
IE
EE P

ro
of

IEEE Network • January/February 2024 10890-8044/24©2024IEEE

Abstract
With the increasing Quality of Service (QoS) 

requirements of the Internet of Things (IoT), 
Mobile Edge Computing (MEC) has undoubtedly 
become a new paradigm for locating various 
resources in the proximity of User Equipment (UE) 
to alleviate the workload of backbone IoT net-
works. Deep Reinforcement Learning (DRL) has 
gained widespread popularity as a preferred meth-
odology, primarily due to its capability to guide 
each User Equipment (UE) in making appropriate 
decisions within dynamic environments. However, 
traditional DRL algorithms cannot fully exploit the 
relationship between devices in the MEC graph. 
Here, we point out two typical IoT scenarios, i.e., 
task offloading decision-making when dependent 
tasks in resource-constrained Edge Servers (ESs) 
are generated in UEs and orchestration of cross-
ESs distributed service, where the system cost is 
minimized by orchestrating hierarchical networks. 
To further enhance the performance of DRL, 
Graph Neural Networks (GNNs) and their vari-
ants provide promising generalization ability to 
wide IoT scenarios. We accordingly give concrete 
solutions for the above two typical scenarios, 
namely, Graph Neural Networks-Proximal Policy 
Optimization (GNNPPO) and Graph Neural Net-
works-Meta Reinforcement Learning (GNN-MRL), 
which combine GNN with a popular Actor-Critic 
scheme and newly developed MRL. Finally, we 
point out four worthwhile research directions for 
exploring GNN and DRL for AI-empowered MEC 
environments.

Introduction
Along with the rapid development of the Inter-
net of Things (IoT), it becomes evident that 
three pivotal metrics are experiencing remark-
able growth: the proliferation of smart services 
(such as immersive video analysis and the flow 
of extensive health data), the surge in connec-
tions (including millions of demands between UEs 
and APs), and the exponential growth in mobile 
data traffic (encompassing data from vehicles and 
drones [1]. Therefore, computational resources 
and data from them are increasingly sinking to 
the edge of the network. This shift has led to a 
heightened demand for Quality of Service (QoS) 
that can no longer be adequately fulfilled solely 

through centralized cloud computing. In recent 
years, to fill the gap between centralized clouds 
and IoT devices, Mobile Edge Computing (MEC) 
has become an important technology for

IoT scenarios due to its ability to achieve high 
QoS with low energy consumption in a distrib-
uted manner. Especially for compute-intensive and 
delay-sensitive applications, the MEC paradigm 
allows such applications to run on multiple Edge 
Servers (ESs) with less congestion [2]. Given the 
proximity of ESs to UEs compared to CSs, they 
provide significant advantages, including substan-
tially reduced delay and fast feedback through 
processing procedures, making them an essential 
component of IoT systems.

Unfortunately, many current studies over-
look the dependencies inherent in MEC systems, 
including those between tasks and communica-
tion among devices. This oversight frequently 
leads to a compromise in Quality of Service 
(QoS). In this paper, we address this gap by 
exploring two types of graphstructured MEC sce-
narios within IoTs that have impacts on academia, 
industry, and daily life, as depicted in Fig. 1.
•	 Task Offloading: As shown in Fig. 1(a), 

numerous compute-intensive and delay-sen-
sitive tasks originating from different users 
and equipment cannot be entirely processed 
locally. Therefore, the effective utilization of 
communication and computational resourc-
es can be achieved by making judicious off-
loading decisions during interactions with 
the MEC environment [3]. However, there 
are often obvious dependencies among 
multiple tasks generated by users and equip-
ment. In other words, certain tasks can only 
be executed after the completion of specific 
prerequisite tasks. For instance, a face rec-
ognition application entails three sequential 
steps: face detection, face classification, and 
face retrieval [4]. In this context, the classifi-
cation depends on the preceding detection, 
which subsequently provides information for 
retrieval from the database if required. We 
have illustrated this concept using VR/AR.

•	 Resources Orchestration: As illustrated in 
Fig. 1(b), the exponential expansion of the 
scope of IoT applications foresees a signif-
icant proliferation of connected devices 
catering to diverse applications. Importantly, 
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the constraint of low cost-efficiency has 
emerged as a bottleneck, impeding the 
achievement of agile, flexible, and costeffi-
cient resource orchestration within the MEC 
ecosystem, encompassing various aspects. 
The efficient orchestration of workloads 
across converged edge platforms remains a 
challenge, particularly for network functions 
and multi-IoT services with diverse computa-
tion requirements and distinct Service Level 
Objectives (SLOs). Therefore, strategic cost 
management plays a crucial role in ensuring 
sustainable ESs’ services [5]. To illustrate, we 
have used video analysis as an example.
There are many challenges in building MEC 

networks, e.g., how to extract IoT data from a 
complex and highlyvarying environment. Unfor-
tunately, traditional heuristic methods such as 
genetic algorithms and ant colony algorithms 
cannot handle these scenarios immediately, 
while dynamic programming methods and opti-
mization theories are usually trapped into local 
optimization [2]. DRL, which combines the deci-
sion-making ability of reinforcement learning 
with the perception ability of deep learning, is 
regarded as the most promising methodology for 
tackling this problem. However, relying solely on 
DRL may not fulfill the necessity wherein certain 
dependent tasks can only be executed after spe-
cific designated tasks have been completed [4]. 
Typically, the state programmed for DRL is usually 
Euclidean data, which is commonly seen in images 
and texts sorted like a grid. Undoubtedly, failing 
to collect adequate graphical information can 
weaken the performance of the overall algorithm, 
since the degree of dependency can have a huge 
influence on many goals. Instead, Graph Neural 
Network (GNN) is very appropriate for these two 
split-new MEC environments, since it can extract 
features of graph-like data while making decisions, 
and then transfer the reduced intermediate data 
to centralized cloud servers.

In this paper, two GNN-based architectures 
are specifically designed for the aforementioned 
typical graph-structured MEC scenarios. The main 
contributions can be summarized as:
•	 We propose a novel Graph Neural Net-

works-Proximal Policy Optimization 
(GNN-PPO) framework to tackle the task 

offloading decision-making problem, where 
different UEs generate dependent tasks that 
require offloading to various servers charac-
terized by distinct topologies and task pro-
files to facilitate real-time computation.

•	 We propose a novel Graph Neural Net-
works-Meta Reinforcement Learning (GNN-
MRL) framework aimed at orchestrating 
distributed services across ESs to minimize 
the overall system cost. In this framework, 
ESs or UEs are connected as a graph in their 
respective layers, allowing communication 
between different layers.

•	 Through simple experiments conducted 
on task off loading scenarios, our meth-
ods employing bidirectional Graph Con-
volutional Network (GCN) and Global 
Attention Pooling (GAP) demonstrate 
superior performance compared to other 
approaches, with lower average running 
costs across varying node numbers, band-
widths, and CPU frequencies. Addition-
ally, the optimal convergence is achieved 
when the number of layers in our model 
is set to three.

•	 In addition, we also discuss existing chal-
lenges and potential future research direc-
tions concerning the integration of GNN 
and DRL for processing graphical structure 
data in IoT environments.

Related Work
In this section, we initially provide a brief intro-
duction to the background of RL and GNN. 
Subsequently, we conduct a comparative analysis 
of various representative works, highlighting the 
distinctions in the addressed problems and identi-
fying commonalities in the utilization of GNN and 
RL. Table 1 identifies and compares key elements 
of related works, encompassing scenarios, DRL 
types, GNN types, and addressed problems.

Reinforcement Learning and Graph Neural Network
Given its sequential decision-making nature, 
the optimization challenges in MEC can be 
effectively addressed using Reinforcement 
Learning (RL), which effectively tackles NPhard 
problems in dynamic and uncertain scenarios by 
prioritizing the learning of optimal actions through 

FIGURE 1. Two typical graph scenarios in IoT environments a) Task offloading. b) Resources allocation.
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interactions with the environment to maximize 
expected rewards. DRL, coupled with the pow-
erful generalization capabilities of Deep Neural 
Networks (DNNs), has found applications in 
numerous IoTbased scenarios. A less explored 
variant, Meta-Reinforcement Learning (MRL), 
operates with two distinct “loops”. The outer 
loop gradually adjusts the parameters of the meta 
policy, maintained on the ESs, by accumulating 
experiences across various contexts. This outer 
loop also oversees the execution of the “inner 
loop”, responsible for generating the initial model 
for a specific task. The inner loop exhibits rapid 
adaptability to new tasks through a small number 
of gradient updates, enabling fast convergence.

The effectiveness of DRL and MRL has been 
wellestablished across various domains. However, 
certain scenarios involve explicit relationships 
that can be naturally modeled as graphs, pos-
ing challenges beyond the capabilities of DRL or 
MRL alone. GNNs have demonstrated superior 
performance in handling machine learning tasks 
involving graph-structured data. In contrast, meth-
ods like simple DRL and MRL, designed primarily 
for Euclidean data, are not well-suited for the com-
plexities of emerging IoT scenarios. Undoubtedly, 
there is a clear need for specialized approaches 
that can adeptly aggregate information from dif-
ferent agents in these graphbased scenarios.

Integration of RL and GNN in Resource Orchestration
Another scenario involves a distributed GNN 
system, where researchers aim to construct a 
framework for orchestrating resources across ESs 
for optimal cost-effectiveness.

Li and Zhu [6] introduces HRLOrch, a hier-
archical RL model with a policy neural network 
based on GNN principles, which is based on the 
gated graph sequence neural network (GGS-NN), 
effective in extracting features about a long node 
sequence in graph-structured data. HRLOrch is 
devised to minimize blocking probability by 
orchestrating the allocation of IT resources in data 
centers and spectrum resources on fiber links 
within elastic optical data center interconnections 
(EO-DCI). The hierarchical RL approach incor-
porates lowerlevel and upper-level models, finely 
designed to enhance convergence performance 
during training in sparse reward environments. 
Wang et al. [7] presented a learning-based 
approach to adapt to time-varying requests and 

dynamic service prevalence within edge-cloud 
systems. This approach involves a two-phase strat-
egy employing GCN-based multiagent advantage 
actor-critic (MAA2C), which aims to enhance 
individual intelligence, thereby facilitating opti-
mal dispatch and orchestration decisions in the 
edge-cloud system(ECsystem). To conquer the 
challenge of the dynamics and diversity of embed-
ding Service Function Chains (SFC) requests in 
multi-datacenter (MDC) networks, a two-stage 
GCN-assisted multi-agent PPO (MAPPO) scheme 
was proposed in [8]. It mainly maximizes the 
overall acceptance ratio of SFC requests while 
minimizing the total cost in an MDC network. This 
is achieved through an optimization of resource 
orchestration, focusing on the efficient mapping 
of SFCs onto the physical network infrastructure 
in MDC scenarios.

Integration of RL and GNN in Task Offloading
The mature integration of GNN and DRL pres-
ents a promising paradigm for decision-making in 
task-offloading. Li et al. [9] explored the joint opti-
mization of task offloading and Unmanned Aerial 
Vehicle (UAV) cruise control to minimize the task 
dropping rate due to computational task cancella-
tion and offloading errors in harsh environments. 
GNNs are developed to supervise the training 
of real-time continuous actions of UAVs within 
the Advantage Actor-Critic (A2C) framework. 
Deng et al. [10] developed a novel software-de-
fined networking-based vehicular ad hoc network 
(SDVN)-based system architecture characterized 
by computation offloading with edge Distributed 
Denial of Service (DDoS) attack mitigation. A 
GNN-based collaborative DRL (GCDRL) model 
to generate the resource provisioning and miti-
gating strategy, which evaluates the trust value 
of the vehicles, formulates mitigation of edge 
DDoS attacks and resource provisioning strat-
egies. GNNs are also used to extract vehicular 
spatial and structural features of edge nodes, 
respectively. Aiming to minimize the makespan of 
a DAG task, Lee et al. [11] proposed a DRL-based 
priority assignment model that leverages both 
temporal and structural features within a Directed 
Acycled Graph (DAG). The model effectively 
learns a priority-based scheduling policy through 
the use of GCN and policy gradient methods. 
GCN is specifically employed to handle the com-
plex interdependent task structure To minimize 
the makespan of user tasks in the Cloud-Edge-
User framework (CEU), Cao et al. [12] proposed 
a DRL and Graph Attention Network (GAT)-based 
scheme. This approach efficiently utilizes the 
training process on a resourceful cloud to accom-
modate the numerous data and computation 
resource requirements associated with the task.

Two Typical Graph Scenarios in IoT
In this section, we continue discussing the two 
graphstructured scenarios in IoT(Task Offloading 
and Resource Allocation).

Task Offloading
In daily life or industrial production, many IoT 
devices generate interrelated offloading tasks, 
however, these tasks cannot simply be performed 
locally or in the Edge Servers(ESs) for real-time 
computation. Fig. 1(a) shows AR/VR applications, 

Work Scenario DRL Types GNN Types Problem

[6] EO-DCI Hierarchical GGS-NN RA

[7] EC system MAA2C GCN RA

[8] MDC-network MAPPO GCN/GAT RA

[9] EdgeIoT A2C Graph Generation TO

[10] SDVN GraphSAGE DDPG TO/RA

[11] MEC REINFORCE GCN/GAT TO

[12] CEU system PPO GAT TO

TABLE 1. The qualitative comparison of the 
current literature. TO and RA are short for 
“task offloading” and “resource allocation,” 
respectively.
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UEs will generate decomposable jobs with dis-
tinct task profiles and dependencies, where child 
tasks must wait for the completion of parent 
tasks before they can be executed. For example, 
to create augmented reality, digital content and 
the visible nature world should be prepared in 
advance. This is a simple analogy because it is 
sure that there are many other steps in the pro-
cess of digital content and the visible natural 
world, where the dependent tasks also stand. The 
dependency information can be effectively mod-
eled as a DAG, where each task is viewed as a 
node in the graph, and the dependency relation-
ships are represented by directed edges.

As shown in Fig. 2(a), the topology of the 
generated DAGs is controlled by three param-
eters: task number, fat, and density. Specifically, 
fat influences the width and height of the DAG, 
while density determines the number of edges 

between two levels of the DAG [4]. This is a 
very quantitative way of describing granularity. 
Each node is characterized by its size, represent-
ing specific features such as task size, maximum 
latency, and the demand for various computa-
tional resources. Recently, it has been popular 
among many researchers to combine features 
extracted from tasks (modeled as DAGs) [9], 
[11], [12] with certain state information embed-
ded into a Multi-Layer Perception (MLP), both 
of which will serve as the input and backbone 
of the DRL.

Resource Allocation
The pivotal strategy lies in orchestrating a net-
work’s entire resources. Network operators must 
consistently upgrade their service provisioning 
strategies to fully leverage the limited and distrib-
uted resources, including the spectral resources of 
fiber links, IT services, and storage on ESs [6].

At various hierarchical levels, distributed 
devices establish connections with each other. For 
instance, ESs are interconnected, and their com-
munication can be represented as an undirected 
symmetric graph. The top and bottom layer of Fig. 
2(b) shows how both ESs and UEs form a data 
graph. On one hand, ESs create an extensive edge 
network in collaboration with a series of APs, such 
as 5G base stations and IoT gateways, to facilitate 
data transportation. This data graph allows ESs to 
effectively cover a range of UEs, enhancing net-
work coverage and service availability. On the 
other hand, the connected APs can also form a 
data graph, albeit not necessarily, allowing ESs to 
cover a range of UEs.

When a query from the bottom layer(Appli-
cation Layer) is raised and obtained through the 
AP layer, each ES first aggregates a subset of the 
graph data via region-specific APs and computes 
the embedding through a given GNN model. At 
runtime, ESs are coordinated in a collaborative 
manner, where they are committed to exchanging 
necessary graph data with each other, executing 
GNN computations individually in parallel, and 
repeating this routine.

As is shown in Fig. 1(b), when new requests 
for video analysis from APs arrive in ES layers, the 
resource provisions according to the distributed 
GNN structure will happen within the ESs layer. 
To carry out the complete information flow from 
the request, object detection, classification, action 
detection, and behavior tracking are sequentially 
performed by being sent among wirelessly con-
nected edge clouds, using information about 
the requests by paralleling model execution and 
exchanging data mutually. The key question is 
how to choose the information route under the 
maximization of the traffic cost and constraints on 
some resources.

When the information flow is finished, the fin-
ished information will spread back from the last 
ES, through the AP layer, and finally reach the 
request UE.

Solutions

Motivation
The integration of Deep Reinforcement Learn-
ing (DRL) and Graph Neural Networks (GNN) 
is chosen to address the challenges discussed 

FIGURE 2. The illustration for two typical scenarios in IoT. a) Features of generat-
ed DAGs. b) Information flow of cross-ESs distributed service.
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in the section “Two Typical Graph Scenarios in 
IoT” due to its inherent suitability. This combina-
tion is well-suited for the unique characteristics 
and complexities presented by the discussed 
scenarios.

First and foremost, these tasks necessitate opti-
mization for the long-term rewards by selecting 
appropriate actions that adapt to evolving envi-
ronments. However, these environments are often 
intricate and multifaceted. Consequently, research-
ers employ Deep Neural Networks (DNN) to 
extract pertinent environmental features. How-
ever, DRL methods are traditionally well-suited 
for Euclidean spaces, whereas the network state 
in the aforementioned problems is inherently 
graph-structured. Consequently, DNNs struggle to 
effectively process graphstructured states, leading 
to the loss of crucial information. For instance, 
in the section “Task Offloading,” jobs consist of 
interdependent tasks that form a DAG structure. 
Similarly, in the section “Resource Allocation,” the 
network state topology exhibits a graph structure. 
Lastly, although seemingly straightforward, deter-
ministic heuristics fall short in making offloading 
decisions or orchestrating resources adaptively 
in response to the rapidly changing and intricate 
non-Euclidean network states. This compelling 
challenge motivates us to embrace the power 
of Deep Graph Reinforcement Learning [6] as a 
solution.

GNN-PPO for Task Offloading Decision-Making
In the first scenario, each UE generates a unique 
job for computation offloading. Typically, for 
the graphical characteristics of a certain job, it 
usually carries out binary offloading rather than 
partial offloading. It’s important to emphasize 
that the adoption of binary offloading can induce 
changes in the features of the task environment. 
For instance, it may lead to variations in the avail-
ability of computational resources during specific 
time slots.

As displayed in Fig. 3, we take our proposed 
scheme GNNPPO as an example to illustrate the 
procedures. We assume that the local computing 
ability is inaccessible and there exists only a sin-
gle UE within the entire system. At the beginning 
of each time-slot t, we concatenate the state of 
the MEC system St

m with the state of the current 

decision-making job St
v to create a global state 

for offloading actions and rewards based on the 
customized objective function. In this network, 
each individual GNN layer (comprising various 
GNN variants) is employed to embed a specific 
job, while MLP layers are utilized to generate 
the embedding for the present MEC system. UEs 
employ this global state for a policy network that 
generates actions. The current state St undergoes 
a transition to the subsequent state St+1 following 
the action At. It is important to note that we pri-
marily emphasize the state embedding process. 
The state of the MEC environment solely depends 
on features such as ESs’ capacity and energy lev-
els, as well as the computational requirements of 
tasks.

To extract sufficient information, we embed 
the MEC environment state and task information 
to be decided, respectively.
•	 MEC Embedding: In each time slot, we 

gather information from the MEC environ-
ment to make an offloading decision for the 
current task. The MEC environment primar-
ily comprises ESs, and occasionally, cloud 
servers as well. Taking ESs as an example, 
crucial indicators for DRL in making offload-
ing decisions include whether the ES is con-
nected to the current UE, the availability of 
CPU resources, available bandwidth, and 
the distance between the current user and 
the relevant servers. If the task is offloaded 
to an MEC server, it is imperative to consid-
er Channel State Information (CSI), and the 
current overall channel gain of the respec-
tive ES is incorporated into the MEC envi-
ronment information. The features extracted 
from both MEC servers and users are then 
input into the MLP to learn the embedding 
of the entire MEC environment.

•	 Task Embedding: Taking into account the 
dependencies among tasks, a GNN network 
is used to confine the overall structure of 
a job, facilitating the extraction of informa-
tion necessary for making offloading deci-
sions for each individual task. In essence, 
the learned embedding through the GNN 
can be regarded as the feature of the task, 
eliminating the need for manual feature 
engineering.

FIGURE 3. The framework of GNN-PPO.
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GNN-MRL for Orchestration of Distributed Cross-ESs 
Ser-Vice

For the second scenario, we characterize the 
system costs in terms of the life cycle of dis-
tributed GNNs over ES tasks [13]. For ease 
of presentation, concentrating the GNN pro-
cessing workload on inference, we specifically 
highlight two types of graphs: i) the edge net-
work that hosts distributed model execution, 
and ii) the data graph formed from the associ-
ated data of UEs, which feeds the GNN model 
as the input graph.

Take Fig. 2(b) as an example, we represent the 
control decisions as  π(t) = xv,i(t)⎪v ∈ Vt, i ∈ Dt. 
These decisions orchestrate the operation of the 
ES network T and the UE network G, determining 
whether UE i is provisioned in ES v during time 
slot t. It’s important to note that each UE is lim-
ited to selecting only one ES. Furthermore, ESs 
collaborate by sharing their collected graph data, 
thereby eliminating the need for data replication 
and reducing storage overhead. This collaborative 
approach optimizes data management within the 
network.

Given control decisions, we decompose the 
total cost incurred in the cross-ES system, includ-
ing the activating cost, data collection cost, GNN 
computation cost and cross-ES routing cost. The 
flow of a distributed ES system starts from collect-
ing data derived from distributed clients. Before 
collecting data, a newly launched UE or ES will 
activate some devices (e.g. launching a virtual 
machine image), so there is an activating cost. 
After these two steps, as we mentioned before, 
computing the whole UE network through the 
GNN model consists of aggregation and update 
steps, so the cost consideration on GNN is of 
great importance. To describe GNN processing, 
in addition to computing GNN over their resident 
graphs, we also need to consider the data trans-
ferred across ESs. What’s more, there are some 
other costs, e.g., edge server maintenance cost 
[13], cloud outsourcing cost [14], and operation 
cost [15].

Given that different UEs generate various types 
of data during different time slots, a one-size-fits-
all strategy for orchestration decisions that applies 
to all UEs is insufficient. Therefore, we provide a 
comprehensive description of the training process 

for GNN-MRL in the distributed ESs system, as 
depicted in Fig. 4.
•	 Step 1: Each UE downloads the parameters 

of the meta policy from the central server.
•	 Step 2: An inner loop training is conducted 

on every UE with the local experiences cap-
tured from both the whole network and the 
meta policy to learn a tasks-specific policy.

•	 Step 3: The UE uploads the parameters of 
the taskspecific policy to the central server.

•	 Step 4: The CS assembles the parameters 
of task-specific policies and starts an outer 
loop training to update the meta policy.
After completing these four steps, another 

round of training will be started by the central 
server.

Performance Evaluation
To validate the efficiency of our methods, we 
carry out straightforward experiments for the 
section “GNN-PPO for Task Offloading Deci-
sion-Making,” which illustrates GNN-PPO. It 
becomes evident that, in scenarios where a job 
comprises N tasks to be offloaded, with each task 
offering M choices, the total action space expands 
exponentially, reaching a scale of O(NM). In this 
context, we focus on the simplest case, where 
each task presents only two options: either local 
computation or remote execution on a designated 
edge server. It’s important to note that this edge 
server is accessible only when there are no ongo-
ing tasks currently utilizing its resources.

Parameters Setup
Our simulations were conducted on laptops 
equipped with NVIDIA 4G GeForce RTX 3050 
GPUs. Specifically, we set the number of task 
points to 15 , and we varied the “fat” (the width 
of a Directed Acyclic Graph) and the “density” 
(the dependency density) within the set {0.3, 
0.4, 0.5, 0.6, 0.7, 0.8}. We configured the upload 
and download bandwidth to 7 Mbps, while the 
local and remote capable CPU resources were 
set to 1 GHz and 10 GHz, respectively. The 
size of data that needed to be processed and 
received if executed remotely for each node was 
randomly generated within the range [5, 50] KB. 
In the GNN model depicted in Fig. 3, respon-
sible for generating the task embedding, our 
model is constructed by incorporating both the 

FIGURE 4. The framework of GNN-MRL.
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bidirectional GCN module and the GAP module, 
as illustrated in Fig. 5.

Our model consists of three separate Graph 
Convolution layers for the actor network and 
critic network. The hidden size in our model is 
set to 16 , and the learning rate for the commonly 
shared layer is always one-tenth of that for the 
two separate layers, set at 0.001 . We trained 
our model for 100 epochs with a batch size of 
128 and a total data amount of 512. To facilitate 
PPO, we employed Generalized Advantage Esti-
mation (GAE) with a discount factor of 0.95 and 
a weighting factor of 0.99. The data resources can 
be accessed here.1

Results Discussion
Our model’s performance evaluation focuses on 
two key aspects: the training parameters of DRL 
networks and the system parameters of MEC 
environments. We measure performance pri-
marily through the running cost, defined as the 
completion time of the last node within a given 
job. Additionally, we assess the impact of DRL 
network training parameters, including action 
diversity evaluated through entropy loss, as shown 
in Fig. 6(a). It is evident that the 3-layer GCN 
outperforms the others in terms of both running 
cost and entropy loss. This configuration exhib-
its faster convergence and a broader ability for 

action exploration, making it the optimal choice. 
In Fig. 6(b), we averaged the improvement effect 
across different sample sizes compared to alterna-
tive methods, including Local (all tasks performed 
locally), Remote (all tasks executed on the edge 
server), Random, Round Robin, and Greedy. 
Our method demonstrates improvements of 
26.66%, 22.03%, 15.14%, 12.23%, and 7.97%, 
respectively.

As shown in Fig. 7, regarding the node num-
bers, after averaging the improvement effects 
across different node numbers, our GCN-based 
method demonstrated average performance 
improvements of 29.84%, 25.29%, 17.96%, 
15.85%, and 8.74% when compared to Local, 
Remote, Random, Round Robin, and Greedy 
strategies, respectively. Similarly, for varying band-
width scenarios, our GCN-based method showed 
the best average performance improvements. 
Likewise, across different local CPU capabilities, 
our GCN-based method delivered average per-
formance improvements of 27.57%, 23.31%, 
16.78%, 14.10%, and 6.06% when compared 
to Local, Remote, Random, Round Robin, and 
Greedy, respectively.

Challenges and Prospects of GNN-Based MEC
This section identifies the challenges prevent-
ing widespread adoption and suggests future 

1 https://github.com/link-
park/RLTaskOffloading

FIGURE 5. The GNN model. The bottom two rows are the bidirectional GCN module, where different GCN 
components are utilized for the original graphs and reverse graphs, extracting two distinct sets of GCN 
features. The top row represents the GAP module, where all node features are averaged to obtain 
global features. These global features are then subtracted from each node’s feature, resulting in each 
node’s new feature. Subsequently, we combine these three types of features as input for the Actor-Crit-
ic Network.

https://github.com/linkpark/RLTaskOffloading
https://github.com/linkpark/RLTaskOffloading
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directions of combined GNN-DRL frameworks in 
MEC scenarios to unlock the combination’s full 
potential.

Large Graph Network Learning
In contrast to the contemporary large networks 
found in the real world, most current studies focus 
on small-scale networks, typically featuring fewer 
than 100 nodes and 10,000 edges. However, sim-
ulating the topology of larger graph-structured 
networks within these small-scale datasets proves 
insufficient to meet the significant computing 
demands.

The widely adopted divide-and-conquer 
approach allows for the decomposition of any 
extensive network into smaller, more manage-
able components. As a result, the availability 
of local graph information becomes essential. 
For instance, the process of graph partitioning 

effectively divides the ES and UE networks into 
smaller ones, allowing for a more detailed focus 
on their local structures. Batch sampling and 
importance sampling play a vital role in captur-
ing the local structure, thereby contributing to 
enhanced representation performance in IoT net-
works. More importantly, the UE or ES in IoT can 
collaboratively act, rather than ignoring the inter-
ests of others, and they can also use partitioned 
strategies to solve large graph problems. How-
ever, for some middle-scale graphs, it is uncertain 
whether it is worthy of gaining narrow improve-
ment margins at the cost of the local information 
burden incurred by these algorithms.

Generalization Across Problems
Enhancing the generalization ability of DRL and 
GNNs is one of the key research directions for 
AI-empowered MEC, especially when DNNs are 

FIGURE 7. Running cost under different system parameters. a) The influence of the number of job nodes on running cost. b) Influence of 
bandwidth and local CPU resources on running cost.

FIGURE 6. Running cost under different training parameters. a) The influence of model structure on running cost. b) The influence of 
training batch size on running cost.
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suffering from over-fitting in the training environ-
ment. Meanwhile, there also exists the problem of 
over-smoothing for GNNs.

Many methods have been proposed in the 
recent literature, e.g., ResGCN and Edge Pooling, 
which remains an edgecutting issue that con-
fuses graph-structured data and environments. A 
potential research direction involves the develop-
ment of graph-based MRL frameworks for MEC, 
where different UEs are matched to specific tasks 
or environments based on their varying levels of 
expertise, as facilitated by diverse applications. 
For instance, in the case of task offloading deci-
sion-making, the number or density of tasks in 
a job may be unpredictable for each time slot, 
the computational resources of MEC may vary 
from time to time, and even the availability of 
certain resources may change over time. More 
importantly, data augmentation techniques can be 
utilized for graph-structured scenarios if UEs can 
be exposed to multiple graph environments.

Seamless Connection From Simulation to Deployment
Most of the prevailing GNN-DRL methods are 
developed based on synthetic datasets and con-
ducted on popular simulated platforms. The 
scarcity of data for RL tasks, particularly for 
graph-structured data and even more so in IoT 
scenarios, poses a significant challenge. Gener-
ative Adversarial Networks (GANs) emerge as a 
potential solution in scenarios where training data 
is limited or the collection of real data proves to 
be expensive. GANs can be crucial in generating 
synthetic data to augment datasets and facilitate 
more robust training for RL tasks. While the capa-
bility and scale to replicate realworld networks 
have improved, real-world modeling demands 
tuning that surpasses that of simulation platforms 
and synthetic datasets, some of which are publicly 
available. Rigorous validation and testing become 
imperative, especially for lifecritical applications in 
the Internet of Health Things (IoHT) and Internet 
of Vehicles (IoV), before deploying DRL algo-
rithms in certain real-world scenarios. The gap 
between training on simulated environments and 
actual applications persists, particularly when 
dealing with graph-structured data. In summary, 
achieving a seamless transition from simulation to 
reality, ensuring safety and productivity, remains a 
key focus for future research directions.

Dynamic/Heterogeneous Graph-Structured Environments
It is well known that existing GNN models [2], 
[3], [4], [5] in many IoT scenarios perform feature 
extractions or communications over homoge-
neous fixed graphs. In a fixed graph, the addition 
and removal of nodes/edges are disregarded. 
However, in practical deployment, only a single 
device or server can’t satisfy all computational 
resource allocation requirements. For instance, 
UEs and ESs exhibit distinct computational capa-
bilities. Moreover, the inclusion of fog servers 
further adds to the heterogeneity of the network. 
Given the continuously evolving spatial relation-
ships among these entities, it becomes imperative 
to conduct research on learning within hetero-
geneous dynamic graphs to better understand 
real-world scenarios.

As a result, the development of novel mod-
els and algorithms capable of learning from 

heterogeneous dynamic graphs holds significant 
promise for enhancing real-world MEC systems. 
DRL can be viewed as one of the potential future 
research directions with heterogeneous dynamic 
graphs. Last but not least, current research on 
graph-based deep learning for MEC still has much 
room for improvement. To the best of our knowl-
edge, no previous studies have concentrated on 
graphstructured MEC scenarios for IoT applica-
tions. The problems we posed above are still far 
from completely addressed, existing GNN or DRL 
approaches still fail to meet the requirements of a 
range of IoT scenarios, face many challenges and 
require urgent attention from researchers.

Conclusion
In this paper, we illustrate two typical graph-struc-
tured IoT scenarios within MEC environments, 
intending to optimize performance through deci-
sion-making via DRL. Additionally, we underscore 
the broad applicability and significance of merging 
GNN and DRL. We introduce the task offloading 
scenario and the concept of distributed hierarchi-
cal ESs. We then propose GNN-PPO as a solution 
for the former situation and GNN-MRL for the lat-
ter. Simulation results demonstrate the robustness 
of GNN-PPO across different variables, including 
varying numbers of nodes within a job, different 
upload and download bandwidths, and varying 
local CPU capabilities. Furthermore, we point 
out four promising research directions, including 
problem generalization, the seamless transition 
from simulation to deployment, and adaptabil-
ity in dynamic/heterogeneous graph-structured 
environments.
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Given the proximity of ESs to UEs compared to CSs, they provide significant advantages, including 
substantially reduced delay and fast feedback through processing procedures, making them an 

essential component of IoT systems.

This approach involves a two-phase strategy employing GCN-based multiagent advantage actor-critic 
(MAA2C), which aims to enhance individual intelligence, thereby facilitating optimal dispatch and 

orchestration decisions in the edge-cloud system(ECsystem).

The widely adopted divide-and-conquer approach allows for the decomposition of any extensive 
network into smaller, more manageable components.


