
JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2023 1

Neural Networks based Smart e-Health
Application for the Prediction of Tuberculosis

using Serverless Computing
Subramaniam Subramanian Murugesan, Sasidharan Velu, Muhammed Golec, Huaming Wu, Senior

Member, IEEE, and Sukhpal Singh Gill

Abstract— The convergence of the Internet of Things
(IoT) with e-health records is creating a new era of advance-
ments in the diagnosis and treatment of disease, which
is reshaping the modern landscape of healthcare. In this
paper, we propose a neural networks-based smart e-health
application for the prediction of Tuberculosis (TB) using
serverless computing. The performance of various Convo-
lution Neural Network (CNN) architectures using transfer
learning is evaluated to prove that this technique holds
promise for enhancing the capabilities of IoT and e-health
systems in the future for predicting the manifestation of
TB in the lungs. The work involves training, validating, and
comparing Densenet-201, VGG-19, and Mobilenet-V3-Small
architectures based on performance metrics such as test
binary accuracy, test loss, intersection over union, preci-
sion, recall, and F1 score. The findings hint at the potential
of integrating these advanced Machine Learning (ML) mod-
els within IoT and e-health frameworks, thereby paving the
way for more comprehensive and data-driven approaches
to enable smart healthcare. The best-performing model,
VGG-19, is selected for different deployment strategies
using server and serless-based environments. We used
JMeter to measure the performance of the deployed model,
including the average response rate, throughput, and error
rate. This study provides valuable insights into the selec-
tion and deployment of ML models in healthcare, high-
lighting the advantages and challenges of different deploy-
ment options. Furthermore, it also allows future studies
to integrate such models into IoT and e-health systems,
which could enhance healthcare outcomes through more
informed and timely treatments.

Index Terms— e-Health, Tuberculosis, Machine Learning,
Serverless Computing, Predictive Models, Healthcare, IoT

I. INTRODUCTION

THE rapid advancements in Machine Learning (ML) and
Artificial Intelligence (AI) technologies have significantly

impacted the field of medical diagnosis, particularly in the
realm of pulmonary diseases such as Tuberculosis (TB) [1].
Moreover, the integration of these cutting-edge technologies
has paved the way for revolutionary developments in the
Internet of Things (IoT) and e-health solutions [2]–[5]. These

This work is partially supported in part by the National Natural Science
Foundation of China under Grant 62071327 and Tianjin Science and
Technology Planning Project under Grant 22ZYYYJC00020.

S. S. Murugesan, S. Velu, M. Golec and S. S. Gill are with the School
of Electronic Engineering and Computer Science, Queen Mary Uni-
versity of London, United Kingdom. Email: {s.subramanianmurugesan,
s.velu}@se22.qmul.ac.uk, {m.golec, s.s.gill}@qmul.ac.uk

H. Wu is with the Center for Applied Mathematics, Tianjin University,
Tianjin, China. Email: whming@tju.edu.cn

(Corresponding author: Huaming Wu)

innovations allow for real-time monitoring of patients’ health
conditions and the seamless transmission of medical data to
healthcare providers [6], enabling more timely and accurate
diagnoses and treatments [7]. TB is a contagious ailment
primarily impacting the lungs, resulting from specific bac-
teria. It is transmitted when individuals with the infection
cough, sneeze, or release saliva into the air. TB can be both
prevented and treated. In 2021, TB resulted in 1.6 million
fatalities, inclusive of 187,000 individuals with HIV. Globally,
TB ranked as the 13th primary cause of death, and it was
the second-highest infectious cause of death after COVID-
19, surpassing HIV/AIDS. Around 10.6 million individuals
worldwide contracted TB that year, comprising 6 million
men, 3.4 million women, and 1.2 million children. Although
TB affects all nations and ages, it’s notable that it can be
both treated and averted. MultiDrug-Resistant TB (MDR-TB)
continued to be a significant public health concern in 2021,
with only a third of those afflicted receiving treatment. From
2000 to 2021, approximately 74 million lives were rescued
due to TB treatments and diagnoses. To meet the global goals
established at the 2018 UN summit on TB, an annual funding
of US$ 13 billion is required to support TB care, prevention,
diagnosis, and treatment. One of the health objectives of the
UN’s Sustainable Development Goals (SDGs) is to eradicate
the TB epidemic by 20301. The diagnosis of TB typically
requires careful interpretation of chest radiographs, a process
that can be both time-consuming and subject to human error.
The automation of this process using ML technologies, inte-
grated with IoT and E-Health systems in the future, promises
to increase both the speed and accuracy of TB diagnosis2.

Image recognition technology has evolved significantly,
finding applications across various fields and technologies.
Its fundamental goal is to enable computers to process and
interpret visual data similarly to human vision, but with
greater speed and accuracy. Image recognition technology
has evolved significantly, finding applications across various
fields and technologies. Its fundamental goal is to enable com-
puters to process and interpret visual data similarly to human
vision, but with greater speed and accuracy. Researchers have
shown that a pure transformer architecture can be useful for
image recognition tasks and can get great results with less
computing power than convolutional networks [8]. Further,

1https://www.who.int/news-room/fact-sheets/detail/
tuberculosis

2https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC9041161/

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3367736

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 21,2024 at 02:47:12 UTC from IEEE Xplore. Restrictions apply.

https://www.who.int/news-room/fact-sheets/detail/tuberculosis
https://www.who.int/news-room/fact-sheets/detail/tuberculosis
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041161/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041161/

2 JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2023

the implementation of Oscillatory Neural Networks (ONNs)
using Field-Programmable Gate Array (FPGA) for digit recog-
nition from a camera stream highlights the adaptability of
image recognition in real-time applications [9]. Moreover,
Genetic Algorithm Augmented Convolutional Neural Network
(CNN) has been utilised to improve performance in training
time and accuracy [10]. Another study discussed making an
Advanced Driver Assistance System (ADAS) with a het-
erogeneous multicore System on Chip (SoC) that has dedi-
cated accelerators for different image recognition tasks [11].
Furthermore, the Sequence-to-Sequence Domain Adaptation
Network (SSDAN) for robust text image recognition [12]
and image recognition for the detection of Distribuited Denial
of Service (DDoS) malware in IoT environments [13] and
applied transfer learning techniques for image recognition in
categorising nanoscience images obtained by scanning electron
microscope [14]. Finally, a comprehensive review of deep
learning methods in plant phenotypic image recognition is
conducted to understand the literature in detail [15].

This paper presents a comparative study of three different
CNN architectures, namely, DenseNet201, VGG19, and Mo-
bileNet V3 Small. The research leverages transfer learning, a
technique that utilizes pre-trained models to bypass the need
for large amounts of data and computational resources [16].
Performance evaluation of these models is conducted using
two publicly available chest radiograph datasets released by
the U.S. National Library of Medicine [17]. These datasets,
comprising normal and abnormal chest X-rays, are sourced
from Montgomery County’s TB screening program and the
Shenzhen No. 3 People’s Hospital in China. Post model
selection, the research investigates the comparison of two
deployment strategies: a traditional server-based deployment
on an AWS EC2 instance, and a serverless approach using
AWS Fargate and AWS Elastic Kubernetes Service (EKS)
for containerized deployment. When we refer to “serverless”
in the context of AWS Fargate and AWS EKS, it doesn’t
mean that servers aren’t used at all. Instead, “serverless” in
this context means that the developers and operators don’t
need to provision, manage, or maintain the underlying servers
[18]. The cloud provider (in this case, AWS) abstracts away
the infrastructure management. Application developers can use
serverless computing without handling backend infrastructure.
This paradigm emphasises front-end and business develop-
ment. The cloud provider is in charge of managing all backend
processes, including infrastructure scaling and maintenance.
This strategy streamlines development and delivers a cost-
effective charging mechanism based on real usage, avoiding
idle resource expenses.

A. Motivation and Our Contributions
TB is an infectious disease that carries the risk of death, and

even after recovery, there is a risk of re-infection [19]. Chest
radiography, which is the most commonly used diagnostic
tool to diagnose TB, has an important value in identifying
the disease. This has led to increased interest in the field
of medical imaging research, particularly in the automated
detection of chest diseases using lung radiographs [20]. Ac-
curate diagnosis of active TB is crucial for an effective TB

control initiative. Patients who remain undiagnosed with TB
remain infectious and at risk of death; Patients who do not
have TB but are misdiagnosed are unnecessarily exposed
to potentially harmful drugs, wasting valuable public health
resources. Additionally, only a small fraction of MD-R TB
cases are confirmed by laboratories; This highlights the need
for adequate diagnostic capacity for all forms of drug-resistant
tuberculosis to advance global TB care. Therefore, TB control
strategies should prioritize early diagnosis and appropriate
treatment for all types of TB [21].

This work contributes to ongoing efforts to automate TB
diagnosis by introducing a new architecture based on server-
less computing and ML. The novelty of this work lies in the
comprehensive approach to TB diagnosis by combining ad-
vanced CNN architectures with innovative delivery strategies.
This dual focus not only increases the accuracy of disease
detection but also streamlines the implementation process,
making it more adaptable and efficient to real-world scenar-
ios. Furthermore, our research is pioneering in integrating
serverless computing paradigms into healthcare, potentially
revolutionizing the speed and efficiency of disease diagnosis
and management. To achieve this, we have selected Densenet-
201, VGG-19, and Mobilenet-V3-Small architectures, because
other well-known research works [22], [23] have shown that
these models are most suitable for understanding the patterns,
weights, and biases in a greyscale image such as Chest X-
Rays. Results from this research could potentially lead to
the development of robust, scalable, and accurate computer-
aided diagnostic systems for TB, facilitating more efficient
patient treatment. The first part of the innovative approach
involves choosing the right ML model. Following model se-
lection, two different deployment strategies are explored: AWS
EC2 (traditional server-based deployment) and (serverless-
based deployment) using AWS Fargate and AWS EKS. The
paper concludes by showing the performance superiority of
serverless computing over traditional servers by comparing
two different deployment strategies. This study provides new
insights into the selection and deployment of ML models for
disease detection, paving the way for more efficient diagnostic
systems. The main contributions of this paper are:

• Emphasizes the importance of chest radiography in dis-
ease detection.

• Enables real-time monitoring and early detection of TB
with a proactive approach by integrating with IoT.

• Facilitates TB diagnosis using advanced CNN architec-
tures.

• Explores and compares distribution strategies, highlight-
ing latency considerations.

The rest of the paper is structured as follows. Section II
presents the studies on ML models and their practices to
predict Pneumonia-based diseases and their deployment in the
real world. Section III describes the proposed methodology.
Section IV presents the performance evaluations and results.
Section V concludes and highlights future directions.

II. RELATED WORK

In this section, we delve deeply into various research
initiatives where ML, particularly CNN architectures, has

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3367736

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 21,2024 at 02:47:12 UTC from IEEE Xplore. Restrictions apply.

SUBRAMANIAM et al.: NEURAL NETWORKS BASED SMART E-HEALTH APPLICATION 3

TABLE I: Comparison of proposed work with existing studies

Study Disease AI Deployment Scalability

[16] [22] [23] [27] COVID-19 ✓ × ×
[24] [25] Pneumonia ✓ × ×
[26] Tuberculosis ✓ × ×

Our Work (this paper) Tuberculosis ✓ ✓ ✓

been utilized for interpreting lung X-ray images. The pri-
mary objective of these studies is to diagnose lung-related
diseases, highlighting the efficacy of deep-learning models.
Our focus is predominantly on TB diagnosis, aiming to not
only evaluate the diagnostic capabilities of AI but also explore
the operational facets of deployment and scalability. This
approach intends to bridge the gap between academic research
and real-world clinical applications. COVID-19 Detection:
Showkat et al. [16] utilized the ResNet deep learning model
to classify pneumonia from chest X-rays, achieving notable
success in detecting COVID-19-related pneumonia. Shelke et
al. [22] employed AI to analyze chest X-rays, achieving a
remarkable 98.9% accuracy rate in distinguishing COVID-
19 from normal pneumonia using the DenseNet-161 model.
Tangudu et al. [23] introduced an optimized model with a 99%
accuracy rate across two datasets for COVID-19 detection via
chest radiographs, leveraging the MobileNet architecture.
Pneumonia Severity and Classification: Dey et al. [24]
revealed that the VGG19 deep learning system, combined with
an Ensemble Feature Scheme and Random-Forest classifier,
achieves a 97.94% accuracy in diagnosing pneumonia from
chest X-rays. Saleh et al. [25] utilized eight pre-trained models
to discern pneumonia severity, with the MobileNet model
achieving up to 94.23% accuracy.
Tuberculosis Detection: The study in [26] employed the
ConvNet model to detect TB from chest X-rays, achieving an
87% accuracy rate, although pre-trained models like Xception
achieved slightly higher precision. Our study distinguishes
itself by emphasizing deployment strategies, an aspect often
overlooked in related research. We use Amazon Fargate with
EKS to deploy our model serverlessly, making it practical and
applicable. Table I compares our proposed work with existing
studies. Most similar research focuses on model performance
and accuracy but overlooks deployment and scaling solutions.
Our work addresses this gap by focusing on real-world de-
ployment strategies.

III. METHODOLOGY

This section explains comprehensive methodology imple-
mented in our study, including the datasets, CNN models,
transfer learning strategies applied to these models, system
architecture, and deployment strategies.

A. Dataset
Our study employed two principal chest X-ray datasets:

the Montgomery County set (MC) and the Shenzhen set,
both of which were retrieved from the popular data science
platform, Kaggle3 [17]. The dataset used for this research

3https://www.kaggle.com/datasets/nikhilpandey360/
chest-xray-masks-and-labels

was sourced from the National Library of Medicine, National
Institutes of Health, Bethesda, MD, USA and Shenzhen No.3
People’s Hospital, Guangdong Medical College, Shenzhen,
China. The Montgomery County set, assembled in cooperation
with the Department of Health and Human Services, Mont-
gomery County, USA, comprises 138 frontal chest X-rays.
Out of these, 80 are normal cases and 58 are cases showing
indications of TB. All images were captured using an Eureka
stationary X-ray machine and are provided in PNG format,
with DICOM format also available upon request. These details,
as well as subsequent analyses of the data, were published in
[17]. The Shenzhen dataset, collected in collaboration with
the Shenzhen No.3 People’s Hospital, China, consists of 662
frontal chest X-rays, with 326 normal and 336 exhibiting
signs of TB. These images were captured as part of routine
hospital procedures and are provided in PNG format. This
dataset and its insights were also discussed in [17]. Both
datasets not only have a clear naming convention for ease of
interpretation, with identifiers signifying whether an X-ray is
normal or abnormal, but also come with a clinical reading that
outlines crucial information such as the patient’s age, gender,
and any detected lung abnormalities [17]. In addition to [17],
these datasets have also been used in research investigations
[28], [29]. Considering the diversity and variability in medical
imaging data, incorporating chest X-ray images from various
hospitals could significantly enhance our model’s applicability.
Federated learning, where model training is decentralized and
data remains at its original location, emerges as a viable
solution. This method not only addresses privacy concerns but
also allows for a richer, more diverse dataset without the need
to transfer sensitive medical data [30], [31].

B. Model Selection

In this research, we employed a transfer learning approach
that leverages pre-trained models to efficiently detect TB in
a resource-efficient manner. The approach encompasses the
following key aspects: Adaptation of Pre-Trained Models:
We initiated our methodology by adapting pre-trained models
for TB detection. This involved preparing datasets for both
training and testing, followed by tailoring these models to
specifically address the task of TB detection. 1) Feature Ex-
traction and Fine-Tuning: A critical phase of our approach was
the feature extraction and subsequent fine-tuning. Initially, the
model was trained and evaluated using the prepared datasets.
This was followed by fine-tuning, where we unfroze layers
in the base model and re-trained it with a reduced learning
rate. This fine-tuning process was crucial in enhancing the
model’s performance by achieving a deeper understanding
of the dataset-specific features. 2) Optimization Strategies:
We fine-tuned our model for an additional five epochs with
a reduced learning rate of 0.001. The decision to unfreeze
the last 30% of the layers in each model was based on our
findings and aligned with established guidelines [16], proving
to be effective in optimizing the model’s performance for TB
detection. 3) Utilization of Specific Models: In our research, we
specifically employed models like DenseNet201 and VGG19,
known for their proficiency in image recognition tasks, and
adapted them for our TB classification task. This allowed us

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3367736

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 21,2024 at 02:47:12 UTC from IEEE Xplore. Restrictions apply.

https://www.kaggle.com/datasets/nikhilpandey360/chest-xray-masks-and-labels
https://www.kaggle.com/datasets/nikhilpandey360/chest-xray-masks-and-labels

4 JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2023

to leverage the extensive knowledge these models had acquired
from training on large-scale image datasets, making them
particularly suited for our research needs. This strategy enables
us to leverage the knowledge these models have already
acquired through training on a large-scale image dataset and
tailor it to our TB classification task. Further elaboration
on the individual models and the fine-tuning process will
be presented in the following sections. The transfer learning
approach we adopted was not only instrumental in enhancing
the model’s accuracy but also in conserving computational
resources, making it a viable solution for integrating with IoT
and e-health systems for future healthcare delivery.

1) Densenet 201: In our study, we draw relevance from
the research detailed in [27] concerning the utilization of the
DenseNet201 model for TB classification. This work outlines
a DenseNet201-based deep transfer learning (DTL) model
specifically for the diagnosis of COVID-19 patients, which
has been instrumental in guiding our choice of models. Their
methodology involves leveraging DenseNet201 for feature
extraction, utilizing its pre-trained weights on the ImageNet
dataset, and incorporating a convolutional neural structure. The
demonstrated effectiveness of DenseNet201 in differentiating
COVID-19 cases from chest CT scan images in their study
provides compelling evidence for its prospective relevance in
analogous situations, including our Tuberculosis case classifi-
cation. The choice to include DenseNet-201 in our study was
driven by its architectural strengths, notably, its dense connec-
tivity pattern, which alleviates the vanishing-gradient problem,
strengthens feature propagation, and encourages feature reuse.
This makes DenseNet-201 highly effective for medical image
analysis, particularly in complex tasks like TB classification.
DenseNet-201’s ability to process detailed features from chest
X-rays, a critical component in TB diagnosis, enhances the
model’s classification accuracy. We leveraged this to compare
its performance with other CNN architectures, demonstrating
its robustness in handling intricate patterns in medical imaging.
The inclusion of DenseNet-201, therefore, was not only to
provide a comprehensive analysis but also to showcase the
effectiveness of different architectural approaches in medical
diagnostics.

Hence, we regard the DenseNet201 model as a pivotal
component of our model architecture ensemble, along with
VGG19 and MobileNetV3 Small, to explore its potential for
TB classification. Our findings, highlighting DenseNet-201’s
performance in TB classification, contribute to the growing
body of evidence supporting the use of advanced deep learning
techniques in healthcare. This aligns with our paper’s aim to
explore and validate the integration of cutting-edge machine
learning models in medical diagnostics, offering insights into
their practical application in e-health systems.

2) VGG 19: In [24], a novel approach employing a tailored
VGG19 architecture was utilized to scrutinize chest X-ray
images, with a particular focus on distinguishing between
normal and pneumonia-afflicted cases. Their model utilized
transfer learning in combination with SoftMax and was com-
pared against various prominent deep learning models such
as AlexNet, VGG19, and ResNet50. The experimental results
unveiled VGG19’s superior performance over its counterparts.

The VGG19 architecture’s use of small, stacked convolution
filters significantly enhances its feature extraction capabil-
ities. The small filters enable broader and more complex
feature abstraction, crucial for image classification and object
detection. VGG19’s deep layers excel at extracting high-
level features, essential for accurate image classification and
object detection. This structure efficiently utilizes contextual
information, improving accuracy in tasks like image super-
resolution. Additionally, VGG19 effectively balances reducing
overfitting and gradient weight updating challenges, main-
taining effectiveness across various applications. Furthermore,
an Ensemble Feature Selection (EFS) technique was used in
[24] to enhance VGG19’s diagnostic accuracy. This method
fused the hand-engineered features acquired through proce-
dures like Continuous Wavelet Transform (CWT), Discrete
Wavelet Transform (DWT), and Gray-Level Co-occurrence
Matrix (GLCM) with deep learning features extracted through
transfer learning [24].Both methods are widely used in sig-
nal processing and analysis and have different effects on
persistence and precision. While the CWT method works
more effectively at high frequency, DWT is more successful
at the discrete scale level. For this reason, CWT is gener-
ally used in applications requiring time-frequency analysis,
while DWT is more frequently used in applications requiring
multi-level analysis.The remarkable classification accuracy of
97.94% achieved by the VGG19 model, as reported in [24],
underscores its clinical utility and its potential applicability
for interpreting clinical-grade chest X-rays. Bearing in mind
the noteworthy results obtained using VGG19 in chest image
analysis as demonstrated in [24], we have opted to integrate
the VGG19 model into our research. Its proven proficiency
in image classification is anticipated to enrich our study
and aid in the precise classification of TB cases. Ensemble
Feature Selection (EFS) is a significant method in various data
processing and analysis fields, known for its robustness and
adaptability in feature selection. Its methodologies, benefits,
and practical applications have been explored across different
domains, demonstrating its versatility and effectiveness in
a wide range of applications, from medical diagnostics to
environmental monitoring and cybersecurity, highlighting its
importance in modern data analysis and prediction models.

The VGG19 model, known for its robust performance across
various metrics, possesses several distinctive characteristics:
i) High-Dimensional Feature Extraction: In some applications
like blood pressure estimation using PPG signals, the VGG19
model excels in extracting high-dimensional and rich life
characteristics, enhancing performance in conjunction with
other networks like LSTM [32]. ii) Modification for Specific
Applications: For certain tasks, such as detecting Autism Spec-
trum Disorder from facial images, modifications to the VGG19
model, like altered architecture, attention mechanisms, and the
application of transfer learning, have significantly improved its
accuracy. These changes enable the model to better capture
subtle facial characteristics and reduce overfitting [33]. iii)
Transfer Learning Capabilities: The VGG19 model’s transfer-
learning capabilities are noteworthy, especially in fields like
traffic anomaly classification, where it achieves high accuracy
and AUC scores, outperforming other methods and previous

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3367736

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 21,2024 at 02:47:12 UTC from IEEE Xplore. Restrictions apply.

SUBRAMANIAM et al.: NEURAL NETWORKS BASED SMART E-HEALTH APPLICATION 5

VGG19 models [34]. iv) Performance Metrics: It achieves
impressive performance metrics, such as a testing accuracy
of 99.98%, a loss rate of 0.0120, an F1-score of 99.89%, and
an area under the ROC of 100% in specific studies [35]. These
characteristics collectively contribute to the VGG19 model’s
robustness and adaptability in various contexts, enabling its
consistent outperformance.

3) Mobilenet V3 Small: In [25], the authors performed a
comparative analysis of five pre-trained convolutional neural
network (CNN) models, specifically, ResNet50, ResNet152V2,
DenseNet121, DenseNet201, and MobileNet, to distinguish
pneumonia cases from normal instances. The investigation
underscored that MobileNet outperformed the other models
when operated with a batch size of 16, 64 epochs, and the
ADAM optimizer. The model’s predictions were further veri-
fied using public chest radiological images, and the achieved
accuracy of the MobileNet model was an impressive 94.23%.
Such high accuracy underpins the model’s efficacy in aiding
the development of effective CNN-based solutions for the
preliminary diagnosis of diseases such as COVID-19. Inspired
by the promising research findings of [25], we have decided
to include MobileNetV3 Small in our study for TB detection.
Given the robust performance of the MobileNet architecture
in previous research and its ability to deliver high accuracy
with lower computational requirements, we anticipate that
it will significantly contribute to the success of our TB
classification task. Comparison with Other Models (Effi-
cientNet, ResNet, Lightweight CNNs): While models like
EfficientNet and ResNet are recognized for their efficiency and
high performance in various tasks, our choice for Densenet-
201, VGG-19, and MobileNetV3 Small was driven by specific
considerations relevant to our research context. EfficientNet,
known for its scalable architecture, is highly efficient but
requires more fine-tuning for specific applications such as
medical imaging [36]. ResNet, with its deep residual learning
framework, is considered complex for our dataset and task
requirements, and its performance in medical image analysis
has been outperformed by more specialized architectures [37].
Lightweight deep CNN models often trade off accuracy for
efficiency, which is less ideal for the precision required in
medical diagnostics [38]. Our chosen models provide a balance
between computational efficiency and high accuracy, critical
in medical image analysis for TB classification. The extensive
literature on Densenet-201, VGG-19, and MobileNetV3 Small,
especially in medical imaging contexts, further reinforced our
decision [39]–[41].

C. Implementation Strategy of Chosen Models

The process of model implementation is divided into two
main phases: Feature Extraction and Fine-tuning as stated in
Fig 1, a strategy inspired by an innovative approach.

1) Feature Extraction: In this phase, we utilized the con-
volutional base of each pre-trained model (DenseNet201,
VGG19, and MobileNetV3 Small) as a feature extractor and
trained a new classifier on top of it, as suggested in [16].
The pre-trained models are initialized with weights trained
on ImageNet. Only the last fully connected layer of each
pre-trained model was replaced with a new one, specifically

Fig. 1: Process of Feature extraction and fine tuning

adapted to our binary classification task as shown in Fig
1. Each image is resized to the specific input size required
by the pre-trained model (224x224 pixels). The image then
passes through the convolutional base of the pre-trained model,
which acts as a high-capacity feature extractor, mirroring
the methodology [16]. During this phase, the weights of the
convolutional base are frozen. Freezing these weights prevents
their updates during training, ensuring that the learned pre-
trained features are preserved. The ADAM optimizer, known
for its efficiency in probability-based models, was chosen for
its adaptive learning rate, ideal for managing the binary cross-
entropy loss function in our tuberculosis detection model. This
optimizer adjusts learning rates based on gradient estimations,
leading to robust and efficient training. The training, conducted
for 15 epochs with a learning rate of 0.01, benefited from
the optimizer’s adaptive nature, ensuring preservation of pre-
trained features while achieving effective training and better
convergence. The training progress is monitored using the
TensorBoard callback. Model Checkpoint plays a vital role
in the training of ML models by preserving the state of the
model at various training stages. Its functions include saving
the model weight that yields the best performance, recording
the weight for each training epoch, and determining the file
format for saving these weights, like HDF5. This feature is
critical in ensuring that the most effective model state is
retained and can be revisited for optimal performance. The
ModelCheckpoint callback is used to save the model weights
at the epoch where the validation performance is the best. In
addition, weight, bias, and activation values were obtained as
a result of quantized and pruned processes for the VGG-19
model. The results show that the learning rate = 0.01 should
be chosen as the weight value for a more accurate prediction
performance of the model. When the bias-variance balance of
the model is examined, it is seen that there is no overfit or
underfit. Taking ”ADAM optimizer” as the activation value
indicates that the model has better learning ability.

2) Fine-tuning: Following the successful training of the top
layers, we embark on the fine-tuning phase, an important stage

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3367736

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 21,2024 at 02:47:12 UTC from IEEE Xplore. Restrictions apply.

6 JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2023

Algorithm 1 Transfer Learning for Tuberculosis Detection

1: Input: Train and Test Image Directories: train dir,
test dir

2: Output: Trained Binary Classification Model M , Evalu-
ation Metrics E
Variables:

3: img size← (224, 224)
4: batch size← 32
5: base model← Pre-trained model
6: metrics← Performance metrics
7: Begin
8: ⋄ Dataset Preparation
9: for each dataset d in {train dir, test dir} do

10: Dd ← PrepareImageDataset(d, img size, batch size)
11: end for
12: ⋄ Model Setup
13: base model← InitializePreTrainedModel()
14: M ← AddLayers(base model)
15: M .Compile(LossFunction, Optimizer, metrics)
16: ⋄ Feature Extraction
17: M .Train(Dtrain dir, Dtest dir)
18: E ←M .Evaluate(Dtest dir)
19: ⋄ Fine Tuning
20: base model.UnfreezeLayers()
21: M .Train(Dtrain dir, Dtest dir, LowLearningRate)
22: E ←M .Evaluate(Dtest dir)
23: M .SaveModel()
24: Return M , E
25: End

as mentioned in [16]. We unfreeze some of the top layers of
the convolutional base and train these layers along with the
newly added classifier layers as shown in Fig 1. During the
fine-tuning phase of our TB detection model, we unfreeze and
train some top layers of the convolutional base alongside the
new classifier layers, refining the high-level features for our
specific task. We start fine-tuning with a very low learning
rate after training the classifier, to control large gradient
updates from newly added layers and prevent disruption of
the pre-trained features. This approach allows for controlled
weight adjustments and enhances model performance while
preserving learned features. Fine-tuning must commence with
a very low learning rate, typically after the classifier on top of
the convolutional base has been trained. This is to avoid large
gradient updates caused by the randomly initialized weights,
which could disrupt the learned weights in the convolutional
base. In our case, we fine-tune the model for an additional
5 epochs with a reduced learning rate of 0.001. The number
of layers to unfreeze for fine-tuning depends on the specific
model and the task at hand. In our research, we found that
unfreezing the last 30% of the layers in each model provided
the best results, this insight is aligned with the guidelines
provided by [16]. After fine-tuning, the model’s performance
is evaluated again on the test data, and the model’s precision,
recall, and F1 score are computed. The trained model and its
performance metrics are saved for future use. This strategy

of combining transfer learning with fine-tuning allows us to
harness the capabilities of pre-trained models and adapt them
to our specific task, despite having a relatively small amount of
data and computational resources, as validated by the findings
in [16]. To provide a comprehensive understanding of our
methodology, we refer to Alg. 1 and Fig. 1. Algorithm 1
delineates a systematic approach to utilizing transfer learning
for TB detection, a method that is anticipated to synergize
effectively with the emerging IoT and e-health systems.

The algorithm commences with the preparation of the
dataset, where images from both training and testing directo-
ries are processed and prepared for model training. Following
this, a pre-trained model is initialized as the base model, onto
which additional layers are added to tailor the model for the
specific task of TB detection. The next phase involves feature
extraction, where the model is trained and evaluated using the
prepared datasets. Subsequently, the model undergoes a fine-
tuning process to enhance its performance further. Retraining
unfrozen layers of a neural network with a lower learning
rate offers several advantages, such as layer-specific adap-
tation, balanced feature learning, improved mixed-precision
quantization, enhanced feature selection and classification,
stabilization, error reduction, adaptation post-pruning, and a
focus on fine-grained details. This method allows for better
adaptation to specific tasks, particularly in medical image
analysis, by enabling different layers to focus on distinct
aspects of the data. It also contributes to a more stable
and accurate model, enhances inference time, and maintains
accuracy while reducing computational complexity. The fine-
tuning involves unfreezing layers in the base model and re-
training it with a lower learning rate to achieve a more nuanced
understanding of the features in the dataset. Finally, the trained
model is stored and the evaluation metrics are returned to
demonstrate its performance. The steps to diagnose TB using
transfer learning on chest X-ray images are:

• Data Collection Step: After obtaining the CT images, we
divided them into two: train and test.

• Transfer Learning Model Selection: For this purpose,
by scanning the literature, models Densenet-201, VGG-
19, and Mobilenet-V3-Small, which were proven to be
effective in detecting lung-based diseases, were selected.

• Training the Model: The model was trained with the train
set using pre-trained weights. Attention was paid to bias-
variance balance, thus ensuring that the model did not
fall into situations such as overfitting and underfitting.

• Testing the Model: Test Binary Accuracy (TBA), Test
Loss, Test Binary Intersection over Union (IOU), Test
Precision, Test Recall, and Test F1 Score values were
obtained for the performance evaluation of the model
trained using the dataset.

Time Complexity Analysis for Algorithm 1: Aggregating
all the components, the total complexity is: O(2E · (Ntrain +
Ntest)+Ntrain+Ntest). This suggests a scaling that is more
than linear with the number of images in the training and test
datasets, particularly due to the multiplicative factor of epochs
E during the training and evaluation phases.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3367736

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 21,2024 at 02:47:12 UTC from IEEE Xplore. Restrictions apply.

SUBRAMANIAM et al.: NEURAL NETWORKS BASED SMART E-HEALTH APPLICATION 7

D. Model Deployment Strategies
Server-based and serverless deployments were used in this

study to improve solution robustness and scalability.
1) Server-based Deployment: In this method, the ML mod-

els were encapsulated within a FastAPI application. FastAPI
is a highly efficient, easy-to-use web framework for building
APIs with Python, making it suitable for integration with
our ML models4. This FastAPI application was then de-
ployed on an Amazon EC2 T3 medium instance. The EC2
instances provide secure and scalable compute capacity in the
cloud, allowing our application to efficiently handle incoming
HTTP requests5. The deployment process and the handling
of incoming POST requests are detailed in Algorithm 2 and
Fig 2. When a user sends a POST request (typically when
they upload an X-ray image for analysis), the request is
processed by the application on the EC2 instance. The image
is forwarded to the deployed ML model which processes the
image, performs the prediction, and sends back the result in
the form of a HTTP response.

The basic concept of traditional server-based deployment,
in the case of AWS Elastic Compute Cloud (EC2), involves
setting up and managing a server on the cloud to host
applications, websites or services. To briefly explain the basic
concepts; (i) Choosing an EC2 Instance: Users can choose
from various instance types depending on their computational,
memory, and storage needs. (ii) Configuring the Instance:
Once an instance type is selected, users can configure the
instance settings. (iii) Setting up the Environment: After the
instance is launched, users can set up the environment based
on their requirements. (iv) Deploying Applications: Users
can then deploy their applications or services onto the EC2
instance. (v) Security and Maintenance: Managing a server
on EC2 involves ensuring its security and maintenance.

Fig. 2: Illustration of users sending requests to Server Based AWS
EC2 Instance running to predict the prediction class of the X-Ray
Image

2) Serverless Deployment: In this approach, the FastAPI
application that hosts the ML model is deployed in an image
using Docker, a tool designed to build, deploy, and run
applications using containers. Using Docker enabled efficient
management of dependencies and simplified the deployment
process to serverless. The deployed image is then deployed
using AWS EKS and AWS Fargate. This approach was spe-
cially beatifically for our TB detection system as it increased
the overall efficiency and responsiveness of the system in a
serverless setup. EKS provides a managed Kubernetes ser-
vice that allows us to automate the deployment, scaling and
management of our application. AWS Fargate is a serverless

4https://fastapi.tiangolo.com/
5https://aws.amazon.com/ec2/

Algorithm 2 Server-based TB Detection via FastAPI

1: Input: HTTP POST Request R with X-ray Image X
2: Output: HTTP Response H with Tuberculosis Detection

Result ∆
Variables:

3: API ← FastAPI application
4: EC2 Instance← EC2 medium
5: Begin
6: ⋄ Deployment Setup
7: API .Deploy(EC2 Instance)
8: if R is received then
9: X ← R.ExtractImage()

10: ∆← API .Predict(X)
11: H ← CreateResponse(∆)
12: Return H
13: end if
14: End

computing engine that eliminates the need to manage servers
for containers and thus works with EKS. The process of
deploying the FastAPI implementation on Amazon EKS using
Fargate serverless computing and the processing of incoming
POST requests is described in Alg 3 and Fig. 3. Kubernetes
Load Balancer service is used to open the application running
on the EKS cluster to the Internet. This service is important
for making the application accessible over the Internet to
handle user-initiated POST requests by efficiently managing
incoming network traffic. Load Balancer is used to distribute
network traffic to the FastAPI application. This is essential to
meet high-volume requests and provide real-time TB detection
results. It provided scalability and high availability, which is
vital for the robust and responsive performance required in
e-health applications. Upon receipt of a user-initiated POST
request, the Load Balancer redirects the request to an available
container; this container processes the image using the ML
model and returns the prediction result as an HTTP response.
The user experience is the same with both distribution strate-
gies; The main difference is how the system handles and
processes incoming requests internally. The use of Docker for
containerizing of FastAPI application was a key decision in
this work, directly contributing to the successful deployment
and operation of the TB detection model in a serverless
environment. To explain this better, it would be useful to go
through examples; (i) Docker is used to create a consistent
and isolated environment for the FastAPI application and
encapsulate the application with all its dependencies (Con-
tainerization with Docker), (ii) The containerized application
was designed for deployment on serverless platforms like
AWS Fargate and AWS EKS, optimizing for scalability and
flexibility (facilitating serverless deployment), (iii) The use
of Docker ensures that the complex dependencies of the
TensorFlow Lite model are managed effectively, leading to
fewer deployment-related issues (Advantages in the Context
of TB Detection).

3) Deployment in Clinical and Research Settings: Deploy-
ment of the system in clinical settings is intended to meet the

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3367736

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 21,2024 at 02:47:12 UTC from IEEE Xplore. Restrictions apply.

https://fastapi.tiangolo.com/
https://aws.amazon.com/ec2/

8 JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2023

Fig. 3: Illustration of users sending requests to the EKS cluster, with
Fargate managing server distribution and facilitating the process of
TB prediction using the ML model

Algorithm 3 Deploying FastAPI on EKS with Fargate

1: Input: Docker image Idocker of FastAPI application,
AWS credentials Caws

2: Output: Deployed FastAPI application on Amazon EKS
with external IP IPext

3: DF ← Define FastAPI and its dependencies in a Dock-
erfile.

4: Build Idocker from DF and push to DockerHub.
5: Install AWS CLI and eksctl. Configure with Caws.
6: EKSC ← Create EKS cluster with Fargate profile.
7: Dk8s ← Define Kubernetes Deployment for FastAPI.
8: Deploy Dk8s on EKSC. Expose via LoadBalancer to get

IPext.
9: if POST request Rpost received then

10: Img ← Extract image from Rpost.
11: Pred ← Predict using ML model with Img.
12: Respond with Pred.
13: end if
14: CW ← Setup Amazon CloudWatch.
15: Monitor app and EKSC using CW . Test via POST to

IPext.
16: End

demands for consistent and potentially high-volume diagnos-
tics. The server-based approach provides a stable and robust
platform that guarantees clinical reliability and uninterrupted
service essential for patient care. Serverless deployment adapts
well to changing patient loads, offering flexible and cost-
effective scaling that is vital for a variety of clinical scenarios
[42]. In research environments, flexibility and scalability are
the focus to cope with changing data sets and experimental
conditions. Serverless deployment is particularly advantageous
for research purposes due to its scalability and ease of inte-
grating new updates or experimental models. The server-based
approach can also be useful for long-term, large-scale research
projects that require stable and dedicated computing resources.

The deployment strategies of our TB diagnostic system in
both clinical and research settings demonstrate the versatility
and adaptability of the system. The design of the system
enables it to meet the challenging and variable requirements of
these different environments, providing accurate TB detection.
As a result, the choice of server-based or serverless deploy-
ment strategy is tailored to meet the specific needs of each

environment. While the server-based approach offers robust-
ness and consistency for clinical applications, the serverless
option provides scalability and flexibility, making it ideal for
research and development scenarios [43]. This adaptability of
delivery strategies enables reliable and effective TB detection,
improving the use of this system in a variety of contexts.

4) Time Complexity Analysis of Algorithm 2 & 3: : The time
complexity for Algorithm 2 is O(1). Deploying FastAPI on
an EC2 instance (Deployment Setup) is a one-time process
and contributes to a constant overhead. Likewise, the time
complexity for Algorithm 3 is O(1). This is because you need
to set up the EKS cluster, define the Kubernetes deployment,
etc. System configuration and deployment processes such as
contribute to a constant overhead. Both algorithms possess
a constant overhead due to setup processes. The variable
component of their complexities is linear, attributed to the
processing of images or POST requests, respectively. Thus, in
the context of time complexity, both algorithms scale linearly,
but with different input factors.

IV. PERFORMANCE EVALUATION

This section evaluates the performance of ML models and
deployment strategies for TB detection system. The system
uses ML models to analyze X-ray images and predict the
presence of TB. We trained Densenet-201, VGG19, and
Mobilenet-V3-Small and deployed the system in two environ-
ments: a server-based deployment using an EC2 T3 medium
instance and AWS EKS and Fargate based a serverless settings.

A. Evaluation Metrics

The choice of metrics for evaluating the ML models was
guided by the nature of the problem and the requirements of
the system. Accuracy, loss, IOU (Intersection over Union),
precision, recall, and F1 score were chosen as they provide a
comprehensive view of the model’s performance6. Accuracy
measures the proportion of correct predictions, while loss
quantifies the difference between the predicted and actual
values. IOU is a measure of overlap between the predicted
and actual areas, which is particularly relevant for image
analysis tasks. Precision, recall, and F1 score provide insights
into the model’s performance in terms of false positives and
false negatives, which are crucial in medical diagnosis systems
where both false positives and false negatives have significant
implications [44]. The IoU metric is a popular evaluation
metric used in various image processing and computer vision
tasks, especially in object detection and segmentation. The IoU
metric is employed to assess the overlap between the predicted
area and the actual ground-truth area. It measures the accuracy
of a model’s predictions by calculating the overlap between the
predicted area and the actual ground-truth area. A higher IoU
score indicates a greater accuracy. Unlike simpler accuracy
metrics, IoU considers both true positives and false positives,
making it more robust, especially in datasets with extensive
background space. IoU offers a standardized way to compare
the performance of different models or algorithms on the same
dataset, aiding in benchmarks and competitions. Applicable

6https://ml-compiled.readthedocs.io/en/latest/
metrics.html

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3367736

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 21,2024 at 02:47:12 UTC from IEEE Xplore. Restrictions apply.

https://ml-compiled.readthedocs.io/en/latest/metrics.html
https://ml-compiled.readthedocs.io/en/latest/metrics.html

SUBRAMANIAM et al.: NEURAL NETWORKS BASED SMART E-HEALTH APPLICATION 9

to various tasks like object detection, image segmentation,
and tracking, IoU is versatile in assessing spatial accuracy
of models. It balances the aspects of precision and recall,
providing a comprehensive performance metric. For evaluating
the deployment strategies, we considered the average response
rate, error percentage, and throughput under different loads7.
These metrics were chosen as they reflect the system’s ability
to handle multiple concurrent requests, which is a key re-
quirement for a practical, real-world application. The average
response rate indicates the system’s speed, while the error
percentage provides an indication of its reliability. Throughput,
measured as the number of requests handled per unit of time,
gives an idea of the system’s capacity8. By comparing these
metrics across different models and deployment strategies,
we aim to identify the most effective combination for our
tuberculosis detection system. This will enable us to optimize
the system for better performance, reliability, and capacity,
thereby improving its utility in real-world applications.

B. Performance Comparison of ML Models
Table II presents the comparative analysis of ML mod-

els: DenseNet-201, VGG19, and MobileNet-V3-Small. We
evaluated the models based on several performance metrics
such as Test Binary Accuracy (TBA), Test Loss, Test Binary
IOU, Test Precision, Test Recall, and Test F1 Score. Upon
examination of the data, it is evident that the VGG19 model
consistently outperforms the other two models across nearly
all metrics. The model boasts the highest Test Binary Accuracy
at 86.33%, which signifies a greater proportion of correct
predictions. Furthermore, it also excels in terms of Test
Precision, at 87.5%, indicating a lower rate of false-positive
results. In the context of Test Recall and Test F1 Score,
VGG19 leads with scores of 85.36% and 86.41% respectively,
demonstrating a balanced performance between precision and
sensitivity. DenseNet-201 showed lower performance com-
pared to VGG19 in our TB classification study, recording
the highest Test Loss at 60.23%. The architectural design
differences between the models contributed to this outcome.
VGG19, with its simple and deep stack of small filters, is
more effective at capturing hierarchical features, leading to
its higher performance, stability, and reliability. DenseNet-
201’s structure, though efficient in some scenarios, was less
aligned with the demands of tuberculosis detection from chest
X-rays. The VGG19 model’s robustness and reliability are
attributed to its architectural design, effective transfer learning
approach, and proven performance across diverse applications.
Its simple, deep architecture with small filters in convolutional
layers enhances hierarchical feature capture, contributing to its
high performance. The model’s adaptability and consistency
are further demonstrated in various applications, from crack
detection in infrastructure to grape bunch segmentation in
natural images, showing its ability to maintain stability and
reliability across different tasks and data types. On the other
hand, both DenseNet-201 and MobileNet-V3-Small fail to
match the performance of the VGG19 model. Particularly,

7https://pflb.us/blog/load-testing-metrics/
8https://www.blazemeter.com/blog/

performance-testing-vs-load-testing-vs-stress-testing

TABLE II: Performance Comparison of ML Models

Metrics DenseNet-201 VGG19 MobileNet-V3-Small
TBA 0.7826 0.8633 0.826
Test Loss 0.6023 0.4212 0.3532
Test Binary IOU 0.6425 0.7595 0.7036
Test Precision 0.82191 0.875 0.8292
Test Recall 0.7317 0.8536 0.83
Test F1 Score 0.7741 0.8641 0.83

DenseNet-201 exhibits the lowest scores across all the metrics,
including the highest Test Loss of 60.23%. This disparity in
performance can be attributed to several factors intrinsic to
the architecture of each model. DenseNet-201, while effective
in feature preservation and reuse, can be computationally
intensive due to its dense connectivity. This may lead to
challenges in capturing more abstract features in complex
medical images like chest X-rays, crucial for accurate TB
classification. MobileNet-V3-Small, designed for efficiency
and speed, may compromise the depth and breadth of feature
extraction needed for TB detection. In contrast, VGG19’s deep
architecture allows it to excel in capturing a wide range of
features from medical images, outperforming the other models
in our study by effectively learning and differentiating subtle
features indicative of tuberculosis from chest X-rays. Although
MobileNet-V3-Small shows competitive scores in some areas,
such as Test Precision, its overall performance is still not
on par with VGG19. Robustness is important while choosing
a deployment model. In this regard, all metrics demonstrate
VGG19 to be high-performing, stable, and dependable. This
reliability can be attributed to the architecture of the VGG19
model, which employs a simple and deep stack of small
filters in its convolutional layers, enhancing the model’s abil-
ity to capture hierarchical features effectively. Based on the
performance indicators and the architectural benefits, we are
selecting VGG19 as the model of choice for deployment.

C. Performance Comparison of Deployment Strategies

Each cloud service deployment strategy has pros and cons.
These techniques meet various use cases, requirements, and
scalability demands. Herein, we compare two prevalent de-
ployment strategies: a traditional EC2-based approach utilizing
a t3.medium server instance and a more modern, serverless
approach using Fargate and EKS. These analyses and com-
parisons will offer a clearer understanding of the behavior
of these strategies under different loads, potentially guiding
deployment decisions for similar scenarios. The tests were
conducted using Apache JMeter, a renowned performance
testing tool. For our experiment, we subjected both deployment
strategies to a range of concurrent user requests, specifically,
starting from 20 and scaling up to 500. To ensure the results
were not affected by initial cold starts or sudden spikes, a
ramp-up period of 100 seconds was used, with each simulation
running in a single loop. The results of this experiment are
detailed in this section. Table IV presents the performance
metrics of the EC2 t3.medium server under varying levels of
concurrent user requests, while Table V depicts similar metrics
for a serverless architecture using Fargate and EKS. Several
key observations can be drawn from the data:

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3367736

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 21,2024 at 02:47:12 UTC from IEEE Xplore. Restrictions apply.

https://pflb.us/blog/load-testing-metrics/
https://www.blazemeter.com/blog/performance-testing-vs-load-testing-vs-stress-testing
https://www.blazemeter.com/blog/performance-testing-vs-load-testing-vs-stress-testing

10 JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2023

1) Initial Performance: For lower user loads, both deploy-
ment strategies manage to handle requests efficiently with
zero errors. The traditional EC2 instance has a slightly bet-
ter throughput at 20 concurrent users, but as the user load
increases, the serverless approach tends to cope better.
2) Average Response Rate: An apparent increment in the av-
erage response rate is observed for the serverless architecture
when the number of users jumps from 100 to 200. Conversely,
the EC2 instance demonstrates a more consistent increase.
3) Error Rate: At higher levels of user concurrency, the
serverless architecture, surprisingly, showcases non-zero error
percentages. Specifically, at 200 concurrent users and beyond,
errors emerge, peaking at a significant 34.67% for 300 users.
This behavior suggests that while the serverless approach is
highly scalable, it may experience difficulties under sudden
and intense load surges. Serverless computing is known for its
high scalability, which is characterized by automatic scaling
to match demand, the use of microservices allowing indepen-
dent scaling of application components, and cost-effectiveness
with payment models based on actual resource usage [43].
However, the role of error rates in scalability cannot be
overlooked. Low error rates lead to more efficient resource
utilization, whereas high error rates may necessitate additional
resources to manage failed executions. Serverless platforms
use error rates to manage the health of functions, allocating
more resources when high error rates are detected. Analyzing
error rates also provides feedback for optimizing applications,
thereby improving scalability. In conclusion, the scalability
of serverless methods is greatly influenced by error rates.
Efficient management of these rates is crucial for maintaining
optimal scalability and performance in serverless architectures.

4) Throughput: It is a measure of how many units of
information a system can process in a given amount of time,
and doesn’t exhibit a consistent trend for either architec-
ture. While the serverless approach has slightly decreased
throughput at 80 users, it bounces back and surpasses the
EC2 instance at higher loads. AWS Fargate’s integration
with EKS enhances throughput by offering innovative cloud
container management, particularly beneficial for scientific
computing. This setup provides cost-effective performance,
elasticity, scalability, and reduced delays. Fargate’s on-demand
capacity is crucial for dynamic scaling, optimizing resource
utilization and ensuring consistent throughput across vary-
ing workloads. The simplification in managing Kubernetes
clusters, by eliminating server provisioning and management,
indirectly boosts throughput. Additionally, optimized container
orchestration and network routing in Fargate-EKS integration
improve network performance, which is essential for high
throughput in distributed applications.

Fig. 4 presents a visual comparison between the average
response rate of server-based deployments, using an EC2
instance, and serverless configurations utilizing Fargate and
EKS, benchmarked against varying levels of concurrent user
requests. Each column in the chart corresponds to the average
response rate for a specific number of concurrent users.
Initially, at lower user counts, the height of the columns for
both deployment strategies are quite similar, signifying nearly
equivalent performance metrics under light loads. As the con-

TABLE III: Performance metrics of an EC2 t3.medium server
under varying levels of concurrent user requests over a 100-
second ramp-up period.

Samples Avg Response Rate(ms) Error % Throughput
20 4691 0 12.0 /min
40 47 724 0 15.7 /min
60 123 333 0 15.4 /min
80 190 376 0 15.4 /min
100 269 971 0 15.1 /min
200 653 522 0 14.3 /min
300 922 305 0 15.2 /min
400 1 255 053 0.50 15.4 /min

TABLE IV: Performance metrics of serverless Fargate and
EKS under different levels of concurrent user requests.

Samples Avg Response Rate(ms) Error % Throughput
20 8026 0 11.7 /min
40 50 905 0 14.6 /min
60 133 901 0 14.2 /min
80 239 146 0 12.9 /min
100 272 432 0 14.8 /min
200 636 805 8.00 14.8 /min
300 453 248 34.67 21.3 /min
400 929 529 19.50 18.4 /min
500 978 658 34.40 20.2 /min

Fig. 4: Comparison of Average Response Rate for Server-based
(EC2) and Serverless (Fargate and EKS) Architectures with Varying
Concurrent Users.

current user number rises, distinct differences in the column
heights begin to emerge. The EC2-based deployment columns
grow in a more steady and uniform manner, illustrating the
predictable nature of traditional server-based architectures. It
shows how, with the increase in load, the server’s response
time exhibits a gradual and linear degradation.

In contrast, columns representing the serverless architec-
tures of Fargate and EKS exhibit a more variable growth
pattern. Up to a certain threshold of users, the response
rates are competitive, possibly even outperforming the EC2
instance. This resonates with the on-the-fly scalability of
serverless models. However, at the upper echelons of user
counts, the column heights for the serverless configurations
become notably taller, indicating increased response times. An
increased response time, especially in serverless configurations
like Fargate and EKS, indicates a potential overhead related
to cold starts or the time required to provision additional

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3367736

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 21,2024 at 02:47:12 UTC from IEEE Xplore. Restrictions apply.

SUBRAMANIAM et al.: NEURAL NETWORKS BASED SMART E-HEALTH APPLICATION 11

Fig. 5: Comparison of Throughput (requests per minute) for Server-
based (EC2) and Serverless (Fargate and EKS) Architectures with
Varying Concurrent Users.

resources in real-time. This variability in response times
represents a trade-off between the steady performance of
traditional server systems and the dynamic but sometimes
unpredictable nature of serverless setups. The average response
rate is a critical metric reflecting the system’s speed. A higher
response rate implies a slower system, which can impact the
overall efficiency of the application, particularly in real-world
scenarios where timely processing is essential. Moreover,
the error percentage, which indicates the reliability of the
system, can also be affected by increased response times. In
our system, these aspects are crucial for handling multiple
concurrent requests efficiently, a key requirement for practical
applications like our tuberculosis detection system. This could
be symptomatic of the overheads related to cold starts or
the time taken to provision additional resources in real time
In essence, Fig. 4 effectively captures the balance between
the steady performance of traditional server systems and the
dynamic, but occasionally unpredictable, nature of serverless
setups. The decision between the two would hinge on specific
use-case requirements, traffic predictability, and tolerance for
variability in response times. In Fig. 5, the comparative
throughput performances of two deployment strategies—EC2
Server t3.medium and AWS Fargate combined with EKS—are
visualized across varying concurrent user loads. For the lower
user count, specifically up to 80 concurrent users, both de-
ployment strategies exhibit relatively close throughputs, with
EC2 marginally outperforming Fargate and EKS in most cases.
However, as we transition to higher user loads, the gap in
performance becomes more apparent. Notably, at 300 concur-
rent users, the AWS Fargate and EKS combination achieves a
significant jump, reaching a throughput of 21.3 requests/min,
which surpasses the EC2’s consistent performance of around
15.4 requests/min. This suggests that, under higher loads, the
serverless architecture of Fargate combined with EKS might
offer better scalability and responsiveness compared to the
t3.medium instance of EC2.

V. CONCLUSIONS AND FUTURE WORK

TB remains a formidable global health challenge. To address
this, our paper embarked on a rigorous exploration of various
CNN architectures, capitalizing on the power of transfer learn-
ing to predict TB presence in the lungs. The fusion of AI and
ML was instrumental in this endeavor, illuminating the latent

potential of technology in healthcare diagnostics. In our study,
the VGG19 model stood out as the top performer based on
test data results. Still, Densenet-201 and Mobilenet-V3-Small
also delivered impressive outcomes, highlighting the crucial
role of picking the right model for specific diagnostic needs.
We adopted serverless computing, specifically AWS Fargate,
and EKS, due to its unmatched flexibility, cost-effectiveness,
and on-the-fly resource allocation, making it the go-to choice
for real-time medical applications. Traditional servers, like
EC2 t3.medium, while consistent, cannot match the dynamic
scalability of serverless options. However, it’s worth noting
that serverless solutions can sometimes experience “cold start
latency”, a minor hiccup in an otherwise superior solution9.
Our observational metrics revealed a parity in throughput
between both deployment paradigms at lower user concur-
rency. However, the scalability acumen of serverless com-
puting came to the fore with rising user requests, distinctly
outshining traditional servers around the 300-user threshold.
Caution, however, is warranted. Our serverless deployments,
while agile, began registering heightened error rates beyond
200 concurrent interactions, hinting at possible vulnerabilities
when grappling with abrupt traffic surges.

Building upon the conclusions, we identify several promis-
ing avenues for future research: i) Exploring Advanced Archi-
tectures: Delving deeper into newer or hybrid neural network
architectures might yield even better diagnostic accuracies. To
improve this paper in future studies, chest X-ray images from
different hospitals can be studied for a federated learning envi-
ronment. Additionally, using more advanced transfer learning
models in the future may further increase the prediction rate
on TB. ii) Real-time Diagnostics: Extend the model imple-
mentations for real-time analysis, catering to continuous data
streams from medical diagnostics equipment. iii) Optimizing
Deployment Strategies: A focused study on fine-tuning both
server and serverless deployments could help in further reduc-
ing latencies and improving resource utilization. iv) Incorpo-
rating Diverse Data Points: Broadening the dataset to include
parameters like patient history and demographics may improve
the predictive accuracy of the models. v) Disease Spectrum
Extension: The methodology’s success for TB suggests its
applicability to other diseases. Extending this to other med-
ical conditions could be groundbreaking. vi) Comprehensive
Cost-Benefit Analysis: As cloud and serverless technologies
evolve, a detailed analysis considering cost, performance, and
reliability could guide institutions in deployment decisions.
vii) Serverless Paradigm based Shortcomings: In addition to
the previously mentioned advantages, serverless platforms also
bring with them some disadvantages that need to be solved,
such as cold start latency, error rates at high concurrency, and
traditional VM limitations. Efforts to resolve these concerns
will increase users’ trust in the system.

SOFTWARE AVAILABILITY

It has been released as open-source software. The imple-
mentation code with experiment scripts and results can be
found in the GitHub repository: e-healthcarefaas

9https://azure.microsoft.com/en-us/blog/
understanding-serverless-cold-start/

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3367736

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 21,2024 at 02:47:12 UTC from IEEE Xplore. Restrictions apply.

https://github.com/Subramaniam-dot/CNN-Architectures-and-Deployment-Models-for-Tuberculosis-Detection-Using-Serverless-Computing
https://azure.microsoft.com/en-us/blog/understanding-serverless-cold-start/
https://azure.microsoft.com/en-us/blog/understanding-serverless-cold-start/

12 JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, XXXX 2023

REFERENCES

[1] M. Singh, G. Pujar, S. A. Kumar et al., “Evolution of machine learning
in tuberculosis diagnosis: A review of deep learning-based medical
applications,” Electronics, vol. 11, no. 17, p. 2634–2634, 2022.

[2] R. Kariapper, M. S. Razeeth, P. Pirapuraj, and A. Nafrees, “Rfid
based smart healthcare system: A survey analysis,” Test Engineering
& Management, vol. 83, pp. 4615–4621, 2020.

[3] C. Mansoor, A. C. M. Nafrees, S. Aysha Asra, and M. I. Jahan, “A
new paradigm for healthcare system using emerging technologies,” in
International Conference on Computing in Engineering & Technology.
Springer, 2022, pp. 311–322.

[4] A. C. Mohamed Nafrees, P. Pirapuraj et al., “Smart technologies to
reduce the spreading of covid-19: a survey study,” in International
Conference on Intelligent Vision and Computing. Springer, 2021, pp.
250–265.

[5] S. Razeeth, R. Kariapper et al., “Understanding the identity of a covid-
19 suspect or victim through the use of google glass,” 2022.

[6] A. C. M. Nafrees, A. M. A. Sujah, and C. Mansoor, “Smart cities:
Emerging technologies and potential solutions to the cyber security
threads,” in 2021 5th International Conference on Electrical, Electron-
ics, Communication, Computer Technologies and Optimization Tech-
niques (ICEECCOT). IEEE, 2021, pp. 220–228.

[7] A. Rejeb, K. Rejeb, H. Treiblmaier et al., “The internet of things (iot)
in healthcare: Taking stock and moving forward,” Internet of Things, p.
100721, 2023.

[8] A. Dosovitskiy, L. Beyer, A. Kolesnikov et al., “An image is worth
16x16 words: Transformers for image recognition at scale,” arXiv
preprint arXiv:2010.11929, 2020.

[9] M. Abernot, T. Gil, M. Jiménez, J. Núñez et al., “Digital implementa-
tion of oscillatory neural network for image recognition applications,”
Frontiers in Neuroscience, vol. 15, p. 713054, 2021.

[10] O. Kaziha, A. Jarndal, and T. Bonny, “Genetic algorithm augmented
convolutional neural network for image recognition applications,” in
2020 International Conference on Communications, Computing, Cyber-
security, and Informatics (CCCI), 2020, pp. 1–5.

[11] J. Tanabe, S. Toru, Y. Yamada et al., “18.2 a 1.9 tops and 564gops/w
heterogeneous multicore soc with color-based object classification accel-
erator for image-recognition applications,” in 2015 IEEE International
Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers.
IEEE, 2015, pp. 1–3.

[12] Y. Zhang, S. Nie, W. Liu et al., “Sequence-to-sequence domain adap-
tation network for robust text image recognition,” in 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019,
pp. 2735–2744.

[13] J. Su, D. V. Vasconcellos, S. Prasad et al., “Lightweight classification
of iot malware based on image recognition,” in 2018 IEEE 42nd Annual
Computer Software and Applications Conference (COMPSAC), vol. 02,
2018, pp. 664–669.

[14] M. H. Modarres, R. Aversa, S. Cozzini et al., “Neural network for
nanoscience scanning electron microscope image recognition,” Scientific
reports, vol. 7, no. 1, p. 13282, 2017.

[15] J. Xiong, D. Yu, S. Liu, L. Shu, X. Wang, and Z. Liu, “A review of
plant phenotypic image recognition technology based on deep learning,”
Electronics, vol. 10, no. 1, p. 81, 2021.

[16] S. Showkat and S. Qureshi, “Efficacy of transfer learning-based resnet
models in chest x-ray image classification for detecting covid-19 pneu-
monia,” Chemometrics and Intelligent Laboratory Systems, vol. 224, p.
104534–104534, 2022.

[17] S. Jaeger, S. Candemir, S. Antani et al., “Two public chest x-ray datasets
for computer-aided screening of pulmonary diseases,” PubMed, vol. 4,
no. 6, p. 475–7, 2014.

[18] S. S. Gill et al., “Modern computing: Vision and challenges,” Telematics
and Informatics Reports, vol. 13, p. 100116, 2024.

[19] S. Ravimohan, H. Kornfeld, D. Weissman, and G. Bisson, “Tuberculosis
and lung damage: from epidemiology to pathophysiology,” European
Respiratory Review, vol. 27, no. 147, p. 170077–170077, 2018.

[20] C. Qin, D. Yao, Y. Shi, and Z. Song, “Computer-aided detection in
chest radiography based on artificial intelligence: a survey,” Biomedical
Engineering Online, vol. 17, no. 1, 2018.

[21] F. Carvalho, D. R. Silva, and M. P. Dalcolmo, “Tuberculosis: where are
we?” Jornal Brasileiro De Pneumologia, vol. 44, no. 2, p. 82–82, 2018.

[22] A. Shelke, M. Inamdar, V. Shah et al., “Chest x-ray classification using
deep learning for automated covid-19 screening,” SN computer science,
vol. 2, no. 4, 2021.

[23] V. S. K. Tangudu, J. Kakarla, and I. B. Venkateswarlu, “Covid-19
detection from chest x-ray using mobilenet and residual separable
convolution block,” Soft Computing, vol. 26, no. 5, pp. 2197–2208, 2022.

[24] N. Dey, Y. Zhang, V. Rajinikanth, R. Pugalenthi, and M. Raja, “Cus-
tomized vgg19 architecture for pneumonia detection in chest x-rays,”
Pattern Recognition Letters, vol. 143, pp. 67–74, 2021.

[25] M. Saleh, K. S. Gill, V. Anand et al., “Detection of pneumonia from
chest x-ray images utilizing mobilenet model,” Healthcare, vol. 11,
no. 11, p. 1561–1561, 2023.

[26] E. Showkatian, M. Salehi, H. Ghaffari, R. Reiazi, and N. Sadighi, “Deep
learning-based automatic detection of tuberculosis disease in chest x-ray
images,” Polish Journal of Radiology, vol. 87, no. 1, p. 118–124, 2022.

[27] A. Jaiswal, N. Gianchandani, D. Singh, V. Kumar, and M. Kaur,
“Classification of the covid-19 infected patients using densenet201 based
deep transfer learning,” Journal of Biomolecular Structure & Dynamics,
vol. 39, no. 15, p. 5682–5689, 2020.

[28] S. Jaeger, A. Karargyris, S. Candemir et al., “Automatic tuberculosis
screening using chest radiographs,” IEEE Transactions on Medical
Imaging, vol. 33, no. 2, p. 233–245, 2014.

[29] S. Candemir et al., “Lung segmentation in chest radiographs using
anatomical atlases with nonrigid registration,” IEEE Transactions on
Medical Imaging, vol. 33, no. 2, p. 577–590, 2014.

[30] B. McMahan, E. Moore, D. Ramage et al., “Communication-efficient
learning of deep networks from decentralized data,” in Artificial intelli-
gence and statistics. PMLR, 2017, pp. 1273–1282.

[31] M. J. Sheller, G. A. Reina, B. Edwards et al., “Multi-institutional deep
learning modeling without sharing patient data: A feasibility study on
brain tumor segmentation,” in Brainlesion: Glioma, Multiple Sclerosis,
Stroke and Traumatic Brain Injuries: 4th International Workshop, Brain-
Les 2018. Springer, 2019, pp. 92–104.

[32] D. Bhattacharjee, “Cuff-less blood pressure estimation from electrocar-
diogram and photoplethysmography based on vgg19-lstm network,” in
Computer Methods in Medicine and Health Care: Proceedings of the
CMMHC 2021 Workshop, Vol. 18. IOS Press, 2021, p. 33.

[33] R. Chandra, S. Tiwari, A. Kumar et al., “Autism spectrum disorder
detection using autistic image dataset,” in 2023 10th International Con-
ference on Electrical Engineering, Computer Science and Informatics
(EECSI). IEEE, 2023, pp. 54–59.

[34] S. Bouhsissin, N. Sael, and F. Benabbou, “Enhanced vgg19 model for
accident detection and classification from video,” in 2021 International
Conference on Digital Age & Technological Advances for Sustainable
Development (ICDATA). IEEE, 2021, pp. 39–46.

[35] S. Mohsen, A. M. Ali, E.-S. M. El-Rabaie et al., “Brain tumor
classification using hybrid single image super-resolution technique with
resnext101 32x8d and vgg19 pre-trained models,” IEEE Access, 2023.

[36] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International conference on machine
learning. PMLR, 2019, pp. 6105–6114.

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[38] A. G. Howard, M. Zhu, B. Chen et al., “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[39] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

[40] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[41] A. Howard, M. Sandler, G. Chu et al., “Searching for mobilenetv3,”
in Proceedings of the IEEE/CVF international conference on computer
vision, 2019, pp. 1314–1324.

[42] M. Golec, S. S. Gill, A. K. Parlikad, and S. Uhlig, “Healthfaas: Ai based
smart healthcare system for heart patients using serverless computing,”
IEEE Internet of Things Journal, 2023.

[43] M. Golec, S. S. Gill, F. Cuadrado, A. K. Parlikad, M. Xu, H. Wu,
and S. Uhlig, “Atom: Ai-powered sustainable resource management
for serverless edge computing environments,” IEEE Transactions on
Sustainable Computing, 2023.

[44] S. Hicks, I. Strümke, V. Thambawita et al., “On evaluation metrics for
medical applications of artificial intelligence,” Scientific Reports, vol. 12,
no. 1, 2022.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3367736

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 21,2024 at 02:47:12 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Motivation and Our Contributions

	Related Work
	Methodology
	Dataset
	Model Selection
	Densenet 201
	VGG 19
	Mobilenet V3 Small

	Implementation Strategy of Chosen Models
	Feature Extraction
	Fine-tuning

	Model Deployment Strategies
	Server-based Deployment
	Serverless Deployment
	Deployment in Clinical and Research Settings
	Time Complexity Analysis of Algorithm 2 & 3

	Performance Evaluation
	Evaluation Metrics
	Performance Comparison of ML Models
	Performance Comparison of Deployment Strategies

	Conclusions and Future Work
	References

