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ABSTRACT

With the increasing Quality of Service (QoS)
requirements of the Internet of Things (loT),
Mobile Edge Computing (MEC) has undoubtedly
become a new paradigm for locating various
resources in the proximity of User Equipment (UE)
to alleviate the workload of backbone loT net-
works. Deep Reinforcement Learning (DRL) has
gained widespread popularity as a preferred meth-
odology, primarily due to its capability to guide
each User Equipment (UE) in making appropriate
decisions within dynamic environments. However,
traditional DRL algorithms cannot fully exploit the
relationship between devices in the MEC graph.
Here, we point out two typical loT scenarios, i.e.,
task offloading decision-making when dependent
tasks in resource-constrained Edge Servers (ESs)
are generated in UEs and orchestration of cross-
ESs distributed service, where the system cost is
minimized by orchestrating hierarchical networks.
To further enhance the performance of DRL,
Graph Neural Networks (GNNs) and their vari-
ants provide promising generalization ability to
wide loT scenarios. We accordingly give concrete
solutions for the above two typical scenarios,
namely, Graph Neural Networks-Proximal Policy
Optimization (GNNPPO) and Graph Neural Net-
works-Meta Reinforcement Learning (GNN-MRL),
which combine GNN with a popular Actor-Critic
scheme and newly developed MRL. Finally, we
point out four worthwhile research directions for
exploring GNN and DRL for Al-empowered MEC
environments.

INTRODUCTION

Along with the rapid development of the Inter-
net of Things (loT), it becomes evident that
three pivotal metrics are experiencing remark-
able growth: the proliferation of smart services
(such as immersive video analysis and the flow
of extensive health data), the surge in connec
tions (including millions of demands between UEs
and APs), and the exponential growth in mobile
data traffic (encompassing data from vehicles and
drones [1]. Therefore, computational resources
and data from them are increasingly sinking to
the edge of the network. This shift has led to a
heightened demand for Quality of Service (QoS)
that can no longer be adequately fulfilled solely

through centralized cloud computing. In recent

years, to fill the gap between centralized clouds

and loT devices, Mobile Edge Computing (MEC)
has become an important technology for

loT scenarios due to its ability to achieve high
QoS with low energy consumption in a distrib-
uted manner. Especially for compute-intensive and
delay-sensitive applications, the MEC paradigm
allows such applications to run on multiple Edge
Servers (ESs) with less congestion [2]. Given the
proximity of ESs to UEs compared to CSs, they
provide significant advantages, including substan-
tially reduced delay and fast feedback through
processing procedures, making them an essential
component of loT systems.

Unfortunately, many current studies over-
look the dependencies inherent in MEC systems,
including those between tasks and communica-
tion among devices. This oversight frequently
leads to a compromise in Quality of Service
(QoS). In this paper, we address this gap by
exploring two types of graphstructured MEC sce-
narios within loTs that have impacts on academia,
industry, and daily life, as depicted in Fig. 1.

+ Task Offloading: As shown in Fig. 1(a),
numerous compute-intensive and delay-sen-
sitive tasks originating from different users
and equipment cannot be entirely processed
locally. Therefore, the effective utilization of
communication and computational resourc-
es can be achieved by making judicious off-
loading decisions during interactions with
the MEC environment [3]. However, there
are often obvious dependencies among
multiple tasks generated by users and equip-
ment. In other words, certain tasks can only
be executed after the completion of specific
prerequisite tasks. For instance, a face rec
ognition application entails three sequential
steps: face detection, face classification, and
face retrieval [4]. In this context, the classifi-
cation depends on the preceding detection,
which subsequently provides information for
retrieval from the database if required. We
have illustrated this concept using VR/AR.

* Resources Orchestration: As illustrated in
Fig. 1(b), the exponential expansion of the
scope of loT applications foresees a signif-
icant proliferation of connected devices
catering to diverse applications. Importantly,
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FIGURET Two typical graph scenarios in loT environments a) Task offloading. b) Resources allocation.

the constraint of low cost-efficiency has

emerged as a bottleneck, impeding the

achievement of agile, flexible, and costeffi-
cient resource orchestration within the MEC
ecosystem, encompassing various aspects.

The efficient orchestration of workloads

across converged edge platforms remains a

challenge, particularly for network functions

and multi-loT services with diverse computa-
tion requirements and distinct Service Level

Objectives (SLOs). Therefore, strategic cost

management plays a crucial role in ensuring

sustainable ESs’ services [5]. To illustrate, we
have used video analysis as an example.

There are many challenges in building MEC
networks, e.g., how to extract loT data from a
complex and highlyvarying environment. Unfor-
tunately, traditional heuristic methods such as
genetic algorithms and ant colony algorithms
cannot handle these scenarios immediately,
while dynamic programming methods and opti-
mization theories are usually trapped into local
optimization [2]. DRL, which combines the deci-
sion-making ability of reinforcement learning
with the perception ability of deep learning, is
regarded as the most promising methodology for
tackling this problem. However, relying solely on
DRL may not fulfill the necessity wherein certain
dependent tasks can only be executed after spe-
cific designated tasks have been completed [4].
Typically, the state programmed for DRL is usually
Euclidean data, which is commonly seen in images
and texts sorted like a grid. Undoubtedly, failing
to collect adequate graphical information can
weaken the performance of the overall algorithm,
since the degree of dependency can have a huge
influence on many goals. Instead, Graph Neural
Network (GNN) is very appropriate for these two
splitnew MEC environments, since it can extract
features of graph-like data while making decisions,
and then transfer the reduced intermediate data
to centralized cloud servers.

In this paper, two GNN-based architectures
are specifically designed for the aforementioned
typical graph-structured MEC scenarios. The main
contributions can be summarized as:

+ We propose a novel Graph Neural Net-
works-Proximal ~ Policy =~ Optimization

(GNN-PPO) framework to tackle the task

offloading decision-making problem, where
different UEs generate dependent tasks that
require offloading to various servers charac
terized by distinct topologies and task pro-
files to facilitate real-time computation.

We propose a novel Graph Neural Net-
works-Meta Reinforcement Learning (GNN-
MRL) framework aimed at orchestrating
distributed services across ESs to minimize
the overall system cost. In this framework,
ESs or UEs are connected as a graph in their
respective layers, allowing communication
between different layers.

Through simple experiments conducted
on task offloading scenarios, our meth-
ods employing bidirectional Graph Con-
volutional Network (GCN) and Global
Attention Pooling (GAP) demonstrate
superior performance compared to other
approaches, with lower average running
costs across varying node numbers, band-
widths, and CPU frequencies. Addition-
ally, the optimal convergence is achieved
when the number of layers in our model
is set to three.

In addition, we also discuss existing chal-
lenges and potential future research direc-
tions concerning the integration of GNN
and DRL for processing graphical structure
data in loT environments.

RELATED WORK

In this section, we initially provide a brief intro-
duction to the background of RL and GNN.
Subsequently, we conduct a comparative analysis
of various representative works, highlighting the
distinctions in the addressed problems and identi-
fying commonalities in the utilization of GNN and
RL. Table 1 identifies and compares key elements
of related works, encompassing scenarios, DRL
types, GNN types, and addressed problems.

REINFORCEMENT LEARNING AND GRAPH NFURAL NETWORK

Given its sequential decision-making nature,
the optimization challenges in MEC can be
effectively addressed using Reinforcement
Learning (RL), which effectively tackles NPhard
problems in dynamic and uncertain scenarios by
prioritizing the learning of optimal actions through
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Work Scenario DRL Types GNN Types Problem
[6] £0-CI Hierarchical GGS-NN RA

| EC system MAA2C G6CN RA

[8] MDC-network ~ MAPPO GCN/GAT RA

[9] EdgeloT A2 Graph Generation 10

[10] SOVN GraphSAGE DDPG TO/RA
[m MEC REINFORCE GCN/GAT 10

[12] CEU system PPO GAT 10

TABLE1. The qualitative comparison of the
current literature. TO and RA are short for
“task offloading” and “resource allocation,”
respectively.

interactions with the environment to maximize
expected rewards. DRL, coupled with the pow-
erful generalization capabilities of Deep Neural
Networks (DNNs), has found applications in
numerous loThased scenarios. A less explored
variant, Meta-Reinforcement Learning (MRL),
operates with two distinct “loops”. The outer
loop gradually adjusts the parameters of the meta
policy, maintained on the ESs, by accumulating
experiences across various contexts. This outer
loop also oversees the execution of the “inner
loop”, responsible for generating the initial model
for a specific task. The inner loop exhibits rapid
adaptability to new tasks through a small number
of gradient updates, enabling fast convergence.
The effectiveness of DRL and MRL has been
wellestablished across various domains. However,
certain scenarios involve explicit relationships
that can be naturally modeled as graphs, pos-
ing challenges beyond the capabilities of DRL or
MRL alone. GNNs have demonstrated superior
performance in handling machine learning tasks
involving graph-structured data. In contrast, meth-
ods like simple DRL and MRL, designed primarily
for Euclidean data, are not well-suited for the com-
plexities of emerging loT scenarios. Undoubtedly,
there is a clear need for specialized approaches
that can adeptly aggregate information from dif-
ferent agents in these graphbased scenarios.

INTEGRATION OF RL AND GNN IN RESOURCE ORCHESTRATION

Another scenario involves a distributed GNN
system, where researchers aim to construct a
framework for orchestrating resources across ESs
for optimal cost-effectiveness.

Li and Zhu [6] introduces HRLOrch, a hier-
archical RL model with a policy neural network
based on GNN principles, which is based on the
gated graph sequence neural network (GGS-NN),
effective in extracting features about a long node
sequence in graph-structured data. HRLOrch is
devised to minimize blocking probability by
orchestrating the allocation of IT resources in data
centers and spectrum resources on fiber links
within elastic optical data center interconnections
(EO-DCI). The hierarchical RL approach incor-
porates lowerlevel and upper-level models, finely
designed to enhance convergence performance
during training in sparse reward environments.
Wang et al. [7] presented a learning-based
approach to adapt to time-varying requests and

dynamic service prevalence within edge-cloud
systems. This approach involves a two-phase strat-
egy employing GCN-based multiagent advantage
actor-critic (MAA2C), which aims to enhance
individual intelligence, thereby facilitating opti-
mal dispatch and orchestration decisions in the
edge-cloud system(ECsystem). To conquer the
challenge of the dynamics and diversity of embed-
ding Service Function Chains (SFC) requests in
multi-datacenter (MDC) networks, a two-stage
GCN-assisted multi-agent PPO (MAPPO) scheme
was proposed in [8]. It mainly maximizes the
overall acceptance ratio of SFC requests while
minimizing the total cost in an MDC network. This
is achieved through an optimization of resource
orchestration, focusing on the efficient mapping
of SFCs onto the physical network infrastructure
in MDC scenarios.

INTEGRATION OF RL AND GNN IN TASK OFFLOADING

The mature integration of GNN and DRL pres-
ents a promising paradigm for decision-making in
task-offloading. Li et al. [9] explored the joint opti-
mization of task offloading and Unmanned Aerial
Vehicle (UAV) cruise control to minimize the task
dropping rate due to computational task cancella-
tion and offloading errors in harsh environments.
GNNs are developed to supervise the training
of real-time continuous actions of UAVs within
the Advantage Actor-Critic (A2C) framework.
Deng et al. [10] developed a novel software-de-
fined networking-based vehicular ad hoc network
(SDVN)-based system architecture characterized
by computation offloading with edge Distributed
Denial of Service (DDoS) attack mitigation. A
GNN-based collaborative DRL (GCDRL) model
to generate the resource provisioning and miti-
gating strategy, which evaluates the trust value
of the vehicles, formulates mitigation of edge
DDoS attacks and resource provisioning strat-
egies. GNNs are also used to extract vehicular
spatial and structural features of edge nodes,
respectively. Aiming to minimize the makespan of
a DAG task, Lee et al. [11] proposed a DRL-based
priority assignment model that leverages both
temporal and structural features within a Directed
Acycled Graph (DAG). The model effectively
learns a priority-based scheduling policy through
the use of GCN and policy gradient methods.
GCN is specifically employed to handle the com-
plex interdependent task structure To minimize
the makespan of user tasks in the Cloud-Edge-
User framework (CEU), Cao et al. [12] proposed
a DRL and Graph Attention Network (GAT)-based
scheme. This approach efficiently utilizes the
training process on a resourceful cloud to accom-
modate the numerous data and computation
resource requirements associated with the task.

Two TYPICAL GRAPH SCENARIOS IN 0T

In this section, we continue discussing the two
graphstructured scenarios in loT(Task Offloading
and Resource Allocation).

TASK OFFLOADING

In daily life or industrial production, many loT
devices generate interrelated offloading tasks,
however, these tasks cannot simply be performed
locally or in the Edge Servers(ESs) for real-time
computation. Fig. 1(a) shows AR/VR applications,
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UEs will generate decomposable jobs with dis-
tinct task profiles and dependencies, where child
tasks must wait for the completion of parent
tasks before they can be executed. For example,
to create augmented reality, digital content and
the visible nature world should be prepared in
advance. This is a simple analogy because it is
sure that there are many other steps in the pro-
cess of digital content and the visible natural
world, where the dependent tasks also stand. The
dependency information can be effectively mod-
eled as a DAG, where each task is viewed as a
node in the graph, and the dependency relation-
ships are represented by directed edges.

As shown in Fig. 2(a), the topology of the
generated DAGs is controlled by three param-
eters: task number, fat, and density. Specifically,
fat influences the width and height of the DAG,
while density determines the number of edges

High density

SN
AT O—D
o\ I ”

\
P
{

O

Low fat

Network slice for
Switch layer

Network slice for
UE layer

(b)

FIGURE 2. The illustration for two typical scenarios in loT. a) Features of generat-
ed DAGs. b) Information flow of cross-ESs distributed service.

between two levels of the DAG [4]. This is a
very quantitative way of describing granularity.
Each node is characterized by its size, represent-
ing specific features such as task size, maximum
latency, and the demand for various computa-
tional resources. Recently, it has been popular
among many researchers to combine features
extracted from tasks (modeled as DAGs) [9],
[11], [12] with certain state information embed-
ded into a Multi-Layer Perception (MLP), both
of which will serve as the input and backbone
of the DRL.

RESOURCE ALLOCATION

The pivotal strategy lies in orchestrating a net-
work’s entire resources. Network operators must
consistently upgrade their service provisioning
strategies to fully leverage the limited and distrib-
uted resources, including the spectral resources of
fiber links, IT services, and storage on ESs [6].

At various hierarchical levels, distributed
devices establish connections with each other. For
instance, ESs are interconnected, and their com-
munication can be represented as an undirected
symmetric graph. The top and bottom layer of Fig.
2(b) shows how both ESs and UEs form a data
graph. On one hand, ESs create an extensive edge
network in collaboration with a series of APs, such
as 5G base stations and loT gateways, to facilitate
data transportation. This data graph allows ESs to
effectively cover a range of UEs, enhancing net-
work coverage and service availability. On the
other hand, the connected APs can also form a
data graph, albeit not necessarily, allowing ESs to
cover a range of UEs.

When a query from the bottom layer(Appli-
cation Layer) is raised and obtained through the
AP layer, each ES first aggregates a subset of the
graph data via region-specific APs and computes
the embedding through a given GNN model. At
runtime, ESs are coordinated in a collaborative
manner, where they are committed to exchanging
necessary graph data with each other, executing
GNN computations individually in parallel, and
repeating this routine.

As is shown in Fig. 1(b), when new requests
for video analysis from APs arrive in ES layers, the
resource provisions according to the distributed
GNN structure will happen within the ESs layer.
To carry out the complete information flow from
the request, object detection, classification, action
detection, and behavior tracking are sequentially
performed by being sent among wirelessly con-
nected edge clouds, using information about
the requests by paralleling model execution and
exchanging data mutually. The key question is
how to choose the information route under the
maximization of the traffic cost and constraints on
some resources.

When the information flow is finished, the fin-
ished information will spread back from the last
ES, through the AP layer, and finally reach the
request UE.

SOLUTIONS
MorivaTioN

The integration of Deep Reinforcement Learn-
ing (DRL) and Graph Neural Networks (GNN)
is chosen to address the challenges discussed
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in the section “Two Typical Graph Scenarios in
loT” due to its inherent suitability. This combina-
tion is well-suited for the unique characteristics
and complexities presented by the discussed
scenarios.

First and foremost, these tasks necessitate opti-
mization for the long-term rewards by selecting
appropriate actions that adapt to evolving envi-
ronments. However, these environments are often
intricate and multifaceted. Consequently, research-
ers employ Deep Neural Networks (DNN) to
extract pertinent environmental features. How-
ever, DRL methods are traditionally well-suited
for Euclidean spaces, whereas the network state
in the aforementioned problems is inherently
graph-structured. Consequently, DNNs struggle to
effectively process graphstructured states, leading
to the loss of crucial information. For instance,
in the section “Task Offloading,” jobs consist of
interdependent tasks that form a DAG structure.
Similarly, in the section “Resource Allocation,” the
network state topology exhibits a graph structure.
Lastly, although seemingly straightforward, deter-
ministic heuristics fall short in making offloading
decisions or orchestrating resources adaptively
in response to the rapidly changing and intricate
non-Euclidean network states. This compelling
challenge motivates us to embrace the power
of Deep Graph Reinforcement Learning [6] as a
solution.

GNN-PPO For TASK OFFLOADING DECISION-MAKING

In the first scenario, each UE generates a unique
job for computation offloading. Typically, for
the graphical characteristics of a certain job, it
usually carries out binary offloading rather than
partial offloading. It’s important to emphasize
that the adoption of binary offloading can induce
changes in the features of the task environment.
For instance, it may lead to variations in the avail-
ability of computational resources during specific
time slots.

As displayed in Fig. 3, we take our proposed
scheme GNNPPO as an example to illustrate the
procedures. We assume that the local computing
ability is inaccessible and there exists only a sin-
gle UE within the entire system. At the beginning
of each time-slot t, we concatenate the state of
the MEC system S/ with the state of the current

decision-making job Sy to create a global state

for offloading actions and rewards based on the

customized objective function. In this network,
each individual GNN layer (comprising various

GNN variants) is employed to embed a specific

job, while MLP layers are utilized to generate

the embedding for the present MEC system. UEs
employ this global state for a policy network that
generates actions. The current state S; undergoes

a transition to the subsequent state S following

the action A,. It is important to note that we pri-

marily emphasize the state embedding process.

The state of the MEC environment solely depends

on features such as ESs’ capacity and energy lev-

els, as well as the computational requirements of
tasks.

To extract sufficient information, we embed
the MEC environment state and task information
to be decided, respectively.

* MEC Embedding: In each time slot, we
gather information from the MEC environ-
ment to make an offloading decision for the
current task. The MEC environment primar-
ily comprises ESs, and occasionally, cloud
servers as well. Taking ESs as an example,
crucial indicators for DRL in making offload-
ing decisions include whether the ES is con-
nected to the current UE, the availability of
CPU resources, available bandwidth, and
the distance between the current user and
the relevant servers. If the task is offloaded
to an MEC server, it is imperative to consid-
er Channel State Information (CSl), and the
current overall channel gain of the respec
tive ES is incorporated into the MEC envi-
ronment information. The features extracted
from both MEC servers and users are then
input into the MLP to learn the embedding
of the entire MEC environment.

+ Task Embedding: Taking into account the
dependencies among tasks, a GNN network
is used to confine the overall structure of
a job, facilitating the extraction of informa-
tion necessary for making offloading deci-
sions for each individual task. In essence,
the learned embedding through the GNN
can be regarded as the feature of the task,
eliminating the need for manual feature
engineering.
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GNN-MRL FoR ORCHESTRATION OF DISTRIBUTED CROSS-ESS
SER-VICE

For the second scenario, we characterize the
system costs in terms of the life cycle of dis-
tributed GNNs over ES tasks [13]. For ease
of presentation, concentrating the GNN pro-
cessing workload on inference, we specifically
highlight two types of graphs: i) the edge net-
work that hosts distributed model execution,
and ii) the data graph formed from the associ-
ated data of UEs, which feeds the GNN model
as the input graph.

Take Fig. 2(b) as an example, we represent the
control decisions as m(t) = x,(t) lve V,ie D,
These decisions orchestrate the operation of the
ES network 7 and the UE network G, determining
whether UE i is provisioned in ES v during time
slot t. It’s important to note that each UE is lim-
ited to selecting only one ES. Furthermore, ESs
collaborate by sharing their collected graph data,
thereby eliminating the need for data replication
and reducing storage overhead. This collaborative
approach optimizes data management within the
network.

Given control decisions, we decompose the
total cost incurred in the cross-ES system, includ-
ing the activating cost, data collection cost, GNN
computation cost and cross-ES routing cost. The
flow of a distributed ES system starts from collect-
ing data derived from distributed clients. Before
collecting data, a newly launched UE or ES will
activate some devices (e.g. launching a virtual
machine image), so there is an activating cost.
After these two steps, as we mentioned before,
computing the whole UE network through the
GNN model consists of aggregation and update
steps, so the cost consideration on GNN is of
great importance. To describe GNN processing,
in addition to computing GNN over their resident
graphs, we also need to consider the data trans-
ferred across ESs. What’s more, there are some
other costs, e.g., edge server maintenance cost
[13], cloud outsourcing cost [14], and operation
cost [15].

Given that different UEs generate various types
of data during different time slots, a one-size-fits-
all strategy for orchestration decisions that applies
to all UEs is insufficient. Therefore, we provide a
comprehensive description of the training process

for GNN-MRL in the distributed ESs system, as

depicted in Fig. 4.

+ Step 1: Each UE downloads the parameters
of the meta policy from the central server.

+ Step 2: An inner loop training is conducted
on every UE with the local experiences cap-
tured from both the whole network and the
meta policy to learn a tasks-specific policy.

+ Step 3: The UE uploads the parameters of
the taskspecific policy to the central server.

+ Step 4: The CS assembles the parameters
of task-specific policies and starts an outer
loop training to update the meta policy.

After completing these four steps, another
round of training will be started by the central
server.

PERFORMANCE EVALUATION

To validate the efficiency of our methods, we
carry out straightforward experiments for the
section “GNN-PPO for Task Offloading Deci-
sion-Making,” which illustrates GNN-PPO. It
becomes evident that, in scenarios where a job
comprises N tasks to be offloaded, with each task
offering M choices, the total action space expands
exponentially, reaching a scale of O(NM). In this
context, we focus on the simplest case, where
each task presents only two options: either local
computation or remote execution on a designated
edge server. It's important to note that this edge
server is accessible only when there are no ongo-
ing tasks currently utilizing its resources.

PARAMETERS SETUP

Our simulations were conducted on laptops
equipped with NVIDIA 4G GeForce RTX 3050
GPUs. Specifically, we set the number of task
points to 15, and we varied the “fat” (the width
of a Directed Acyclic Graph) and the “density”
(the dependency density) within the set {0.3,
0.4, 0.5, 0.6, 0.7, 0.8}. We configured the upload
and download bandwidth to 7 Mbps, while the
local and remote capable CPU resources were
set to 1 GHz and 10 GHz, respectively. The
size of data that needed to be processed and
received if executed remotely for each node was
randomly generated within the range [5, 50] KB.
In the GNN model depicted in Fig. 3, respon-
sible for generating the task embedding, our
model is constructed by incorporating both the

1.download the meta

Central Server policy parameters ¢

4.'Outer loop' training

Meta policy update : parameters 6 policy update
3.upload the meta Local

5 EI <::| Ei E policy parameters 6’ i data r

E | : 3 Decision-
: : . : : Making

2.'Inner loop' training

Meta policy task-specific

FIGURE 4. The framework of GNN-MRL.
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FIGURE 5. The GNN model. The bottom two rows are the bidirectional GCN module, where different GCN
components are utilized for the original graphs and reverse graphs, extracting two distinct sets of GCN
features. The top row represents the GAP module, where all node features are averaged to obtain
global features. These global features are then subtracted from each node’s feature, resulting in each
node’s new feature. Subsequently, we combine these three types of features as input for the Actor-Crit-

ic Network.

bidirectional GCN module and the GAP module,
as illustrated in Fig. 5.

Our model consists of three separate Graph
Convolution layers for the actor network and
critic network. The hidden size in our model is
set to 16, and the learning rate for the commonly
shared layer is always one-tenth of that for the
two separate layers, set at 0.001 . We trained
our model for 100 epochs with a batch size of
128 and a total data amount of 512. To facilitate
PPO, we employed Generalized Advantage Esti-
mation (GAE) with a discount factor of 0.95 and
a weighting factor of 0.99. The data resources can
be accessed here.!

REsuLTs Discussion

Our model’s performance evaluation focuses on
two key aspects: the training parameters of DRL
networks and the system parameters of MEC
environments. We measure performance pri-
marily through the running cost, defined as the
completion time of the last node within a given
job. Additionally, we assess the impact of DRL
network training parameters, including action
diversity evaluated through entropy loss, as shown
in Fig. 6(a). It is evident that the 3-layer GCN
outperforms the others in terms of both running
cost and entropy loss. This configuration exhib-
its faster convergence and a broader ability for

action exploration, making it the optimal choice.
In Fig. 6(b), we averaged the improvement effect
across different sample sizes compared to alterna-
tive methods, including Local (all tasks performed
locally), Remote (all tasks executed on the edge
server), Random, Round Robin, and Greedy.
Our method demonstrates improvements of
26.66%, 22.03%, 15.14%, 12.23%, and 7.97%,
respectively.

As shown in Fig. 7, regarding the node num-
bers, after averaging the improvement effects
across different node numbers, our GCN-based
method demonstrated average performance
improvements of 29.84%, 25.29%, 17.96%,
15.85%, and 8.74% when compared to Local,
Remote, Random, Round Robin, and Greedy
strategies, respectively. Similarly, for varying band-
width scenarios, our GCN-based method showed
the best average performance improvements.
Likewise, across different local CPU capabilities,
our GCN-based method delivered average per-
formance improvements of 27.57%, 23.31%,
16.78%, 14.10%, and 6.06% when compared
to Local, Remote, Random, Round Robin, and
Greedy, respectively.

CHALLENGES AND PROSPECTS OF GNN-BASED MEC

This section identifies the challenges prevent-
ing widespread adoption and suggests future

" https://github.com/link-
park/RLTaskOffloading
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bandwidth and local CPU resources on running cost.

directions of combined GNN-DRL frameworks in
MEC scenarios to unlock the combination’s full
potential.

LARGE GRAPH NETWORK LEARNING

In contrast to the contemporary large networks
found in the real world, most current studies focus
on small-scale networks, typically featuring fewer
than 100 nodes and 10,000 edges. However, sim-
ulating the topology of larger graph-structured
networks within these small-scale datasets proves
insufficient to meet the significant computing
demands.

The widely adopted divide-and-conquer
approach allows for the decomposition of any
extensive network into smaller, more manage-
able components. As a result, the availability
of local graph information becomes essential.
For instance, the process of graph partitioning

a) The influence of the number of job nodes on running cost. b) Influence of

effectively divides the ES and UE networks into
smaller ones, allowing for a more detailed focus
on their local structures. Batch sampling and
importance sampling play a vital role in captur-
ing the local structure, thereby contributing to
enhanced representation performance in loT net-
works. More importantly, the UE or ES in loT can
collaboratively act, rather than ignoring the inter-
ests of others, and they can also use partitioned
strategies to solve large graph problems. How-
ever, for some middle-scale graphs, it is uncertain
whether it is worthy of gaining narrow improve-
ment margins at the cost of the local information
burden incurred by these algorithms.

GENERALIZATION ACROSS PROBLEMS

Enhancing the generalization ability of DRL and
GNNs is one of the key research directions for
Al-empowered MEC, especially when DNNs are
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suffering from overfitting in the training environ-
ment. Meanwhile, there also exists the problem of
over-smoothing for GNNs.

Many methods have been proposed in the
recent literature, e.g., ResGCN and Edge Pooling,
which remains an edgecutting issue that con-
fuses graph-structured data and environments. A
potential research direction involves the develop-
ment of graph-based MRL frameworks for MEC,
where different UEs are matched to specific tasks
or environments based on their varying levels of
expertise, as facilitated by diverse applications.
For instance, in the case of task offloading deci-
sion-making, the number or density of tasks in
a job may be unpredictable for each time slot,
the computational resources of MEC may vary
from time to time, and even the availability of
certain resources may change over time. More
importantly, data augmentation techniques can be
utilized for graph-structured scenarios if UEs can
be exposed to multiple graph environments.

SEAMLESS CONNECTION FROM SIMULATION TO DEPLOYMENT

Most of the prevailing GNN-DRL methods are
developed based on synthetic datasets and con-
ducted on popular simulated platforms. The
scarcity of data for RL tasks, particularly for
graph-structured data and even more so in loT
scenarios, poses a significant challenge. Gener-
ative Adversarial Networks (GANs) emerge as a
potential solution in scenarios where training data
is limited or the collection of real data proves to
be expensive. GANs can be crucial in generating
synthetic data to augment datasets and facilitate
more robust training for RL tasks. While the capa-
bility and scale to replicate realworld networks
have improved, real-world modeling demands
tuning that surpasses that of simulation platforms
and synthetic datasets, some of which are publicly
available. Rigorous validation and testing become
imperative, especially for lifecritical applications in
the Internet of Health Things (IoHT) and Internet
of Vehicles (loV), before deploying DRL algo-
rithms in certain real-world scenarios. The gap
between training on simulated environments and
actual applications persists, particularly when
dealing with graph-structured data. In summary,
achieving a seamless transition from simulation to
reality, ensuring safety and productivity, remains a
key focus for future research directions.

DYNAMIC/HETEROGENEOUS GRAPH-STRUCTURED ENVIRONMENTS

It is well known that existing GNN models [2],
[31, [4], [5] in many loT scenarios perform feature
extractions or communications over homoge-
neous fixed graphs. In a fixed graph, the addition
and removal of nodes/edges are disregarded.
However, in practical deployment, only a single
device or server can’t satisfy all computational
resource allocation requirements. For instance,
UEs and ESs exhibit distinct computational capa-
bilities. Moreover, the inclusion of fog servers
further adds to the heterogeneity of the network.
Given the continuously evolving spatial relation-
ships among these entities, it becomes imperative
to conduct research on learning within hetero-
geneous dynamic graphs to better understand
real-world scenarios.

As a result, the development of novel mod-
els and algorithms capable of learning from

heterogeneous dynamic graphs holds significant
promise for enhancing real-world MEC systems.
DRL can be viewed as one of the potential future
research directions with heterogeneous dynamic
graphs. Last but not least, current research on
graph-based deep learning for MEC still has much
room for improvement. To the best of our knowl-
edge, no previous studies have concentrated on
graphstructured MEC scenarios for loT applica-
tions. The problems we posed above are still far
from completely addressed, existing GNN or DRL
approaches still fail to meet the requirements of a
range of loT scenarios, face many challenges and
require urgent attention from researchers.

CONCLUSION

In this paper, we illustrate two typical graph-struc-
tured loT scenarios within MEC environments,
intending to optimize performance through deci-
sion-making via DRL. Additionally, we underscore
the broad applicability and significance of merging
GNN and DRL. We introduce the task offloading
scenario and the concept of distributed hierarchi-
cal ESs. We then propose GNN-PPO as a solution
for the former situation and GNN-MRL for the lat-
ter. Simulation results demonstrate the robustness
of GNN-PPO across different variables, including
varying numbers of nodes within a job, different
upload and download bandwidths, and varying
local CPU capabilities. Furthermore, we point
out four promising research directions, including
problem generalization, the seamless transition
from simulation to deployment, and adaptabil-
ity in dynamic/heterogeneous graph-structured
environments.

ACKNOWLEDGMENT

This work was supported in part by the National
Natural Science Foundation of China under Grant
62071327 and in part by the Tianjin Science
and Technology Planning Project under Grant
227YYYJC00020.

REFERENCES

[1]1Y. He et al., “A DDPG hybrid of graph attention network and
action branching for multi-scale end-edge-cloud vehicular
orchestrated task offloading,” IEEE Wireless Commun., vol.
30, no. 4, pp. 147-153, Aug. 2023.

[2] Z. Sun, Y. Mo, and C. Yu, “Graph-reinforcement-learn-
ing-based task offloading for multiaccess edge computing,”
IEEE Internet Things J., vol. 10, no. 4, pp. 3138-3150, Feb.
2023.

[3] H. Zhou, “Reverse auction-based computation offloading
and resource allocation in mobile cloud-edge computing,”
IEEE Trans. Mobile Comput., vol. 22, no. 10, pp. 6144-6159,
Oct. 2023.

[4] ). Wang et al., “Dependent task offloading for edge com-

puting based on deep reinforcement learning,” IEEE Trans.

Comput., vol. 71, no. 10, pp. 2449-2461, Oct. 2022.

F. Guim et al.,, “Autonomous lifecycle management for

resource-efficient workload orchestration for green edge

computing,” IEEE Trans. Green Commun. Netw., vol. 6, no. 1,

pp. 571-582, Mar. 2022.

[6] B. Li and Z. Zhu, “GNN-based hierarchical deep reinforce-

ment learning for NFV-oriented online resource orchestra-

tion in elastic optical DCls,” J. Lightw. Technol., vol. 40, no.

4, pp. 935-946, Feb. 15, 2022,

Z. Wang et al., “SocialEdge: Socialized learning-based

request scheduling for edge-cloud systems,” in Proc. IEEE

43rd Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2023, pp.

853-863.

[8] D. Xiao et al., “A two-stage GCN-based deep reinforcement
learning framework for SFC embedding in multi-datacenter
networks,” IEEE Trans. Netw. Service Manage., vol. 20, no. 4,
pp. 4297-4312, Dec. 2023.

[9] K. Li et al., “Deep-graph-based reinforcement learning for
joint cruise control and task offloading for aerial edge Inter-

[5

[7

EEE Network - January/February 2024



net of Things (EdgeloT),” IEEE Internet Things J., vol. 9, no.
21, pp. 21676-21686, Nov. 2022.

[10] Y. Deng et al., “Resource provisioning for mitigating edge
DDoS attacks in MEC-enabled SDVN,” IEEE Internet Things
J., vol. 9, no. 23, pp. 24264-24280, Dec. 2022.

[11] H. Lee et al., “A global DAG task scheduler using deep rein-
forcement learning and graph convolution network,” IEEE
Access, vol. 9, pp. 158548-158561, 2021.

[12] Z. Cao et al., “Dependent task offloading in edge com-
puting using GNN and deep reinforcement learning,”
IEEE Internet Things J., early access, Mar. 12, 2024, doi: /
JIOT.2024.3374969.

[13] L. Zeng et al., “GNN at the edge: Cost-efficient graph
neural network processing over distributed edge servers,”
IEEE ). Sel. Areas Commun., vol. 41, no. 3, pp. 720-739,
Mar. 2023.

[14] Z. Zhou, Q. Wu, and X. Chen, “Online orchestration of
cross-edge service function chaining for cost-efficient edge
computing,” IEEE J. Sel. Areas Commun., vol. 37, no. 8, pp.
1866-1880, Aug. 2019.

[15] T. Dong et al., “Standing on the shoulders of giants: cross-
slice federated meta learning for resource orchestration to
cold-start slice,” IEEE/ACM Trans. Netw., vol. 31, no. 2, pp.
828-845, Apr. 2023.

BIOGRAPHIES

YIXIAO WANG (wang_yixiao@tju.edu.cn) is currently pursuing
the M.S. degree in mathematics with the Center for Applied
Mathematics, Tianjin University, China. His research interests
include graph neural network, reinforcement learning, and edge
computing.

HUAMING WU (Senior Member, [EEE) (whming@tju.edu.cn)
received the B.E. and M.S. degrees in electrical engineering from
the Harbin Institute of Technology, China, in 2009 and 2011,
respectively, and the Ph.D. degree (Hons.) in computer science
from Freie Universitdt Berlin, Germany, in 2015. He is currently a
Professor with the Center for Applied Mathematics, Tianjin Univer-
sity, China. His research interests include wireless networks, mobile
edge computing, the Internet of Things, and complex networks.

RUIDONG LI (Senior Member, IEEE) (liruidong@ieee.org) received
the bachelor’s degree in engineering from Zhejiang University,
China, in 2001, and the Ph.D. degree from the University of
Tsukuba in 2008. He is currently an Associate Professor with
the College of Science and Engineering, Kanazawa University,
Japan. His research interests include big data networking, infor-
mation-centric network, network security, and quantum internet.

|EEE Network - January/February 2024


mailto:wang_yixiao@tju.edu.cn
mailto:whming@tju.edu.cn
mailto:liruidong%40ieee.org?subject=

Given the proximity of ESs to UEs compared to CSs, they provide significant advantages, including
substantially reduced delay and fast feedback through processing procedures, making them an
essential component of loT systems.

This approach involves a two-phase strategy employing GCN-based multiagent advantage actor-critic

(MAAZC), which aims to enhance individual intelligence, thereby facilitating optimal dispatch and
orchestration decisions in the edge-cloud system(ECsystem).

The widely adopted divide-and-conquer approach allows for the decomposition of any extensive
network into smaller, more manageable components.




