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Accurate Network Alignment via Consistency in
Node Evolution

Yinghui Wang*, Qiyao Peng*, Pengfei Jiao, Member, IEEE, Huaming Wu, Senior Member, IEEE, and
Wenjun Wang

Abstract—Network alignment, which integrates multiple network resources by identifying anchor nodes that exist in different networks,
is beneficial for conducting comprehensive network analysis. Although there have been many studies on network alignment, most of
them are limited to static scenarios and only can achieve acceptable top-a. (o > 10) results. In the absence of considering dynamic
changes in networks, accurate network alignment (i.e., top-1 result) faces two problems: 1) Missing information: focusing solely on
aligning networks at a specific time leads to low top-1 performance due to the lack of information from other time periods; 2) Confusing
information: ignoring temporal information and focusing on aligning networks across the entire time span leads to low top-1
performance due to inability to distinguish the neighborhood nodes of anchor nodes. In this paper, we propose a dynamic network
alignment method, which aims to achieve better top-1 alignment results with consider changing network structures over time. Towards
this end, we learn the representations of nodes in the changing network structure with time, and preserve the consistency of anchor
node pairs during the time-evolution process. Firstly, we employ a Structure-Time-aware module to capture network dynamics while
preserving network structure and learning node representations that incorporate temporal information. Secondly, we ensure the global
and local consistency of anchor node pairs over time by utilizing linear and similarity functions, respectively. Finally, we determine
whether two nodes are anchor node pairs by maintaining consistency between global, local, and node representations. Experimental
results obtained from real-world datasets demonstrate that the proposed model achieves performance comparable to several

state-of-the-art methods.

Index Terms—Network alignment, network evolution, global consistency, local consistency.

1 INTRODUCTION

ETWORK alignment is a process that compares two
Nnetworks to identify common nodes. It has gained
attention for its broad applications, such as comparing gene
networks or protein-protein interaction networks in biol-
ogy [1], [2], collecting the accounts belonging to the same
person in different online platforms in sociology [3], [4],
inferring the cross-layer alignment of wired and wireless
networks in computer science [5], [6], inferring relation-
ships among entities from different sources and to facilitate
transfer learning in knowledge graphs [7], [8], [9], [10]. The
common nodes found in different networks are referred to
as anchor nodes [11]. Anchor nodes represent entities such
as the accounts of the same person across different social
networks. The correspondence between pairs of anchor
nodes, which represent the same entity, is known as anchor
links.

Network alignment tasks have been thoroughly inves-
tigated and many methods have been proposed [11], [12],
(13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24]. When predicting anchor links, a majority of these
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methods hold a consistency assumption, i.e., the higher
the percentage of shared nodes, the more likely two nodes
are corresponding anchor nodes. However, most existing
research focuses on the alignment between static networks,
ignoring the dynamic evolution of the network structure in
real-world scenarios.

The dynamic evolution of network structures refers
to the appearance of new nodes and/or edges and the
disappearance of existing nodes and/or edges over time.
Typically, the dynamic evolution of network structures
can be represented by a series of static networks: G =
{G',G? ...,G",...,GT}, G' can be interpreted as a snap-
shot captured at a specific moment in time ¢. While ex-
ecuting static network alignment methods directly on G
or G' can produce respectable top-a (o > 10 generally)
prediction accuracy, achieving satisfactory top-1 accuracy is
often challenging. This is due to the following factors:

(1) Missing information. Static alignment methods usu-
ally have poor top-1 accuracy on snapshot network pairs
due to snapshots only retaining part of the network in-
formation. As shown in Fig. 1(a), the consistency-based
method will misalign v} and sz_ at the timestamps ¢t = %
and t3, because vl-l and ng- share more anchor node pairs
as neighbors between snapshot networks of G* and G2 at
t= tg and t3.

(2) Confusing information. When ignoring the timing
information of dynamic networks and merging all snap-
shot networks as a static network, directly applying static
alignment methods may have poor top-1 accuracy due
to confusing local structure. As shown in Fig. 1(b), it is
confusing for v} in G' to judge whether its corresponding
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Fig. 1: lllustration of network alignment with/without dynamic evolution of network structures. Nodes with different
colors are corresponding anchor nodes that are known in advance. (a) In the dynamic scenario, it can determine the
corresponding anchor node of v} is v? at t3 according to their similar neighborhood change pattern. (b) In the static
scenario, it is difficult to determine the corresponding anchor node of v; since v} and v3 both have a similar neighborhood

with v}

c © cofvlinGg € cofv?inG?

time

| | |
t-2 t-1 t

Fig. 2: Illustration of the global consistency of anchor node
pairs. ¢ is the number of the first-order neighbors of nodes.
With the evolution of G! and G?, the neighbor number of
nodes v} and v? in G' and G? changes differently, but the
total neighbor number of v} and v? in the two networks
obeys a certain pattern.

anchor node is v or v} in G*. Since v} and v} have the same
number of shared nodes as v} and v3, and v} and v? have
similar local structures, it is difficult to make a distinction
between v? and 11]2 without more auxiliary information.

In order to achieve better top-1 performance, it is crucial
to implement a more effective strategy for differentiating
neighboring nodes. The dynamic evolution of the network
can provide more information. As shown in Fig. 1(a), v}
and vf share anchor nodes at three timestamps (¢, t2, and
t3) in the networks G' and G?2. The shared anchor nodes

change over time from (v}, v2), (v}, v?), (v}, v2) to (v}, v3),
(vl,v?). Therefore, at ¢t = t3, it can be determined that

the corresponding anchor node of v} is v? instead of v
Therefore, leveraging the evolution information of networks
can effectively distinguish nodes within the network and
consequently achieve superior network alignment perfor-
mance.

To improve the top-1 performance of network alignment,
we propose a novel alignment model called GLDyNA. This
model takes into account not only the dynamic evolution of

2
it

the network structure but also the consistent evolution of
anchor node pairs in both global and local neighborhoods.
For local consistency, its implication is similar to the com-
mon assumption in static network alignment methods, i.e.,
in each pair of snapshot networks, anchor node pairs need
to maintain a similar local structure. For global consistency,
it reveals the inherent evolution pattern of anchor node pairs
over time and imposes constraints at a higher structural
level in network alignment, i.e., it determines the number
of neighbors an entity should maintain relationships with
across different networks. Due to the evolution of network
scale over time, there are fluctuations in the number of
first-order neighbors, denoted as ¢, of anchor nodes across
different networks, as shown in Fig. 2. Despite the dissimilar
variations in the number of first-order neighbors of anchor
nodes within networks G! and G?, there exists a latent
regularity in the total number of first-order neighbors of
anchor nodes in these networks.

Specifically, to model the dynamics and preserve the
network structure within a single network, we introduce
a Structure-Time-aware module. This module randomly
samples sub-networks of a given node v;, which include
the neighbors of v; from different snapshots. It then learns
representations of v; by maximizing the probability of co-
occurrence of two nodes within these sub-networks. In
order to capture the global consistency of anchor node pairs,
we define a linear function that relates to the total number
of neighbors of anchor node pairs across different networks.
This function imposes constraints on how the neighborhood
scale of the anchor node pair evolves with the network.
To capture the local consistency of anchor node pairs, we
define a similarity equation based on structural equivalence.
Finally, we combine the global and local consistency, along
with the similarity of node representations learned from
different networks, to predict anchor node pairs.

The main contributions of this paper could be summa-
rized as follows:

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on July 22,2024 at 05:17:01 UTC from IEEE Xplore. Restrictions apply.
© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

90

91
92
93
9
95
%
97
98
99

100

101

102

103

104

105

106

107

108

109



110
111
112
113
114
115
116
17
118
119
120
121

122

123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

167

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2024.3407543

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

e We analyze why static network alignment methods
cannot be directly applied in dynamic scenarios.
Additionally, we explain the factors contributing to
the poor performance of existing methods in terms
of top-1 precision.

e We propose a novel dynamic network alignment
method GLDyNA, which takes into account both the
influence of network evolution and the global-local
consistency of anchor node pairs.

o We evaluate the proposed GLDyNA on different real-
world datasets. Extensive experiments demonstrate
the effectiveness of our method against state-of-the-
art methods, especially in top-1 precision.

2 RELATED WORK

Many fields can benefit from network alignment, such
as user anonymous identification in social networks [11],
comparing schemas between databases [25], linking enti-
ties among multiple knowledge graphs [26] and aligning
proteins between species [27]. Research on static network
alignment has seen much development, and numerous
approaches have been proposed. In the past two years,
researchers have also begun to focus on dynamic network
alignment. According to different scenarios, we introduce
existing network alignment methods in two parts: static
network alignment and dynamic network alignment.

Static network alignment is mostly based on learning
network structure and node attributes to judge whether two
nodes represent the same entity. Recent network alignment
methods mostly use network embedding [28], [29] since
that can map the network structure to a low-dimensional
space and is beneficial to maintain network structure and
learned node representation could be used for comparing
the similarity between nodes [13], [14], [15], [16], [17], [18],
[19], [24], [30], [31], [32], [33], [34], [35], [36]. According to
whether the two networks are merged into one network
through known anchor nodes for representation learning,
the existing methods can be roughly divided into the fol-
lowing two categories:

(1) The first category of alignment methods learns node
embeddings in different networks respectively, then con-
struct constraints [13], [14], [18], [35] or utilize adversarial
learning [17], [19], [31], [34], [36] to make the embedding
of the anchor nodes or the distributions of the two net-
works similar. The former is generally supervised utilizing
known anchor nodes as constraint information. The latter
is generally unsupervised, and most utilize generative ad-
versarial networks to approximate the distribution of the
two networks. For example, GINA [14] utilizes two different
encoders to learn reliable spatial features of networks firstly,
then uses anchor nodes to constrain learned node repre-
sentations for following anchor link prediction. DANA [31]
learns node embeddings via maximizing the posterior prob-
ability distribution of anchor nodes which is based on the
parameter space of graph convolutional networks.

(2) The second category of alignment methods utilizes
anchor nodes forming a unified space and then learns their
embeddings for alignment [15], [16], [24], [32], [33]. For
example, DHNA [32] learns node embeddings of different

3

networks by a variational autoencoder in the same embed-
ding space and uses a dual constraint mechanism to balance
the consistency and heterogeneity in network alignment.
BRIGHT [33] uses the one-hot vectors of anchor links to
form the bases of common embedding space, and other
initial embeddings of non-anchor nodes are obtained by a
random walk with the restart. Then it uses a shared linear
layer to train the weights of scores from different anchor
links by keeping node embeddings of different networks in
the same embedding space.

Although these static network alignment methods have
demonstrated good performance, ignoring the temporal in-
formation of the network makes them unable to accurately
model real-world scenarios to achieve more accurate perfor-
mance, usually having poor top-1 precision.

Dynamic network alignment focuses more on how
to use time information to improve the alignment effect
in contrast to static network alignment. DNA [37] uses
an LSTM encoder to learn evolvement neighborhood of
nodes, and puts a consistency regularization onto the heart
of the LSTM to keep the representation similarity with
the neighbors of the node. DGA [38] expands based on
DNA that uses an attentive graph convolution to model
the structural information of nodes and the LSTM unit to
incorporate the temporal evolvement pattern of nodes in
the dynamic network. Unlike DNA and DGA which focus
on the evolution of the entire network, HDyNA [39] only
focuses on newly emerging nodes in the network. As a new
node is added, its weights are learned heuristically, and then
second-order proximity is preserved in updating the local
network. CTSA [40] aligns the same entity across different
snapshots in one dynamic network, which differs from our
work that aligns snapshots in two different networks.

Compared with existing methods, our method not only
focuses on the evolution of the local structure of nodes
in the network, but also pays attention to the global-local
evolution patterns of anchor node pairs and keeps its consis-
tency changing over time, which is important for predicting
potential anchor links.

3 FORMAL DEFINITION

Referring to Fig.1(a), in dynamic scenarios, we focus solely
on the structure of a time-stamped network. We partition the
network into slices, as depicted in Fig.1(a), and construct
a series of snapshots in the time domain. Each snapshot
represents the network’s characteristics in the correspond-
ing time slice. Thus, a network with time-stamped can be
defined as G = {G',G?,...,G',...,G"}. T is the number
of snapshots. Each G* = (V! E') is an undirected and
unweighted network snapshot at time ¢. V' is the set of
nodes and E' is the set of edges at t. Considering that
we align two time-stamped networks, we use superscripts
to distinguish them, i.e., G! = {Gl*l,Gm7 .. .,GLT} and
G? = {G*',G*2,...,G*T}. In general, these two net-
works are partially overlapped by anchor nodes, which ap-
pear in both G' and G*. Anchor nodes of network snapshot
{(v»l’t,vz’t)}. Each element in

3
. : 1t 2.t
A" represents an anchor link, i.e., the element (v;”",v;")

t are stored in set A' =

. 1t 2t .
describes v;"" in G corresponds to v;™" in G**.
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Structure-Time-aware module

Fig. 3:

Spatial Transformation module

Network Alignment module

The overview architecture of GLDyNA: For each dynamic network, the snapshots are sampled and trained to

learn node representations. Then, the node representations of G are reconciled with the embedding space of G*’s node
representations. Finally, we perform network alignment based on dynamic similarity and Global-Local Consistency.

Dynamic Network Alignment. Given two partially
overlapped networks G! and G? with anchor link set
A = {Al,A2, . ,AT}, the dynamic network alignment
task is to find all potential anchor links in each network
snapshot, i.e., we aim to learn a predictive function for each
network snapshot: ft : (G’1 *GP AN — Y, Y, represents
the probability that v;* and v2 * are predicted to be a pair
of potential anchor nodes across networks G1'* and G**.

4 METHODOLOGY

In this section, we introduce the details of the proposed
GLDyNA. As shown in Fig. 3, GLDyNA includes three
modules, i.e., Structure-Time-aware module, Spatial Trans-
formation module, and Network Alignment module.
Through the Structure-Time-aware module, we first learn
the node representations of the two networks separately so
that we can capture information about the network structure
and the temporal information for the following alignment.
Then, we utilize a Spatial Transformation module to map
the node representations of G' into the node representation
space of G2. The Network Alignment module performs
network alignment based on the inter-nodes similarity mea-
sures, which include dynamic similarity and global-local
consistency of nodes.

4.1

In the Structure-Time-aware module, we design a method
based on random walks to encode node representations that
consider the changes in node behavior over time. As shown
in Fig. 3, the behavior of a node (e.g., vl’t) can be influenced
by its nearby nodes in the current snaIpshot network as well
as the preceding self-nodes (e.g., and vl =2y and
their first-level neighbors in prev1ous snapshot networks.

Structure-Time-aware module

Therefore, we conduct the following steps to sample Spatial-
Temporal sub-networks starting from the given node to
learn the node representations:

For a given node vi1 " in snapshot G*, we consider
the influence of the nodes in the current snapshot and the
nodes of the previous 7 historical snapshots on it. For each
snapshot GV*, k € {0,1,--- ,7}, we sample the first-order
neighborhood nodes of v} *~* and denote the sampled sub-

network as Gsample Then we merge G, all v,"* F and all

Gi;ﬁnple to get the Spatial-Temporal sub-network Gar gr of
¢

v

7

After obtaining the Spatial-Temporal sub network G1 x
of v;"*, the representations of nodes in Gy ST are learned by
performmg random walks on G'g ST Specifically, for each
given node vil " we generate a random walk sequence of
length [ and denote the sequence as W, i... When two
nodes have many edges or neighbors, they will be visited
more frequently during random walks, showing that their
network structures are similar. As a result, representations of
these two nodes in the embedding space should be close to
each other. Given a random walk sequence W, 1.+, it is now
possible to formulate learning spatial- temporal—preservmg
node embeddings as an optimization problem as follows:

max

12 Z logPr(Wy, = {vj_w, - -

Vi EW 1.t
i

s Vjtw ) \ V5 | R(v))),
1)

where h : V — R is the embedding function that maps a
given node to a d-dimensional representation, h(v;) is the
representation of v;. w is the context window size for op-
timization. We assume conditional independence between
the nodes of a context window when observed with respect
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to the source node v;:

Pr(Wy = {vj—w, s vj4w} \ v [ B(v5)) 2
=TI Pre | Alo).
VR EW

The probability could be calculated as follows:

exp(h(vx)h(v;))
ZvnEN(Uj) eXp(h(Un)h(’Uj)) ’

where N (v;) represents the neighbors set of node v;. To
learn such a representation that captures the relationship of
a node with other co-occurring nodes in a window, we use
a similar Skip-Gram algorithm as proposed in [41] to learn
the node representations from random walks of a network.

Therefore, through Eq(1) which maximizes the co-
occurrence of neighborhood nodes at snapshot ¢ and in
previous (t — 7) snapshots together, the Structure-Time-
aware module learns node representations in G' and G?
respectively. We denote h' as the representations of nodes
in G, and h? as the representations of nodes in G*.

Pr(vg | h(v;)) =

®)

4.2 Spatial Transformation module

Across different networks, the same nodes may exhibit
varying characteristics and interaction relationships due to
semantic distinctions of networks. As a consequence, the
embedding spaces of node representations differ, making it
infeasible to directly utilize the learned representations for
similarity measurement of nodes and network alignment.
Therefore, we propose a method to reconcile the embedding
spaces of networks G! and G2. To accomplish nonlinear
spatial transformations, we employ a feed-forward neural
network to map node representations from G' to the em-
bedding space of node representations in G*:

¢(h|W1, W3, b) = o(hW1 + b)Wy, 4)

where o(+) is an activation function and we use the Sigmoid
function in this paper. Wi, Wy, and b are trainable param-
eters.

In the reconciled embedding space, the representations
of the same entity (i.e., anchor nodes) should be as similar
as possible, and even be the same ideally. Therefore, we
use labeled anchor links to constrain the representation
of anchor nodes and conduct the training of the above-
mentioned feed-forward neural network to obtain the ideal
spatial transformation function ¢(-):

O¢ = Zoiv (5)

1-0 (6 (RH]) , h2(2)) (v},03) € A
max (0, 0 (gb (h*(v})) 7hz(fujz)) - 5) (v},v%) & A,
(6)

where 6(-, -) is the cosine value of two node representations,
¢ is a hyperparameter, and we adopt SGD [42] to minimize
Eq(5). In this way, the representations of the corresponding
anchor nodes are almost identical. Meanwhile, the represen-
tations of other non-anchor nodes in the two networks can
maintain their own structural features.

0; =

4.3 Network Alignment module

The Network Alignment module includes three parts:

Dynamic similarity. With the node representation
¢ (h') and h? that in the same embedding space, a direct
way of determining the alignments for a node is to calcu-
late pairings of similarity between the representations that
contain dynamics, i.e., nodes dynamic similarity:

simo(v;",v7") = (6 (R (v)) , h*(1)). )
As we introduced in Section 4.1, the Structure-Time-aware
module focuses on the dynamic evolution of nodes in one
network over time, simy reflects the evolution similarity
of two nodes in their respective networks. The larger the
simg value, the higher the probability that v} and 1}]2- are
corresponding anchor nodes.

When aligning nodes between different networks, in
addition to considering the evolution process of nodes in
different networks, we also consider patterns (global and
local) between node pairs over time.

Global consistency. At the global level, for the dynamic
network, its scale usually evolves with obvious distributions
over time at the global level, such as a sigmoid curve [43]
or a power-law distribution [44]. For each anchor node pair,
there also exists a similar pattern. As shown in Fig. 2, when
the network evolves, the first-order neighbors number c}
and ¢? of an anchor node pair (v},v?) vary over time in
different networks respectively, and their sum (i.e., c}+c?)
obeys a certain underlying pattern, such as linear increasing.
Such a global evolutionary pattern is common in real net-
work alignment scenarios. For example, a scholar who col-
laborates with other scholars to publish papers in journals
and conferences, respectively, will have different propensi-
ties in the journal and conference collaboration over time,
but the total number of people he keeps collaborating with
generally remains the same or even increases. Hence, we
use a linear neural network to learn the sum collaboration
(i.e., first-order neighbors number) of anchor node pairs at
snapshot ¢ as shown in the top rightmost side of Fig. 3:

w(c;|Wg7 b) =cW, + b, 8)

where ¢ = {c,c!,---,c'"!} is a vector composed of the
sum of first-order neighbors number of an anchor node pair
before snapshot t. W, and b are trainable parameters. cﬁ,
is the predicted sum first-order neighbors number of an
anchor node pair at snapshot t.

Thus, for an arbitrary node pair (v},v7), we use the
difference between the predicted sum first-order neighbors

number ¢/ (v},v?) and the true sum first-order neighbors

number c! (v}, v%) at snapshot ¢ as the global consistency
measure to determine the probability that two nodes are the
corresponding anchor nodes at snapshot ¢:

Lt

Vo) = explep iD= @laDl ()

stmg(v
The larger the sim, value, the higher the probability that v}
and v?— are corresponding anchor nodes.

Local consistency. At the local level, nodes in net-
works usually exist homophily equivalence [45]. Homophily
equivalence refers to the phenomenon in which adjacent
nodes in a network display similar characteristics or at-

tributes. This concept bears resemblance to the main idea
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TABLE 1: Statistics of the datasets.

Networks
Dataset
Twitter Foursquare Anchor Links
Snapshots | # nodes # edges # nodes # edges #total #added # disappeared
to 4,709 107,528 4,836 54,586 596 - -
TF t1 4,809 124,585 4,936 60,330 854 440 182
to 4,909 140,338 5,036 67,044 987 312 179
t3 5,009 152,434 5,136 72,732 1,078 207 116
t4 5,109 164,936 5,236 76,874 1,282 204 0
journal-paper cooperation | conference-paper cooperation Anchor Links
Snapshots | # nodes # edges # nodes # edges #total #added # disappeared
to 2,832 11,164 4,343 15,354 1,013 - -
t1 2,997 11,900 4,755 24,055 1,036 570 540
jC ta 3,259 11,911 5,203 26,216 1,141 684 579
t3 3,708 12,658 6,333 44,099 1,352 827 616
14 4,153 16,467 6,343 48,965 1,359 741 734
ts 4,687 20,851 6,573 41,612 1,401 773 731
tg 5,885 27,200 7,134 41,580 1,799 1,099 701

behind the Word2Vec method in natural language process-
ing, where words that frequently co-occur are likely to
possess similar meanings or representations. As shown in
the top rightmost side of Fig. 3, according to the homophily

) . Lt 1% 1t o
equivalence hypothesis, nodes v;”", v, and v, exhibit

J

greater similarity in the embedding space of G!%, and the

same for v? ’ v?’t, and vi’t in the embedding space of

G?!. The existence of significant similarities among nodes
Lt 1t

1t . . .
v, v, and v, in a network can result in confusion

when comparing node v? " with node vil " by calculating
nodes dynamic similarity simg. Furthermore, this can lead
to incorrect alignment of node v? " with nodes v} or v,i’t.
Inspired by the principle of structural equivalence [46],
i, if two nodes share many common neighbors in the
network, then they are structural equivalence, we define
the following measurement to calculate the local similarity
between two nodes across networks to alleviate the impact

of node homophily:

simi(o1 4, v2) — Xt: log ([N () NN (@} )| +1)

, (10)

. (t—<+1)
where N (v}"") and N (v?t) denote the set of all the
first-order neighbour of node v;"* and v?’t, respectively.

)N' (oY NN (U?t)‘ is the number of known pairs of anchor
nodes existing in their neighborhood. < is the hyperparame-
ter that determines the number of previous snapshots, that
GLDyNA considers for up to (t — ¢ + 1) local neighborhood
information when enforcing local consistency constraints.
The larger the sim; value, the higher the probability that v}
and vj2- are corresponding anchor nodes.

Finally, we compare the similarity of cross-network
nodes based on the aforementioned introduced dynamic
similarity and global-local consistency of nodes:

I vf-’t) = simg(vil’t,v?’t) (11)
Lt 2t Lt o2y,

+ X * simg(v; ,’Uj’)Jr"Y*Siml(vi » U5

sim(v

where )\ and « are the weight of global consistency and
local consistency respectively. Based on sim(-, ), we obtain

pairwise similarities Y} between nodes to be aligned in
two networks and sort them according to their similarity
scores. Since not all nodes have corresponding nodes in the
other network, we set a threshold e. When sim(-,-) > ¢, we
consider the node pair with the highest sim(-,-) value as a
potential anchor node pair.

4.4 Time Complexity

The time complexity of GLDyNA primarily lies in the node
representation learning process. GLDyNA involves sam-
pling and generating Spatial-Temporal sub-networks for
each node, which has a time complexity of O(NM). Here,
N represents the total number of nodes across all snapshots
in the network, and M denotes the average number of
first-order neighbors for these nodes. Additionally, conduct-
ing random walks on the generated Spatial-Temporal sub-
networks incurs a time complexity of O(nl), where [ is
the length of the random walk, and n is the number of
walk iterations. Moreover, the time complexity of model
training based on the obtained sequences is O(m), where
m represents the number of training iterations. Therefore,
the overall time complexity of GLDyNA can be expressed
as O(NM + nl+m) = O(NM).

5 EXPERIMENTS

This section introduces the datasets and describes the set of
experiments conducted to validate the proposed GLDyNA.
Additionally, we analyze the validity of each component of
the model and the influence of model parameters.

5.1 Experimental Settings

5.1.1 Datasets

The following two datasets are used to verify the effective-
ness of GLDyNA.

e Social Networks: This data set includes users and
their followers from Twitter and Foursquare (TF),
respectively. The snapshots are at equal intervals
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of the network, and there exist new nodes in each
snapshot [39].

o Academic Networks: This data set includes re-
searchers and their collaborators from DBLP. De-
pending on the publication channels of researchers’
papers, academic networks are divided into journal-
paper cooperation networks and conference-paper
cooperation networks (JC). And each snapshot rep-
resents a year.

Details are illustrated in Table 1. We have expanded
based on the above two datasets, referred to as TF+ and JC+.
The extension rule is that except for the snapshot network at
to, all other snapshot networks are merged by themselves,
along with all snapshots at all previous times.

5.1.2 Baseline Methods

The proposed method is compared with the seven state-of-
the-art methods listed below.

o BRIGHT [33]: a static network alignment method that
creates a space by RWR whose bases are anchor node
encoding vectors, followed by a shared linear layer
to learn node representations.

e NetTrans [30]: a static network alignment method
that uses graph convolutional network to learn node
representations at different resolutions for alignment
from the network transformation view.

e DANA [31]: a static network alignment method that
uses GCN to learn node embeddings and train an
adversarial domain classifier supervised by the an-
chor nodes to obtain domain-invariant features for
alignment.

o NeXtAlign [24]: a static network alignment method
that uses a special graph convolutional network to
balance the consistency and disparity in alignment
through the learning process.

o DHNA [32]: a static network alignment method that
uses a variational autoencoder to learn node em-
beddings, and considers the different anchor nodes’
degrees across networks.

e DGA [38]: a dynamic network alignment method
that uses a dynamic graph autoencoder to learn
user embeddings in each network, and constructs a
common subspace for user alignment across different
networks.

o HDyNA [39]: a dynamic network alignment method
that learns the local influence weight of new nodes
in a single network environment using an attention
mechanism and anchor nodes are used as supervised
information.

5.1.3 Evaluation Metrics

For each matching pair (vzl * v;") in the test set, we rank
the target nodes in the result according to Y;;. To quantify
the ranking at snapshot ¢, we use the two evaluation metrics
which are commonly used in network alignment tasks.

Mfl}i@ll‘ indicates whether the true posi-

tive match occurs in top-1 candidates, where | M, Q1|
is the count of the correct alignments between net-
works G1' and G?! in top-1 choices, and |U;| is the
number of anchor links in the train set.

2.t

e Precision =

7

1 1

10 Z(”%’t1vf’t)€T 7’ank(11]2.’t) ’
rank(vf’t) is the rank of true anchor target in
the sorted list of anchor candidates. T is the test set

that includes correct alignments between G and
G*t.

e MRR = where

5.14

To create our training and testing datasets, we randomly
partitioned the anchor nodes into two sets. The ratio of
the number of anchor nodes in the training set to that in
the testing set was 4:1, with the specific numbers randomly
sampled. For a fair comparison, hyper-parameters except for
node embedding dimension are set to default for all base-
lines. We set the hyper-parameters of GLDyNA as follows
unless otherwise specified:

Implementation Details

- For the Structure-Time-aware module, We set the
number of historical snapshots considered during
sampling 7 = 1, and the random walk length [ = 15,
the node representation dimension d = 64.

- For the Network Alignment module, we set the ¢ = 0
in local consistency measurement, i.e., we consider
the local consistency of all previous snapshots. We set
the weight of global consistency A = 0.15 and are the
weight of local consistency v = 0.1. The threshold
¢ for aligning potential anchor node pairs is set as
the average similarity of anchor node pairs in the
training set.

The experimental environment uses Python 3.7 lan-
guages as the basic development language, and GLDyNA is
implemented based on the open-source Pytorch framework.
Experiments are performed on a workstation equipped with
NVIDIA RTX 1080Ti 20GB video memory. In each experi-
ment, we repeated it 10 times and reported the mean with a
95% confidence interval.

5.2 Model Performance Analysis

Precision Improvement. We first compare GLDyNA with
all baselines in four datasets, and results are reported in Ta-
ble 2 and Table 3. Results show that the proposed GLDyNA
mostly outperforms the baselines on both Precision and
MRR. On Precision, GLDyNA achieves the best perfor-
mance on all snapshot networks of four datasets, improving
by at least 9.97%, 4.17% compared with the best competitors
on dataset TF (TF+), and JC (JC+) respectively. On M RR,
GLDyNA achieves the best performance on all snapshot net-
works except for 5 snapshot of JC and JC+, improving by an
average 17.63%, 5.65% compared with the best competitors
on dataset TF (TF+), and JC (JC+) respectively.

Compared with the static network alignment method,
GLDyNA has achieved a very significant improvement in
alignment accuracy, which demonstrates the effectiveness
of considering the evolution characteristics of nodes over
time. The suboptimal performance of these static methods
on JC and TF datasets suggests that relying solely on one
snapshot for alignment may overlook valuable information.
When temporal information is disregarded and multiple
snapshots are merged, as in the JC+ and TF+ datasets, the
performance of static methods does not improve and some
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TABLE 2: Experimental results on TF and TF+ datasets at different snapshot ¢. The best and
second-best results are highlighted in boldface and underlined, respectively. A% denotes the
improvement of GLDyNA compared to the best baseline methods results.

t1 to t3 tq

Precision MRR | Precision MRR | Precision MRR | Precision MRR

BRIGHT 0.1111 0.1779 0.1515 0.2036 0.1481 0.2127 0.1167 0.1819
NetTrans 0.1462 0.1935 0.1263 0.1764 0.1203 0.1710 0.1323 0.1926

TF DANA 0.1521 0.2187 0.1313 0.1897 0.1412 0.2188 0.1498 0.2373
NeXtAlign 0.0702 0.1272 0.0808 0.1321 0.0694 0.1256 0.0739 0.1344
DHNA 0.1022 0.1100 0.1154 0.1327 0.0912 0.1035 0.1159 0.1677
DGA 0.6233 0.6419 0.6800 0.6921 0.7301 0.7622 0.8117 0.8337

HDyNA 0.5246 0.5721 0.6311 0.6871 0.7200 0.7596 0.7657 0.8003
GLDyNA 0.7045 0.7059 0.8871 0.8872 0.9024 0.9025 0.9500 0.9500

A% 13.03 9.97 30.46 28.19 23.60 18.41 17.04 13.95
BRIGHT 0.0936 0.1543 0.1060 0.1527 0.1574 0.2263 0.1712 0.2393
NetTrans 0.1403 0.1871 0.1212 0.1733 0.1157 0.1684 0.1361 0.1947

TF+ DANA 0.1462 0.2173 0.1288 0.1932 0.1412 0.2221 0.1537 0.2386
NeXtAlign 0.0819 0.1297 0.0657 0.1285 0.0648 0.1265 0.0895 0.1253
DHNA 0.1092 0.1156 0.1054 0.1335 0.1029 0.1147 0.1377 0.1691
DGA 0.6233 0.6419 0.6800 0.6921 0.7301 0.7622 0.8117 0.8337

HDyNA 0.5246 0.5721 0.6311 0.6871 0.7200 0.7596 0.7657 0.8003
GLDyNA 0.7045 0.7059 0.8871 0.8872 0.9024 0.9025 0.9500 0.9500

A% 13.03 9.97 30.46 28.19 23.60 18.41 17.04 13.95

TABLE 3: Experimental results on JC and JC+ datasets at different snapshot ¢. The best and second-best results are
highlighted in boldface and underlined, respectively. A% denotes denotes the improvement of GLDyNA compared to

the best baseline methods results.

t1 t2 t3 tq ts te

Preciston MRR | Precision MRR | Precision MRR | Precision MRR | Precision MRR | Precision MRR
BRIGHT 0.2836 0.4115 0.2794 0.4247 0.2693 0.4018 0.3014 0.4152 0.2419 0.3898 0.2611 0.3921
NetTrans 0.1352 0.1818 0.1271 0.1575 0.1037 0.1404 0.0774 0.1185 0.1142 0.1697 0.0612 0.1025
JC DANA 0.4589 0.5497 0.4276 0.4691 0.3963 0.4566 0.3856 0.4568 0.3732 0.4468 0.3481 0.4177
NeXtAlign 0.3188 0.4310 0.2456 0.3514 0.2815 0.3795 0.2583 0.3487 0.2500 0.3833 0.2256 0.2882
DHNA 0.2907 0.3011 0.3270 0.3609 0.2571 0.2834 0.2279 0.2630 0.2800 0.3107 0.2112 0.2971
DGA 0.5022 0.5500 0.4729 0.5273 0.5000 0.5388 0.4992 0.5236 0.5235 0.5700 0.6122 0.6503
HDyNA 0.4304 0.4972 0.4641 0.5210 0.4090 0.5319 0.4175 0.5100 0.5010 0.5541 0.5399 0.6110
GLDyNA 0.5702 0.5743 0.4926 0.4969 0.6126 0.6070 0.5608 0.5605 0.5974 0.6100 0.7078 0.7057

A% 13.54 4.42 417 -5.77 22.52 12.66 12.34 7.05 14.12 7.02 15.62 8.52
BRIGHT 0.2711 0.3900 0.2807 0.4166 0.2702 0.4110 0.3158 0.4252 0.2700 0.3961 0.2600 0.3851
NetTrans 0.1357 0.1899 0.1193 0.1496 0.1201 0.1370 0.1022 0.1257 0.1100 0.1636 0.0895 0.1103
JC+ DANA 0.4402 0.5152 0.4270 0.4672 0.4117 0.4983 0.4000 0.4794 0.4457 0.5029 0.3665 0.4570
NeXtAlign 0.2901 0.3510 0.2500 0.3766 0.3011 0.4067 0.2594 0.3499 0.3143 0.4402 0.3147 0.3800
DHNA 0.2801 0.2900 0.3206 0.3551 0.2764 0.3004 0.2300 0.2719 0.2807 0.3233 0.2410 0.3306
DGA 0.5022 0.5500 0.4729 0.5273 0.5000 0.5388 0.4992 0.5236 0.5235 0.5700 0.6122 0.6503
HDyNA 0.4304 0.4972 0.4641 0.5210 0.4090 0.5319 0.4175 0.5100 0.5010 0.5541 0.5399 0.6110
GLDyNA 0.5702 0.5743 0.4926 0.4969 0.6126 0.6070 0.5608 0.5605 0.5974 0.6100 0.7078 0.7057

A% 13.54 4.42 417 -5.77 22.52 12.66 12.34 7.05 14.12 7.02 15.62 8.52

even degrade. This highlights the detrimental impact of
disregarding the evolution of the nodes on alignment, as
confusing information may introduce additional confusion
into the alignment process, as discussed in Section 1.

Compared to the dynamic network alignment method
HDyNA and DGA, GLDyNA still demonstrates better align-
ment performance. HDyNA solely considers the scenario
where new nodes are added to the evolving network over
time while disregarding the situation where certain nodes
may also vanish over time. As a result, it fails to roundly
capture the temporal dynamics of node features and conse-
quently impairs the accuracy of network alignment. DGA
utilizes graph attention convolutional units and an LSTM-
based encoder to learn representations that capture the
dynamic information within nodes from two networks in-
dividually. It then aligns the embedded spaces of the two
networks by mapping them to a shared subspace. The mech-
anism employed for learning node representations requires

aligned nodes to exhibit similar neighbor evolution char-
acteristics. However, the effectiveness of DGA diminishes
when nodes demonstrate divergent evolutionary behaviors.
In such scenarios, our method alleviates the challenges
posed by limited local consistency in alignment by incor-
porating global consistency, thereby maintaining a favor-
able alignment performance. While GLDyNA has achieved
promising Precision and M RR alignment results overall,
it falls slightly behind DGA in certain snapshot networks.
This could be attributed to an imbalanced distribution of
anchor nodes in those specific snapshots, where the global
consistency negatively affects the alignment performance in
those cases.

In addition to evaluating the top-1 accuracy of alignment
results, we also compared the alignment accuracy of each
method at top-a (o« > 1) levels. The results, as shown
in Fig. 4, indicate that as « increases, the accuracy of
all comparative methods improves. However, our method
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TABLE 4: Experimental results on TF and JC datasets with different anchor node percentage at
last snapshot of each dataset (i.e., snapshot 4 of TF and snapshot 6 of JC).

0.5 0.6 0.7 0.8
Precision MRR | Precision MRR | Precision MRR | Precision MRR
BRIGHT 0.0874 0.1498 0.1150 0.1816 0.1351 0.1966 0.1167 0.1819
NetTrans 0.1310 0.1853 0.1306 0.1931 0.1377 0.1926 0.1323 0.1926
TF DANA 0.0926 0.1504 0.1131 0.1799 0.1286 0.1980 0.1498 0.2373
NeXtAlign 0.0562 0.1180 0.0897 0.1282 0.0857 0.1196 0.0739 0.1344
DHNA 0.0925 0.1137 0.1009 0.1286 0.1143 0.1602 0.1159 0.1677
DGA 0.6800 0.6904 0.7101 0.7400 0.7581 0.7720 0.8117 0.8337
HDyNA 0.6533 0.6894 0.7003 0.7220 0.7129 0.7466 0.7257 0.7503
GLDyNA 0.8431 0.8431 0.7901 0.7901 0.8525 0.8525 0.9500 0.9500
BRIGHT 0.1722 0.2805 0.1875 0.3021 0.2241 0.3364 0.2611 0.3921
NetTrans 0.0690 0.1049 0.0737 0.1062 0.0761 0.1131 0.0612 0.1025
jC DANA 0.3054 0.3296 0.3255 0.3693 0.3516 0.4092 0.3481 04177
NeXtAlign 0.1580 0.2577 0.1892 0.2894 0.2171 0.3036 0.2256 0.2882
DHNA 0.1997 0.2234 0.2217 0.2534 0.2550 0.2796 0.2112 0.2971
DGA 0.5733 0.5891 0.5900 0.6092 0.6205 0.6331 0.6122 0.6503
HDyNA 0.5022 0.5571 0.5430 0.5756 0.5402 0.6018 0.5399 0.6110
GLDyNA 0.6266 0.6259 0.6583 0.6783 0.6778 0.6783 0.7078 0.7057
—e— BRIGHT —v— DANA —+— DHNA —— HDyNA EEm GLDyNA  mmm BRIGHT == DANA DHNA
NetTrans NeXtAlign DGA GLDyNA HDyNA W= DGA mmm NetTrans  mmm NeXtAlign
08{f—— »——— | 0 300 330
8)0.6 S04l g 210 230
0.2 S R
0.2 ~ 130
80
0.0 5 10 0 901 5 10 20 30

a a
(a) Performance on TF dataset. (b) Performance on JC dataset.

Fig. 4: Experimental results on TF and JC datasets with
different top-a metrics at last snapshot of each dataset (i.e.,
snapshot 4 of TF and snapshot 6 of JC).

consistently maintains a stable performance. This observa-
tion suggests that our approach effectively distinguishes
correctly aligned nodes from others, whereas other methods
struggle to make clear differentiations, resulting in lower
top-1 accuracy but relatively better top-a (o > 1) accuracy.
Effect of Anchor Node Percentage. Based on previous
methods, the more anchor nodes in the training set, the
better the network alignment performance. We analyze the
impact of anchor node percentage in the training set from
0.5 to 0.8. As shown in Table 4, the effectiveness of all meth-
ods increases with an increasing proportion of anchor nodes
in the training set. We observe that GLDyNA outperforms
other methods even when the proportion of anchor nodes in
the training set is low. This result is due to its consideration
of dynamic changes in node behaviors, which increases the
separability of candidate node pairs, and its incorporation
of global consistency, which excludes candidate node pairs
that do not conform to the overall evolutionary pattern.
Time for Searching Anchor Node Pairs. In Fig. 5,
we compare the computational efficiency of each method.
The running time of most methods is comparable, except
for NeXtAlign. Despite NeXtAlign achieving satisfactory
alignment results, it utilizes a complex negative sampling
method to calculate node attention, resulting in a longer
running time. Compared to static methods, although GL-
DyNA considers information from different snapshots, it

(a) TF dataset.

(b) JC dataset.

Fig. 5: Model running times on TF and JC datasets.

reduces its running time through a sampling approach.

5.3 Ablation Study

In this subsection, we conduct ablation studies to validate
the effectiveness of global-level and local-level consistency.
Six variants are designed:

- GLDyNA-WG does not consider the global consis-
tency of node pairs, i.e., performs alignment without
stmg(-, -).

- GLDyNA-WG(L-) does not consider global consis-
tency of node pairs and only considers local consis-
tency between the current snapshot and the previous
snapshot, i.e., performs alignment without simg(-, -)
and set ¢ =t — 1 in simy(-, ).

- GLDyNA-WL does not consider local consistency
of node pairs, ie., performs alignment without
simy (-, +).

- GLDyNA-WGL does not consider global and local
consistency of node pairs, ie. performs network
alignment without simy(-, -) and simy(-,-).

- GLDyNA-WS does not perform spatial transforma-
tion, i.e., uses the node representations learned by
Structure-Time-aware module directly.

- GLDyNA-G uses a nonlinear neural network to learn
the sum collaboration of anchor node pairs as a
replacement for Eq(8).
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TABLE 5: Results of ablation study on TF dataset at different snapshot ¢.

t1 to t3 ta
Precistion MRR | Precision MRR | Precision MRR | Precision MRR
GLDyNA-WG 0.3750 0.3628 0.3549 0.3855 0.3283 0.3244 0.3000 0.2910
GLDyNA-WG(L-) 0.3295 0.3045 0.3871 0.3845 0.2683 0.3193 0.2750 0.2546
GLDyNA-WL 0.6959 0.6906 0.8387 0.8395 0.8926 0.8926 0.9250 0.9250
GLDyNA-WGL 0.2455 0.2658 0.2806 0.2837 0.2732 0.2915 0.3250 0.3303
GLDyNA-WS 0.2219 0.2370 0.2511 0.2466 0.2501 0.2422 0.2991 0.3009
GLDyNA-G 0.6992 0.7059 0.8822 0.8875 0.8906 0.9000 0.9436 0.9461
GLDyNA 0.7045 0.7059 0.8871 0.8872 0.9024 0.9025 0.9500 0.9500
TABLE 6: Results of ablation study on JC dataset at different snapshot ¢.
t1 t2 t3 tq ts te
Preciston MRR | Precision MRR | Precision MRR | Precision MRR | Precision MRR | Precision MRR
GLDyNA-WG 0.5263 0.4827 0.4820 0.4704 0.4364 0.4530 0.3649 0.3825 0.4091 0.3986 0.4373 0.4293
GLDyNA-WG(L-) 0.5251 0.5206 0.4706 0.4470 0.4606 0.4483 0.3649 0.4034 0.4156 0.4351 0.3470 0.3460
GLDyNA-WL 0.5263 0.5377 0.4368 0.4398 0.5333 0.5382 0.5149 0.5180 0.5404 0.5379 0.6758 0.6709
GLDyNA-WGL 0.4439 0.4670 0.4515 0.4703 0.4364 0.4562 0.4338 0.4446 0.4519 0.4626 0.4046 0.4144
GLDyNA-WS 0.4011 0.4318 0.4366 0.4419 0.4052 0.4338 0.4216 0.4288 0.4361 0.4423 0.4000 0.3903
GLDyNA-G 0.5701 0.5699 0.4871 0.4799 0.6112 0.5973 0.5603 0.5500 0.5900 0.5927 0.7000 0.6977
GLDyNA 0.5702 0.5743 0.4926 0.4969 0.6126 0.6070 0.5608 0.5605 0.5974 0.6100 0.7078 0.7057

Table 5 and Table 6 compare the different variants of GL-
DyNA on TF and JC datasets, respectively. Global and local
consistency plays a crucial role in network alignment, which
is demonstrated by the significant drop in the performance
of GLDyNA-WGL. The superior performance of GLDyNA-
WGL compared to most static network alignment baseline
methods indicates that the consideration of dynamic node
behaviors is beneficial for network alignment.

The advantage of our global consistency can be quan-
tified by the reduced performance of GLDyNA-WG. The
advantage of our local consistency can be quantified by
the reduced performance of GLDyNA-WL. Comparing the
results of GLDyNA-WG on two datasets reveals that the
impact of global consistency is more significant on the TF
dataset compared to the JC dataset. This discrepancy arises
due to the reliance of global consistency on changes in the
total number of neighbors for nodes in both networks. In the
TF dataset, there is a notable increase in the number of edges
between different snapshots, resulting in an overall trend of
increasing neighbor count for nodes. This trend facilitates
the differentiation of nodes using global consistency. Con-
versely, the JC dataset demonstrates unstable relationships
in the changes of edge count across different snapshots,
indicating indistinct variations in neighbor count for nodes.
This makes it challenging to differentiate nodes using global
consistency, resulting in a relatively limited impact of global
consistency in this dataset.

Compared to GLDyNA-WG, GLDyNA-WG(L-)’s per-
formance exhibits a slight decline in both Precision and
MRR, indicating that when disregarding global consis-
tency, the consideration of local consistency with a lim-
ited number of snapshots cannot effectively constrain the
node pairs. The significant reduction in the performance
of GLDyNA-WS indicates that, in the absence of spatial
transformation, the learned node representations of the two
networks exhibit certain differences due to their semantic
disparities, rendering them unsuitable for direct alignment.
The performance of GLDyNA-G is comparable to that of
GLDyNA, indicating that for the dataset used in the exper-

iments, the majority of changes in the number of neighbors
for anchor node pairs still adhere to linear patterns. This
finding aligns with reality, where both in social networks
and academic collaboration networks, most individuals ex-
perience gradual and non-disruptive changes in the number
of their connections or friends under normal circumstances.

Furthermore, to investigate whether the sum of first-
order neighbors is the optimal feature for computing global
consistency, we conducted experiments to validate the use
of different order neighbor counts as features for global
consistency. The experimental results are shown in Fig. 6
and Fig. 7, which indicate that considering the sum of
higher-order neighbors does not improve the effectiveness
of alignment. The sum of higher-order neighbors of a node
no longer solely represents its intrinsic characteristics but
rather reflects the characteristics of its neighbors. As a result,
they provide limited useful information for alignment and
may even introduce interference. This observation further
supports the rationale behind our approach of utilizing
only the sum of first-order neighbors to compute global
consistency.

—— tl tz ¥ t3 t4
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Fig. 6: Experimental results of considering different K-order
neighbors in the global consistency on the TF dataset.

5.4 Hyperparameter Sensitivity

To understand the effect of hyperparameters, we analyze ac-
curacy by varying hyperparameters in several experiments.
When analyzing each hyperparameter, all other parameters
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Fig. 7: Experimental results of considering different K-order
neighbors in the global consistency on the JC dataset.

are held constant at their default values. The results on TF
and JC datasets are shown in Fig. 8 and Fig. 9 respectively.

- Impact of the weight of global consistency A. We
examine the impact of varying the global consistency
weight across the range of [0.05,0.1,0.15,0.2], and
our results reveal that GLDyNA achieves superior
performance with A = 0.15 in most snapshots. Al-
though anchor node pairs maintain global consis-
tency between them over time, there may be some
deviations from global consistency during the evo-
lution process. Therefore, there are some snapshots
where A = 0.15 does not achieve the best perfor-
mance.

- Impact of the weight of local consistency . We
examine the impact of varying the local consistency
weight across the range of [0.05,0.1,0.15,0.2], and
our results reveal that GLDyNA achieves superior
performance with v = 0.1. In comparison to global
consistency, the performance of v = 0.1 across differ-
ent snapshots is consistently stable, exhibiting neg-
ligible occurrences of anchor nodes deviating from
local consistency within any given snapshot.

- Impact of the random walk length [. We examine the
impact of varying the random walk length across
the range of [5,10,15,20], and our results reveal
that GLDyNA achieves superior performance with
I = 15. The walk length [ affects the length of the
sampled paths and the coverage of the network,
thus influencing the learned node representations. A
smaller [ leads to denser path sampling, capturing lo-
cal structure better, but may ignore global structure.
A larger [ can traverse the network more comprehen-
sively but may overlook local dependencies between
nodes. Therefore, we choose [ = 15 considering a
balance between the desired representation accuracy
and computational efficiency.

- Impact of the dimension of node representations
d. We examine the impact of varying the dimen-
sion of node representations across the range of
[32,64,128,256], and our results reveal that GL-
DyNA achieves superior performance with 64-
dimension node representations. In general, higher
node representation dimensions can better preserve
the features of nodes in a network. However, in
dynamic network alignment tasks, increasing node
dimensions may introduce irrelevant information
from the evolutionary process, leading to decreased
performance.
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Fig. 8: Experimental results of different model parameters
(the weight of global consistency A, local consistency 7,
random walk length [, and node representation dimension
d) on the TF dataset.

6 CONCLUSION

This paper mainly investigates the problem of network
alignment in dynamic scenarios. The dynamic nature of net-
works harbors distinctive patterns that can aid in network
alignment. To efficiently utilize the dynamics of networks,
we propose a method called GLDyNA to improve the ac-
curacy of network alignment. In the proposed GLDyNA, to
capture the intra-network dynamics, we design a Structure-
Time-aware module to learn the node representations with
network dynamics. To address the inter-network alignment,
we ensure the consistency of anchor node pairs from global
and local views, respectively. Compared to the STOA align-
ment methods on real-world datasets, GLDyNA can achieve
comparable accuracy performance in dynamic scenarios.

In further research, we endeavor to investigate the in-
trinsic mechanism of the neighborhood structures of a pair
of anchor nodes across disparate networks. Specifically, we
aim to generate the neighborhood structure of an anchor
node in one network based on its neighborhood structure
and historical evolution in another network. By examining
the intrinsic mechanism, we can gain a deeper understand-
ing of how these structures are formed and how they evolve.
It can not only improve the network alignment but also
enhance the interpretability of the results.
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Fig. 9: Experimental results of different model parameters
(the weight of global consistency A, local consistency v,
random walk length [/, and node representation dimension
d) on the JC dataset.
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