Joint Optimization of Service Caching Task
Offloading and Resource Allocation in Cloud-Edge
Cooperative Network

Chaogang Tang*, Yao Ding*, Shuo Xiao*, Huaming Wu, Ruidong Li*
*School of Computer Science and Technology, China University of Mining and Technology, 221116, Xuzhou, China
TThe Center for Applied Mathematics, Tianjin University, 300072, Tianjin, China
The Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
cgtang@cumt.edu.cn, yding32@cumt.edu.cn, sxiao@cumt.edu.cn, whming @tju.edu.cn, liruidong @ieee.org

Abstract—The cloud-edge cooperative network presents
both opportunities and challenges for latency-sensitive and
computation-intensive tasks. Effectively harnessing the strengths
of edge computing and cloud computing enables real-time task
handling, thus reaching a win-win situation where not only the
stated quality of service (QoS) is delivered from the angle of
service providers, but also the quality of experience (QoE) is im-
proved from the angle of service requestors. However, due to the
unpredictable task generation and time-varying environments, it
is challenging to achieve optimal task scheduling and effective
resource management and allocation. To address this issue, we
propose an innovative cloud-edge framework that incorporates
task offloading, service caching, and resource allocation in this
paper. In this framework, we can determine where to offload the
task, e.g., locally, at the edge, or in the cloud center. In view of the
importance of the superior user experience, we aim to maximize
the user satisfaction regarding task offloading in this framework.
The problem is actually a mixed-integer nonlinear program-
ming (MINLP) problem that entails simultaneously addressing
cache decisions, offloading decisions, and resources allocation
in a dynamic cloud-edge computing system. Owing to the NP-
hardness, our original problem is decomposed into two layers of
alternating problems. Specifically, we adopt a genetic algorithm
(GA) based approach to jointly make cache and offloading
decisions, and then iteratively optimize the communication and
computing resources allocation. Extensive experimentation has
demonstrated the feasibility and effectiveness of the proposed
approach.

Index Terms—Service caching, task offloading, user satisfac-
tion, cloud-edge network, QoS

I. INTRODUCTION

Recently emerging Internet of Things (IoT) applications,
including smart homes, remote healthcare, augmented reality,
intelligent transportation, and online interactive games, have
become an integral part of modern society. Driven by ultra-
low latency and superior user experience, these applications
exhibit significant demands for computation resources and
are highly sensitive to latency requirements [1], [2]. How-
ever, mobile devices equipped with constrained computation
resources are hardly to meet such demands on QoS and
QoE. Cloud computing endowed with immense computational
power, extensive storage resources, and flexible scalability,
can elastically address the computationally intensive demands

of diverse applications. Whereas, the substantially physical
distance between cloud data centers and user endpoints can
cause a highly long latency that may deteriorate the total
performance regarding the response latency [3].

For some specific applications such as intelligent transporta-
tion and health monitoring, response latency is particularly
significant. Currently, many works focus on addressing this
issue. For instance, an edge computing empowered wireless
network is put forward, which brings computational resources
and storage function to the edge of the network [4]. This
architecture enables task processing and data analysis in close
proximity to users, which not only delivers lower response
latency but also improves the overall performance with regards
to reliability and robustness [5]. Despite the advantages of
edge computing (EC), there still exist some shortcomings
such as restricted computing capabilities compared to the
cloud center and the front-haul link pressure incurred by the
tremendous increase in data traffic. These shortcomings make
it challenging to deliver high QoS for the tasks offloaded and
executed in EC.

To overcome the aforementioned drawback, we propose a
caching-assisted cloud-edge computing framework that com-
bines the abundant cloud resources with the fast response
capabilities of edge computing. We try to jointly optimize
service caching, task offloading and resource scheduling in
this framework. Here, service caching means to cache service
related databases and libraries at the edge server (ES). As
users can directly obtain the required applications from nearby
edge nodes, the data transmission delay can be significantly
reduced compared to uploading both application/service and
input parameters. However, mobile services are often vary
in terms of required computing and storage resources [6],
and thus the resource-constrained edge server can only cache
limited number of applications, which requires us to prudently
design an efficient service caching strategy.

In addition, the task offloading decision is made accord-
ing to current state of involved entities including response
latency, energy consumption, as well as bandwidth utilization.
It is crucial to effectively scheduling restricted computing
resources at ES to meet the diverse requirements of dif-

ferent applications, considering the inherent constraints of
edge resources, unpredicted dynamics and spatial demand
coupling [3]. In EC systems, the resource allocation in current
works is often conducted for response latency minimization
or energy consumption saving. Various approaches, including
game-theoretic methods [7], heuristic algorithms [8], or deep
reinforcement learning techniques [9], have been employed to
tackle these resource allocation challenges.

In contrast, we focus on the issue of the fairness in this
paper. Fairness among users is of paramount importance in
certain scenarios, such as multiplayer online games, where
disparities in user latency serve as a crucial metric for assess-
ing user experience [10]. A significant delay between players,
as evidenced by previous studies [11], can hardly guarantee a
fair and equal opportunity to all participants. Accordingly, it
is important to ensure a fair distribution of resources without
favoring specific users. Generally, the major contributions of
this paper can be outlined as below:

e We try to jointly optimize task offloading, service
caching, and resource allocation in the cloud-edge co-
operative network. The optimization problem is modeled
as a MINLP problem, considering uncertain resource
demands, latency constraints of heterogeneous computing
tasks and energy constraints. Multiple limitations are
also considered regarding communication, computing,
and storage resources.

o Considering the NP-hardness of this problem, we put
forward a GA-based two-level optimization algorithm,
referred to as GACORA, with the outer layer utilizing
GA method for determining task offloading and service
caching and the inner layer for iteratively determining
the optimal communication and computation resource
allocation.

o Extensive experiments have demonstrated that our
GACORA strategy for the joint optimization in the cloud-
edge network outperforms several alternative algorithms
in average user satisfaction, average task latency, task
completion rate and fairness among users.

II. SYSTEM MODEL
A. Caching-Assisted Cloud-Edge Framework

The considered scenario is constituted by one cloud server
(CS), one ES, and multiple user devices (UD). The ES with
caching and computation functions is deployed together with
the base station (BS), enabling possible task offloading from
UDs to the ES via wireless networks. The set of UDs is
expressed as N' = {1, ..., N}, where N is the number of UDs.
The optimization period is slotted into discrete intervals also
known as time slots 7 = {1,...,T}, where T represents the
number of time slots [12]. Each UD generates one computation
task in each time slot in this paper. The task ¢! generated by
UD n in slot ¢ can be described by ¢ = (df, st [mat),
where d!, represents the input data size of the task, s, stands
for the required computation resources (CPU cycles), and
[mawt i the maximum tolerable delay. We further assume

that these tasks are inherently atomic and indivisible in nature.
There is a collection of K distinct cacheable services indexed
by A = {a1,az,...,ax}. We assume that one task can only
request one service and one service can serve multiple tasks
in this paper. Thus, the relationship between task t{ and
service k can be expressed as a,) € {0,1}. If task ¢}
requests service k, ay = 1, and 0, otherwise. Note that
the execution of task t! on the ES is contingent upon the
presence of the required service cached in the ES. So as to
facilitate the execution of computational tasks, the caching
strategy should be strategically decided within each time slot.
We define 8 € {0,1} to represent whether service k is
cached at the ES. If service k is cached in slot ¢, 0; = 1,
and 0, otherwise. As such, we have the following constraint
Zkl,(zl 8% ht < C, wherein hy, specifies the storage requirement
of service k, and C'is the maximal storage capacity of the ES.
For clarity, % = SOt | v, 10l denotes whether the service
required by task ¢!, is cached in the ES during time slot ¢.

Through the utilization of Dynamic Spectrum Access (DSA)
technology, the ES is empowered to distribute bandwidth
among distinct UDs in accordance with their specific requests
[13]. The notation B(t) = {b%,bh,...,b%} is the allocation
vector denoting the spectrum resources allocated to each task
in slot t. Therefore, we have Y.~ | BEAL (2 — AL)bE, < W,
where W represents the total bandwidth of the uplink channel,
and X!, (€ {0,1,2}) represents the offloading destination for
the task, where)\fL = 0 specifies that the task is undertaken
locally, \f, = 1 indicates that the task is offloaded to the ES,
and \!, = 2 denotes that the task is offloaded to the remote
cloud.

B. Communication model

If one UD with insufficient computational capabilities is
unable to fulfill a task and the requested service is cached in
the ES, the task can be executed at ES. If the requested service
is not cached, the task can be offloaded to the cloud. Thus, the
transmission latency of offloading task to the edge or cloud is
respectively described as:

lfzﬁfrs = dl;z/r;?t (1)
ers = di /52" + 201)
where r&t, r&t are the achievable uplink data rates between
user device and ES/CS, respectively.) represents the propa-
gation delay across the backbone network. " can be further
expressed as:

et = b log (1+py"ay,) 3)

where pS! is the transmission power of user device n in time
slot ¢, gt specifies the uplink wireless channel gain between
UD n and the ES.

C. Computing model

Let f!, f&* respectively denote the average processing
frequency of UD n and the CS. Let f%! denote the amount
of computational resources allocated to the task ¢!, by the ES.

The execution delay for processing the task locally or at the
ES/CS can be respectively calculated as:

It =st/fh 4)
Iywe = Sn/ ! (5)
o (6)

Denote by F, the total computational resources available at
the ES, and we thus have >, BLAL (2—AL) ot < F.. The
corresponding energy consumption for processing task ¢, on
the ES is given by:

S 3 et 2

ey ene = ks (f5) @
where k€ is the effective switched cipacitance coefficient
related to the ES. We use ezttr = 1 057k to represent

the total storage consumption in the ES, where vk denotes the
average static power consumption for caching service k. The
total energy consumption in the edge for accomplishing all the
offloaded tasks with necessary services is then formulated as:

str + Zﬁt)‘t

n=1

n ,exe (8)

III. PROBLEM FORMULATION

Combining task offloading and service caching, the response
latency required to accomplish the task t!, is generalized as:

1L =1/2(\L — 1)(X, — 2)15!
FBENL (2 = ALY (1 s + 180 00) ©
F1/2XE (N = D) (1 + 185 ,)

In contrast to prior research on task offloading, which
primarily concentrated on optimizing either task processing
delay or energy consumption, our emphasis here is to enhance
the maximization of user satisfaction which considers both
system response latency and fairness among users. Accord-
ingly, the user satisfaction function for processing task ¢!, can
be expressed as:

St =log (14 ¢ + M=t —It) (10)

where ¢ serves the purpose of normalizing the satisfaction
metric and ensures that it remains non-negative. Recognizing
the limitations imposed by the finite computational, commu-
nication and caching capacities of the ES, we jointly optimize
service caching, computing offloading, and the resource allo-
cation, while accommodating the energy constraint associated
with the ES. Define 6(t) = {d}} as the vector of service
caching decision, \(t) = {\!} as the vector of task offloading
decision, B(t) = {b%} and f¢(t) = {f&'} as the vector of
communication and computing resource allocation schemes,
respectively. The optimization problem can be formulated as:

Y

T N
P1:
6(t), /\(t) B(t) fe(@) Zl Z

st 1L <pment o yn e Novte T (11a)
E¢t<Q VteT (11b)
K
> G <C VteT (11c)
k=1
ZBtAt XL <W VteT (11d)
ZBtAt MOt <E, VteT (11e)
b;zo VneN,VteT (11f)
“t>0 VneN,VteT (11g)
5t €{0,1} VneN,VteT (11h)
AL e {0,1,2} VneN,VteT (11i)

The constraint (11a) implies that the processing delay of a
task should not surpass the predefined threshold /%%, The
condition (11b) specifies the maximal energy constraint () on
the total energy consumption in the ES. The constraint (11c)
means that the total cached services should not go beyond
the maximal storage capacity of the ES. The conditions (11d),
(11e) indicate that the assigned transmission and computing
resources should not surpass the maximum resources of the
ES, respectively.

Remark: P1 is obviously a MINLP problem. Solving Prob-
lem P1 directly to obtain the optimal solution poses significant
difficulties, owing to its NP-hardness. Thus, in order to reduce
the time complexity, we put forward a GA based two-level
iterative algorithm in this paper.

IV. ALGORITHM DESIGN

We decouple the original problem into two subproblems,
i.e., the resource allocation (RA) problem and the service
caching and task offloading (SC&TO) problem [14], [15].
First, for any given feasible solutions to the SC&TO decisions,
we can obtain the optimal RA policy through a distributed
optimization approach to maximize the user satisfaction. Then,
GA based approach is used to obtain the sub-optimal SC&TO
decision, given the transmission bandwidth and CPU fre-
quency allocation schemes.

A. Multi-resource Allocation

Based on the formulation of problem P1, under given
service caching and task offloading strategy, the RA problem
P1.1 takes the following form:

t
BRI

max

=1 st (12
s.t. (11a),(11b), (11d),(11e), (11f),(11g)
In order to mitigate system complexity, the time-

combinatorial problem is dlsentangled into su%roblems
within discrete time slots, and max Zt ymaxy is
employed to provide an approximation of the original problem

P1.1 [16]. Thus the resource allocation problem in a given
time slot ¢ can be further expressed as:

N

max log (1 + —l—lm“”t 1t
e nz:l g(l+¢ 9

st (11a),(11b), (11d), (11e), (11f), (11g)

We further partition RA problem P1.2 into two components
and propose a distributed method to optimize different blocks
of variables iteratively. We obtain computation frequency allo-
cation given the communication resource allocation strategy,
and then update the latter repeatedly until the convergence
appears.

1) Computing resource Allocation: Given §(t), A(t) and
B(t), the computation resource allocation problem can be
expressed as:

P1.2:
(13)

N
P1.2.1 :max log (14 ¢ + [me=t — [t
ma ; g(1+¢)

st (11a),(11b),(11e), (11g)

Optimization problem P1.2.1 with the convex constraints
(11a), (11b), (11e) and (11g) is a joint convex problem,
since 925! (f¢(t))/0f¢(t)> < 0. To tackle this problem, the
Lagrangian function L(f€(t),8, u,w) is then introduced by:

(14)

N

L(f*(t),60,p,w) =) _[log (1 + ¢+ 17" — 1))~
n=1
t _ gmax,t\] _ et
Onlll, ~ 7] (B - Q)
Zﬁ)ﬁ)\t 9 _)\t fe7t _ Fe)
s.t. (llg)

where the coefficients 0, u, w represent the Lagrange mul-
tiplier associated with the task latency threshold, maximum
energy constraint and computation capacity constraint, respec-
tively. The dual problem of P1.2.1 is:

min D(0, p, w)
st. 8>0,u>0,w>0

where D(6, p,w) = max L(f€(t), 0, u,w). Indeed, the intrin-
sic convexity of P1.2.1 demonstrates that the optimization
problem P1.2.1 possesses a zero dual gap and fulfills Slater’s
condition. Thus, we can effectively solve the dual problem
P1.2.1 by employing the gradient method, which provides
a practical approach to finding solutions. In particular, the
Lagrange multipliers can be updated iteratively as follows:

(16)

On (i + 1) = [0n (i) + e (I, — 57T
pli+1) = [u(i) + e2 (B = Q)]F
w(i+1) = [w(i) + es(Zay BN (2 = M) St = Fo)F

a7)
where [-|T equals maz(0,-), ¢1,c2,c3 are positive gradient
step sizes for each iteration, and 7 represents the current
iteration in the optimization process. Upon acquiring the
values for each Lagrange multiplier, we obtain f&! by taking

the first-order derivative of L with respect to f* and setting
the result to zero.

2) Communication resource Allocation: Derived from
P1.2.1, we can formulate the communication resource allo-
cation problem, considering the fixed f€(t), service caching
decision §(t) and task offloading decision A(t), as follows:

N
P1.2.2 : max log (1 + ¢ + l:l'"”:"t - lfl 18
ma3 nz::l g(1+¢) (18)
Zﬂt)\t 2N =W vVteT (18a)

(11a%(1lﬂ

Given that the allocation of bandwidth to the UDs has no
discernible impact on the energy consumption within the ES,
we proceed to migrate constraint (11d) to become constraint
(18a). It is evident that the optimization problem P1.2.2 is
convex. To address this problem, we still employ the primal-
dual Lagrangian method here. The Lagrangian function takes
the following form:

N
L'(B Zlog (14 ¢+ 1mamt b

=1
n(lt _ lmaz,t)}

Zﬁt AL (2= AL)b
s.t. (111‘)

where 9, ¢ denotes the Lagrangian multipliers. In accordance
with the Karush-Kuhn-Tucker (KKT) condition, it is imper-
ative that the following complementary slackness conditions
are met.

19)
-W)

AL (B(t),9,¢)/0B(t) = 0
9 (1, — 175 = 0
lt _ lmax,t < 0
Zn LBENE (2 = Aol
v > 0.

(20)
-W=0

By solving the aforementioned slackness conditions, we can
derive the optimal solution. The specific solution algorithm
for the whole resource allocation problem referred as CCRA
is shown in Algorithm 1.

B. Service Caching and Task Offloading Based on GA Method

In this subsection, we present a genetic algorithm which
is designed to provide efficient search directions. Firstly,
we encode the caching and offloading decisions, and then,
based on the optimized problem and constraints, we calculate
the fitness function for each candidate caching decision and
offloading decision through algorithm 1. Then individuals are
operated for crossover and mutation. Finally, the elite strategy
is implemented to select individuals based on their fitness
values. Specifically, the fitness of each individual can be

Algorithm 1: CCRA

Input:
0(t), A(t): the service caching/task offloading decision;
tol, toly, toly: the tolerance error;
Output:
B(t), f¢(t): the optimal communication/computation
resource allocation strategy;
1 Initialization:
2 Set feasible solutions for f°(¢) and B(¢) randomly;
34,5 +—0;

4 repeat
5 repeat
6 Update Lagrange multipliers 6,,(¢ + 1), (i + 1), and
w(i+ 1) by (17) based on B(t)(j), respectively;
7 Calculate f°(¢)(i + 1);
t— 1+ 1;

8

9 until |0, (i) — 0,(i — 1) < tol,

& |w(i) —w(i—1) < toly];

10 Calculate B(t)(j + 1) based on (20);

11 J—J+1

12 until |65 (5) — b5 (5 — 1) < toly| &
) = fet(— 1) < toly

13 Return B(t), f°(t)

(i) = (i — 1) < tol|

>

calculated as 25:1 St after determining the allocation of
computational and communication resources.

We try to seek a comprehensive solution that not only
reduces the average task completion time but also ensures
fairness among users in this paper. Accordingly, the joint
optimization problem can be solved by GACORA outlined

in Algorithm 2.

Algorithm 2: GACORA

Input:

itermaz: the maximun itreation number;

P: the original population;

7 the population size;

Output:

0(t), A(t): the optimal service caching/task offloading
decision;

B(t), f°(t): the optimal communication/computation
resource allocation strategy;

1 iter +— O;

2 while iter < itermaz do

3 Obtain optimal resource allocation decision for each
individual by calling Algorithm 1;

4 Calculate the fitness for each individual in P;

5 Obtain offspring candidate population P’ by crossover
and mutation operations on P;

6 Calculate the fitness values for individuals in P’;

7 Construct new population P from previous P and P’ by
adopting the elite preservation strategy;

iter <— iter + 1;

end while
return §(¢), A(t), B(t), f°(t)

—
S e ®

V. SIMULATION RESULTS

In this section, the effectiveness of our proposed GACORA
s systematically evaluated through extensive simulations in

—-

the dynamic scenarios with multiple user devices.

A. Comparison Algorithms

The comparative evaluation is conducted to assess the
performance of the GACORA algorithm against the following
four alternative approaches.

1) PC+CCRA: The service caching scheme is obtained
based on the popularity (i.e. the requested number), and
the CCRA algorithm is used to allocate communication
and computational resources.

2) WC+CCRA: The algorithm utilizes GA approach and
CCRA method, only without the assistance of cloud
platform.

3) PC only: In adherence to the popularity of services,
caching is performed on the edge server that uniformly
allocates its communication and computational resources
to each task offloaded to it.

4) LP only: All tasks are handled through local processing.

The assessment of the performance of these methods en-
compasses several crucial aspects, which are evaluated based
on the following performance metrics: 1) average user satis-
faction calculated according to (21); 2) average task latency
as shown (22); 3) task completion rate in (23), where I(-) is
an indicator function; 4) the fairness between generated tasks,
calculated according to (25).

T N
AS = Zt:l Zn:l S’fl

TN 1)
T N t
AL = % (22)
T N]
I lmax,t _ lt >0
CR = Zt:l Zn:l ;;LV n =) (23)
fa, = max(log (1 + ¢ + (l?‘””t — Lf,)/l:?‘lc”’t), 0) (249
T ZN: fan\2
1 (fan — =25"—)
TF = — Z = (25)
T ~ N -1

20 25 30 0 a5 50 20 25 30 0 s 50

35 35
Task Number Task Number

(a) Average user satisfaction (b) Average task latency

45

B S S—

20 25 30 35 0 s 50 20 25 30 35 0 s 50
Task Number

(c) Task completion rate (d) Task fairness
Fig. 1. Performance evaluation of the GACORA

In this section, we will illustrate the impact of different
user quantities on the aforementioned four metrics. From
Fig. 1 (a), it becomes evident that as the number of UEs
increases, the average user satisfaction begins to decline. This
phenomenon can be attributed to the intensified competition
for available computational and communication resources on
the edge server as the user count rises. Consequently, the
benefits users gain from offloading their computation tasks
to the edge server decrease.

Fig. 1 (b) displays the average response time of various
methods in our proposed cloud-edge system for different
numbers of user devices. It is obvious that as the number
of users increases, the average response time tends to rise for
nearly all methods. However, our proposed method exhibits
the most favorable average response time across different
quantities of user devices.

In Fig. 1 (c), we can observe that as the number of tasks
increases, all the methods except GACORA reveal fluctuation
in task completion rate, and our proposed GACORA method
obviously has the best performance, when the number of tasks
is around 20-50, GACORA can nearly guarantee a hundred
per cent completion rate of the tasks. This is because when
computational resources are scarce, the CCRA algorithm can
achieve a higher task completion rate by choosing appropriate
scheduling decisions to achieve a balance between tasks. Com-
paring PC+CCRA with PC only, although both of them have
same servicing caching and task offloading policy, without the
help of CCRA method, which lacks the reasonable allocation
of resources at the edge, the task completion rate of PC only
method decreases from %11.5 to %36.3 compared with that
of PC+CCRA method.

Fig. 1 (d) illustrates the fairness among users for differ-
ent algorithms under varying task quantities, represented by
variance. Therefore, smaller numerical values represent better
method performance in terms of user fairness. From the graph,
it is evident that the superiority of the GACORA algorithm
remains pronounced. In the other algorithms, the differences
in task completion times among users within the same group
dramatically increase with the growth of user numbers, leading
to inadequate fairness among multiple users.

VI. CONCLUSION

We proposed a two-level GA-based iterative approach to
joint optimize cache decision, computation offload decision
and resource allocation in dynamically changing cloud-edge
scenarios. This method utilizes a Genetic Algorithm to select
caching and offloading decisions. Based on the given caching
and offloading decisions, we formulate the resource allocation
problem as a convex optimization problem and iteratively
find the optimal resource allocation solution. Compared to
many baseline methods, this approach exhibits significant
improvements in terms of average user satisfaction, average
response time, task completion rate, and fairness among users.
This study only considers a scenario with a single ES for of-
floading. In future work, we intend to explore service caching
and computation offloading in scenarios with multiple ESs

to address more complex situations, meeting the increasing
demands of mobile data traffic and intelligent applications.

ACKNOWLEDGEMENT

This work is supported by the National Natural Sci-
ence Foundation of China under Grant Number 62071327,
62271486 and 62071470. Shuo Xiao and Huaming Wu are
the corresponding authors.

REFERENCES

[11 Y. Wu, H.-N. Dai, H. Wang, Z. Xiong, and S. Guo, “A survey of
intelligent network slicing management for industrial iot: Integrated
approaches for smart transportation, smart energy, and smart factory,”
IEEE Communications Surveys & Tutorials, vol. 24, no. 2, pp. 1175—
1211, 2022.

[2] C. Tang, H. Wu, R. Li, C. Zhu, and J. J. P. C. Rodrigues, “A systematic
exploration of edge computing-enabled metaverse,” IEEE Network, pp.
1-1, 2023.

[3] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading
for mobile edge computing in dense networks,” in 20/8 IEEE Confer-
ence on Computer Communications, INFOCOM 2018, Honolulu, HI,
USA, April 16-19, 2018. 1IEEE, 2018, pp. 207-215.

[4] Y. Wu, H.-N. Dai, and H. Wang, “Convergence of blockchain and edge
computing for secure and scalable iiot critical infrastructures in industry
4.0, IEEE Internet of Things Journal, vol. 8, no. 4, pp. 2300-2317,
2021.

[5] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Commun. Surv. Tutorials,
vol. 19, no. 3, pp. 1628-1656, 2017.

[6] C. Tang, W. Chen, C. Zhu, Q. Li, and H. Chen, “When cache meets
vehicular edge computing: Architecture, key issues, and challenges,”
IEEE Wirel. Commun., vol. 29, no. 4, pp. 56-62, 2022.

[71 J. Zhang, Y. Wu, G. Min, and K. Li, “Neural network-based game theory
for scalable offloading in vehicular edge computing: A transfer learning
approach,” IEEE Transactions on Intelligent Transportation Systems, pp.
1-14, 2024.

[8] Y. Gong, K. Bian, F. Hao, Y. Sun, and Y. Wu, “Dependent tasks
offloading in mobile edge computing: A multi-objective evolutionary
optimization strategy,” Future Generation Computer Systems, vol. 148,
pp. 314-325, 2023.

[9] T. M. Ho and K. Nguyen, “Joint server selection, cooperative offloading
and handover in multi-access edge computing wireless network: A deep
reinforcement learning approach,” IEEE Trans. Mob. Comput., vol. 21,
no. 7, pp. 2421-2435, 2022.

[10] X. Deng, J. Zhang, H. Zhang, and P. Jiang, “Deep-reinforcement-
learning-based resource allocation for cloud gaming via edge comput-
ing,” IEEE Internet Things J., vol. 10, no. 6, March 15, pp. 5364-5377,
2023.

[11] P. Parastar, F. Pakdaman, and M. R. Hashemi, “FRAME-SDN: a fair
resource allocation for multiplayer edge-based cloud gaming in SDN,”
in Proceedings of the 25th ACM Workshop on Packet Video. ACM,
2020, pp. 21-27.

[12] C. Tang, C. Zhu, H. Wu, Q. Li, and J. J. P. C. Rodrigues, “Toward
response time minimization considering energy consumption in caching-
assisted vehicular edge computing,” IEEE Internet Things J., vol. 9,
no. 7, pp. 5051-5064, 2022.

[13] H. Zhou, K. Jiang, X. Liu, X. Li, and V. C. M. Leung, “Deep
reinforcement learning for energy-efficient computation offloading in
mobile-edge computing,” IEEE Internet Things J., vol. 9, no. 2, pp.
1517-1530, 2022.

[14] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint load balancing and
offloading in vehicular edge computing and networks,” IEEE Internet
Things J., vol. 6, no. 3, pp. 4377-4387, 2019.

[15] Z. Chen, W. Yi, A. S. Alam, and A. Nallanathan, “Dynamic task
software caching-assisted computation offloading for multi-access edge
computing,” IEEE Trans. Commun., vol. 70, no. 10, pp. 6950-6965,
2022.

[16] X.Li, Y. Qin,J. Huo, and W. Huangfu, “Heuristically assisted multiagent
rl-based framework for computation offloading and resource allocation
of mobile-edge computing,” [EEE Internet Things J., vol. 10, no. 17,
pp. 15477-15487, 2023.

