �

3. Estimates for the rescaled Zakharov system (2.3)

In this section, we firstly establish some a priori estimates for the rescaled Za-
kharov system (2.3) in order to gain the optimal lower bound for the blow-up rate
of the finite time blow-up solution to the Zakharov system (1.1). For simplicity, let(

Ẽ1, Ẽ2, ñ, ṽ
)

(s) ,
(
Ẽ1, Ẽ2, ñ, ṽ

)
(t, s, x). (3.1)
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We claim some a priori estimates for the solution
(
Ẽ1, Ẽ2, ñ, ṽ

)
(s) to the rescaled

Zakharov system (2.3).

Theorem 3.1. (A priori estimates on
(
Ẽ1, Ẽ2, ñ, ṽ

)
(s))

Let (E1, E2, n,v)(t) be a solution of the Zakharov system (1.1),
(
Ẽ1, Ẽ2, ñ, ṽ

)
(s) be

a solution of the rescaled Zakharov system (2.3) and T be the blow-up time. Suppose
that the initial mass (E10, E20) satisfies (1.4), where Q is the unique radial positive
solution of the equation (1.5), then there are constants θ0 > 0, and A > 0 depending
only on the initial data such that for t near T ,

∀s ∈ [0, θ0),
∥∥∥(Ẽ1, Ẽ2, ñ, ṽ

)
(s)
∥∥∥
H1

6 A. (3.2)

Furthermore, we can choose

θ0 = c̃

(
‖E10‖2L2(R2) + ‖E20‖2L2(R2) −

‖Q‖2L2(R2)

1 + η

)− 1
2

. (3.3)

Remark 3.2. Theorem 3.1 is crucial to show the main result (Theorem 1.3) where
the mass condition (1.4) is an essential ingredient. �

Before proving Theorem 3.1, we first establish the geometrical estimates on the

solution
(
Ẽ1, Ẽ2, ñ, ṽ

)
to the rescaled Zakharov system (2.3). These estimates

concern Sobolev type estimates for
(
Ẽ1, Ẽ2, ñ, ṽ

)
(0), nonvanishing properties of(

Ẽ1, Ẽ2, ñ
)

(0) and compactness properties of
(
Ẽ1, Ẽ2, ñ

)
(0). We will consider

them with four portions:

♦ 3.1 Sobolev Estimates on
(
Ẽ1(0), Ẽ2(0), ñ(0), ṽ(0)

)
for t near T ;

♦ 3.2 Non-vanishing properties of the solutions to the rescaled Zakharov sys-
tem as t near T ;
♦ 3.3 Compactness of the solution to the rescaled Zakharov system (2.3);
♦ 3.4 Proof of Theorem 3.1.

3.1. Sobolev Estimates on
(
Ẽ1(0), Ẽ2(0), ñ(0), ṽ(0)

)
for t near T .

The Sobolev estimates on
(
Ẽ1(0), Ẽ2(0), ñ(0), ṽ(0)

)
is given as follows.

Proposition 3.3. Let (E1(t), E2(t), n(t),v(t)) be the finite time blow-up solution
to the Cauchy problem (1.1)-(1.2) on t ∈ [0, T ), and T be the blow-up time. Suppose
that the initial mass satisfies (1.4), then there are constants

δ1 > 0, c1 > 0, c2 > 0, c3 > 0 (3.4)

depending only on (E10, E20, n0,v0), such that for t ∈ [T − δ1, T ), the solution(
Ẽ1, Ẽ2, ñ, ṽ

)
(s) to the rescaled Zakharov system (2.3) admits

0 < c1 6

(∥∥∥∇Ẽ1(0)
∥∥∥2

L2(R2)
+
∥∥∥∇Ẽ2(0)

∥∥∥2

L2(R2)

) 1
2

6 c2, (3.5)

0 < c1 6 ‖ñ(0)‖L2(R2) 6 c3, (3.6)

0 6 ‖ṽ(0)‖L2(R2) 6 c3. (3.7)
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Proof. From (2.5) it follows that
(∥∥∥∇Ẽ1(0)

∥∥∥2

L2(R2)
+
∥∥∥∇Ẽ2(0)

∥∥∥2

L2(R2)

) 1
2

6 1,

‖ñ(0)‖L2(R2) 6
√

2, ‖ṽ(0)‖L2(R2) 6
√

2.

(3.8)

Note that λ(t) → +∞ as t → T , by (2.7), there exists δ1 > 0 such that for any
t ∈ [T − δ1, T ), ∣∣∣H(Ẽ1(0), Ẽ2(0), ñ(0), ṽ(0)

)∣∣∣ =

∣∣∣∣ H0

λ2(t)

∣∣∣∣ 6 1

64
. (3.9)

Hence (2.5) and (2.7) yield

1 =

∫
R2

|∇Ẽ1(0)|2dx+

∫
R2

|∇Ẽ2(0)|2dx

+
1

2

∫
R2

|ñ(0)|2dx+
1

2

∫
R2

|ṽ(0)|2dx

6
1

64
−
∫
R2

ñ(0)
(
|Ẽ1(0)|2 + |Ẽ2(0)|2

)
dx

+
η

2

∫
R2

∣∣∣Ẽ1(0)Ẽ2(0)− Ẽ1(0)Ẽ2(0)
∣∣∣2 dx.

(3.10)

Since Ẽ1Ẽ2 and Ẽ1Ẽ2 are conjugate complex-valued functions, we have the follow-

ing estimate for the quartic term

∫
R2

∣∣∣Ẽ1(0)Ẽ2(0)− Ẽ1(0)Ẽ2(0)
∣∣∣2 dx:

1

2

∫
R2

∣∣∣Ẽ1(0)Ẽ2(0)− Ẽ1(0)Ẽ2(0)
∣∣∣2 dx

6 2

∫
R2

|Ẽ1(0)|2|Ẽ2(0)|2dx

6 2

∫
R2

(
|Ẽ1(0)|2 + |Ẽ2(0)|2

2

)2

dx

=
1

2

∫
R2

(|Ẽ1(0)|2 + |Ẽ2(0)|2)2dx.

(3.11)

On the other hand, it follows from Hölder’s inequality that∫
R2

−ñ(0)
(
|Ẽ1(0)|2 + |Ẽ2(0)|2

)
dx

6

(
b2
∫
R2

|ñ(0)|2dx
) 1

2
(

1

b2

∫
R2

(
|Ẽ1(0)|2 + |Ẽ2(0)|2

)2

dx

) 1
2

6
b2

2

∫
R2

|ñ(0)|2dx+
1

2b2

∫
R2

(
|Ẽ1(0)|2 + |Ẽ2(0)|2

)2

dx.

(3.12)

Let b2 = 1
2 . Combining (3.10) with (3.11) and (3.12) yields

3

4
6

1

4

∫
R2

|ñ(0)|2dx+
(η

2
+ 1
)∫

R2

(
|Ẽ1(0)|2 + |Ẽ2(0)|2

)2

dx. (3.13)
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Due to ‖ñ(0)‖2L2(R2) 6 2, (3.13) implies∫
R2

(
|Ẽ1(0)|2 + |Ẽ2(0)|2

)2

dx >
1

4 + 2η
. (3.14)

Using Gagliardo-Nirenberg inequality (Lemma 2.2), one gets the estimate for∫
R2

(
|Ẽ1(0)|2 + |Ẽ2(0)|2

)2

dx:

∫
R2

(
|Ẽ1(0)|2 + |Ẽ2(0)|2

)2

dx

=

∫
R2

(
|Ẽ1(0)|4 + |Ẽ2(0)|4

)
dx+ 2

∫
R2

|Ẽ1(0)|2|Ẽ2(0)|2dx

6
2‖Ẽ1(0)‖2L2(R2)

‖Q‖2L2(R2)

∫
R2

|∇Ẽ1(0)|2dx+
2‖Ẽ2(0)‖2L2(R2)

‖Q‖2L2(R2)

∫
R2

|∇Ẽ2(0)|2dx

+2

(∫
R2

|Ẽ1(0)|4dx
) 1

2
(∫

R2

|Ẽ2(0)|4dx
) 1

2

6
2‖Ẽ1(0)‖2L2(R2)

‖Q‖2L2(R2)

∫
R2

|∇Ẽ1(0)|2dx+
2‖Ẽ2(0)‖2L2(R2)

‖Q‖2L2(R2)

∫
R2

|∇Ẽ2(0)|2dx

+4
‖Ẽ1(0)‖L2(R2)‖Ẽ2(0)‖L2(R2)

‖Q‖2L2(R2)

‖∇Ẽ1(0)‖L2(R2)‖∇Ẽ2(0)‖L2(R2)

6
2

‖Q‖2L2(R2)

·
(
‖Ẽ1(0)‖2L2(R2)‖∇Ẽ1(0)‖2L2(R2) + ‖Ẽ2(0)‖2L2(R2)‖∇Ẽ1(0)‖2L2(R2)

+‖Ẽ1(0)‖2L2(R2)‖∇Ẽ2(0)‖2L2(R2) + ‖Ẽ2(0)‖2L2(R2)‖∇Ẽ2(0)‖2L2(R2)

)
=

2

‖Q‖2L2(R2)

(
‖Ẽ1(0)‖2L2(R2) + ‖Ẽ2(0)‖2L2(R2)

)
·
(
‖∇Ẽ1(0)‖2L2(R2) + ‖∇Ẽ2(0)‖2L2(R2)

)
.

(3.15)

This together with (3.14) yields

1

8 + 4η
6

∥∥∥Ẽ1(0)
∥∥∥2

L2(R2)
+
∥∥∥Ẽ2(0)

∥∥∥2

L2(R2)

‖Q‖2L2(R2)

·
(∥∥∥∇Ẽ1(0)

∥∥∥2

L2(R2)
+
∥∥∥∇Ẽ2(0)

∥∥∥2

L2(R2)

)
,

(3.16)

and the conclusion (3.5) follows from (2.5) and the mass identity (2.6).
In the following we prove the conclusions (3.6) and (3.7). In view of condition

(1.4), we can assume that there exists a sufficiently small δ0 with 0 < δ0 <
1

1+η

such that

‖E1(0)‖2L2(R2) + ‖E2(0)‖2L2(R2) ≤
1− δ0
η
‖Q‖2L2(R2). (3.17)
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On the other hand, by (3.8) we deduce

η

2

∫
R2

∣∣∣Ẽ1(0)Ẽ2(0)− Ẽ1(0)Ẽ2(0)
∣∣∣2 dx

6 2η

∫
R2

|Ẽ1(0)|2|Ẽ2(0)|2dx

6 2η

(∫
R2

|Ẽ1(0)|4dx
) 1

2
(∫

R2

|Ẽ2(0)|4dx
) 1

2

6 4η
‖Ẽ1(0)‖L2(R2)‖Ẽ2(0)‖L2(R2)‖∇Ẽ1(0)‖L2(R2)‖∇Ẽ2(0)‖L2(R2)

‖Q‖2L2(R2)

6 η

(
‖∇Ẽ1(0)‖2L2(R2) + ‖∇Ẽ2(0)‖2L2(R2)

)

·

(
‖Ẽ1(0)‖2L2(R2) + ‖Ẽ2(0)‖2L2(R2)

‖Q‖2L2(R2)

)
6 1− δ0.

(3.18)

Combining (3.18) with (2.2), (2.5) and (2.7) gives

δ0 6 −
∫
R2

ñ(0)
(
|Ẽ1(0)|2 + |Ẽ2(0)|2

)
dx

6

(∫
R2

ñ2(0)dx

) 1
2
(∫

R2

(
|Ẽ1(0)|2 + |Ẽ2(0)|2

)2

dx

) 1
2

.

(3.19)

Recalling (3.15), (3.17) yields∫
R2

(
|Ẽ1(0)|2 + |Ẽ2(0)|2

)2

dx

6 2

(
‖∇Ẽ1(0)‖2L2(R2) + ‖∇Ẽ2(0)‖2L2(R2)

)

·

(
‖Ẽ1(0)‖2L2(R2) + ‖Ẽ2(0)‖2L2(R2)

‖Q‖2L2(R2)

)

≤ 2− 2δ0
η

,

(3.20)

In view of (3.19), for any fixed small δ0 > 0, there exists a constant c1 > 0 such
that

c1 6
η

2

δ2
0

1− δ0
6
∫
R2

|ñ(0)|2dx. (3.21)

Note that for 0 < δ0 < 1
1+η and η > 0, η

2
δ20

1−δ0 < 2, the upper bounds for

‖∇Ẽ1(0)‖2L2(R2) +‖∇Ẽ2(0)‖2L2(R2), ‖ñ(0)‖2L2(R2) and ‖ṽ(0)‖2L2(R2) follow from (2.5).

The proof of Proposition 3.3 is completed. �
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Due to the condition (2.5) concerning the rescaled Zakharov system (2.3), using
Proposition 3.3 and the following scaling properties:∥∥∥∇Ẽj(0)

∥∥∥
L2(R2)

=
1

λ(t)
‖∇Ej(t)‖L2(R2) , j = 1, 2,

‖ñ(0)‖L2(R2) =
1

λ(t)
‖n(t)‖L2(R2), ‖ṽ(0)‖L2(R2) =

1

λ(t)
‖v(t)‖L2(R2),

(3.22)

we claim the following Sobolev-type estimates for the solution (E1(t), E2(t), n(t),v(t))
to the Zakharov system (1.1).

Corollary 3.4. Under the assumptions in Proposition 3.3, there exists constants
δ1 > 0, c∗1, c∗2 depending only on initial data (1.2) such that for t ∈ [T − δ1, T ),
there hold:

c∗1‖n(t)‖L2(R2) 6
(
‖∇E1(t)‖2L2(R2) + ‖∇E2(t)‖2L2(R2)

) 1
2

6
1

c∗1
‖n(t)‖L2(R2), (3.23)

‖v(t)‖L2(R2) 6
1

c∗1
‖n(t)‖L2(R2), (3.24)

c∗2‖n(t)‖L2(R2) 6 ‖(E1, E2, n, v)(t)‖H1

6 1
c∗2
‖n(t)‖L2(R2).

(3.25)

Proof. Let c∗ = max{c2, c3}. From Proposition 3.3 it follows that c1 < c∗. Taking

c∗1 = c1
c∗ and c∗2 =

√
3

3
c1
c∗ yields the conclusion of Corollary 3.4 due to Proposition

3.3. �

3.2. Non-vanishing Properties of the Solutions to the Re-scaled Zakharov
System as t near T .

We now consider the non-vanishing properties of the solution
(
Ẽ1(s), Ẽ2(s), ñ(s)

)
of the rescaled magnetic Zakharov system (2.3) for s = 0, i.e., the non-vanishing

properties of
(
Ẽ1(0), Ẽ2(0), ñ(0)

)
.

Proposition 3.5. For any t ∈ [0, T ), suppose that (E1(t), E2(t), n(t),v(t)) (or(
Ẽ1(0), Ẽ2(0), ñ(0), ṽ(0)

)
) is the finite time blow-up solution to the Cauchy prob-

lem (1.1)-(1.2), the initial data (E10(x), E20(x)) satisfies condition (1.4) and T is
the blow-up time. Then we claim:
(1) There exist constants R1 > 0 and β1 > 0 depending only on ‖E10‖L2(R2) and

‖E20‖L2(R2) such that for a sequence x(t) ∈ R2 one has

lim inf
t→T

(∥∥∥Ẽ1 (0, x)
∥∥∥2

L2(|x−x(t)|6R1)
+
∥∥∥Ẽ2 (0, x)

∥∥∥2

L2(|x−x(t)|6R1)

) 1
2

> β1, (3.26)

lim inf
t→T

‖ñ(0, x)‖L2(|x−x(t)|6R1) > β1. (3.27)

(2) Let
(
Ẽ1n, Ẽ2n, ñn

)
(s) be a sequence satisfying the following estimates:∥∥∥Ẽ1n(0)

∥∥∥2

L2(R2)
+
∥∥∥Ẽ2n(0)

∥∥∥2

L2(R2)
6 ‖E10‖2L2(R2) + ‖E20‖2L2(R2) , (3.28)
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c1 6
∫
R2

∣∣∣∇Ẽ1n(0)
∣∣∣2 dx+

∫
R2

∣∣∣∇Ẽ2n(0)
∣∣∣2 dx 6 c2, (3.29)

c1 6
∫
R2

|ñn(0)|2dx 6 c2, (3.30)

lim sup
t→T

H
(
Ẽ1n(0), Ẽ2n(0), ñn(0), 0

)
6 0. (3.31)

Then there exist β1 > 0 and R1 > 0 depending only on ‖E10‖L2(R2), ‖E20‖L2(R2),

c1 > 0 and c2 > 0 such that for a sequence {xn} ∈ R2,

lim
n→+∞

(∥∥∥Ẽ1n

∥∥∥2

L2(|x−xn|6R1)
+
∥∥∥Ẽ2n

∥∥∥2

L2(|x−xn|6R1)

) 1
2

> β1 > 0, (3.32)

lim
n→+∞

‖ñn‖L2(|x−xn|6R1) > β1 > 0. (3.33)

The proof of this proposition is similar to that of Proposition 3.6 in [16], but
the proof details of the treatment of Proposition 3.5 and Proposition 3.6 in [16] are
different. In fact, Propositon 3.5 is much more complicated since the higher-order
nonlinear terms are essentially involved in (1.1). Proposition 3.5 will be proved step
by step later.

We firstly claim:

Proposition 3.6. Assume there is mk = mk

(
‖E10‖L2(R2), ‖E20‖L2(R2)

)
> 0 such

that the sequences (E1k, E2k, nk,vk) ∈ H1(R2)×H1(R2)×L2(R2)×L2(R2) satisfy

‖E1k‖2L2(R2) + ‖E2k‖2L2(R2) = ‖E10‖2L2(R2) + ‖E20‖2L2(R2) > 0, (3.34)

and there exist constants R0 > 0 and δ′0 > 0 such that

sup
y∈R2

∫
|x−y|<R0

(
|E1k(x)|2 + |E2k(x)|2

)
dx 6

‖Q‖2L2(R2)

1 + η
− δ′0, (3.35)

or

sup
y∈R2

∫
|x−y|<R0

|nk(x)|dx 6 mk − δ′0. (3.36)

Then there exist constants C1 > 0, C2 > 0 such that

−C1 + C2

∫
R2

(
|∇E1k|2 + |∇E2k|2 +

1

2
|nk|2 +

1

2
|vk|2

)
dx

6 H(E1k, E2k, nk,vk),

(3.37)

where H is defined by (1.3).

Proof of Proposition 3.6.
We first define two functionals as follows:

E(E1, E2) , ‖∇E1‖2L2(R2) + ‖∇E2‖2L2(R2) −
1

2

∫
R2

(
|E1|2 + |E2|2

)2
dx

−η
2

∫
R2

∣∣E1E2 − E1E2

∣∣2 dx, (3.38)

H1(E1, E2, n) , E(E1, E2) +
1

2

∫
R2

(
n+ |E1|2 + |E2|2

)2
dx. (3.39)
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Let 

Ẽ1k(x) =
1

λk
E1k

(
x

λk

)
,

Ẽ2k(x) = 1
λk
E2k

(
x
λk

)
,

ñk(x) = 1
λ2
k
nk

(
x
λk

)
,

(3.40)

where

λ2
k = ‖∇E1k‖2L2(R2) + ‖∇E2k‖2L2(R2) +

1

2
‖nk‖2L2(R2). (3.41)

We continue the proof of Proposition 3.6 through four steps.

Step 1. A non-vanishing property of
(
Ẽ1k, Ẽ2k, ñk

)
Lemma 3.7. For the sequences (E1k, E2k, nk) introduced in Proposition 3.6, as-

sume there is a sequence (Ẽ1k, Ẽ2k, ñk) ∈ H1(R2)×H1(R2)× L2(R2) such that as
k → +∞, the following estimates hold:

•

H
(
Ẽ1k, Ẽ2k, ñk, 0

)
6 0, (3.42)

• ∫
R2

(
|Ẽ1k|2 + |Ẽ2k|2

)
dx→ c1 > 0, (3.43)

• ∫
R2

(
|∇Ẽ1k|2 + |∇Ẽ2k|2

)
dx+

1

2

∫
R2

|ñk|2dx→ c2 > 0, (3.44)

• ∫
R2

ñk

(
|Ẽ1k|2 + |Ẽ2k|2

)
dx− η

∫
R2

|Ẽ1k|2|Ẽ2k|2dx

+
η

2

∫
R2

((
Ẽ1k

)2 (
Ẽ2k

)2

+
(
Ẽ1k

)2 (
Ẽ2k

)2
)
dx→ −c3 < 0.

(3.45)

Then there exist a constant c4 = c4(c1, c2, c3) > 0 and a sequence xk ∈ R2 such that∫
|x−xk|<1

|ñk|dx > c4. (3.46)

Proof. By (3.40), we claim that there exists a sequence xk ∈ R2 such that∫
Ck

−ñk
(
|Ẽ1k|2 + |Ẽ2k|2

)
dx+ η

∫
Ck

∣∣∣Ẽ1k

∣∣∣2 ∣∣∣Ẽ2k

∣∣∣2 dx
−η

2

∫
Ck

((
Ẽ1k

)2 (
Ẽ2k

)2

+
(
Ẽ1k

)2 (
Ẽ2k

)2
)
dx

> q ·
∫
Ck

[(
|∇Ẽ1k|2 + |∇Ẽ12k|2

)
+
(
|Ẽ1k|2 + |Ẽ2k|2

)
+

1

2
|ñk|2

]
dx,

(3.47)



20 ZAIHUI GAN1 , YUCHEN WANG2 , YUE WANG1, JIALING YU1,3

for k large enough, where Ck is the square of center xk and q =
c3

c0(c1 + c2)
with

c0 > 1 is a fixed constant. Otherwise, one would obtain∫
Ck

−ñk
(
|Ẽ1k|2 + |Ẽ2k|2

)
dx+ η

∫
Ck

∣∣∣Ẽ1k

∣∣∣2 ∣∣∣Ẽ2k

∣∣∣2 dx
−η

2

∫
R2

((
Ẽ1k

)2 (
Ẽ2k

)2

+
(
Ẽ1k

)2 (
Ẽ2k

)2
)
dx

< q ·
∫
Ck

[(
|∇Ẽ1k|2 + |∇Ẽ2k|2

)
+
(
|Ẽ1k|2 + |Ẽ2k|2

)
+

1

2
|ñk|2

]
dx.

(3.48)

Let k → +∞, (3.48) yields c3 < q(c1 + c2) =
c3
c0

(c0 > 1), which is a contradiction.

We now claim the following conclusion.
Conclusion I: There exist constants

c∗1 =
2
√

2q2

1 + qη
‖Q‖L2(R2) > 0, c∗2 =

4q3

1 + qη
‖Q‖L2(R2) > 0,

c∗3 = εc∗1 > 0 with ε =

√
2q‖Q‖L2(Ck)

qη + 1

such that [∫
Ck

(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2)2

dx

] 1
2

> c∗1 > 0, (3.49)

∫
Ck

−ñk
(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2) dx+ η

∫
Ck

∣∣∣Ẽ1k

∣∣∣2 ∣∣∣Ẽ2k

∣∣∣2 dx
−η

2

∫
Ck

((
Ẽ1k

)2 (
Ẽ2k

)2

+
(
Ẽ1k

)2 (
Ẽ2k

)2
)
dx > c∗2 > 0,

(3.50)

∫
Ck

−ñk
(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2) dx > c∗3 > 0. (3.51)

Proof of Conclusion I.

Lemma 2.2, Cauchy-Schwartz inequality: 2ab 6
(a+ b)2

2
(a, b > 0) and Young’s

inequality give∫
Ck

(∣∣∣∇Ẽ1k

∣∣∣2 +
∣∣∣∇Ẽ2k

∣∣∣2) dx+

∫
Ck

(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2) dx
>
√

2‖Q‖L2(R2)

[∫
Ck

(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2)2

dx

] 1
2

.

(3.52)
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q ·
√

2‖Q‖L2(Ck)

[∫
Ck

(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2)2

dx

] 1
2

+
q

2
‖ñk‖2L2(Ck)

6
∫
Ck

−ñk
(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2) dx+ η

∫
Ck

∣∣∣Ẽ1k

∣∣∣2 ∣∣∣Ẽ2k

∣∣∣2 dx
−η

2

∫
Ck

((
Ẽ1k

)2 (
Ẽ2k

)2

+
(
Ẽ1k

)2 (
Ẽ2k

)2
)
dx

6
q

2

∫
Ck

|ñk|2 dx+
1

2q

∫
Ck

(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2)2

dx

+
η

2

∫
Ck

(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2)2

dx.

(3.53)

That is,

(
1 + ηq

2q

)[∫
Ck

(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2)2

dx

] 1
2

>
√

2q‖Q‖L2(Ck). (3.54)

This yields (3.49). Similarly, (3.53) and (3.54) imply∫
Ck

−ñk
(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2) dx+ η

∫
Ck

∣∣∣Ẽ1k

∣∣∣2 ∣∣∣Ẽ2k

∣∣∣2 dx
−η

2

∫
Ck

((
Ẽ1k

)2 (
Ẽ2k

)2

+
(
Ẽ1k

)2 (
Ẽ2k

)2
)
dx

> q
√

2‖Q‖L2(Ck)

[∫
Ck

(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2)2

dx

] 1
2

>
4q3‖Q‖2L2(Ck)

1 + qη
= c∗2 > 0.

(3.55)

So (3.50) is true.
In the following we prove (3.51). By (3.47), one obtains

q

∫
Ck

[(∣∣∣∇Ẽ1k

∣∣∣2 +
∣∣∣∇Ẽ2k

∣∣∣2)+

(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2)] dx
+
q

2

∫
Ck

|ñk|2 dx

6
η

2

∫
Ck

∣∣∣Ẽ1kẼ2k − Ẽ1kẼ2k

∣∣∣2 dx+

∫
Ck

−ñk
(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2) dx.
(3.56)

From Lemma 2.2, it follows

∫
Ck

(∣∣∣∇Ẽ1k

∣∣∣2 +
∣∣∣∇Ẽ2k

∣∣∣2) dx > ‖Q‖2L2(Ck)

∫
Ck

(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2)2

dx

2
∫
Ck

(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2) dx .
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Note that∫
Ck

[(∣∣∣∇Ẽ1k

∣∣∣2 +
∣∣∣∇Ẽ2k

∣∣∣2)+

(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2)] dx
> 2

(∫
Ck

(∣∣∣∇Ẽ1k

∣∣∣2 +
∣∣∣∇Ẽ2k

∣∣∣2) dx) 1
2
(∫

Ck

(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2) dx) 1
2

,

(3.53),(3.54),(3.55) and (3.56) give
√

2q‖Q‖L2(Ck)
η
2 + 1

2q

√
2q‖Q‖L2(Ck) +

q

2

∫
Ck

|ñk|2 dx

−η
2

∫
Ck

(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2)2

dx

6
∫
Ck

−ñk
(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2) dx.
(3.57)

Assume that there exists an ε > 0 such that

√
2q

η
2 + 1

2q

‖Q‖L2(Ck) 6

(∫
Ck

(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2)2

dx

) 1
2

6

√
2q‖Q‖L2(Ck) − ε

η
2

.

(3.58)
This yields

η 6
2
√

2q‖Q‖L2(Ck) − 2ε(∫
Ck

(
|Ẽ1k|2 + |Ẽ2k|2

)2

dx

) 1
2

6
2
√

2q‖Q‖L2(Ck) − 2ε
√

2q‖Q‖L2(Ck)

(
η

2
+

1

2q

)
, (3.59)

that is,

ε 6
√

2q‖Q‖L2(Ck)

(
1− η

η + 1
q

)

=
√

2q‖Q‖L2(Ck)
1

qη + 1
=

√
2q‖Q‖L2(Ck)

qη + 1
.

(3.60)

Taking ε =

√
2q‖Q‖L2(Ck)

qη + 1
in (3.58), one obtains

√
2q‖Q‖L2(Ck) −

η

2

(∫
Ck

(
|Ẽ1k|2 + |Ẽ2k|2

)2

dx

) 1
2

>
√

2q‖Q‖L2(Ck) −

√
2q‖Q‖L2(Ck) −

√
2q‖Q‖L2(Ck)

qη + 1
η
2

· η
2

=

√
2q‖Q‖L2(Ck)

qη + 1
.

(3.61)

Note that η > 0, then there exists ε > 0 small enough such that the following
estimate holds:

√
2q‖Q‖L2(Ck) −

η

2

[∫
Ck

(|Ẽ1k|2 + |Ẽ2k|2)2dx

] 1
2

> ε > 0. (3.62)
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Combining (3.47), (3.52), (3.53) and (3.62) together yields

∫
Ck

−ñk
(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2) dx
>
√

2q‖Q‖L2(Ck)

(∫
Ck

(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2)2

dx

) 1
2

+
q

2
‖ñk‖2L2(Ck) −

η

2

(∫
Ck

(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2)2

dx

)

=

√2q‖Q‖L2(Ck) −
η

2

(∫
Ck

(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2)2

dx

) 1
2


×

(∫
Ck

(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2)2

dx

) 1
2

+
q

2
‖ñk‖2L2(Ck)

> ε

(∫
Ck

(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2)2

dx

) 1
2

+
q

2
‖ñk‖2L2(Ck)

> ε
2
√

2q2‖Q‖L2(Ck)

qη + 1
= εc∗1 = c∗3 > 0.

(3.63)

This is just the estimate (3.51). Hence Conclusion I follows from (3.54),(3.55) and
(3.63). �

We finish the proof of Lemma 3.7 according to Conclusion I by contradiction.
Assume by contradiction that there exists a subsequence (still denoted by ñk)

such that as k → +∞, ∫
Ck

|ñk|dx→ 0. (3.64)

Let

ñk(xk + ·) ⇀ N ′ in L2(R2), (3.65)

and (
Ẽ1k(xk + ·), Ẽ2k(xk + ·)

)
⇀ (E′1, E

′
2) in H1(R2)×H1(R2). (3.66)

By Sobolev-type estimates, we have(
Ẽ1k(xk + ·), Ẽ2k(xk + ·)

)
→ (E′1, E

′
2) in L4

loc(R2)× L4
loc(R2), (3.67)

and(
|Ẽ1k(xk + ·)|2, |Ẽ2k(xk + ·)|2

)
→
(
|E′1|2, |E′2|2

)
in L2

loc(R2)× L2
loc(R2). (3.68)
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Indeed, for a bounded open domain Ck in R2, H1(Ck) ⊂⊂ Lp(Ck), p ∈ [2,+∞),
there holds:∥∥∥∥ ∣∣∣Ẽ1k

∣∣∣2 − |E′1|2∥∥∥∥
L2(Ck)

6 c

(∫
R2

∣∣∣Ẽ1k − E′1
∣∣∣4 dx) 1

4

·

(∫
R2

(∣∣∣Ẽ1k

∣∣∣2 + |E′1|
2
)2

dx

) 1
4

6 2c

(∫
R2

∣∣∣Ẽ1k − E′1
∣∣∣4 dx) 1

4

·
(∫

R2

(
|Ẽ1k|4 + |E′1|4

)
dx

) 1
4

.

(3.69)

From (3.64) it follows that as k →∞,

ñk(xk + ·) ⇀ 0 in L2(Ck). (3.70)

On the other hand, by Lemma 2.1 there holds as k → +∞,∫
Ck

ñk

(
|Ẽ1k|2 + |Ẽ2k|2

)
dx

=

∫
C0

ñk (xk + x)
(
|Ẽ1k (xk + x) |2 + |Ẽ2k (xk + x) |2

)
dx

→ 0,

(3.71)

which is contradictory to (3.63). This completes the proof of Lemma 3.7. �

Step 2: An alternative form for (3.37)
Implementing similar arguments to those in the previous section, we follow from

(3.63) that there exists a constant c∗4 > 0 such that∫
C0

(∣∣∣Ẽ1k(xk + x)
∣∣∣2 +

∣∣∣Ẽ2k(xk + x)
∣∣∣2) dx > c∗4 > 0. (3.72)

According to the definitions of H1(E1, E2, n) (see (3.39)) and H(E1, E2, n,v)(see
(1.3)), for the sake of proving (3.37), it is sufficient to show that there exist constants
C1 > 0 and C2 > 0 such that

−C1 + C2

∫
R2

(
|∇E1k|2 + |∇E2k|2 +

1

2
|nk|2

)
dx 6 H1 (E1k, E2k, nk) . (3.73)

We will verify (3.73) by contradiction.
Assume that (3.73) would not hold for a subsequence (E1k, E2k, nk). That is, for
any constants C1 > 0, C2 > 0, there exists a subsequence (E1k, E2k, nk) such that

−C1 + C2

∫
R2

(
|∇E1k|2 + |∇E2k|2 +

1

2
|nk|2

)
dx > H1 (E1k, E2k, nk) . (3.74)

Then the following conclusions would be true provided k → +∞:

λ2
k :=

∫
R2

(
|∇E1k|2 + |∇E2k|2

)
dx+

1

2

∫
R2

|nk|2dx→ +∞, (3.75)

lim sup
k→+∞

H1(E1k, E2k, nk)

λ2
k

6 0. (3.76)
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Otherwise,
(1) If λk 6 C, then

|H1(E1k, E2k, nk)|

= ‖∇E1k‖2L2(R2) + ‖∇E2k‖2L2(R2) +

∫
R2

|nk|
(
|E1k|2 + |E2k|2

)
dx

+
η

2

∫
R2

∣∣E1kE2k − E1kE2k

∣∣2 dx+
1

2
‖nk‖2L2(R2)

≤ λ2
k +

1

2
‖nk‖2L2(R2) +

1

2

∫
R2

(
|E1k|2 + |E2k|2

)2
dx

+η

∫
R2

(
|E1k|2 + |E2k|2

)2
dx

6 λ2
k +

1

2
‖nk‖2L2(R2) + (1 + 2η)

(
‖E1k|2L2(R2) + ‖E2k‖2L2(R2)

)
‖Q‖2L2(R2)

·
(
‖∇E1k‖2L2(R2) + ‖∇E2k‖2L2(R2)

)
6 λ2

k +
1

2
‖nk‖2L2(R2)

+(1 + 2η) 1
η

(
‖∇E1k‖2L2(R2) + ‖∇E2k‖2L2(R2)

)
6

(
3 +

1

η

)
λ2
k 6 C.

(3.76∗)

This implies (3.73), which is contradictory to the assumption (3.74). Thus (3.75)
holds true.

(2) If lim
k→+∞

H1(E1k, E2k, nk)

λ2
k

= C > 0, then for k0 > 0 large enough, there

holds

H1(E1k, E2k, nk)

>
C

2
λ2
k

=
C

2

(
‖∇E1k‖2L2(R2) + ‖∇E2k‖2L2(R2) +

1

2
‖∇nk‖2L2(R2)

)
,

(3.77)

which is a contradiction since (3.74) will be satisfied with C1 = 0 and C2 = C
2 .

Step 3: Scaling discussion
The proof continues as follow. Let

Ẽ1k(x) = 1
λk
E1k

(
x
λk

)
,

Ẽ2k(x) = 1
λk
E2k

(
x
λk

)
,

ñk(x) = 1
λ2
k
nk

(
x
λk

)
.

(3.78)
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A straightforward calculation gives∫
R2

(∣∣∣Ẽ1k(x)
∣∣∣2 +

∣∣∣Ẽ2k(x)
∣∣∣2) dx =

∫
R2

(
|E10(x)|2 + |E20(x)|2

)
dx, (3.79)∫

R2

(∣∣∣∇Ẽ1k(x)
∣∣∣2 +

∣∣∣∇Ẽ2k(x)
∣∣∣2) dx+

1

2

∫
R2

|ñk(x)|2dx = 1. (3.80)

Because of

lim sup
k→∞

(
1 +

∫
R2

ñk

(∣∣∣Ẽ1k

∣∣∣2 +
∣∣∣Ẽ2k

∣∣∣2) dx
−η

2

∫
R2

∣∣∣Ẽ1kẼ2k − Ẽ1kẼ2k

∣∣∣2 dx)
= lim sup

k→+∞
H1

(
Ẽ1k, Ẽ2k, ñk

)
6 0,

(3.81)

by Hölder’s inequality one has∣∣∣∣∫
R2

ñk

(
|Ẽ1k|2 + |Ẽ2k|2

)
dx− η

2

∫
R2

∣∣∣Ẽ1kẼ2k − Ẽ1kẼ2k

∣∣∣2 dx∣∣∣∣
6

1

2
‖ñk‖2L2(R2) +

1

2

∫
R2

(
|Ẽ1k|2 + |Ẽ2k|2

)2

dx

+
η

2

∫
R2

(
|Ẽ1k|2 + |Ẽ2k|2

)2

dx

6
1

2
‖ñk‖2L2(R2) + (1 + η)

(
‖Ẽ1k‖2L2(R2) + ‖Ẽ2k‖2L2(R2)

)
‖Q‖2L2(R2)

·
(
‖∇Ẽ1k‖2L2(R2) + ‖∇Ẽ2k‖2L2(R2)

)
6 C.

(3.82)

Hence we can assume by (3.81) and (3.82) that as k → +∞,∫
R2

ñk

(
|Ẽ1k|2 + |Ẽ2k|2

)
dx− η

2

∫
R2

∣∣∣Ẽ1kẼ2k − Ẽ1kẼ2k

∣∣∣2 dx
→ c 6 −1.

(3.83)

On the other hand, recalling (3.35) and (3.75), we have ∀R > 0,

lim inf
k→+∞

(
sup
y

∫
|x−y|<R

(
|Ẽ1k(x)|2 + |Ẽ2k(x)|2

)
dx

)
6
‖Q‖2L2(R2)

1 + η
− δ′0, (3.84)

or as R→ 0,

lim inf
k→+∞

(
sup
y

∫
|x−y|<R

|ñk|dx

)
→ 0. (3.85)

Because of Lemma 3.7, the alternative (3.85) does not hold. Therefore we need to
consider case (3.84) only.
Step 4: Proof of Proposition 3.6

Recalling the definitions of E (see (3.38)) and H1 (see (3.39)), there hold

H1

(
Ẽ1k, Ẽ2k, ñk

)
= E

(
Ẽ1k, Ẽ2k

)
+

1

2

∫
R2

(
ñk + |Ẽ1k|2 + |Ẽ2k|2

)2

dx, (3.86)
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and

lim sup
k→+∞

E
(
Ẽ1k, Ẽ2k

)
6 lim sup

k→+∞
H1

(
Ẽ1k, Ẽ2k, ñk

)
6 0. (3.87)

Then by (3.79), (3.80) and Sobolev type estimates, we conclude that there exist
c1 > 0 and c2 > 0 such that

c1 6
∫
R2

(∣∣∣Ẽ1k(x)
∣∣∣2 +

∣∣∣Ẽ2k(x)
∣∣∣2)2

dx 6 c2, (3.88)

c1 6
∫
R2

(∣∣∣∇Ẽ1k(x)
∣∣∣2 +

∣∣∣∇Ẽ2k(x)
∣∣∣2 +

∣∣∣Ẽ1k(x)
∣∣∣2 +

∣∣∣Ẽ2k(x)
∣∣∣2) dx 6 c2. (3.89)

Hence there exist a constant δ1 > 0 and a sequence x1
k ∈ R2 such that∫

|x−x1
k|<1

(∣∣∣Ẽ1k(x)
∣∣∣2 +

∣∣∣Ẽ2k(x)
∣∣∣2) dx > δ1. (3.90)

In view of Lemma 3.7 and its proof, we introduce the following dichotomy Ẽ1k(x) = Ẽ1
1k(x) + Ẽ1,R

1k (x),

Ẽ2k(x) = Ẽ1
2k(x) + Ẽ1,R

2k (x).
(3.91)

Hence, for a sequence x1
k,(

Ẽ1
1k(x+ x1

k), Ẽ1
2k(x+ x1

k)
)
⇀ (ψ1, ψ2) in H1(R2)×H1(R2), (3.92)

and (∫
|x−x1

k|<1

(
|Ẽ1

1k(x+ x1
k)|2 + |Ẽ1

2k(x+ x1
k)|2

)2

dx

) 1
4

> c > 0. (3.93)

By Sobolev estimates, there exists a constant δ1 > 0 depending only on ‖E10‖L2(R2)

and ‖E20‖L2(R2) such that∥∥∥Ẽ1
1k(x1

k + ·)
∥∥∥2

L2(|x−x1
k|<1)

+
∥∥∥Ẽ1

2k(x1
k + ·)

∥∥∥2

L2(|x−x1
k|<1)

≥ δ1 > 0. (3.94)

Recalling (3.84), we also obtain for any R > 0,

lim inf
k→+∞

(
‖Ẽ1

1k(x1
k + ·)‖2L2(BR) + ‖Ẽ1

2k(x1
k + ·)‖2L2(BR)

)
6
‖Q‖2L2(R2)

1 + η
− δ′0. (3.95)

Furthermore, using the concentration compactness method (Lions [14]), one gets

for a suitable choice for
(
Ẽ1k, Ẽ2k

)
,∥∥∥Ẽ1

1k

∥∥∥2

L2(R2)
+
∥∥∥Ẽ1,R

1k

∥∥∥2

L2(R2)
+
∥∥∥Ẽ1

2k

∥∥∥2

L2(R2)
+
∥∥∥Ẽ1,R

2k

∥∥∥2

L2(R2)

→ ‖E10‖2L2(R2) + ‖E20‖2L2(R2),

(3.96)

δ1 6 lim
k→+∞

(
‖Ẽ1

1k(x)‖2L2(R2) + ‖Ẽ1
2k(x)‖2L2(R2)

)
6
‖Q‖2L2(R2)

1 + η
− δ′0, (3.97)
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and

E(ψ1, ψ2) 6 lim sup
k→+∞

E
(
Ẽ1

1k, Ẽ
1
2k

)
+ lim sup

k→+∞
E
(
Ẽ1,R

1k , Ẽ1,R
2k

)
6 lim sup

k→+∞
E
(
Ẽ1k, Ẽ2k

)
6 0.

(3.98)

Since

δ1 6 ‖ψ1‖2L2(R2) + ‖ψ2‖2L2(R2) 6
‖Q‖2L2(R2)

1 + η
− δ′0, (3.99)

we have

lim sup
k→+∞

E
(
Ẽ1,R

1k , Ẽ1,R
2k

)
≤ −E (ψ1, ψ2) < 0. (3.100)

We now can extract a subsequence which is still denoted by
(
Ẽ1,R

1k , Ẽ1,R
2k

)
such that

∥∥∥Ẽ1,R
1k (x)

∥∥∥2

L2(R2)
+
∥∥∥Ẽ1,R

2k (x)
∥∥∥2

L2(R2)
→ c1 <

‖Q‖2L2(R2)

1 + η
− δ′1, (3.101)

lim sup
k→+∞

E
(
Ẽ1,R

1k , Ẽ1,R
2k

)
6 −E(ψ1, ψ2) < 0. (3.102)

Then there exists a constant k0 > 0 such that ∀k > k0,

E
(
Ẽ1,R

1k , Ẽ1,R
2k

)
6
−E(ψ1, ψ2)

2
< 0. (3.103)

Note that ∥∥∥Ẽ1,R
1k (x)

∥∥∥2

L2(R2)
+
∥∥∥Ẽ1,R

2k (x)
∥∥∥2

L2(R2)
6
‖Q‖2L2(R2)

1 + η
, (3.104)

then

E
(
Ẽ1,R

1k , Ẽ1,R
2k

)
=

∫
R2

(
|∇Ẽ1,R

1k |
2 + |∇Ẽ1,R

2k |
2
)
dx

−1

2

∫
R2

(
|Ẽ1,R

1k |
2 + |Ẽ1,R

2k |
2
)2

dx

−η
2

∫
R2

∣∣∣Ẽ1,R
1k Ẽ1,R

2k − Ẽ
1,R
1k Ẽ1,R

2k

∣∣∣2 dx
>
∫
R2

(
|∇Ẽ1,R

1k |
2 + |∇Ẽ1,R

1k |
2
)
dx

− (1 + η)

‖Q‖2L2(R2)

(
‖Ẽ1,R

1k ‖
2
L2(R2) + ‖Ẽ1,R

2k ‖
2
L2(R2)

)
·
∫
R2

(
|∇Ẽ1,R

1k |
2 + |∇Ẽ1,R

2k |
2
)
dx

> 0,

(3.105)

which is contradictory to (3.103), hence (3.104) does not hold. Therefore, we claim:
(2) ∥∥∥Ẽ1,R

1k (x)
∥∥∥2

L2(R2)
+
∥∥∥Ẽ1,R

2k (x)
∥∥∥2

L2(R2)
>
‖Q‖2L2(R2)

1 + η
. (3.106)
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In view of (3.103), there exists a constant c > 0 such that∫
R2

(
|Ẽ1,R

1k |
2 + |Ẽ1,R

2k |
2
)2

dx > c. (3.107)

Indeed, by E
(
Ẽ1,R

1k , Ẽ1,R
2k

)
< 0, we have∫

R2

(
|Ẽ1,R

1k |
2 + |Ẽ1,R

2k |
2
)2

dx

> 2

∫
R2

(
|∇Ẽ1,R

1k |
2 + |∇Ẽ1,R

2k |
2
)
dx− η

∫
R2

∣∣∣Ẽ1,R
1k Ẽ1,R

2k − Ẽ
1,R
1k Ẽ1,R

2k

∣∣∣2 dx
> 2

∫
R2

(
|∇Ẽ1,R

1k |
2 + |∇Ẽ1,R

2k |
2
)
dx− η

∫
R2

(
|Ẽ1,R

1k |
2 + |Ẽ1,R

2k |
2
)2

dx.

This yields the estimate (3.107).
We then iterate the same procedure as above and define Ẽ1,R

1k = Ẽ2
1k + Ẽ2,R

1k ,

Ẽ1,R
2k = Ẽ2

2k + Ẽ2,R
2k ,

(3.108)

where Ẽ2
1k and Ẽ2

2k satisfy for a sequence x2
k,∥∥∥Ẽ2

1k(x2
k + ·)

∥∥∥2

L2(|x−x2
k|<1)

+
∥∥∥Ẽ2

2k(x2
k + ·)

∥∥∥2

L2(|x−x2
k|<1)

≥ δ1. (3.109)

Defining p such that

−pδ1 + ‖E10‖2L2(R2) + ‖E20‖2L2(R2) <
‖Q‖2L2(R2)

1 + η
, (3.110)

applying the same procedure at most p times, we find for an i ≤ p and k large,

there exists a function
(
Ẽi,R1k , Ẽ

i,R
2k

)
such that

∥∥∥Ẽi,R1k

∥∥∥2

L2(R2)
+
∥∥∥Ẽi,R2k

∥∥∥2

L2(R2)
6
‖Q‖2L2(R2)

1 + η
, (3.111)

and

E
(
Ẽi,R1k , Ẽ

i,R
2k

)
6
−E(ψ1, ψ2)

2
< 0. (3.112)

Then by Lemma 2.2, (3.111) and (3.112) are contradictory.
In addition, from (3.4) one gets∥∥∥∇Ẽ1k

∥∥∥2

L2(R2)
+
∥∥∥∇Ẽ2k

∥∥∥2

L2(R2)

>

∫
R2

(
|Ẽ1k|2 + |Ẽ2k|2

)2

dx · ‖Q‖2L2(R2)

2
(
‖Ẽ1k‖2L2(R2) + ‖Ẽ2k‖2L2(R2)

)
>
η

2

∫
R2

(
|Ẽ1k|2 + |Ẽ2k|2

)2

dx

>
η

2

∫
R2

∣∣∣Ẽ1kẼ2k − Ẽ1kẼ2k

∣∣∣2 dx.

(3.113)
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Since

lim sup
k→+∞

H1

(
Ẽ1k, Ẽ1k, Ẽ2k, ñk

)
= lim sup

k→+∞

H1

(
Ẽ1k, Ẽ1k, Ẽ2k, ñk

)
λ2
k

≤ 0, (3.114)

then ∫
R2

ñk

(
|Ẽ1k|2 + |Ẽ2k|2

)
dx→ −C < 0. (3.115)

It follows from Lemma 3.7 that there exist a constant C ′ > 0 and a sequence xk
such that ∫

|x−xk|<1

|ñk|dx > C ′ > 0. (3.116)

Therefore, recalling (3.36) and the definition of ñk, we have as R→ 0,

lim inf
k→+∞

(
sup
y

∫
|x−y|<R

|ñk|dx

)
→ 0, (3.117)

which is contradictory to (3.116), thus the proof of Proposition 3.6 is complete. �
We now claim the following conclusions to prove the non-vanishing properties of(
Ẽ1(0), Ẽ2(0), ñ(0)

)
.

Proposition 3.8. Let (E1, E2, n,v) be the finite time blow-up solution of the
Zakharov system (1.1) and T be its blowup time. That is, as t→ T ,

‖E1‖H1(R2) + ‖E2‖H1(R2) + ‖n‖L2(R2) + ‖v‖L2(R2) → +∞. (3.118)

Assume that the initial data satisfy (3.4), then
(1) If E1, E2, n are radially symmetric functions, then there exists a constant

m > 0 such that for any R > 0,

lim inf
t→T

(
‖E1(t, x)‖2L2(B(0,R)) + ‖E2(t, x)‖2L2(B(0,R))

)
>

1

1 + η
‖Q‖2L2(R2), (3.119)

lim inf
t→T

‖n(t, x)‖L1(B(0,R)) > m. (3.120)

(2) If E1, E2, n are non-radially symmetric functions, then there exists a se-
quence x(t) ∈ R2 and a constant m > 0 depending only on initial data such that
for any R > 0,

lim inf
t→T

(
‖E1(t, x)‖2L2(B(x(t),R)) + ‖E2(t, x)‖2L2(B(x(t),R))

)
>

1

1 + η
‖Q‖2L2(R2), (3.121)

lim inf
t→T

‖n(t, x)‖L1(B(x(t),R)) > m. (3.122)

Proof. We first show the case (1): (E1, E2, n) ∈ H1
r (R2)×H1

r (R2)× L2
r(R2).

Define two spaces:

H1
r (R2) =

{
f ∈ H1(R2), f(x) = f(|x|)

}
,

L2
r(R2) =

{
f ∈ L2(R2), f(x) = f(|x|)

}
.

It follows from (1.3),(3.38) and (3.39) that

E(E1, E2) 6 H1(E1, E2, n,v) = H(E1, E2, n,v)− 1

2
‖v‖2L2(R2). (3.123)
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We proceed our proof by contradiction.
Assume that there exist constants δ0 > 0, R0 > 0 and a sequence tk → T (k → +∞)
such that∫

|x|<R0

(
|E1(tk, x)|2 + |E2(tk, x)|2

)
dx 6

1

(1 + η)
‖Q‖2L2(R2) − δ0, (3.124)

or

lim inf
k→+∞

∫
|x|<R0

|n (tk, x) |dx = 0. (3.125)

We then complete the proof of case (1) by scaling and compactness.
Let

E1k(x) =
1

λk
E1

(
tk,

x

λk

)
, E2k(x) =

1

λk
E2

(
(tk,

x

λk

)
,

nk(x) =
1

λ2
k

n

(
tk,

x

λk

)
, vk(x) =

1

λ2
k

v

(
tk,

x

λk

)
,

(3.126)

where

λ2
k = ‖∇E1(tk, x)‖2L2(R2) + ‖∇E2(tk, x)‖2L2(R2) .

Direct calculation gives

∫
R2

|∇E1k|2dx+

∫
R2

|∇E2k|2dx = 1,∫
R2

|E1k|2dx+

∫
R2

|E2k|2dx =

∫
R2

|E10|2dx+

∫
R2

|E20|2dx,

E (E1k, E2k) =
1

λ2
k

E (E1 (tk, x) , E2 (tk, x)) ,

H1 (E1k, E2k, nk) =
1

λ2
k

H1 (E1 (tk, x) , E2 (tk, x) , n (tk, x)) ,

H(tk) = H(0).

(3.127)

Note that

H(tk) = E (E1(tk, x), E2(tk, x)) +
1

2

∫
R2

|v(tk)|2dx

+
1

2

∫
R2

[
n(tk) +

(
|E1(tk)|2 + |E2(tk)|2

)]2
dx.

(3.128)

We then conclude

E (E1(tk), E2(tk)) 6 H1 (E1(tk), E2(tk), n(tk)) 6 H(tk) = H(0), (3.129)

E (E1k, E2k) 6 H1 (E1k, E2k, nk,vk) 6
1

λ2
k

H(0)
k→+∞−→ 0. (3.130)

Especially,

lim sup
k→+∞

E (E1k, E2k) 6 0, lim sup
k→+∞

H1 (E1k, E2k, nk) 6 0. (3.131)
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Using Cauchy-Schwartz inequality: ab ≤ (a+ b)2

4
(a > 0, b > 0), we obtain

E(E1, E2)

> ‖∇E1‖2L2(R2) + ‖∇E2‖2L2(R2)

−1

2

∫
R2

(
|E1|2 + |E2|2

)2
dx− 2η

∫
R2

|E1|2|E2|2dx

> ‖∇E1‖2L2(R2) + ‖∇E2‖2L2(R2) −
1 + η

2

∫
R2

(
|E1|2 + |E2|2

)2
dx.

(3.132)

Together with (3.127) and (3.131), this yields

lim inf
k→+∞

∫
R2

(
|E1k|2 + |E2k|2

)2
dx

>
2

1 + η
lim inf
k→+∞

(∫
R2

(
|∇E1k|2 + |∇E2k|2

)
dx− E (E1k, E2k)

)
>

2

1 + η
.

(3.133)

On the other hand, since∫
R2

(
nk +

(
|E1k|2 + |E2k|2

))2
dx− (1 + η)

∫
R2

(
|E1k|2 + |E2k|2

)2
dx

6
∫
R2

(
nk +

(
|E1k|2 + |E2k|2

))2
dx−

∫
R2

(
|E1k|2 + |E2k|2

)2
dx

−η
∫
R2

∣∣E1kE2k − E1kE2k

∣∣2 dx
= 2

(
H1 (E1k, E2k, nk)− ‖∇E1k‖2L2(R2) − ‖∇E2k‖2L2(R2)

)
,

one has

lim sup
k→+∞

∫
R2

(
nk +

(
|E1k|2 + |E2k|2

))2
dx

−(1 + η)

∫
R2

(
|E1k|2 + |E2k|2

)2
dx 6 −2.

(3.134)

By Lemma 2.2, (3.4), (3.127) and

η

∫
R2

(
|E1k|2 + |E2k|2

)2
dx 6

2η
(
‖E1k‖2L2(R2) + ‖E2k‖2L2(R2)

)
‖Q‖2L2(R2)

·
(
‖∇E1k‖2L2(R2) + ‖∇E2k‖2L2(R2)

)
6 2,

we get

lim sup
k→+∞

∫
R2

(
nk +

(
|E1k|2 + |E2k|2

))2
dx−

∫
R2

(
|E1k|2 + |E2k|2

)2
dx 6 0.
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In view of (3.38), one obtains

1

2

∫
R2

[(
|E1|2 + |E2|2

)2
+
η

2

∣∣E1E2 − E1E2

∣∣2] dx
= ‖∇E1‖2L2(R2) + ‖∇E2‖2L2(R2) − E(E1, E2).

Hence there holds

lim inf
k→+∞

(∫
R2

(
|E1k|2 + |E2k|2

)2
dx+ η

∫
R2

∣∣E1kE2k − E1kE2k

∣∣2 dx)
= 2 lim inf

k→+∞

(
‖∇E1k‖2L2(R2) + ‖∇E2k‖2L2(R2) − E (E1k, E2k)

)
> 2.

In addition, (3.39) yields

1

2

∫
R2

n2
kdx

= H1 (E1k, E2k, nk)− ‖∇E1k‖2L2(R2) − ‖∇E2k‖2L2(R2)

−
∫
R2

nk
(
|E1k|2 + |E2k|2

)
dx+

η

2

∫
R2

∣∣E1kE2k − E1kE2k

∣∣2 dx.
Now for any ε ∈ (0, 1), by Young’s inequality, Hölder’s inequality and Cauchy

-Schwartz inequality: ab ≤ (a+ b)2

4
, ∀ a, b > 0, we have∫

R2

n2
kdx 6 2

∫
R2

−nk
(
|E1k|2 + |E2k|2

)
dx

+η

∫
R2

∣∣E1kE2k − E1kE2k

∣∣2 dx
6 ε‖nk‖2L2(R2) +

1

ε

∫
R2

(
|E1k|2 + |E2k|2

)2
dx

+η

∫
R2

(
|E1k|2 + |E2k|2

)2
dx.

This yields that

lim sup
k→+∞

∫
R2

n2
kdx 6

1 + ηε

(1− ε)ε

∫
R2

(
|E1k|2 + |E2k|2

)2
dx

6
2 + 2ηε

(1− ε)ε
·
‖E1k‖2L2(R2) + ‖E2k‖2L2(R2)

‖Q‖2L2(R2)

.

(3.135)

Due to (3.124), (3.125) and λk
k→+∞−→ +∞, one obtains ∀R > 0,

lim sup
k→+∞

∫
|x|<R

(
|E1k|2 + |E2k|2

)
dx 6

1

1 + η
‖Q‖2L2 − δ0, (3.136)

or

∀R > 0, lim sup
k→+∞

∫
|x|<R

|nk|dx = 0. (3.137)
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Our discussion is continued by the compactness argument.
By (3.127) and (3.135), there exists (E′1, E

′
2, N

′) ∈ H1(R2)×H1(R2)×L2(R2) such
that

(E1k, E2k) ⇀ (E′1, E
′
2) in H1(R2)×H1(R2), (3.138)

nk ⇀ N ′ in L2(R2). (3.139)

Since the embedding H1
r (R2) ↪→ Lpr(R2) (2 < p < +∞) is compact, we obtain

(E1k, E2k) ⇀ (E′1, E
′
2) in L4(R2)× L4(R2). (3.140)

On one hand, (
E2

1k, E
2
2k

)
⇀
(
E′21 , E

′2
2

)
in L2(R2)× L2(R2). (3.141)

On the other hand,∫
R2

(
|E′1|2 + |E′2|2

)2
dx >

1

1 + η
, (E′1, E

′
2) 6≡ (0, 0). (3.142)

Let R→ +∞, it follows from (3.136) that∫
R2

(
|E′1|2 + |E′2|2

)
dx <

1

1 + η
‖Q‖2L2(R2), (3.143)

or

N ′ = 0. (3.144)

The boundedness of weakly convergent sequence implies∫
|x|<R

(
|E′1|2 + |E′2|2

)
dx 6 lim inf

k→+∞

∫
|x|<R

(
|E1k|2 + |E2k|2

)
dx

6
1

1 + η
‖Q‖2L2(R2) − δ0,

(3.145)

or ∫
|x|<R

|N ′|dx 6 lim inf
k→+∞

∫
|x|<R

|nk|dx = 0. (3.146)

In addition, there hold:

lim
k→+∞

∫
R2

nk
(
|Ek|2 + |E2k|2

)
dx = lim

k→+∞

∫
R2

N ′
(
|E′1|2 + |E′2|2

)
dx, (3.147)

lim
k→+∞

∫
R2

|E1k|2|E2k|2dx = lim
k→+∞

∫
R2

∣∣E′1|2|E′2∣∣2 dx, (3.148)

lim
k→+∞

Re

∫
R2

(E1k)
2 (
E2k

)2
dx = lim

k→+∞
Re

∫
R2

(E′1)
2
(
E′2

)2

dx, (3.149)

lim
k→+∞

∫
R2

∣∣E1kE2k − E1kE2k

∣∣2 dx = lim
k→+∞

∫
R2

∣∣∣E′1E′2 − E′1E′2∣∣∣2 dx. (3.150)
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(3.147) follow from Lemma 2.1 and (3.141).
Secondly, a direct calculation yields∣∣∣∣∫

R2

|E1k|2|E2k|2dx−
∫
R2

|E′1|
2 |E′2|

2
dx

∣∣∣∣
=

∫
R2

(
|E1k|2 − |E′1|2

)
|E2k|2dx+

∫
R2

|E′1|2
(
|E2k|2 − |E′2|2

)
dx

6
∥∥(|E1k|2 − |E′1|2

)∥∥
L2(R2)

∥∥|E2k|2
∥∥
L2(R2)

+
∥∥∥|E′1|2∥∥∥

L2(R2)

∥∥|E2k|2 − |E′2|2
∥∥
L2(R2)

.

Let k → +∞, one gets (3.148).
We next note that∣∣∣∣Re∫

R2

(E1k)
2 (
E2k

)2
dx−Re

∫
R2

(E′1)
2
(
E′2

)2

dx

∣∣∣∣
6
∫
R2

∣∣∣∣(E1k)
2 (
E2k

)2 − (E′1)
2
(
E′2

)2
∣∣∣∣ dx

=

∫
R2

∣∣∣∣[(E1k)
2 − (E′1)

2
] (
E2k

)2
+ (E′1)

2
[(
E2k

)2 − (E′2)2
]∣∣∣∣ dx

6
∥∥∥(E1k)

2 − (E′1)
2
∥∥∥
L2(R2)

∥∥|E2k|2
∥∥
L2(R2)

+
∥∥∥ |E′1|2∥∥∥

L2(R2)

∥∥∥∥(E2k

)2 − (E′2)2
∥∥∥∥
L2(R2)

.

As k → +∞, we get (3.149). Moreover, according to (3.148) and (3.149), (3.150)
holds. We now use estimats (3.130), (3.147) and (3.150) to get

H1 (E′1, E
′
2, N

′) 6 lim inf
k→+∞

H1 (E1k, E2k, nk) 6 0, (3.151)

that is,

E (E′1, E
′
2) +

1

2

∫
R2

[
N ′ +

(
|E′1|

2
+ |E′2|

2
)]2

dx 6 0. (3.152)

According to

∫
R2

(
|E′1|

2
+ |E′2|

2
)
dx <

‖Q‖2L2(R2)

1 + η
, (3.152) then yields∫

R2

(
|∇E′1|

2
+ |∇E′2|

2
)
dx

6
1

2

∫
R2

(
|E′1|

2
+ |E′2|

2
)2

dx+
η

2

∫
R2

∣∣E′1E′2 − E′1E′2∣∣2 dx
6
η + 1

2

∫
R2

(
|E′1|

2
+ |E′2|

2
)2

dx

6 (1 + η)
‖E′1‖

2
L2(R2) + ‖E′2‖

2
L2(R2)

‖Q‖2L2(R2)

(
‖∇E′1‖

2
L2(R2) + ‖∇E′2‖

2
L2(R2)

)
< ‖∇E′1‖

2
L2(R2) + ‖∇E′2‖

2
L2(R2) .
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This is a contradiction.
On the other hand, if N ′ = 0, (3.4) yields

H1 (E′1, E
′
2, 0)

>
∫
R2

(
|∇E′1|

2
+ |∇E′2|

2
)
dx− 2η

∫
R2

|E′1|
2 |E′2|

2
dx

>
∫
R2

(
|∇E′1|

2
+ |∇E′2|

2
)
dx− η

2

∫
R2

(
|E′1|

2
+ |E′2|

2
)2

dx

>
∫
R2

(
|∇E′1|

2
+ |∇E′2|

2
)
dx

−η

(
‖E′1‖

2
L2(R2) + ‖E′2‖

2
L2(R2)

)
‖Q‖2L2(R2)

·
(
‖∇E′1‖

2
L2(R2) + ‖∇E′2‖

2
L2(R2)

)

>
∫
R2

(
|∇E′1|

2
+ |∇E′2|

2
)
dx

1−
η
(
‖E10‖2L2(R2) + ‖E20‖2L2(R2)

)
‖Q‖2L2(R2)


> 0,

which is contradictory to (3.151). Hence there exists a constant m > 0 depending
only on initial data such that for any R > 0, (3.119) and (3.120) hold.

Now we turn to consider the non-radial case (2).
Assume that there exist constants R0 > 0, δ0 > 0 and a sequence tk such that

as tk → T (k → +∞),

lim inf
k→+∞

(
sup
y

∫
|x−y|<R0

(
|E1(tk, x)|2 + |E2(tk, x)|2

)
dx

)
6
‖Q‖2L2(R2)

1 + η
− δ0,

or

lim inf
k→+∞

(
sup
y

∫
|x−y|<R0

|n(tk, x)|dx

)
6 mn − δ0.

Then it follows from Lemma 3.7 that as tk → T ,∫
R2

(
|∇E1(tk)|2 + |∇E2(tk)|2 + |n(tk)|2 + |v(tk)|2

)
dx 6 C.

This is contradictory to the assumption that (E1, E2, n,v) blows up at a finite time
T . So (3.121) and (3.122) hold.

This finishes the proof of Proposition 3.8. �
We are now in the position to prove Proposition 3.5 by utilizing Proposition 3.6,

Lemma 3.7 and Proposition 3.8.
Proof of Proposition 3.5.

Due to (2.1), Proposition 3.8 implies the conclusion (1) in Proposition 3.5.
In fact, let R1 > 0 be a fixed constant, then∥∥∥Ẽ1(0, x)

∥∥∥2

L2(|x−x(t)|6R1)
+
∥∥∥Ẽ2(0, x)

∥∥∥2

L2(|x−x(t)|6R1)

= ‖E1(t, x)‖2
L2(|x−x(t)|6 R1

λ(t) )
+ ‖E2(t, x)‖2

L2(|x−x(t)|6 R1
λ(t) )

.
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Noting that λ(t)→ +∞ as t→ T and (3.119), we have

lim inf
t→T

(
‖Ẽ1(0, x)‖2L2(|x−x(t)|6R1) + ‖Ẽ2(0, x)‖2L2(|x−x(t)|6R1)

)
> lim inf

t→T

(
‖E1(t, x)‖2

L2(|x−x(t)|6 R1
λ(t) )

+ ‖E2(t, x)‖2
L2(|x−x(t)|6 R1

λ(t) )

)
>
‖Q‖2L2(R2)

1 + η
.

On the other hand, in view of Proposition 3.8, for any fixed R1 > 0, Hölder’s
inequality yields

R
1
2
1 lim inf

t→T
‖ñ(0, x)‖L2(|x−x(t)|6R1)

> lim inf
t→T

‖ñ(0, x)‖L1(|x−x(t)|6R1)

> lim inf
t→T

‖n(t, x)‖
L1(|x−x(t)|6 R1

λ(t) )

> mn.

Hence (3.26) and (3.27) hold.
We now show conclusion (2) in Proposition 3.5 by using the same scaling argu-

ment as that adopted in Proposition 3.8.
For a sequence tk → T (k → +∞), let

Ê1n =
1

λ̃n
Ẽ1

(
x

λ̃n

)
, Ê2n =

1

λ̃n
Ẽ2

(
x

λ̃n

)
,

n̂n =
1

λ̃2
n

ñ

(
tn,

x

λ̃n

)
, v̂n =

1

λ̃2
n

ṽ

(
tn,

x

λ̃n

)
satisfy ∫

R2

(∣∣∣∇Ê1n

∣∣∣2 +
∣∣∣∇Ê2n

∣∣∣2 +
1

2
|n̂n|2 +

1

2
|v̂n|2

)
dx = 1.

Here,

λ̃2
n(t) =

∫
R2

(∣∣∣∇Ẽ1 (0, x)
∣∣∣2 +

∣∣∣∇Ẽ2 (0, x)
∣∣∣2

+
1

2
|ñ (0, x)|2 +

1

2
|ṽ (0, x)|2

)
dx,

and λ̃n → 1 as n → +∞. Direct calculation gives
(
Ê1n, Ê2n, n̂n

)
satisfy (3.28)-

(3.31). Hence for a sequence xn(t) ∈ R2 and xn(t) → x(t) as n → +∞, there
holds

‖Ê1n‖2L2(|x−xn(t)|6R1) + ‖Ê2n‖2L2(|x−xn(t)|6R1)

= ‖Ẽ1(0, x)‖2
L2

(
|x−xn(t)|6R1

λ̃n

) + ‖Ẽ2(0, x)‖2
L2

(
|x−xn(t)|6R1

λ̃n

),
and

‖n̂n‖L2(|x−xn(t)|6R1) = ‖ñ(0, x)‖
L2

(
|x−xn(t)|6R1

λ̃n

).
Letting n → +∞ yields (3.32) and (3.33) due to (3.121) and (3.122), which ends
the proof of Proposition 3.5. �
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3.3. Compactness of the Solution to the Rescaled Zakharov System (2.3).

Here, we discuss the compactness of
(
Ẽ1(0, x), Ẽ2(0, x), ñ(0, x)

)
.

Remark 3.9. From Proposition 3.5, it follows that
(
Ẽ1(0, x), Ẽ2(0, x)

)
is bounded

and weakly compact in H1(R2)×H1(R2). Then we can choose a sequence tn → T ,
and extract a subsequence (still denoted by tn). Let(

Ẽ1(0, x+ x(tn)), Ẽ2(0, x+ x(tn))
)
⇀ (E′1, E

′
2) in H1(R2)×H1(R2),

and

ñ(0, x+ x(tn)) ⇀ N ′ in L2(R2).

Note that the embedding H1(R2) ↪→ L2
loc(R2) is compact, from Proposition 3.5, for

a bounded domain Ω ⊂ R2, there holds

‖E′1‖
2
L2(Ω) + ‖E′2‖

2
L2(Ω) > c1 > 0.

Under this case, one can not exclude the case of N ′ ≡ 0, that is, Proposition 3.5
can not guarantee the non-vanishing property of N ′. �

To overcome the difficulty mentioned in Remark 3.9, we will investigate the
relation of (E′1, E

′
2) and N ′ to obtain the compactness property of N ′ following the

related information for (E′1, E
′
2).

We now claim:

Proposition 3.10. Let tn → T . There exists a subsequence (still denote tn) such
that for a sequence xn := x(tn) ∈ R2 and (E′1, E

′
2, N

′) ∈ H1(R2)×H1(R2)×L2(R2),
as n→ +∞, the conclusions hold as below:(

Ẽ1 (0, x+ xn) , Ẽ2 (0, x+ xn)
)
⇀ (E′1, E

′
2) in H1(R2)×H1(R2), (3.153)

and

ñ(0, x+ xn) ⇀ N ′ in L2(R2). (3.154)

Furthermore, there exist constants β1 > 0 and R1 > 0 depending only on
‖E10‖L2(R2), ‖E20‖L2(R2)) such that

(
‖E′1‖

2
L2(|x|6R1) + ‖E′2‖

2
L2(|x|6R1)

) 1
2

> β1, (3.155)

H (E′1, E
′
2, N

′, 0) 6 0. (3.156)

Proof. In view of Proposition 3.5, we will prove this proposition by imple-
menting the classical iteration technique, Concentration-compactness principle and
mathematical induction.

Let β1 be defined as in (ii) of Proposition 3.5. Assume that
(
Ê1n, Ê2n, n̂n, v̂n

)
∈
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H1(R2)×H1(R2)× L2(R2)× L2(R2) satisfies

Ê1n =
1

λn(tn)
Ẽ1

(
tn +

s

λn(tn)
,

x

λn(tn)

)
,

Ê2n =
1

λn(tn)
Ẽ2

(
tn +

s

λn(tn)
,

x

λn(tn)

)
,

n̂n =
1

λ2
n(tn)

ñ

(
tn +

s

λn(tn)
,

x

λn(tn)

)
,

v̂n =
1

λ2
n(tn)

ṽ

(
tn +

s

λn(tn)
,

x

λn(tn)

)
,

(3.157)

λ2
n(tn) =

∫
R2

∣∣∣∇Ẽ1

∣∣∣2 dx+

∫
R2

∣∣∣∇Ẽ2

∣∣∣2 dx+
1

2

∫
R2

|ñ|2 dx+
1

2

∫
R2

|ṽ|2 dx. (3.158)

Direct calculation yields∫
R2

(∣∣∣Ê1n

∣∣∣2 +
∣∣∣Ê2n

∣∣∣2) dx 6 ∫
R2

(
|E10|2 + |E20|2

)
dx, (3.159)

lim
n→+∞

H
(
Ê1n, Ê2n, n̂n, v̂n

)
= 0, (3.160)∫

R2

(∣∣∣∇Ê1n

∣∣∣2 +
∣∣∣∇Ê2n

∣∣∣2 +
|n̂n|2

2
+
|v̂n|2

2

)
dx = 1. (3.161)

We will show that there exists (E′1, E
′
2, N

′) ∈ H1(R2) × H1(R2) × L2(R2) and a
sequence xn ∈ R2 such that as n→ +∞,(

Ê1n(xn + x), Ê2n(xn + x)
)
⇀ (E′1(x), E′2(x)) in H1(R2)×H1(R2), (3.162)

n̂n(xn + x) ⇀ N ′(x) in L2(R2), (3.163)

and (∫
|x|6R1

(
|E′1|

2
+ |E′2|

2
)
dx

) 1
2

> β1, H (E′1, E
′
2, N

′) 6 0. (3.164)

By Proposition 3.3 and Corollary 3.4, there exist constants c1 > 0, c2 > 0 such
that

c1 6
∫
R2

(∣∣∣∇Ê1n

∣∣∣2 +
∣∣∣∇Ê2n

∣∣∣2) dx 6 c2, c1 6 ∫
R2

|n̂n|2 dx 6 c2. (3.165)

Let the integer k0 be defined by(∫
R2

(∣∣∣Ê1n

∣∣∣2 +
∣∣∣Ê2n

∣∣∣2) dx) 1
2

< (k0 + 1)β1, (3.166)

where

k0 = 1, 2, ..., E

[
‖E10‖2L2(R2) + ‖E20‖2L2(R2)

β1
− 1

]
. (3.167)

We then show Proposition 3.10 by induction on the integer k0.

(1) For k0 = 1, there holds
‖E10‖2L2(R2) + ‖E20‖2L2(R2)

β1
= 2, that is,

‖E10‖2L2(R2) + ‖E20‖2L2(R2) = 2β1. (3.168)
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From (3.159) it follows that∥∥∥Ê1n

∥∥∥2

L2(R2)
+
∥∥∥Ê2n

∥∥∥2

L2(R2)
6 ‖E10‖2L2(R2) + ‖E20‖2L2(R2) = 2β1. (3.169)

Hence (3.166) holds for k0 = 1. From compactness and the boundedness of weakly
convergent sequence, a similar argument to the proof of Lemma 3.7 yields

H (E′1, E
′
2, N

′) 6 lim
n→+∞

H
(
Ê1n, Ê2n, n̂n

)
6 0.

So (3.162)-(3.165) are true. Note that Proposition 3.5, Proposition 3.10 holds for
k0 = 1.
(2) Assume that (3.162)-(3.165) are true for k0 > 1, we then show that they also
hold for k0 + 1.

Let
(
Ê1n, Ê2n, n̂n

)
be the sequence satisfying (3.164), (3.165), (3.166) and

lim
n→+∞

H
(
Ê1n, Ê2n, n̂n, 0

)
6 0.

In view of Proposition 3.5, we may assume that there exist a sequence xn ∈ R2 and
a constant R = R(c1, c2) satisfying

(∫
|x−xn|6R

(∣∣∣Ê1n

∣∣∣2 +
∣∣∣Ê2n

∣∣∣2) dx) 1
2

> β1, (3.170)

and
(
Ê1, Ê2, N̂

)
∈ H1(R2)×H1(R2)× L2(R2) such that

(
Ê1n (x+ xn) , Ê2n (x+ xn)

)
⇀
(
Ê1, Ê2

)
in H1(R2)×H1(R2),

n̂n(x+ xn) ⇀ N̂ in L2(R2).

We extract a subsequence still denoted by
(
Ê1n, Ê2n, n̂n

)
for simplicity. We make

the following decomposition for the extracted subsequence:
Ê1n(x+ xn) = Ê1n,1(x+ xn) + Ê1n,2(x+ xn),

Ê2n(x+ xn) = Ê2n,1(x+ xn) + Ê2n,2(x+ xn),

n̂n(x+ xn) = n̂n,1(x+ xn) + n̂n,2(x+ xn).

Let Rn → +∞ as n→ +∞. This decomposition admits the following properties:
(I)

Ê1n,1(x) = Ê2n,1(x) = n̂n,1(x) = 0, |x| 6 Rn
2
,

Ê1n,2(x) = Ê2n,2(x) = n̂n,2(x) = 0, |x| > Rn.
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(II) As n→ +∞,∫
R2

(∣∣∣Ê1n,1

∣∣∣2 +
∣∣∣Ê1n,2

∣∣∣2 +
∣∣∣Ê2n,1

∣∣∣2 +
∣∣∣Ê2n,2

∣∣∣2) dx
−
∫
R2

(∣∣∣Ê1n

∣∣∣2 +
∣∣∣Ê2n

∣∣∣2) dx→ 0,

∫
R2

(∣∣∣∇Ê1n,1

∣∣∣2 +
∣∣∣∇Ê1n,2

∣∣∣2 +
∣∣∣∇Ê2n,1

∣∣∣2 +
∣∣∣∇Ê2n,2

∣∣∣2) dx
−
∫
R2

(∣∣∣∇Ê1n

∣∣∣2 +
∣∣∣∇Ê2n

∣∣∣2) dx→ 0,∫
R2

(
|n̂n,1|2 + |n̂n,2|2

)
dx−

∫
R2

|n̂n|2 dx→ 0,

(III)

lim
n→+∞

H
(
Ê1n,1, Ê2n,1, n̂n,1, 0

)
+ lim
n→+∞

H
(
Ê1n,2, Ê2n,2, n̂n,2, 0

)
6 0.

Note that as n→ +∞,∫
R2

(∣∣∣Ê1n,1

∣∣∣2 +
∣∣∣Ê2n,1

∣∣∣2) dx→ ∫
R2

(∣∣∣Ê1

∣∣∣2 +
∣∣∣Ê2

∣∣∣2) dx.
Especially,

∫
R2

(∣∣∣Ê1

∣∣∣2 +
∣∣∣Ê2

∣∣∣2) dx > β1. So when n large enough, there holds∫
R2

(∣∣∣Ê1n,2

∣∣∣2 +
∣∣∣Ê2n,2

∣∣∣2) dx < k0β1.

We proceed our argument by considering the following two cases:
Case 1:

H
(
Ê1, Ê2, N̂ , 0

)
6 lim
n→+∞

H
(
Ê1n,1, Ê2n,1, n̂n,1, 0

)
6 0.

In this case, letting E′1 = Ê1, E
′
2 = Ê2, N

′ = N̂ , one can get the conclusion of
Proposition 3.10.

Case 2:

H
(
Ê1, Ê2, N̂ , 0

)
> 0.

In this case, let P1 = lim
n→+∞

H
(
Ê1n,1, Ê2n,1, n̂n,1, 0

)
> 0, and for n large enough,

H
(
Ê1n,2, Ê2n,2, n̂n,2, 0

)
6 −P1

2
< 0.

By inductive assumption, there exists a sequence yn ∈ R2 such that(
Ê1n,2 (+yn) , Ê2n,2 (+yn)

)
⇀ (E′1, E

′
2) in H1(R2)×H1(R2),

n̂n,2(+yn) ⇀ N ′ in L2(R2),

with (∫
|x|6R1

(
|E′1|

2
+ |E′2|

2
)
dx

) 1
2

> β1, H (E′1, E
′
2, N

′, 0) 6 0.

Using translation transformation finishes the proof of Proposition 3.10. �
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Corollary 3.11. There exists a constant c∗ > 0 such that

c∗ 6 ‖N ′‖L2(R2) 6 1. (3.171)

Proof. From Proposition 3.10 it follows that

H (E′1, E
′
2, N

′)

=

∫
R2

(
|∇E′1|

2
+ |∇E′2|

2
+N ′

(
|E′1|

2
+ |E′2|

2
)

+
1

2
N ′2

)
dx

+
η

2

∫
R2

[(
(E′1)2

(
E′2

)2

+ (E′2)
2
(
E′1

)2
)
− 2 |E′1|

2 |E′2|
2
]
dx

6 0,

(3.172)

and

‖E′1‖
2
L2(|x|6R1) + ‖E′2‖

2
L2(|x|6R1) > β1. (3.173)

The Sobolev embedding theorem
(
∀q ∈ [n,+∞), W 1,n(Rn) ⊂ Lq(Rn)

)
yieldsH1(R2) ⊂

L2(R2). In view of (3.161), there exists c1 > 0 such that

0 < (c1)2 6
∫
R2

(
|∇E′1|

2
+ |∇E′2|

2
)
dx 6 1. (3.174)

On one hand, by (3.172) one has

−
∫
R2

N ′
(
|E′1|

2
+ |E′2|

2
)
dx

>
∫
R2

(
|∇E′1|

2
+ |∇E′2|

2
)
dx− η

∫
R2

|E′1|
2 |E′2|

2
dx

+
η

2

∫
R2

(
(E′1)

2
(
E′2

)2

+ (E′2)
2
(
E′1

)2
)
dx

>
∫
R2

(
|∇E′1|

2
+ |∇E′2|

2
)
dx− η

2

∫
R2

(
|E′1|

2
+ |E′2|

2
)2

dx

>
∫
R2

(
|∇E′1|

2
+ |∇E′2|

2
)
dx

− η

‖Q‖2L2(R2)

∫
R2

(
|E′1|

2
+ |E′2|

2
)
dx

∫
R2

(
|∇E′1|

2
+ |∇E′2|

2
)
dx

=

[
1− η

‖Q‖2L2(R2)

∫
R2

(
|E10|2 + |E20|2

)
dx

]

·
∫
R2

(
|∇E′1|

2
+ |∇E′2|

2
)
dx.

(3.175)

Let

c0 = 1− η

‖Q‖2L2(R2)

∫
R2

(
|E10|2 + |E20|2

)
dx > 0. (3.176)



OPTIMAL LOWER BOUND FOR THE BLOW-UP RATE 43

According to (3.4), one has 0 < c0 <
1

1 + η
. On the other hand,

−
∫
R2

N ′
(
|E′1|

2
+ |E′2|

2
)
dx

6

(∫
R2

|N ′|2 dx
) 1

2
(∫

R2

(
|E′1|

2
+ |E′2|

2
)2

dx

) 1
2

6
√

2 ‖N ′‖L2(R2)

1

‖Q‖L2(R2)

[∫
R2

(
|E′1|

2
+ |E′2|

2
)
dx

·
∫
R2

(
|∇E′1|

2
+ |∇E′2|

2
)
dx

] 1
2

6
√

2 ‖N ′‖L2(R2) ·
1
√
η

(∫
R2

(
|∇E′1|

2
+ |∇E′2|

2
)
dx

) 1
2

.

Combining (3.174) with (3.175) and (3.176) yields

‖N ′‖L2(R2) >

√
η

2
c0c1 = c∗ > 0.

From (3.174) and (3.176) it follows that 0 < c0 <
1

1 + η
, 0 < c1 6 1. We then

conclude

c∗ =

√
η

2
c0c
′ =

√
η

2
c0c1 <

√
η

2

1

1 + η
c1 < 1.

So far, the proof of Corollary 3.11 is completed. �

3.4. Proof of Theorem 3.1. In this subsection, we shall establish some estimates

for
(
Ẽ1, Ẽ2, ñ, ṽ

)
(0) based on the estimates obtained in subsection 3.1, subsection

3.2 and subsection 3.3. Secondly, by considering the rescaled Zakharov system
(2.3c)-(2.3d):

ñs = −∇ · ṽ, (3.177)

ṽs = −∇
(
ñ+

∣∣∣Ẽ1

∣∣∣2 +
∣∣∣Ẽ2

∣∣∣2) , (3.178)

We then finish the proof of Theorem 3.1.
Proof of Theorem 3.1.

∀ t > 0, we consider
(
Ẽ1(s), Ẽ2(s), ñ(s), ṽ(s)

)
for [0, λ(t)(T − t)). From (2.5) it

follows that∥∥∥(Ẽ1(0), Ẽ2(0), ñ(0), ṽ(0)
)∥∥∥2

H1(R2)×H1(R2)×L2(R2)×L2(R2)
= 1,

lim
s→λ(t)(T−t)

∥∥∥(Ẽ1(s), Ẽ2(s), ñ(s), ṽ(s)
)∥∥∥2

H1(R2)×H1(R2)×L2(R2)×L2(R2)
= +∞.

Let A > 1 be a fixed constant. By the continuity of s, there exists θ(t) > 0 such
that ∀s ∈ [0, θ(t)],∥∥∥(Ẽ1(s), Ẽ2(s), ñ(s), ṽ(s)

)∥∥∥2

H1(R2)×H1(R2)×L2(R2)×L2(R2)
6 A, (3.179)∥∥∥(Ẽ1(θ(t)), Ẽ2(θ(t)), ñ(θ(t)), ṽ(θ(t)

)∥∥∥2

H1(R2)×H1(R2)×L2(R2)×L2(R2)
= A. (3.180)
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We now claim that as t → T , there exists a uniform lower bound θ0 > 0 for θ(t),
that is,

θ(t) > θ0. (3.181)

We proceed our discussion through two steps. On one hand, some properties for(
Ẽ1(θ), Ẽ2(θ), ñ(θ), ṽ(θ)

)
will be established. On the other hand, in view of (3.177)

and the compactness for ñ, we complete the proof of (3.181) by contradiction.
Firstly we claim that:

Proposition 3.12. There exist constants c1 > 0 and c2 > 0 independent of t and
A > 1 such that
(1) ∀s ∈ [0, θ(t)], (∥∥∥∇Ẽ1(s)

∥∥∥2

L2(R2)
+
∥∥∥∇Ẽ2(s)

∥∥∥2

L2(R2)

) 1
2

6 Ac2, (3.182)

‖ñ(s)‖L2(R2) 6 Ac2, ‖ṽ(s)‖L2(R2) 6 Ac2. (3.183)

(2) Let tn → T . Extracting a subsequence, still denoted by tn, such that for se-
quences xn := x(tn) ∈ R2, (E′1, E

′
2, N

′) ∈ H1(R2)×H1(R2)×L2(R2), the following
assertions hold (

Ẽ1 (tn, θ (tn) , x− xn) , Ẽ2 (tn, θ (tn) , x− xn)
)

=
(
Ẽ1 (θ (tn) , x− xn) , Ẽ2 (θ (tn) , x− xn)

)
⇀ (E′1, E

′
2) in H1(R2)×H1(R2),

(3.184)

ñ (tn, θ(tn), x− xn) = ñ (θ(tn), x− xn) ⇀ N ′ in L2(R2), (3.185)(
‖∇E′1‖

2
L2(R2) + ‖∇E′2‖

2
L2(R2)

) 1
2

> Ac1, ‖N ′‖L2(R2) > Ac1. (3.186)

Proof. It follows from (3.179) and (3.180) that∫
R2

(∣∣∣∇Ẽ1(s)
∣∣∣2 +

∣∣∣∇Ẽ2(s)
∣∣∣2 +

1

2
|ñ(s)|2 +

1

2
|ṽ(s)|2

)
dx 6 A2. (3.187)

Note that (2.1), there holds∥∥∥(Ẽ1, Ẽ2, ñ, ṽ
)

(s)
∥∥∥2

H1(R2)×H1(R2)×L2(R2)×L2(R2)

=

∫
R2

(∣∣∣∇Ẽ1(t, s)
∣∣∣2 +

∣∣∣∇Ẽ2(t, s)
∣∣∣2 +

1

2
|ñ(t, s)|2 +

1

2
|ṽ(t, s)|2

)
dx

=
1

λ2(t)

[∫
R2

(∣∣∣∣∇E1

(
t+

s

λ(t)

)∣∣∣∣2 +

∣∣∣∣∇E2

(
t+

s

λ(t)

)∣∣∣∣2
+

1

2

∣∣∣∣n(t+
s

λ(t)

)∣∣∣∣2 +
1

2

∣∣∣∣v(t+
s

λ(t)

)∣∣∣∣2
)
dx

]

=

λ
(
t+ s

λ(t)

)
λ(t)

2

.

(3.188)
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So ∀s ∈ [0, θ(t)],

λ
(
t+ s

λ(t)

)
λ(t)

6 A,
λ
(
t+ θ(t)

λ(t)

)
λ(t)

= A. (3.189)

This yields that

Ẽ1(t, θ(t), x) =
1

λ(t)
E1

(
t+

θ(t)

λ(t)
,
x

λ(t)

)
=

A

Aλ(t)
E1

(
t+

θ(t)

λ(t)
,
Ax

Aλ(t)

)

=
A

λ
(
t+ θ(t)

λ(t)

)E1

t+
θ(t)

λ(t)
,

Ax

λ
(
t+ θ(t)

λ(t)

)


= AẼ1

(
t+

θ(t)

λ(t)
, 0, Ax

)
.

(3.190)

A similar argument to (3.190) yields

Ẽ2 (t, θ(t), x) = AẼ2

(
t+

θ(t)

λ(t)
, 0, Ax

)
, (3.191)

ñ (t, θ(t), x) = A2ñ

(
t+

θ(t)

λ(t)
, 0, Ax

)
. (3.192)

As tn → T , there holds tn+ θ(tn)
λ(tn) → T . Hence from Proposition 3.10 and Corollary

3.11, it follows that there exists a subsequence (still denoted by tn) such that for
sequences xn ∈ R2, (E′1, E

′
2, N

′) ∈ H1(R2) × H1(R2) × L2(R2), as n → +∞, the
following conclusions hold:(

Ẽ1

(
tn +

θ(tn)

λ(tn)
, 0, x+ xn

)
, Ẽ2

(
tn +

θ(tn)

λ(tn)
, 0, x+ xn

))
⇀ (E′1, E

′
2) in H1(R2)×H1(R2),

(3.193)

ñ

(
tn +

θ(tn)

λ(tn)
, 0, x+ xn

)
⇀ N ′ in L2(R2). (3.194)

In addition, in view of Proposition 3.10 and Corollary 3.11, there exists a constant
c1 > 0 such that(

‖E′1‖
2
L2(R2) + ‖E′2‖

2
L2(R2)

) 1
2

> c1, ‖N ′‖L2(R2) > c1. (3.195)

Hence, combining (3.190)-(3.195) yields(
Ẽ1

(
tn, θ (tn) , x+

xn
A

)
, Ẽ2

(
tn, θ (tn) , x+

xn
A

))
=

(
AẼ1

(
tn +

θ (tn)

λ (tn)
, 0, Ax+ xn

)
, AẼ2

(
tn +

θ (tn)

λ (tn)
, 0, Ax+ xn

))
⇀ (AE′1 (Ax) , AE′2 (Ax)) in H1(R2)×H1(R2),

(3.196)

ñ
(
tn, θ(tn), x+ xn

A

)
= A2ñ

(
tn +

θ(tn)

λ(tn)
, 0, Ax+ xn

)
⇀ A2N ′(Ax) in L2(R2),

(3.197)
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and (
‖∇ [AE′1 (Ax)]‖2L2(R2) + ‖∇ [AE′2 (Ax)]‖2L2(R2)

) 1
2

= A
(
‖∇E′1‖

2
L2(R2) + ‖∇E′2‖

2
L2(R2)

) 1
2

> Ac1,

(3.198)

∥∥A2N ′(Ax)
∥∥
L2(R2)

= A ‖N ′‖L2(R2) > Ac1. (3.199)

This finishes the proof of Proposition 3.12. �

Remark 3.13. By the property of weak convergence, from (3.196)-(3.199) it follows
that

c1 6
(
‖∇E′1‖

2
L2(R2) + ‖∇E′2‖

2
L2(R2)

) 1
2

6 lim inf
n→+∞

(∥∥∥∇Ẽ1

∥∥∥2

L2(R2)
+
∥∥∥∇Ẽ2

∥∥∥2

L2(R2)

) 1
2

,

c1 6 ‖N ′‖L2(R2) 6 lim inf
n→+∞

‖ñ‖L2(R2) . �

Next, we fixed A such that Ac1 > 4.

Remark 3.14. Note that ‖ñ(t, 0)‖L2(R2) 6
√

2, we confine the value of A to distin-

guish ‖ñ(t, θ(t))‖L2(R2) and ‖ñ(t, 0)‖L2(R2). �

Remark 3.15. By Proposition 3.12, one can obtain more delicate estimates on ṽ(s).
Compared to the classical case, these estimates are uniform. �

Corollary 3.16. For any s ∈ [0, θ(t)], there holds

‖ṽ(s)‖L2(R2) 6 A

√
2

η
.

Proof. From (2.7) it follows that∫
R2

(∣∣∣∇Ẽ1

∣∣∣2 +
∣∣∣∇Ẽ2

∣∣∣2) dx− 1

2

∫
R2

(∣∣∣Ẽ1

∣∣∣2 +
∣∣∣Ẽ2

∣∣∣2)2

dx

−η
2

∫
R2

∣∣∣Ẽ1Ẽ2 − Ẽ1Ẽ2

∣∣∣2 dx
>
∫
R2

(∣∣∣∇Ẽ1

∣∣∣2 +
∣∣∣∇Ẽ2

∣∣∣2) dx− 1 + η

2

∫
R2

(∣∣∣Ẽ1

∣∣∣2 +
∣∣∣Ẽ2

∣∣∣2)2

dx

>
∫
R2

(∣∣∣∇Ẽ1

∣∣∣2 +
∣∣∣∇Ẽ2

∣∣∣2) dx− 1 + η

‖Q‖2L2(R2)

∫
R2

(
|E10|2 + |E20|2

)
dx

·
∫
R2

(∣∣∣∇Ẽ1

∣∣∣2 +
∣∣∣∇Ẽ2

∣∣∣2) dx
=

∫
R2

(∣∣∣∇Ẽ1

∣∣∣2 +
∣∣∣∇Ẽ2

∣∣∣2) dx(1− 1 + η

‖Q‖2L2(R2)

∫
R2

(
|E10|2 + |E20|2

)
dx

)
.
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By (3.4) and (3.179), there holds∫
R2

[
ñ+

(
|Ẽ1|2 + |Ẽ2|2

)]2
dx+ ‖ṽ‖2L2(R2)

=
2H0

λ2
− 2

∫
R2

(∣∣∣∇Ẽ1

∣∣∣2 +
∣∣∣∇Ẽ2

∣∣∣2) dx+

∫
R2

(∣∣∣Ẽ1

∣∣∣2 +
∣∣∣Ẽ2

∣∣∣2)2

dx

+η

∫
R2

∣∣∣Ẽ1Ẽ2 − Ẽ1Ẽ2

∣∣∣2 dx
6

2H0

λ2
−
∫
R2

(∣∣∣∇Ẽ1

∣∣∣2 +
∣∣∣∇Ẽ2

∣∣∣2) dx
·

(
2− 2(1 + η)

‖Q‖2L2(R2)

∫
R2

(
|E10|2 + |E20|2

)
dx

)

6
2H0

λ2
+

(
2(1 + η)

‖Q‖2L2(R2)

∫
R2

(
|E10|2 + |E20|2

)
dx− 2

)
A2

6
2H0

λ2
+

2

η
A2.

Note that λ→ +∞ as t→ T , one then obtains

‖ṽ(s)‖L2(R2) 6

√
2

η
A.

This finishes the proof of Corollary 3.16. �

Proposition 3.17. There exists a constant c > 0 such that

lim inf
t→T

∫ θ(t)

0

‖ṽ(s)‖L2(R2) ds > c. (3.200)

Proof. We argue it by contradiction. Assume that as n→ +∞, there exists a
sequence tn → T such that ∫ θ(tn)

0

‖ṽ(s)‖L2(R2) ds→ 0. (3.201)

From (3.177) it follows that ∀ψ(x) ∈ C∞0 (R2),∫
R2

ñ(tn, θ(tn))ψdx−
∫
R2

ñ(tn, 0)ψdx

=

∫ θ(tn)

0

∫
R2

(−∇ · ṽ(s)ψ) dxds

=

∫ θ(tn)

0

∫
R2

ṽ(s) · ∇ψ dxds,

(3.202)
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which yields ∣∣∣∣∫
R2

ñ(tn, θ(tn))ψ dx−
∫
R2

ñ(tn, 0)ψ dx

∣∣∣∣
6

(∫ θ(tn)

0

‖ṽ(s)‖L2(R2) ds

)
‖∇ψ‖L2(R2).

(3.203)

By (3.185) and (3.186), taking a subsequence still denoted by tn yields that there
exist a sequence xn ∈ R2, and N ′ ∈ L2(R2) such that

ñ (tn, θ(tn), x− xn) ⇀ N ′ in L2(R2),

and

‖N ′‖L2(R2) > Ac1.

Let ψ0(x) ∈ C∞0 (R2) satisfy

(∫
R2

ψ2
0 dx

) 1
2

= 1 and

∫
R2

N ′ψ0 dx >
1

2

(∫
R2

N ′2 dx

) 1
2

.

In view of the assumptions (3.201) and (3.202), we have as n→ +∞,∣∣∣∣∫
R2

ñ (tn, θ(tn), x)ψ0 (x+ xn) dx−
∫
R2

ñ (tn, 0, x)ψ0 (x+ xn) dx

∣∣∣∣
6

(∫ θ(tn)

0

‖ṽ(s)‖L2(R2) ds

)
‖∇ψ0 (x+ xn)‖L2(R2) → 0.

(3.204)

On the other hand, one has∫
R2

ñ (tn, θ(tn), x)ψ0(x+ xn) dx =

∫
R2

ñ (tn, θ(tn), x− xn)ψ0(x) dx

→
∫
R2

N ′ψ0dx (n→ +∞)

>
1

2

(∫
R2

N ′2dx

) 1
2

>
Ac1

2
> 2.

(3.205)

However, by (2.5) one has∣∣∣∣∫
R2

ñ(tn, 0)ψ0 dx

∣∣∣∣ 6 (∫
R2

|ñ(tn, 0)|2 dx
) 1

2
(∫

R2

ψ2
0 dx

) 1
2

6
√

2. (3.206)

It is obviously contradictory to (3.205).
This finishes the proof of Proposition 3.17. �

Remark 3.18. (3.200) gives the estimate for θ(t).
In fact, in view of (3.183), if∫ θ(t)

0

‖ṽ(s)‖L2(R2) ds 6
∫ θ(t)

0

Ac2 ds = Ac2θ(t), (3.207)

then (3.200) implies that there exists a constant c > 0 such that

lim inf
t→T

Ac2θ(t) > c,

that is,

lim inf
t→T

θ(t) ≥ c. (3.208)
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On the other hand, by Corollary 3.16 one has

c 6
∫ θ(t)

0

‖ṽ‖L2(R2)ds 6 θ(t)

√
2

η
A, (3.209)

namely, there exists c̃ =
c√
2A

such that

θ(t) > c̃
√
η. (3.210)

Therefore (3.208) and (3.210) imply that there exists a constant θ0 > 0 such that
as t→ T , θ(t) ≥ θ0, and

∀s ∈ [0, θ),
∥∥∥(Ẽ1, Ẽ2, ñ, ṽ

)
(s)
∥∥∥
H1(R2)×H1(R2)×L2(R2)×L2(R2)

6 A. (3.211)

This finishes the proof of Theorem 3.1. �

4. Proof of the main results(Theorem 1.3)

In this section, based on the estimates obtained in Section 2 and Section 3, we
prove the main result (Theorem 1.3) of this paper.

We first show Conclusion (1) of Theorem 1.3.

By Theorem 3.1, as t → T , there exist θ0 = θ0

(
‖E10‖L2(R2) , ‖E20‖L2(R2)

)
and

A > 0 such that

∀s ∈ [0, θ0),
∥∥∥(Ẽ1, Ẽ2, ñ, ṽ

)
(s)
∥∥∥
H1(R2)×H1(R2)×L2(R2)×L2(R2)

6 A. (4.1)

In view of (2.2) and (2.4), one gets

λ(t)(T − t) ≥ θ0. (4.2)

This yields the estimate (1.6).
In addition, it follows from (2.1) that(∥∥∥∇Ẽ1(0)

∥∥∥2

L2(R2)
+
∥∥∥∇Ẽ2(0)

∥∥∥2

L2(R2)

) 1
2

=
1

λ(t)

(
‖∇E1(t)‖2L2(R2) + ‖∇E2(t)‖2L2(R2)

) 1
2

, (4.3)

‖ñ(0)‖L2(R2) =
1

λ(t)
‖n(t)‖L2(R2) . (4.4)

Going back to Proposition 3.3, (4.3) and (4.4) yields(
‖∇E1(t)‖2L2(R2) + ‖∇E2(t)‖2L2(R2)

) 1
2 ≥ c1λ(t) ≥ c1θ

T − t
=

c̃

T − t
, (4.5)

‖n(t)‖L2(R2) ≥ c1λ(t) ≥ c1θ

T − t
=

c̃

T − t
. (4.6)

This completes the proof of (1) in Theorem 1.3.
Next we are going to prove the conclusion (2). Firstly we claim the following

proposition:

Proposition 4.1. For θ0 in Theorem 3.1, there exists a contant c > 0 such that

θ0 ≥
c(

‖E10‖2L2(R2) + ‖E20‖2L2(R2) −
1
η+1‖Q‖

2
L2(R2)

) 1
2

. (4.7)
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Proof. Due to the Hamiltonian given by (2.7), one gains∫
R2

(∣∣∣∇Ẽ1

∣∣∣2 +
∣∣∣∇Ẽ2

∣∣∣2) dx− 1

2

∫
R2

(∣∣∣Ẽ1

∣∣∣2 +
∣∣∣Ẽ2

∣∣∣2)2

dx

+
1

2

∫
R2

(
n+

∣∣∣Ẽ1

∣∣∣2 +
∣∣∣Ẽ2

∣∣∣2)2

+
1

2

∫
R2

|ṽ|2 dx

≤ H0

λ2(t)
+ 2η

∫
R2

∣∣∣Ẽ1

∣∣∣2 ∣∣∣Ẽ2

∣∣∣2 dx,
(4.8)

which yields

∫
R2

(∣∣∣∇Ẽ1

∣∣∣2 +
∣∣∣∇Ẽ2

∣∣∣2) dx− 1 + η

2

∫
R2

(∣∣∣Ẽ1

∣∣∣2 +
∣∣∣Ẽ2

∣∣∣2)2

dx

+
1

2

∫
R2

(
n+

∣∣∣Ẽ1

∣∣∣2 +
∣∣∣Ẽ2

∣∣∣2)2

+
1

2

∫
R2

|ṽ|2 dx

≤ H0

λ2(t)
.

(4.9)

A direct calculation then gives∫
R2

(∣∣∣∇Ẽ1

∣∣∣2 +
∣∣∣∇Ẽ2

∣∣∣2) dx− 1 + η

2

∫
R2

(∣∣∣Ẽ1

∣∣∣2 +
∣∣∣Ẽ2

∣∣∣2)2

dx ≤ H0

λ2(t)
, (4.10)

1

2

∫
R2

(
n+

∣∣∣Ẽ1

∣∣∣2 +
∣∣∣Ẽ2

∣∣∣2)2

+
1

2

∫
R2

|ṽ|2 dx

≤ H0

λ2(t)
−
∫
R2

(∣∣∣∇Ẽ1

∣∣∣2 +
∣∣∣∇Ẽ2

∣∣∣2) dx
+

1 + η

2

∫
R2

(∣∣∣Ẽ1

∣∣∣2 +
∣∣∣Ẽ2

∣∣∣2)2

dx.

(4.11)

Note that1−
(η + 1)

(
‖E10‖2L2(R2) + ‖E20‖2L2(R2)

)
‖Q‖2L2(R2)


·
∫
R2

(∣∣∣∇Ẽ1

∣∣∣2 +
∣∣∣∇Ẽ2

∣∣∣2) dx
≤
∫
R2

(∣∣∣∇Ẽ1

∣∣∣2 +
∣∣∣∇Ẽ2

∣∣∣2) dx− 1 + η

2

∫
R2

(∣∣∣Ẽ1

∣∣∣2 +
∣∣∣Ẽ2

∣∣∣2)2

dx,

(4.12)

then one obtains

1

2

∫
R2

(
n+ |Ẽ1|2 + |Ẽ2|2

)2

+
1

2

∫
R2

|ṽ|2dx

≤ H0

λ2(t)
+

 (η + 1)
(
‖E10‖2L2(R2) + ‖E20‖2L2(R2)

)
‖Q‖2L2(R2)

− 1


·
∫
R2

(
|∇Ẽ1|2 + |∇Ẽ2|2

)
dx.

(4.13)
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Since λ(t)→∞ as t→ T , by taking t→ T one obtains

1

2

∫
R2

|ṽ|2dx

≤ η + 1

‖Q‖2L2(R2)

(
‖E10‖2L2(R2) + ‖E20‖2L2(R2) −

1

1 + η
‖Q‖2L2(R2)

)
·
∫
R2

(
|∇Ẽ1|2 + |∇Ẽ2|2

)
dx

≤ A2(η + 1)

‖Q‖2L2(R2)

(
‖E10‖2L2(R2) + ‖E20‖2L2(R2) −

1

1 + η
‖Q‖2L2(R2)

)
.

(4.14)

Therefore, by Proposition 3.17, we obtain

c ≤ lim inf
t→T

∫ θ(t)

0

‖ṽ(s)‖L2(R2) ds

≤
A
√

2(η + 1)

‖Q‖L2(R2)

(
‖E10‖2L2(R2) + ‖E20‖2L2(R2) −

1

1 + η
‖Q‖2L2(R2)

) 1
2

θ0,

(4.15)
and

θ0 ≥ c′
(
‖E10‖2L2(R2) + ‖E20‖2L2(R2) −

1

1 + η
‖Q‖2L2(R2)

)− 1
2

. (4.16)

This finishes the proof of Proposition 4.1. �

Using Proposition 4.1 and taking θ0 = c′
(
‖E10‖2L2(R2) + ‖E20‖2L2(R2) −

1
1+η‖Q‖

2
L2(R2)

)− 1
2

in the proof of (1.7) and (1.8), we achieve (1.9) and (1.10).
This finishes the proof of Theorem 1.3. �
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