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Accurate Network Alignment via Consistency in
Node Evolution

Yinghui Wang*, Qiyao Peng*, Pengfei Jiao, Member, IEEE , Huaming Wu, Senior Member, IEEE , and
Wenjun Wang

Abstract—Network alignment, which integrates multiple network resources by identifying anchor nodes that exist in different networks,
is beneficial for conducting comprehensive network analysis. Although there have been many studies on network alignment, most of
them are limited to static scenarios and only can achieve acceptable top-α (α > 10) results. In the absence of considering dynamic
changes in networks, accurate network alignment (i.e., top-1 result) faces two problems: 1) Missing information: focusing solely on
aligning networks at a specific time leads to low top-1 performance due to the lack of information from other time periods; 2) Confusing
information: ignoring temporal information and focusing on aligning networks across the entire time span leads to low top-1
performance due to inability to distinguish the neighborhood nodes of anchor nodes. In this paper, we propose a dynamic network
alignment method, which aims to achieve better top-1 alignment results with consider changing network structures over time. Towards
this end, we learn the representations of nodes in the changing network structure with time, and preserve the consistency of anchor
node pairs during the time-evolution process. Firstly, we employ a Structure-Time-aware module to capture network dynamics while
preserving network structure and learning node representations that incorporate temporal information. Secondly, we ensure the global
and local consistency of anchor node pairs over time by utilizing linear and similarity functions, respectively. Finally, we determine
whether two nodes are anchor node pairs by maintaining consistency between global, local, and node representations. Experimental
results obtained from real-world datasets demonstrate that the proposed model achieves performance comparable to several
state-of-the-art methods.

Index Terms—Network alignment, network evolution, global consistency, local consistency.

✦

1 INTRODUCTION1

N ETWORK alignment is a process that compares two2

networks to identify common nodes. It has gained3

attention for its broad applications, such as comparing gene4

networks or protein-protein interaction networks in biol-5

ogy [1], [2], collecting the accounts belonging to the same6

person in different online platforms in sociology [3], [4],7

inferring the cross-layer alignment of wired and wireless8

networks in computer science [5], [6], inferring relation-9

ships among entities from different sources and to facilitate10

transfer learning in knowledge graphs [7], [8], [9], [10]. The11

common nodes found in different networks are referred to12

as anchor nodes [11]. Anchor nodes represent entities such13

as the accounts of the same person across different social14

networks. The correspondence between pairs of anchor15

nodes, which represent the same entity, is known as anchor16

links.17

Network alignment tasks have been thoroughly inves-18

tigated and many methods have been proposed [11], [12],19

[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],20

[24]. When predicting anchor links, a majority of these21
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methods hold a consistency assumption, i.e., the higher 22

the percentage of shared nodes, the more likely two nodes 23

are corresponding anchor nodes. However, most existing 24

research focuses on the alignment between static networks, 25

ignoring the dynamic evolution of the network structure in 26

real-world scenarios. 27

The dynamic evolution of network structures refers 28

to the appearance of new nodes and/or edges and the 29

disappearance of existing nodes and/or edges over time. 30

Typically, the dynamic evolution of network structures 31

can be represented by a series of static networks: G = 32{
G1, G2, . . . , Gt, . . . , GT

}
, Gt can be interpreted as a snap- 33

shot captured at a specific moment in time t. While ex- 34

ecuting static network alignment methods directly on G 35

or Gt can produce respectable top-α (α > 10 generally) 36

prediction accuracy, achieving satisfactory top-1 accuracy is 37

often challenging. This is due to the following factors: 38

(1) Missing information. Static alignment methods usu- 39

ally have poor top-1 accuracy on snapshot network pairs 40

due to snapshots only retaining part of the network in- 41

formation. As shown in Fig. 1(a), the consistency-based 42

method will misalign v1i and v2j at the timestamps t = t2 43

and t3, because v1i and v2j share more anchor node pairs 44

as neighbors between snapshot networks of G1 and G2 at 45

t = t2 and t3. 46

(2) Confusing information. When ignoring the timing 47

information of dynamic networks and merging all snap- 48

shot networks as a static network, directly applying static 49

alignment methods may have poor top-1 accuracy due 50

to confusing local structure. As shown in Fig. 1(b), it is 51

confusing for v1i in G1 to judge whether its corresponding 52
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Fig. 1: Illustration of network alignment with/without dynamic evolution of network structures. Nodes with different
colors are corresponding anchor nodes that are known in advance. (a) In the dynamic scenario, it can determine the
corresponding anchor node of v1i is v2i at t3 according to their similar neighborhood change pattern. (b) In the static
scenario, it is difficult to determine the corresponding anchor node of v1i since v2i and v2j both have a similar neighborhood
with v1i .
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Fig. 2: Illustration of the global consistency of anchor node
pairs. c is the number of the first-order neighbors of nodes.
With the evolution of G1 and G2, the neighbor number of
nodes v1i and v2i in G1 and G2 changes differently, but the
total neighbor number of v1i and v2i in the two networks
obeys a certain pattern.

anchor node is v2i or v2j in G2. Since v1i and v2i have the same53

number of shared nodes as v1i and v2j , and v2i and v2j have54

similar local structures, it is difficult to make a distinction55

between v2i and v2j without more auxiliary information.56

In order to achieve better top-1 performance, it is crucial57

to implement a more effective strategy for differentiating58

neighboring nodes. The dynamic evolution of the network59

can provide more information. As shown in Fig. 1(a), v1i60

and v2i share anchor nodes at three timestamps (t1, t2, and61

t3) in the networks G1 and G2. The shared anchor nodes62

change over time from (v1a, v
2
a), (v

1
b , v

2
b ), (v

1
c , v

2
c ) to (v1d, v

2
d),63

(v1e , v
2
e). Therefore, at t = t3, it can be determined that64

the corresponding anchor node of v1i is v2i instead of v2j .65

Therefore, leveraging the evolution information of networks66

can effectively distinguish nodes within the network and67

consequently achieve superior network alignment perfor-68

mance.69

To improve the top-1 performance of network alignment,70

we propose a novel alignment model called GLDyNA. This71

model takes into account not only the dynamic evolution of72

the network structure but also the consistent evolution of 73

anchor node pairs in both global and local neighborhoods. 74

For local consistency, its implication is similar to the com- 75

mon assumption in static network alignment methods, i.e., 76

in each pair of snapshot networks, anchor node pairs need 77

to maintain a similar local structure. For global consistency, 78

it reveals the inherent evolution pattern of anchor node pairs 79

over time and imposes constraints at a higher structural 80

level in network alignment, i.e., it determines the number 81

of neighbors an entity should maintain relationships with 82

across different networks. Due to the evolution of network 83

scale over time, there are fluctuations in the number of 84

first-order neighbors, denoted as c, of anchor nodes across 85

different networks, as shown in Fig. 2. Despite the dissimilar 86

variations in the number of first-order neighbors of anchor 87

nodes within networks G1 and G2, there exists a latent 88

regularity in the total number of first-order neighbors of 89

anchor nodes in these networks. 90

Specifically, to model the dynamics and preserve the 91

network structure within a single network, we introduce 92

a Structure-Time-aware module. This module randomly 93

samples sub-networks of a given node vi, which include 94

the neighbors of vi from different snapshots. It then learns 95

representations of vi by maximizing the probability of co- 96

occurrence of two nodes within these sub-networks. In 97

order to capture the global consistency of anchor node pairs, 98

we define a linear function that relates to the total number 99

of neighbors of anchor node pairs across different networks. 100

This function imposes constraints on how the neighborhood 101

scale of the anchor node pair evolves with the network. 102

To capture the local consistency of anchor node pairs, we 103

define a similarity equation based on structural equivalence. 104

Finally, we combine the global and local consistency, along 105

with the similarity of node representations learned from 106

different networks, to predict anchor node pairs. 107

The main contributions of this paper could be summa- 108

rized as follows: 109
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• We analyze why static network alignment methods110

cannot be directly applied in dynamic scenarios.111

Additionally, we explain the factors contributing to112

the poor performance of existing methods in terms113

of top-1 precision.114

• We propose a novel dynamic network alignment115

method GLDyNA, which takes into account both the116

influence of network evolution and the global-local117

consistency of anchor node pairs.118

• We evaluate the proposed GLDyNA on different real-119

world datasets. Extensive experiments demonstrate120

the effectiveness of our method against state-of-the-121

art methods, especially in top-1 precision.122

2 RELATED WORK123

Many fields can benefit from network alignment, such124

as user anonymous identification in social networks [11],125

comparing schemas between databases [25], linking enti-126

ties among multiple knowledge graphs [26] and aligning127

proteins between species [27]. Research on static network128

alignment has seen much development, and numerous129

approaches have been proposed. In the past two years,130

researchers have also begun to focus on dynamic network131

alignment. According to different scenarios, we introduce132

existing network alignment methods in two parts: static133

network alignment and dynamic network alignment.134

Static network alignment is mostly based on learning135

network structure and node attributes to judge whether two136

nodes represent the same entity. Recent network alignment137

methods mostly use network embedding [28], [29] since138

that can map the network structure to a low-dimensional139

space and is beneficial to maintain network structure and140

learned node representation could be used for comparing141

the similarity between nodes [13], [14], [15], [16], [17], [18],142

[19], [24], [30], [31], [32], [33], [34], [35], [36]. According to143

whether the two networks are merged into one network144

through known anchor nodes for representation learning,145

the existing methods can be roughly divided into the fol-146

lowing two categories:147

(1) The first category of alignment methods learns node148

embeddings in different networks respectively, then con-149

struct constraints [13], [14], [18], [35] or utilize adversarial150

learning [17], [19], [31], [34], [36] to make the embedding151

of the anchor nodes or the distributions of the two net-152

works similar. The former is generally supervised utilizing153

known anchor nodes as constraint information. The latter154

is generally unsupervised, and most utilize generative ad-155

versarial networks to approximate the distribution of the156

two networks. For example, GINA [14] utilizes two different157

encoders to learn reliable spatial features of networks firstly,158

then uses anchor nodes to constrain learned node repre-159

sentations for following anchor link prediction. DANA [31]160

learns node embeddings via maximizing the posterior prob-161

ability distribution of anchor nodes which is based on the162

parameter space of graph convolutional networks.163

(2) The second category of alignment methods utilizes164

anchor nodes forming a unified space and then learns their165

embeddings for alignment [15], [16], [24], [32], [33]. For166

example, DHNA [32] learns node embeddings of different167

networks by a variational autoencoder in the same embed- 168

ding space and uses a dual constraint mechanism to balance 169

the consistency and heterogeneity in network alignment. 170

BRIGHT [33] uses the one-hot vectors of anchor links to 171

form the bases of common embedding space, and other 172

initial embeddings of non-anchor nodes are obtained by a 173

random walk with the restart. Then it uses a shared linear 174

layer to train the weights of scores from different anchor 175

links by keeping node embeddings of different networks in 176

the same embedding space. 177

Although these static network alignment methods have 178

demonstrated good performance, ignoring the temporal in- 179

formation of the network makes them unable to accurately 180

model real-world scenarios to achieve more accurate perfor- 181

mance, usually having poor top-1 precision. 182

Dynamic network alignment focuses more on how 183

to use time information to improve the alignment effect 184

in contrast to static network alignment. DNA [37] uses 185

an LSTM encoder to learn evolvement neighborhood of 186

nodes, and puts a consistency regularization onto the heart 187

of the LSTM to keep the representation similarity with 188

the neighbors of the node. DGA [38] expands based on 189

DNA that uses an attentive graph convolution to model 190

the structural information of nodes and the LSTM unit to 191

incorporate the temporal evolvement pattern of nodes in 192

the dynamic network. Unlike DNA and DGA which focus 193

on the evolution of the entire network, HDyNA [39] only 194

focuses on newly emerging nodes in the network. As a new 195

node is added, its weights are learned heuristically, and then 196

second-order proximity is preserved in updating the local 197

network. CTSA [40] aligns the same entity across different 198

snapshots in one dynamic network, which differs from our 199

work that aligns snapshots in two different networks. 200

Compared with existing methods, our method not only 201

focuses on the evolution of the local structure of nodes 202

in the network, but also pays attention to the global-local 203

evolution patterns of anchor node pairs and keeps its consis- 204

tency changing over time, which is important for predicting 205

potential anchor links. 206

3 FORMAL DEFINITION 207

Referring to Fig.1(a), in dynamic scenarios, we focus solely 208

on the structure of a time-stamped network. We partition the 209

network into slices, as depicted in Fig.1(a), and construct 210

a series of snapshots in the time domain. Each snapshot 211

represents the network’s characteristics in the correspond- 212

ing time slice. Thus, a network with time-stamped can be 213

defined as G =
{
G1, G2, . . . , Gt, . . . , GT

}
. T is the number 214

of snapshots. Each Gt = (V t, Et) is an undirected and 215

unweighted network snapshot at time t. V t is the set of 216

nodes and Et is the set of edges at t. Considering that 217

we align two time-stamped networks, we use superscripts 218

to distinguish them, i.e., G1 =
{
G1,1, G1,2, . . . , G1,T

}
and 219

G2 =
{
G2,1, G2,2, . . . , G2,T

}
. In general, these two net- 220

works are partially overlapped by anchor nodes, which ap- 221

pear in both G1 and G2. Anchor nodes of network snapshot 222

t are stored in set At =
{
(v1,ti , v2,tj )

}
. Each element in 223

At represents an anchor link, i.e., the element (v1,ti , v2,tj ) 224

describes v1,ti in G1,t corresponds to v2,tj in G2,t. 225
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Fig. 3: The overview architecture of GLDyNA: For each dynamic network, the snapshots are sampled and trained to
learn node representations. Then, the node representations of G1 are reconciled with the embedding space of G2’s node
representations. Finally, we perform network alignment based on dynamic similarity and Global-Local Consistency.

Dynamic Network Alignment. Given two partially226

overlapped networks G1 and G2 with anchor link set227

A =
{
A1,A2, . . . ,AT

}
, the dynamic network alignment228

task is to find all potential anchor links in each network229

snapshot, i.e., we aim to learn a predictive function for each230

network snapshot: f t : (G1,t, G2,t,At) → Y , Y t
ij represents231

the probability that v1,ti and v2,tj are predicted to be a pair232

of potential anchor nodes across networks G1,t and G2,t.233

4 METHODOLOGY234

In this section, we introduce the details of the proposed235

GLDyNA. As shown in Fig. 3, GLDyNA includes three236

modules, i.e., Structure-Time-aware module, Spatial Trans-237

formation module, and Network Alignment module.238

Through the Structure-Time-aware module, we first learn239

the node representations of the two networks separately so240

that we can capture information about the network structure241

and the temporal information for the following alignment.242

Then, we utilize a Spatial Transformation module to map243

the node representations of G1 into the node representation244

space of G2. The Network Alignment module performs245

network alignment based on the inter-nodes similarity mea-246

sures, which include dynamic similarity and global-local247

consistency of nodes.248

4.1 Structure-Time-aware module249

In the Structure-Time-aware module, we design a method250

based on random walks to encode node representations that251

consider the changes in node behavior over time. As shown252

in Fig. 3, the behavior of a node (e.g., v1,ti ) can be influenced253

by its nearby nodes in the current snapshot network as well254

as the preceding self-nodes (e.g., v1,t−1
i and v1,t−2

i ) and255

their first-level neighbors in previous snapshot networks.256

Therefore, we conduct the following steps to sample Spatial- 257

Temporal sub-networks starting from the given node to 258

learn the node representations: 259

For a given node v1,ti in snapshot G1,t, we consider 260

the influence of the nodes in the current snapshot and the 261

nodes of the previous τ historical snapshots on it. For each 262

snapshot G1,k, k ∈ {0, 1, · · · , τ}, we sample the first-order 263

neighborhood nodes of v1,t−k
i and denote the sampled sub- 264

network as G1,k
sample. Then we merge G1,t, all v1,t−k

i and all 265

G1,k
sample to get the Spatial-Temporal sub-network G1,k

ST of 266

v1,ti . 267

After obtaining the Spatial-Temporal sub-network G1,k
ST 268

of v1,ti , the representations of nodes in G1,k
ST are learned by 269

performing random walks on G1,k
ST . Specifically, for each 270

given node v1,ti we generate a random walk sequence of 271

length l and denote the sequence as Wv1,t
i

. When two 272

nodes have many edges or neighbors, they will be visited 273

more frequently during random walks, showing that their 274

network structures are similar. As a result, representations of 275

these two nodes in the embedding space should be close to 276

each other. Given a random walk sequence Wv1,t
i

, it is now 277

possible to formulate learning spatial-temporal-preserving 278

node embeddings as an optimization problem as follows: 279

max
h

∑
vj∈W

v
1,t
i

logPr(Ww = {vj−w, · · · , vj+w} \ vj | h(vj)),

(1)

where h : V → Rd is the embedding function that maps a 280

given node to a d-dimensional representation, h(vj) is the 281

representation of vj . w is the context window size for op- 282

timization. We assume conditional independence between 283

the nodes of a context window when observed with respect 284

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2024.3407543

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on July 22,2024 at 05:17:01 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

to the source node vj :285

Pr(Ww = {vj−w, · · · , vj+w} \ vj | h(vj)) (2)

=
∏

vk∈Ww

Pr(vk | h(vj)).

The probability could be calculated as follows:286

Pr(vk | h(vj)) =
exp(h(vk)h(vj))∑

vn∈N (vj)
exp(h(vn)h(vj))

, (3)

where N (vj) represents the neighbors set of node vj . To287

learn such a representation that captures the relationship of288

a node with other co-occurring nodes in a window, we use289

a similar Skip-Gram algorithm as proposed in [41] to learn290

the node representations from random walks of a network.291

Therefore, through Eq(1) which maximizes the co-292

occurrence of neighborhood nodes at snapshot t and in293

previous (t − τ) snapshots together, the Structure-Time-294

aware module learns node representations in G1 and G2
295

respectively. We denote h1 as the representations of nodes296

in G1, and h2 as the representations of nodes in G2.297

4.2 Spatial Transformation module298

Across different networks, the same nodes may exhibit299

varying characteristics and interaction relationships due to300

semantic distinctions of networks. As a consequence, the301

embedding spaces of node representations differ, making it302

infeasible to directly utilize the learned representations for303

similarity measurement of nodes and network alignment.304

Therefore, we propose a method to reconcile the embedding305

spaces of networks G1 and G2. To accomplish nonlinear306

spatial transformations, we employ a feed-forward neural307

network to map node representations from G1 to the em-308

bedding space of node representations in G2:309

ϕ(h|W1,W2, b) = σ(hW1 + b)W2, (4)

where σ(·) is an activation function and we use the Sigmoid310

function in this paper. W1, W2, and b are trainable param-311

eters.312

In the reconciled embedding space, the representations313

of the same entity (i.e., anchor nodes) should be as similar314

as possible, and even be the same ideally. Therefore, we315

use labeled anchor links to constrain the representation316

of anchor nodes and conduct the training of the above-317

mentioned feed-forward neural network to obtain the ideal318

spatial transformation function ϕ(·):319

Oϕ =
∑

oi, (5)
320

oi =

1− θ
(
ϕ
(
h1(v1i )

)
,h2(v2j )

)
(v1i , v

2
J) ∈ A

max
(
0, θ

(
ϕ
(
h1(v1i )

)
,h2(v2j )

)
− ε

)
(v1i , v

2
J) /∈ A,

(6)

where θ(·, ·) is the cosine value of two node representations,321

ε is a hyperparameter, and we adopt SGD [42] to minimize322

Eq(5). In this way, the representations of the corresponding323

anchor nodes are almost identical. Meanwhile, the represen-324

tations of other non-anchor nodes in the two networks can325

maintain their own structural features.326

4.3 Network Alignment module 327

The Network Alignment module includes three parts: 328

Dynamic similarity. With the node representation 329

ϕ
(
h1

)
and h2 that in the same embedding space, a direct 330

way of determining the alignments for a node is to calcu- 331

late pairings of similarity between the representations that 332

contain dynamics, i.e., nodes dynamic similarity: 333

simθ(v
1,t
i , v2,tj ) = θ(ϕ

(
h1(v1i )

)
,h2(v2j )). (7)

As we introduced in Section 4.1, the Structure-Time-aware 334

module focuses on the dynamic evolution of nodes in one 335

network over time, simθ reflects the evolution similarity 336

of two nodes in their respective networks. The larger the 337

simθ value, the higher the probability that v1i and v2j are 338

corresponding anchor nodes. 339

When aligning nodes between different networks, in 340

addition to considering the evolution process of nodes in 341

different networks, we also consider patterns (global and 342

local) between node pairs over time. 343

Global consistency. At the global level, for the dynamic 344

network, its scale usually evolves with obvious distributions 345

over time at the global level, such as a sigmoid curve [43] 346

or a power-law distribution [44]. For each anchor node pair, 347

there also exists a similar pattern. As shown in Fig. 2, when 348

the network evolves, the first-order neighbors number c1i 349

and c2i of an anchor node pair (v1i , v
2
i ) vary over time in 350

different networks respectively, and their sum (i.e., c1i +c2i ) 351

obeys a certain underlying pattern, such as linear increasing. 352

Such a global evolutionary pattern is common in real net- 353

work alignment scenarios. For example, a scholar who col- 354

laborates with other scholars to publish papers in journals 355

and conferences, respectively, will have different propensi- 356

ties in the journal and conference collaboration over time, 357

but the total number of people he keeps collaborating with 358

generally remains the same or even increases. Hence, we 359

use a linear neural network to learn the sum collaboration 360

(i.e., first-order neighbors number) of anchor node pairs at 361

snapshot t as shown in the top rightmost side of Fig. 3: 362

ψ(ctp|Wg, b) = cWg + b, (8)

where c =
{
c0, c1, · · · , ct−1

}
is a vector composed of the 363

sum of first-order neighbors number of an anchor node pair 364

before snapshot t. Wg and b are trainable parameters. ctp 365

is the predicted sum first-order neighbors number of an 366

anchor node pair at snapshot t. 367

Thus, for an arbitrary node pair (v1i , v
2
j ), we use the 368

difference between the predicted sum first-order neighbors 369

number ctp(v
1
i , v

2
j ) and the true sum first-order neighbors 370

number ct(v1i , v
2
j ) at snapshot t as the global consistency 371

measure to determine the probability that two nodes are the 372

corresponding anchor nodes at snapshot t: 373

simg(v
1,t
i , v2,tj ) = exp−|c

t
p(v

1
i ,v

2
j )−ct(v1

i ,v
2
j )|. (9)

The larger the simg value, the higher the probability that v1i 374

and v2j are corresponding anchor nodes. 375

Local consistency. At the local level, nodes in net- 376

works usually exist homophily equivalence [45]. Homophily 377

equivalence refers to the phenomenon in which adjacent 378

nodes in a network display similar characteristics or at- 379

tributes. This concept bears resemblance to the main idea 380
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TABLE 1: Statistics of the datasets.

Dataset
Networks

Twitter Foursquare Anchor Links

TF

Snapshots # nodes # edges # nodes # edges # total # added # disappeared
t0 4,709 107,528 4,836 54,586 596 - -
t1 4,809 124,585 4,936 60,330 854 440 182
t2 4,909 140,338 5,036 67,044 987 312 179
t3 5,009 152,434 5,136 72,732 1,078 207 116
t4 5,109 164,936 5,236 76,874 1,282 204 0

journal-paper cooperation conference-paper cooperation Anchor Links

JC

Snapshots # nodes # edges # nodes # edges # total # added # disappeared
t0 2,832 11,164 4,343 15,354 1,013 - -
t1 2,997 11,900 4,755 24,055 1,036 570 540
t2 3,259 11,911 5,203 26,216 1,141 684 579
t3 3,708 12,658 6,333 44,099 1,352 827 616
t4 4,153 16,467 6,343 48,965 1,359 741 734
t5 4,687 20,851 6,573 41,612 1,401 773 731
t6 5,885 27,200 7,134 41,580 1,799 1,099 701

behind the Word2Vec method in natural language process-381

ing, where words that frequently co-occur are likely to382

possess similar meanings or representations. As shown in383

the top rightmost side of Fig. 3, according to the homophily384

equivalence hypothesis, nodes v1,ti , v1,tj , and v1,tk exhibit385

greater similarity in the embedding space of G1,t, and the386

same for v2,ti , v2,tj , and v2,tk in the embedding space of387

G2,t. The existence of significant similarities among nodes388

v1,ti , v1,tj , and v1,tk in a network can result in confusion389

when comparing node v2,ti with node v1,ti by calculating390

nodes dynamic similarity simθ . Furthermore, this can lead391

to incorrect alignment of node v2,ti with nodes v1,tj or v1,tk .392

Inspired by the principle of structural equivalence [46],393

i.e., if two nodes share many common neighbors in the394

network, then they are structural equivalence, we define395

the following measurement to calculate the local similarity396

between two nodes across networks to alleviate the impact397

of node homophily:398

siml(v
1,t
i , v2,tj ) =

t∑
ς

log
(∣∣∣N (v1,ti ) ∩N (v2,tj )

∣∣∣+ 1
)

(t− ς + 1)
, (10)

where N (v1,ti ) and N (v2,tj ) denote the set of all the399

first-order neighbour of node v1,ti and v2,tj , respectively.400 ∣∣∣N (v1,ti ) ∩N (v2,tj )
∣∣∣ is the number of known pairs of anchor401

nodes existing in their neighborhood. ς is the hyperparame-402

ter that determines the number of previous snapshots, that403

GLDyNA considers for up to (t− ς +1) local neighborhood404

information when enforcing local consistency constraints.405

The larger the siml value, the higher the probability that v1i406

and v2j are corresponding anchor nodes.407

Finally, we compare the similarity of cross-network408

nodes based on the aforementioned introduced dynamic409

similarity and global-local consistency of nodes:410

sim(v1,ti , v2,tj ) = simθ(v
1,t
i , v2,tj ) (11)

+ λ ∗ simg(v
1,t
i , v2,tj ) + γ ∗ siml(v

1,t
i , v2,tj ),

where λ and γ are the weight of global consistency and411

local consistency respectively. Based on sim(·, ·), we obtain412

pairwise similarities Y t
ij between nodes to be aligned in 413

two networks and sort them according to their similarity 414

scores. Since not all nodes have corresponding nodes in the 415

other network, we set a threshold ε. When sim(·, ·) ≥ ε, we 416

consider the node pair with the highest sim(·, ·) value as a 417

potential anchor node pair. 418

4.4 Time Complexity 419

The time complexity of GLDyNA primarily lies in the node 420

representation learning process. GLDyNA involves sam- 421

pling and generating Spatial-Temporal sub-networks for 422

each node, which has a time complexity of O(NM). Here, 423

N represents the total number of nodes across all snapshots 424

in the network, and M denotes the average number of 425

first-order neighbors for these nodes. Additionally, conduct- 426

ing random walks on the generated Spatial-Temporal sub- 427

networks incurs a time complexity of O(nl), where l is 428

the length of the random walk, and n is the number of 429

walk iterations. Moreover, the time complexity of model 430

training based on the obtained sequences is O(m), where 431

m represents the number of training iterations. Therefore, 432

the overall time complexity of GLDyNA can be expressed 433

as O(NM + nl +m) = O(NM). 434

5 EXPERIMENTS 435

This section introduces the datasets and describes the set of 436

experiments conducted to validate the proposed GLDyNA. 437

Additionally, we analyze the validity of each component of 438

the model and the influence of model parameters. 439

5.1 Experimental Settings 440

5.1.1 Datasets 441

The following two datasets are used to verify the effective- 442

ness of GLDyNA. 443

• Social Networks: This data set includes users and 444

their followers from Twitter and Foursquare (TF), 445

respectively. The snapshots are at equal intervals 446

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2024.3407543

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on July 22,2024 at 05:17:01 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

of the network, and there exist new nodes in each447

snapshot [39].448

• Academic Networks: This data set includes re-449

searchers and their collaborators from DBLP. De-450

pending on the publication channels of researchers’451

papers, academic networks are divided into journal-452

paper cooperation networks and conference-paper453

cooperation networks (JC). And each snapshot rep-454

resents a year.455

Details are illustrated in Table 1. We have expanded456

based on the above two datasets, referred to as TF+ and JC+.457

The extension rule is that except for the snapshot network at458

t0, all other snapshot networks are merged by themselves,459

along with all snapshots at all previous times.460

5.1.2 Baseline Methods461

The proposed method is compared with the seven state-of-462

the-art methods listed below.463

• BRIGHT [33]: a static network alignment method that464

creates a space by RWR whose bases are anchor node465

encoding vectors, followed by a shared linear layer466

to learn node representations.467

• NetTrans [30]: a static network alignment method468

that uses graph convolutional network to learn node469

representations at different resolutions for alignment470

from the network transformation view.471

• DANA [31]: a static network alignment method that472

uses GCN to learn node embeddings and train an473

adversarial domain classifier supervised by the an-474

chor nodes to obtain domain-invariant features for475

alignment.476

• NeXtAlign [24]: a static network alignment method477

that uses a special graph convolutional network to478

balance the consistency and disparity in alignment479

through the learning process.480

• DHNA [32]: a static network alignment method that481

uses a variational autoencoder to learn node em-482

beddings, and considers the different anchor nodes’483

degrees across networks.484

• DGA [38]: a dynamic network alignment method485

that uses a dynamic graph autoencoder to learn486

user embeddings in each network, and constructs a487

common subspace for user alignment across different488

networks.489

• HDyNA [39]: a dynamic network alignment method490

that learns the local influence weight of new nodes491

in a single network environment using an attention492

mechanism and anchor nodes are used as supervised493

information.494

5.1.3 Evaluation Metrics495

For each matching pair (v1,ti , v2,tj ) in the test set, we rank496

the target nodes in the result according to Y t
ij . To quantify497

the ranking at snapshot t, we use the two evaluation metrics498

which are commonly used in network alignment tasks.499

• Precision = |Mt@1|
|Ut| indicates whether the true posi-500

tive match occurs in top-1 candidates, where |Mt@1|501

is the count of the correct alignments between net-502

works G1,t and G2,t in top-1 choices, and |Ut| is the503

number of anchor links in the train set.504

• MRR = 1
|Ut|

∑
(v1,t

i ,v2,t
j )∈T

1
rank(v2,t

j )
, where 505

rank(v2,tj ) is the rank of true anchor target in 506

the sorted list of anchor candidates. T is the test set 507

that includes correct alignments between G1,t and 508

G2,t. 509

5.1.4 Implementation Details 510

To create our training and testing datasets, we randomly 511

partitioned the anchor nodes into two sets. The ratio of 512

the number of anchor nodes in the training set to that in 513

the testing set was 4:1, with the specific numbers randomly 514

sampled. For a fair comparison, hyper-parameters except for 515

node embedding dimension are set to default for all base- 516

lines. We set the hyper-parameters of GLDyNA as follows 517

unless otherwise specified: 518

- For the Structure-Time-aware module, We set the 519

number of historical snapshots considered during 520

sampling τ = 1, and the random walk length l = 15, 521

the node representation dimension d = 64. 522

- For the Network Alignment module, we set the ς = 0 523

in local consistency measurement, i.e., we consider 524

the local consistency of all previous snapshots. We set 525

the weight of global consistency λ = 0.15 and are the 526

weight of local consistency γ = 0.1. The threshold 527

ε for aligning potential anchor node pairs is set as 528

the average similarity of anchor node pairs in the 529

training set. 530

The experimental environment uses Python 3.7 lan- 531

guages as the basic development language, and GLDyNA is 532

implemented based on the open-source Pytorch framework. 533

Experiments are performed on a workstation equipped with 534

NVIDIA RTX 1080Ti 20GB video memory. In each experi- 535

ment, we repeated it 10 times and reported the mean with a 536

95% confidence interval. 537

5.2 Model Performance Analysis 538

Precision Improvement. We first compare GLDyNA with 539

all baselines in four datasets, and results are reported in Ta- 540

ble 2 and Table 3. Results show that the proposed GLDyNA 541

mostly outperforms the baselines on both Precision and 542

MRR. On Precision, GLDyNA achieves the best perfor- 543

mance on all snapshot networks of four datasets, improving 544

by at least 9.97%, 4.17% compared with the best competitors 545

on dataset TF (TF+), and JC (JC+) respectively. On MRR, 546

GLDyNA achieves the best performance on all snapshot net- 547

works except for t2 snapshot of JC and JC+, improving by an 548

average 17.63%, 5.65% compared with the best competitors 549

on dataset TF (TF+), and JC (JC+) respectively. 550

Compared with the static network alignment method, 551

GLDyNA has achieved a very significant improvement in 552

alignment accuracy, which demonstrates the effectiveness 553

of considering the evolution characteristics of nodes over 554

time. The suboptimal performance of these static methods 555

on JC and TF datasets suggests that relying solely on one 556

snapshot for alignment may overlook valuable information. 557

When temporal information is disregarded and multiple 558

snapshots are merged, as in the JC+ and TF+ datasets, the 559

performance of static methods does not improve and some 560
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TABLE 2: Experimental results on TF and TF+ datasets at different snapshot t. The best and
second-best results are highlighted in boldface and underlined, respectively. ▲% denotes the
improvement of GLDyNA compared to the best baseline methods results.

t1 t2 t3 t4
Precision MRR Precision MRR Precision MRR Precision MRR

TF

BRIGHT 0.1111 0.1779 0.1515 0.2036 0.1481 0.2127 0.1167 0.1819
NetTrans 0.1462 0.1935 0.1263 0.1764 0.1203 0.1710 0.1323 0.1926
DANA 0.1521 0.2187 0.1313 0.1897 0.1412 0.2188 0.1498 0.2373

NeXtAlign 0.0702 0.1272 0.0808 0.1321 0.0694 0.1256 0.0739 0.1344
DHNA 0.1022 0.1100 0.1154 0.1327 0.0912 0.1035 0.1159 0.1677
DGA 0.6233 0.6419 0.6800 0.6921 0.7301 0.7622 0.8117 0.8337

HDyNA 0.5246 0.5721 0.6311 0.6871 0.7200 0.7596 0.7657 0.8003
GLDyNA 0.7045 0.7059 0.8871 0.8872 0.9024 0.9025 0.9500 0.9500
▲% 13.03 9.97 30.46 28.19 23.60 18.41 17.04 13.95

TF+

BRIGHT 0.0936 0.1543 0.1060 0.1527 0.1574 0.2263 0.1712 0.2393
NetTrans 0.1403 0.1871 0.1212 0.1733 0.1157 0.1684 0.1361 0.1947
DANA 0.1462 0.2173 0.1288 0.1932 0.1412 0.2221 0.1537 0.2386

NeXtAlign 0.0819 0.1297 0.0657 0.1285 0.0648 0.1265 0.0895 0.1253
DHNA 0.1092 0.1156 0.1054 0.1335 0.1029 0.1147 0.1377 0.1691
DGA 0.6233 0.6419 0.6800 0.6921 0.7301 0.7622 0.8117 0.8337

HDyNA 0.5246 0.5721 0.6311 0.6871 0.7200 0.7596 0.7657 0.8003
GLDyNA 0.7045 0.7059 0.8871 0.8872 0.9024 0.9025 0.9500 0.9500
▲% 13.03 9.97 30.46 28.19 23.60 18.41 17.04 13.95

TABLE 3: Experimental results on JC and JC+ datasets at different snapshot t. The best and second-best results are
highlighted in boldface and underlined, respectively. ▲% denotes denotes the improvement of GLDyNA compared to
the best baseline methods results.

t1 t2 t3 t4 t5 t6
Precision MRR Precision MRR Precision MRR Precision MRR Precision MRR Precision MRR

JC

BRIGHT 0.2836 0.4115 0.2794 0.4247 0.2693 0.4018 0.3014 0.4152 0.2419 0.3898 0.2611 0.3921
NetTrans 0.1352 0.1818 0.1271 0.1575 0.1037 0.1404 0.0774 0.1185 0.1142 0.1697 0.0612 0.1025
DANA 0.4589 0.5497 0.4276 0.4691 0.3963 0.4566 0.3856 0.4568 0.3732 0.4468 0.3481 0.4177

NeXtAlign 0.3188 0.4310 0.2456 0.3514 0.2815 0.3795 0.2583 0.3487 0.2500 0.3833 0.2256 0.2882
DHNA 0.2907 0.3011 0.3270 0.3609 0.2571 0.2834 0.2279 0.2630 0.2800 0.3107 0.2112 0.2971
DGA 0.5022 0.5500 0.4729 0.5273 0.5000 0.5388 0.4992 0.5236 0.5235 0.5700 0.6122 0.6503

HDyNA 0.4304 0.4972 0.4641 0.5210 0.4090 0.5319 0.4175 0.5100 0.5010 0.5541 0.5399 0.6110
GLDyNA 0.5702 0.5743 0.4926 0.4969 0.6126 0.6070 0.5608 0.5605 0.5974 0.6100 0.7078 0.7057
▲% 13.54 4.42 4.17 -5.77 22.52 12.66 12.34 7.05 14.12 7.02 15.62 8.52

JC+

BRIGHT 0.2711 0.3900 0.2807 0.4166 0.2702 0.4110 0.3158 0.4252 0.2700 0.3961 0.2600 0.3851
NetTrans 0.1357 0.1899 0.1193 0.1496 0.1201 0.1370 0.1022 0.1257 0.1100 0.1636 0.0895 0.1103
DANA 0.4402 0.5152 0.4270 0.4672 0.4117 0.4983 0.4000 0.4794 0.4457 0.5029 0.3665 0.4570

NeXtAlign 0.2901 0.3510 0.2500 0.3766 0.3011 0.4067 0.2594 0.3499 0.3143 0.4402 0.3147 0.3800
DHNA 0.2801 0.2900 0.3206 0.3551 0.2764 0.3004 0.2300 0.2719 0.2807 0.3233 0.2410 0.3306
DGA 0.5022 0.5500 0.4729 0.5273 0.5000 0.5388 0.4992 0.5236 0.5235 0.5700 0.6122 0.6503

HDyNA 0.4304 0.4972 0.4641 0.5210 0.4090 0.5319 0.4175 0.5100 0.5010 0.5541 0.5399 0.6110
GLDyNA 0.5702 0.5743 0.4926 0.4969 0.6126 0.6070 0.5608 0.5605 0.5974 0.6100 0.7078 0.7057
▲% 13.54 4.42 4.17 -5.77 22.52 12.66 12.34 7.05 14.12 7.02 15.62 8.52

even degrade. This highlights the detrimental impact of561

disregarding the evolution of the nodes on alignment, as562

confusing information may introduce additional confusion563

into the alignment process, as discussed in Section 1.564

Compared to the dynamic network alignment method565

HDyNA and DGA, GLDyNA still demonstrates better align-566

ment performance. HDyNA solely considers the scenario567

where new nodes are added to the evolving network over568

time while disregarding the situation where certain nodes569

may also vanish over time. As a result, it fails to roundly570

capture the temporal dynamics of node features and conse-571

quently impairs the accuracy of network alignment. DGA572

utilizes graph attention convolutional units and an LSTM-573

based encoder to learn representations that capture the574

dynamic information within nodes from two networks in-575

dividually. It then aligns the embedded spaces of the two576

networks by mapping them to a shared subspace. The mech-577

anism employed for learning node representations requires578

aligned nodes to exhibit similar neighbor evolution char- 579

acteristics. However, the effectiveness of DGA diminishes 580

when nodes demonstrate divergent evolutionary behaviors. 581

In such scenarios, our method alleviates the challenges 582

posed by limited local consistency in alignment by incor- 583

porating global consistency, thereby maintaining a favor- 584

able alignment performance. While GLDyNA has achieved 585

promising Precision and MRR alignment results overall, 586

it falls slightly behind DGA in certain snapshot networks. 587

This could be attributed to an imbalanced distribution of 588

anchor nodes in those specific snapshots, where the global 589

consistency negatively affects the alignment performance in 590

those cases. 591

In addition to evaluating the top-1 accuracy of alignment 592

results, we also compared the alignment accuracy of each 593

method at top-α (α > 1) levels. The results, as shown 594

in Fig. 4, indicate that as α increases, the accuracy of 595

all comparative methods improves. However, our method 596
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TABLE 4: Experimental results on TF and JC datasets with different anchor node percentage at
last snapshot of each dataset (i.e., snapshot 4 of TF and snapshot 6 of JC).

0.5 0.6 0.7 0.8
Precision MRR Precision MRR Precision MRR Precision MRR

TF

BRIGHT 0.0874 0.1498 0.1150 0.1816 0.1351 0.1966 0.1167 0.1819
NetTrans 0.1310 0.1853 0.1306 0.1931 0.1377 0.1926 0.1323 0.1926
DANA 0.0926 0.1504 0.1131 0.1799 0.1286 0.1980 0.1498 0.2373

NeXtAlign 0.0562 0.1180 0.0897 0.1282 0.0857 0.1196 0.0739 0.1344
DHNA 0.0925 0.1137 0.1009 0.1286 0.1143 0.1602 0.1159 0.1677
DGA 0.6800 0.6904 0.7101 0.7400 0.7581 0.7720 0.8117 0.8337

HDyNA 0.6533 0.6894 0.7003 0.7220 0.7129 0.7466 0.7257 0.7503
GLDyNA 0.8431 0.8431 0.7901 0.7901 0.8525 0.8525 0.9500 0.9500

JC

BRIGHT 0.1722 0.2805 0.1875 0.3021 0.2241 0.3364 0.2611 0.3921
NetTrans 0.0690 0.1049 0.0737 0.1062 0.0761 0.1131 0.0612 0.1025
DANA 0.3054 0.3296 0.3255 0.3693 0.3516 0.4092 0.3481 0.4177

NeXtAlign 0.1580 0.2577 0.1892 0.2894 0.2171 0.3036 0.2256 0.2882
DHNA 0.1997 0.2234 0.2217 0.2534 0.2550 0.2796 0.2112 0.2971
DGA 0.5733 0.5891 0.5900 0.6092 0.6205 0.6331 0.6122 0.6503

HDyNA 0.5022 0.5571 0.5430 0.5756 0.5402 0.6018 0.5399 0.6110
GLDyNA 0.6266 0.6259 0.6583 0.6783 0.6778 0.6783 0.7078 0.7057

1 5 10 200.0

0.2

0.4

0.6

0.8

P@

(a) Performance on TF dataset.
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Fig. 4: Experimental results on TF and JC datasets with
different top-α metrics at last snapshot of each dataset (i.e.,
snapshot 4 of TF and snapshot 6 of JC).

consistently maintains a stable performance. This observa-597

tion suggests that our approach effectively distinguishes598

correctly aligned nodes from others, whereas other methods599

struggle to make clear differentiations, resulting in lower600

top-1 accuracy but relatively better top-α (α > 1) accuracy.601

Effect of Anchor Node Percentage. Based on previous602

methods, the more anchor nodes in the training set, the603

better the network alignment performance. We analyze the604

impact of anchor node percentage in the training set from605

0.5 to 0.8. As shown in Table 4, the effectiveness of all meth-606

ods increases with an increasing proportion of anchor nodes607

in the training set. We observe that GLDyNA outperforms608

other methods even when the proportion of anchor nodes in609

the training set is low. This result is due to its consideration610

of dynamic changes in node behaviors, which increases the611

separability of candidate node pairs, and its incorporation612

of global consistency, which excludes candidate node pairs613

that do not conform to the overall evolutionary pattern.614

Time for Searching Anchor Node Pairs. In Fig. 5,615

we compare the computational efficiency of each method.616

The running time of most methods is comparable, except617

for NeXtAlign. Despite NeXtAlign achieving satisfactory618

alignment results, it utilizes a complex negative sampling619

method to calculate node attention, resulting in a longer620

running time. Compared to static methods, although GL-621

DyNA considers information from different snapshots, it622
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Fig. 5: Model running times on TF and JC datasets.

reduces its running time through a sampling approach. 623

5.3 Ablation Study 624

In this subsection, we conduct ablation studies to validate 625

the effectiveness of global-level and local-level consistency. 626

Six variants are designed: 627

- GLDyNA-WG does not consider the global consis- 628

tency of node pairs, i.e., performs alignment without 629

simg(·, ·). 630

- GLDyNA-WG(L-) does not consider global consis- 631

tency of node pairs and only considers local consis- 632

tency between the current snapshot and the previous 633

snapshot, i.e., performs alignment without simg(·, ·) 634

and set ς = t− 1 in siml(·, ·). 635

- GLDyNA-WL does not consider local consistency 636

of node pairs, i.e., performs alignment without 637

siml(·, ·). 638

- GLDyNA-WGL does not consider global and local 639

consistency of node pairs, i.e., performs network 640

alignment without simg(·, ·) and siml(·, ·). 641

- GLDyNA-WS does not perform spatial transforma- 642

tion, i.e., uses the node representations learned by 643

Structure-Time-aware module directly. 644

- GLDyNA-G uses a nonlinear neural network to learn 645

the sum collaboration of anchor node pairs as a 646

replacement for Eq(8). 647
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TABLE 5: Results of ablation study on TF dataset at different snapshot t.

t1 t2 t3 t4
Precision MRR Precision MRR Precision MRR Precision MRR

GLDyNA-WG 0.3750 0.3628 0.3549 0.3855 0.3283 0.3244 0.3000 0.2910
GLDyNA-WG(L-) 0.3295 0.3045 0.3871 0.3845 0.2683 0.3193 0.2750 0.2546

GLDyNA-WL 0.6959 0.6906 0.8387 0.8395 0.8926 0.8926 0.9250 0.9250
GLDyNA-WGL 0.2455 0.2658 0.2806 0.2837 0.2732 0.2915 0.3250 0.3303
GLDyNA-WS 0.2219 0.2370 0.2511 0.2466 0.2501 0.2422 0.2991 0.3009
GLDyNA-G 0.6992 0.7059 0.8822 0.8875 0.8906 0.9000 0.9436 0.9461

GLDyNA 0.7045 0.7059 0.8871 0.8872 0.9024 0.9025 0.9500 0.9500

TABLE 6: Results of ablation study on JC dataset at different snapshot t.

t1 t2 t3 t4 t5 t6
Precision MRR Precision MRR Precision MRR Precision MRR Precision MRR Precision MRR

GLDyNA-WG 0.5263 0.4827 0.4820 0.4704 0.4364 0.4530 0.3649 0.3825 0.4091 0.3986 0.4373 0.4293
GLDyNA-WG(L-) 0.5251 0.5206 0.4706 0.4470 0.4606 0.4483 0.3649 0.4034 0.4156 0.4351 0.3470 0.3460

GLDyNA-WL 0.5263 0.5377 0.4368 0.4398 0.5333 0.5382 0.5149 0.5180 0.5404 0.5379 0.6758 0.6709
GLDyNA-WGL 0.4439 0.4670 0.4515 0.4703 0.4364 0.4562 0.4338 0.4446 0.4519 0.4626 0.4046 0.4144
GLDyNA-WS 0.4011 0.4318 0.4366 0.4419 0.4052 0.4338 0.4216 0.4288 0.4361 0.4423 0.4000 0.3903
GLDyNA-G 0.5701 0.5699 0.4871 0.4799 0.6112 0.5973 0.5603 0.5500 0.5900 0.5927 0.7000 0.6977

GLDyNA 0.5702 0.5743 0.4926 0.4969 0.6126 0.6070 0.5608 0.5605 0.5974 0.6100 0.7078 0.7057

Table 5 and Table 6 compare the different variants of GL-648

DyNA on TF and JC datasets, respectively. Global and local649

consistency plays a crucial role in network alignment, which650

is demonstrated by the significant drop in the performance651

of GLDyNA-WGL. The superior performance of GLDyNA-652

WGL compared to most static network alignment baseline653

methods indicates that the consideration of dynamic node654

behaviors is beneficial for network alignment.655

The advantage of our global consistency can be quan-656

tified by the reduced performance of GLDyNA-WG. The657

advantage of our local consistency can be quantified by658

the reduced performance of GLDyNA-WL. Comparing the659

results of GLDyNA-WG on two datasets reveals that the660

impact of global consistency is more significant on the TF661

dataset compared to the JC dataset. This discrepancy arises662

due to the reliance of global consistency on changes in the663

total number of neighbors for nodes in both networks. In the664

TF dataset, there is a notable increase in the number of edges665

between different snapshots, resulting in an overall trend of666

increasing neighbor count for nodes. This trend facilitates667

the differentiation of nodes using global consistency. Con-668

versely, the JC dataset demonstrates unstable relationships669

in the changes of edge count across different snapshots,670

indicating indistinct variations in neighbor count for nodes.671

This makes it challenging to differentiate nodes using global672

consistency, resulting in a relatively limited impact of global673

consistency in this dataset.674

Compared to GLDyNA-WG, GLDyNA-WG(L-)’s per-675

formance exhibits a slight decline in both Precision and676

MRR, indicating that when disregarding global consis-677

tency, the consideration of local consistency with a lim-678

ited number of snapshots cannot effectively constrain the679

node pairs. The significant reduction in the performance680

of GLDyNA-WS indicates that, in the absence of spatial681

transformation, the learned node representations of the two682

networks exhibit certain differences due to their semantic683

disparities, rendering them unsuitable for direct alignment.684

The performance of GLDyNA-G is comparable to that of685

GLDyNA, indicating that for the dataset used in the exper-686

iments, the majority of changes in the number of neighbors 687

for anchor node pairs still adhere to linear patterns. This 688

finding aligns with reality, where both in social networks 689

and academic collaboration networks, most individuals ex- 690

perience gradual and non-disruptive changes in the number 691

of their connections or friends under normal circumstances. 692

Furthermore, to investigate whether the sum of first- 693

order neighbors is the optimal feature for computing global 694

consistency, we conducted experiments to validate the use 695

of different order neighbor counts as features for global 696

consistency. The experimental results are shown in Fig. 6 697

and Fig. 7, which indicate that considering the sum of 698

higher-order neighbors does not improve the effectiveness 699

of alignment. The sum of higher-order neighbors of a node 700

no longer solely represents its intrinsic characteristics but 701

rather reflects the characteristics of its neighbors. As a result, 702

they provide limited useful information for alignment and 703

may even introduce interference. This observation further 704

supports the rationale behind our approach of utilizing 705

only the sum of first-order neighbors to compute global 706

consistency. 707
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Fig. 6: Experimental results of considering different K-order
neighbors in the global consistency on the TF dataset.

5.4 Hyperparameter Sensitivity 708

To understand the effect of hyperparameters, we analyze ac- 709

curacy by varying hyperparameters in several experiments. 710

When analyzing each hyperparameter, all other parameters 711
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Fig. 7: Experimental results of considering different K-order
neighbors in the global consistency on the JC dataset.

are held constant at their default values. The results on TF712

and JC datasets are shown in Fig. 8 and Fig. 9 respectively.713

- Impact of the weight of global consistency λ. We714

examine the impact of varying the global consistency715

weight across the range of [0.05, 0.1, 0.15, 0.2], and716

our results reveal that GLDyNA achieves superior717

performance with λ = 0.15 in most snapshots. Al-718

though anchor node pairs maintain global consis-719

tency between them over time, there may be some720

deviations from global consistency during the evo-721

lution process. Therefore, there are some snapshots722

where λ = 0.15 does not achieve the best perfor-723

mance.724

- Impact of the weight of local consistency γ. We725

examine the impact of varying the local consistency726

weight across the range of [0.05, 0.1, 0.15, 0.2], and727

our results reveal that GLDyNA achieves superior728

performance with γ = 0.1. In comparison to global729

consistency, the performance of γ = 0.1 across differ-730

ent snapshots is consistently stable, exhibiting neg-731

ligible occurrences of anchor nodes deviating from732

local consistency within any given snapshot.733

- Impact of the random walk length l. We examine the734

impact of varying the random walk length across735

the range of [5, 10, 15, 20], and our results reveal736

that GLDyNA achieves superior performance with737

l = 15. The walk length l affects the length of the738

sampled paths and the coverage of the network,739

thus influencing the learned node representations. A740

smaller l leads to denser path sampling, capturing lo-741

cal structure better, but may ignore global structure.742

A larger l can traverse the network more comprehen-743

sively but may overlook local dependencies between744

nodes. Therefore, we choose l = 15 considering a745

balance between the desired representation accuracy746

and computational efficiency.747

- Impact of the dimension of node representations748

d. We examine the impact of varying the dimen-749

sion of node representations across the range of750

[32, 64, 128, 256], and our results reveal that GL-751

DyNA achieves superior performance with 64-752

dimension node representations. In general, higher753

node representation dimensions can better preserve754

the features of nodes in a network. However, in755

dynamic network alignment tasks, increasing node756

dimensions may introduce irrelevant information757

from the evolutionary process, leading to decreased758

performance.759
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Fig. 8: Experimental results of different model parameters
(the weight of global consistency λ, local consistency γ,
random walk length l, and node representation dimension
d) on the TF dataset.

6 CONCLUSION 760

This paper mainly investigates the problem of network 761

alignment in dynamic scenarios. The dynamic nature of net- 762

works harbors distinctive patterns that can aid in network 763

alignment. To efficiently utilize the dynamics of networks, 764

we propose a method called GLDyNA to improve the ac- 765

curacy of network alignment. In the proposed GLDyNA, to 766

capture the intra-network dynamics, we design a Structure- 767

Time-aware module to learn the node representations with 768

network dynamics. To address the inter-network alignment, 769

we ensure the consistency of anchor node pairs from global 770

and local views, respectively. Compared to the STOA align- 771

ment methods on real-world datasets, GLDyNA can achieve 772

comparable accuracy performance in dynamic scenarios. 773

In further research, we endeavor to investigate the in- 774

trinsic mechanism of the neighborhood structures of a pair 775

of anchor nodes across disparate networks. Specifically, we 776

aim to generate the neighborhood structure of an anchor 777

node in one network based on its neighborhood structure 778

and historical evolution in another network. By examining 779

the intrinsic mechanism, we can gain a deeper understand- 780

ing of how these structures are formed and how they evolve. 781

It can not only improve the network alignment but also 782

enhance the interpretability of the results. 783
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Fig. 9: Experimental results of different model parameters
(the weight of global consistency λ, local consistency γ,
random walk length l, and node representation dimension
d) on the JC dataset.
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