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Abstract—In centralized mobile crowd sensing (MCS), the
cloud platform assigns all the tasks to participants every time.
Since the cloud platform consumes a lot of computing and
communication resources to provide services for participants,
it will bring about high communication delay and request con-
gestion. The cloud-edge-end architecture for service provisioning
has aroused extensive attention recently, owing to its advantages
in resource provisioning in close proximity to the resource
requestors. Despite the advantages of this architecture, we also
observe that it cannot dynamically adjust the allocation scheme
when the corresponding computing services are not available to
the participants after the initial task allocation. To address this
issue, we put forward a re-schedulable task allocation approach in
the cloud-edge-end architecture. We aim to improve the efficiency
of task execution such as the maximization of task completion
rate, while considering service types provided by edge servers
and multiple constraints such as resource balancing on the
edge servers and deadlines for the task responses. An improved
Grey Wolf Optimization (GWO) algorithm is adopted for task
rescheduling in this paper. Simulation results indicate that the
proposed algorithm performs well in terms of task completion
rates and task average response time.

Index Terms—Mobile Crowd Sensing, Cloud-Edge-End Coop-
erative, Multi-Tasks Allocation, Task Rescheduling

I. INTRODUCTION

Mobile Crowd Sensing (MCS) combines the advantages of
crowd sourcing with mobile sensing, collects and processes
data from itself or the surrounding environment through smart
devices, and applies these data processing results to various
fields [1]. In recent years, MCS can quickly and intelligently
collect and process a large amount of valuable data, which
has the advantages of lower cost of collecting data and larger
data coverage. Therefore, MCS has been widely used in
environmental monitoring [2], intelligent transportation [3],
noise detection [4], intelligent medical treatment [5] and other
fields.

In MCS, due to the explosive growth of the number
of intelligent devices, the scale of MCS task expands, the
amount of data and computing demand multiply, which leads
to the consumption of a large number of computing and
communication resources when the cloud platform provides
computing services for participants, resulting in large com-
munication delay and request congestion, and reducing the

system efficiency [6] [7]. Therefore, by combining the cloud-
edge-end cooperative architecture in MCS, the edge server has
enough computing resources to provide computing services
to participants in a timely manner, which effectively reduces
communication delay and alleviates request congestion, and
improves the quality of service [8]. In the cloud-edge-end
cooperative MCS (CMCS), the cloud platform sends different
computing models to different edge servers nearby to provide
corresponding computing services for participants, so as to
respond to the service requests of participants in a timely
manner and effectively alleviate the pressure of computing and
communication.

Most of the existing research on CMCS task allocation
considers the way of one-time task allocation. When faced
with the situation that participants cannot obtain computing
services, CMCS cannot adjust the task allocation scheme, thus
affecting the quality of task completion. Therefore, this paper
constructs the task allocation method for rescheduling tasks
in CMCS. Specifically, the contributions of this paper are
threefold, given below:

• Different from traditional MCS task allocation, this paper
considers the situation that participants cannot obtain the
computing services required to complete the task, and
reallocates the task through the edge server to ensure
that participants can obtain the corresponding computing
services when performing the task.

• In this paper, we consider the service type of edge
server, take maximizing task completion rate as the
optimization goal, and take edge server resource balance
and task average response time as constraints, construct
a resource evaluation model, and propose an Improved
Grey Wolf Optimization Algorithm for Task Reschedul-
ing (IGWOTR).

• Extensive simulations are conducted to validate the effec-
tiveness of our approach. Simulation results demonstrate
that our method can achieve improved scheme in opti-
mizing task allocations compared to existing strategies.

The rest of the paper is organized as follows. Section II
presents the related work in MCS research field. Section



III presents the CMCS model and the resource assessment
model. In Section IV presents the programming of IGWOTR.
In Section V verify the effectiveness of IGWOTR through
simulation experiments. Finally, Section VI concludes this
paper.

II. RELATED WORKS

Wang et al. [9] address task allocation in MCS by construct-
ing a social relationship network through integrated multi-view
social relationship inference to ensure the accuracy of task
recommendations. Zhao et al. [10] introduce an innovative
MUDBP prediction method based on multi-view and social
network group behavior, resolving the issue of increased
decision costs for participants due to information overload.
Gao et al. [11] propose an automated data collection solution
using unmanned aerial vehicles equipped with various sensors
to complement manual data collection. Wang et al. [12]
leverage a knowledge graph built on the characteristics of
sensing users and sensing tasks to mine deep-link relationships
between sensing participants and sensing tasks, selecting high-
quality sensing users that meet task requirements. Wu et al.
[13] present a method for direct collaboration in sensing data
acquisition between mobile nodes, decomposing sensing tasks
and allocating them to adjacent nodes.

Currently, these studies have shown their advantages in
addressing the issues of task allocation in MCS to a great
extent. However, with the expansion of task scale, the amount
of data and computing requirements doubling, these researches
are difficult to meet the current development needs of MCS in
saving system resources, reducing system delay and improving
system efficiency.

Li et al. [14] introduced edge servers into MCS to facilitate
task allocation and user privacy protection. Xiang et al. [15]
integrated edge servers into the MCS system and proposed an
analytical framework for assessing the relationship between
task quality and cost in an edge computing-based MCS system.
Li et al. [16] presented a location privacy protection scheme
for MCS in an edge environment. Although these studies
introduce edge servers into the MCS system to alleviate the
computing and communication pressure of MCS, they are all
one-time task allocation and cannot make adjustments to the
task allocation scheme.

In view of the existing research is difficult to satisfy the
current mobile group of mental perception to save system
resources, reduce system latency and improve the system
efficiency development needs, and cannot make adjustment
to the task allocation scheme. This paper combines the cloud-
edge-end architecture in MCS and builds the CMCS system
framework. By introducing edge servers to provide relevant
computing services to participants, the pressure on computing
and communication of cloud platform in CMCS is alleviated.
In addition, under the framework of CMCS system, this paper
proposes a task allocation method of rescheduling tasks to
solve the problem that CMCS system cannot adjust the task
allocation scheme.

III. SYSTEM MODEL

The cloud platform consists of a task set W =
{w1, w2, . . . , wN}, where N is the number of tasks, an edge
server set S = {s1, s2, . . . , sK} where K is the number of
edge servers, and a participant set U =

{
U1, U2, . . . , UK

}
,

where Uk represents the set of participants managed by
edge server sk, denoted as Uk =

{
uk
1 , u

k
2 , . . . , u

k
m

}
. De-

note the task wn by a tuple of six parameters, i.e., wn =
(Ln, T yn, Rcn, Tn, Tdn, Dn), where Ln is the task location,
Tyn is the requested service type, Rcn is the resource
call for, Tn is the scheduling times, Tdn is the scheduling
dead time and Dn is the amount of task data. Denote the
edge server sk by a tuple of seven parameters, i.e., sk =
(Lk, v, U

k, Rpk, Stk, Qsk, Qrk), where Lk is the location of
the edge server, v is the speed of data transfer between edge
servers, Uk is the participant set, Rpk is the edge server
resources, Stk is the service type, Qsk is the queue to be
scheduled and Qsk is the request queue. Denote the edge
server uk

m by a tuple of two parameters, i.e., uk
m = (Lm,Wm),

where Lm is the participant’s location and Wm is the partici-
pant’s task set.

A. Cloud-Edge-End Cooperative MCS Architecture

In this paper, the design of CMCS architecture as shown in
Fig. 1. The architecture consists of task initiators, the cloud
platform, edge servers, and task participants. Firstly, the task
initiator is responsible for submitting the task requirements
into the CMSC system. Secondly, the cloud platform sends
the computing model to the edge server and generates the
global distribution information table of the model, and assigns
tasks to participants through the edge server. Then, participants
request the edge server to provide computing services after
the data collection is completed. When the edge server cannot
provide computing services for participants, the task is reallo-
cated to let other edge servers provide computing services for
the task. Finally, when the participants completed the task, the
cloud platform normalized the task results into available data
and returned them to the task initiator.
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Fig. 1. Cloud-edge-end cooperative MCS architecture.



B. Resource Assessment Model

Edge servers need to provide services for tasks, and balanc-
ing the load of edge servers can make the system respond to
more requests at the same time and be more efficient. This
paper primarily considers CPU frequency (f ), the number
of CPU cores (c), GPU throughput (v), available running
memory (h) and available storage memory (q). Grey Relation
Analysis is used to construct the resource assessment model.
The specific process is as follows:

Data processing: Construct a decision matrix B = (bij)n×5,
where each column represents an evaluation index, and each
row represents a sample to be evaluated:

B =


f1 c1 v1 h1 q1
f2 c2 v2 h2 q2
...

...
...

...
...

fn cn vn hn qn

 (1)

We adopt the Z-score standardization method to transform the
matrix B = (bij)n×5 into the matrix Z = (zij)n×5:

zij =
bij√
n∑

i=1

bij
2

(2)

Therefore, the standardized matrix Z is computed as follows:

Z =


z11 z12 z13 z14 z15
z21 z22 z23 z24 z25

...
...

...
...

...
zn1 zn2 zn3 zn4 zn5

 (3)

Constructing Virtual Samples: The optimal value corre-
sponding to each index is taken to construct the virtual sample
Y :

Y = [y1, y2, y3, y4, y5] (4)

where
yj = max

(
z1j , z2j , · · · , znj

)
(5)

Calculate the correlation coefficient: The difference matrix
be denoted as K:

K =


|z11 − y1| |z12 − y2| · · · |z15 − y5|
|z21 − y1| |z22 − y2| · · · |z25 − y5|

...
...

...
...

|zn1 − y1| |zn2 − y2| · · · |zn5 − y5|

 (6)

Therefore, the correlation coefficients µ and φ are calculated
as follows:

µ = min
i

min
j
|kij | (7)

φ = max
i

max
j
|kij | (8)

Calculate indicator correlation: Taking ρ = 0.5:

ξij =
µ+ ρ× φ

|kij |+ ρ× φ
(9)

Therefore, the grey correlation degree of the ith object, that
is, which is the evaluation Qi:

Qi =

5∑
j=1

θj× ξij (10)

where θj represents the weight of indicator j.
Resource State Assessment: The edge server sk uses the

computing resource evaluation model to evaluate its own
computing resource status:

Rpk = Qk (11)

The computational resource requirements of the tasks are
evaluated to obtain Rcn:

Rcn = Qn (12)

C. Problem Formulation

IGWOTR takes the edge server service type into consid-
eration, and takes the Task Completion Rate (TCR) as the
optimization objective under the constraint of edge server
resource balance and task average response time. The response
time Tn of the task is the sum of the time taken for task
forwarding and the time for task queuing to get the response,
as follows:

Tn =
Dn × |Lk − Li|

v
+

|Qri|∑
j=1

Rcj
Rpi

(13)

where i is the target edge server si, ∀i ∈ K, and j is the
jth task in Qri of the target edge server si. The TCR is as
follows:

TCR = 1−

K∑
k=1

|Qsk|

N
(14)

where |Qsk| is the number of tasks in the set of sk tasks to be
scheduled at the edge server. Based on these descriptions, the
optimization problem in this paper is formulated as below:

max TCR

s.t. Tyn ⊆ Stk ∀n ∈ N, ∀k ∈ K (15)

Tn ≤ Tdn ∀n ∈ N (16)

where the max TCR is taken as the optimization objective.
The constraint (15) ensures that the requested service type Tyn
of wn is among the service types Stk that sk can provide.
The constraint (16) guarantees that the total response time Tn

should not exceed the deadline Tdn of wn.

IV. ALGORITHM DESIGN

A. Improved Grey Wolf Optimization algorithm

GWO has the advantages of strong convergence perfor-
mance, adaptively adjusted convergence factor and information
feedback mechanism. Therefore, GWO is selected for task
rescheduling and combined with particle swarm optimization
algorithm to improve GWO. The strategy of nonlinear ad-
justment of convergence factor a is proposed by using the



linear differential decreasing strategy of inertia weight, and ω
is allowed to update its position according to its own optimum
and the global optimum. The position updating model is shown
in Fig. 2. The main process of IGWO is as follows:
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Fig. 2. Improved Grey Wolf Optimizer location update model.

Tracking the prey: In this stage, a mathematical model is
built by calculating the distance between prey and wolf, as
follows:

Dis = |C ×Xp(t)−X(t)| (17)

where Dis represents the calculated distance between prey and
grey wolf, X(t) represents the position of the gray Wolf at a
given time interval t, and Xp(t) represents the position of the
prey at a given time interval t. C is a constant coefficient, as
follows:

C = 2× r1 (18)

where r1 is a random number in the range [0, 1].
Encircling the prey until it stops moving: In this stage, the

α, β, and δ to detect prey, while ω according to the equation
with the interval change position t+ 1, as follows:

X (t+ 1) = Xp(t)−Dis×A (19)

where A is a coefficient constant whose value is affected by
a, as follows:

A = 2× a× r2 − a (20)

where r2 is a random number in the range [0, 1]. According
to the linear differential decline strategy of inertia weight, a
strategy of nonlinear adjustment of convergence factor a is
proposed, as follows:

a = amax − (amax − amin)×
t2

t2max

(21)

where t denotes the current iteration, tmax denotes the max-
imum iteration, and amax and amin are the initial and final
values of a, respectively. In the initial iteration, a changes
slowly, which is conducive to finding the local optimal value
that meets the conditions in the initial iteration. When the
number of iterations is close to the maximum, a changes faster,

and quickly converges to the global optimal value after finding
the local optimal value.

Chasing down the prey: In this stage, α, β, and δ are used to
guide the movement of ω so as to achieve global optimization.
Update the positions of all grey wolves using the positions Xα,
Xβ , and Xδ of α, β, and δ, as follows:X1 = Xα −A1 × |C1 ×Xα −X|

X2 = Xβ −A2 × |C2 ×Xβ −X|
X3 = Xδ −A3 × |C3 ×Xδ −X|

(22)

where Xα, Xβ , and Xδ represent the current positions of the
three wolves, X represents the current position of the grey
wolf, and X1, X2, and X3 represent the positions that ω
individuals need to adjust under the influence of α, β, and
δ, respectively. Combined with Particle Swarm Optimization
algorithm, ω individuals are allowed to learn from the global
optimal position and individual historical optimal position at
the same time, as follows:

H = c1 × (Xbest −X(t)) + c2 × (X1 −X(t)) (23)

where H is the learning result of ω.

X (t+ 1) = η × X1 +X2 +X3

3
+H (24)

where Xbest and X1 are the individual historical best position
and the global best position, respectively. c1 and c2 are
the individual learning factor and the global learning factor,
respectively. η is the inertia weight, as follows:

η = ηmin + (ηmax − ηmin)×
tmax − t

tmax
(25)

where ηmin is the final inertia weight and ηmax is the initial
inertia weight.

Attacking the prey: When the value of a is large, the grey
wolf will move away from the prey, hoping to find a more
suitable prey, thus prompting the wolves to search globally. If
the value of a is small, the grey wolf will move closer to the
prey, prompting the wolves to search locally.

B. Improved Gray Wolf Optimization algorithm for Task
Rescheduling

In the rescheduling process, in order to avoid the increase
of task delay, the edge server generates two queues for tasks:
one is the task service request queue, and the other is the
task scheduling request queue. When the edge server cannot
provide corresponding computing services for participants, the
task is rescheduled through the cloud platform. In this paper,
the resource utilization load (sk) of the edge server is used as
the resource load index, as follows:

load (sk) =

|Qrk|∑
i=1

Rci

|Qrk| ×Rpk
(26)

where |Qrk| is the number of tasks allocated to the edge server
sk, and Rci is the resource requirement of the ith service
request task allocated to the edge server sk.



Firstly, calculate the resource utilization load (sk) of all
edge servers. Then, the initial population was generated for the
criterion of selecting the edge server with the lowest resource
utilization load (sk) among the edge servers that could provide
the required computing services for the task. Finally, IGWOTR
was used to select the optimal task allocation scheme. The
proposed algorithm is shown in Alg. 1.

Algorithm 1 Improved Gray Wolf Optimization algorithm for
Task Rescheduling

1: Input: S = {s1, s2, . . . , sk}, population size G, a, tmax,
C, A.

2: Output: Task rescheduling allocation scheme Xα.
3: Initialize: Rpk, Rcn, load (sk), The location of all the

wolves.
4: for b← 1 to G do
5: Calculate the TCR for each gray wolf.
6: end for
7: The best three grey wolves are selected as Xα, Xβ , Xδ .
8: for t← 1 to tmax do
9: Update the position of each gray wolf.

10: Calculate the TCR for each gray wolf.
11: Update Xα, Xβ , Xδ .
12: Update C, A, a.
13: end for

V. SIMULATION EXPERIMENTS

A. Experimental Setup

This paper uses random data sets and the T-Drive Taxi
Trajectories (T-Drive) dataset generated by the Microsoft T-
Drive project to collect the trajectory data of more than ten
thousand taxis in Beijing for a week. This paper mainly verifies
the performance of IGWOTR in two aspects of TCR and task
average response time (TAT) under different task sizes and
edge server sizes. In this paper, three algorithms including Ge-
netic Algorithm (GA), Simulated Annealing Algorithm (SA)
and Tabu Search Algorithm (TS) are selected for comparative
experiments with IGWOTR. GA is a stochastic global search
optimization method, which can obtain high-quality solutions
through random selection, crossover and mutation operations.
SA is a stochastic optimization algorithm based on Monte-
Carlo iterative solution strategy. TS is a global neighborhood
search algorithm for global stepwise optimization. The main
parameter ranges are shown in Table. I.

B. Analysis of Experimental Results

1) Task Completion Rate: This section mainly analyzes the
performance of different algorithms in terms of TCR under
different task sizes and edge server sizes.

Fig. 3 shows the variation of the corresponding TCR under
different task sizes using random datasets and T-Drive. It can
be seen that the change trend of TCR is basically the same, and
they all decrease with the increase of task sizes. Because under
the premise of the same number of edge servers is unchanged,
with the increase of the number of tasks, the task service

TABLE I
RANGES OF MAIN PARAMETERS

Parameters Range
Number of users 50
Number of tasks [60,100]

Number of edge servers [6,10]
Population size G 30

Maximum number of iterations tmax 1000
amax 2
amin 0
c1,c2 0.5

request queue and task scheduling request queue of each edge
server also increase, so that the task scheduling time increases,
and the TCR decreases.

Fig. 3. TCR for different task sizes.

Fig. 4 shows the variation of the corresponding TCR under
different task sizes using random datasets and T-Drive. It can
be seen that the change trend of TCR under different edge
server sizes is basically the same, and they all increase with
the increase of edge server sizes. Because under the premise
of the number of tasks is unchanged, with the increase of the
number of edge servers, the task service request queue and
task scheduling request queue of each edge server are reduced,
and the tasks can be responded in time, so that the TCR is
increased.

Fig. 4. TCR for different edge server sizes.

2) Task average response time: This section mainly ana-
lyzes the performance of different algorithms in terms of TAT
under different task sizes and edge server sizes.

Fig. 5 shows the variation of the corresponding TAT under
different task sizes using random datasets and T-Drive. It can
be seen that the change trend of TAT is basically the same, and
they all increase with the increase of task sizes. Because under
the premise that the number of edge servers is unchanged, with
the increase of the number of tasks, the task request scheduling



queue length of each edge server also increases, so that the
TAT increases.

Fig. 5. TAT for different task sizes.

Fig. 6 shows the variation of the corresponding TAT under
different edge server sizes using random datasets and T-Drive.
It can be seen that the change trend of the TAT is basically
the same, and it decreases with the increase of the scale of
edge servers. Because under the premise of the same number
of tasks, with the increase of the number of edge servers,
the task service request queue and task scheduling request
queue of each edge server are reduced, so that the tasks can
be responded in time.

Fig. 6. TAT for different edge server sizes.

3) Analysis: In summary, the proposed IGWOTR is 1.57%,
2.02% and 1.26% higher than GA, SA and TS in TCR,
and 40.56%, 34.88% and 25.58% lower than GA, SA and
TS in TAT, respectively. The reason for IGWOTR’s good
performance is that IGWOTR combines the advantages of
cloud-edge-end architecture, uses the cloud platform to re-
lease the global task scheduling scheme, and then uses the
cooperation between edge servers to quickly reschedule tasks.
In addition, IGWOTR has strong global search ability and
updates the position according to its own optimum and the
global optimum by improving the convergence factor a, so
that the task can obtain the requested computing service in
time, so that IGWOTR can further optimize the task allocation
results quickly and accurately.

VI. CONCLUSION

In this paper, aiming at the task allocation problem of
MCS combined with cloud-edge-end cooperative, considering
the task rescheduling after the completion of the first task
allocation, a task allocation strategy based on task rescheduling
is proposed. The simulation results show that the proposed
IGWOTR has a significant optimization effect on the first allo-
cation results of tasks, and the TCR and TAT are significantly

improved. In future research work, the energy consumption
during task rescheduling will be further studied to optimize
the energy consumption during rescheduling.
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