
36 IEEE JOURNAL OF SELECTED AREAS IN SENSORS, VOL. 1, 2024

MASTER: Machine Learning-Based Cold Start
Latency Prediction Framework in Serverless

Edge Computing Environments
for Industry 4.0

Muhammed Golec , Sukhpal Singh Gill , Huaming Wu , Talat Cemre Can , Mustafa Golec ,
Oktay Cetinkaya , Felix Cuadrado , Ajith Kumar Parlikad , and Steve Uhlig

Abstract—The integration of serverless edge computing
and the Industrial Internet of Things (IIoT) has the poten-
tial to optimize industrial production. However, cold start
latency is one of the main challenges in this area, resulting
in resource waste. To address this issue, we propose a new
machine learning-based resource management framework
called MASTER which utilizes an extreme gradient boost-
ing (XGBoost) model to predict the cold start latency for
Industry 4.0 applications for performance optimization. Fur-
thermore, we created a new cold start dataset using an IIoT
scenario (i.e. predictive maintenance) to validate the pro-
posed MASTER framework in serverless edge computing

Manuscript received 16 January 2024; revised 25 February 2024;
accepted 29 April 2024. Date of publication 2 May 2024; date of current
version 23 May 2024. This work was supported in part by the National
Natural Science Foundation of China under Grant 62071327 and in part
by the Tianjin Science and Technology Planning Project under Grant
22ZYYYJC00020. The work of Muhammed Golec was supported by
the Ministry of Education of the Turkish Republic. The work of Felix
Cuadrado was supported by HE ACES Project under Grant 101093126.
Recommended by Lead Guest Editor Yuemin Ding and Guest Editor
Kan Yu. (Corresponding author: Huaming Wu.)

Muhammed Golec is with the School of Electronic Engineering and
Computer Science, Queen Mary University of London, E1 4NS London,
U.K., and also with Abdullah Gul University, Kayseri 38080, Türkiye (e-
mail: m.golec@qmul.ac.uk).

Sukhpal Singh Gill and Steve Uhlig are with the School of Elec-
tronic Engineering and Computer Science, Queen Mary Univer-
sity of London, E1 4NS London, U.K. (e-mail: s.s.gill@qmul.ac.uk;
steve.uhlig@qmul.ac.uk).

Huaming Wu is with the Center for Applied Mathematics, Tianjin
University, Tianjin 300072, China (e-mail: whming@tju.edu.cn).

Talat Cemre Can is with TFI TAB Food Investments, Istanbul 34349,
Türkiye (e-mail: talatcemrecan@gmail.com).

Mustafa Golec is with the Faculty of Engineering Computer En-
gineering, Dumlupınar University, Kütahya 43100, Türkiye (e-mail:
mustafagolec36@gmail.com).

Oktay Cetinkaya is with the Oxford e-Research Centre (OeRC), De-
partment of Engineering Science, University of Oxford, OX1 2JD Oxford,
U.K. (e-mail: oktay.cetinkaya@eng.ox.ac.uk).

Felix Cuadrado is with the School of Telecommunications Engineer-
ing, Technical University of Madrid (UPM), 43100 Madrid, Spain (e-mail:
felix.cuadrado@upm.es).

Ajith Kumar Parlikad is with the Institute for Manufacturing, Depart-
ment of Engineering, University of Cambridge, CB2 1TN Cambridge,
U.K. (e-mail: aknp2@cam.ac.uk).

Data is available online at https://github.com/MuhammedGolec/Cold-
Start-Dataset-V2.

Digital Object Identifier 10.1109/JSAS.2024.3396440

environments. We have evaluated the performance of the
MASTER framework using a real-world serverless platform,
Google Cloud Platform for single-step prediction (SSP) and
multiple-step prediction (MSP) operations and compared it
with existing frameworks that used deep deterministic pol-
icy gradient (DDPG) and long short-term memory (LSTM)
models. The experimental results show that the XGBoost-
based resource management framework is the most suc-
cessful model in predicting cold start with mean absolute
percentage error (MAPE) values of 0.23 in SSP and 0.12 in
MSP. It has been also identified that the Linear Regression
model (utilized in the MASTER framework) has the least
computational time (0.03 seconds) as compared to other
deep learning and machine learning models considered in
this work. Finally, we compare the energy consumption
and CO2 emissions of all models to emphasize resource
awareness.

Index Terms—Cold start latency, edge computing, Indus-
try 4.0, predictive maintenance, serverless computing.

I. INTRODUCTION

THE rapid developments in sensor technologies have
resulted in the spread of the Internet of Things (IoT)

applications in many different areas, including civil, military,
healthcare, and education [1], [2]. One of the IoT applica-
tion areas that have attracted attention in recent years is the
Industrial Internet of Things (IIoT), which aims to optimize
industrial processes and increase efficiency [3]. IIoT allows
industrial devices to share data through sensors and networks.
Analyzing these data aims to make production processes more
efficient [4]. To better understand the impact of IIoT on produc-
tion processes, predictive maintenance applications in Industry
4.0, which enables the integration of digital technologies into
industrial areas, can be given as an example [5]. Predictive main-
tenance is an application that analyzes data collected through
sensors from industrial machines and production processes,
offering the following advantages:

1) reducing downtime;
2) increasing the reliability of machines;
3) providing strategies for maintenance [6].

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0146-9735
https://orcid.org/0000-0002-3913-0369
https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0002-0220-3878
https://orcid.org/0009-0002-4343-3239
https://orcid.org/0000-0002-7214-6485
https://orcid.org/0000-0002-5745-1609
https://orcid.org/0000-0001-6214-1739
https://orcid.org/0000-0001-6251-6836
mailto:m.golec@qmul.ac.uk
mailto:s.s.gill@qmul.ac.uk
mailto:steve.uhlig@qmul.ac.uk
mailto:whming@tju.edu.cn
mailto:talatcemrecan@gmail.com
mailto:mustafagolec36@gmail.com
mailto:oktay.cetinkaya@eng.ox.ac.uk
mailto:felix.cuadrado@upm.es
mailto:aknp2@cam.ac.uk
https://github.com/MuhammedGolec/Cold-Start-Dataset-V2
https://github.com/MuhammedGolec/Cold-Start-Dataset-V2
wu huaming

GOLEC et al.: MASTER: ML-BASED COLD START LATENCY PREDICTION FRAMEWORK IN SERVERLESS EDGE COMPUTING 37

These IIoT-based applications also mean vast amounts of data
that must be processed in real time. New developments with
low latency and high processing capacity are needed to process
these data [7]. Serverless edge computing may be a promising
solution to meet this need.

Serverless edge computing is a new paradigm that extends the
advantages of serverless computing to the network’s edge [2].
This paradigm aims to benefit from the following main advan-
tages of serverless and edge computing [8], [9].

1) Dynamic Scalability: System resources can be auto-
matically scaled up or down in line with incoming
demands [10]. Thanks to this feature, the system can
respond to users quickly, even when transaction demand
is high.

2) Low Latency: The latency is much lower than on central
servers since the data will be processed at the edge [11].
This provides an excellent advantage for real-time oper-
ations where response time is critical, such as IIoT and
Industry 4.0.

3) Bandwidth Saving: Since data are processed at the edge,
server usage and network congestion are minimized.

4) Easy Infrastructure Management: It encourages code
developers to focus only on coding and business logic,
abstracting from the control and management level.

5) Economic Model: Customers are priced only for the du-
ration of resource usage. This model is known as pay-as-
you-go and allows customers to optimize costs.

Besides the advantages of serverless computing, it also has
challenges, such as security, privacy, platform dependency, and
cold start latency [12]. This article focuses on the cold start
problem in serverless edge computing, which can cause latency
in real-time IIoT applications [13].

In serverless edge computing, functions are executed by
assigning them to containers [14]. After the execution, idle
containers are deleted to avoid unnecessary energy and resource
consumption. This process is called scale to zero and is the main
reason for a cold start [15]. Because the deleted containers may
be needed again in line with the increasing demand, and it will
take time for these containers to be rebuilt. This preparation
time causes a cold start. Another reason for a cold start is when
a container receives more requests than it can handle [16]. New
containers will be launched to meet this excessive demand,
causing cold start delays. Cold start latency has adverse effects,
such as user experience, scalability, and cost in serverless edge
computing [17].

1) User Experience: In scenarios where response time is
critical, cold start latency should be minimized for a
smooth user experience [18].

2) Scalability: One of the essential features of server-
less edge computing is its ability to scale resources
up and down for variable workloads. An increase in
cold start latency will mean an increase in the creation
time of containers, so the execution of incoming re-
quests will be delayed, negatively affecting the scalability
feature [19].

3) Cost: In serverless, with the pay-as-you-go model, only
the resources used are charged. In a serverless environ-
ment with a high cold start, a short-term and heavily used
function will cause unnecessary costs [20].

A. Motivation and Contributions

Industry 4.0 is the fourth industrial revolution that emerged
with huge advantages, such as increasing efficiency and product
quality by digitizing production processes [21]. Despite these
advantages, it brings its own problems, such as investment
costs (e.g., new equipment), data security, unsuitability of the
existing infrastructure, and latency, which are still waiting to
be addressed [22]. Managing latency is critical in real-time
IIoT applications in Industry 4.0, as well as automotive and
robotic applications [23], as these often require high speed,
efficiency, and accuracy. Latencies may delay data processing
and bring data integrity in the system [24]. In addition, although
Industry 4.0 necessitates quick transactions, latencies may cause
undesirable consequences, such as performance degradation and
therefore, loss of competitive advantage. The main reasons for
latencies in IIoT are 1) constant transfer of data created on IIoT
devices to servers for processing (bandwidth waste and network
congestion), and 2) time taken for data collected on IIoT devices
to return after being processed on the server (response time). The
serverless edge computing paradigm can be used to solve these
concerns and improve the capabilities of IIoT [25]. Serverless
edge computing reduces response time by bringing processing
power closer to the network’s edge and saves bandwidth because
it reduces the data sent to the server. In this way, latency time
in IIoT can be reduced [26]. On the other hand, in serverless
edge computing, the cold start latency problem caused by the
serverless paradigm continues. Few studies have been done in
the literature to solve this problem, and most of these studies
include solutions, such as “keeping container warm” that re-
quire resources to be idle [22]. Therefore, there is a need for
approaches that can be the basis for new studies that solve the
cold start problem by considering resource consumption.

In this article, we propose a new MAchine learning-based cold
STart latency prediction framework in SERverless edge com-
puting environments for Industry 4.0, i.e., MASTER, to predict
the cold start latency in serverless edge computing environments
for Industry 4.0 applications to optimize performance. In the
MASTER framework, we have utilized two machine learning
(ML) models, such as eXtreme gradient boosting (XGBoost)
and linear regression (LR), and deep learning (DL) models,
such as DeepAR, neural hierarchical interpolation for time
series (NHITS), and temporal fusion transformer (TFT). The
performance of the MASTER framework is compared with the
state-of-the-art frameworks, such as ATOM [27] and two-layer
adaptive (TLA) [28], to prove its novelty in predicting the cold
start latency. ATOM framework used the deep deterministic
policy gradient (DDPG) deep reinforcement learning (DRL)
model whereas TLA used the long short-term memory (LSTM)
model to predict cold start latency. MASTER used the

38 IEEE JOURNAL OF SELECTED AREAS IN SENSORS, VOL. 1, 2024

abovementioned ML and DL models [29] due to the following
reasons.

1) Capture complex patterns: It is expected to be successful
in nonlinear and complex patterned data, such as cold
start.

2) Automatic feature extraction: It automatically extracts
features in the cold start dataset. This eliminates the need
for specialized feature engineering processes.

3) Robustness against outliers: It withstands noisy and out-
liers in cold start datasets and makes accurate predictions.

The main contributions of this work are as follows.
1) Proposing a new ML-based resource management frame-

work called MASTER to predict the cold start latency
in serverless edge computing environments. Thus, it is
aimed at forming the basis for future resource-sensitive
cold start prevention studies.

2) Creating a new cold start dataset based on an IIoT sce-
nario, i.e., predictive maintenance, to validate the pro-
posed MASTER framework in serverless edge computing
environments. Thus, a public dataset is created for future
cold start studies.

3) Incorporating two ML (XGBoost and LR) and three
DL models (DeepAR, NHITS, and TFT) into the MAS-
TER framework to predict the cold start latency, thereby
determining the model with the best cold start prediction
performance.

4) Comparing the performance of the MASTER framework
to those of two baseline works, namely, ATOM [27] and
TLA [28], in terms of cold start prediction performance.
Thus, it demonstrates the MASTER framework’s cold
start prediction superiority.

5) Evaluating the performance of the MASTER framework
using a real-world serverless platform, the Google Cloud
Platform (GCP), for single-step prediction (SSP) and
multiple-step prediction (MSP) operations.

6) Comparing the computational time, energy consumption,
and CO2 emission amounts of the abovementioned ML
and DL models. In this way, it aims to raise awareness
about CO2 emissions, one of the main causes of global
environmental problems.

B. Organization

The rest of this article is organized as follows. Section II dis-
cusses the related work of various existing solutions for the cold
start problem. Section III presents the methodology, including
main architecture, pseudocode, and dataset. Section IV discusses
the experimental setup, workload details, evaluation metrics, and
results. Finally, Section V concludes this article and highlights
future directions.

II. RELATED WORK

Cold start latency originating from the serverless paradigm is
still a problem to be solved. The cold start latency can range from
tens of milliseconds to a few seconds, causing an undesirable
delay in time-sensitive scenarios [30]. When the literature is
reviewed, the proposed solutions are generally grouped under
two headings [28].

A. Studies on Reducing Cold Start Latency Time

These studies are aimed at making container preparation
processes, such as runtime, library initialization, and function
preload faster. Thus, the container preparation process takes
less time and the cold start latency can be reduced. Solaiman
and Adnan [31] aimed to reduce the cold start latency time
by proposing a new container management called WLEC. The
WLEC management architecture uses S2LRU++, an enhanced
version of S2LRU Cache replacement policies. The prepara-
tion time is shortened in containers where functions are ex-
ecuted using S2LRU++. The authors tested WLEC on AWS-
OpenLambda and a local virtual machine (VM). The results
showed that the cold start latency time was reduced by up
to 31%. Silva et al. [32] worked with a new technique, they
proposed to decide when to create a snapshot in a function.
The technique was prototyped using the Linux-based Check-
point/Restore In Userspace application developer, and exper-
iments were performed by comparing it with standard Unix
process creation. Results show that the start-up time of function
has improved between 40% and 70%. This way, as the runtime
initialization time is shortened, the cold start latency time is also
reduced.

B. Studies on Reducing the Frequency of Cold Start

It is about working to reduce the frequency of cold start
by using methods, such as keeping the container warm [33].
Suo et al. [34] introduced HotC, a new lightweight container
management framework that adjusts the runtime reuse to client
requests. In HotC, it performs live container control using the
exponential smoothing model and Markov chain models. More-
over, it reuses containers by selecting from the runtime pool
according to user requests. Experiments on OpenFaaS show
that HotC reduces the frequency of cold starts. Daw et al. [35]
aimed to reduce the frequency of cold starts by recommending
a tool called Xanadu. Xanadu prevents cold starts by providing
speculative and just-in-time resources for serverless platforms.
Experiments on Knative and Openwhisk platforms show that
Xanadu reduces cold start occurrence by 10–18 times. They
aim to reduce the frequency of cold start by using a “hot”
container creation technique according to user requests sug-
gested by Ristov et al. [36]. The authors tested their work on
the Knative platform using their autoscaler technique, and the
results show an 85% success rate. These are existing works such
as warm-start containers (WSA) [37], and two-layer adaptive
(TLA) [28] methods to reduce the cold start frequency. In the
WSA method, authors used a reinforcement learning model to
predict call functions and container patterns. In the second stage,
the call time of a function is estimated using the LSTM model,
and the number of containers to be heated is decided based on
this prediction result. Similarly, there is a two-step approach in
the TLA method. In the first step, a deep neural network model is
used to estimate the number of idle containers (window length).
In the second step, the number of requests is estimated using
the LSTM model. In the ATOM framework [27], the authors
used a DRL method [i.e., (DDPG)], which is effective in solving
complex and nonlinear problems, to estimate the number of users
using the server and the time of cold start occurrence in serverless

GOLEC et al.: MASTER: ML-BASED COLD START LATENCY PREDICTION FRAMEWORK IN SERVERLESS EDGE COMPUTING 39

TABLE I
COMPARISON OF THE PROPOSED MASTER FRAMEWORK WITH EXISTING WORKS

edge computing. As a result of their experiments, they obtained
a root-mean-squared error (RMSE) value of 148.76 for cold start
prediction. This framework, unlike previous studies, is a basis
for energy-sensitive cold start prevention studies.

C. Critical Analysis

Table I compares the proposed MASTER framework with
existing works. The columns in Table I and what they mean can
be examined as follows.

1) “Mechanism” represents what techniques were used in
the studies reviewed.

2) “Monitoring” represents which platforms/simulators
were used in the reviewed studies.

3) “Serverless platform” represents whether a serverless-
based platform is used in the studies reviewed.

4) “Resource-aware (RA)” represents whether an RA-based
method is used in the studies reviewed.

5) “MSP” represents whether MSP was performed in the
studies reviewed.

6) “Edge” represents whether the work under review was
tested in an edge environment.

7) “Domain” represents which domain is targeted in the
studies reviewed.

Existing methods focus on keeping the container warm and
container pooling, which is not RA and requires the constant
operation of resources. In addition, in current studies, no dataset
has yet been created by considering the dynamically changing
“function calls.” In addition, none of these studies performed
MSP for cold start using ML- and DL-based models. Only
two studies use serverless edge computing environments for
experiments, namely, ATOM [27] and our proposed framework
(MASTER). Compared with ATOM, the MASTER framework
provides a huge advantage in cold start detection, such as captur-
ing long-term trends by estimating MSP. Thus, cloud providers
can be informed up to 15–20 minutes earlier, and precautions
can be taken for a cold start. In addition, the ATOM framework
targets the healthcare domain, whereas the Industry 4.0 domain
is targeted in MASTER. While the DRL-based algorithm is
used to make cold start predictions in the ATOM framework,
DL- and ML-based models are used in MASTER, which have
advantages, such as capturing complex patterns and automatic

feature extraction and also have higher prediction performance.
More details on these will be provided in Section IV-E.

III. PROPOSED MASTER FRAMEWORK

In this section, first, the MASTER framework and its working
mechanism are described in Section III-A. Then, the method-
ology is given in Section III-B, so that the reader can better
understand the research stages. The datasets used in the article
are explained under Section III-C.

A. Main Architecture

The structure of the MASTER framework with four layers is
shown in Fig. 1. The first layer consists of assets, the second
layer consists of an edge network, the third layer consists of a
network, and the fourth layer consists of a serverless platform.

The asset layer forms the first layer in the MASTER frame-
work. In the industry, all machines, sensors, and systems that are
included in the production process and monitored in predictive
maintenance applications are in this layer. These assets can
consist of a variety of equipment, such as computer numerical
control machining and heating, ventilation, and air-conditioning
systems. The dataset used in the MASTER framework is ob-
tained from a freeze machine [38]. A freeze machine is an
industrial machine that can rotate around its own axis and shape
various materials, such as metal and furniture, with the help of
a cutting edge. Various types and numbers of sensors are used
to collect relevant data from the freezing machine.

The edge network is the layer where IoT devices and end
nodes, such as programmable logic controller and supervisory
control and data acquisition systems, with limited processing
powers, are located [39]. It also forms the first of the two
main layers in serverless edge computing. This layer has a
heterogeneous structure since it accommodates devices with
different system features and processing capabilities. The edge
network layer is closer to the data center than central servers
and therefore can respond to the resource (assets) with lower
latency. In the edge network, GCP-based Google Cloud Function
is deployed. In this way, nodes can not only control the lifecycle
of the function (f(x)) but also interact with each other. Edge
network transmits f(x) from assets to edge nodes in the edge
network using different protocols (hyper-text transfer protocol

40 IEEE JOURNAL OF SELECTED AREAS IN SENSORS, VOL. 1, 2024

Fig. 1. MASTER framework.

(HTTP) is used in this work) with trigger logic. Edge nodes
trigger the function on the serverless platform with this f(x)
and return a response to the asset.

Network layer is responsible for all interlayer data com-
munication. It is especially critical in real-time applications.
Satellite communications can be used for industrial production
lines distributed over large geographies. In addition, the network
layer may consist of various network systems, such as intranets,
usually wireless. The serverless layer is used when high pro-
cessing power and capacity are required for f(x) sent from
assets to the edge network. This is decided by the edge nodes
in the edge network. The MASTER framework constantly mon-
itors the network and detects the occurrence of a cold start. It
uses XGBoost regressor and the reason for using an XGBoost
regressor is explained in Section IV. The XGBoost model is
trained using the cold start dataset. By using the time period
in the dataset and the latency amounts corresponding to each
time period, the latencies of future time periods are estimated.
The MASTER framework has two different prediction modes.
The first prediction mode is SSP, which makes a cold start
prediction 5 min in advance, and the second prediction mode
is MSP mode, which makes a cold start prediction 20 min in
advance. Prediction results provide useful information for efforts
to reduce cold start latency frequency. These results can be used
by cloud providers in the future to reduce cold start frequency
and provide smoother operations and cost savings for customers.

In Algorithm 1, the pseudocode of the MASTER framework is
given for time-series prediction. The first phase involves creating
a cold start dataset. The second stage shows the cold start
prediction process of the trained model using this dataset. The

MASTER framework is positioned between the client and server
to monitor transaction information. Predictive maintenance data
(ψ1,2,...,n) coming from the sensors, such as air temperature and
rotational speed, are sent to the ML model [support vector classi-
fier (SVC)] deployed on the serverless platform. The prediction
result (Δ) made in the SVC model is sent back to the client.
The MASTER framework saves Δ and transaction information
(Ti). In this way, it creates a cold start dataset by monitoring
the communication channel 24 h a day and five days a week.
In the second stage, the ML model (XGBoost) in the MASTER
framework is trained using the cold start dataset. The variables
given as input are the amount of delay corresponding to each time
period in the cold start dataset (τ), the loss function value used
in the XGBoost (XGB) model (ι), the base learner value (g), and
the number of subtrees (κ). As output, the model’s prediction
result for the cold start is returned (�). In the last part, the cold
start in the system can be determined according to a previously
determined λ value.

Time complexity: There are two loops in the algorithm, so the
time complexity value is O(n2). This means that the algorithm
performance will deteriorate as the square of the number of
elements increases.

B. Methodology

Fig. 2 is designed to better explain the MASTER workflow in
technical terms.

1) In the first stage, the cold start dataset containing client–
server communication information and the cold start
statuses are created. To do this, a predictive maintenance

GOLEC et al.: MASTER: ML-BASED COLD START LATENCY PREDICTION FRAMEWORK IN SERVERLESS EDGE COMPUTING 41

Algorithm 1: Pseudocode of MASTER for Time-Series
Prediction.

1: Input: ψ1,2,...,n, τ ∈ (τ1, τ2, . . . , τn), ι(y,y’), g(X,μ), κ
2: Output: Δ, �
3: Variables:
4: Predictive maintenance data← ψ1,2,...,n

5: Support Vector Classification← SVC
6: Prediction Result← Δ
7: Transaction Information← Ti
8: XGBoost← eXtreme Gradient Boosting
9: Time Period← τ

10: Loss Function← ι
11: Base Learner Value← g
12: the Number of Subtrees← κ
13: Prediction result←�
14: Threshold Value← λ

15: Begin
16: for Day=1:5 do
17: Cold Start Dataset Creation
18: Send ψ1,2,...,n −→ Serverless ML(

∑n
0 ψ1,2,...,n)

19: Return Δ ⊕ Ti
20: Save Ti
21: Cold Start Prediction
22: for τ = 1:κ do
23: Initialize g0(Xi) =

∑N
i=1ι(yi,p))

24: Compute ∇gt(X)
25: Start New g g(X,μ)
26: � = argminp

∑N
i=1κ(yi, g

′
k−1(Xi)+pgXi, μi)

27: If � >λ:
28: Return Cold Start
29: End

application is deployed on a serverless platform. Then,
the system is followed for 24 h a day and five days a
week, as explained in the previous section.

2) After the cold start dataset is created, outliers are detected
through preprocessing operations. Feature engineering
operations, such as the standard scaler and lag features,
are performed for artificial intelligence (AI)-based time-
series models that will be used in cold start prediction. Our
aim in doing this is to increase the prediction accuracy as
much as possible.

3) SSP and MSP prediction processes are performed with
ML- and DL-based time-series models.

4) In the last step, a performance evaluation for ML and DL
models is performed.

C. Dataset

This section describes the two different datasets used in this
research work. In particular, we used the predictive maintenance
dataset to create the cold start dataset and then used the cold start
dataset to train the AI-based time-series models.

1) Predictive Maintenance Dataset: The predictive mainte-
nance dataset used in this article was produced by Matzka [38]

Fig. 2. Flowchart to show the workflow in MASTER.

TABLE II
PREDICTIVE MAINTENANCE DATASET

and shared via Kaggle.1 Modeled after a milling machine, this
dataset contains 14 features and 10 000 data, and Table II
explains what each feature means. Five fault errors in the
dataset were added to the Failure Type variable. In addition,
the “Machine Failure” variable has been named “Target” for
convenience. First, feature engineering operations were per-
formed on the dataset and meaningless data in the “Failure Type”
variable was removed. Later, the variables “UDI,” “Failure
Type,” and “Product ID” were removed because they would
not be used in this experiment. The categorical variable “Type”
was subjected to one-hot encoder processing, and numerical
variables “Air temperature,” “Process temperature,” “Rotational
speed,” “Torque,” and “Tool wear” were subjected to standard
scalar processing. The variable “Target” was selected as the
target variable. Logistic regression and SVC ML models, which
are known to have high prediction performance for predictive

1[Online]. Available: https://www.kaggle.com/datasets/stephanmatzka/
predictive-maintenance-dataset-ai4i-2020

https://www.kaggle.com/datasets/stephanmatzka/predictive-maintenance-dataset-ai4i-2020
https://www.kaggle.com/datasets/stephanmatzka/predictive-maintenance-dataset-ai4i-2020

42 IEEE JOURNAL OF SELECTED AREAS IN SENSORS, VOL. 1, 2024

Fig. 3. Cold start dataset creation.

Fig. 4. Coldstart dataset.

maintenance, were compared. It was determined that the model
with the highest accuracy rate was SVC with 97.78%.

2) Cold Start Dataset: This section explains how to obtain
the cold start dataset that will be used to train the ML/DL
model of the MASTER framework. The predictive maintenance
scenario described in the previous section was deployed on
GCP-Cloud Functions, a serverless platform as shown in Fig. 3.

The environment parameters for this instance are as
follows: “Region”: Europe-Southwest1-a, “Runtime”: Python
3.10, “Function call format”: HTTP, and “Memory”: 512 MB.
To create the workload, a varying number of simultaneous
requests (1–350) are sent to the server using the Apache J-Meter
application between 1 and 6 January, 2024. To simulate the
production process in a factory, the system is set to send requests
to the server five days a week between 09:00 and 18:00. Using
the HTTP trigger mechanism in J-Meter, six variables are sent to
the SVC model deployed on the server to obtain the prediction
result and transaction information. Transaction information in-
cludes the following data: “Date,” “Time,” “Day,” “Latency,”
“Request Number,” “CPU (%),” and “Ram (%).” Using this
information, the cold start dataset shown in Fig. 4 is created.
Equation (8) is used to calculate cold start, and when the dataset
is examined, it is seen that cold start occurs in the following
three ways.

1) When the first request comes to the server, a cold start
occurs because the environment parameters are loaded
into the container for the first time.

2) If there is no request to the server for more than 15
min: In GCP-Cloud Functions, after function execution is
completed, containers continue to run for a certain period
of time (15 min) [40]. Similar measures are taken on other
trading platforms to prevent cold start.

3) In case more than 300 simultaneous requests are sent
to the server: This number is the threshold required to
launch a new container for this scenario.

3) Data Preparation Steps: The following are the data prepa-
ration steps.

1) Standard Scaler: It scales the features in the dataset and
converts it to a dataset with zero mean and unit variance.
This aims to improve the performance of ML algorithms,
which are affected by the size differences between fea-
tures in the dataset. In addition, it is to prevent a single
feature from dominating the learning process.

2) Lag Features Class Created: It shows the values from pre-
vious time steps in a time-series dataset. It helps capture
the correlation between a variable and the values of past
variables. Patterns that are useful in seasonality analysis
can be easily detected.

3) Window Features Class Created: It calculates summary
statistics of historical values. They provide helpful out-
puts, such as anomaly detection or trend analysis, by
presenting information, such as moving averages and
rolling standard deviation.

4) Autocorrelation Function (ACF): It is used to examine
the correlation of a time series with its lagged values. It
is generally used to detect seasonality in time series.

5) Partial autocorrelation function: It is a statistical tool
used to examine the correlation between time series and
delays as in ACF. Unlike ACF, it does not include inter-
mediate delays in the correlation analysis.

IV. PERFORMANCE EVALUATION

This section discusses the experimental setup, workload, eval-
uation metrics, and results. Section IV-A discusses the experi-
mental setup used to conduct experiments. Next, the workloads
created throughout this article are introduced in Section IV-B.
We discuss the baselines frameworks in Section IV-C, which
are used to compare the cold start prediction performance with
the proposed MASTER framework. We describe the evaluation
metrics used in all performance comparisons in Section IV-D.
In Section IV-E, the performance of the proposed MASTER
framework is compared experimentally with the abovemen-
tioned baseline frameworks in terms of cold start prediction per-
formance, energy consumption, computational time, and carbon
emissions.

A. Experimental Setup

In this section, parameter information for all ML- and DL-
based models used in the MASTER framework is given along
with the system configuration details for the reproduction of
this work in the future. All experiments were carried out on a
system with “CPU”: Intel Core i7-10750H, “clock speed”: 2.6–
5.0 GHz, “RAM”: 16 GB, and “OS”: Windows 10 Pro system.

GOLEC et al.: MASTER: ML-BASED COLD START LATENCY PREDICTION FRAMEWORK IN SERVERLESS EDGE COMPUTING 43

TABLE III
HYPERPARAMETER SETTINGS FOR ML/DL MODELS FOR BOTH PROPOSED

(MASTER) AND BASELINE (ATOM AND TLA) FRAMEWORKS

TABLE IV
ENVIRONMENT PARAMETERS FOR GOOGLE CLOUD FUNCTIONS

The hyperparameter settings for all ML/DL models tested in
this work are given in Table III. In addition, the environment
parameters for Google Cloud Functions used when creating the
cold start dataset are given in Table IV.

B. Workloads

One of the biggest obstacles to serverless edge computing
and IIoT integration to make industrial processes more efficient
is cold start latency. In this work, we propose an ML-based
resource management framework called MASTER. In this way,
it provides the basis for future cold start prevention studies by
performing cold start prediction and monitoring in serverless
edge computing environments.

First, the Industry 4.0 scenario, an IIoT application, was
deployed using Google Cloud Functions. To create the work-
load, requests were sent to the server via JMeter, simulating a
real industrial production process. This involves sending 1–350
HTTP requests to the server between 09:00 and 18:00 for five
days. The cold start dataset was created using the responses
and transaction information returned for all requests from the
ML model deployed on the server. Second, ML/DL models
were trained using this cold start dataset and all models were
compared according to SSP and MSP to find the model with the
most successful prediction result.

C. Baselines

In this section, we discuss briefly about baselines, which
are used to compare the performance of the proposed MAS-
TER framework. In serverless edge computing, each function is

assigned to a new container for execution. Setting up environ-
ment parameters, such as requires a certain amount of time,
which causes cold start latency. A new container is started in the
following three cases.

1) When the first request comes to the server.
2) When the container is not used for a certain period of

time. Idle containers are released to save energy (zero to
scale). If a new request comes to the released container,
the container must be restarted.

3) If the number of requests to the container exceeds the
capacity of the container, a new container is started.

For this reason, the correlation between cold start occurrence
and the number of requests sent to the server can give impor-
tant clues. Another important correlation information is cold
start delay patterns. Because, when delay patterns exceed a
certain threshold value, action can be taken to prevent cold start
occurrence. In this article, we compare the proposed framework
(MASTER) concerning the performance of SSP and MSP with
current cold start-based baselines: ATOM [27] and TLA [28].

1) ATOM [27]: In the proposed approach, cold start occur-
rence times and the number of requests to be sent to
the server are determined by using a DRL-based model
(DDPG). The authors chose a DRL-based model because
it has proven to be successful for complex and nonlinear
problems. In this way, it is aimed to provide a sustainable
solution for future resource-sensitive cold start prevention
studies.

2) TLA [28]: This approach model has two stages. In the
first stage, how much longer the container will be kept
warm is calculated using the actor–critic model. In the
second layer, call times are determined by monitoring
function patterns. By determining the function call times,
the heating times of the containers are determined. Thus,
cold start latency frequency and duration are tried to be
reduced.

D. Evaluation Metrics and Formulations

The metrics and formulations used when evaluating DL and
ML models are as follows.

1) Accuracy rate: It shows how accurately the ML model
predicts [23]. It is obtained by dividing true positive and
true negative by the total value. Accuracy is calculated as
follows:

Accuracy =
TP + TN

TN + FP + FN + TP
. (1)

2) Precision: It indicates how many of the samples predicted
as positive in the ML model are actually positive [11].
Precision is calculated as follows:

Precision =
TP

FP + TP
. (2)

3) Recall: It gives how many of the situations that need to
be predicted as positive are predicted positively using the
ML model [10]. Recall is calculated as follows:

Recall =
TP

TP + FN
. (3)

44 IEEE JOURNAL OF SELECTED AREAS IN SENSORS, VOL. 1, 2024

4) F-Score: It is used to find the harmonic mean between
precision and recall [23]. F-Score is calculated as follows:

FScore = 2× Precision× Recall
Precision + Recall

. (4)

5) Mean absolute error (MAE): It is calculated by averaging
the absolute differences between the true value Y and
the predicted value Y ′ [13]. It is another metric used to
evaluate forecasting models in statistics

MAE =
1
N

∑
|Y − Y ′| . (5)

6) Mean squared error (mse): It is calculated by squaring the
difference between the actual value Y and the predicted
value Y ′ [11]

mse =
1
N

∑
(Y − Y ′)2. (6)

7) Root-mean-squared error: It is calculated by taking the
square root of the mse [27]. It is used more than mse
because the mse value can be very large in some compar-
ison situations:

RMSE =

√
1
N

∑
(Y − Y ′)2. (7)

8) Cold start: It originates from the serverless paradigm and
is calculated using the formula below. Here, τi represents
the response time for the first request, and τi represents
the response time for the second request [8]

ζ = τi − τii. (8)

Energy-efficient solutions are needed for edge computing,
which has evolved into a net zero emission policy. These so-
lutions contribute to net zero emissions by reducing global
electricity use. Using the formulations explained below, energy
consumption and CO2 emissions can be calculated for all AI
models examined in this article.

1) Energy Consumption: The following formula is used to
find the energy consumption E used by the models [41].
Here, P represents the thermal design power of the pro-
cessor. t is used to represent both the train and test time
of the models

E = P × t

100
. (9)

2) Carbon Emission: Cloud providers provide services, such
as storage and processing power, to users over the Internet
through data centers. Operations that require electricity
consumption, such as energy and cooling, to provide
all these services contribute to carbon emissions [27].
Although calculating the amount of carbon emissions is
a complex process, it is generally calculated as follows:

C£ = P × t× CIE (10)

where C£ is the amount of carbon emissions, P is the
power consumption, t is the train or test time for an

Fig. 5. Performance measurements in terms of latency while deploying
the predictive maintenance dataset.

Fig. 6. Performance measurements in terms of throughput while
deploying the predictive maintenance dataset.

AI model, and CIE is the coefficient that varies region-
ally. In this research work, this coefficient is taken as
182 gCO2/kWh.2

E. Results

This section discusses the experimental results in terms of
serverless platform performance, ML, and computing parame-
ters.

1) Serverless Platform Performance: Figs. 5 and 6 show
the latency and throughput values obtained in response to

2[Online]. Available: https://carbonintensity.org.uk/

https://carbonintensity.org.uk/

GOLEC et al.: MASTER: ML-BASED COLD START LATENCY PREDICTION FRAMEWORK IN SERVERLESS EDGE COMPUTING 45

TABLE V
SSP PREDICTION PERFORMANCES ON TEST DATA FOR PROPOSED

(MASTER) AND BASELINE FRAMEWORKS (ATOM AND TLA)

the increasing number of users in Google Cloud Functions,
respectively. Apache J-Meter application was used to create a
workload on the server. The throughput value tends to increase in
proportion to the increasing number of users. After the number of
users reaches 500, the throughput starts to decrease gradually.
The reason for this is the resource contention that occurs due
to the use of common resources on the servers. Likewise, the
amount of latency is expected to increase depending on the
number of users. However, when Fig. 5 is carefully examined, it
is seen that the latency of 100 users is higher than the latency of
200 users. This is because of cold start occurring on serverless
platforms.

2) ML Parameters—Cold Start Prediction Performance: We
have considered cold start prediction performance as an ML
parameter. To measure the cold start prediction performance, we
consider the latency and throughput of Google Cloud Functions,
which are measured for an increasing number of requests. Then,
the SSP and MSP performances of the five ML/DL models
within the MASTER framework are compared to choose the
best-performing model for cold start prediction. Then, the su-
periority of MASTER is demonstrated by comparing the SSP
and MSP performances of the MASTER framework with two
baselines [27], [28]. In the next experiment, the computational
time of the MASTER framework is compared with baselines.
In the last experiment, we evaluate the energy consumption and
CO2 emissions for proposed and existing frameworks.

Two different prediction processes were performed to find
the model that made the most successful cold start estimation
among all DL/ML models examined in this article. In the first
prediction model, SSP, the cold start occurrence time is predicted
five minutes in advance by monitoring the past 300 steps. Per-
formance results for all models are given in Table V. The results
show that the best model in SSP is the XGB regressor with a
mean absolute percentage error (MAPE) ratio of 0.23. In the
second prediction model, MSP, the cold start occurrence time
was predicted 20 min in advance by monitoring the past 300
steps. Performance results for all models are given in Table VI.
The results show that the best model in MSP is again the XGB
regressor with a MAPE ratio of 0.12. Both SSP and MSP results
show that the MASTER framework is more successful in cold
start prediction than ATOM and TLA. Furthermore, it has been
identified that the ML models performed much better than DL
and DRL models due to the following reasons.

TABLE VI
MSP PREDICTION PERFORMANCES ON TEST DATA FOR PROPOSED

(MASTER) AND BASELINE FRAMEWORKS (ATOM AND TLA)

1) The size of the cold start dataset is small. DRL and DL
models generally learn better on large datasets. Complex
DRL and DL models do not perform well on small-size
datasets.

2) DL models are more sensitive to the quality of data than
ML models. Therefore, ML models perform better on
datasets containing noisy data, such as the cold start
dataset generated.

Fig. 7 shows the actual values for the cold start dataset and
the prediction results of all DL/ML models.

3) Computing Parameters: We have considered computa-
tional time and energy consumption and carbon emissions as
computing parameters.

1) Computational Time: It is very important to measure the
computational time for ML/DL models with resource limita-
tions. Fig. 8 shows the computational time for these models.
It has been noted that the LR is the fastest model with 0.04 s
for MSP and 0.017 s for SSP. The slowest model is the NHITS
model with 3.16 s on the MSP and 0.79 s on the SSP. When
compared in terms of training times, it is noted that the slowest
model is the DRL model (DDPG) used in the ATOM framework.
This is due to the exploration versus exploitation tradeoff for the
DRL agent to learn, which means the agent has to make a lot
of attempts to understand the environment and maximize the
reward. The results showed that ML models are preferable in
terms of practicality.

2) Energy Consumption and Carbon Emissions: In this sec-
tion, energy consumption and CO2 emission amounts are com-
pared for MASTER with baselines [27], [28]. In this period,
when concerns about environmental sustainability increase, it is
of great importance to reduce operational costs by minimizing
the carbon footprint. By carrying out these experiments, we
aim to identify the most efficient models by emphasizing this
awareness.

We compared the MASTER with baselines in terms of energy
consumption, which is calculated using (9), as shown in Fig. 9. It
has been noted that the LR consumes the least energy for training
with 45 J, while the DDPG model consumes the most energy
with 20 264 J. In DRL models, such as DDPF, agents learn by
trial and error using an exploration and exploitation strategy.
This form of learning takes longer than other models (ML and
DL) and therefore results in higher energy consumption. The
LR model uses the method of linearly relating input variables,

46 IEEE JOURNAL OF SELECTED AREAS IN SENSORS, VOL. 1, 2024

Fig. 7. Cold start prediction performance comparison in terms of latency for proposed (MASTER) and baseline frameworks (ATOM and TLA).

Fig. 8. Performance comparison in terms of latency for proposed (MASTER) and baseline frameworks (ATOM and TLA) in terms of computation
time. (a) Training. (b) SSP. (c) MSP.

Fig. 9. Performance comparison in terms of latency for proposed (MASTER) and baseline frameworks (ATOM and TLA) in terms of energy
consumption. (a) Training. (b) SSP. (c) MSP.

GOLEC et al.: MASTER: ML-BASED COLD START LATENCY PREDICTION FRAMEWORK IN SERVERLESS EDGE COMPUTING 47

Fig. 10. Performance comparison in terms of latency for proposed (MASTER) and baseline frameworks (ATOM and TLA) in terms of CO2 emission.
(a) Training. (b) SSP. (c) MSP.

which is an uncomplicated learning model. In addition, it has
a small number of hyperparameters. For all these reasons, it
is faster and consumes less energy than other models. When
looking at the SSP and MSP results, it is seen that the model that
consumes the least energy is LR for this reason (0.45, 1.8), while
the model that consumes the most energy is NHITS with values
of 35.55 and 142.20 J. NHITS has an architecture consisting of
several stacks and blocks to eliminate long-horizon forecasting
and computational complexity, and therefore will bring higher
energy consumption compared with other models.

Fig. 10 shows the emission amounts of CO2 obtained using
(10). Since the amount of CO2 emission is directly proportional
to the amount of energy consumption, similarly, for training, the
least CO2 emission belongs to the LR model with 1.25e-05 gCO2

and the highest CO2 emission belongs to the DDPG model with
0.005 gCO2. For SSP and MSP, the lowest CO2 emissions be-
longs to the LR model with 5e-07 and 1.25e-07 gCO2, while the
highest CO2 emissions belongs to NHITS model with 9.87e-06
and 3.95e-05 gCO2.

V. CONCLUSION

The integration of serverless edge computing and the IIoT
is a promising approach that can make industrial processes
more efficient in addition to the advantages that the server-
less paradigm offers, such as an affordable pricing model and
dynamic scalability, there is still a cold start latency problem
waiting to be solved. This article explores the potential of AI
models for predicting cold start latency. For this, we propose
MASTER, an ML-based framework that performs cold start
monitoring and prediction in serverless edge computing en-
vironments. The MASTER framework is positioned between
the client and server, monitors all communication information,
and creates a cold start dataset. It trains the ML algorithm
in the MASTER framework using this cold start dataset. To
evaluate the performance of the MASTER framework, we used
the predictive maintenance application, which is an Industry 4.0
scenario. As a result of the experiments performed for the model
to be used in the AI module of the MASTER framework, it was

determined that the most successful model was XGBoost, with
MAPE values of 0.23 in SSP and 0.12 in MSP. We also compared
the performance of the MASTER framework in terms of cold
start latency prediction with baselines, such as ATOM and
TLA. In this article, the performance of time-series models was
compared according to energy consumption and CO2 emissions.
The results showed that NHITS was the model with the highest
computation time and CO2 emissions.

This article demonstrates that ML models can accurately
forecast cold start latency and hence hold significant promise
for reducing cold start latency in the future. Further, additional
resource management issues in serverless computing, such as
execution cost and scalability, can be constructively addressed
by extending generative AI models in future research. Cold start
prediction accuracy can be enhanced using modern ML or DL
models. It is also possible to mitigate the cold start latency
problem in serverless settings by making extensions to the
MASTER framework. Furthermore, public datasets containing
multiple applications and functions offered by cloud service
providers, such as Microsoft Azure, can be used for real-time
predictions. As a result, many functions can be used to create a
dataset, which can be utilized in the future. In addition, in settings
with limited resources, a faster and less expensive system can
be developed with the help of online ML.

Software Availability: The dataset in first footnote is publicly
published for future researchers.

REFERENCES

[1] G. Liu, “Frequency-switchable routing protocol for dynamic magnetic
induction-based wireless underground sensor networks,” IEEE J. Sel.
Areas Sensors, vol. 1, pp. 1–8, 2024.

[2] X. Li, P. Russell, C. Mladin, and C. Wang, “Blockchain-enabled
applications in next-generation wireless systems: Challenges and
opportunities,” IEEE Wireless Commun., vol. 28, no. 2, pp. 86–95,
Apr. 2021.

[3] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson, “The Industrial
Internet of Things (IIoT): An analysis framework,” Comput. Ind., vol. 101,
pp. 1–12, 2018.

[4] K. Rose, S. Eldridge, and L. Chapin, “The Internet of Things: An
overview,” The Internet Soc., vol. 80, pp. 1–50, 2015.

48 IEEE JOURNAL OF SELECTED AREAS IN SENSORS, VOL. 1, 2024

[5] S. S. Gill et al., “Modern computing: Vision and challenges,” Telematics
Inform. Rep., vol. 13, 2024, Art. no. 100116.

[6] T. Zonta, C. A. Da Costa, R. da Rosa Righi, M. J. de Lima, E. S. da Trindade,
and G. P. Li, “Predictive maintenance in the Industry 4.0: A systematic
literature review,” Comput. Ind. Eng., vol. 150, 2020, Art. no. 106889.

[7] S. S. Gill, I. Chana, M. Singh, and R. Buyya, “RADAR: Self-configuring
and self-healing in resource management for enhancing quality of cloud
services,” Concurrency Computation: Pract. Experience, vol. 31, no. 1,
2019, Art. no. e4834.

[8] M. Golec, G. K. Walia, M. Kumar, F. Cuadrado, S. S. Gill, and S.
Uhlig, “Cold start latency in serverless computing: A systematic review,
taxonomy, and future directions,” 2023, arXiv:2310.08437.

[9] C. Tang, G. Yan, H. Wu, and C. Zhu, “Computation offloading and
resource allocation in failure-aware vehicular edge computing,” IEEE
Trans. Consum. Electron., vol. 70, no. 1, pp. 1877–1888, Feb. 2024.

[10] M. Golec, D. Chowdhury, S. Jaglan, S. S. Gill, and S. Uhlig, “AIBLOCK:
Blockchain based lightweight framework for serverless computing using
AI,” in Proc. IEEE Int. Symp. Cluster Cloud Internet Comput., 2022,
pp. 886–892.

[11] M. Golec, S. Iftikhar, P. Prabhakaran, S. S. Gill, and S. Uhlig, “QoS
analysis for serverless computing using machine learning,” in Serverless
Computing: Principles and Paradigms. Berlin, Germany: Springer, 2023,
pp. 175–192.

[12] X. Liu et al., “FaaSLight: General application-level cold-start latency
optimization for function-as-a-service in serverless computing,” ACM
Trans. Softw. Eng. Methodol., vol. 32, no. 5, Jul. 2023, Art. no. 119.

[13] M. Golec, S. S. Gill, A. K. Parlikad, and S. Uhlig, “HealthFaaS: Ai-based
smart healthcare system for heart patients using serverless computing,”
IEEE Internet Things J., vol. 10, no. 21, pp. 18469–18476, Nov. 2023.

[14] I. Baldini et al., “Serverless computing: Current trends and open problems,”
in Research Advances in Cloud Computing, Berlin, Germany: Springer,
2017, pp. 1–20.

[15] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise of
serverless computing,” Commun. ACM, vol. 62, no. 12, pp. 44–54, 2019.

[16] J. M. Hellerstein et al., “Serverless computing: One step forward, two steps
back,” 2018, arXiv:1812.03651.

[17] H. Lee, K. Satyam, and G. Fox, “Evaluation of production serverless
computing environments,” in Proc. IEEE 11th Int. Conf. Cloud Comput.,
2018, pp. 442–450.

[18] P. K. Gadepalli, G. Peach, L. Cherkasova, R. Aitken, and G. Parmer, “Chal-
lenges and opportunities for efficient serverless computing at the edge,” in
Proc. IEEE 38th Symp. Reliable Distrib. Syst., 2019, pp. 261–2615.

[19] M. Sewak and S. Singh, “Winning in the era of serverless computing and
function as a service,” in Proc. IEEE 3rd Int. Conf. Convergence Technol.,
2018, pp. 1–5.

[20] T. Elgamal, “Costless: Optimizing cost of serverless computing through
function fusion and placement,” in Proc. IEEE/ACM Symp. Edge Comput.,
2018, pp. 300–312.

[21] Y. K. Teoh, S. S. Gill, and A. K. Parlikad, “IoT and fog-computing-based
predictive maintenance model for effective asset management in Industry
4.0 using machine learning,” IEEE Internet Things J., vol. 10, no. 3,
pp. 2087–2094, Feb. 2023.

[22] M. Shurrab, D. Mahboobeh, R. Mizouni, S. Singh, and H. Otrok, “Over-
coming cold start and sensor bias: A deep learning-based framework for
IoT-enabled monitoring applications,” J. Netw. Comput. Appl., vol. 222,
2024, Art. no. 103794.

[23] M. Golec, R. Ozturac, Z. Pooranian, S. S. Gill, and R. Buyya, “IFaaSBus:
A security-and privacy-based lightweight framework for serverless com-
puting using IoT and machine learning,” IEEE Trans. Ind. Inform., vol. 18,
no. 5, pp. 3522–3529, May 2022.

[24] M. Javaid, A. Haleem, R. P. Singh, S. Rab, and R. Suman, “Significance
of sensors for Industry 4.0: Roles, capabilities, and applications,” Sensors
Int., vol. 2, 2021, Art. no. 100110.

[25] S. S. Gill et al., “AI for next generation computing: Emerging trends and
future directions,” Internet Things, vol. 19, 2022, Art. no. 100514.

[26] Z. Jan et al., “Artificial intelligence for Industry 4.0: Systematic review
of applications, challenges, and opportunities,” Expert Syst. With Appl.,
vol. 216, 2023, Art. no. 119456.

[27] M. Golec et al., “ATOM: Ai-powered sustainable resource management for
serverless edge computing environments,” IEEE Trans. Sustain. Comput.,
early access, Nov. 29, 2023, doi: 10.1109/TSUSC.2023.3348157.

[28] P. Vahidinia, B. Farahani, and F. S. Aliee, “Mitigating cold start problem in
serverless computing: A reinforcement learning approach,” IEEE Internet
Things J., vol. 10, no. 5, pp. 3917–3927, Mar. 2023.

[29] S. F. Ahmed et al., “Deep learning modelling techniques: Current progress,
applications, advantages, and challenges,” Artif. Intell. Rev., pp. 1–97,
2023.

[30] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “Serverless
programming (function as a service),” in Proc. IEEE 37th Int. Conf. Distrib.
Comput. Syst., 2017, pp. 2658–2659.

[31] K. Solaiman and M. A. Adnan, “WLEC: A not so cold architecture to
mitigate cold start problem in serverless computing,” in Proc. IEEE Int.
Conf. Cloud Eng., 2020, pp. 144–153.

[32] P. Silva, D. Fireman, and T. E. Pereira, “Prebaking functions to warm
the serverless cold start,” in Proc. 21st Int. Middleware Conf., 2020,
pp. 1–13.

[33] S. Pan, H. Zhao, Z. Cai, D. Li, R. Ma, and H. Guan, “Sustainable serverless
computing with cold-start optimization and automatic workflow resource
scheduling,” IEEE Trans. Sustain. Comput., early access, Sep. 01, 2023,
doi: 10.1109/TSUSC.2023.3311197.

[34] K. Suo, J. Son, D. Cheng, W. Chen, and S. Baidya, “Tackling cold
start of serverless applications by efficient and adaptive container
runtime reusing,” in Proc. IEEE Int. Conf. Cluster Comput., 2021,
pp. 433–443.

[35] N. Daw, U. Bellur, and P. Kulkarni, “Xanadu: Mitigating cascading cold
starts in serverless function chain deployments,” in Proc. 21st Int. Middle-
ware Conf., 2020, pp. 356–370.

[36] S. Ristov, C. Hollaus, and M. Hautz, “Colder than the warm start and
warmer than the cold start! Experience the spawn start in FaaS providers,”
in Proc. Workshop Adv. tools, Program. languages, PLatforms Implement-
ing Evaluating Algorithms Distrib. Syst., 2022, pp. 35–39.

[37] A. Kumari, B. Sahoo, and R. K. Behera, “Mitigating cold-start delay using
warm-start containers in serverless platform,” in Proc. IEEE 19th India
Council Int. Conf., 2022, pp. 1–6.

[38] S. Matzka, “Explainable artificial intelligence for predictive maintenance
applications,” in Proc. 3rd Int. Conf. Artif. Intell. Industries, 2020,
pp. 69–74.

[39] H.-H. Hsu et al., “A nonvolatile AI-edge processor with SLC–MLC
hybrid ReRAM compute-in-memory macro using current-voltage-hybrid
readout scheme,” IEEE J. Solid-State Circuits, vol. 59, no. 1, pp. 116–127,
Jan. 2024.

[40] P. Vahidinia, B. Farahani, and F. S. Aliee, “Cold start in serverless com-
puting: Current trends and mitigation strategies,” in Proc. IEEE Int. Conf.
Omni-Layer Intell. Syst., 2020, pp. 1–7.

[41] E. Kristianto, P.-C. Lin, and R.-H. Hwang, “Sustainable and lightweight
domain-based intrusion detection system for in-vehicle network,” Sustain.
Comput.: Inform. Syst., vol. 41, 2024, Art. no. 100936.

https://dx.doi.org/10.1109/TSUSC.2023.3348157
https://dx.doi.org/10.1109/TSUSC.2023.3311197

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

