ECPAS: A Blockchain-based E-Commerce
Price Auditing System

Toshiki Takakubo*, Ruidong Li*, Haihan Nan'*, Qun Jin*, Zhou Suf, and Huaming wu’.

*Kanazawa University, Kanazawa, Japan
 Xidian University, Xi’an, China

fWaseda University, Tokorozawa, Japan

§Xi’an Jiaotong University, Xi’an, China
ﬂTianjin University, Tianjin, China

Email: *tosiki219@stu.kanazawa-u.ac.jp; liruidong @ieee.org; hhnan @stu.kanazawa-u.ac.jp,
¢jin@waseda.jp, §zhousu@ieee.org, ﬂWhming@tju.edu.cn

Abstract—In recent years, with the widespread of the Internet
and further big data, E-Commerce (EC) has emerged as a
popular medium for users to engage in online transactions of
products and services. Generally, Service Providers (SPs) of
EC collect users’ personal information and utilize advanced big
data technologies to enhance their services. However, the price
discrimination problem may also arise based on personalized
information, where malicious SPs analyze users’ historical orders
to provide the same products or services at varying prices
depending on their characteristics. In this paper, we propose a
price auditing system called E-Commerce Price Auditing System
(ECPAS) to resolve this problem. ECPAS consists of four smart
contracts: User Registration Contract, Product Registration
Contract, Insurance Purchasing Contract, and Price Auditing
Contract, which realize EC price auditing and financial compen-
sation for price discrimination based on a private blockchain.
Meanwhile, ECPAS utilizes InterPlanetary File System (IPFS) to
efficiently store product data. Experimental results demonstrate
that ECPAS achieves a higher processing speed of 5 million price
auditing per day while maintaining low gas and on-chain storage
costs based on the IPFS.

Index Terms—Big Data, Blockchain, Smart contract, IPFS, E-
Commerce

I. INTRODUCTION

With the popularization of E-Commerce (EC) in recent
years, billions of users prefer to use EC websites to purchase
services and products, which generate a large amount of data
about users and corresponding products. Specifically, Service
Providers (SPs) can collect users’ personal information and
order history to provide customized services. By understanding
and catering to the preferences of individual users, they
enhance the user experience and boost convenience. Unfor-
tunately, the generated big data is difficult to be efficiently
analyzed due to the large quantity and different characteristics
[1]. Meanwhile, some malicious SPs may unfairly profit by
misusing this big data for unethical purposes, such as price
discrimination [2].

Price discrimination refers to the sale of charging different
prices for the same products or services depending on indi-
vidual users [3]. For example, a loyal user might be charged a
higher price than a new user, or a rich person might be charged
more than a poor person. In this paper, we consider such

personalized pricing orders as rogue orders. In fact, some price
discrimination has been reported. In 2000, Amazon requested
a higher price for loyal users based on their cookie record
[4]. Besides, there have been reports of price discrimination
on some EC websites, varying based on the regions where
users live [5]. Therefore, price discrimination indeed exists as
a substantial problem.

Price discrimination can lead to various long-term losses
for both users and the economy. Generally, many people
consider price discrimination as unfair or manipulative [6].
As a result, users shopping on EC websites need to compare
prices across different platforms to ensure they are paying
reasonable amounts for their purchases. This not only takes
time, but also adds unnecessary complexity to what should be a
simple shopping experience. If one faces price discrimination,
the current solution is to file a lawsuit, which not only is a
tedious process but also time-consuming. Furthermore, from
a macroeconomic standpoint, it can negatively impact the
economy if users lose trust in online sellers due to price
discrimination [6].

To address the problem of price discrimination, a price
auditing system [7] has been proposed using blockchain and
Smart Contract (SC). However, the system proposed in [7] is
designed for ride-hailing platforms and would incur substantial
storage costs on the blockchain when applied to EC, thus ren-
dering it inefficient. To overcome this challenge, we propose
a E-Commerce Price Auditing System (ECPAS). Specifically,
ECPAS integrates blockchain, SC, and the InterPlanetary
File System (IPFS) to achieve transparent and dependable
price auditing without the need for third-party involvement,
simultaneously leading to substantial reductions in blockchain
storage costs. When a user completes an order on the EC
website, ECPAS assesses whether the order is rogue. If it
identifies the order as a rogue order, it promptly offers financial
compensation to the affected user and imposes a penalty on
the SP. Our experimental results demonstrate the superiority
and effectiveness of the proposed ECPAS system, which has
achieved the first-ever blockchain-based price auditing in the
field of EC.

The rest of this paper is organized as follows. Section II

reviews related work about the key components of our system.
Section III describes the details of the proposed ECPAS
system. Section IV demonstrates the performance evaluation
results. Section V concludes this paper.

II. RELATED WORK
A. Blockchain

The basic concept of blockchain was initially proposed by S.
Nakamoto in 2008 [8]. Blockchain enables peer-to-peer value
exchange without a third party. In essence, blockchain serves
as a decentralized storage system, which is transparent and
tamper-resistant relying on a well-designed data structure and
consensus mechanism [9], [10]. The fundamental characteris-
tics of blockchain can be summarized as follows:

1) Decentralization: Blockchain is a decentralized system
that runs on a P2P network, which means there is no
system downtime and no central authority controls it.

2) Transparency: Every transaction on the blockchain is
open for viewing by all participants, thereby creating
a system with complete visibility.

3) Security: Blockchain ensures the security of transactions
against tampering through the use of intricate cryptog-
raphy and robust data structures.

The aforementioned characteristics endow blockchain with

the ability to enable reliable and transparent price auditing in
the proposed ECPAS without a third party.

B. Smart contract

The term SC was first introduced in the mid-1990s by N.
Szabo [11], which refers to a computer program of contracts.
Blockchain enables the essence of SC by defining the program.
The program defines the execution and response conditions of
the contract, allowing for automatic completion without the
involvement of a third party. Therefore, SCs can be executed
swiftly and autonomously compared to traditional contracts.
SC is executable on the SC development platform, Ethereum
Virtual Machine [12].

In the context of ECPAS, SCs play a vital role in facilitating
price auditing and detecting rogue orders. We can achieve
prompt and automated financial compensation by paying fi-
nancial compensation to affected users and imposing fines to
malicious SPs who produce rogue orders.

C. InterPlanetary File System

IPFS [13] is a distributed file system that runs on a P2P
network. IPFS aims to store and distribute data across various
network nodes while unifying all computing devices under
a single file system. It integrates a distributed hashtable, an
incentivized block exchange, and a self-certifying namespace
to establish a content-addressed block storage model and
hyperlinks, enabling efficient data throughput [13]. IPFS can
be applied in various fields, and its utilization can significantly
improve system performance [14], [15].

After uploading data to IPFS, a Content IDentifier (CID) is
returned. The CID is a unique cryptographic hash string that
serves as an exclusive address to reference the data on the

network. To access desired data, one needs to obtain the CID
and request it from IPFS. Considering that blockchain is not
suitable for storing extensive volumes of data, IPFS emerges
as an optimal solution by only storing the CID rather than
data, which greatly reduce storage space. Since our proposed
system need to store a large amount of data, IPFS is utilized
to implement price auditing on the blockchain with minimal
storage costs.

D. Price auditing system

Price discrimination is not solely confined to EC but also
exists in the realm of ride-hailing services [16]. To solve this
problem in ride hailing services, a blockchain and SC based
system named Spas has been proposed for price auditing [7].
However, there is a challenge in directly applying Spas for
price auditing in EC. Spas is designed for a ride-hailing service
context, where the base price registered for price auditing on
the blockchain typically includes information such as the price
per kilometer. In contrast, EC requires the registration of a
vast amount of product data, leading to the issue of excessive
storage costs on the blockchain. We solve this problem by
using IPFS and thereby realizing efficient price auditing in
EC.

III. ECPAS SYSTEM DESIGN

In this section, we introduce the framework of ECPAS.
First, we provide an overview. Subsequently, we describe the
workflow and events of the SC process. Finally, we offer
detailed descriptions of key events, including user and product
registration, insurance purchase, and price auditing processes.

A. Overview

ECPAS is a decentralized system that uses blockchain, SC,
and IPFS. By using blockchain, which plays a crucial role in
decentralized processing, a fair price auditing can be realized
without a third party. Meanwhile, the integration of SC enables
the automatic detection of rogue orders and facilitates prompt
financial compensation. Additionally, ECPAS is able to reduce
the storage cost on the blockchain by utilizing IPFS. Fig.
1 shows the overview of ECPAS. First, SPs register their
own products on the EC website and store the corresponding
product data on IPFS. Then, CID returned from the IPFS is
stored on the blockchain. Subsequently, SC is invoked when
users purchase products and execute price auditing through
the automated program. Finally, the result is stored on the
blockchain.

ECPAS is composed of four SCs: User Registration Contract
(URC), Product Registration Contract (PRC), Insurance Pur-
chasing Contract (IPC), and Price Auditing Contract (PAC).
The URC allows both users and SPs to register in the ECPAS
system. The PRC facilitates SPs in registering and updating
product information on the blockchain. The IPC enables users
to purchase insurance from SPs and terminate it if needed. The
PAC executes price auditing each time an order is completed,
and achieves financial transactions such as compensation pay-
ments when detecting malicious orders.

Smart Contract

0. 0 w Swmartlontra
* 4. Purchase EC Website ‘:
Users E 5 Invoke SC i _)S i _?.\ Q

' Order Info
thﬁ LRegistel, —r——s i { Price Auditing |

op _IPFS .o
2. Product reglstratlk‘ F AN /
ALa

3.cID reg|strat|°n1 7. Update states

Block

: I l'mnucnan]
Fig. 1: Overview of ECPAS

Block ‘

Fig. 2 shows the SC workflow and events. First, the SC is
deployed on the blockchain. Then, users and SPs register to
participate in ECPAS. Next, SPs register their product data
on the blockchain. After that, users purchase insurance from
SPs. Only users who have purchased insurance are eligible for
price auditing. Finally, when a user completes an order on the
EC website, the order is audited. We will introduce details of
these events in the sections that follow.

B. User and SP Registration

Users and SPs wishing to participate in the ECPAS system
must register their own information through the URC. The
URC includes the userRegister function for user registration
and the spRegister function for SP registration.

userRegister function

o Require:
— User’s account address Addr,
o Ensure: User registration in ECPAS

where Addr, is the user’s account address for receiving fi-
nancial compensation and other payments. In addition, Addr,
is used to uniquely identify the user. The userRegister function
employs Addr, to verify that the user has not already been
registered. Once this is confirmed, the user registration is
executed by registering Addr, in ECPAS.

spRegister function

o Require:

— SP’s account address Addrg,
— Deposit sent to contract address Deposit

o Ensure: SP registration in ECPAS

where Addrg, is the SP’s account address. It is used for
identification and financial transactions, similar to user ad-
dresses. The spRegister function employs Addrg, to verify that
the SP has not already been registered. Once confirmed, the SP
registration is executed by registering Addrg, in ECPAS. In
addition, the SP needs to pay Deposit to the contract address.
The Deposit is treated as a reserve against fines incurred when
an SP engages in price discrimination. This ensures that the
contract always has sufficient funds, thereby eliminating the
risk of unpaid fines.

EaT s Gee?eﬂo
;o—»oo—»D
o m

Smart Contract

Deployment User Registration Product Registration
AW
f Insurance Terminate
KR
Insurance Purchase
Price Auditing

Product Purchase

Fig. 2: SC workflow and events

C. Product Registration and Update

In order to reference a base price of products for price audit-
ing, SP needs to register the latest product data through PRC.
SP needs to store the product data on IPFS. By leveraging
the IPFS, the CID is received and stored on the blockchain.
Essentially, the product data is stored on the IPFS, and only
the CID is stored on the blockchain, reducing the storage cost
on the blockchain. The price stored on the IPFS is defined as
the fair selling price, and any order exceeding that price is
considered a rogue order. The PRC has the productRegister
function to register products and the productUpdate function
to update product data.

productRegister function

o Require:
— SP’s account address Addrg,
— Product reference address on IPFS cid

o Ensure: Register cid on blockchain

where cid is a product reference address returned after
registering the product data on IPFS. The productRegister
function checks if SP is already registered and if the product
is not already registered, using Addrg, and cid, respectively.
If the conditions are met, the function registers the product’s
reference address, cid, on blockchain.

productUpdate function

o Require:

— SP’s account address Addrg

— Original product reference address cid
— New product reference address newC'id

o Ensure: Update cid to newC'id on blockchain

The productUpdate function employs Addrg, and cid to
verify whether the SP and the product are already registered.
If these conditions are met, cid is updated to newC'id.

D. Insurance Purchase and Termination

ECPAS introduces an insurance mechanism to limit the
use of the blockchain network’s computing resources and
provide financial incentives to SPs that do not engage in price
discrimination. Given the limited computing resources of the
blockchain and the large number of EC users, performing
a price auditing for all users would significantly increase

the computational overhead and potentially render the system
inefficient. Therefore, only users who purchase insurance from
an SP through IPC are eligible for price auditing. To receive
a price auditing, users must incur a certain cost, which can
limit the number of price auditing. The IPC includes an
insurancePurchase function for the user to purchase insurance
and an insuranceTerminate function for the user to terminate
the insurance.
insurancePurchase function
o Require:
— User’s account address Addr,
— SP’s account address Addrg,
— Insurance expiration date period
— Insurance payments to contract address fi,s
o Ensure: User purchases insurance from SP
where period is the expiration date of the insurance and is
defined in units of days. Let insPerDay is the daily insurance
payout, then f;,s = insPerDay - period is the insurance
payout paid by the user. Insurance payments are executed
by transferring money to the contract address when the user
executes the insurancePurchase function.
InsuranceTerminate function
o Require:
— User’s account address Addr,
— SP’s account address Addrg,
o Ensure: user terminates insurance from SP
When the insuranceTerminate function is executed, the
termination fee fi., is transferred from the contract to the
user and SP. Termination fee for the user is defined as
fit, = a - fins. On the other hand, the termination fee for
SP is defined as f,h. = fins — fi4y Let a (0 < a < 1) is the
percentage of the remaining insurance expiration time.

E. Price Auditing

This section explains the details and specific processes of
price auditing. We will discuss price auditing algorithm, cash
flow and payout settings.

1) Price auditing algorithm: When an insured user com-
pletes an order on the EC website, the price auditing process
begins. First, order information is obtained for both the user
and the SP. This information includes the user’s and the SP’s
addresses, the charged price, and the CID. Then, the CID
is used to obtain the product’s price stored on the IPFS. It
is considered the correct price on which to base the price
auditing. The order information and price stored on IPFS are
used as parameters and passed to the PAC. Then, the SC
program is executed. The algorithm for price auditing is shown
in Algorithm 1.

First, the necessary information for price auditing is ob-
tained from the order information. The validity of the user’s
insurance and the registration of the cid are checked. Then, by
comparing the hashes of the order information of the user and
the SP, it is verified that the order data has not been tampered
with (lines 1-6). Once confirmed, the user charged price is
derived and judge whether it is a rogue order (line 7-8). If the

order is determined to be rogue, the user will be compensated
and the SP will be charged a fine. The compensation fcom,
paid to the user is calculated at three times the user’s charged
price or 0.05 Ether, whichever is greater. The fcon, is paid
to the user from the contract, and the SP pays the fine by
subtracting fcom, from the deposited value. In addition, the
user’s insurance is terminated at the same time (lines 9-14).

Algorithm 1 Price Auditing

Require:
1) Order,: order’s information from user
2) Ordersy: order’s information from SP
3) price: price stored on IPFS
Ensure: Determine if a price is fair
Procedure: Price Auditing Process
: Addr, < get user’s account address from Order,
: Addrg, < get SP’s account address from Order,
: cid < get product reference address from Order,,
: Check the validity of the user’s insurance through Addr,
and Addrg,
5: Check the validity of the product registration through cid;
6: if Hash(Order,) == Hash(Orders,) then
7
8

O I S

A~

price’ < get charged price from Order,
if price < price’ then

9: Addr, < get contract address

10: fcom + Calculate compensation payout
11: Send foom + fii, from Addr, to Addr,
12: Send fins — fit, from Addr, to Addrg,
13: Subtract fcoop, from the value of the SP deposit
14: Validity of the user’s insurance < false
15: else

16: end process.

17: end if

18: else

19: end process.

20: end if

2) Cash Flow and Payout Settings: ECPAS events also
produce a series of cash flow, which is summarized in the
Table 1. Moreover, Table II shows the reward in the price
auditing. where U: User, S: SP, and C: Contract. Rewards
for price auditing vary considerably depending on whether
rogue orders exist or not. On the one hand, when rogue
orders do not exist, all user insurance payouts are paid to
SPs that do not engage in price discrimination. On the other
hand, when rogue orders do exist, the user’s reward must be
positive and the SP’s reward must be negative. In other words,
fins < fcom + fi, must be satisfied. If we set fins < fcom.
then fins < foom + fi, always holds because ff, is always
positive. Furthermore, Deposit must be sufficiently larger than
foom so that the following relationship holds.

fins < fCom < DePOSlt (1)

When implementing ECPAS, it is necessary to set parame-
ters that satisfy this relationship.

TABLE I: Event Cash Flow

Events From To Amount
spRegister S C Deposit
insurancePurchase U C fins
insuranceTerminate ~ C U fior
C S f ins f tuér
report Rogue Order C U fcom + fie,
C S fins — fier
S C fcoom(Subtract from deposit)

TABLE II: Reward for Price Auditing

Entity No rogue order existed Rogue order existed
8] _fins _fins +fCom +f#e’r
S ins ins — JCom — ;uér
C 0

IV. PERFORMANCE EVALUATION

In this section, we first introduce our experimental envi-
ronment. Next, we evaluate the performance of the proposed
ECPAS in terms of three indices: the gas cost, the processing
speed, and the On-chain Storage Cost (OSC). Finally, we
discuss the evaluation results.

A. Experimental environment

In this subsection, we introduce the experimental envi-
ronment used for testing the proposed ECPAS. We employ
Truffle as the development tool, which is based on the
Ethereum solidity language and offers a testing framework
and pipeline for the Ethereum blockchain. Ethereum and
IPFS provide JavaScript API libraries, named web3.js and
ipfs.js, respectively. These libraries furnish a comprehensive
set of JavaScript objects and functions that enable interaction
with blockchain, SC, and IPFS. We use the Ethereum pri-
vate blockchain created with a client application called geth.
ECPAS is deployed on this Ethereum private blockchain and
tested on the WSL2 Ubuntu 20.04.5 operating system using
Solidity v0.8.7 language. For the experiment, we create 20000
accounts on the blockchain, each with a balance of 100 Ether.
We have prepared a data set of products, each of which has
attributes such as product id, product name, and price. This
product data is then uploaded to IPFS, generating 10000 CIDs.
Considering equation 1, we set insPerDay to 0.00005 Ether,
fcom to 0.05 Ether and Deposit to 10 Ether.

B. Gas cost result and analysis

SC deployment and invocation on the Ethereum blockchain
requires some fee cost, called gas, which is introduced to pay
compensation to miners and to avoid unnecessary consumption
of computing resources and network abuse. For example, the
addition of two variables requires 3 gas, while multiplication
requires 5 gas [12]. Gas can be paid using the native Ethereum
currency named Ether. To calculate the actual fee cost from
gas, multiply gas by the gas price. In this paper, the gas price
is calculated as 12.5 Gwei, where 1 Ether equals 10% Gwei.
In order to evaluate the usability performance of the proposed
ECPAS in terms of gas cost, we measure and evaluate the gas
required to deploy and call functions.

TABLE III: Gas cost for each function and deployment

Functions Gas Ether
userRegister 45623 0.000570
spRegister 90353 0.00113
productRegister 51988 0.000650
productUpdate 56372 0.000705
insurancePurchase 120241 0.00150
insuranceTerminate 53181 0.000665
Audit(correct Order) 39397 0.000492
Audit(rogue Order) 72228 0.000903
Contract deployment 2929051 0.0366

Table IIT displays the results of the gas cost. As the audit
function is the most frequently executed function in the sys-
tem, we need to discuss it more. Due to additional processing
requirements for rogue orders, we have categorized the results
into correct orders and rogue orders. When auditing correct
orders, the gas is the smallest compared to the other functions.
On the other hand, when auditing rogue orders, the user
compensation significantly exceeds the gas cost. Therefore,
the gas cost is not considered to be a burden on users in
price auditing. From the perspective of the SPs, the insurance
mechanism allows them to generate much higher profits than
the gas costs. In summary, gas costs are not a burden for either
users or SPs.

C. Processing speed result and analysis

The processing speed of ECPAS is evaluated using SC’s
transactions per second (tps). Tps is defined by the following
equation [17].

_ Number of transactions per block

tps = Block Period @

In the Ethereum blockchain, the number of transactions per
block depends on the block gaslimit. The block gaslimit is
set to 30000000 and the block period is set to 12 seconds,
which refers to the value of Ethereum main network [18].
Tps measurements are made using the Caliper benchmarking
tool provided by Hyperledger. The measurement is made by
executing the each SC function and sending transactions to the
blockchain at a fixed rate. The sending rate was varied from 10
to 100. Fig. 3 shows the results of tps measurements. Focusing
on the function that audits the correct price, which is the most
performed in this system, the maximum tps is about 60. This
value means that approximately 5 million price auditing can be
executed per day. Taking into account that the number of price
auditing is limited by the insurance mechanism, we believe
this processing speed is a practical enough number in the real
world.

D. On-chain storage cost result and analysis

OSC is the storage cost of storing data on the blockchain.
According to Ethereum’s yellow paper [12], the gas required
to store a single 256-bit word is 20000. Also, each transaction
requires a minimum base cost of 21000 gas. Thus, it is
possible to estimate the OSC of each transaction by using the
consumed gas [19]. To evaluate the extent to which OSC can

> P

2009 — Ecpas
Only SC method

-
o
v

,_.
0
S

,_.
i
o

e
3
&

o
@
S

o
N
&

60{ ~®@ userRegister A——A—a 4 —»— SP Register
insurancePurchase ~ 45 Product Register
—4— insuranceTerminate /.7.,,.7 oo —®— Product Update P
504 A correctAudit 40
= ~¥- rogueAudit p 4 o ,’
£ T S
+ 40 =
=] S 30
=% a
< ¥y —v—vy—v V¥ —v—Yy <
30 s
<4 <4
< £ 20
=] =
20
15
10 10
20 60 80 100 20 40

40
Varying TX Arrival Rate (TX/s)

(a) user side tps

60

Varying TX Arrival Rate (TX/s)

(b) sp side tps

Fig. 3: Tps varies by transaction arrival rate

be minimized when registering products by utilizing IPFS, we
compare the OSC in scenarios involving ECPAS with those
involving only SC method [7]. Specifically, with ECPAS, we
estimated OSC by utilizing the gas in the productRegister
function, as detailed in Table III. In the case of the only SC
method, we created an SC for direct storage of product data
and estimated the storage cost. The product data includes the
following attributes: product ID, product name, price, supplier
name, and update date.

The OSC results, depicted in Fig. 4, demonstrate that
ECPAS is more efficient and maintains a lower OSC compared
to the only SC method. In this experiment, for the sake of
simplicity, product data includes only five attributes. However,
in a real-world scenario, data would likely comprise a greater
number of attributes, and the only SC method could lead to an
increase in OSC. Conversely, with ECPAS, the OSC remains
unaffected by the number of attributes. Therefore, in a real-
world context, we can conclude that ECPAS achieves a lower
OSC compared to the existing only SC method.

V. CONCLUSION

In this paper, we propose a price auditing system, ECPAS,
to solve the problem of price discrimination in EC. ECPAS
is a decentralized system utilizing blockchain and SC, which
can realize transparent and reliable price auditing without
a third party while achieving automatic price auditing and
prompt financial compensation. We describe the entire process
of the system, including the price auditing algorithm and the
insurance mechanism. We implement ECPAS on the Ethereum
private blockchain and evaluate its performance. Experimental
results demonstrate that ECPAS has a processing speed of 5
million price auditing per day while keeping gas and on-chain
storage costs low by using IPFS. We believe these results make
ECPAS a feasible solution in the EC. In our forward-looking
vision for future work, we believe that with the privacy and
security enhancements provided by permissioned blockchain
and the scalability improvements provided by sharding, our
proposed framework can be extended to other domains such
as general online services in the future.

REFERENCES
[1] C. Zhang, P. Patras, and H. Haddadi, “Deep Learning in Mobile and

»

Wireless Networking: A Survey,” in IEEE Communications Surveys &
Tutorials, vol. 21, no. 3, pp. 2224-2287, 2019.

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

(10]

(11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

On-chain Storage Cost (MB)

80 100

-

6 ZObO 4500 EObO SObO
Number of registered products

Fig. 4: OSC: ECPAS vs only SC method

o
o
3

10000

A. Hannak, G. Soeller, D. Lazer, A. Mislove, and C. Wilson, “Measuring
Price Discrimination and Steering on E-commerce Web Site,” Internet
Measurement Conference, pp. 305-318, 2014.

A. Acquisti, “Price Discrimination, Privacy Technologies, and User
Acceptance,” In Proc. CHI Workshop Personalization Privacy, pp. 1-3,
2006.

“Amazon’s old customers ‘pay more’,” British Broadcasting Corporation
News, 2000. Accessed: May 15, 2023. [Online]. Available: http://news.
bbc.co.uk/2/hi/business/914691.stm

J. Mikians, L. Gyarmati, V. Erramilli, and N. Laoutaris, “Crowd-
assisted search for price discrimination in e-commerce: first results,”
in Proceedings of the ninth ACM conference on Emerging networking
experiments and technologies, pp. 1-6, 2013.

F. Z. Borgesius and J. Poort, “Online Price Discrimination and EU Data
Privacy Law,” J. Consum. Policy, vol. 40, no. 3, pp. 347-366, 2017.
Y. Lu, Y. Qi, S. Qi, Y. Li, H. Song, and Y. Liu, “Say No to Price Dis-
crimination: Decentralized and Automated Incentives for Price Auditing
in Ride-Hailing Services,” in IEEE Transactions on Mobile Computing,
vol. 21, no. 2, pp. 663-680, 2022.

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Whitepa-
per, 2008.

S. Ruoti, B. Kaiser, A. Yerukhimovich, J. Clark, and R. Cunningham,
“Blockchain technology: what is it good for?,” Communications of the
ACM, vol. 63, no. 1, pp. 46-53, 2019.

C. Catalini and J. S. Gans, “Some simple economics of the blockchain,”
Communications of the ACM, vol. 63, no. 7, pp. 80-90, 2020.

N. Szabo, “Smart Contracts: Building Blocks for Digital Markets,”
1996. Accessed: May 19, 2023. [Online]. Available: https://www.
fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/
LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html

G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, vol. 151, pp. 1-32, 2014.

J. Benet, “IPFS - Content Addressed, Versioned, P2P File System,”
arXiv, 2014.

S. Zimmermann, J. Rischke, J. A. Cabrera, and F. H. P. Fitzek, “Journey
to MARS: Interplanetary Coding for relieving CDNs,” [EEE Global
Communications Conference (GLOBECOM), pp. 1-6, 2020.

P. Kumar, R. Kumar, S. Garg, K. Kaur, Y. Zhang, and M. Guizani,
“A Secure Data Dissemination Scheme for IoT-Based e-Health Systems
using Al and Blockchain,” IEEE Global Communications Conference
(GLOBECOM), pp. 1397-1403, 2022.

A. Mahdawi, “Is your friend getting a cheaper Uber fare than
you are?,” The Guardian, 2018. Accessed: May 15, 2023. [On-
line]. Available: https://www.theguardian.com/commentisfree/2018/apr/
13/uber-lyft-prices- personalized-data

F. Leal, A.E. Chis, and H. Gonzilez—Vélez, ‘“Performance Evaluation of
Private Ethereum Networks,” in SN Computer Science, vol. 1, no. 285,
pp. 1-17, 2020.

“Etherscan - Ethereum (ETH) Blockchain Explorer,” Accessed: May 15,
2023. [Online]. Available: https://etherscan.io/

F. Chen, J. Wang, C. Jiang, T. Xiang, and Y. Yang, “Blockchain Based
Non-repudiable IoT Data Trading: Simpler, Faster, and Cheaper,” IEEE
Conference on Computer Communications (INFOCOM), pp. 1958-1967,
2022.

