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ABSTRACT. We focus on the Cauchy problem of the magnetic Zakharov system
in two-dimensional space:

iFE1 + AEL — nEy + nEy (E1E; — E1E2) =0,

iFo + AEy —nEs 4+ nEy (E1E — E1E3) =0,
(G-2)
nt+V.-v=0,

vi+Vn+V (B +|E2|?) =0,

(E1, E2,n,v)(0,z) = (E10, E20, n0, vo)(z). (G-2Z-1)
System (G-Z) describes the spontaneous generation of a magnetic field without
the skin effect in a cold plasma, and > 0 is the magnetic coefficient. The
nonlinear cubic coupling terms Fo (E1E72— EEQ) and Ej (EEQ — ElEig)
generated by the cold magnetic field bring additional difficulties compared
with the classical Zakharov system. If the initial mass meets a presettable
condition

QI 2 2

[te] [
e < B0l ) +1E20l 2z < —— 0,

1+n

where Q is the unique radially positive solution of the equation —AV+V = V3,
we prove that there is a constant ¢ > 0 depending only on the initial data such
that for ¢t near T' (the blow-up time),

”(EL E27n7 v)”Hl(R2)><H1(R2)><L2(R2)><L2(R2) > ﬁ
As the magnetic coefficient 7 tends to 0, the blow-up rate recovers the result
for the classical 2-D Zakharov system due to Merle [16]. On the other hand,
for any positive n, the result of this paper reveals a rigorous justification that
the optimal lower bound of the blow-up rates is not affected by the presence
of magnetic field without the skin effect in a cold plasma.
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1. INTRODUCTION AND MAIN RESULTS

The magnetic Zakharov system

iE;+VV-E—nE —aV x (VxE)+i(EAB) =0,
omn=-V-v,

ov = —Vn —V|E]?,

AB—-inVxVx (EAE)+A=0,

is proposed to describe the spontaneous generation of a magnetic field in a cold
plasma [12]. Here, E = (E1, E3, E3) € C?® denotes the slowly varying complex
amplitudes of the high-frequency electric field, n the fluctuation of the electron
density from its equilibrium, B the self-generated magnetic field in a cold plasma,
A =6B, 5 <0,n7>0and a > 1 are all physical constants. In particular, the
Zakharov system (I) is a Schrodinger-wave coupled system with different scalings.
It keeps two conservation laws including the total mass

||E||2L2(R2) = HE1H%2(R2) + HEQH%?(R?) + ||E3||2L2(R2)a (1)
as well as the total energy

Hi= ||V xE|[f2@e) + IV - El[f2 g
L2 Loz 2
+§H”HL2(R2) + §||VHL2(R2) + o n|E[dz (I11)

n 1 T

In the cold plasma, the term dB describes the classical (collisionless) skin effect, «
is related to the velocity of electrons and the plasma frequency [12]. In the present
paper, we shall mainly focus on the case of § = 0 and a = 1, that is, the skin effect
would not be involved and the velocity of electrons increases synchronously with
the frequency of plasma.

From a physical point of view, the two-dimensional case for E is essential since
the electric fields usually traverse straightly with the reference planes. Let

‘ 2

—Mﬂf@xﬁﬁ)&‘

E(t,x) = (Byi(t,x), Ea(t,),0), =€ R
Through standard computations, one obtains
B(t,z) = (0,0, Bs(t,z)) = (0,0, —in (E1E> — EL E»))
by the fact that V-(E A E) = 0 and the vectorial identity AE = V(V-E)-VxVxE.
On the other hand, the interaction term involving the electronic and magnetic fields

enjoys the following expression:

ZE/\B:’UE/\E/\EZU(EQ (E1E727E71E2),E1 (EEQ*ElEig),O)
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Then (I) becomes a system

i E1 + AEy — nEy +nEy (E\Ey — E1E») = 0, (1.1-1)
i0Ey + AEy — nEy +nEy (E1Ey — E1Es) = 0, (1.1-2)
dn+V-v=0, (1.1 3) (-0
OV +Vn+V (|E1|* +|Eo|?) =0, (1.1—4)

where Fy(t,x), Eo(t,z) : Rt xR? = C, n(t,z) : RT xR? - R, v(t,z) : Rt xR? —
R? are physical quantities mentioned earlier.
We supplement (1.1) with the initial condition:

{ Ey(0,2) = Ero(x), FE2(0,7) = Ego(x),
n(0,z) = no(x), v(0,z) = vo(x).

Due to the identity (IIT), the Hamiltonian for (1.1) can be schematically written in
the form

H(E17E2,’I’L,V)
2 2 1 2 1 2
= IVE:z2 + [VE2|lz2 + SlInllze + SlIvIIz (1.3)

+/ n (|E1* + | Eo|?) dz — Q/ |E1E2—E2E112dx.
R2 2 R2

Clearly it is a well-defined functional on the energy space
H, := H'(R?) x H(R?) x L*(R?) x L*(R?). (1.3%)

The blow-up dynamics of the two dimensional classical Zakharov system have been
studied in detail by several authors [10, 11, 15, 16]. For the Zakharov system
with magnetic field effect (I), Laurey in [13] proved the global existence of weak
solutions for small initial data as well as the local existence and uniqueness of
smooth solutions in both two-dimensional and three-dimensional spaces. Based
on Laurey’s work [13], over the last decade, finite time blow-up dynamics for (I)
were considered. Gan, Guo and Huang in [7] constructed a family of blow-up
solutions in two-dimensional space, proved the existence of self-similar blow-up
solutions and established the instability and the concentration property of a class
of periodic solutions. In [6], the authors studied the Virial type blow-up solutions
of the Cauchy problem for (I). Later, the authors in [8] established the space-time
integral estimate of the blow-up rate for the finite time blow-up solutions to (I) in
three dimensional space. These arguments naturally carry on system (1.1).

To our best knowledge, very few results on the lower bound of the blow-up rates
are known for Zakharov system, especially for (1.1). Our aim here is to establish
the (essentially optimal) lower bound of the blow-up rates for the finite time blow-
up solutions to system (1.1).

Let us state a few preliminary results.

Firstly, with the methods used in [1, 2, 3, 9], the local well-posedness of mild
solutions of (1.1) in the energy space can be established:

Proposition 1.1. The two dimensional magnetic Zakharov system (1.1) is locally
well-posed in the energy space Hjy, which is defined by (1.3%). That is, there exists
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a unique solution (Ey, Fa,n,v) satisfying
||(E1a E27nav)(t)”H1 < Oa vt € [O7T)a

where T is the maximal existence time of the solution and C'is a constant depending
only on initial data. (I

Next, following Gan, Guo, Han and Zhang [6], we claim the virial-type blow-up
result for the Cauchy problem (1.1)-(1.2).

Proposition 1.2. Let 5 > 0 and let the solutions (E1, Fa,n,v) (¢) to the Cauchy
problem (1.1)-(1.2) be radially symmetric functions on R? for all time. If
H (E10, E20,m0,v0) < 0, then the following alternative holds:

(i) (E1, Eg,n,v)(t) blows up in finite time,

(i) (Ey1, Ea,n,v) (t) blows up at infinity. That is, (Ey, Ea,n,Vv) (t) is defined for
all ¢ and

Jim ([(E Ea, 1, V)l ey x o ve) x 22 ey x L2 ge) = 00 =

With these results, it is natural to expect more quantitative descriptions on the
behaviour of solutions as t near T, where T' < oo is the blow-up time. Com-
pared with the classical Zakharov system, the two extra nonlinear cubic coupling
terms Fso (E1E72— EEQ) and Ej (EEQ — Elfg) in (1.1) generated by the cold
magnetic field without the skin effect do bring a further challenge. If the initial
mass meets the presettable condition:

QI 2 (g2 ) ) QI 2 (g2
Tty < ||Er0ll72(re) + [ E20l[72(r2) < Y (1.4)
where @ is the unique radially positive solution of the equation
~AV +V =V3 (1.5)

we can prove that there is a constant ¢ > 0 depending only on the initial data such
that for ¢ near T' (the blow-up time),
c

1B, B2y, 9, 2 -

The main result of this paper is as follows:

Theorem 1.3. Let (Ey, Ea,n,v)(t) be the finite time blow-up solution of the
Cauchy problem (1.1)-(1.2), and T < oo be the blow-up time. Suppose that the
initial data (E1g, Fao) satisfies the condition (1.4), where @ is the unique radial
positive solution of equation (1.5), then there exist constants ¢ > 0,¢ > 0 depending
only on initial data, such that ast near T,

(1)

c

(B, Bz, o) (D), > 75— (1.6)
L
2 C
(IVEA N2y + IVE O 2ay) > 7 (L.7)
c
I (8)l|z2ee) > - (18)

More precisely, we have
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(2)

(IVE (0132 g) + IV B (0] e

[SE

> ‘ I (1.9)
) ) QU220 \2 T~
HEIOHLz(Rz) + ||E20||L2(]R2) - W

c 1
()l z2®2) = . (1.10)

1
, ) Q2o \ 2 Tt
[E10l172 gy + [ E20ll7 22y — =57 —

The assumption on the lower bound for the initial mass is natural, especially
for small n > 0, as it is basically the minimal mass needed for blow-up to occur.
Indeed, as the magnetic coefficient n tends to 0, the blow-up rate recovers the
result of the classical 2-D Zakharov system due to Merle [16]. Whether or not the
upper bound given in (1.4) is optimal remains open, but the assumption satisfies
automatically for prescribed finite mass if n is sufficiently small. For large 7, on
the other hand, our result is in some sense more intriguing. It provides a mass
band in which one can get more precise information for blow-ups. Indeed, under
the presettable condition (1.4), Theorem 1.3 provides a rigorous justification that
the presence of magnetic effects without the skin effect in the cold plasma does not
change the optimal lower bound for the blow-up rates.

Remark 1.4. In [7], Gan, Guo and Huang constructed a family of blow-up solutions
to the Cauchy problem (1.1)-(1.2):

. z|2 2 ~
1(9‘*‘%—%) P(#)
e N

Bs(t,z) = —iEy(t,z), (1.11)

El(t,ac) = ﬁ

.
n(t2) = 7 N (),

where P(x) ]5(|95\)7N(:r) = N(|z|) are radial functions on R?, § € R and w > 0.

__'r _ N ~
Let P = RFTE N = 135, then (P, N) satisfies

71

AP—-P+ 1-P3= L. NP,
n+1 ’
{ (1.12)

2 (r?Nyp + 6rN, + 6N) — AN = A|P|?.
A straightforward calculation yields
IVEL()||L2r2) = 751V Pl| L2 (r2),
IVE2(8)]| 222y = 725 ||V P|| L2 (re),

(1.13)
[In()]|z2@®2) = 7255 |NV |22 ®2)s

we(P,N
[0(t)]] 22y = 24EN,

These estimates imply that the lower bound estimates of blow-up rate (1.6), (1.7)
and (1.8) in Theorem 1.3 are indeed optimal. On the other hand, letting w — +o00
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and (P,N) — (Q,—Q?), it yields that (1.9) and (1.10) in Theorem 1.3 are also
optimal. ([

Let us emphasize that the Zakharov system (1.1) is a Hamiltonian system and
admits conservations of the total mass and total energy:

||E1||%2(R2) + HE2H%2(R2) = ||E10||2L2(R2) + ”EQOH%?(R?)v (1.14)

'H(El,Eg,n,v) :H(Elo,Ego,no,Vo) :Ho, (115)

where H(E1, F2,n,v) is defined in (1.3).

In stark contrast to the Zakharov system without the magnetic field effect, the
presence of extra nonlinear terms Fy (E1F2 — EEQ) and F; (EEQ — Elfz) (gen-
erated by the cold magnetic field) in (1.1) brings new difficulties in establishing
the lower bound of the blow-up rates. To this end, motivated by Merle’s heuristic
arguments covering the geometrical estimate, the non-vanishing estimate and the
compactness argument, involved in [16], we need to establish additional a priori
estimates for the extra nonlinear terms. On the other hand, we also need addi-
tional techniques from those adopted in [16]. In particular, to obtain the optimal
lower bound of blow-up rate, the initial mass needs to satisfy (1.4) so that we can
establish indispensable a priori estimates involving higher order nonlinear terms.
As mentioned earlier, the mass condition (1.4) is natural from both physical and
mathematical points of view. Indeed, by Lemma 2.2 in Section 2, it is standard to
conclude that the mild (no blow up) solution of (1.1) is globally well-defined if the
initial data (F10, Fao) satisfies

1Q1172 z2)
1+n

In [7] the authors pointed out that there is no mass-concentration at a finite time
provided

1B10]172(m2) + || B20l[72(re) <

QI 2 (g2
1E10]172(m2) + |[E20[172(z2) = i1y

Remark 1.5. The condition (1.4) is consistent with the blow-up dynamics of the
classical Zakharov system [11] when n — 0. The upper bound

Q172 (2
1E10]172m2) + || B20l[ 72 (me) < f()
means that multiple bubbles blow-ups may occur, even the blow-up rates are of
different orders. It is a very interesting issue for further study. O

The outline of the paper is as follows. The Section 2 (Preliminary) is mainly
devoted to some preparatory materials and technical results. Section 3 concerns
the analysis of the rescaled Zakharov system. In section 4 we prove the optimal
lower-bound of finite time blow-up rate (Theorem 1.3).

2. PRELIMINARIES

In this section, we give some notations and basic estimates. Firstly we recall
several lemmas in [4, 5, 17].
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Lemma 2.1. Let Q) be a smooth bounded domain in R™ with n > 2 and % + % =
1. If fr, = f in LP(Q), and g — g in LY() as k — 400, then

/ frgrdx — / fgdx as k — +o0. O
Q Q

Lemma 2.2. (Weinstein [17])  For all u € H'(R?),

1, 4 [ull2 (gay )
§||UHL4(R2)< m [Vul|72 gz,

where @Q 1is the unique positive solution of (1.5). O

Since (1.1-1)-(1.1-2) and (1.1-3)-(1.1-4) have the same scaling on the spatial
structure but different space-time structures, it will conserve (1.1-1)-(1.1-2) and
(1.1-3)-(1.1-4), respectively. Taking a suitable space-time scaling to the Zakharov
system (1.1) can yield a rescaled system.

Proposition 2.3. Let (Ej, Fa,n,v) be the finite-time blow-up solutions to the
Zakharov system (1.1) and T be its blow-up time. For any ¢t € [0,T), let

Eu(t,5,2) = ks Bn (t+ st0 3% )

Ba(t, 5,2) = st B2 (t+ 387 5% )

(2.1)
n(t,s,z) = EEh (t + x5 )\Lt)) ;
{’(t7 87 x) = )\21(t)v <t + )\a) ) %) Y
where s € [0, A\(¢)(T —t)),
A2 (t) :H(El,EZa”»V)HJQLII(RZ)le(R2)xL2(R2)xL2(R2)
:/ |VE1(t,x)|2dm+/ |V Ey(t, x)|? do (2.2)
R2 R2 :
1 2 1 2
+- [n(t,z)|* de + = [v(t, z)|” de.
2 R2 2 R2
Then (E1, Ey,71,V)(s) satisfies the following rescaled Zakharov system:
%Z'Els + AEl - ﬁEl + ﬁEQ (ElEig - EEQ) == 0, (23&)
LiBy, + Ay — By + nE) (EEQ - Eli) —0, (2.3b) 3
iy + V-5 =0, (2.3¢) '
Vo +V (m \E1|2+|E2|2) —0. (2.3d)
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In addition, there hold
(1)

o 2
limg \ oy (7—1) H <E17E2,7~17‘7) (s)

H1(R2)x H1(R2)x L2 (R2) x L2(R?)
2 2

L2(R?) + H ‘ L2(R2) (2.4)
1) ey + B9 B ages) )

= limg_,x ) (7—1) (HVEI(S)‘

. 2 N 2 1 1
/ (‘VEl(t,O,x)’ + ’VEQ(t,O,x)‘ + 5llt, 0,2) 2 + 20(15,0,:5)|2> dr =1,
R2

(2.5)
(3)
_ 2 2
HEl(tys,ﬂf)‘ HEz (t,s x)‘
2(R2) L2(R?)
5 2 2
= HEl(ﬂO,x)H + HEQ t,0 x)) (2.6)
12(R2) 12(R2)

2
= [|E1ollz2(re) + ||E20||L2(]R2) ,
and

(4)
H(E17E2uﬁ>‘7)
2 2
— L 7 115112 111112
- HVElHLzoR?) N HVEQ‘ peeey T 2z 2 lVliza ey
b [ (B +IEP) do—n [ BB do
R2 R2 (2 7)
Q ~\N2 /=—\2 —\2 /-~ \2 :
ey [((B) (B)+ (B) (2)) @

1
= )\T(t)H(El,Emﬂ,V)
1

= -_—— E E .
)\2(t)H( 10, £20, 10, Vo)

Proof. According to (2.1), direct calculation provides

~ B - 12

FEs = Az(t)Elta AEl = )\3(t)AE1’ v ’E1’ = AS(t)V|E1| ’

Eay = s By, AEy = 3= AE VEQ——l V|E,|? 28)
os = /\27(1&) 2, 2 = )\3(75) 2 ’ 2‘ = 35 | 2| )

s = s V= mp Ve VoV =sanVev, V=g ve
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Taking (2.8) into (1.1) yields the rescaled Zakharov system (2.3)

deduces that
H (El,E27T~L,\~7) (t,s,x)‘

= HVE’l(t,s,x)H

Similarly, we
2

Hy
2

- 2
+ HVEZ(ta S,ZE)’
L2 (R2?)

L2(R?)
_ 2 Loe 2
+§ Hn(t, S,I)HL2(R2) + 5 ||V(t7 S7x)||L2(R2)

‘ 1

@

2 2

(2.9)
L2(R2)

1
4+ {|—=——=VE,
L2(R2) H A2(t)
2 2

A2

el

201220 Mla@ey 2 13@) L2

1 1
i fo (VBP + 9B+ o + 51 )

AT
At)" A(t) At) )
Note that ¢ + 575 — T as s — A()(T —t), one has

_>
2 9o Lo 1
IVE1]? + |[VE3|” + =|n|* + = |v]|
SHA(t (T t) 2 2
(2.10)
L W R N
A1) A1) At) '
That is,

2
lim H(El,Eg,n V) (t,s x)H =400, (2.11)
s (T—1) H1(R2)x H' (R2) x L2 (R?) x L2 (R?)

this is the estimate (2.4). Furthermore, taking the inner product of (2.3a) with Ey

and of (2.3b) with Fs, integrating with respect to the spatial variable z, and taking
the imaginary part of the resulting equations yield

Im . |:;Els 'ET-FAEH 'E—ﬁE1 'E+UE1E2 (E1E2—E~‘1E~'2>} dx
R

1. — —\2 /. \2
=Re [ SEu Byde—Im Rzn(El) (EQ) d
1 d ~ 2 —\2 /. \2
-2 .y E) (E
INds g2 ’ dw —Im Rzn( 1) ( 2) de
- 0.
(2.12)
That is,
L d AR ) (8) dz =0 2.13
m*/R | x‘mRﬁ(l)(Z’) z=0. (2.13)
A similar argument gives

1 d/
2\ ds R2

)2 dx —Im RQn(E1)2 (E)Q dx = 0. (2.14)
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(2.13) and (2.14) yield

di/R (\El\ﬁ 'EQD dz = 0. (2.15)

Here we use the identity: Im <f2§2 + ?2g2) =0, Vf,g € C. Hence there holds

2 2

RICEE P

L2(R2) L2 (R2
= (2.16)

2 2

- HEl(t,O,x)H + HEQ £,0 :v)‘

L2(R?) L2(R?)

In addition, from the mass conservation (1.14) it follows that

2 2

HEl(LOJC)‘

Ex(t,0,)|
oy + [ B2(00.2)

L2(R?)

:/RQ (’El(t,o,z ‘ ‘EQ (1,0, ‘2) d

/<'E1\2+*E2' (» Jd("éi)

= [|BrollF2(re) + [ B0l 72 z2)-

Note that
1 1
2t):/ |VE1|2dx+/ |VE2|2dx+f/ |n\2dx+—/ |v|*dz, (2.18)
RQ ]R2 2 ]R2 2 R2

one gets

_ _ 1 1
/ (lVEl(t7O,:c)|2 + |V Es(t,0,z)]* + 5|ﬁ(t, 0,2))* + 5|€r(t, 0,3:)|2) dx
R2

- 2 2,1 2 1 2
= N2(1) /R2 (VEl(t,$)| + |VEy(t, x)|” + 2|n(t,x)\ + 2|v(t,m)| dr

=1 (2.19)

The above arguments imply (2.5) and (2.6).

Finally, taking the inner product of (2.3a) with Fb and of (2.3b) with FQS’ in-
tegrating with respect to spatial variable x, then taking the real part of the result
equations, we have

Re [ (3B Bt AR Buo -y B b nBiF (BB - B o =0,
R?
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that is,

2 1 2 1 _ 2

dx d VEl‘ dx—/ ﬁfi‘El‘ dx
R

i~
R f‘ES _-4
e/]RzA ! 2d8 R2 2 2d8
n 12 d o~ |2 n N2 d /=2
A E‘-—’E‘d——R/ B -2 (E) 4
+2/Rz 2| gs T Ty 6R2(2> ds(l) v
d 2 1 d
E‘d—f il
VI v 2/R2n dS

E, Qdii ‘E’lrdx— gRe/RQ (Eg)Z% (E)2dm
=0.

1
2ds R2
Using an argument similar to the one in the derivation of (2.20), one obtains

(2.20)

- 12
El( da

n
5/,

Re [ (3B Fost AB oy~ B B b nBucF (BB~ i) o =0,
RQ

and hence
1d ~ 1 d -~
——— [ |VEyPdz — = | n-—|Ey*d
2d5~/]RQ| 2‘ v 2/R2n dS‘ 2| *
+3/ B 2L\ B f2da — ﬁRe/ (B2 (E)Qdm (2.21)
2 R2 ds 2 R2 ds
=0.
Next, taking the inner product of (2.3c) with 7 yields
1d
/ (it + (V- ¥) i) de = =— [ |if2dz — / V- Vidz = 0, (2.22)
R2 2ds R2 R2

On the other hand, taking the inner product of (2.3d) with ¢ implies

- - 1d
/ [@S-v+v(ﬁ+\El|2+|Eg|2) -v] dz sz/ |\7|2d:c—/ AV - vdz
R2 2ds R2 R2
+/ s (|E1|2 + \E2|2) dz = 0.
R2
(2.23)
Combining (2.21) with (2.22) and (2.23) gives

a
ds R

[Pl 3 (B B+ B (5))] oo

which implies

_ 2 L2 1 1y 1= 2
(‘VEl‘ +|VEs| 4+ 5 1 + 5 191 +n<‘El‘ + || ))dw
2

H (El, Eg,ﬁ,\7> (t,s,2) = H (El, By, 7, v) (1,0, ). (2.24)
According to the conservation of Hamiltonian (1.15), we have

H (El,Eg,ﬁ,v) (t,0,)

2 2

- HVEl(t,O,x)H + HVEQ(L‘,O,%)‘

L2(R?) L2(R2)
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1, . 2 1. 2
35 [7(2,0,2) (|72 (re) + 5 [V(2,0,2)[| 72 (ge)

- 2 - 2
+/Rz A(t,0, ) (‘El(t,o,x)‘ +‘E2(t,0,x)‘ ) dz

*"/W
i ((E1 (t.0.2)) (B (t.0.0))

+ (B (t,O,x)>2 (£ (t,O,x))2> dz

~ 2 o
El(t,O,x)‘ ’EQ(t,O,z) dz

‘ 2

2 2

1
X2(t)

- vE

VEI(1) o0

L2(R?) L2(R?)

2 2

3

IH 1

+ 5w

L2(R?) L2(R?)

1
) i (B OF +1B0F) d

1 2 2
—n [ 5 1B OF B0

2

+ g /]R? )\%(t) ((El (t))2 (E (t))2 + (E (t)) (E, (t))Z) du

1
=— _H(E,FE t
)\Q(t)?{( 1, 2un7v)()
! H (Eho, E ) (2.25)
= — n, V .
)\2(t) 10, £~20, 405 VO ) »
which is just the estimate (2.7). This finishes the proof of Proposition 2.3. (]

3. ESTIMATES FOR THE RESCALED ZAKHAROV SYSTEM (2.3)

In this section, we firstly establish some a priori estimates for the rescaled Za-
kharov system (2.3) in order to gain the optimal lower bound for the blow-up rate
of the finite time blow-up solution to the Zakharov system (1.1). For simplicity, let

(El,Eg,fw) (s) 2 (El,Eg,ﬁ,o) (t, s, ). (3.1)
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We claim some a priori estimates for the solution (El, E,, i, \7) (s) to the rescaled
Zakharov system (2.3).

Theorem 3.1. (A priori estimates on (E1,Eg,ﬁ, i)) (s))

Let (Ey, E2,n,v)(t) be a solution of the Zakharov system (1.1), (El, Es, 7, i)) (s) be
a solution of the rescaled Zakharov system (2.3) and T be the blow-up time. Suppose
that the initial mass (E1g, Eaq) satisfies (1.4), where Q is the unique radial positive
solution of the equation (1.5), then there are constants 6y > 0, and A > 0 depending
only on the initial data such that for t near T,

Vs € [0, 60), (El,Eg,ﬁ, v) (s)‘ L <A (3.2)
1
Furthermore, we can choose
_1
N 1QIF 22y |
%zcowm@mnﬂwmmmy—l+;> . (33)

Remark 3.2. Theorem 3.1 is crucial to show the main result (Theorem 1.3) where
the mass condition (1.4) is an essential ingredient. (]

Before proving Theorem 3.1, we first establish the geometrical estimates on the
solution (El,Eg,ﬁ, \7) to the rescaled Zakharov system (2.3). These estimates

concern Sobolev type estimates for (El,Eg,ﬁ,f/) (0), nonvanishing properties of

(El,Eg,ﬁ) (0) and compactness properties of (El,Eg,ﬁ) (0). We will consider
them with four portions:

& 3.1 Sobolev Estimates on (E1 (0), E5(0),7(0), \7(0)) for t near T}

¢ 3.2 Non-vanishing properties of the solutions to the rescaled Zakharov sys-
tem as t near T

¢ 3.3 Compactness of the solution to the rescaled Zakharov system (2.3);
{$ 3.4  Proof of Theorem 3.1.

3.1. Sobolev Estimates on <E1(O),E2(O),ﬁ(0),\7(0)) for t near T.
The Sobolev estimates on (El (0), E5(0), 7(0), \7(0)) is given as follows.

Proposition 3.3. Let (Ey(t), Ex(t),n(t), v(t)) be the finite time blow-up solution
to the Cauchy problem (1.1)-(1.2) on ¢ € [0,T), and T be the blow-up time. Suppose
that the initial mass satisfies (1.4), then there are constants

51>0, c1>0,¢c3>0,c3>0 (34)
depending only on (E1g, Fag,no, Vo), such that for ¢ € [T — §;,T), the solution
(El, Eg,fl,\?) (s) to the rescaled Zakharov system (2.3) admits

. 2 . 2 3
0 <HEO’ HEO) <o, 3.5
ca<(|vaol,,, +[vE0),,,.) < (35)
0.< er < (O] 2z < o5 (36)

0 < [[V(0)ll 2 (o) < c3-
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Proof. From (2.5) it follows that

VE;(0) 22 L[ VE2(0)
L2(R?)

2 2

) <L
L2(®?) (3.8)
1700)|| 2Ry < V2, [9(0)]| 22y < V2.

Note that A(t) — +o0 as t — T, by (2.7), there exists 6; > 0 such that for any
te [T - (51, T),

Ho
A%(t)

‘7—[ (E1 (0),1772(0),@(0),9(0))‘ - <. (3.9)

Hence (2.5) and (2.7) yield

1 :/ |VE1(O)|2dac+/ |V E5(0)[>dx
R2 R2

1 1
+= \ﬁ(0)|2dx+f/ |¥(0)|?dx
2 Rz 2 ]R2

<51 L0 (B0 +B0)F) dr

+7
2 \/]R2

Since ETEQ and Elfg are conjugate complex-valued functions, we have the follow-

— ~ ~ — 2
ing estimate for the quartic term / ’El(O)Eg(O) . El(O)EQ(O)’ dz:
RQ

..
2 Jr

(3.10)

E1(0)E»(0) — E1(0)E»(0)

— 2
’ dx.

Ei(0)Ex(0) - Ey(0)Ex(0)| da

< 2/ |1 (0) 2| B (0) 2da
]RZ

< <|E1(0)2‘;|E2(0)|2>2d$

(3.11)

1

= 5 | UBO)F +|Ba0)) P

On the other hand, it follows from Holder’s inequality that

/Rz ~ii(0) (|E1(0)* + | B2 (0)[?) do

< (b2 [ |ﬁ(0)|2dgg)é <512 /R (|El(0)|2+|E2(0)|2)2dsc)é (3.12)

<2 [ popar+ o [ (IBOF +1B0)2) do
= 2 R2 2b2 R2 ! 2 ’

Let b* = 1. Combining (3.10) with (3.11) and (3.12) yields
1

% <1/, |7(0)2dz + (g + 1) /]R (|E1(0)|2 + |E‘2(0)|2)2dx. (3.13)
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Due to ||ﬁ(0)||%2(R2) < 2, (3.13) implies
~ ~ 2
[ (B F + | B20)) do >
R2

Using Gagliardo-Nirenberg inequality (Lemma 2.2), one gets the estimate for

~ 9 - 9 2 .
/Rz (1B )P +1B2(0)) dr

/]Rz (1E:(0)2 + |E2(O)|2)2dx
= /R2 (|E1(0)|4 + |E2(0)|4) d$+2/Rz |E1(0)[%| B2(0) |2 d

2||E1(0)||2 ; 2| E2(0)]? 5
< AP O eoee) 1(3|L2(R2)/ VEO)da + 22O Loy )||L2(R2)/ IV E5(0)|2d
||QHL2(]R2) R2 HQ||L2 (R2) R2

2 (/R By (0)4dx> : (/R E2(0)|4dx> :

. 3.14
4+ 2n ( )

2||E1 (0)]2 3 2| E2(0 B
B Oy (s g, WO [ op oy
||QHL2(R2) R2 HQ”L2 (R2) R2 ( )
g N 3.15
[ E1(0)|| 2(r2) | E2(0) || L2 r2) | o = ~
+4 ||é2||)m - ED IV EL(0) ]| 2 @2) | VB (0) | 12 (82
2
S QI g2y
: (”El(o)”%z(Rz)||VE1(0)H%2(R2) + [ E2(0)[|72 g2y [ VEL(0) 17 2 gy
I E1 (01172 (g2) IV E2(0) |12 g2y + IIEz(O)II%z<Rz)IIVEz(O)Iliz(Rz))
2 EL(0))? E5(0)]2
[E1(0) 172 (r2y + [[E2(0)[|72(Re2)
S
(VO3 z) + IV E2(0) |22y ) -
This together with (3.14) yields
E 2 E‘ 2
0, + [|1E20)
1 H 10) L2(R2)+ 2(0) L2(R?)
8 +4n 11172 z2) (3.16)
- 2 - 2
: (HVEl(O)‘ + [V E2(0)| ) ,
L2(R2) L2(R2)

and the conclusion (3.5) follows from (2.5) and the mass identity (2.6).

In the following we prove the conclusions (3.6) and (3.7). In view of condition
(1.4), we can assume that there exists a sufficiently small §p with 0 < Jp < ﬁ
such that

1—4p
IE1(O)1Z2 g2y + 1B2(0)[1Z2 g2y < T\l@ll%z(m- (3.17)
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On the other hand, by (3.8) we deduce

1/
2 Jge

<2 / |2,(0) 2 B (0) [2da
]RZ

<o ([ 1m0 ([ o)

<477||E1(O)HL2(R2)||E2(0)HL2(R2)||VE1( Mzz@e) IVE2(0)||z2@e)  (3.18)
b 1QI1Z2 g2

< n(||vE1<o>||%2(Rz> n VE2<0>||L2<R2>)

1B (0)117 g2) + I1E2(0) |72 (g
||Q||L2(]R2)

E1(0)E2(0) — E1(0)Eo(0)| da

= ~ ~ = ‘ 2

<1-—do.

Combining (3.18) with (2.2), (2.5) and (2.7) gives

0 <= [ 0) (1O + |B(0)F) da

3 1 (3.19)
2 ~ ~ 2 2
Recalling (3.15), (3.17) yields
~ ~ 2
[ (1507 +1E:0F) @
R2
s Q(HVEMOH%aRa + ||vE2<o>||%z<R2))
_ 1E1(0)]13 2 g2y + 1 E2(0)]13 g2 (3.20)
Q1172 g2y
_2- 2507
n

In view of (3.19), for any fixed small g > 0, there exists a constant ¢; > 0 such
that

2

77 % ~ 2
= < . 21
<575 < [ IO (3:21)

c1
2
Note that for 0 < §y < ﬁ and n > 0, glif’(so < 2, the upper bounds for

IV B2 ()2 gy + [V E2(0)] 2 gy 171(0) 22 g ancl [[90) 2 g follow from (2.5).
The proof of Proposition 3. 3 is completed. (]
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Due to the condition (2.5) concerning the rescaled Zakharov system (2.3), using
Proposition 3.3 and the following scaling properties:

HVEJ'(O)‘ L2(R?) ﬁ

IVE;(8)] 2 gey » 5= 1.2
1 1 (3.22)
||77(0)HL2(R2) = W””@)HH(R% H‘N’(O)”LQ(R% = w”v(t)nm(wy

we claim the following Sobolev-type estimates for the solution (E1 (), Es(t), n(t), v(t))
to the Zakharov system (1.1).

Corollary 3.4. Under the assumptions in Proposition 3.3, there exists constants
01 > 0, ¢, ¢ depending only on initial data (1.2) such that for t € [T — 61,T),
there hold:

. o

@ se < (VB OB o) + IVE0) ) < Sln@le, (323)
1

1
lo(t)l 2 mey < C**Hn(t)”ﬂ(u&?)’ (3.24)
1
cslin(®)llrz@ey < |[(Er, E2,n,v)(t) g,

gi

o
Ca

(3.25)

n(t) | 2 w2y

Proof. Let ¢* = max{ca, cs}. From Proposition 3.3 it follows that ¢; < ¢*. Taking

cf = & and ¢; = @2—1 yields the conclusion of Corollary 3.4 due to Proposition

3.3. (]

3.2. Non-vanishing Properties of the Solutions to the Re-scaled Zakharov
System as t near 7.

We now consider the non-vanishing properties of the solution (EN’l (s), Ea(s), ﬁ(s))
of the rescaled magnetic Zakharov system (2.3) for s = 0, i.e., the non-vanishing
properties of (El (0), Ex(0), ﬁ(O)) .

Proposition 3.5. For any ¢ € [0,7), suppose that (E1(t), E2(t),n(t),v(t)) (or
(El(O), E5(0),7(0), \7(0))) is the finite time blow-up solution to the Cauchy prob-
lem (1.1)-(1.2), the initial data (F1o(z), Eao(x)) satisfies condition (1.4) and T is

the blow-up time. Then we claim:
(1) There exist constants Ry > 0 and $; > 0 depending only on [[E1ol| 2 (g2) and

[ E20l| £2(m2) such that for a sequence z(t) € R? one has

-

2 2

lim inf (HE‘1 (O,x)‘

t—T

)2 > b1, (3.26)

L2(Jlz—z(t)|<R1) L2(Jz—z(t)|<R1)

h?ii%lf ||ﬁ(07x)||L2(|a:7:E(t)|<R1) = P (3.27)

(2) Let (E1m FEs,, ﬁn) (s) be a sequence satisfying the following estimates:

2

- 2
[l

HEM(O)’ L2(R?

L2(R2) ) < HElOHiQ(R?) + HE20||%2(R2) s (328)
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- 2 - 2
1 < / VEln(O)‘ dz + / VEQn(O)‘ dz < cs, (3.29)
R2 R2
e < / |72,, (0)[2d < 2, (3.30)
]R2
lim sup H (Eln(o),EQn(o),ﬁn(o),O) <o. (3.31)
t—T

Then there exist #; > 0 and R; > 0 depending only on ||E1ol|z2(r2), [|E20ll12(®2)
¢1 > 0 and ¢z > 0 such that for a sequence {z,} € R?,

_2 _ o2 3
I HEn( HEn‘ > B >0, 3.32
7L—1>I-§I-loo < ! L2(Jz—z,|<R1) + 2 L2(|lz—zn|<R1) & ( )
ngr—ir-loo ”ﬁnHLz(\xfmnKRl) > ﬁl > 0. (333)

The proof of this proposition is similar to that of Proposition 3.6 in [16], but
the proof details of the treatment of Proposition 3.5 and Proposition 3.6 in [16] are
different. In fact, Propositon 3.5 is much more complicated since the higher-order
nonlinear terms are essentially involved in (1.1). Proposition 3.5 will be proved step
by step later.

We firstly claim:

Proposition 3.6. Assume there is my = my (|| Evoll2(r2), | E20l 12(r2)) > 0 such
that the sequences (E1x, Fag, ng, vi) € H'(R?) x HY(R?) x L?(R?) x L?(R?) satisfy

B2k 1722y + [ B2kl 222y = [ BrollZ2@e) + [ B20l 72 g2) > 0, (3.34)

and there exist constants Ry > 0 and d; > 0 such that

QI
sup / (10 )P + 1B ) ) do < LOE2ED (3.35)
yeR? Jjz—y|<Ro 1+n
or
sup / [ng(x)|de < my — 5. (3.36)
y€R? J|z—y|<Ro

Then there exist constants C; > 0, Cs > 0 such that

1 1
~Ci+ 02/ (|VE1k|2 + |V Eu[? + 5 lne* + 2Iv:c|2> dz
R2

(3.37)
< H(E1k7 E2k7 ng, Vk)7
where H is defined by (1.3).
Proof of Proposition 3.6.
We first define two functionals as follows:
1 2

5(E1,E2) £ ||VE1H%2(]R2) + ||VE2||2L2(]R2) - 5/ (|E1|2 + ‘E2|2) dx

- (3.38)

—Q/ |EE2—E1E|2d$;
2 Jo

1
H1(Ey1, By,n) 2 E(By, Ey) + 5/ (n+|E1]> + |E2|2)2dx. (3.39)
]R2
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Let
Erg(z) = iEm ;) )
k k
(@) = B (£ ), (3.40)
ik (T) = 371k (ﬁ) ;
where

1
A= ||VE11€||2L2(]R2) + ||VE2]€||%2(]R2) + §||”k||2L2(R2)~ (3.41)

We continue the proof of Proposition 3.6 through four steps.
Step 1. A non-vanishing property of (Elk,Egk,ﬁk)

Lemma 3.7. For the sequences (E1k, Fak,ny) introduced in Proposition 3.6, as-
sume there is a sequence (E1y, Ea, ) € HY(R?) x HY(R?) x L*(R?) such that as
k — 400, the following estimates hold:

H (Elk,E%,ﬁk,O) <0, (3.42)

.
/R2 (|E1,c|2 + |E2k|2) dz — ¢ >0, (3.43)

.
/RZ (lVE1k|2 + |VE2k|2) dx + %/}RZ g |2dz — ¢o > 0, (3.44)

/ﬁk <|E1k|2+|E2k|2)dx—n/ | B || B |2 dac
R2 R?

L (B )"+ ()’ (52)") -0

Then there exist a constant cq = c4(cy,c2,c3) > 0 and a sequence x), € R? such that

(3.45)

/ - |T~Lk|d(E > cy. (346)
T—T|<

Proof. By (3.40), we claim that there exists a sequence 3 € R? such that

/Ck —ny, (|E1k\2 + |E2k\2) dr + ﬂ/Ck
-1 /C k ((Elk)Q (Ba)” + (Bu)’ (E%)Q) de (3.47)

3 3 3 ~ 1.
>0 [ (9B + 1B ) + (Bl + 1Bul) + 5 il an
Ck

- 2 . 2
Elk‘ ‘Egk‘ dzr
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c

for k large enough, where C}, is the square of center x; and ¢ = — 3 with
60(01 + CQ)

co > 1 is a fixed constant. Otherwise, one would obtain

~ ~ ~ 2 . 2
[ = (1Bl + Bl ) do o [ |Bu| [Ba| da
Ck Ck

2 (B (B) + (Bar) () ) o (3.48)

- . - - 1.
< q~/ {(WEUCF n |VE2k\2) + (|E1k|2+ |E2k|2> + anﬂ da.
Ch

Let k — +o0, (3.48) yields ¢3 < q(c1 + ¢2) = e (co > 1), which is a contradiction.
Co
We now claim the following conclusion.

Conclusion I: There exist constants

. 2V2¢° . Ag
1= 7 _|_anQ||L2(R2) >0, ¢; = m”@”m(u@) >0,

2
¢ =eci >0 with e = —\[qHQ”LQ(C'“)
qn—+1

such that

o2 o2\ 2 :
V (‘Elk‘ +‘E2k‘) dm] > >0, (3.49)
Cyg

2 L 2 2. 2
/ — g <‘E1k‘ + ’EQk‘ )dCE-H?/ ‘Elk‘ ‘EQk‘ dx
Ck Ck

<g[;agojgaﬂ(agwggjm>g>a

(3.50)

~ 2 - 2
/ — (‘Elk‘ + | B ) dz > ¢ > 0. (3.51)
Ck

Proof of Conclusion I.

Lemma 2.2, Cauchy-Schwartz inequality: 2ab < (a,b > 0) and Young’s

(a+1b)*
2

inequality give

(58wl 4 [vEaf Yot [ (|Eu] +|Bn)
Ck Ck

2 3 (3.52)
L2 . 2
>\/§HQ”L2(R2) / (‘Elk’ +‘E2k‘) dx
Cy




OPTIMAL LOWER BOUND FOR THE BLOW-UP RATE
_ 2 o2\ 2
/ (’Ew‘ +‘E2k’> dx
Ck
o2 L2 2. 2
é/ —Tg (’Em‘ +‘E2k’ >d$+77/ ’Elk‘ ’EZk‘ dx
Ck Ck
n N2 —\2 2, N2
—*/ ((E1k> (EZk) +<E1k> (E2k> )dl“ (3.53)
2 ch
q 2 1 = |2 - 12\’
gf/ |ﬁk| dJC—F*/ (‘Elk‘ +‘E2k’ ) dx
2 Ch 2q Ch
n 2 o2\ 2
+7/ (‘Em’ +’E2k‘) dz.
2 Ch

21
1
2

q,. 2
¢ V2/|Ql L2(cv) + 5 7nlze o)

That is,

(1 —;qnq> [/C (‘Elk‘Q + ‘EQk‘2)2d$] ’ > \/§QHQ||L2(C,€). (3.54)

This yields (3.49). Similarly, (3.53) and (3.54) imply
~ 2 - 2 - 2 . 2
/ —Ng (‘Elk’ + ‘Egk‘ ) d$—|—77/ ‘Elk’ ‘Egk’ dx
Cy Ck
n L N2 =\ 2 N2 . \2
[ () () () () )
~ 2 _o2\ 2 H
2 q\/illQIILz(ck> l/ (’Em‘ + ‘E2k‘ ) dx]
Ck

- 1°1Q12 2 e,y
14qn

c5 > 0.

So (3.50) is true.
In the following we prove (3.51). By (3.47), one obtains

~ 2 ~ 2 - 2 - 2
o[ (I8l + 98 ) + (|Bu] + |Buf )] o

Ch

q -2
+7/ || da (3.56)

2 Je,

< 9/

2 Je,

_— [ Co2 L2
B Eyy, _ElkEQk’ dm—i—/ — g (‘Em’ + ’EQk‘ >d$.
Ch

From Lemma 2.2, it follows

~ 2 _2\2
e o ||Q||%2(Ck)fck (‘Elk’ + ’EZk‘ ) dx
/ (‘VEUC‘ + ‘VE%‘ )dx > 2 2 '
o 2., (‘Em‘ + ’E2k‘ )dx
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Note that

/ K‘VEUC‘Q + ‘VEQk‘Z) + (’Eu@r + ‘E2k’2>:| dx
Cyg
~ 2 ~ 2 % - 2 - 2 %
22(/ <‘VE11€‘ +‘VE2k‘ )dx) </ (‘Elk’ +‘E2k’ >dx> )
C Cy

(3.53),(3.54),(3.55) and (3.56) give

V24||Q| 2(c q -
SR VBl Qluac + 4 [ il da
Ch

1
3+ 5 2

n _2 o2\ 2
—f/ (‘Elk‘ + ‘EQk‘ ) dz (3.57)
2 Je,

- 2 - 2
< / —N (‘Elk’ + ’Egk‘ ) dx.
Ch

Assume that there exists an € > 0 such that

2 _ 2 _ 9 2 2 D) _
n\fiql”QHLQ(Ck) < / (‘Elk’ + ‘E2k’ > dr | < \quQ”?(C’“) 6,
2 + 2q C 5
(3.58)

This yields

2 2q

~X

2v24||Qllr2(cy) — 2¢ < 2\/5}62'([;'7(0%) —% (77 + 1) . (3.59)
5 _ 2\ 2q||Qll L2 (o)
(o (eat ) k

that is,
e <V2q|Ql2(cy) (1 - Zl>
g \qf (3.60)
1 2q/|@Qll2(cy)
= \/i = L .
2
Taking ¢ = M in (3.58), one obtains
gn+1
2 \?2
Vel ~ 3 ([ (1Bl + 1) as)
k
\/EQ||QHL2 Cr
v24)|Qll2(c) — qn—Jrl(k) (3.61)

> v24|1Ql|r2(cy) —

N3

n
2

_ V2q||Ql L2 (cy)
qn+1 '

Note that > 0, then there exists € > 0 small enough such that the following
estimate holds:

1
- - 2
Vel - % | [ (BuP 1Bl ze>0. (o2
Ck
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Combining (3.47), (3.52), (3.53) and (3.62) together yields
_ 2 o2
/ —Ng (‘Elk‘ +‘E2k‘ )dx
C
1
L2 o2\ 2 2
2\/§Q||Q||L2(Ck) (/ (‘Elk‘ +’E2k‘) da?)
Ck
9.~ 2 n = |2 - 12\’
+§||n;€||L2(Ck) — 5 /Ck (‘Elk‘ +‘E2k¢’ ) d.’L‘
. o 2 3
= \/§QQ||L2(Ck)_2</ ()Elk‘ +‘E2k’) dw) (3.63)
Ck
= |2 - 12\’ : q 2
: </ (‘Elk\ +)E2’“‘) d””) T g Il
Ch
o2 o2\ 2 3 q
>e(/ (]Elk\ +\E2k]> dx) + 2 el 2 )
Ch

2v/2¢?
> g—fq 19llz2(cn) =eci =ci > 0.
qn+1

This is just the estimate (3.51). Hence Conclusion I follows from (3.54),(3.55) and
(3.63). O
We finish the proof of Lemma 3.7 according to Conclusion I by contradiction.

Assume by contradiction that there exists a subsequence (still denoted by 7)
such that as k — +o0,

/ || dz — 0. (3.64)
Ck
Let
(x4 ) = N’ in L*(R?), (3.65)
and
(Bur(awn + ), Banlan +-)) = (Bf, By) in H'(R?) x H'(R?). (3.66)

By Sobolev-type estimates, we have

(Elk(mk ), Bop (g + -)) 5 (B}, E}) in L} _(R?) x L (R?), (3.67)

loc

and

(|E1k($k + ), | Bon (i + ')\2) — (IE1P, |B5[%) in L}, (R?) x L7, (R?). (3.68)

loc loc
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Indeed, for a bounded open domain C}, in R?, H(Cy) cC LP(Cy), p € [2, +0),
there holds:
2
I

|

_2 2 !
gC(/ (/ (‘Elk’ +|E12> dz) (3.69)
R2 R?
5 4 N1 s T
<ae( [ ([ (Bt )
R2 R?

From (3.64) it follows that as k — oo,
Ak (zp +-) = 0in L*(Cy). (3.70)

L2(Ck)

1

NG

- 4
B — E;‘ da:)

On the other hand, by Lemma 2.1 there holds as k& — 400,

/ TNL]C (|E1k|2 + |E2k|2) dx
Ck

- / i (25 + @) (‘Elk (wx + @) [ + | Eap (21 + ) |2) dz (3.71)
Co
— 0,
which is contradictory to (3.63). This completes the proof of Lemma 3.7. O

Step 2: An alternative form for (3.37)
Implementing similar arguments to those in the previous section, we follow from
(3.63) that there exists a constant ¢ > 0 such that

. 2 . 2
/ <’E1k(xk+x)‘ +‘E2k(l’k+l‘)' >dx>cz > 0. (3.72)
Co
According to the definitions of H;(E1, E2,n) (see (3.39)) and H(E1, E2,n, v)(see
(1.3)), for the sake of proving (3.37), it is sufficient to show that there exist constants
Cy > 0 and Cy > 0 such that
1
—Cy + 02/ <|VE1k|2 + |VEoy|? + 2|n,€|2> de < Hy (Big, Eag,ng) . (3.73)

R2

We will verify (3.73) by contradiction.

Assume that (3.73) would not hold for a subsequence (E1k, Eok,ng). That is, for
any constants Cy > 0, Cy > 0, there exists a subsequence (E, Far, ng) such that

1
—C1 + Cy /2 <|VE1k|2 + ‘VEQ]{F + 2|nk|2> dr > H; (Elk, Egk,nk) . (3.74)
R
Then the following conclusions would be true provided k& — +oc:

1
¥ ::/ (VEw]® + |VEw?) dx+§/ ng2dz = +oo,  (3.75)
R? R?

I Hi(Erk, Eor,ni)
im sup

v <0. (3.76)
k——+oo k
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Otherwise,
(1) If A\p < C, then

|H1 (B, Eog, )|
= “VE1k|‘i2(R2) + ||VE2/€||2L?(]R2) + /2 Ink| (| Barl? + | Eax|?) dz
R
_ — 2 1
+g/ |E1kE2k — ElkE2k| dx + 5”77%“%2(3{2)
Rz
2 1 2 1 2 2\2
S )‘k + §an||L2(R2) + 5 - <|E1k| + |E2k| ) dzx
2
+77/ (I1E1wk|* + |Eo|?)” da
R2

(”Elk‘%z(ﬂp) + HEQkHQLQ(]R?)) (376 )
Q)

(IVEw 2 o) + IV Bar ey

1
<AL+ 5”%”%2(}1@2) + (1+2n)

1
<A+ g\lnkllizm@)
+(1+ 27})% (||VE1k||%2(R2) + HVEQkH%Z(JRZ)>
LY 2
<(3+i)x<c
n

This implies (3.73), which is contradictory to the assumption (3.74). Thus (3.75)
holds true. e I
(2) If lim 1 1k>2 2k Tl )
k—+o0 )\k
holds

= C > 0, then for kg > 0 large enough, there

H1(Eik, Bog, ni)

C
> SN (3.77)

C 1
= 5 (IV By + 19y + 51Vl )

which is a contradiction since (3.74) will be satisfied with C; = 0 and Cy = §.
Step 3: Scaling discussion
The proof continues as follow. Let

Ey(e) = £ B (£).
(

%) , (3.78)
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A straightforward calculation gives

L ([w@f +|a] )as= [ (Bu@P + Bu@P) s @19)

- 2 . 2 1
/ <‘VEM($)‘ + ‘VEgk(x)‘ )dm+ f/ (o () |2 = 1. (3.80)
R2 2 Jpe
Because of , ,
lim sup <1 —|—/ Nk (‘Elk’ + ‘Egk‘ > dx
k—o0 R2

_ﬂ/
2 Jgo

= limsup H; (Em,quﬁk) <0,

k— oo

= ~ ~ =~ 2
ErkEa, — E1kE2k‘ dx) (3.81)

by Hoélder’s inequality one has

/ g, <|E1k|2 + |E2k|2> dx — E/ ’ElkEZk — By Eay,
R2 R2

2
’dm
2

1. . 1 - - 2
< Il + 5 [ (1Bl +1Bal) do
R2

- . 2
+Q/ (|E1k\2+|E2k\2) dx
2 S

(3.82)
B2 Fol2
| (TR T Ay
< Gkl ey + (1+n)
2 1Pkl 1o,
(VB2 o) + IV By
<C
Hence we can assume by (3.81) and (3.82) that as k — +oo,
~ ~ = ~ ~ ~ 2
/ o, (|E1k|2 + |E2k|2> dr — g/ ‘ElkEZk - ElkEQk’ dx
R2 R2 (3.83)

—c< —1.
On the other hand, recalling (3.35) and (3.75), we have VR > 0,

~ ~ || H%Z R2
S 2 2 < Q R2) o .
lklminf <Sl;p /|w—y|<R (|E1k(x)| + |Eai ()| ) d:r) S g 5,  (3.84)

oras R— 0,

lim inf sup/ |Pg|dz | — 0. (3.85)
k=00 y J)z—y|<R

Because of Lemma 3.7, the alternative (3.85) does not hold. Therefore we need to
consider case (3.84) only.
Step 4: Proof of Proposition 3.6

Recalling the definitions of € (see (3.38)) and H; (see (3.39)), there hold

Ha (EllmEZk»ka) =& (Euc,Ezk;) + % /W (ﬁk + | B l? + |E2k|2)2d$7 (3.86)
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and
limsup & (Elk,EQk) < limsup Hy (Elk,EQk,ﬁk) <0. (3.87)

k—+o00 k——+o00

Then by (3.79), (3.80) and Sobolev type estimates, we conclude that there exist
c1 > 0 and ¢y > 0 such that

e < /R <‘E1k(x)'2 n ’Ezk(z)f)de < e, (3.88)

c1 < /R? (‘VEU@(%‘)‘Q + ‘VE%(JU)‘Q + ‘Elk(:c)r + ‘Egk(x)‘2> dr < co.  (3.89)

Hence there exist a constant J; > 0 and a sequence x,lg € R? such that

/lxm;q (’Elk(x)‘z + ‘E%(I)r) dx > 4. (3.90)

In view of Lemma 3.7 and its proof, we introduce the following dichotomy

Ei(x) = Bl (2) + B} (),

N N o (3.91)
Ezp(w) = Egy(w) + Eyp ().
Hence, for a sequence m}c,
(Bl +ad), Bulo+2l)) = (01, 02) in H'(R%) x H'(R?),  (3.92)
and
. . 2\ *
(/ (1B + 2P + 1B+ 2d)?) dx) >e>0. (3.93)
|z—a}|<1

By Sobolev estimates, there exists a constant §; > 0 depending only on || E1o||z2(r2)
and ||E20HL2(R2) such that

. 2 . 2

Ely(ak + )| + ||t + )| > 6y > 0. 3.94

H (T + ) 12(je—sk|<1) ax (g + ) L2(ja—al|<1) = 1 (3.94)
Recalling (3.84), we also obtain for any R > 0,

limi FL (g} 2 EL (L 2 < HQ||%2(R2) Y 3.95

it 1B (@ + 22 r) + B2 (@h + )28, ) < i+y % (3.95)

Furthermore, using the concentration compactness method (Lions [14]), one gets
for a suitable choice for <E~1k, E~2k),

28+ 1B+ 188y + 1251,
1k L2 2 1k 2 2 + 2k 2 2 2k 2 2
(R?) L2(R?) L>(R?) L2 (R2) (3.96)
= [ Broll72 gy + 1B20l|72 ey
: 1 2 il 2 ”QH%%RQ) /
o1< lim (1B @) + 1 B3 (@) e ee) ) < — &, (397)

k—+oo

1+n
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and
E(1,2) < limsupé (E%k,E‘%k) + limsup & (E},;R,E;;CR>
k——+oco k—+oco
L (3.98)
< limsup & (Elk,EQk) <0.
k—+oco
Since
2 2 ”QH%Q(W) 1
01 < [V1llz2 ey + [¥2ll22ge) < i 905 (3.99)
+n
we have
lim sup £ ( LR B R) < —E&(1,1b) < 0. (3.100)

k— 400

We now can extract a subsequence which is still denoted by ( 11 kR, E21 ,;R) such that

. 2 . 2 1QNI7 &2
1,R 1,R L2(R?) o
HElk (x)‘ . HE% (x)) oy 7S g0 (3.101)
limsup € (B4, E3) < —E(W, 1) < 0. (3.102)
k—+oco
Then there exists a constant kg > 0 such that Vk > kg,
- - £
£ (E},;R,E;,;R) < 7@’21’%) <0. (3.103)
Note that
. 2 . 2 QNI &>
ELR ’ HEI,R ‘ < (R2) 104
| B @) gy + B3Oy < (3.104)
then
& (BN By = /R (IVESE + \VERR) da
1 . 2
~5 [ (SR + 1B7E) o
_0 [ [ELRELR _ puRELE|
2 Joo | 1E 2k 1k Lok T
>/ <| ELRP 4 |VELR 2) du (3.105)
]R2

(L+m) (zuR .
1o (1 e + 185 e
L2(R2)

/ (|VE1 %

which is contradictory to (3.103), hence (3.104) does not hold. Therefore, we claim:

(2)

24 \VER"?) d

20;

2 HQ||2L2(R2)
> ——.

3.106
L2 (R?) L+n ( )

2
=1,R =1,R
|2 @) oy T |23 @)
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In view of (3.103), there exists a constant ¢ > 0 such that
/Rz (|E11,;R 24 |E21,;"‘f|2)2 da > c. (3.107)
Indeed, by £ (Ei,’f, E;;CR) < 0, we have
[ (B3 + 1250 s
R?
>2 [ (VYR +IVEYR) do—n [ BT BN - BB
> 2/RZ (IVEL"? + IVERT?) do — n/RQ (1SR + 1B5P) da.

This yields the estimate (3.107).
We then iterate the same procedure as above and define

2
‘dm

~1,R _ 12 2,R
Ey = Ey, + Ey

LR - (3.108)
i, 2 2,
E2k == E2k) + EQk 5
where E‘lzk and E22k: satisfy for a sequence :ci,
|2+ + Bt + 6. (310)
L2(Jz—2|<1) L2(|lz—a2|<1)
Defining p such that
2
2 2 HQ||L2(R2)
_p51 + ||E10||L2(]R2) + HE20||L2(R2) < W, (3110)

applying the same procedure at most p times, we find for an i« < p and k large,
there exists a function (EikR, E;;f) such that

2
2
< 7HQHL2(R2), (3.111)
L2(R2) 1+7n

i, R
|25

e
L2(R?) 2k

and

& (B Byl < M <0. (3.112)

Then by Lemma 2.2, (3.111) and (3.112) are contradictory.
In addition, from (3.4) one gets

2 2

et

v
L2(R?) L2(R?)

~ ~ 2
_ Jre (1Bul? + 1Bal) " d - 1QU e
2 (||E1k||%2(R2) + ||E2k||%2(R2)> (3.113)

n o2 o2 2
>3 (|E1k| +|E2k|) dx
RQ

>ﬂ/
2 Je

- 2
ElkEQk_ElkEQk‘ dzx.
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Since

Hi (E1k7 Eiy, Bo, flk-)

limsule (E1k7E1k7 Egk,flk) = limsup 3 < O7 (3.114)
k—+o00 k—+o00 )\k
then
/ ik (|E1,c|2 + |E2k|2) dz — —C < 0. (3.115)
R2

It follows from Lemma 3.7 that there exist a constant C’ > 0 and a sequence xy
such that

/ |fg|de > C" > 0. (3.116)
lz—xk|<1

Therefore, recalling (3.36) and the definition of i, we have as R — 0,

lim inf sup/ |ng|dz | — 0, (3.117)
k—+oo y J)z—y|<R

which is contradictory to (3.116), thus the proof of Proposition 3.6 is complete. O
We now claim the following conclusions to prove the non-vanishing properties of

(B1(0), B>(0), 7(0) ).

Proposition 3.8. Let (Ej, F3,n,v) be the finite time blow-up solution of the
Zakharov system (1.1) and T be its blowup time. That is, as t — T,

1 E1 |5 r2y + 1 B2l m2y + 2| L2 (m2) + IV]|IL2®e) — +o0. (3.118)

Assume that the initial data satisfy (3.4), then
(1) If Eq, Fs,n are radially symmetric functions, then there exists a constant
m > 0 such that for any R > 0,

.. 1
lim nf <||E1(t790)||2m(3(0,3)) + ||E2(t7$)||%2(3(0,3))> > m”@”%?(n@z)a (3.119)

h?i}lrﬂlf ||’I’L<t,$)HLl(B(O’R)) = m. (3.120)

(2) If Eq, E2,n are non-radially symmetric functions, then there exists a se-
quence z(t) € R? and a constant m > 0 depending only on initial data such that
for any R > 0,

timinf (1181 (6 2) 3 5000y + 1 B2t 2) 2 o000

m”QH%Z(]R?)’ (3.121)

im 1 1 >m. .
hggl%lf In(t, )| L1 (B(t),r) =M (3.122)

Proof. We first show the case (1): (Ey, F2,n) € H}(R?) x H}(R?) x L2(R?).
Define two spaces:
Hy (R?) = {f € H'(R?), f(z) = f(]z])},

LY (R?) = {f € L*(R?), f(z) = f(|=])} -
It follows from (1.3),(3.38) and (3.39) that

1
E(Ey, Ey) < Hi(Ey, Ea,n,v) = H(Ey, Ea,n,v) — §||v||2L2(R2). (3.123)
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We proceed our proof by contradiction.

31

Assume that there exist constants 6y > 0, Ry > 0 and a sequence t;, — T (k — +00)

such that
1
(L+mn)

/| o (B + By, 2)) de < 1QI12: g2, — o,
z|<Ro

or

liminf/ [n (g, x) |dz = 0.
|z[<Ro

k—-+o0

We then complete the proof of case (1) by scaling and compactness.
Let

1 T 1 T
Buo) = 3 Fi (tk, Ak) . Bale) = s ((tk, Ak) ,

(o) = s (105 ) o) = v (115 )
A2 Ak AL Ak
where
Ap = ||VE1(tk,fU)||i2(R2) + HVE2(tk795)||2Lz(R2) :

Direct calculation gives

/ |VE1k|2da:+/ |V Eg|?dz = 1,
R? R?

/ |E1k|2d$—‘r/ |E2k|2dx:/ |E10|2d$+/ |E20|2d.%',
R2 R2 R2 R2
1

E (Big, Bar) = )\75 (E1 (tr,x), Eo (tr, x)),
s

1
Hi (Erk, Eag,ni) = FHI (Er (te, x), Bo (g, ) ,n (tg, x)) ,
3

H(ty) = H(0).

Note that

H(t) = & (Brltn,a). Baltna)) + 5 [ Ivltn) P

1

# f 100+ (B0 + Bt

‘We then conclude

€ (Ev(tr), Ba(tr)) < Ha (Er(tr), Ex(tr), n(te)) < H(tx) = H(0),

1 o
& (Erk, Bar) < Hi (Bik, Eok, nk, Vi) < )TQ”H(O) jmaza))
k

Especially,

limsupé' (Elk:v Egk) < 0, HmSllle (E1k7 Egk,nk) < 0.

k—+oo k——+oo

(3.124)

(3.125)

(3.126)

(3.127)

(3.128)

(3.129)

(3.130)

(3.131)
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b 2
Using Cauchy-Schwartz inequality: ab < mz ) (a >0, b>0), we obtain
E(FEq, Es)
2 2
2 IVE1 122y + IVE2|12(Re)
1 2 (3.132)
—5/ (|E1]* + | E2?) dx—277/ |E1 % Eo|*da
R2 R2

1+n

2
> VB ey + IV el ey~ g [ (B +1Eaf)’ da

Together with (3.127) and (3.131), this yields

k—4o00

liminf/ (|E1k|2 + |E2k|2)2dm
RZ

=

. . 2 2
— Nl
oy lminf (/R (IVEW + |VEx ) do 6<E1k,E2k>) (3.133)

2

> .
On the other hand, since

/2 (nk + (\E1k|2 + |E2k|2))2dl‘ -1 +77)/2 (|E1k|2 + |E2k|2)2da:
R R
s / (s + (1Bl + | Baef?))” dr / (1Bl + | Eai[?) do
R R
—n [ |BiBa — EuBul do
R2

=2 (M (Bux, Bat o) = [V Bk 32 ey = VBt 3aze) )
one has

limsup/ (ni + (|Bwel® + |E2k|2))2 dx
k—+oo JR2

, (3.134)
-1 +n>/2 (1Bwl® + [Eaxl?)” dz < —2.
R

By Lemma 2.2, (3.4), (3.127) and

27] <||E1k||%2(R2) + ”E2k||%2(R2)>
1M,

(IVEw 32 o) + IV o))

<2,

2
77/ (|Bw]? + |B2xl?) " dz <
Rz

we get

limsup/2 (e + (|E1k|2 + IEz;<;|2))2 dx — /2 (|E1k\2 + \Ezk\2)2dﬂc <0.
R R

k——+oo
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In view of (3.38), one obtains

1 — —2
5/ [(|E1|2 +1E2) + g |EL By — B\ B } dx
R2
= [IVE1[|72(g2) + IVE2 7252y — E(B1, Ea).

Hence there holds

. 2 —_ — 2
lim inf (/ (|E1k|2 + |E2k|2) dx + 77/ |E1kE2k — ElkE2k| CliE)
R2 R2

k— o0
= 211In1nf <||VE1k||%2(]R2) + HVEZkH%?(]IW) - 5 (Elk, E2k>>
k——+oo
> 2.

In addition,

—~

3.39) yields

n2dx
R2

= H1 (Eig, Bk, ni) — ||VE1k||%2(R2) — HVEQk||2L2(R2)

DO | =

S —2
—/ ny (|E1k|® + | Bok)?) dx + g/ |EvcEor — E1pEoy|” da.
R2 R2

Now for any € € (0,1), by Young’s inequality, Holder’s inequality and Cauchy

b 2
-Schwartz inequality: ab < (a—i—l )

, Va,b> 0, we have

/ nidx <2/ —ny, (|Ew]? + | Ea|?) da
R? R?

— —2
—H?/ |EvkEakx — E1Eay|” da
RQ

1 2
< eimelageey + ¢ [ (Bul? + |Buf)” do

2
+n/2 (|Erk]? + |E2x|?)” da.
R
This yields that

1
limsup/ nidr < —H?e/ (\E1k|2+\E2k|2)2d:c
R2 R?

k—+o00 (I —e)e 3135
2+ 2m |kl + 1El3o e (3159
T (1o ||Q||%2(R2)
Due to (3.124), (3.125) and A g +00, one obtains VR > 0,
1
fimsup [ (1wl + |Baf) do < QU — . (3.136)
k—+oo J|z|<R L+

or

VR > 0, lim sup/ |ng|dz = 0. (3.137)
|z|<R

k— oo
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Our discussion is continued by the compactness argument.

By (3.127) and (3.135), there exists (E, E5, N') € H*(R?) x H*(R?) x L?(R?) such

that
(B1g, Eox) — (Ef, E%) in H(R?) x H*(R?),

ny — N’ in L?(R?).

(3.138)

(3.139)

Since the embedding H}!(R?) < LP(R?) (2 < p < +00) is compact, we obtain

(Frg, Eox) — (Ef, E%) in L*(R?) x L*(R?).
On one hand,

(Bt E3,) = (E7,EF) in L*(R?) x L*(R?).
On the other hand,

2 1
L OBE+ B do> s (BB £ 000)

Let R — 400, it follows from (3.136) that

1
/12 /|2 2
L BR8P do < Qe

or
N' =0.

The boundedness of weakly convergent sequence implies

/ (IE)? + |E)|?) dz < liminf (|E1k|? + | B2k |?)
|z|<R k—=+oo Jiz <R

1 2
ST{o. +n||QHL2(R2) — do,
or

/ |N'|dx gliminf/ |ng|dz = 0.
|| <R k=+oo Jizi<r

In addition, there hold:

lim Nng (|Ek\2 + |E2k\2) dr = lim / N’ (|E'{|2 + \E§|2) dz,
2 k—+oco JRr2

k——+oo R
k—+o00

k——+oo k—+oco

lim [ [BigBox — BviBox| do= lim [ |E[E,— E/E}
R2

k— 400 k— 400 R2

lim / |E1k|?| Earl?dz = lim / B} 2| BS | da
R2 k——+o00 R2

dzx

)

3 2 =\ 2 . N2 (7 2
lim Re/ (Brk)” (Bor) de = lim Re/ (Ey) (Eé) dz,
R? R?

2
dr.

(3.140)

(3.141)

(3.142)

(3.143)

(3.144)

(3.145)

(3.146)

(3.147)

(3.148)

(3.149)

(3.150)
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(3.147) follow from Lemma 2.1 and (3.141).
Secondly, a direct calculation yields

‘/ |E1k|2|E2k|2d9€*/ |E12E§|2d$‘
R2 R2
= [ OBl = |BiP) BaPda + [ IBLP (Bl = | 5P) do

< B = 1ELP) | o gy 112wl o e

|

L2(R2?) HlEQk|2 B |E£‘2HL2(R2) )

Let k — +o00, one gets (3.148).
We next note that

Re/RZ (Bw)? (Bar)” da —Re/

R2
g/
R2
_/Rz

< H(Elk)2 - (Ei)Q‘

(2)* (B3) do

2

(E? (B)” - () (B3) | o

dx

o) 112k 2 g2

(@)’ - ()’

As k — 400, we get (3.149). Moreover, according to (3.148) and (3.149), (3.150)
holds. We now use estimats (3.130), (3.147) and (3.150) to get

+|| 120

L2(R2) L2(R2)

Hi (B}, By, N') < E&ig%l (Erg, Eog,ny) <0, (3.151)
that is,
1 2
(B, B + 5/ [N’ + (|E;|2 n |Eg\2)} dz < 0. (3.152)
R2
QN7 2 (g2

According to / (|EH2 + |E§|2> dz < , (3.152) then yields
R2 1 + n

/Rz (IVES + VB ) da

1 2 _ _
gf/ (\E;|2+|E§|2) dx—i—ﬂ/ B\ By — B | da
2 R2 2 R2

1 2
<= [ (1m 4 B da
2 Jo

2 2
B4 |72 mey + 1 B3N 22 (e
1O
2 2

< HVE“|L2(R2) + ||VE§||L2(R2) .

2 2
< (1+) (IVES ey + IV BN e )
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This is a contradiction.
On the other hand, if N’ =0, (3.4) yields

Ha (E{, Eé’ 0)

>/ (IVE® +(VE;*) dx—Qn/ BARARE:
R2 R2

2
> 72 /2 -n ’2 /(2
> [ (VPR a-F [ (BP0
>/ (IVEL + |VE) da
R2

2 2
(VB2 o) + 1S )
[T

2 2
- IV B ey + IV ES 2 )

1 (11030 ) + 120l e
[

2/ (|VE;|2+ |VE;\2) de | 1—
RZ
>0,

which is contradictory to (3.151). Hence there exists a constant m > 0 depending
only on initial data such that for any R > 0, (3.119) and (3.120) hold.

Now we turn to consider the non-radial case (2).

Assume that there exist constants Ry > 0, dg > 0 and a sequence t; such that
as ty — T (k — +00),

1QI22 ey

lim inf sup/ |E1(tk,x)|2 + |E2(tk,x)|2 dr | < ————= — dg,
k—+oo ( y J|z—y|<Ro ( ) 1+77

or

lim inf sup/ |n(tg, z)|dz | < my, — do.
k=00 Yy J]z—y|<Ro

Then it follows from Lemma 3.7 that as t;, — T,
[ (9B + IV Et) + In(e)* + [v(e0) ) do < C.
R

This is contradictory to the assumption that (E, E2,n,v) blows up at a finite time
T. So (3.121) and (3.122) hold.
This finishes the proof of Proposition 3.8. O
We are now in the position to prove Proposition 3.5 by utilizing Proposition 3.6,
Lemma 3.7 and Proposition 3.8.
Proof of Proposition 3.5.
Due to (2.1), Proposition 3.8 implies the conclusion (1) in Proposition 3.5.
In fact, let Ry > 0 be a fixed constant, then

2 2

Jev0

L2(|z—z(t)|<R1) L2(|z—z(t)|<R1)

2 2
= ||E1(t>x)||L2(|zfm(t)|<R—})) + ”Ez(t’x)HL2(|mfz(t)|<7) .

Ry
PY A(t)
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Noting that A(t) — 400 as t — T and (3.119), we have

liminf (HEl(Ovx)||2L2(|w—z(t)|§R1) + || E5(0, x)\|%2(|x—m(t)|<31))

11{111nf <||E1(t x)||L2(|zix(t)| <) + | E2(t, x)HLz(|m 2(1)< R))

Y x(®)
S HQHL?(R?).
1+n
On the other hand, in view of Proposition 3.8, for any fixed Ry > 0, Holder’s
inequality yields
l . . ~
Ry iminf (|20, 2)| 12101 < 1)

2 Wminf {|2(0, @) 11001 <

Rl)

> liminf [[n(t, ) 1 (o _py)< x5)

= My,.
Hence (3.26) and (3.27) hold.
We now show conclusion (2) in Proposition 3.5 by using the same scaling argu-

ment as that adopted in Proposition 3.8.
For a sequence t, — T (k — +00), let

satisfy

‘VE%

. 1.
+ = || +|vn|2> do = 1.
Here,
‘2

A2 (t) = /}R (’vEl (o,:c)\2 + ’sz (0, )

1
#3100 + 5 00,0 ) do

and A, — 1 as n — 4o0. Direct calculation gives <E1n,E2n,ﬁn> satisfy (3.28)-

(3.31). Hence for a sequence z,(t) € R? and x,(t) — z(t) as n — +oo, there
holds

1B 22 (o )< y) + 1 B2l 22 (10— (1)< R0)

E 0, E 0,
|| 1( x)HLQ(lm o (t)|<R1> +|| 2( x)HLZ(IZE T (t)|<R1)

and

DY

Letting n — +oo yields (3.32) and (3.33) due to (3.121) and (3.122), which ends
the proof of Proposition 3.5. (]

||’fLTL||L2(‘z—In(t)‘<R1) = Hﬁ<07x)”[/2(|x en(t)|< 1)
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3.3. Compactness of the Solution to the Rescaled Zakharov System (2.3).
Here, we discuss the compactness of (El((), x), E»(0, x),n(0, x))

Remark 3.9. From Proposition 3.5, it follows that (El (0, z), E~'2(O,m)> is bounded

and weakly compact in H*(R?) x H!(R?). Then we can choose a sequence t,, — T,
and extract a subsequence (still denoted by ¢,). Let

(E1 (0,2 + z(ty)), B2 0,z + x(tn))) (B}, E}) in H'(R?) x H'(R?),
and
(0, x + x(t,)) = N’ in L*(R?).
Note that the embedding H'(R?) — L2 (R?) is compact, from Proposition 3.5, for
a bounded domain © C R2, there holds

2 2
1B 20y + 1Bl 720y = €1 > 0.

Under this case, one can not exclude the case of N’ = 0, that is, Proposition 3.5
can not guarantee the non-vanishing property of N'. O

To overcome the difficulty mentioned in Remark 3.9, we will investigate the
relation of (E}, F}) and N’ to obtain the compactness property of N’ following the
related information for (Ff, Ef).

We now claim:

Proposition 3.10. Let t,, — T. There exists a subsequence (still denote t,,) such

that for a sequence z,, := z(t,) € R? and (E{, E5, N') € H(R?)x H!(R?) x L?(R?),
as n — +oo, the conclusions hold as below:

(E1 (0,2 + ), Bo (0,2 + xn)) (B}, E}) in HY(R?) x HY(R?),  (3.153)
and
(0, + x,) — N’ in L?(R?). (3.154)

Furthermore, there exist constants 81 > 0 and R; > 0 depending only on
||E10||L2(R2)7 ||E20HL2(R2)) SIlCh that

1
2 2 2
(||Ei||L2(|x|<R1) + ||E§||L2(\z|<R1)) z fr, (3.155)

H (E,, E},N',0) < 0. (3.156)

Proof. In view of Proposition 3.5, we will prove this proposition by imple-
menting the classical iteration technique, Concentration-compactness principle and
mathematical induction.

Let 51 be defined as in (ii) of Proposition 3.5. Assume that (Eln, Ezn, Top, {;n) €
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HY(R?) x H'(R?) x L?(R?) x L?(R?) satisfies

N 1 ~ S x
Bun= 3™ (t” Tl A m) ’

Azn ! o (tn + > , i ) ,

)‘n(tn) An(tn) An(tn) (3.157)

. 1 s T
") (t” T X M m) ’
o — 1 (t N s T )

"R\ T ) ) )

P ~ 12 1 1
Ai(tn):/ VEl‘ dx—l—/ VEQ’ dm—i—f/ 7> dx+f/ |v|* dz. (3.158)
R2 R2 2 R2 2 R2

Direct calculation yields

R 2 R 2
/ ( Eln + ‘Egn ) dx < / (|E10‘2 + |E20|2) dm, (3159)
R2 R2
Jim (Em, Ezn,ﬁn,on) —0, (3.160)
|2 L2 el vl
/ (VEw| +[VEa| + 2+ dr = 1. (3.161)
R2

2
We will show that there exists (B}, Ey, N') € H'(R?) x H'(R?) x L?(R?) and a
sequence x,, € R? such that as n — 400,

(Binen +2), Ban(an +2)) = (B (2), Fy(a)) in H'(R%) x H'(R?),  (3.162)

fin(2n + ) — N'(z) in L*(R?), (3.163)
and

1
2
</ (|E{|2 + |E§|2) da:) > 01, H(E1, E5, N') <O0. (3.164)
|z|<R1

By Proposition 3.3 and Corollary 3.4, there exist constants ¢; > 0, co > 0 such
that

~ 2 ~ 2
c1 é/ (‘VEM + ‘VEQH )dm < e, €1 </ |f1n|2dx < ca. (3.165)
R2 R2
Let the integer kg be defined by
L2 . 2 3
(/ ( Bl +|Bon ) da:) < (ko +1)B1, (3.166)
R2

where

ko=1,2,...F (3.167)

[E10]172 g2y + [ B20]17 2 g2y .
B1 '

We then show Proposition 3.10 by induction on the integer k.
||E10||2L2(R2) + ||E20H%2(R2)

b1
B0l 72 m2) + B2l 72 g2y = 261 (3.168)

(1) For ko = 1, there holds = 2, that is,
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From (3.159) it follows that

2

Bua| o [ Bon] o < UBrolage) + IB20ol 3y = 261 (3.169)

L2(R2) L2(R?)

Hence (3.166) holds for kg = 1. From compactness and the boundedness of weakly
convergent sequence, a similar argument to the proof of Lemma 3.7 yields

H (Ei,Eé,N/) g hm H (El'mEQTuﬁn) g O

n—-+oo

So (3.162)-(3.165) are true. Note that Proposition 3.5, Proposition 3.10 holds for
ko = 1.

(2) Assume that (3.162)-(3.165) are true for kg > 1, we then show that they also
hold for kg + 1.

Let (Eln,Egn,ﬁn) be the sequence satisfying (3.164), (3.165), (3.166) and

lim H (Eln,Ezn,ﬁn,o) <0.

n—-+4oo

In view of Proposition 3.5, we may assume that there exist a sequence z,, € R? and
a constant R = R(cy, ca) satisfying

/ (‘Eln
|[zt—zn|<R

and (El,E27N) € H'(R?) x H'(R?) x L?(R?) such that

2 .2 3
+ ‘E2n ) dl‘) = 1, (3.170)

(Eln (@ +2n) , B (z + acn)) - (El,EQ) in H'(R?) x H'(R?),

A (x4 2,) = N in L?(R?).

We extract a subsequence still denoted by (E‘ln, Eo,, ﬁn> for simplicity. We make
the following decomposition for the extracted subsequence:

Eln(x + In) = Eln,l(x + xn) + Eln,Q(I + xn)a
E2n(x + xn) = EZn,l(m + xn) + E2n,2(m + xn)v
(@ + ) = fin 1 (T + 2n) + Nn2(x + ).

Let R,, = +00 as n — 400. This decomposition admits the following properties:

D

~ ~ R Rn
Eini(z) = Eapi(x) =npi(z) =0, |z < 5
Eln,2($) = E2n,2(x) = ’ﬁ‘n,2($) = 07 |l“ 2 Rn
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(II) Asn — +oo,

~ 2 N 2 .
/ <‘E1n,1‘ + ‘Eln,2‘ + ’Ezn,l
R2

A

2 R 2 R 2
+ |V Bana| + |V )dm

*/ (‘VEln
RQ

/ (a7 2l?) d:c—/ 2 i > 0,
R2 R2

lim H <E1n,1,E2n,17ﬁn,1,0> + lim H (Em,mEQn,mﬁn,mO) <0.

n—-+oo n—-+oo

2) dz — /R (‘Elr + )ng) dz.

2
> dx > 1. So when n large enough, there holds

i

~ 2
E2n72 ’ > dz

2 ~
Eln + ‘E2n

2
>da:—>0,

. 2 N
L (980 + |75
R2

2 ~
+ IVE%

2
)da?%(),

(I11)

Note that as n — +o00,
A 2 N
/ (‘Ean‘ +’E2n,1
R2
~ |2 R
Especially,/ (‘El’ +
RZ

Es
. 2 . 2
/ (‘Eln,2‘ + ‘Ezmz‘ ) dx < kof.
RQ

We proceed our argument by considering the following two cases:
Case 1:

H (E1,E2,N,0) < lim H (Eln’l,EQnyl,an’l,O) <0.

n—-+o0o

In this case, letting E] = E, E, = F>, N’ = N, one can get the conclusion of
Proposition 3.10.
Case 2:

H (Er, B2, N,0) > 0.
In this case, let P, = EIE H (EAln,l,EA’gn,l,ﬁn,l,O) > 0, and for n large enough,

. . P;
H (Eln,Qa E2n,27ﬁn,2a O) < _71 <0.

By inductive assumption, there exists a sequence y, € R? such that
(Brna (+9n) . Baua (+ya) ) = (Bf EY) in H'(R?) x H'(R),

fin2(+yn) = N’ in L?(R?),
with

2
(1BLP + B3P )de ) =6, H (B B, N',0) <0,
|z|<R1

Using translation transformation finishes the proof of Proposition 3.10. (]
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Corollary 3.11. There exists a constant c, > 0 such that
e <|IN'[|L2@ey < 1. (3.171)
Proof. From Proposition 3.10 it follows that
M (B}, By, N')
- /R (|VE12 +IVE® + N (1B +|B5°) + ;Nﬂ) de

9 ) o

<0,

(3.172)

and
2 2
VB ey + VBB (o) > - (3.173)

The Sobolev embedding theorem (Vg € [n, +00), Wh™(R™) C L4(R")) yields H*(R?) C
L?(R?). In view of (3.161), there exists ¢; > 0 such that

0<(c1)? < / (|VE;\2 + |VE§|2) dr < 1. (3.174)
RQ
On one hand, by (3.172) one has
_/ N (1BSJ + B da
R2
> [ (VB IVE) do - [ 1B EY do
R2 R2
n 9 [— 2 9 [— 2
2 [ (02 (B) + @ (2)) do
R2

2
2/ (IVEL® + VB ) d:rfﬂ/ (1B5 + 1BP°) do
R2 2 R2

(3.175)
>/ (IVEL +|VEy[*) do
R2
Ui 712 72 712 /12
_— E|" + |F dl‘/ VE||" + |VE dx
||QH%2(R2) /]R2 (| 1‘ ‘ 2| ) R2 (| 1| I 2| )
Ui 2 2
= 1—7/ |Erol” + |Eool” ) do
[ HQ||2L2(R2) R2( )
/ (IVEL + |VE,) da.
R2
Let
co=1— +/ (|Exof? + | Exol?) da > 0., (3.176)
||QHL2(R2) R2
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. 1
According to (3.4), one has 0 < ¢y < T On the other hand,
- [N (P B o
R2
: 2\
<(Lowear) ([ (52 ) a)
R2 R2
<V2Z|N ! B+ |Ey*) d
SV2IIN| p2gey 73— |E1]” + |Eo|” ) d
1QllL2(r2) [Je2
3
/ (IVEI +|VE;*) dx}
R2
1
SVEIN ey = ([ (VB + VB ) do)
L2 (R?) \/ﬁ R2
Combining (3.174) with (3.175) and (3.176) yields

N[ 2 (m2) > \/Zcocl =c* > 0.

1
From (3.174) and (3.176) it follows that 0 < ¢g < T 0 < ¢ < 1. We then
conclude
N 1
¢t = \/Zcoc' = \/Zcocl < \/Zl +7]cl < 1.
So far, the proof of Corollary 3.11 is completed. O

3.4. Proof of Theorem 3.1. In this subsection, we shall establish some estimates
for (Ey, Eo, 7,V (0) based on the estimates obtained in subsection 3.1, subsection

3.2 and subsection 3.3. Secondly, by considering the rescaled Zakharov system
(2.3¢)-(2.3d):
g =—-V -V, (3.177)

- 12 - 12
G, = -V (ﬁ+’E1‘ +‘E2‘ ) (3.178)

We then finish the proof of Theorem 3.1.
Proof of Theorem 3.1.

YVt > 0, we consider (El(s), Ez(s),ﬁ(s),v(s)) for [0, \(£)(T —t)). From (2.5) it
follows that

| (£1(0), 2(0), 7(0),%(0))

)

2
HHl(R2)xH1(R2)xL2(R2)xL2(R2) -

. - 2
i [ (B Bata) i), 500 | -
saA(gI(let) 1(8), Ba(s), Afs), ¥(s) H(R2)x H'(R?) x L2(R2) x L2 (R2)
Let A > 1 be a fixed constant. By the continuity of s, there exists 6(¢) > 0 such
that Vs € [0,0(t)],

2

H (El(s)7EQ(S)’ﬁ(S)’{’(S)) H < A, (3.179)

H1(R2)x H1(R2)x L2 (R2) x L2(R2)

H (Bn(6(e)), Ba(6(1)), 2(6(2)), ¥(6(2) = A (3.180)

2
) HHI(R?)le(R2)xL2(R2)xL2(R2)
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We now claim that as t — T, there exists a uniform lower bound 6y > 0 for 6(¢),
that is,

0(t) = 0o. (3.181)
We proceed our discussion through two steps. On one hand, some properties for
(El(o), E2(8),7(0), 9(0)) will be established. On the other hand, in view of (3.177)

and the compactness for 71, we complete the proof of (3.181) by contradiction.
Firstly we claim that:

Proposition 3.12. There exist constants ¢; > 0 and ¢ > 0 independent of ¢ and
A > 1 such that
(1) ¥s € [0,0(1)],

- 2 . 2 3
B ‘ H E ( < Aco, 3.182
(HV 1(s) L2(]R2)+ VE;(s) L2(R?) @ ( )
[7(8)[ 2 (mey < Ac2, [[V(8)[|p2(re) < Aca. (3.183)

(2) Let t,, —» T. Extracting a subsequence, still denoted by ¢,, such that for se-
quences z,, := x(t,) € R?, (E}, E}, N') € H'(R?) x H'(R?) x L?(IR?), the following
assertions hold

(El (tn7 0 (tn) s L — In) s E2 (tn, 0 (tn) , X — xn)>
= (El (9 (tn) y T — SCn) ,EQ (Q (tn) , T — -Tn)) (3184)

— (B}, By) in H'(R?) x H'(R?),

A (tny O(tn), @ — ) = 0 (0(ty), 2 — z,) — N’ in L*(R?), (3.185)
1
2 2 2
(IVE ey + IV Zoee) ) = Aer, Nl pagaey > Aer. (3186)
Proof. Tt follows from (3.179) and (3.180) that
- 2 . 2 1., 1. s )
VE(s)| +|VEa(s)| + 5 1) + 5 [¥() ) do < A2 (3.187)
]RZ

Note that (2.1), there holds
_ 2
H (Ela E27 n, ‘7) (S)H

H1(R2)x H!(R2)x L2 (R2) x L2(R2)

- /RQ (‘vEl(t,s)‘2+ ’VEz(t,s)‘2+ % (e, )2 + % |\7(t,s)|2> .

~si | (78 (o 5i)| o (e 55)
2 2
1n(t+>\?t)) +;‘v(t+)\€t)) >dx1

3

2

(3.188)
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So Vs € [0,0(2)],

A (t+ W)
D)

< A, = A. (3.189)
This yields that

- 1 oty =
&WW”W@Gﬁwa

)
LA () As
AN (t)" AX(?)
(3.190)
A t+w0)() A(Hm))
t
=AF, ([t+ —=,0,A
o+ 30 )
A similar argument to (3.190) yields
Es (t,0(t), ) = AE, (t + /9\((2,0, Ax) , (3.191)
n(t,0(t),z) = A%h (t + /9\((270, A:c) . (3.192)
As t, — T, there holds ¢, + 8(ts) _y T Hence from Proposition 3.10 and Corollary

A(tn)
3.11, it follows that there exists a subsequence (still denoted by t,) such that for
sequences x, € R?, (B}, E}, N') € H*(R?) x H'(R?) x L?(R?), as n — +oo, the
following conclusions hold:

(El (t" " ig:% O x") B (t" " ign; O m)) (3.193)
— (B}, By) in H'(R?) x H'(R?),

7 (tn + ig”; ,0,7 + xn) — N’ in L*(R?). (3.194)

In addition, in view of Proposition 3.10 and Corollary 3.11, there exists a constant
c¢1 > 0 such that

1

2 2 2
(1B ey + 1By ) 2 et IV oy >0 (3195)
Hence, combining (3.190)-(3.195) yields
~ T ~ T
(21 (b0 t) oo+ 5 Ba (00 (t0) 2+ )
~ e(tn) ~ a(tn)
=|AFE tn N 7A n aAE tn N7 7A n
( 1( +>\(tn)0 x—i—:c) 2( +/\(tn)0 T+
— (AE] (Az), AE, (Ax)) in H'(R?) x H'(R?),
(3.196)
it (tn, 0(tn), x + %) :A%(t —|—0(tn)0Aac+x>
memeT A Atn) (3.197)

— A%N’(Az) in L*(R?),
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and
2 2 z
(I7 [AB] (A)I3 2 gy + IV [ABS (AD)] 72 )
1
2 2 3 3.198
= A(IVE ey + IV ) (3199
2 AC]_,

||A2N/(ACL')HL2(R2) = .AHN,”LZ(RQ) 2 ACl. (3.199)
This finishes the proof of Proposition 3.12. U

Remark 3.13. By the property of weak convergence, from (3.196)-(3.199) it follows
that

2 2 %
e < (IVE 2@ + IV B3l ) )

1
- 2 2
gliminf<HVE1’ +HVE2’ > ,
n—s+00 L2(R?) L2(R2)
<INl p2(rey < lim inf {|72]] 2 gz .

Next, we fixed A such that Acy > 4

Remark 3.14. Note that [|72(Z,0)| p2g2) < V2, we confine the value of A to distin-
guish [[(t, 0(0) | 2z and [[7(t, 0) g 0

Remark 3.15. By Proposition 3.12, one can obtain more delicate estimates on v(s).
Compared to the classical case, these estimates are uniform. ([

Corollary 3.16. For any s € [0,6(t)], there holds

- 2
18(5) | ) < A\/;'

Proof. From (2.7) it follows that

[(af+[ef)a—L [ (8] ]5]) a
_Q/
2 Jpo
> [ (9B [+ 78 a0 [ (|8 4|5 @
R2 R2
2/ (‘VE12+‘VE2 2>d33 ”Q1”+77 /(|E10|2+|E20|2)dx
R2 L2 (R2)
/ <VE1(2+ VEQ‘ >dx
-
=/ (‘VE12+‘VE2 Q)dJC( L+ /(|E10|2+E20|2)d$>-
R2 ||Q||L2(R2

ENTEQ — Elg’ dx
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By (3.4) and (3.179), there holds
2
- B2 B2 <112
L[+ (B + 1B ot 91 e
-2 _ 2 _ 2 _ 2\ 2
:@_2/ (’VEl‘ +|VE| )d:r+/ (‘El‘ +‘E2‘> da
)\ ]R2 R2
+77/
R2
_ 2 _ 2
<2—H°—/ ‘VEl‘ +’VE2‘ dz
)\2 R2
2(1+
. 2_(2777)/ (‘E10|2+|E20|2) dx
HQ”Lz(Rz) R2

2H 2(1+
) /R2

= ~ ~ T~ 2
BBy — ElEQ‘ dz

xR
<2y
A2 n

Note that A — 400 as t — T, one then obtains

- 2
19(5) | e, < \ﬂA.

This finishes the proof of Corollary 3.16. O

Proposition 3.17. There exists a constant ¢ > 0 such that

0(t)
hminf/ V() p2(rey ds > c. (3.200)
0

t—T

Proof. We argue it by contradiction. Assume that as n — 400, there exists a
sequence t, — T such that

(tn)
/ 19(5) | 2 (g2 ds — 0. (3.201)
0

From (3.177) it follows that Vi(z) € C§°(R?),
/ Al 0(tn) o — / it 0)bd
R2 R2

0(tn)
= /0 /RZ (=V -¥(s)) dxds (3.202)

6(tn)
:/ / v(s) - Vi dxds,
0 R?
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which yields

/Rz (i, O(ta) b da — /R At O de

0(tn)
< (/ ||‘7(8)|L2(R2)d8> IVl L2 g2y
0

By (3.185) and (3.186), taking a subsequence still denoted by ¢,, yields that there
exist a sequence z,, € R?, and N’ € L?(R?) such that

7 (tn, 0(tn), x — z,) = N’ in L*(R?),

(3.203)

and
HNI||L2(R2) > Acy.

1 3
Let ¢o(x) € CO ]RQ ) satisfy (/ wO dl‘) = 1land N/"r/)() dr > 3 ( N2 dm) )
R2 R2

In view of the assumptions (3.201) and (3.202), we have as n — +o0,

/ﬁ(tn,a(tn),x)wo(:EJr:cn)dxf/ 7 (tn, 0, ) Yo (x + x,) dx
R2

RZ
ot (3.204)
< </0 V()| p2(re) d8> [Vibo (2 + @n)|[ 2 (g2) — O
On the other hand, one has
[ it btt) 0 ol z)do = [t 0(8),0 ~ 2) voo) do
R2 R2
— [ N'Yodz (n — +o0) (3.205)

R2

3
21(/ N’%) S Aa s o
2 \Use 2
However, by (2.5) one has

/RQ 7t n, 0)tho da \(/ |7t 0)]? dx) (/ﬂ@wgdx)zg\/i (3.206)

It is obviously contradictory to (3.205).
This finishes the proof of Proposition 3.17. (]

Remark 3.18. (3.200) gives the estimate for 6(¢).
In fact, in view of (3.183), if
0(t)

0(t)
/ ||‘7(5)||L2(R2) ds < ACQ ds = ACQH(t), (3207)
0 0

then (3.200) implies that there exists a constant ¢ > 0 such that
liminf Acof(t) > ¢,
t—=T

that is,
liminf 0(t) > c. (3.208)

t—T
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On the other hand, by Corollary 3.16 one has

o(t) 5
c< / (V] L2(®2yds < 9@)\/;14, (3.209)
0
c
namely, there exists ¢ = —— such that
Y V2A
0(t) = ey/n. (3.210)

Therefore (3.208) and (3.210) imply that there exists a constant §y > 0 such that
ast — T, 0(t) > by, and

Vs € [0,0), H(ElEan) (S)H <A (3.211)

HY(R2)x HL(R?)x L2 (R2)x L2(R2)
This finishes the proof of Theorem 3.1. O

4. PROOF OF THE MAIN RESULTS(THEOREM 1.3)

In this section, based on the estimates obtained in Section 2 and Section 3, we
prove the main result (Theorem 1.3) of this paper.
We first show Conclusion (1) of Theorem 1.3.

By Theorem 3.1, as t — T, there exist 6y = g (HE10||L2(R2) ) ||E20||L2(R2)) and
A > 0 such that

Vs € [0,6p), H (EI,EQ,ﬁ,v) (s)H <A (41)
H(R2)x H1(R?) x L2 (R2) x L2 (R?)

In view of (2.2) and (2.4), one gets
AE)(T —t) > bp. (4.2)

This yields the estimate (1.6).
In addition, it follows from (2.1) that

1
~ 2 - 2 2
(HVEl(())‘ +||vE:0)] )
L2(R?) L2(R?)
1 1
= 50 UFB Ol + VB D)) (43)
~ 1
17(0)[| 2 2y = 0 [P ()| 2 (ge) - (4.4)
Going back to Proposition 3.3, (4.3) and (4.4) yields
1 ~
2 2 3 c16 ¢
(IVEAONzeey + IVEDl o) 2 d(®) 2 7 = 0 (45)
c10 ¢
[n(®)llp2gez) > M) > 77— = 75— (4.6)

This completes the proof of (1) in Theorem 1.3.
Next we are going to prove the conclusion (2). Firstly we claim the following
proposition:

Proposition 4.1. For 6y in Theorem 3.1, there exists a contant ¢ > 0 such that
¢ (4.7)

o > i
2
(||E10||2L2(R2) + ||E20H%2(]R2) - nil ||Q||%2(R2))
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Proof. Due to the Hamiltonian given by (2.7), one gains
_ 2 _ 2 1 22 . 2\ 2
L (wa[ +[vef Ya-g [ (8] +|5]) @
R2 2 R2

1 2 2\ 1
+f/ n+‘E1‘ +‘EQ‘ += | [v[d= (4.8)
2 R2 2 R2

Ho
<
=20 +27)/R2

~ 12 - 12
E1’ ‘EQ‘ da,

which yields
_ 2 _ 2 147 _ 2 . 2\ 2
L (e[ + 78 ) a - (& +]&[) a0
R2 2 R2

1 2 -2\ 1
+—/ n+‘E1‘ —|—‘E2‘ +—/ V| da (4.9)
2 Rz 2 ]R2

Ho
< .
T A1)

A direct calculation then gives

/ (‘VE1‘2+‘VE2‘2> w- [ (\E1\2+\E2f)2dx<% (4.10)

5 =320
%/R? (n+‘E1‘2+‘E2‘2>2+; o 9 da
< ;f(‘i) —/R2 (‘VEH‘QJF ‘VEQ‘Q) dz (4.11)

1 2 - 2\?
_’_7‘1‘77 (‘EH‘ +‘E2‘> dx.
2 Ju
Note that
01+ 1) (1ol gz + |1 Baoll3ze) )
Qe

/R (‘VE’Q + ‘vézf) dz (4.12)

_ 2 _ 2 1 _ 2 _ 2\ 2
g/ (‘VEl‘ +‘VE2‘ )dx—” (‘El‘ +‘EQ‘) dz.,
R2 2 R2
then one obtains
1 . _ N2 1
= Eq? + |Es|? 7/ v|%d
Q/RQ("H P HIBE) -5 M
(0D (1Buolaes) + 1Bl e

/]R (|VE1\2 + |VE’2|2> da.
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Since A(t) — oo as t — T, by taking ¢t — T one obtains

1
7/ |v|2dx
2 Jr2

n+1 1
T B0 722y + [ B2oll72rey = 7——1QI72 ey
||Q||L2(R2) L+
(4.14)
/ (IVELP +VE, ) da
Rz
A*(n+1) 2 2 1 2
it (1ol + 1Bl = @l )

Therefore, by Proposition 3.17, we obtain
0(t)
e <tmipt [ 1906 s s

< Av/2(n+1)

1

1 2
(1Bl + 1Bl ~ 3= 1) o

~ QI L2 g2
(4.15)
and
/ 2 2 1 2 2
b0 = ' | [|Erollz2(rey + [ E20l|72R2) — m”QHLQ(R?) : (4.16)
This finishes the proof of Proposition 4.1. [

Using Proposition 4.1 and taking 6y = ¢/ (|\E10||2L2(R2) + [1B20172 g2y — ﬁ”@“%zmz))
in the proof of (1.7) and (1.8), we achieve (1.9) and (1.10).
This finishes the proof of Theorem 1.3. O
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