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Abstract—Serverless edge computing decreases unnecessary resource usage on end devices with limited processing power and
storage capacity. Despite its benefits, serverless edge computing’s zero scalability is the major source of the cold start delay, which is
yet unsolved. This latency is unacceptable for time-sensitive Internet of Things (IoT) applications like autonomous cars. Most existing
approaches need containers to idle and use extra computing resources. Edge devices have fewer resources than cloud-based
systems, requiring new sustainable solutions. Therefore, we propose an AI-powered, sustainable resource management framework
called ATOM for serverless edge computing. ATOM utilizes a deep reinforcement learning model to predict exactly when cold start
latency will happen. We create a cold start dataset using a heart disease risk scenario and deploy using Google Cloud Functions. To
demonstrate the superiority of ATOM, its performance is compared with two different baselines, which use the warm-start containers
and a two-layer adaptive approach. The experimental results showed that although the ATOM required more calculation time of 118.76
seconds, it performed better in predicting cold start than baseline models with an RMSE ratio of 148.76. Additionally, the energy
consumption and CO2 emission amount of these models is evaluated and compared for the training and prediction phases.

Index Terms—Serverless Edge Computing, Cold Start, Internet of Things, Deep Reinforcement Learning, Sustainable Resource
Management.

✦

1 INTRODUCTION

THE proliferation of Internet of Things (IoT) applications
has led to a substantial increase in the volume of

data that requires processing [1]. IoT devices are inherently
resource-constrained, and as such, cloud systems can ad-
dress this limitation by providing the resources and pro-
cessing power they offer. In cloud systems, data processing
occurs exclusively on central servers, leading to issues such
as bandwidth congestion and latency. For this reason, the
concept of edge computing has emerged to address these
challenges by conducting computations at the edge of the
network [2]. In edge computing, the computing process is
performed at the edge of the network using devices ranging
from smartphones to programmable logic controllers (PLCs)
[3]. Since the data produced by IoT devices is processed at
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the edge of the network, it provides great advantages in real-
time applications (e.g. augmented reality) where latency
is critical [4], [5]. Additionally, thanks to edge computing,
bandwidth can be used more efficiently by reducing the
amount of data that needs to be transmitted to the cloud.

1.1 Limitations and Challenges

In addition to the advantages edge computing provides,
it has limited processing capacity compared to the tradi-
tional cloud and consists of heterogeneous devices [6]. For
this reason, it brings challenges such as scaling resources
when necessary and efficient resource management [4]. To
overcome these challenges, serverless edge computing, a
new concept that integrates edge and serverless computing,
has emerged [5]. Serverless edge computing extends the
advantages of edge computing and brings the advantages
of the serverless paradigm such as dynamic scalability and
efficient resource consumption [7]. In serverless edge com-
puting, which works with event-driven architecture, con-
tainers are used to perform functions, and idle containers
are scaled to zero, preventing unnecessary resource and en-
ergy consumption [8]. However, despite these advantages,
the zero scaling feature remains the root cause of cold start
lag that remains unresolved. Because it will take time for a
stopped container to be restarted if needed, and this time is
called cold start latency. Cold start latency is contrary to the
low latency principle promised by edge computing. Another
reason for the cold start is that the number of requests to
the container exceeds the maximum number of requests the
container can handle [9]. Serverless creates new containers
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to handle these requests; thus, new cold start latencies occur.
In addition, it has been observed that the amount of CPU
and RAM of the system and the software languages used to
execute the function affect cold start latency [10].

The cold start problem is an undesirable issue in server-
less edge computing. A cold start has adverse effects on
performance and user experience, resource usage, and scal-
ability, defined as follows:

• Performance and User Experience: Cold start nega-
tively affects a serverless edge system’s low latency
and fast response capacity. In addition, cold start-
based delays will undermine the customer’s trust in
serverless edge systems.

• Resource Usage: Since serverless functions (or con-
tainers) work with event-driven architecture, they
are started by a trigger. For each startup process,
resources like memory and CPU are consumed. Cold
starts cause unnecessary resource consumption dur-
ing these startups.

• Scalability: Edge devices connected to serverless
edge computing have a heterogeneous structure.
Therefore, each device may have a different process-
ing capacity and storage amount. A cold start will
negatively affect scalability by limiting the respon-
siveness of a serverless edge system in the event of a
sudden increase in demand.

1.2 Motivation and Contributions
Serverless edge computing is a new paradigm that promises
great promise in industry and academia with the advan-
tages it offers. However, it brings some challenges that still
need to be solved such as security, privacy, and resource
management [11]. Cold start is one of the most important of
these problems. Warm-up and function caching methods are
generally used when the studies for the cold start in the liter-
ature are examined. In the warm-up methods, containers are
kept running continuously using automatic triggers, thus
eliminating the possibility of a cold start when a new request
comes. In function caching, on the other hand, since fre-
quently used functions are kept ready in the cache, it is tried
to prevent a cold start originating from these frequently
used functions. However, warm containers and function
caching-based work can cause unnecessary resource and
energy waste, requiring containers to run continuously to
prevent a cold start. For this reason, new studies still need to
consider resource and energy consumption while reducing
cold start latency. Literature reported [4], [12]–[14] that
the recent Artificial Intelligence (AI) models can be used
to solve this problem to large extent. For example, Deep
Reinforcement Learning (DRL) can be inspiring for solving
complex and non-linear problems such as cold start latency
as identified above. In serverless computing, workloads
change dynamically and are unpredictable. AI can be used
to optimize serverless environment resources and energy
consumption using historical workloads and real-time data.
Serverless platform providers can make efficient resource
allocation decisions by taking AI prediction results into
account when planning intensive workloads.

In this paper, we propose a new AI-powered susTainable
resOurce Management framework for serverless edge com-

puting environments called ATOM, for optimization of cold
start latency and energy consumption. It estimates cold start
latency, a persistent issue in serverless edge computing,
and establishes the groundwork for future efforts in mit-
igating cold start concerns without necessitating excessive
resource consumption. We used the latest DRL models,
such as the Deep Deterministic Policy Gradient (DDPG)
and Recurrent Deterministic Policy Gradient (RDPG), in this
research because these two models have been proven to be
successful in solving complex and nonlinear problems using
Deep Learning (DL)’s perceptual ability and Reinforcement
Learning (RL)’s decision-making ability [15]. In addition, the
potential of DRL in determining the cold start problem is
undiscovered despite the fact that it is a promising approach
that has never been used for this problem to our knowledge.
The main contributions of this paper can be listed as follows:

• We propose an AI-based framework called ATOM
that predicts cold start latency in serverless edge
computing using DRL techniques,

• We create a cold start dataset used in this study
by following a serverless system. For this, a heart
disease risk scenario integrated into a serverless plat-
form was deployed using Google Cloud functions,

• We evaluate the performance of DRL used in the
ATOM framework and compare its performance
with two baselines that used DL techniques using
RMSE, MAE, and R2 Score metrics to find the best
prediction model from two different DRL techniques,

• We compare the performance of the ATOM frame-
work with baselines based on energy cost to find the
most energy-efficient model,

• We investigate the potential of DRL algorithms for
resource management problems in serverless edge
computing.

1.3 Organization

The rest of this paper is organized as follows. In Section 2,
literature studies used to solve the cold start problem are ex-
amined in detail. In Section 3 and Section 4, the mechanism
of the proposed system is explained by giving background
information to the reader. Performance evaluation is made
by giving the experimental results of the models presented
in the study in Section 5. In Section 6 the paper is concluded
by summarizing the conclusion and future work.

2 RELATED WORK

It has been previously explained that the cold start that
occurs in serverless edge computing is due to the scaling to
zero feature arising from the serverless paradigm. Therefore,
studies on the cold start problem in serverless computing
can also be used for serverless edge computing. Under this
subheading, all cold start solutions for serverless and server-
less edge computing are discussed. When the literature is
examined, it is seen that the studies on solving the cold start
problem in the serverless paradigm are generally grouped
under two subheadings. These are the reduction of cold start
latency and the reduction of cold start occurrence frequency.
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TABLE 1: Comparison of ATOM with existing works.

Work Technique Objective Platform RA DFC MSP GD EC

Akkus et al. [16] SAND LR Apache OpenWhisk, AWS Greengrass ✓ ✗ ✗ ✗ ✗
Agarwal et al. [17] LSTM-PPO LR OpenFaaS ✓ ✓ ✗ ✗ ✗
Mampage et al. [18] DRL LR Kubeless ✓ ✓ ✓ ✓ ✓
Agarwal et al. [19] RL FRP Kubeless ✗ ✓ ✗ ✗ ✗
Pan et al. [20] Gradient-based Algorithm FRP OpenWhisk, Real Server ✗ ✓ ✗ ✓ ✗
Vozmedia et al. [21] Placement Policies FRW FaaSim, AWS ✗ ✗ ✗ ✗ ✗
Liu et al. [22] Application-level Optimization LR AWS Lambda, Google Cloud Functions ✓ ✗ ✗ ✗ ✗
Mampage et al. [23] DRL FRW Kubernetes ✗ ✓ ✓ ✗ ✗
Vahidinia et al. [24] RL + LSTM FRP Openwhisk ✗ ✓ ✗ ✗ ✗
Kumari et al. [25] DNN + LSTM FRP AWS Lambda, Azure, Openfaas, Openwhisk ✗ ✓ ✗ ✗ ✗
Xu et al. [26] AWU + ACPS FRW Kubernetes ✗ ✓ ✗ ✗ ✗
Fuerst et al. [27] Greedy-Dual Caching FRW OpenWhisk ✗ ✓ ✗ ✗ ✗
ATOM (this work) DRL FRP Google Cloud Functions ✓ ✓ ✓ ✓ ✓

2.1 Cold Start Latency Reduction (LR)

There are many studies aimed at reducing the latency
caused by cold starts through the acceleration of preparation
stages for the containers responsible for function execution.

Akkus et al. [16] presented a new method of creating
sandboxes with their proposed SAND system. This sys-
tem uses two main features. These are application-level
logical space, which reduces container provisioning time,
and the hierarchical bus, which allows functions running
on the same source to run faster. The results show that
SAND reduces cold start latency 43% more successfully
than Apache OpenWhisk. Liu et al. [22] aimed to reduce
the cold start latency time by applying application-level
optimization in their study, FaaSLight. As a result of their
tests, they determined that the application code loading
process has the most significant effect on the cold start
delay. They suggested separating optional code from FaaS
to mitigate this effect by installing only the necessary code.
The results show that the cold start latency can be re-
duced by up to 21.25 times. The serverless paradigm has
a dynamic and multi-tenant structure. This structure causes
challenges such as resource contention and efficient resource
management. Mampa et al. [23] introduced an efficient
function scheduling mechanism employing a DRL-based
technique. They conducted performance tests in the Kube-
less environment and the results showed noticeable im-
provements in response time and resource usage cost. The
other approach is automatic scalability-based approaches.
Thanks to automatic scalability, sufficient resources can be
allocated to containers to cope with sudden fluctuations
in the number of requests and reduce the effect of cold
start latency. Agarwal et al. [17] proposed a Long Short-
Term Memory-Proximal Policy Optimization (LSTM-PPO)
method-based approach and presented an efficient autoscal-
ing mechanism for serverless environments. They deploy
the proposed agent to OpenFaaS and conduct experiments
using the matrix multiplication function. The results show
that the proposed approach increases throughput by up to
18%. Mampage et al. [18] proposed a DRL-based algorithm,
providing optimized scaling in serverless computing. To
do this, they adapted the Asynchronous Advantage Actor
Critic (A3C) model to applications on the platform for
horizontal and vertical scaling decisions. The performance
of the proposed algorithm is evaluated using a Kubeless-
based testing environment. The authors found reductions in

latency of up to 34%.

2.2 Cold Start Occurrence Frequency Reduction (FR)
Generally, there are two ways to decrease the occurrence of
cold starts on the serverless platform: container preparation
and Keeping the container warm.

2.2.1 Container Preparation (FRP)
The main purpose of container preparation approaches is
to run the container before a function request comes to the
serverless. In this way, it is aimed to prevent the formation
of cold start.

Vahidinia et al. [24] proposed a new two-layer adaptive
approach that prevents cold start. The first layer explores
patterns of calling functions and idle containers with an
RL-based model. In the second layer, the next run time
of the function is determined with the LSTM model, and
the number of preheated containers is decided. The results
show that the proposed operation reduces the cold start
frequency and memory consumption. Kumari et al. [25]
proposed a two-stage study using Deep neural network
(DNN) and LSTM models. The first step uses DNN for
idle container window length estimation. In the second
step, LSTM estimates the number of requests. The proposed
model is tested on AWS Lambda, Azure, Openfaas, and
Openwhisk. The results prove that it reduces the cold start
frequency. Agarwal et al. [19] proposed a new approach
using an RL-based Q-Learning algorithm that aims to re-
duce the frequency of cold start occurrence. In the proposed
approach, the agent prevents cold start by keeping functions
running in advance by monitoring metrics such as CPU
usage and function instances. For performance evaluation,
the authors deployed the proposed approach on Kubeless
and found that throughput could increase by up to 8.81%.
Pan et al. [20] introduced a new framework called SSC
based on pre-warming to reduce the frequency of cold start
occurrence. The proposed framework adapts to complex
workflow structures using a gradient-based algorithm and
aims to allocate resources efficiently and thus prevent cold
start. The framework has been tested in OpenWhisk and a
real server environment and has been found to reduce cold
start occurrence by 50%.

2.2.2 Keeping Container Warm (FRW)
Due to the Scale to Zero feature, after the execution of
a function is completed, the container is expected to be
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terminated. In keeping containers warm, containers whose
function execution is completed are kept ready for use for
a certain period. Thus, it can respond to any function call
during this period, and a cold start will be prevented.
Google Cloud Functions, AWS Lambda, and Openwhisk
platforms use such a mechanism to reduce the occurrence
of cold starts [24].

By proposing an Adaptive Warm-Up (AWU) strategy,
Xu et al. [26] aimed to estimate function request time and
reduce the frequency of cold starts by warming containers.
First, non-first functions are estimated using a fine-grained
regression model. In the next step, the function launching
time is reduced using the Adaptive Container Pool Scaling
(ACPS) strategy. Finally, the capacity of the container pool
is adjusted to avoid wasting resources as much as possible.
Results are evaluated through Kubernetes. Fuerst et al. [27]
aimed to reduce the frequency of cold start by applying
the Greedy-Dual Caching policy called FaasCache to keep
the container warm. The proposed method keeps functions
alive according to source and usage patterns. The results
show that FaasCache is more than 3x successful in reduc-
ing the cold start frequency compared to current studies.
Moreno et al. [21] aimed to both reduce the latency in the
network and accelerate the run container preparation pro-
cess (cold start) of functions with the two-layer serverless
edge architecture they proposed. For this, they use a double
placement policy. According to the first placement policy,
the first environment to be preferred to execute a function
is the edge. If there are not enough resources in the edge
environment, the function is sent to the cloud to be run. In
the second placement policy, a warm instance is checked
in one of the edge or cloud environments and the function
is sent to the warm instance environment in order to start
faster. In cases where there is no warm instance, the initial
placement policy will be followed. The authors use FaaSim,
a FaaS platform, and AWS to test their proposed work.

2.3 Critical Analysis
Comparisons of this paper with current literature studies
reviewed are given in Table 1. The comparison table consists
of a total of eight columns. The first column indicates the
study examined, the second column indicates the technique
used in the study, and the third column indicates the pur-
pose of the study under review. It is written as LR if the aim
of the study is Cold Start Latency Reduction or as FR if Cold
Start Occurrence Frequency Reduction. Also, when doing
Cold Start Occurrence Frequency Reduction, the preferred
process is shown as FRP if Container Preparation or FRW if
Keeping the Container Warm.

In this section, we analyze literature studies and this
paper in terms of Resource-Aware (RA), Dynamic Function
Call (DFC), Multi-step Ahead Prediction (MSP), and Gener-
ating Dataset (GD). Now let us explain these concepts:

Resource-Aware (RA): Most of the methods in the liter-
ature implement operations such as prewarmed containers,
keeping containers warm, and container pools for Cold Start
Latency Reduction and Cold Start Occurrence Frequency
Reduction. Moreover, these processes will cause additional
resource consumption. The “Resource-Aware” feature in the
Table represents whether the techniques used in the studies
examined require additional resource consumption.

Dynamic Function Call (DFC): This represents whether
the reviewed studies consider varying “Function Calls”.
Because variable function calls and cold start occurrence
are correlated in serverless environments, efforts to prevent
cold start, such as keeping the container warm, ignore this
correlation. There is a need for a model that can model
the relationship between requests coming to the server and
cold start and adapt to the dynamic nature of the cloud
environment.

Multi-step ahead prediction (MSP): It is the estimation
of multiple time steps into the future by utilizing a historical
time series dataset. In serverless environments, a high suc-
cess rate for the MSP holds significance as it facilitates the
expedited transmission of the triggering PING to the server.
Sending the PING early can be advantageous for functions
that undergo an extended container preparation process.

Generating Dataset (GD): This represents the creation
of a cold start dataset through the utilization of a real-world
platform in the study.

Energy Cost (EC): It represents whether the energy cost-
sensitive model is investigated in the method used.

For these reasons, RL and DRL-based algorithms can
be used to reduce the cold start frequency. While RL-based
algorithms learn dynamically by trial and error, DRL learns
from existing knowledge and applies it to a new dataset
[15]. It also requires discretizing continuous values for state
representation in RL-based algorithms. This can cause prob-
lems such as state action space explosion [28]. Considering
the cold start, CPU and RAM usage is continual, so it would
be more logical to use DRL instead of RL.

3 PRELIMINARIES

This section explains the time series models and evaluation
metrics used to better understand the proposed study.

3.1 Time Series Models
This section explains the three time-series models, LSTM,
DDPG, and RDPG, respectively, used in the study.

Long short-term memory (LSTM): Using a recurrent
neural network (RNN) architecture, this model successfully
captures long-term dependencies in time series [29]. It is
used in time series and various fields, such as machine
translation and speech recognition.

Deep Deterministic Policy Gradient (DDPG): DDPG
was created by combining DL and Policy Gradient mod-
els to develop Actor-Critic-based DRL algorithms [30]. Its
applications span across various fields and time series
problems. In DDPG, the state is constructed from previous
observations within a time series. Conversely, the action
space encompasses predictions and forecast results gener-
ated by the model. Therefore, the action refers to the model’s
prediction for the upcoming value. Moreover, an actor-critic-
based architecture is employed. The actor network makes
predictions for a given series of time steps, while the critic
network compares these predictions with the actual values
using mean-squared error loss. The gradients from the critic
network are utilized to optimize and enhance the predicted
rewards within the actor network.

Recurrent Deterministic Policy Gradient (RDPG): It
works as an extension of Deterministic Policy Gradient
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(DPG) and is a robust algorithm in scenarios such as time
series forecasting [31]. RDPG and DDPG algorithms differ
from each other in handling time series patterns. When
extending DPG using DNN in DDPG, RDPG extends using
RNNs. RNN allows a model to consider the observation
history for future predictions using memory. First, the obser-
vation space, action space, and reward function are defined
when used for time-series data. Then, the RNN architecture
is chosen to capture the repetitive data patterns successfully.
Using this architecture, the model interacts with the envi-
ronment to create observations, actions, and rewards. This
created data is kept in the replay buffer for later use. The
policy and value networks are updated using this data in
buffers, and the algorithm’s loss functions are minimized.

3.2 Evaluation Metrics
In evaluating the performance of the time series models uti-
lized in this paper, several metrics are employed, including
root mean square error (RMSE), mean absolute error (MAE),
coefficient of determination (R2 Score), and mean absolute
percentage error (MAPE). These metrics are utilized for
comparing and assessing the models’ predictive accuracy
and performance in handling time series data.

Root mean square error (RMSE): Used to evaluate the
accuracy of predictions in various fields such as statistics
and data analysis [32]. The distance between the Predicted
and Actual values is calculated using the Euclidean dis-
tance.

RMSE =

√√√√1

t

n∑
i=1

(At − Pt)2, (1)

where t represents the number of units in the dataset, At is
the actual value, and Pt is the predicted value.

Mean absolute error (MAE): MAE is widely used in time
series analysis [32]. The difference between the prediction
errors, i.e. Predicted value and Actual value, is the average
of their absolute values.

MAE =

∑t
i |At − Pt|

n
. (2)

Coefficient of determination (R2 Score): Describes the
ratio of dependent variable variance calculated using inde-
pendent variables in a model [33]. The sum of the squared
residuals is obtained by dividing Rss by the sample mean
squared deviations Tss.

R2 = 1− Rss
Tss

. (3)

Mean absolute percentage error (MAPE): Measures
the prediction accuracy of a model [33]. Predicted value
and Actual value Calculates the average percentage of the
difference between.

MSE =
1

n

t∑
i=1

(At − Pt). (4)

Energy Cost: We use Eq. (5) to calculate the energy cost
(£cost) for AI models.

£cost = Pcost ×⊤. (5)

where Pcost represents the TDP power consumed by the
processor. ⊤ is the calculated time to train and test the

algorithm. Here, Thermal Design Power (TDP) measures the
amount of heat produced by the CPU and can be used for
an appropriate power target1.

Carbon Emissions: It represents the amount of CO2

emitted into the atmosphere as a result of processes such
as fossil fuels and industrial advancements [34]. Reducing
carbon emissions is critical to preventing climate change and
global warming. Cloud data centers are facilities that house
servers that provide services such as storage and software to
users over the Internet. It has basic duties such as providing
energy and cooling for the server and other infrastructure
systems inside. Since all these processes require electric-
ity consumption, they also have a contribution to carbon
emissions. Studies are continuing by researchers to reduce
carbon emissions from cloud data centers [35]. Calculating
the Carbon Emission amount requires various and difficult
processes, but a general result can be obtained by:

Cξ = Pc ∗ t ∗ CIE , (6)

where Cξ is carbon emission (kg CO2), Pc is power con-
sumption (kW), t is time (h), and CIE is the carbon intensity
of electricity (kgCO2/kWh). The amount of CiE varies from
region to region and for this paper it is calculated as 182
gCO2/kWh for the London area.2

Cold Start Latency: The following formula is used to
calculate cold start latency in serverless computing.

Ccold = Rfirst −Rsecond, (7)

where Ccold represents the cold start latency, Rfirst rep-
resents the first request sent to the server, and Rsecond
represents the second request sent to the server.

4 METHODOLOGY

This section explains the working mechanism of the ATOM
framework.

Serverless Platform

Edge Network

IoT Device 

Edge Device 1 Edge Device 3

f(x)
Instance 

Edge Device 2 IoT Device 

f(x)

Dynamic Scalibility

DRL PREDICTION

Fig. 1: The proposed ATOM framework.

4.1 ATOM Framework
The ATOM framework is shown in Fig. 1. Serverless edge
computing consists of two primary layers, as seen in the
figure. The first layer consists of an Edge Network of Edge
and IoT devices, and the second layer consists of a serverless
platform.

1. https://www.intel.com/content/www/us/en/support/articles/
000055611/processors.html

2. https://carbonintensity.org.uk/
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4.1.1 Edge Network
It consists of edge nodes with limited processing and storage
capabilities and IoT devices such as sensors and smart-
phones. Edge nodes have a heterogeneous structure as they
can consist of devices with different processing and storage
capabilities. IoT devices can receive quick responses by
sending the data they produce to edge nodes with higher
processing power. To do this, IoTs send events (f(x)) to edge
nodes via Hypertext Transfer Protocol (HTTP), Message
Queuing Telemetry Transport (MQTT), or Data Distribution
Service protocols (DDS), depending on event-driven prin-
ciples. It should be noted that the same or different infras-
tructure serverless platform providers (InPs) are deployed
on edge nodes [8], [36]. In this way, edge nodes can manage
the whole life-cycle of events sent to them or interact with
another node to do this. Edge nodes trigger functions on
the serverless platform to process f(x) sent to them by IoTs.
It sends the response obtained for f(x) back to the IoT or
assigns another edge node to do this.

4.1.2 Serverless Platform
A Serverless platform becomes necessary when the function
f(x) requires too large a processing capacity to be executed
on the edge network. However, it’s important to consider
that the remote placement of cloud centers may lead to
increased transmission costs and latencies.

ATOM framework predicts the cold start time and as-
signs PING to the container instance in the serverless edge
node. In this way, the container instance is made ready
before the cold start occurs and the cold start is prevented.
ATOM framework prevents unnecessary energy and re-
source consumption, unlike the container pool [37] and
keeping container warm [25] solutions in the literature, as
it only makes the instances operational when necessary.

4.2 Research Organisation

CREATE THE COLD START 
DATASET

THE DATASET REVIEW AND 
PREPARATION

THE TIME-SERIES MODEL 
TRAINING & OPTIMIZATION

COLD START LATENCY 
PREDICTION AND EVALUATION

1

2 3

4

Fig. 2: Flow chart of the execution of various steps in ATOM.

In this section, the flow chart of the execution of various
steps in ATOM is given in Fig. 2 so that the reader can better
understand the flow of the methodology. The cold start
dataset is created in the first step to train the Time-Series
models and obtain forecast results. The obtained dataset is
examined in the second step, and the preparation process is
performed. In the third step, the training and optimizing
process of two DRL and DL models is described. In the
last step, the computation time, prediction performances,
and accumulated reward metrics for these three models are
evaluated in Section 5.

4.2.1 Dataset Creation and Preparation

Fig. 3: The cold start latency dataset

The cold start dataset used in this study is shown in
Fig. 3. The cold start dataset was created on March 1-6,
2023, by following a serverless system that works 24 hours
a day. For this, a heart disease risk scenario integrated into
a serverless platform was deployed to Google Cloud Plat-
form, i.e., Cloud functions [1]. The environment parameters
used while creating the dataset are given in Table 2. To
create workloads and measure latency, between 1 and 250
simultaneous requests were sent to the server at staggered
and 5-minute intervals using the Apache JMeter application.
It has been choosing these values to simulate a real working
environment and has been requested to the server between
08:00 and 18:00 for 6 days. Eq. (7) was used to calculate
the latency of the server’s responses to these concurrent
requests. To calculate the cold start, the latency differences
between the first and second requests are calculated [10]. As
a result of the observations, it was seen that cold start occurs
in two ways: (i) In cases where the number of simultaneous
requests is 200 or more (because a new container is started
on the Server), and (ii) In cases no request to the server
more than 15 minutes (because containers kept warm by
the platform are terminated after 15 minutes [14]). In the
system, it was observed that the latency time was between
18-32 ms in cases where a cold start did not occur, and
the latency times were between 800 - 2000 ms in cases
where of cold start occurred. Communication channels use
Transport Layer Security (TLS) protocol to address security
and privacy concerns of sensitive biometric data in the
dataset [38]–[40].

TABLE 2: Environment Parameters

Platform GCP - Cloud Functions
Region Europe-west2b
Runtime Python 3.11
Function call format HTTP
Memory 256 MB

The framework architecture used when creating the cold
start dataset is given in Fig. 4. In the heart risk scenario,
9 health data received from users are sent to a serverless
platform via an Application Programming Interface (API).
These data sent to Serverless are given to the previously
deployed Light Gradient Boosting Machine (LightGBM)
model, which detects heart disease risk, via the Serverless
API. The prediction results made in the Machine Learning
(ML) model are returned to the client side. Transaction
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Information created during this transaction is saved in
the database using Rabbit Message Que (MQ). Transaction
Information contains seven variables “DateTime”, “Hour”,
“Day”, “Latency”, “Request”, “CPU Usage”, and “Ram
Usage”. DateTime shows the time period in “dd/mm/yy
hh/mm/ss” format. Hour indicates the time for this pe-
riod, Day indicates the day of the week for this period.
Latency represents the total time spent on each request,
and request represents the number of requests sent to the
server. CPU Usage and RAM Usage show the amount of
CPU and RAM usage used in the instance for requests
coming to the server. The cold start dataset consists of this
transaction information. We used Rabbit MQ while creating
the database because by providing granular scalability, we
aimed to prevent any data loss due to the risk of conflicts in
the system.

Client Side Cloud Side

Transaction
Information

The Database

Gateway API

Rabbit MQ

1 2 3

456

5

6

Dynamic Scalibility

Fig. 4: The dataset creation mechanism.

Dataset Preparation: The cold start dataset contains 1729
observations with variables “DateTime”, “Hour”, “Day”,
“Latency”, “Request”, “CPU Usage”, and “Ram Usage”.
There are no outliers or meaningless values in these obser-
vations. We use the “DateTime”, “Latency” and “Request”
variables as inputs to train the models. To train Time series
models, the dataset is split in half at a ratio of 3 : 1

4.2.2 Development and Optimization of Time Series Mod-
els
In this paper, time-series models have been developed
for single-step ahead prediction. The models in which the
observation in the next time step is predicted by looking
at the past time-series values are called single-step ahead
prediction. Since the single-step ahead is a simple prediction
task, it is sufficient to examine the last 5-time step. Latency
values (Lb) of the last 5-time step are given to the models
as input, and the next step’s latency value (Lf) is predicted
as output. In order to make cold start predictions with DRL
models, let us first define state, action, and reward.

• State: It is the amount of latency corresponding to
each time step. So in our single-step ahead prediction
problem, the latency values of the last 5-time steps
correspond to [Lb, Lb−1, Lb−2, Lb−3, Lb−4]. The state
space, therefore, encompasses the latency values as-
sociated with each individual time step.

• Action: Action values consist of latency values rang-
ing between 18 and 2000. When the agent produces
an output, it generates a value within this range. This

specific output value stands as the predicted latency
value for the given scenario.

• Reward: Reward should be created when evaluating
the accuracy of the prediction (output) created by the
Agent. The following equation is used when creating
the Reward:

rt+1 = −|Lt − at|, (8)

where Lt represents the actual amount of latency in
the t-th timestep, and at represents the predicted
latency value for the t-th timestep. The closer the
latency value (at) predicted by the agent to the actual
amount of latency (Lt), the closer the rt+1 value is to
zero. Otherwise, the value of rt+1 will be negative.

ACTOR CRITIC

Agent

Environment

at

st+1

rt+1

st rt

∿

∿

∿

∿
Network

st st+1
at at+1

(st , at, st+1, at+1 , rt+1) 

(st , at) (st+1 , at+1)

∿

∿

∿

∿
Network

Q(st , at) Q(st+1 , at+1)
к

Update

TransitionStore

Fig. 5: The schematic diagram of DDPG/RDPG.

All the steps described so far are the same for both DDPG
and RDPG models. It has perceptual and decision-making
abilities by combining DL and RL in two models. Actor-
critic-based architecture and neural networks are used to
predict the policy used. This architecture is shown in Fig. 5.
Both actor and critic have neural networks. The actor net-
work has the parameter τ , and its task is to find the output
of the actions and predict the policy found in the system
(πτ (s, a)). The Critic network has the parameter ψ to esti-
mate the action-value function. The action-value function
is used to update the policy in the system. The training
phases are as follows: First, the agent interacts with the
environment according to the policy in the actor network to
obtain the transition values (st, at, st+1, at+1, rt+1). It then
calculates the action-value function for the critic (st, at) and
(st+1, at+1) tuples. Finally, the Temporal difference (TD)
error (ζ) is calculated. The TD error evaluates the new state
after each action selection. The parameters of the actor are
updated according to this error value.

The pseudo-code describing the training processes of
the DDPG and RDPG models is given in Alg. 1. Here,
∇τ log πτ (s, a) score function, ι and η represent the learning
rates for Actor and Critic. The training processes of DDPG
and RDPG models are close to each other. The only differ-
ence is that RDPG extends DNN using RNNs. When the
pseudo-code is examined, it is seen that there are two loops
(Repeat-Until) for loops run until they reach the last element
in the dataset. So the time complexity of the algorithm
complexity is O(n2).
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Algorithm 1 The Pseudo code of cold start latency predic-
tion.

1: (τ , ψ) parameters for Actor and Critic networks
2: ( τ

′ ← τ , ψ
′ ← ψ ) targets for Actor and Critic networks

Repeat
3: Select random st in Sspace

Repeat
4: Select at (Actor Network)
5: Find rt using rt = -|Lt − at|
6: Update st using st = st+1

7: Select at+1 (Actor Network)
8: Store (st), at, st+1, at+1, rt) (Buffer)
9: Compute τ(st, at) (Critic network)

10: Compute τ(st+1, at+1) (Critic network)
11: ζ = rt+1 + κ τ (st+1,at+1) - τ (st,at)
12: dτ = ι∇τ logπτ (s, a).ζ
13: dψ = η ∂Σζ

2

∂ψ
14: st ← st+1

Until St or Steps done
Until Episodes done

15: End

5 PERFORMANCE EVALUATION

In this section, the most successful and least energy-
consuming time-series model in cold start prediction is
determined to be used in the ATOM framework. To do
this, the performances of three time-series models, namely
LSTM, DDPG, and RDPG are compared using the cold start
dataset. We choose DDPG and RDPG models as DRL mod-
els because the literature has shown that these two models
are successful in complex and nonlinear problems [15]. We
use LSTM as the DL model because two studies in the
literature that reduced the cold start showed that this model
was successful [24] [25]. The comparison is evaluated in two
basic aspects: AI parameters and computing parameters,
using ATOM and baselines. The first evaluation part is AI
parameters, including i) Comparison of cold start latency
and request prediction accuracy performances of DRL and
baseline models. ii) Loss per period examination to evaluate
the performance of the baseline approaches on the dataset.
iii) Episode-reward performance comparison to determine
the most effective DRL model. iv) The most successful DRL
model’s and baseline’s approach multi-step ahead predic-
tion performance on the cold start dataset. v) Comparison
of calculation times of DRL and baseline approaches. The
second evaluation part is computing parameters, including
i) Energy cost calculation and comparison of all models. ii)
Carbon emission amount and comparison for all models. ii)
Observation of the impact of serverless edge computing on
network latency.

5.1 Experimental Setup

This section describes the test environments and model
parameters used in the experiments so that future authors
can reproduce this work.

System Configuration: All performance tests were per-
formed using the same system and are in the system config-
uration Table 3.

TABLE 3: System configuration

CPU Intel® Core™ i7-10750H
Clock Speed 12M Cache, up to 5.00 GHz

RAM 16 GB
OS Windows 10 Pro

TDP (W) 45

Model Parameters: Optimizing model parameters sig-
nificantly influences the performance of time-series models.
Unlike LSTM models, DRL involves a larger number of
parameters. Consequently, in determining the parameters
for DRL models, the number of Actor and Critic layers was
set and computed using a genetic algorithm. In contrast,
parameter optimization for the LSTM model was computed
with consideration to R2. Through a series of extensive
experiments, hyperparameter optimization was conducted
for all models, and the findings are outlined in Table 4.

TABLE 4: Model Hyperparameters

Model Hyperparameters

LSTM optimizer=’Adadelta’, loss=’mse’,
epoch=50, activation=’softmax’, input shape=(10, 1), Dense =1

DDPG Nf = 2, LRa = 0.0001, LRc = 0.01,
Nah = 30, Nch = 30, MAXep = 100

RDPG Nf = 6, LRa = 0.001, LRc = 0.003,
Nah = 30, Nch = 30, MAXep = 100

5.2 Baseline Models
In serverless computing, we mentioned that one of the
reasons for a cold start is that the number of requests coming
to the server is greater than the maximum capacity that
the container can process. For this reason, it is important to
capture the dependencies between the number of requests
coming to the server and cold start. Additionally, another
important thing is the detection of latency patterns caused
by cold start. Latency formation higher than a certain thresh-
old value will provide important clues for a cold start. In this
section, we compare the cold start latency prediction and
concurrent request prediction performances of the proposed
framework (ATOM) with current cold start-based baselines
such as Warm-Start Containers (WSA) [25], and Two-layer
Adaptive (TLA) [24].

WSA Approach [25]: In the first stage of the proposed
adaptive model, the window length is estimated by using
the neural network model [22]. The window length repre-
sents how long the container will be kept warm after the
function has completed execution. In the second stage, the
number of concurrent requests is estimated using LSTM.
This way, a warm container can be prepared sufficient for
the number of requests, and the cold start frequency can be
reduced.

TLA Approach [24]: Similar to the previous work, the
authors use the actor–critic algorithm to determine the dura-
tion of keeping containers warm in the first layer. Containers
continue to be kept warm according to this determined
period. Thus, cold start formation caused by requests to
the server can be prevented. In the second layer, function
invocation times are detected by using LSTM (with time-
series problems). In this way, it is aimed to avoid a cold
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start by preparing prewarmed containers before the request
comes to the server.

5.3 Workloads
We provide the basis for energy-aware studies aimed at
reducing the frequency of cold starts in serverless environ-
ments. The occurrence of cold starts is predicted through the
application of DRL techniques, known for their effectiveness
in addressing intricate and non-linear challenges.

The initial step involves generating a cold start dataset
to train all DRL models within a serverless environment. To
accomplish this, the HealthFaaS framework [1] was imple-
mented on the Google Cloud Platform (GCP) - Cloud Func-
tions. Workload creation was achieved using Apache JMeter,
wherein simultaneous HTTP requests ranging between 0
and 250 were sent to the server, resulting in the acquisition
of a dataset containing instances of cold start situations.
Subsequently, all DRL and DL models were trained utilizing
the previously acquired cold start dataset. Following this
training, a comparative analysis was conducted among the
models, evaluating their prediction performance, energy
consumption, as well as their impact on CO2 emissions.

5.4 Results
In this subsection, the initial step involves identifying the
most effective DRL model, specifically the ATOM frame-
work, in predicting both cold start latency and the number
of requests. Subsequently, a comparison of performance is
conducted with the LSTM models [24], [25]. Energy con-
sumption and CO2 emission amount tests are then per-
formed to find the most efficient model for all AI models.

5.4.1 AI Parameters
Latency & Request Prediction: The cold start latency and
request prediction performances of these three models are
compared with three evaluation indices: “RMSE”, “MAE”,
and “R2 Score”. The results are given in Table 5. For la-
tency prediction, It shows that among the three time-series
models, the DDPG model is the most successful model,
with 148.76 RMSE, and the RDPG model is the most un-
successful model, with 184.82 RMSE. Similar to the result
of latency prediction, the request prediction performance
of these three models is compared with three evaluation
indices: “RMSE”, “MAE” and “R2 Score”. Among the three
time series models, it can be seen that the DDPG model
is the most successful model with 25.66 RMSE, and the
RDPG model is the least successful model with 64.71 RMSE.
Additionally, the results show that the DDPG model has
much better performance than the baseline models (WSA
[25] and TLA [24]). DDPG models continuously learn in
each episode and update policies as a result of these obser-
vations. In dynamic time series problems such as cold start,
LSTM (Deep Learning - DL) makes predictions with lower
accuracy because it does not have the discovery mechanism
as in DDPG. As a result, the DDPG model with the highest
performance for both latency and request prediction has
been applied to the ATOM framework. Thus, for the next
experiments, the results obtained for DDPG are also valid
for the ATOM framework. Although the RDPG model is
expected to be more successful than the DDPG, there may

be several reasons why it performs worse. First of all,
DDPG allows agents to find new states with its exploration-
exploitation trade-off policy. In this way, it can discover
more successful policies. However, RDPG has difficulty in
discovering new states in time-series-based problems and
this hinders it from discovering successful policies as in
DDPG. In addition, DDPG can develop policy more quickly
with less data compared to RDPG. This may explain the
faster convergence and higher success of DDPG on the
cold start dataset. Moreover, DDPG uses DNNs to capture
complex patterns and correlations in the cold start dataset.
Likewise, the RDPG model can capture complex patterns
and correlations in the cold start dataset using a neural
network, but its repetitive nature may cause limitations in
capturing long-term patterns and correlations.

TABLE 5: Comparison between ATOM and the baselines re-
garding latency and request prediction performances using
the test dataset.

Work Model RMSE MAE R2 Score

ATOM
(latency)

DDPG 148.76 51.57 0.071

RDPG 184.82 85.05 -0.426

TLA [24] LSTM 162.59 45.59 -0.085

ATOM
(request)

DDPG 25.66 13.48 0.762

RDPG 54.41 46.96 -0.07

WSA [25] LSTM 64.71 37.33 -0.498

Fig. 6 shows the Loss per Epoch graph obtained in the
training phase for the LSTM model used in two baseline
models [24], [25]. The Loss Function is calculated using the
mean squared error (MSE) and shows the observed loss
per episode. The loss function tends to decrease and the
accuracy of the LSTM model for both latency and request
prediction increases in each epoch. This shows that the
LSTM model tends to converge.

(a) LSTM TLA [24] (b) LSTM WSA [25]

Fig. 6: Loss per epoch for latency and request prediction
training

Fig. 7 shows episode-reward graphs for latency (a) and
request (b) prediction of DRL models. These graphs show
the rewards that an agent receives cumulatively throughout
the episodes, i.e. learning success The chart includes only
the first 100 episodes. When the latency prediction graph
is examined, it is seen that the reward total of the DDPG
model is unstable and decreasing until approximately the
7th episode. But it reaches stability after the 7th episode.
RDPG is seen to change relatively constantly between -
75 and 0 values. When the request prediction graph is
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examined, it is seen that the DDPG model reaches stability
after approximately the 5th episode, while the RDPG model
is constantly unstable and cannot learn well. As a result, the
reward of the DDPG model is better than the RDPG in both
cases. This shows that DDPG is more stable and converges
better.

(a) For Latency Prediction (b) For Request Prediction

Fig. 7: Performance comparison of DDPG and RDPG

In Fig. 8a, we conducted a test displaying trend points to
demonstrate the multi-step ahead prediction performance of
the DDPG model using the cold start dataset. The red dots
indicate the “Downward Trend”, signifying a decrease in
latency, while the green dots indicate the “Upward Trend”,
signifying an increase in latency. The x-axis illustrates the
number of time steps observed, while the y-axis represents
the latency value. Multi-step ahead prediction was made
by selecting the first 30 time steps. Fig. 8b shows cold start
latency prediction with the LSTM model used in the TLA
base study. While the predictive results show promise in
successfully identifying cold start situations when a partic-
ular threshold is established, they may not yield satisfactory
accuracy for general latency prediction purposes.

(a) DDPG (ATOM)

(b) LSTM (TLA)

Fig. 8: Performance comparison of ATOM and TLA in terms
of latency

Time Comparison: The computation times for the pre-
diction of cold start latency and request number for the
three time-series models examined in this paper are given in
Table 6. The results show that the DRL models require very

high training time compared to the LSTM (baseline models).
DRL models consist of processing stages where the agent
interacts with the environment to collect the most appropri-
ate strategy and highest reward. These stages take time, so
DRL models have a higher training time. When DRL models
are compared within themselves, it can be seen that RDPG
trains around 6 times longer than DDPG to predict latency
and request. This is because RDPG contains RNNs. RNNs
add increasing complexity to the RDPG model, allowing
it to learn better from past situations and actions. This
complexity results in longer training time. When we look
at the training times, it is seen that LSTM is much faster
than other models. The LSTM model can be parallelized
on sequential data such as time series. This feature allows
multiple computations to be performed simultaneously on
the GPU, resulting in a very short processing time. When
the table is examined, it is seen that the prediction time for
all models is negligible compared to training

TABLE 6: Comparison of ATOM with baselines in terms of
cold start latency and request prediction computation time

Work Model Training (sec) Prediction (sec)
ATOM

(latency)
DDPG 118.76 0.12
RDPG 738 0.15

TLA [24] LSTM 18 0.30
ATOM

(request)
DDPG 110.94 0.21
RDPG 729.78 0.21

WSA [25] LSTM 6.6 0.08

5.4.2 Computing Parameters

This section involves a comparison of the Energy Con-
sumption and CO2 Emission associated with three different
algorithms for predicting cold start latency and request
number. Additionally, the last subtitle examines the impact
of serverless edge computing on network latency.

5.4.3 Energy Consumption

Fig. 9 shows the amount of energy consumed for the train
and prediction phases for cold start latency and the request
number of the three different AI models. The results calcu-
lated using Eq. (6) show that while DRL models consume
the most energy for model training, the model that con-
sumes the least energy is LSTM. The biggest reason for
this is that DRL models require more computation than
DL and ML. Considering the prediction performances of
AI models, this situation is slightly different. The amount
of energy consumed for almost all models is close to each
other. However, the results show that the most energy-
consuming model for the prediction process is DDPG, and
the least energy-consuming model is LSTM. This may be
due to intra-model differences in the LSTM model, such as
data Requirements and inference complexity.

5.4.4 CO2 Emission Amount

Increasing energy efficiency in edge and cloud computing
also means reducing energy consumption. In the IT sector,
this issue is important for reducing the carbon emission rate
and therefore reducing its contribution to global environ-
mental problems. To create this awareness, carbon emission
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(a) Training Latency Prediction (b) Latency Prediction (c) Training Request Prediction (d) Request Prediction

Fig. 9: Energy costs comparison of ATOM framework with baselines

amounts for all AI models examined in this paper were
calculated using Eq. (6).

Fig. 10 shows the calculated CO2 emissions for Request
Training (RT), Latency Training (LT), Request Prediction
(RP), and Latency Prediction (LP). When the figures are
examined carefully, it is seen that the DDPG model has
the highest CO2 emission amount for training processes,
and the LSTM model has the highest CO2 emission amount
for prediction processes. It is an important research gap for
researchers to conduct studies that increase the accuracy
rate in the IT sector while also taking into account energy
consumption and CO2 emissions.

(a) Carbon emission amount
for training of models

(b) Carbon emission amount
for testing of models

Fig. 10: Carbon emission comparison of ATOM framework
with baselines

5.4.5 Impact of Serverless Edge Computing on Network
Latency

In this section, we observe the effect of Serverless Edge
Computing, which is based on bringing the serverless
platform closer to the source, on network delays. So, we
compare the response times of serverless computing and
serverless edge computing. For creating a workload, we
use a Python script that calculates the Fibonacci series. We
calculate the Fibonacci number in increasing numbers as
100, 500, and 1000 respectively. We distribute this Python
script to both a serverless platform and a serverless edge
environment. For this, we created two different instances
using GCP Cloud Functions. For the serverless scenario,
the first instance was deployed to a GCP region far from
the location where the experiment was conducted. For the
serverless edge scenario, the second instance was deployed
to the GCP region in the same city as the location where the
investigation was conducted. The environment parameters
are shown in Table 7.

TABLE 7: The environment parameters

Instance Region Zone Machine
Configuration

Machine
Type

1

south
america

east1
(Sao Paulo)

south
america

east1

E2
Series

2vCPU
1 Core

4 GB RAM

2
europe
west2

(London)

europe
west2c

E2
Series

2vCPU
1 Core

4 GB RAM

Table 8 shows the results. As can be seen, serverless edge
computing provides advantages for time-sensitive scenarios
by reducing network delays.

TABLE 8: Serverless and serverless edge computing net-
work latency comparison

Fibonacci Number Serverless Scenario Serverless Edge Scenario

100 0.002s 0.001s
500 0.008s 0.005s
1000 0.32s 0.003s

6 CONCLUSIONS AND FUTURE WORK

The serverless paradigm is one of the latest cloud delivery
models that attract attention with the advantages it offers
such as pay-as-you-go and automatic scaling of resources.
This paradigm has recently been distributed to edge nodes
which has advantages such as low latency and bandwidth,
resulting in a new research field, serverless edge computing.
However, before it is adopted by the academy, it brings
with it problems that still need to be solved, such as cold
start. Most of the cold start solutions found in the literature
require unnecessary use of resources. This article presents
ATOM, an AI-powered Sustainable framework for predict-
ing cold start in serverless edge computing. Latencies due
to cold start can cause significant problems in time-sensitive
IoT applications such as virtual reality. For this purpose,
a cold start dataset was created by applying a study in
the literature determining the risk of heart disease to the
real-world serverless platform (GCP-Cloud Functions). Two
DRL techniques (DDPG and RDPG) are tested on the cold
start dataset to observe the cold start latency. It also com-
pares with two different baselines (LSTM).

Experimental results show that the DDPG model outper-
forms the other two models with an RMSE ratio of 148.76.
The performance of two current studies (LSTM) in the litera-
ture is evaluated with the Loss per Epoch graph. The results
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showed that the LSTM model was more unsuccessful than
the DRL model. DRL models are compared over episode
reward. It was seen that DDPG is more stable and superior
to RDPG. The multi-step ahead prediction graph on the cold
start dataset of the most successful DRL model (DDPG) has
been interpreted. Furthermore, finally, Energy Consumption
Comparison and CO2 Emission Amount were measured for
all models. DRL models require more energy consumption
and CO2 emission than other models.

This study shows that DRL models are successful in
predicting cold starts and have great potential to reduce
the frequency of cold starts. In future work, DRL models
can be positively extended to other resource management
problems in serverless computing. In future studies, mon-
itoring can be done for cold start by adding a monitoring
mechanism. Advanced ML/DL techniques can be applied
to improve cold start prediction performance. Additionally,
by extending the ATOM framework, work can be done to
prevent cold start for serverless environments. Additionally,
since the cold start dataset was created using only a single-
function service, detailed information about scalability can-
not be obtained. Therefore, the dataset can be developed
using multiple functions. Finally, by using online ML, a
more cost-effective and efficient system can be created in
resource-constrained environments.

SOFTWARE AVAILABILITY

The dataset is publicly published for future researchers at:
https://github.com/MuhammedGolec/ColdStart-Dataset.
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